JP6045848B2 - Flat battery - Google Patents

Flat battery Download PDF

Info

Publication number
JP6045848B2
JP6045848B2 JP2012179536A JP2012179536A JP6045848B2 JP 6045848 B2 JP6045848 B2 JP 6045848B2 JP 2012179536 A JP2012179536 A JP 2012179536A JP 2012179536 A JP2012179536 A JP 2012179536A JP 6045848 B2 JP6045848 B2 JP 6045848B2
Authority
JP
Japan
Prior art keywords
gasket
peripheral wall
wall portion
axis direction
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012179536A
Other languages
Japanese (ja)
Other versions
JP2014038743A (en
Inventor
慎也 小松
慎也 小松
山口 浩司
浩司 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP2012179536A priority Critical patent/JP6045848B2/en
Priority to EP13817401.6A priority patent/EP2874200B1/en
Priority to PCT/JP2013/067454 priority patent/WO2014010413A1/en
Priority to US14/391,246 priority patent/US20150118545A1/en
Publication of JP2014038743A publication Critical patent/JP2014038743A/en
Application granted granted Critical
Publication of JP6045848B2 publication Critical patent/JP6045848B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)

Description

本発明は、コイン形電池等の扁平形電池に関する。   The present invention relates to a flat battery such as a coin battery.

従来より、有底筒状の外装缶と該外装缶の開口を覆うように配置される封口缶とを備えた扁平形電池は知られている。このような扁平形電池では、例えば特許文献1に開示されるように、電池内部の気密性を保ち且つ外装缶と封口缶との電気的な絶縁を確保するために、外装缶と封口缶との接続部分に樹脂製のガスケットを配置している。すなわち、封口缶の周壁部上には、外装缶との間に挟み込まれるガスケットが配置されている。   Conventionally, a flat battery including a bottomed cylindrical outer can and a sealing can disposed so as to cover the opening of the outer can is known. In such a flat battery, for example, as disclosed in Patent Document 1, in order to maintain airtightness inside the battery and to ensure electrical insulation between the outer can and the sealed can, A gasket made of resin is arranged at the connecting part. That is, a gasket sandwiched between the outer can and the outer can is disposed on the peripheral wall portion of the sealed can.

なお、前記特許文献1に開示される電池は、電池の高さ(厚み)が高いコイン形リチウム電池である。   The battery disclosed in Patent Document 1 is a coin-type lithium battery having a high battery height (thickness).

特開2007−200593号公報JP 2007-2000593 A

ところで、前記特許文献1に開示されるようなコイン形リチウム電池では、電池の高さが高いため、封口缶の周壁部を高くする構成が考えられる。しかしながら、一般的に、封口缶は絞り加工によって形成されるため、高さが高い周壁部を形成するのは製造上、難しい。   By the way, in the coin-type lithium battery as disclosed in Patent Document 1, since the height of the battery is high, a configuration in which the peripheral wall portion of the sealing can is increased is conceivable. However, in general, since the sealed can is formed by drawing, it is difficult to manufacture a peripheral wall portion having a high height.

また、前記特許文献1に開示されるように、封口缶の周壁部の高さを低くして、外装缶の高さ方向の略中央部分で、外装缶から突出した膨出部や正極リングの一部によって前記封口缶の周壁部及びガスケットを受け止める構成が考えられる。しかしながら、このような構成では、外装缶と封口缶との封止力が弱くなるため、十分な封止性能が得られない可能性がある。   Further, as disclosed in Patent Document 1, the height of the peripheral wall portion of the sealing can is lowered, and the bulging portion protruding from the outer can and the positive electrode ring at the substantially central portion in the height direction of the outer can. The structure which receives the surrounding wall part and gasket of the said sealing can by part is considered. However, in such a configuration, since the sealing force between the outer can and the sealing can is weakened, there is a possibility that sufficient sealing performance cannot be obtained.

さらに、前記特許文献1に開示されるように、封口缶の周壁部を折り返して該周壁部にガスケットを取り付ける構成の場合、封口缶の周壁部を折り返す分、ガスケット及び周壁部の厚みが大きくなる。よって、その分、電池の内容積が小さくなってしまう。   Further, as disclosed in Patent Document 1, when the gasket is attached to the peripheral wall portion by folding the peripheral wall portion of the sealing can, the thickness of the gasket and the peripheral wall portion is increased by the amount of folding the peripheral wall portion of the sealing can. . Therefore, the internal volume of the battery is reduced accordingly.

本発明の目的は、ガスケットが封口缶の周壁部上に射出成形された扁平形電池において、ガスケットによる封止性能を向上可能な構成を、簡単且つ製造が容易でコンパクトな構成によって得ることにある。   An object of the present invention is to obtain a configuration capable of improving the sealing performance of a gasket in a flat battery in which a gasket is injection-molded on a peripheral wall portion of a sealing can with a simple, easy manufacturing and compact configuration. .

本発明の一実施形態にかかる扁平形電池は、筒軸方向に延びる筒状側壁部を有する有底筒状の外装缶と、前記筒軸方向に延びる周壁部を有し、該周壁部が前記外装缶の内方に位置付けられるように前記外装缶の開口を覆う有底筒状の封口缶と、前記封口缶の周壁部上に射出成形によって形成され、前記外装缶と前記封口缶とによって挟み込まれるガスケットとを備える。前記封口缶の周壁部は、先端部分が折り返されることなく前記筒軸方向に延びている。前記ガスケットは、前記封口缶の周壁部の少なくとも一部を覆うように該周壁部上に成形される被覆部と、該被覆部と一体に形成され、前記周壁部に対して前記筒軸方向の外方に位置する突出部とを有する。前記突出部は、前記筒軸方向の突出長さが、前記突出部の厚みよりも大きい(第1の構成)。   A flat battery according to an embodiment of the present invention includes a bottomed cylindrical outer can having a cylindrical side wall portion extending in a cylindrical axis direction, and a peripheral wall portion extending in the cylindrical axis direction. A bottomed cylindrical sealing can covering the opening of the outer can so as to be positioned inside the outer can, and formed by injection molding on a peripheral wall portion of the sealing can, and sandwiched between the outer can and the sealing can And a gasket. The peripheral wall portion of the sealing can extends in the cylindrical axis direction without the tip portion being folded back. The gasket is formed integrally with the covering portion formed on the peripheral wall portion so as to cover at least a part of the peripheral wall portion of the sealing can, and is formed integrally with the covering portion in the cylinder axis direction. And a protruding portion located outward. The protrusion has a protrusion length in the cylindrical axis direction that is greater than the thickness of the protrusion (first configuration).

これにより、封口缶の周壁部の先端部分が折り返されることなく筒軸方向に延びていて、該周壁部上にガスケットが射出成形された構成において、前記周壁部の筒軸方向の長さを短くしつつ、ガスケットによる封止性能の向上を図れる。   Thereby, the front end portion of the peripheral wall portion of the sealing can extends in the cylinder axis direction without being folded back, and in the configuration in which the gasket is injection-molded on the peripheral wall portion, the length of the peripheral wall portion in the cylinder axis direction is shortened. However, the sealing performance can be improved by the gasket.

すなわち、ガスケットにおいて封口缶の周壁部から突出する突出部は、筒軸方向の突出長さが該突出部の厚みよりも大きいため、大きく変形する。これにより、筒軸方向の突出長さが該突出部の厚み以下である構成に比べて、ガスケットの変形範囲を大きくすることができるとともに、該ガスケットに生じる反力を大きくしてガスケットと外装缶との間の面圧を大きくすることができる。したがって、ガスケットによるシール性能の向上を図れる。また、突出部の前記筒軸方向の長さが大きくなる分、封口缶の周壁部の長さが短くなるため、該封口缶の周壁部を容易に形成することができる。   That is, the protruding portion protruding from the peripheral wall portion of the sealing can in the gasket is greatly deformed because the protruding length in the cylinder axis direction is larger than the thickness of the protruding portion. As a result, the deformation range of the gasket can be increased and the reaction force generated in the gasket can be increased compared to the configuration in which the protruding length in the tube axis direction is equal to or less than the thickness of the protruding portion. The surface pressure between the two can be increased. Therefore, the sealing performance can be improved by the gasket. Moreover, since the length of the surrounding wall part of a sealing can becomes short by the length in the said cylinder axis direction of a protrusion part, the surrounding wall part of this sealing can can be formed easily.

前記第1の構成において、前記突出部は、前記筒軸方向の突出長さが、前記突出部の先端部分における厚みよりも大きいのが好ましい(第2の構成)。   In the first configuration, it is preferable that the protruding portion has a protruding length in the cylinder axis direction larger than a thickness at a tip portion of the protruding portion (second configuration).

