JP6043698B2 - Manufacturing method of optical semiconductor device - Google Patents

Manufacturing method of optical semiconductor device Download PDF

Info

Publication number
JP6043698B2
JP6043698B2 JP2013186752A JP2013186752A JP6043698B2 JP 6043698 B2 JP6043698 B2 JP 6043698B2 JP 2013186752 A JP2013186752 A JP 2013186752A JP 2013186752 A JP2013186752 A JP 2013186752A JP 6043698 B2 JP6043698 B2 JP 6043698B2
Authority
JP
Japan
Prior art keywords
quantum well
multiple quantum
well structure
etching
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013186752A
Other languages
Japanese (ja)
Other versions
JP2015053457A (en
Inventor
昌和 荒井
昌和 荒井
亮 中尾
亮 中尾
神徳 正樹
正樹 神徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2013186752A priority Critical patent/JP6043698B2/en
Publication of JP2015053457A publication Critical patent/JP2015053457A/en
Application granted granted Critical
Publication of JP6043698B2 publication Critical patent/JP6043698B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、光半導体装置の製造方法に係り、より具体的には、1つの基板上に複数の半導体素子を集積した集積型の光半導体装置の製造方法に関する。   The present invention relates to an optical semiconductor device manufacturing method, and more specifically to an integrated optical semiconductor device manufacturing method in which a plurality of semiconductor elements are integrated on a single substrate.

光通信用モジュールや光通信システムに用いる光半導体素子の高機能化、高性能化が望まれている。従来、光半導体素子の高機能化、高性能化を実現する方法として、同一基板上に複数の半導体素子をモノリシック集積する半導体集積技術がある。電界吸収型変調器(Electro-Absorption Modulators、以下EA変調器という。)を集積した分布帰還型レーザ(Distributed Feedback Laser、以下DFBレーザという。)はこの半導体集積技術を用いた代表的なデバイス(集積型の光半導体装置)としてあげることができ、このEA変調器(光半導体素子)とDFBレーザ(光半導体素子)を同一基板上に集積した外部変調器集積型DFB(集積型の光半導体装置)は小型で10ギガビット/秒を超える高速変調が可能であり、またチャーピング(変調時の発振波長の揺らぎ)が小さいため長距離光ファイバ伝送に用いた際に波形の劣化が少ないという利点がある。従来この外部変調器集積型DFBレーザはまず有機金属気相成長法(MOVPE法)によりInP基板上にn型、p型にドーピングしたInPクラッド層で挟んだInGaAs、InGaAsP系材料で構成される多重歪量子井戸構造を結晶成長する。これをDFBレーザに加工したあと、光変調器を集積するために、不要な部分をエッチングにより除いて、光変調器部分の結晶成長を再度行い、いわゆるバットジョイント結合を行う。   High functionality and high performance of optical semiconductor elements used in optical communication modules and optical communication systems are desired. 2. Description of the Related Art Conventionally, there is a semiconductor integration technique that monolithically integrates a plurality of semiconductor elements on the same substrate as a method for realizing higher functionality and higher performance of an optical semiconductor element. Distributed feedback lasers (hereinafter referred to as DFB lasers) that integrate electro-absorption modulators (hereinafter referred to as EA modulators) are typical devices (integrated devices) using this semiconductor integration technology. External modulator integrated DFB (integrated optical semiconductor device) in which this EA modulator (optical semiconductor element) and DFB laser (optical semiconductor element) are integrated on the same substrate Is small and capable of high-speed modulation exceeding 10 gigabits / second, and since chirping (fluctuation of the oscillation wavelength during modulation) is small, it has the advantage of less waveform degradation when used for long-distance optical fiber transmission. . Conventionally, this external modulator integrated DFB laser is a multi-layer composed of InGaAs and InGaAsP materials sandwiched between InP clad layers doped n-type and p-type on an InP substrate by metal organic vapor phase epitaxy (MOVPE). Crystal growth of strained quantum well structure. After processing this into a DFB laser, in order to integrate the optical modulator, unnecessary portions are removed by etching, crystal growth of the optical modulator portion is performed again, and so-called butt joint coupling is performed.