これにより、ガスケットの突出部の先端部分を外装缶に対して強く押し付けることによって、該先端部分をより大きく変形させることができる。したがって、ガスケットの封止性能をより向上することができる。   Thereby, the front-end | tip part can be deform | transformed more largely by pressing the front-end | tip part of the protrusion part of a gasket strongly with respect to an exterior can. Therefore, the sealing performance of the gasket can be further improved.

前記第1または第2の構成において、前記突出部は、前記筒軸方向の突出長さが、前記ガスケットの前記筒軸方向の長さに対して1/4以上であるのが好ましい(第3の構成)。   In the first or second configuration, it is preferable that the protruding portion has a protruding length in the cylinder axis direction that is 1/4 or more than a length of the gasket in the cylinder axis direction (third) Configuration).

これにより、ガスケットの突出部における筒軸方向の突出長さを、一般的な構成の突出長さ(ガスケットの筒軸方向の長さに対して1/9以下)に比べて長くすることができる。したがって、封口缶の周壁部の筒軸方向の長さをより確実に短くすることができるとともに、ガスケットによる封止性能をより確実に向上することができる。   Thereby, the protrusion length of the cylinder axial direction in the protrusion part of a gasket can be lengthened compared with the protrusion length (1/9 or less with respect to the length of the gasket axial direction of a gasket) of a general structure. . Therefore, the length of the peripheral wall portion of the sealing can in the cylinder axis direction can be shortened more reliably, and the sealing performance by the gasket can be more reliably improved.

前記第1から第3の構成のうちいずれか一つの構成において、前記ガスケットは、前記被覆部のうち前記封口缶の周壁部の外側を覆う部分の厚みが、前記周壁部の先端部分に向かって徐々に小さくなるテーパ状に形成されているのが好ましい(第4の構成)。   In any one of the first to third configurations, in the gasket, a thickness of a portion of the covering portion that covers an outer side of the peripheral wall portion of the sealing can is directed toward a tip portion of the peripheral wall portion. It is preferable that the taper is gradually reduced (fourth configuration).

このようにテーパ状に形成されているガスケットにおいて、上述の第1から第3の構成を適用することで、ガスケットの厚みをできるだけ小さくすることができる。すなわち、ガスケットをテーパ状に形成する場合、該ガスケット内に位置付けられる封口缶の周壁部の先端部分で所定以上のガスケットの厚みを確保する必要がある。そのため、ガスケットにおける前記周壁部の基端側の部分では、前記周壁部の先端部分で所定以上のガスケットの厚みを確保できるように、ガスケットの厚みを大きくする必要がある。   Thus, in the gasket formed in the taper shape, the thickness of a gasket can be made as small as possible by applying the above-mentioned 1st to 3rd structure. That is, when the gasket is formed in a taper shape, it is necessary to ensure a thickness of the gasket equal to or greater than a predetermined value at the tip portion of the peripheral wall portion of the sealing can positioned in the gasket. For this reason, it is necessary to increase the thickness of the gasket at the proximal end portion of the peripheral wall portion of the gasket so that a predetermined thickness or more of the gasket thickness can be secured at the distal end portion of the peripheral wall portion.

上述の第1から第3の構成のように封口缶の周壁部の筒軸方向の長さを短くすることで、その分、ガスケットにおける前記周壁部の基端側の部分の厚みを小さくすることができる。したがって、ガスケット全体の厚みを小さくすることができる。   By reducing the length of the peripheral wall portion of the sealing can in the cylinder axis direction as in the first to third configurations described above, the thickness of the proximal end portion of the peripheral wall portion of the gasket is reduced accordingly. Can do. Therefore, the thickness of the entire gasket can be reduced.

前記第1から第4の構成のうちいずれか一つの構成において、前記外装缶及び前記封口缶は、それぞれ有底円筒状であり、前記外装缶の前記筒状側壁部は、その外径が、前記外装缶及び前記封口缶を組み合わせた状態の前記筒軸方向の高さに対して4倍よりも小さいのが好ましい(第5の構成)。   In any one of the first to fourth configurations, the outer can and the sealing can each have a bottomed cylindrical shape, and the cylindrical side wall portion of the outer can has an outer diameter, It is preferable that the height in the cylinder axis direction in a state where the outer can and the sealed can are combined is smaller than four times (fifth configuration).

このように、外装缶の外径が、外装缶及び封口缶を組み合わせた状態の筒軸方向の高さに対して4倍よりも小さい場合には、一般的なコイン形電池に比べて電池全体の高さが高くなる。このような電池においても、上述の第1から第3の構成を適用することで、封口缶の周壁部の長さを短くすることができるとともに、ガスケットによる封止性能の向上を図れる。また、上述のような電池の構成において、第4の構成のようにテーパ状に形成されている場合でも、ガスケット全体の厚みを小さくすることができる。   As described above, when the outer diameter of the outer can is smaller than four times the height in the cylinder axis direction in a state where the outer can and the sealing can are combined, the entire battery is compared with a general coin-type battery. The height of becomes higher. Even in such a battery, by applying the above first to third configurations, the length of the peripheral wall portion of the sealing can can be shortened, and the sealing performance by the gasket can be improved. Further, in the battery configuration as described above, even when the taper is formed as in the fourth configuration, the thickness of the entire gasket can be reduced.

前記第5の構成において、前記外装缶の前記筒状側壁部は、その外径が、前記外装缶及び前記封口缶を組み合わせた状態の前記筒軸方向の高さに対して2倍以下であるのが好ましい(第6の構成)。   The said 5th structure WHEREIN: The said cylindrical side wall part of the said exterior can has the outer diameter 2 times or less with respect to the height of the said cylinder axial direction in the state which combined the said exterior can and the said sealing can. Is preferable (sixth configuration).

このように、外装缶の外径が、外装缶及び封口缶を組み合わせた状態の筒軸方向の高さに対して2倍以下の場合でも、上述の第1から第3の構成を適用することで、封口缶の周壁部の長さを短くすることができるとともに、ガスケットによる封止性能の向上を図れる。   As described above, the first to third configurations described above are applied even when the outer diameter of the outer can is not more than twice the height in the cylinder axis direction in a state where the outer can and the sealed can are combined. Thus, the length of the peripheral wall portion of the sealing can can be shortened, and the sealing performance by the gasket can be improved.

本発明の一実施形態に係る扁平形電池では、封口缶の周壁部の先端部分を折り返すことなく筒軸方向に延ばすとともに、前記周壁部上にガスケットを射出成形する。このガスケットは、前記周壁部から突出する突出部の突出長さが、該突出部の厚みよりも大きい。これにより、封口缶の周壁部の長さを短くしつつ、ガスケットによる封止性能の向上を図れる。   In the flat battery according to the embodiment of the present invention, the distal end portion of the peripheral wall portion of the sealing can is extended without being folded back, and a gasket is injection-molded on the peripheral wall portion. In this gasket, the protruding length of the protruding portion protruding from the peripheral wall portion is larger than the thickness of the protruding portion. Thereby, the sealing performance by a gasket can be improved, shortening the length of the surrounding wall part of a sealing can.

図1は、本発明の一実施形態にかかる扁平形電池の概略構成を示す断面図である。FIG. 1 is a cross-sectional view showing a schematic configuration of a flat battery according to an embodiment of the present invention. 図2は、扁平形電池内の電極体の構造を断面で拡大して示す部分拡大断面図である。FIG. 2 is a partially enlarged cross-sectional view showing the structure of the electrode body in the flat battery in an enlarged view. 図3は、ガスケットの突出部を拡大して示す部分拡大断面図である。FIG. 3 is a partially enlarged cross-sectional view showing an enlarged protrusion of the gasket. 図4は、電池の各部寸法を示す断面図である。FIG. 4 is a cross-sectional view showing the dimensions of each part of the battery. 図5は、負極缶にガスケットをモールド成形するときの様子を示す図である。FIG. 5 is a diagram showing a state when a gasket is molded on the negative electrode can. 図6は、ガスケットを拡大して示す拡大断面図である。FIG. 6 is an enlarged sectional view showing the gasket in an enlarged manner.

以下、図面を参照し、本発明の実施の形態を詳しく説明する。図中の同一または相当部分については同一の符号を付してその説明は繰り返さない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The same or corresponding parts in the drawings are denoted by the same reference numerals and description thereof will not be repeated.

(全体構成)
図1は、本発明の一実施形態である扁平形電池1の概略構成を示す断面図である。この扁平形電池1は、有底円筒状の外装缶としての正極缶10と、該正極缶10の開口を覆う封口缶としての負極缶20と、正極缶10と負極缶20との間に挟み込まれるガスケット30と、正極缶10及び負極缶20の間に形成される空間内に収納される電極体40とを備える。したがって、扁平形電池1は、正極缶10と負極缶20とを合わせることによって、全体が扁平なコイン状となる。扁平形電池1の正極缶10及び負極缶20の間に形成される空間内には、電極体40以外に、非水電解液(図示省略)も封入されている。なお、正極缶10と負極缶20とを組み合わせることにより、電池ケースが構成される。
(overall structure)
FIG. 1 is a cross-sectional view showing a schematic configuration of a flat battery 1 according to an embodiment of the present invention. The flat battery 1 is sandwiched between a positive electrode can 10 as a bottomed cylindrical outer can, a negative electrode can 20 as a sealing can covering the opening of the positive electrode can 10, and the positive electrode can 10 and the negative electrode can 20. And the electrode body 40 housed in a space formed between the positive electrode can 10 and the negative electrode can 20. Therefore, the flat battery 1 is formed into a flat coin shape by combining the positive electrode can 10 and the negative electrode can 20 together. In the space formed between the positive electrode can 10 and the negative electrode can 20 of the flat battery 1, in addition to the electrode body 40, a non-aqueous electrolyte (not shown) is also enclosed. The battery case is configured by combining the positive electrode can 10 and the negative electrode can 20.

正極缶10は、ステンレスなどの金属材料からなり、プレス成形によって有底円筒状に形成されている。正極缶10は、円形状の底部11と、その外周に該底部11と連続して形成される円筒状の周壁部12(筒状側壁部)とを備える。この周壁部12は、縦断面視(図1に図示した状態)で、底部11の外周端からほぼ垂直に延びるように設けられている。正極缶10は、後述するように、負極缶20との間にガスケット30を挟んだ状態で、周壁部12の開口端側が正極缶10の内側に折り曲げられて、該負極缶20に対してかしめられている。なお、図1における符号Pは、正極缶10の筒軸である。周壁部12は、正極缶10の筒軸方向に延びている。   The positive electrode can 10 is made of a metal material such as stainless steel, and is formed into a bottomed cylindrical shape by press molding. The positive electrode can 10 includes a circular bottom portion 11 and a cylindrical peripheral wall portion 12 (cylindrical side wall portion) formed continuously with the bottom portion 11 on the outer periphery thereof. The peripheral wall portion 12 is provided so as to extend substantially vertically from the outer peripheral end of the bottom portion 11 in a longitudinal sectional view (the state illustrated in FIG. 1). As will be described later, the positive electrode can 10 is crimped to the negative electrode can 20 by folding the opening end side of the peripheral wall portion 12 inside the positive electrode can 10 with the gasket 30 sandwiched between the positive electrode can 20 and the negative electrode can 20. It has been. Note that the symbol P in FIG. 1 is the cylinder axis of the positive electrode can 10. The peripheral wall portion 12 extends in the cylinder axis direction of the positive electrode can 10.

負極缶20も、正極缶10と同様、ステンレスなどの金属材料からなり、プレス成形によって有底円筒状に形成されている。負極缶20は、正極缶10の周壁部12よりも外形が小さい概略円筒状の周壁部22と、その一方の開口を塞ぐ円形状の平面部21と、を有する。この周壁部22も、正極缶10と同様、縦断面視で、平面部21に対してほぼ垂直に延びるように設けられている。周壁部22は、先端部分で折り返されることなく、筒軸方向Pに延びている。すなわち、負極缶20は、周壁部22に折り返しのない、いわゆるストレート缶である。   Similarly to the positive electrode can 10, the negative electrode can 20 is made of a metal material such as stainless steel and is formed in a bottomed cylindrical shape by press molding. The negative electrode can 20 has a substantially cylindrical peripheral wall portion 22 whose outer shape is smaller than that of the peripheral wall portion 12 of the positive electrode can 10, and a circular plane portion 21 that closes one of the openings. Similar to the positive electrode can 10, the peripheral wall portion 22 is also provided so as to extend substantially perpendicular to the flat portion 21 in a longitudinal sectional view. The peripheral wall portion 22 extends in the cylinder axis direction P without being folded back at the tip portion. That is, the negative electrode can 20 is a so-called straight can in which the peripheral wall portion 22 is not folded back.

また、周壁部22には、平面部21側の基端部22aに比べて径が段状に大きくなる拡径部22bが形成されている。すなわち、周壁部22には、基端部22aと拡径部22bとの間に段部22cが形成されている。図1に示すように、この段部22cに対して、正極缶10の周壁部12の開口端側が折り曲げられてかしめられている。すなわち、正極缶10は、その周壁部12の開口端側が負極缶20の段部22cに嵌合されている。なお、負極缶20の周壁部22も、正極缶10の周壁部12と同様、筒軸方向に延びている。   Further, the peripheral wall portion 22 is formed with an enlarged diameter portion 22b whose diameter is increased stepwise as compared with the base end portion 22a on the flat surface portion 21 side. That is, the peripheral wall portion 22 is formed with a step portion 22c between the base end portion 22a and the enlarged diameter portion 22b. As shown in FIG. 1, the open end side of the peripheral wall portion 12 of the positive electrode can 10 is bent and caulked with respect to the step portion 22c. That is, the positive electrode can 10 has the opening end side of the peripheral wall portion 12 fitted to the step portion 22 c of the negative electrode can 20. The peripheral wall portion 22 of the negative electrode can 20 also extends in the cylinder axis direction, like the peripheral wall portion 12 of the positive electrode can 10.

正極缶10の周壁部12の外径Dは、扁平形電池1の厚みTに対し、4よりも小さいのが好ましい。特に、D/Tは、2以下が好ましい。このように、本実施形態の扁平形電池1は、一般的なコイン形電池(D/Tが4以上)に比べて高さが高い。なお、外径D、厚みTは、図4に示す部分の寸法である。   The outer diameter D of the peripheral wall portion 12 of the positive electrode can 10 is preferably smaller than 4 with respect to the thickness T of the flat battery 1. In particular, D / T is preferably 2 or less. Thus, the flat battery 1 of this embodiment is higher in height than a general coin battery (D / T is 4 or more). The outer diameter D and the thickness T are the dimensions of the portion shown in FIG.

また、扁平形電池1の厚みTに対し、正極缶10の底部11から周壁部12における電池肩部(周壁部12を負極缶20の周壁部22にかしめた状態で、該周壁部12の開口端の位置)までの距離tは、0.8から0.9の範囲が好ましい。これにより、上述のように、一般的なコイン形電池に比べて高さの高い電池の場合でも、負極缶20の平面部21に近い位置に正極缶10の周壁部12がかしめられる。よって、負極缶20に対して正極缶10をかしめた際に、該負極缶20の周壁部22の変形を抑制することができる。   Further, with respect to the thickness T of the flat battery 1, the battery shoulder portion (the peripheral wall portion 12 is caulked to the peripheral wall portion 22 of the negative electrode can 20 from the bottom portion 11 of the positive electrode can 10 to the opening portion of the peripheral wall portion 12. The distance t to the end position is preferably in the range of 0.8 to 0.9. Thus, as described above, the peripheral wall portion 12 of the positive electrode can 10 is caulked at a position close to the flat surface portion 21 of the negative electrode can 20 even in the case of a battery having a height higher than that of a general coin-type battery. Therefore, when the positive electrode can 10 is caulked against the negative electrode can 20, deformation of the peripheral wall portion 22 of the negative electrode can 20 can be suppressed.

ガスケット30は、ポリプロピレン(PP)からなる。ガスケット30は、正極缶10の周壁部12と負極缶20の周壁部22との間に挟みこまれるように、該負極缶20の周壁部22上にモールド成形されている。ガスケット30の詳しい構成については後述する。なお、ガスケット30の材料としては、PPに限らず、ポリフェニレンサルファイド(PPS)にオレフィン系エラストマーを含有した樹脂組成物や、ポリテトラフルオロエチレン(PFA)、ポリアミド系樹脂などを用いてもよい。   The gasket 30 is made of polypropylene (PP). The gasket 30 is molded on the peripheral wall portion 22 of the negative electrode can 20 so as to be sandwiched between the peripheral wall portion 12 of the positive electrode can 10 and the peripheral wall portion 22 of the negative electrode can 20. The detailed configuration of the gasket 30 will be described later. The material of the gasket 30 is not limited to PP, and a resin composition containing an olefin elastomer in polyphenylene sulfide (PPS), polytetrafluoroethylene (PFA), a polyamide resin, or the like may be used.