また他のDFBレーザと変調器とを集積化する別の集積化技術としては結晶成長前の基板の一部分に原料が成長しないようにSiO2などでマスクをした選択領域成長がある。このマスクにより、MOVPE成長時の気相拡散の変化やマスク部分からの原料のマイグレーションなどにより、量子井戸層の膜厚、組成を変化させることができる。このマスクのサイズを変化させることによりレーザ部分と変調器部分を一度の成長で行う技術の開発が行われている。 As another integration technique for integrating another DFB laser and a modulator, there is selective region growth in which a raw material is not grown on a part of a substrate before crystal growth so as to be masked with SiO 2 or the like. With this mask, the film thickness and composition of the quantum well layer can be changed due to changes in vapor phase diffusion during MOVPE growth, migration of raw materials from the mask portion, and the like. Development of a technique for performing the laser portion and the modulator portion by one growth by changing the size of the mask has been performed.

Tomonobu Tsuchiya et al., “in situ Deep Etching for an InGaAlAs buried Heterostructure by Using HCI Gas in a Metalorganic Vapor Phase Epitaxy Racor,” Japanese Journal of Applied Physics、2004, Vol. 43, No. 10A, pp. L 1247-L 1249Tomonobu Tsuchiya et al., “In situ Deep Etching for an InGaAlAs buried Heterostructure by Using HCI Gas in a Metalorganic Vapor Phase Epitaxy Racor,” Japanese Journal of Applied Physics, 2004, Vol. 43, No. 10A, pp. L 1247- L 1249

しかしながら、バットジョイント接続ではレーザと変調器部分の形成の際にレーザ側壁付近にも変調器の量子井戸が成長してしまうため、過剰損失が生じる。また近年、温度特性の改善を目指してInGaAlAs系材料のDFBレーザが開発されているが、この材料では再成長界面において、Alを含む材料の酸化が生じ、特性の劣化、信頼性の低下を招いている。   However, in the butt joint connection, when the laser and the modulator portion are formed, the quantum well of the modulator grows in the vicinity of the laser side wall, resulting in excess loss. In recent years, an InGaAlAs-based DFB laser has been developed with the aim of improving temperature characteristics. However, this material causes oxidation of the Al-containing material at the regrowth interface, resulting in deterioration of characteristics and reliability. It is.

マスクを用いた選択領域成長法ではレーザ部分と変調器部分を構成する多重量子井戸の歪や膜厚を独立に設計どおりに成長することは難しいという問題がある。さらに一度の成長で両方を形成するため、量子井戸の積層数は独立に制御することはできないという問題があり、レーザ、変調器の構造を最適にできないため、レーザの低閾値動作と、変調器の低電圧動作の両立が困難となる。またAlを含む材料においてはマスクのSiO2上に堆積物が生じやすく、選択領域成長の効果が薄れるという問題がある。 In the selective region growth method using a mask, there is a problem that it is difficult to independently grow the strain and film thickness of the multiple quantum wells constituting the laser part and the modulator part as designed. Furthermore, since both are formed in a single growth, the number of stacked quantum wells cannot be controlled independently, and the laser and modulator structures cannot be optimized. It is difficult to achieve both low voltage operation. Further, in the material containing Al, there is a problem that deposits are easily generated on the SiO 2 of the mask, and the effect of selective region growth is diminished.

本発明は、このような問題に鑑みてなされたもので、その目的とするところはより小型で高速な光信号を送信する光モジュールの実現を可能とする半導体集積型の光半導体装置の製造方法を提供することにある。   The present invention has been made in view of such a problem, and an object of the present invention is to provide a semiconductor integrated type optical semiconductor device manufacturing method capable of realizing an optical module that transmits a smaller and faster optical signal. Is to provide.

このような目的を達成するために、本発明の一態様である光半導体装置の製造方法は、1つの半導体基板上に複数の半導体が集積された光半導体装置の製造方法の製造方法であって、所定の圧力の下で気相成長法により、前記半導体基板に形成された互いに接した2つの領域を有するリッジ上に量子井戸構造を成長することと、前記所定の圧力とことなる圧力の下で、前記量子井戸構造をガスエッチングすることとを含むことを特徴とする。   In order to achieve such an object, an optical semiconductor device manufacturing method according to one aspect of the present invention is a manufacturing method of an optical semiconductor device in which a plurality of semiconductors are integrated on one semiconductor substrate. Growing a quantum well structure on a ridge having two regions in contact with each other formed on the semiconductor substrate by vapor phase epitaxy under a predetermined pressure; and under a pressure different from the predetermined pressure And gas etching the quantum well structure.