電極体40は、図2にも示すように、袋状のセパレータ44内に収容された略円板状の正極41と、略円板状の負極46と、を厚み方向に交互に複数、積層してなる。これにより、電極体40は、全体として略円柱状の形状を有する。また、電極体40は、両端面が負極になるように、複数の正極41及び負極46が積層されている。   As shown in FIG. 2, the electrode body 40 is formed by laminating a plurality of substantially disc-like positive electrodes 41 and substantially disc-like negative electrodes 46 accommodated in a bag-like separator 44 in the thickness direction. Do it. Thereby, the electrode body 40 has a substantially columnar shape as a whole. In addition, the electrode body 40 has a plurality of positive electrodes 41 and negative electrodes 46 stacked so that both end faces are negative electrodes.

正極41は、図2に示すように、コバルト酸リチウム等の正極活物質を含有する正極活物質層42を、アルミニウム等の金属箔製の正極集電体43の両面に配置したものである。   As shown in FIG. 2, the positive electrode 41 is formed by arranging positive electrode active material layers 42 containing a positive electrode active material such as lithium cobaltate on both surfaces of a positive electrode current collector 43 made of a metal foil such as aluminum.

負極46は、図2に示すように、黒鉛等の負極活物質を含有する負極活物質層47を、銅等の金属箔製の負極集電体48の両面に配置したものである。略円柱状の電極体40の軸方向両端に位置する負極は、それぞれ、負極集電体48,48が電極体40の軸方向端部に位置するように、負極集電体48の一面側のみに負極活物質層47を有する。すなわち、略円柱状の電極体40は、その両端に負極集電体48,48が露出している。この電極体40の一方の負極集電体48は、正極終電体43及び絶縁シート49を介して正極缶10の底部11上に位置づけられる(図1及び図2参照)。電極体40の他方の負極集電体48は、電極体40が正極缶10と負極缶20との間に配置された状態で、該負極缶20の平面部21に当接する(図1参照)。   As shown in FIG. 2, the negative electrode 46 is formed by disposing negative electrode active material layers 47 containing a negative electrode active material such as graphite on both surfaces of a negative electrode current collector 48 made of a metal foil such as copper. The negative electrodes located at both axial ends of the substantially cylindrical electrode body 40 are only on one surface side of the negative electrode current collector 48 so that the negative electrode current collectors 48 are located at the axial end portions of the electrode body 40, respectively. Has a negative electrode active material layer 47. That is, the negative electrode current collectors 48 are exposed at both ends of the substantially cylindrical electrode body 40. One negative electrode current collector 48 of the electrode body 40 is positioned on the bottom portion 11 of the positive electrode can 10 via the positive electrode current collector 43 and the insulating sheet 49 (see FIGS. 1 and 2). The other negative electrode current collector 48 of the electrode body 40 abuts on the flat portion 21 of the negative electrode can 20 in a state where the electrode body 40 is disposed between the positive electrode can 10 and the negative electrode can 20 (see FIG. 1). .

セパレータ44は、平面視で円形状に形成された袋状の部材であり、略円板状の正極41を収納可能な大きさに形成されている。セパレータ44は、絶縁性に優れたポリエチレン製の微多孔性薄膜によって構成されている。このように、セパレータ44を微多孔性薄膜によって構成することで、リチウムイオンが該セパレータ44を透過することができる。セパレータ44は、一枚の長方形状の微多孔性薄膜のシート材によって正極41を包み込んで、該シート材の重なっている部分を熱溶着等によって接着することにより形成される。   The separator 44 is a bag-shaped member formed in a circular shape in plan view, and is formed in a size that can accommodate the substantially disc-shaped positive electrode 41. The separator 44 is constituted by a microporous thin film made of polyethylene having excellent insulating properties. Thus, by forming the separator 44 with a microporous thin film, lithium ions can pass through the separator 44. The separator 44 is formed by wrapping the positive electrode 41 with a single sheet of a rectangular microporous thin film and bonding the overlapping portions of the sheet material by thermal welding or the like.

図1及び図2に示すように、正極41の正極集電体43には、平面視で該正極集電体43の外方に向かって延びる導電性の正極リード51が一体形成されている。この正極リード51の正極集電体43側も、セパレータ44によって覆われている。なお、絶縁シート49と正極缶10の底部11との間には、正極活物質層42が設けられていない正極集電体43が配置されている。すなわち、この正極集電体43は、正極缶10の底部11に電気的に接触している。   As shown in FIGS. 1 and 2, the positive electrode current collector 43 of the positive electrode 41 is integrally formed with a conductive positive electrode lead 51 extending outward from the positive electrode current collector 43 in a plan view. The positive electrode current collector 43 side of the positive electrode lead 51 is also covered with the separator 44. A positive electrode current collector 43 that is not provided with the positive electrode active material layer 42 is disposed between the insulating sheet 49 and the bottom 11 of the positive electrode can 10. That is, the positive electrode current collector 43 is in electrical contact with the bottom 11 of the positive electrode can 10.

負極46の負極集電体48には、平面視で該負極集電体48の外方に向かって延びる導電性の負極リード52が一体形成されている。   The negative electrode current collector 48 of the negative electrode 46 is integrally formed with a conductive negative electrode lead 52 extending outward from the negative electrode current collector 48 in plan view.

図1及び図2に示すように、正極41及び負極46は、各正極41の正極リード51が一側に位置し、且つ、各負極46の負極リード52が該正極リード51とは反対側に位置するように、積層される。   As shown in FIGS. 1 and 2, the positive electrode 41 and the negative electrode 46 are such that the positive electrode lead 51 of each positive electrode 41 is located on one side and the negative electrode lead 52 of each negative electrode 46 is on the opposite side of the positive electrode lead 51. Laminated so as to be positioned.

上述のように複数の正極41及び負極46を厚み方向に積層した状態で、複数の正極リード51は、先端側を厚み方向に重ね合わされて、超音波溶接等によって接続される。これにより、複数の正極リード51を介して、複数の正極41同士が電気的に接続されるとともに、各正極41と正極缶10とがそれぞれ電気的に接続される。一方、複数の負極リード52も、先端側を厚み方向に重ね合わされて超音波溶接等によって互いに接続される。これにより、複数の負極リード52を介して、複数の負極46同士が電気的に接続されるとともに、各負極46と負極缶20とがそれぞれ電気的に接続される。   As described above, with the plurality of positive electrodes 41 and the negative electrodes 46 laminated in the thickness direction, the plurality of positive electrode leads 51 are overlapped with each other in the thickness direction and connected by ultrasonic welding or the like. Accordingly, the plurality of positive electrodes 41 are electrically connected to each other via the plurality of positive electrode leads 51, and each positive electrode 41 and the positive electrode can 10 are electrically connected to each other. On the other hand, the plurality of negative electrode leads 52 are also connected to each other by ultrasonic welding or the like with the distal end side overlapped in the thickness direction. Accordingly, the plurality of negative electrodes 46 are electrically connected to each other via the plurality of negative electrode leads 52, and each negative electrode 46 and the negative electrode can 20 are electrically connected to each other.

(ガスケットの構成)
次に、ガスケット30の構成を図1、図3、図4及び図6を用いて詳細に説明する。
(Gasket configuration)
Next, the structure of the gasket 30 is demonstrated in detail using FIG.1, FIG.3, FIG.4 and FIG.

図1及び図4に示すように、ガスケット30は、負極缶20の周壁部22を包み込むように概略円筒状に形成されている。詳しくは、ガスケット30は、周壁部22の負極缶内方側、及び、該周壁部22における段部22c及び拡径部22bのそれぞれの負極缶外方側を覆うように、負極缶20にモールド成形されている。また、ガスケット30は、周壁部22の開口側から負極缶20の筒軸方向に突出するように設けられている。すなわち、ガスケット30は、負極缶20の周壁部22を覆う被覆部31と、負極缶20の周壁部22に対して該負極缶20の筒軸方向外方に位置する突出部32とを有する。   As shown in FIGS. 1 and 4, the gasket 30 is formed in a substantially cylindrical shape so as to wrap around the peripheral wall portion 22 of the negative electrode can 20. Specifically, the gasket 30 is molded on the negative electrode can 20 so as to cover the inner side of the negative electrode can of the peripheral wall portion 22 and the outer side of the negative electrode can of the step portion 22c and the enlarged diameter portion 22b of the peripheral wall portion 22. Molded. The gasket 30 is provided so as to protrude from the opening side of the peripheral wall portion 22 in the cylinder axis direction of the negative electrode can 20. That is, the gasket 30 includes a covering portion 31 that covers the peripheral wall portion 22 of the negative electrode can 20, and a protruding portion 32 that is located on the outer side in the cylinder axis direction of the negative electrode can 20 with respect to the peripheral wall portion 22 of the negative electrode can 20.

図1及び図4に示すように、ガスケット30は、負極缶20の周壁部22の基端部22aの内面とほぼ面一になるような内径を有する。すなわち、ガスケット30の被覆部31及び突出部32は、同等の内径を有する。   As shown in FIGS. 1 and 4, the gasket 30 has an inner diameter that is substantially flush with the inner surface of the base end portion 22 a of the peripheral wall portion 22 of the negative electrode can 20. That is, the covering portion 31 and the protruding portion 32 of the gasket 30 have the same inner diameter.

ガスケット30は、図6に示すように、負極缶20の周壁部22の基端側に位置する被覆部31から突出部32の先端に向かって、徐々に外径が小さくなるテーパ状に形成されている。すなわち、ガスケット30は、被覆部31において、負極缶20の周壁部22の基端側から先端側に向かって徐々に厚みが小さくなるテーパ状に形成されている。このようにテーパ状に形成されたガスケット30では、負極缶20の周壁部22の先端部分において、ガスケット30の厚みを所定(図6ではX)以上、確保する必要がある。そのため、ガスケット30における周壁部22の基端側の厚みは、Xよりも大きいYとする必要がある。このような構成において、後述のように、周壁部22の長さを短くしてガスケット30の突出部32の突出長さを大きくすることにより、厚みYをできるだけ小さくすることができる。よって、ガスケット30の厚みを小さくすることができ、扁平形電池内の電池容量をできるだけ大きくすることができる。   As shown in FIG. 6, the gasket 30 is formed in a tapered shape in which the outer diameter gradually decreases from the covering portion 31 located on the proximal end side of the peripheral wall portion 22 of the negative electrode can 20 toward the tip of the protruding portion 32. ing. That is, the gasket 30 is formed in a tapered shape in the covering portion 31 so that the thickness gradually decreases from the proximal end side to the distal end side of the peripheral wall portion 22 of the negative electrode can 20. In the gasket 30 formed in such a taper shape, it is necessary to secure a thickness of the gasket 30 at a predetermined (X in FIG. 6) or more at the tip portion of the peripheral wall portion 22 of the negative electrode can 20. Therefore, the thickness on the proximal end side of the peripheral wall portion 22 in the gasket 30 needs to be Y larger than X. In such a configuration, as described later, the thickness Y can be made as small as possible by shortening the length of the peripheral wall portion 22 and increasing the protruding length of the protruding portion 32 of the gasket 30. Therefore, the thickness of the gasket 30 can be reduced, and the battery capacity in the flat battery can be increased as much as possible.

ガスケット30は、負極缶20の外周側に正極缶10の周壁部12をかしめた状態で、該正極缶10の底部11に接触するような長さを有する。これにより、負極缶20に対して正極缶10をかしめた場合に、ガスケット30の突出部32の先端部分は、正極缶10の底部11に押し付けられる。これにより、ガスケット30の突出部32の先端部分により、正極缶10及び負極缶20によって形成される空間が密閉される。   The gasket 30 has such a length as to contact the bottom portion 11 of the positive electrode can 10 in a state where the peripheral wall portion 12 of the positive electrode can 10 is caulked on the outer peripheral side of the negative electrode can 20. Thereby, when the positive electrode can 10 is caulked against the negative electrode can 20, the tip portion of the protrusion 32 of the gasket 30 is pressed against the bottom 11 of the positive electrode can 10. Thereby, the space formed by the positive electrode can 10 and the negative electrode can 20 is sealed by the tip portion of the protruding portion 32 of the gasket 30.

また、上述のように、正極缶10の周壁部12の開口端側を負極缶20の外周側にかしめることにより、該正極缶10の周壁部12の開口端側によって、ガスケット30が圧縮される。よって、ガスケット30によって、正極缶10の周壁部12と負極缶20の外周側との間がシールされる。   Further, as described above, the gasket 30 is compressed by the open end side of the peripheral wall portion 12 of the positive electrode can 10 by caulking the open end side of the peripheral wall portion 12 of the positive electrode can 10 to the outer peripheral side of the negative electrode can 20. The Therefore, the gasket 30 seals between the peripheral wall portion 12 of the positive electrode can 10 and the outer peripheral side of the negative electrode can 20.

なお、正極缶10の底部11に対するガスケット30の突出部32の先端部の押し付け力は、正極缶10の周壁部12を負極缶20の外周側にかしめた際にガスケット30が受ける力により得られる。   The pressing force of the tip end portion of the protruding portion 32 of the gasket 30 against the bottom portion 11 of the positive electrode can 10 is obtained by the force received by the gasket 30 when the peripheral wall portion 12 of the positive electrode can 10 is caulked to the outer peripheral side of the negative electrode can 20. .

ガスケット30の突出部32は、負極缶20の筒軸方向の長さQが、負極缶20の周壁部22を覆う被覆部31の前記筒軸方向の長さと同等である。   In the protruding portion 32 of the gasket 30, the length Q in the cylinder axis direction of the negative electrode can 20 is equal to the length in the cylinder axis direction of the covering portion 31 that covers the peripheral wall portion 22 of the negative electrode can 20.

また、図3に示すように、ガスケット30の突出部32は、前記筒軸方向の長さQが、負極缶20の径方向に対応する厚み方向の寸法(突出部32の厚み)よりも大きい。特に、ガスケット30の突出部32は、前記筒軸方向の長さQが、突出部32の先端部分における前記厚み方向の寸法Sよりも大きいのが好ましい。   Further, as shown in FIG. 3, the protruding portion 32 of the gasket 30 has a length Q in the cylindrical axis direction that is larger than the dimension in the thickness direction corresponding to the radial direction of the negative electrode can 20 (the thickness of the protruding portion 32). . In particular, it is preferable that the protruding portion 32 of the gasket 30 has a length Q in the cylindrical axis direction that is larger than the dimension S in the thickness direction at the tip portion of the protruding portion 32.

このように、ガスケット30のうち負極缶20の周壁部22を覆っていない突出部32を、負極缶20の筒軸方向に長い形状とすることで、該突出部32を容易に変形させることができる。これにより、上述のように、負極缶20の周壁部22に設けられたガスケット30を、正極缶10の周壁部12の開口端部によって押圧することにより、ガスケット30の突出部32と外装缶10の底部11との間をより確実に封止することができる。   As described above, the protrusion 32 that does not cover the peripheral wall portion 22 of the negative electrode can 20 in the gasket 30 has a long shape in the cylinder axis direction of the negative electrode can 20, so that the protrusion 32 can be easily deformed. it can. Thus, as described above, the gasket 30 provided on the peripheral wall portion 22 of the negative electrode can 20 is pressed by the opening end portion of the peripheral wall portion 12 of the positive electrode can 10, whereby the protruding portion 32 of the gasket 30 and the outer can 10. It is possible to more securely seal the space between the bottom 11 of the two.

また、ガスケット30全体の前記筒軸方向の長さも従来に比べて大きくなるため、その分、ガスケット30によって正極缶10と負極缶20とを広い範囲でシールすることが可能になる。これにより、正極缶10と負極缶20との隙間から液漏れ等が生じるのをより確実に防止することができる。   In addition, since the length of the entire gasket 30 in the cylinder axis direction is larger than that in the conventional case, the positive electrode can 10 and the negative electrode can 20 can be sealed by the gasket 30 in a wide range. Thereby, it can prevent more reliably that a liquid leak etc. arise from the clearance gap between the positive electrode can 10 and the negative electrode can 20. FIG.

ガスケット30は、突出部32の筒軸方向の長さQが、ガスケット30の筒軸方向の長さに対して1/4以上であるのが好ましい。これにより、突出部32の筒軸方向の長さを、一般的な構成の扁平形電池におけるガスケットの突出部の長さ(ガスケットの筒軸方向の長さに対して1/9以下)よりも長くすることができる。これにより、負極缶20の周壁部22の筒軸方向の長さをより確実に短くすることができるとともに、ガスケット30による封止性能をより確実に向上させることができる。   The gasket 30 preferably has a length Q of the protruding portion 32 in the cylinder axis direction that is ¼ or more of the length of the gasket 30 in the cylinder axis direction. Thereby, the length of the protruding portion 32 in the cylinder axial direction is set to be longer than the length of the protruding portion of the gasket in the flat battery having a general configuration (less than 1/9 of the length of the gasket in the cylindrical axis direction) Can be long. Thereby, while being able to shorten the length of the peripheral wall part 22 of the negative electrode can 20 in the cylinder axis direction more reliably, the sealing performance by the gasket 30 can be improved more reliably.