一実施形態では、有機金属気相成長法により量子井戸構造を成長させることができ、反応性ガスエッジングにより前記量子井戸構造をエッチングすることができる。一実施形態では、前記光半導体装置の前記2つの領域の一つには活性層に前記多重量子井戸構造をもつ分布帰還形レーザが集積され、前記光半導体装置の前記2つの領域の別の一つには前記分布帰還形レーザの発振波長より短い波長の吸収端をもつ前記多重量子井戸構造よりなる光変調器が集積される。また、前記多重量子井戸構造の材料は、InGaAsP、InGaAlAs、InGaAsN、InGaAsのいずれかであり、前記分布帰還形レーザの発振波長が1.1μm以上1.6μm以下とする材料が選択され、前記多重量子井戸層は前記前記分布帰還形レーザの発振波長を達成する厚みおよび結晶格子間の歪を有している。   In one embodiment, the quantum well structure can be grown by metal organic vapor phase epitaxy, and the quantum well structure can be etched by reactive gas edging. In one embodiment, a distributed feedback laser having the multiple quantum well structure is integrated in an active layer in one of the two regions of the optical semiconductor device, and another one of the two regions of the optical semiconductor device. For example, an optical modulator composed of the multiple quantum well structure having an absorption edge shorter than the oscillation wavelength of the distributed feedback laser is integrated. The material of the multiple quantum well structure is any one of InGaAsP, InGaAlAs, InGaAsN, and InGaAs, and a material in which the oscillation wavelength of the distributed feedback laser is 1.1 μm or more and 1.6 μm or less is selected. The quantum well layer has a thickness to achieve the oscillation wavelength of the distributed feedback laser and a strain between crystal lattices.

以上説明したように、本発明によれば、小型で高速な光信号を送信する光モジュールの実現を可能とする集積型の光半導体装置の製造方法を提供することが可能となる。   As described above, according to the present invention, it is possible to provide a method of manufacturing an integrated optical semiconductor device that can realize an optical module that transmits a small and high-speed optical signal.

InGaAlAs量子井戸構造を示す図である。It is a figure which shows an InGaAlAs quantum well structure. 本発明の一実施形態を説明するための図であり、(a)はパターンが形成された基板の上面を示す図、(b)は基板上に積層された量子井戸構造の断面図、(c)は基板上に積層された後にエッジングされた量子井戸構造の断面図である。It is a figure for demonstrating one Embodiment of this invention, (a) is a figure which shows the upper surface of the board | substrate with which the pattern was formed, (b) is sectional drawing of the quantum well structure laminated | stacked on the board | substrate, (c) ) Is a cross-sectional view of a quantum well structure edged after being stacked on a substrate.

以下、図面を参照しながら本発明の実施形態について詳細に説明する。まず、本発明の原理を説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. First, the principle of the present invention will be described.

有機金属気相成長法(MOVPE法)では、基板上に凹凸パターンがある場合には、気相中の拡散が起こるため、リッジ上の成長速度は増加し、溝部分の成長速度は減少する。またIII族原料であるGaやIn、Alや中間生成物の質量により気相拡散定数は変化するため、成長した半導体の組成も変化する。その効果はパターンの幅が狭いほど顕著に表れる。したがって、本発明では、MOVPE法のこれらの特性を利用すべくパターン幅を設計することでレーザ部分と変調器部分の膜厚および組成を制御した構造を一度の結晶成長プロセスにより形成することができる。   In the metal organic vapor phase epitaxy (MOVPE method), when there is an uneven pattern on the substrate, diffusion in the gas phase occurs, so the growth rate on the ridge increases and the growth rate of the groove portion decreases. In addition, since the vapor phase diffusion constant varies depending on the mass of Ga, In, Al, and intermediate products, which are Group III materials, the composition of the grown semiconductor also varies. The effect becomes more prominent as the pattern width is narrower. Therefore, in the present invention, a structure in which the film thickness and composition of the laser part and the modulator part are controlled can be formed by a single crystal growth process by designing the pattern width so as to utilize these characteristics of the MOVPE method. .