ガスケット30は、後述するように、溶融した樹脂材料を成形型内に注入して成形する、いわゆる射出成形によって形成される。ガスケット30の突出部32には、成形型内に溶融した樹脂材料を注入する注入口に対応して注入部33が位置する。すなわち、注入部33は、ガスケット30を射出成形する際に、成形型内に樹脂材料を注入する注入口によって形成される。   As will be described later, the gasket 30 is formed by so-called injection molding in which a molten resin material is injected into a mold and molded. An injection portion 33 is located on the protrusion 32 of the gasket 30 corresponding to an injection port for injecting a molten resin material into the mold. That is, the injection part 33 is formed by an injection port for injecting a resin material into the mold when the gasket 30 is injection-molded.

注入部33は、前記注入口によって形成された凸部30a(図5参照)を除去した際に形成される凹部33aを有する。すなわち、後述するように、成形型の注入口によって、ガスケット30の突出部32には、樹脂が突出した凸部30aが形成される。この凸部30aは、成形型からガスケット30を取り出す際に、成形型の一部によって除去される。そのため、凸部30aの根元部分がえぐられて、上述のような凹部33aが形成される。   The injection part 33 has a concave part 33a formed when the convex part 30a (see FIG. 5) formed by the injection port is removed. That is, as will be described later, a protrusion 30a from which resin protrudes is formed on the protrusion 32 of the gasket 30 by the injection port of the mold. The convex portion 30a is removed by a part of the molding die when the gasket 30 is taken out from the molding die. Therefore, the root portion of the convex portion 30a is removed, and the concave portion 33a as described above is formed.

このように、ガスケット30の突出部32が形成される部分に対して樹脂材料を射出することにより、成形型内に射出された樹脂材料によって負極缶20の周壁部22が変形を生じるのを防止できる。また、上述の構成により、負極缶20の周壁部22によって、成形型内への樹脂材料の注入が阻害されるのを防止できる。   Thus, by injecting the resin material to the portion where the protrusion 32 of the gasket 30 is formed, the peripheral wall portion 22 of the negative electrode can 20 is prevented from being deformed by the resin material injected into the mold. it can. Further, with the above-described configuration, it is possible to prevent the peripheral wall portion 22 of the negative electrode can 20 from hindering the injection of the resin material into the mold.

さらに、注入部33は、突出部32の正極缶10側の表面に形成された凹部33aを有するため、図1及び図3に示すように、負極缶20に対して正極缶10をかしめた状態で、該正極缶10の周壁部12とガスケット30との間に隙間35を形成する。この隙間35内に、ガスケット30の突出部32と正極缶10の底部11との間に進入した電解液等がたまる。したがって、隙間35によって、扁平形電池1における電解液等の液漏れを防止することが可能になる。   Furthermore, since the injection part 33 has the recessed part 33a formed in the surface at the side of the positive electrode can 10 of the protrusion part 32, as shown in FIG.1 and FIG.3, the state which crimped the positive electrode can 10 with respect to the negative electrode can 20 Thus, a gap 35 is formed between the peripheral wall portion 12 of the positive electrode can 10 and the gasket 30. In the gap 35, the electrolytic solution or the like that has entered between the protruding portion 32 of the gasket 30 and the bottom portion 11 of the positive electrode can 10 is accumulated. Therefore, the gap 35 can prevent leakage of the electrolyte solution or the like in the flat battery 1.

なお、既述のように、ガスケット30の突出部32は、負極缶20の筒軸方向に対応する長さが厚み方向の寸法よりも大きい。これにより、ガスケット30の成形型において、突出部32の周壁部12側を形成する部分に、樹脂材料を注入するための注入口を容易に設けることができる。   As described above, the protrusion 32 of the gasket 30 has a length corresponding to the cylinder axis direction of the negative electrode can 20 larger than the dimension in the thickness direction. Thereby, in the molding die of the gasket 30, an injection port for injecting the resin material can be easily provided in a portion forming the peripheral wall portion 12 side of the protruding portion 32.

(扁平形電池の製造方法)
次に、上述のような構成を有する扁平形電池1の製造方法について説明する。
(Manufacturing method of flat battery)
Next, a method for manufacturing the flat battery 1 having the above-described configuration will be described.

まず、プレス成形によって、有底円筒状の正極缶10及び負極缶20を、それぞれ形成する。   First, the bottomed cylindrical positive electrode can 10 and negative electrode can 20 are each formed by press molding.

一方、セパレータ44によって覆われた複数の板状の正極41と、複数の板状の負極46とを厚み方向に積層して、図1に示すような略円柱状の電極体40を構成する。電極体40は、従来の方法と同様の方法によって製造されるため、詳しい製造方法については説明を省略する。   On the other hand, a plurality of plate-like positive electrodes 41 covered with a separator 44 and a plurality of plate-like negative electrodes 46 are laminated in the thickness direction to form a substantially cylindrical electrode body 40 as shown in FIG. Since the electrode body 40 is manufactured by a method similar to the conventional method, the detailed manufacturing method will not be described.

負極缶20にガスケット30をモールド成形する様子を、図5を用いて説明する。   The manner in which the gasket 30 is molded on the negative electrode can 20 will be described with reference to FIG.

図5に示すように、固定成形型61と、可動成形型62と、リング状の断面を有するピストン可動成形型63とを負極缶20の外側に配置し、ピン64を該負極缶20の内側に配置する。これにより、これらの成形型61,62,63及びピン64によって、負極缶20の周壁部22の周りにガスケット30を形成するための空間60が形成される。したがって、固定成形型61,可動成形型62,ピストン可動成形型63及びピン64によって、ガスケット30を成形するための成形型が構成される。   As shown in FIG. 5, a fixed mold 61, a movable mold 62, and a piston movable mold 63 having a ring-shaped cross section are arranged outside the negative electrode can 20, and pins 64 are arranged inside the negative electrode can 20. To place. Accordingly, a space 60 for forming the gasket 30 is formed around the peripheral wall portion 22 of the negative electrode can 20 by the molds 61, 62, 63 and the pins 64. Accordingly, the fixed mold 61, the movable mold 62, the piston movable mold 63, and the pin 64 constitute a mold for molding the gasket 30.

固定成形型61には、空間60内に外部から樹脂材料を注入するための注入口61aが設けられている。この注入口61aから空間60内に溶融した樹脂材料を注入することにより、空間60内を樹脂材料によって埋める。この際、固定成形型61の注入口61aは、負極缶20の周壁部22が存在しない位置に設けられているため、注入口61aから樹脂材料を射出する際に、周壁部22に当たって該周壁部22に変形を生じさせるのを防止できる。しかも、周壁部22によって、樹脂材料の流れが阻害されるのを防止できる。   The fixed mold 61 is provided with an inlet 61 a for injecting a resin material from the outside into the space 60. By injecting a molten resin material into the space 60 from the injection port 61a, the space 60 is filled with the resin material. At this time, since the injection port 61a of the fixed mold 61 is provided at a position where the peripheral wall portion 22 of the negative electrode can 20 does not exist, when the resin material is injected from the injection port 61a, it hits the peripheral wall portion 22 and the peripheral wall portion. It is possible to prevent the deformation of 22. In addition, the peripheral wall portion 22 can prevent the flow of the resin material from being hindered.

空間60内の樹脂材料が硬化してガスケット30が成形された後、まず、可動成形型62を取り外す。そして、ピストン可動成形型63をピン64の軸方向(図5中の白抜き矢印方向)に移動させることにより、ガスケット30がモールド成形された負極缶20を該ピン64及び固定成形型61から脱離させることができる。   After the resin material in the space 60 is cured and the gasket 30 is molded, first, the movable mold 62 is removed. Then, the negative electrode can 20 in which the gasket 30 is molded is removed from the pin 64 and the fixed mold 61 by moving the piston movable mold 63 in the axial direction of the pin 64 (the direction of the white arrow in FIG. 5). Can be separated.

ガスケット30は、図5に示すように空間60内に樹脂材料によって成形された状態では、固定成形型61の注入口61a内に突出する凸部30aを有する。この凸部30aは、上述のようにガスケット30を固定成形型61に対して図5の白抜き矢印方向に移動させる際に、固定成形型61によって切断される。このとき、PPなどの樹脂材料によって構成されたガスケット30は、突出部30aだけがきれいに切除されるのではなく、えぐられるように取り除かれるため、ガスケット30の表面に図1及び図3に示すような凹部33aが形成される。   As shown in FIG. 5, the gasket 30 has a protrusion 30 a that protrudes into the injection port 61 a of the fixed mold 61 in a state where the gasket 30 is formed of a resin material in the space 60. The convex portion 30 a is cut by the fixed mold 61 when the gasket 30 is moved in the direction of the white arrow in FIG. 5 with respect to the fixed mold 61 as described above. At this time, since the gasket 30 made of a resin material such as PP is removed so that only the projecting portion 30a is not cut away cleanly, it is removed on the surface of the gasket 30 as shown in FIGS. A concave portion 33a is formed.

ここで、固定成形型61は、円筒状のガスケット30の外側面を成形する部分が、負極缶20の周壁部22の段部22cに向かって徐々に内径が大きくなるようなテーパ状に形成されている。これにより、上述のようにピストン可動成形型63によってガスケット30を押した場合に、固定成形型61から負極缶20を容易に脱離させることができる。   Here, the fixed mold 61 is formed in a taper shape such that the portion that molds the outer surface of the cylindrical gasket 30 gradually increases in inner diameter toward the step portion 22 c of the peripheral wall portion 22 of the negative electrode can 20. ing. Thereby, when the gasket 30 is pushed by the piston movable mold 63 as described above, the negative electrode can 20 can be easily detached from the fixed mold 61.

よって、ガスケット30は、図6に示すように、負極缶20の周壁部22の基端側に位置する被覆部31から突出部32の先端に向かって、徐々に外径が小さくなる形状を有する。   Therefore, as shown in FIG. 6, the gasket 30 has a shape in which the outer diameter gradually decreases from the covering portion 31 positioned on the proximal end side of the peripheral wall portion 22 of the negative electrode can 20 toward the distal end of the protruding portion 32. .

正極缶10内に、電極体40を絶縁シート47等とともに配置し、非水電解液を注入する。そして、上述のようにしてガスケット30がモールド成形された負極缶20を、正極缶10の開口を覆うように配置する。その状態で、正極缶10の周壁部12の開口端側を、負極缶20の周壁部22の段部22cに対して正極缶10の内方に折り曲げてかしめる。これにより、上述の構成の扁平形電池1が得られる。ここで、非水電解液は、例えば、エチレンカーボネートとメチルエチルカーボネートとを混合した溶媒に、LiPFを溶解させることにより得られる。 In the positive electrode can 10, the electrode body 40 is disposed together with the insulating sheet 47 and the like, and a non-aqueous electrolyte is injected. Then, the negative electrode can 20 in which the gasket 30 is molded as described above is disposed so as to cover the opening of the positive electrode can 10. In this state, the opening end side of the peripheral wall portion 12 of the positive electrode can 10 is bent and crimped inward of the positive electrode can 10 with respect to the step portion 22 c of the peripheral wall portion 22 of the negative electrode can 20. Thereby, the flat battery 1 of the above-mentioned structure is obtained. Here, the nonaqueous electrolytic solution can be obtained, for example, by dissolving LiPF 6 in a solvent obtained by mixing ethylene carbonate and methyl ethyl carbonate.

(実施形態の効果)
この実施形態では、負極缶20の周壁部22上に形成されるガスケット30は、該周壁部22を覆う被覆部31と、該被覆部31から負極缶20の筒軸方向に突出する突出部32とを有する。この突出部32は、前記筒軸方向への突出長さQが、厚み方向の寸法Sよりも大きい。
(Effect of embodiment)
In this embodiment, the gasket 30 formed on the peripheral wall portion 22 of the negative electrode can 20 includes a covering portion 31 that covers the peripheral wall portion 22 and a protruding portion 32 that protrudes from the covering portion 31 in the cylindrical axis direction of the negative electrode can 20. And have. The protrusion 32 has a protrusion length Q in the cylinder axis direction that is larger than a dimension S in the thickness direction.

これにより、負極缶20の周壁部22の長さを短くすることができるため、該周壁部22を容易に形成することができる。そして、ガスケット30の突出部32が変形を生じやすくなるため、該ガスケット30を外装缶10の底部11に押し付けて該ガスケット30を容易に変形させることができる。よって、ガスケット30の突出部32の突出長さQが厚み方向の寸法S以下である構成に比べて、ガスケット30が変形する範囲を拡大できるとともに、該ガスケット30に変形によって生じる反力を大きくしてガスケット30と正極缶10との間の面圧を大きくすることができる。したがって、ガスケット30による封止性能の向上を図れる。   Thereby, since the length of the surrounding wall part 22 of the negative electrode can 20 can be shortened, this surrounding wall part 22 can be formed easily. Since the protrusion 32 of the gasket 30 is likely to be deformed, the gasket 30 can be easily deformed by pressing the gasket 30 against the bottom 11 of the outer can 10. Therefore, as compared with the configuration in which the protruding length Q of the protruding portion 32 of the gasket 30 is equal to or less than the dimension S in the thickness direction, the range in which the gasket 30 is deformed can be expanded and the reaction force generated by the deformation in the gasket 30 is increased. Thus, the surface pressure between the gasket 30 and the positive electrode can 10 can be increased. Therefore, the sealing performance by the gasket 30 can be improved.

しかも、ガスケット30は、負極缶20の周壁部22の基端側に位置する被覆部31から突出部32の先端に向かって、徐々に外径が小さくなるような形状を有する。このようなガスケット30の形状において、負極缶20の周壁部22を短くしてガスケット30の突出部32の突出長さを長くすることにより、ガスケット30の厚みをできるだけ薄くすることができる。   Moreover, the gasket 30 has a shape such that the outer diameter gradually decreases from the covering portion 31 located on the proximal end side of the peripheral wall portion 22 of the negative electrode can 20 toward the distal end of the protruding portion 32. In such a shape of the gasket 30, the thickness of the gasket 30 can be made as thin as possible by shortening the peripheral wall portion 22 of the negative electrode can 20 and increasing the protruding length of the protruding portion 32 of the gasket 30.

また、ガスケット30の突出部32に、樹脂材料を射出するため、樹脂材料の射出によって負極缶20の周壁部22が変形を生じたり、該周壁部22によって樹脂材料の流れが阻害されたりするのを防止できる。   Further, since the resin material is injected into the projecting portion 32 of the gasket 30, the peripheral wall portion 22 of the negative electrode can 20 is deformed by the injection of the resin material, or the flow of the resin material is inhibited by the peripheral wall portion 22. Can be prevented.

(その他の実施形態)
以上、本発明の実施の形態を説明したが、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。
(Other embodiments)
Although the embodiments of the present invention have been described above, the above-described embodiments are merely examples for carrying out the present invention. Therefore, the present invention is not limited to the above-described embodiment, and can be implemented by appropriately modifying the above-described embodiment without departing from the spirit thereof.

前記実施形態では、ガスケット30は、突出部32の先端部分に向かうほど外径が小さくなるテーパ状に形成されている。しかしながら、ガスケット30は、円筒状に形成されていてもよい。また、前記実施形態とは逆のテーパ状に形成されていてもよい。   In the said embodiment, the gasket 30 is formed in the taper shape in which an outer diameter becomes small as it goes to the front-end | tip part of the protrusion part 32. As shown in FIG. However, the gasket 30 may be formed in a cylindrical shape. Moreover, you may form in the taper shape contrary to the said embodiment.

前記実施形態では、正極缶10の周壁部12の外径Dは、扁平形電池1の厚みTに対して4よりも小さい。しかしながら、正極缶10の周壁部12の外径Dは、扁平形電池1の厚みTに対して4以上であってもよい。   In the embodiment, the outer diameter D of the peripheral wall portion 12 of the positive electrode can 10 is smaller than 4 with respect to the thickness T of the flat battery 1. However, the outer diameter D of the peripheral wall portion 12 of the positive electrode can 10 may be 4 or more with respect to the thickness T of the flat battery 1.

前記実施形態では、扁平形電池の厚みTに対し、正極缶10の底部11から周壁部12における電池肩部までの距離tは、0.8から0.9である。しかしながら、t/Tは、0.8よりも小さくてもよいし、0.9よりも大きくてもよい。   In the embodiment, the distance t from the bottom 11 of the positive electrode can 10 to the battery shoulder in the peripheral wall 12 is 0.8 to 0.9 with respect to the thickness T of the flat battery. However, t / T may be smaller than 0.8 or larger than 0.9.

前記実施形態では、電極体40を、複数の正極41及び負極46を交互に積層した構成としているが、電極体の構成はこれ以外の構成であってもよい。   In the said embodiment, although the electrode body 40 is set as the structure which laminated | stacked the some positive electrode 41 and the negative electrode 46 alternately, the structure of an electrode body may be other than this.