例えば、本発明によれば、レーザと変調器の集積化を一度の結晶成長で行うことにより、レーザ部と変調器との間の接続部を空気にさらすことが無いため、バットジョイント成長時に問題となった表面の酸化を抑えることができ、欠陥の発生を抑えた信頼性の高い部品の製造が可能となる。また本願発明によれば、多重量子井戸層の組成がレーザ部から変調器部へと連続的に形成されるため、余分な反射戻り光や接続損失の発生を抑えられる。またSiO2マスクなどを用いた選択領域成長で問題となったマスク上の堆積物などの問題も原理的に生じないため、あらゆる材料にも適用可能である。 For example, according to the present invention, since the laser and the modulator are integrated in a single crystal growth, the connection part between the laser part and the modulator is not exposed to the air. Therefore, it is possible to suppress the oxidation of the surface, and to manufacture a highly reliable part with reduced occurrence of defects. Further, according to the present invention, since the composition of the multiple quantum well layer is continuously formed from the laser portion to the modulator portion, it is possible to suppress generation of extra reflected return light and connection loss. In addition, since problems such as deposits on the mask, which has been a problem in selective area growth using a SiO 2 mask, do not occur in principle, it can be applied to any material.

一度の結晶成長でレーザ部と変調器部の量子井戸の積層数を最適に制御する手段としては、パターン上に形成したレーザと変調器の多重量子井戸の成長後に塩素などのハロゲンを含んだガスまたは有機金属原料を反応管に導入する。これによりIII-V族半導体はハロゲンを含んだ有機金属へと分解されエッチングされる。そのため多重量子井戸層は上部からエッチングされ、エッチングガスの濃度や反応炉の温度、ガスを流す時間により多重量子井戸の除去する数を制御することができる。ところが、エッチングガスの反応も前述のパターン基板近傍の気相拡散により影響を受ける。そのため、結晶成長時に成長速度が増した領域ではエッチング速度も増加するため、反応炉内の圧力を結晶成長と同じにしてのでは時多重量子井戸の数をレーザ部と変調器部で変えることができない。したがって、本発明においては、反応炉内の圧力を結晶成長時の圧力より上げ、エッチングガスの気相拡散を増加させ、凹凸パターンによるエッチング速度の差を大きくすることで、レーザ部の量子井戸の積層数と変調器部の量子井戸の積層数が異なるようにする。これにより、レーザの低閾値動作と変調器の低電圧動作を両立した集積型の光半導体装置の製造が可能となる。   As a means of optimally controlling the number of stacked quantum wells in the laser part and modulator part with a single crystal growth, a gas containing halogen such as chlorine after the growth of multiple quantum wells in the laser and modulator formed on the pattern Alternatively, an organic metal raw material is introduced into the reaction tube. As a result, the III-V semiconductor is decomposed into an organic metal containing halogen and etched. Therefore, the multiple quantum well layer is etched from above, and the number of removed multiple quantum wells can be controlled by the concentration of the etching gas, the temperature of the reaction furnace, and the gas flow time. However, the reaction of the etching gas is also affected by the vapor phase diffusion in the vicinity of the pattern substrate. Therefore, the etching rate also increases in the region where the growth rate is increased during crystal growth. Therefore, if the pressure in the reactor is the same as the crystal growth, the number of multiple quantum wells can sometimes be changed between the laser unit and the modulator unit. Can not. Therefore, in the present invention, the pressure in the reactor is increased from the pressure at the time of crystal growth, the vapor phase diffusion of the etching gas is increased, and the difference in the etching rate due to the concavo-convex pattern is increased, so that the quantum well of the laser part is increased. The number of stacked layers and the number of stacked quantum wells in the modulator section are made different. This makes it possible to manufacture an integrated optical semiconductor device that achieves both low threshold operation of the laser and low voltage operation of the modulator.