前記実施形態では、正極缶10を外装缶としていて、負極缶20を封口缶としているが、逆に正極缶が封口缶で、負極缶が外装缶であってもよい。   In the embodiment, the positive electrode can 10 is an outer can and the negative electrode can 20 is a sealed can. Conversely, the positive electrode can may be a sealed can and the negative electrode can may be an outer can.

前記実施形態では、正極缶10及び負極缶20を、それぞれ有底円筒状に形成して、扁平形電池1をコイン状に形成したが、この限りではなく、扁平形電池を、多角柱状など、円柱状以外の形状に形成してもよい。   In the embodiment, the positive electrode can 10 and the negative electrode can 20 are each formed in a bottomed cylindrical shape, and the flat battery 1 is formed in a coin shape. However, the flat battery is not limited thereto, and the flat battery 1 You may form in shapes other than column shape.

本発明による扁平形電池は、ガスケットが封口缶に成形された扁平形電池に利用可能である。   The flat battery according to the present invention can be used for a flat battery in which a gasket is formed into a sealed can.

1:扁平形電池、10:負極缶(封口缶)、12:周壁部、20:正極缶(外装缶)、22:周壁部(筒状側壁部)、30:ガスケット、31:被覆部、32:突出部 1: flat battery, 10: negative electrode can (sealing can), 12: peripheral wall part, 20: positive electrode can (exterior can), 22: peripheral wall part (tubular side wall part), 30: gasket, 31: covering part, 32 : Protruding part

Claims (5)

筒軸方向に延びる筒状側壁部を有する有底筒状の外装缶と、
前記筒軸方向に延びる周壁部を有し、該周壁部が前記外装缶の内方に位置付けられるように前記外装缶の開口を覆う有底筒状の封口缶と、
前記封口缶の周壁部上に射出成形によって形成されたガスケットであって、前記外装缶と前記封口缶とによって挟み込まれてい前記ガスケットと
を備え、
前記封口缶の周壁部は、先端部分が折り返されることなく前記筒軸方向に延びていて、
前記ガスケットは、
前記封口缶の周壁部の少なくとも一部を覆うように該周壁部上に成形される被覆部と、
該被覆部と一体に形成され、前記周壁部に対して前記筒軸方向の外方に位置する突出部と
を有し、
前記ガスケットは、前記被覆部のうち前記封口缶の周壁部の外側を覆う部分の厚みが、前記周壁部の先端部分に向かって徐々に小さくなるテーパ状に形成されており、
前記突出部は、前記筒軸方向の突出長さが、前記突出部の厚みよりも大き
前記突出部は、前記ガスケットの射出成形に用いる成形型の注入口に対応して形成される注入部を有し、
前記注入部は、前記突出部の表面に形成された凹部を有する、
扁平形電池。
A bottomed cylindrical outer can having a cylindrical side wall extending in the cylinder axis direction;
A bottomed cylindrical sealing can that covers the opening of the outer can so as to have a peripheral wall portion extending in the cylindrical axis direction, and the peripheral wall portion is positioned inside the outer can;
A gasket formed by injection molding on a peripheral wall of the sealing can and the gasket Ru Tei sandwiched between the outer can by said sealing can,
With
The peripheral wall portion of the sealing can extends in the cylindrical axis direction without the tip portion being folded back,
The gasket is
A covering portion formed on the peripheral wall portion so as to cover at least a part of the peripheral wall portion of the sealing can;
A protrusion that is formed integrally with the covering portion and is located outward in the cylinder axis direction with respect to the peripheral wall portion ;
Have
The gasket is formed in a tapered shape in which the thickness of the portion covering the outer side of the peripheral wall portion of the sealing can in the covering portion gradually decreases toward the tip portion of the peripheral wall portion,
The protrusion, the protruding length of the cylinder axis direction, much larger than the thickness of the protrusion,
The protrusion has an injection part formed corresponding to an injection port of a molding die used for injection molding of the gasket,
The injection portion has a recess formed on the surface of the protrusion.
Flat battery.
請求項1に記載の扁平形電池において、
前記突出部は、前記筒軸方向の突出長さが、前記突出部の先端部分における厚みよりも大きい、扁平形電池。
The flat battery according to claim 1,
The protruding portion is a flat battery in which a protruding length in the cylindrical axis direction is larger than a thickness at a tip portion of the protruding portion.
請求項1または2に記載の扁平形電池において、
前記突出部は、前記筒軸方向の突出長さが、前記ガスケットの前記筒軸方向の長さに対して1/4以上である、扁平形電池。
The flat battery according to claim 1 or 2,
The protruding portion is a flat battery in which a protruding length in the cylinder axis direction is ¼ or more of a length of the gasket in the cylinder axis direction.
請求項1からのいずれか一つに記載の扁平形電池において、
前記外装缶及び前記封口缶は、それぞれ有底円筒状であり、
前記外装缶の前記筒状側壁部は、その外径が、前記外装缶及び前記封口缶を組み合わせた状態の前記筒軸方向の高さに対して4倍よりも小さい、扁平形電池。
The flat battery according to any one of claims 1 to 3 ,
Each of the outer can and the sealed can is a bottomed cylindrical shape,
The cylindrical side wall portion of the outer can is a flat battery whose outer diameter is smaller than four times the height in the cylindrical axis direction in a state where the outer can and the sealing can are combined.
請求項に記載の扁平形電池において、
前記外装缶の前記筒状側壁部は、その外径が、前記外装缶及び前記封口缶を組み合わせた状態の前記筒軸方向の高さに対して2倍以下である、扁平形電池。
The flat battery according to claim 4 ,
The cylindrical side wall portion of the outer can is a flat battery whose outer diameter is not more than twice the height in the cylindrical axis direction in a state where the outer can and the sealing can are combined.
JP2012179536A 2012-07-13 2012-08-13 Flat battery Active JP6045848B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012179536A JP6045848B2 (en) 2012-08-13 2012-08-13 Flat battery
EP13817401.6A EP2874200B1 (en) 2012-07-13 2013-06-26 Flat battery
PCT/JP2013/067454 WO2014010413A1 (en) 2012-07-13 2013-06-26 Flat battery
US14/391,246 US20150118545A1 (en) 2012-07-13 2013-06-26 Flat battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012179536A JP6045848B2 (en) 2012-08-13 2012-08-13 Flat battery

Publications (2)

Publication Number Publication Date
JP2014038743A JP2014038743A (en) 2014-02-27
JP6045848B2 true JP6045848B2 (en) 2016-12-14

Family

ID=50286723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012179536A Active JP6045848B2 (en) 2012-07-13 2012-08-13 Flat battery

Country Status (1)

Country Link
JP (1) JP6045848B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3815852B2 (en) * 1997-06-09 2006-08-30 松下電器産業株式会社 Manufacturing method of battery sealing body
US6051337A (en) * 1997-11-14 2000-04-18 Eveready Battery Company, Inc. Miniature galvanic cell having optimum low surface area conductive collector
EP2533324B1 (en) * 2010-03-09 2017-04-12 Hitachi Maxell, Ltd. Flat battery
JP5681005B2 (en) * 2011-03-14 2015-03-04 日立マクセル株式会社 Flat battery

Also Published As

Publication number Publication date
JP2014038743A (en) 2014-02-27

Similar Documents

Publication Publication Date Title
KR101290223B1 (en) Flat battery
JP5681005B2 (en) Flat battery
WO2014010413A1 (en) Flat battery
JP5455719B2 (en) Flat battery and tire air pressure detecting device having the same
JP6164481B2 (en) Sealing body for sealed electrochemical device and its gasket
JP6045830B2 (en) Flat battery
JP2015056391A5 (en)
JP6045848B2 (en) Flat battery
JP6722399B2 (en) Electric storage element and method for manufacturing electric storage element
JP6972834B2 (en) Power storage element
JP5486356B2 (en) Flat battery
JP6726622B2 (en) Flat battery and its assembly member
JP5650567B2 (en) Flat battery and sealed can
JP5547523B2 (en) Flat battery
JP6286195B2 (en) Sealing can of flat battery, manufacturing method of sealing can, and flat battery
JP6254647B2 (en) Flat battery
JP5547522B2 (en) Flat battery
JP2018147829A (en) Power storage element and manufacturing method of the same
JP6001885B2 (en) Flat battery
JP2014120449A (en) Flat battery
WO2019013326A1 (en) Power storage element
JP2018073682A (en) Gasket for flat sealed battery and the flat sealed battery
JP2014038744A (en) Flat type battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161116

R150 Certificate of patent or registration of utility model

Ref document number: 6045848

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250