半導体レーザとEA変調器とを集積化した集積型の光半導体装置の製造方法の実施形態では、半導体レーザとEA変調器の集積化のために、凹凸パターンを形成した基板上にMOVPE成長を行い、気相拡散により組成、膜厚の異なる多重量子井戸を形成する。さらにハロゲンを含むガスを反応炉の圧力を上げて導入することにより、凹凸パターンによる気相拡散を増大させたエッチングを行い、レーザの量子井戸数をEA変調器より少なくした数に制御することができる。   In an embodiment of an integrated optical semiconductor device manufacturing method in which a semiconductor laser and an EA modulator are integrated, MOVPE growth is performed on a substrate on which a concavo-convex pattern is formed in order to integrate the semiconductor laser and the EA modulator. Then, multiple quantum wells having different compositions and film thicknesses are formed by vapor phase diffusion. Furthermore, by introducing a gas containing halogen at an increased pressure in the reactor, etching with increased gas phase diffusion due to the uneven pattern can be performed, and the number of quantum wells in the laser can be controlled to be less than that of the EA modulator. it can.

[実施例]
実際の反応炉内の反応過程は複雑であるが、InGaAlAs系のMOVPE成長の反応過程とエッチングの過程の簡略的な化学反応式は以下のとおりである。
(成長時)
x(CH3)3In +y(C2H5)3Ga + z(CH3)3Al + AsH3 → InxGayAlzAs + (3x+6y+3z)CH4
(エッチング時)
InxGayAlzAs + 3(x+y+z)HCl → xInCl3 + yGaCl3 + zAlCl3 + AsH3 + H2
[Example]
Although the actual reaction process in the reactor is complex, the simplified chemical reaction formulas for the InGaAlAs MOVPE growth reaction process and etching process are as follows.
(During growth)
x (CH 3 ) 3 In + y (C 2 H 5 ) 3 Ga + z (CH 3 ) 3 Al + AsH3 → In x Ga y Al z As + (3x + 6y + 3z) CH 4
(During etching)
In x Ga y Al z As + 3 (x + y + z) HCl → xInCl 3 + yGaCl 3 + zAlCl 3 + AsH 3 + H 2

これらの化学反応の表面の反応は早いため、主に基板表面付近に供給される原料の量で速度が決まる供給速度律速である。この供給速度は境界層と呼ばれる表面付近の薄い層の中で凹凸パターンやマスクがあると原料の拡散により、面内の成長速度が変化する。基板表面の凹凸がある境界層内の気相拡散をモデル化することでシミュレーションした。ここで拡散定数:Dは気相中の分子の平均速度:vtと平均自由行程を乗じたものに比例し、また平均自由行程は圧力:Pの逆数に比例する。そのため例えば反応管内の圧力を高くするほど平均自由行程は小さくなり、拡散定数も小さくなる。量子井戸構造成長時とハロゲンを含むガスを流してエッチングする際の反応管内の圧力を変えることで、基板の凹凸パターンによる速度変化を制御する。実験とシミュレーションとのフィッティングにより、D/k(拡散定数/吸着係数)の値を求め、その成長圧力依存性から量子井戸レーザとEA変調器の集積化について見積もった。 Since the surface reaction of these chemical reactions is fast, the rate is mainly determined by the amount of raw material supplied near the substrate surface. This supply rate changes in-plane growth rate due to the diffusion of the raw material if there is an uneven pattern or mask in a thin layer near the surface called a boundary layer. The simulation was performed by modeling the gas phase diffusion in the boundary layer with irregularities on the substrate surface. Here, the diffusion constant: D is proportional to the average velocity of molecules in the gas phase: v t multiplied by the mean free path, and the mean free path is proportional to the reciprocal of pressure: P. Therefore, for example, the higher the pressure in the reaction tube, the smaller the mean free path and the smaller the diffusion constant. By changing the pressure in the reaction tube when the quantum well structure is grown and when etching is performed with a gas containing halogen, the change in speed due to the uneven pattern of the substrate is controlled. The value of D / k (diffusion constant / adsorption coefficient) was obtained by fitting experiment and simulation, and the integration of quantum well laser and EA modulator was estimated from the growth pressure dependence.

図1に、この実験に用いる量子井戸の積層構造図を示す。量子井戸は、InGaAlAs障壁層(barrier層)1とInGaAlAs量子井戸層(QW層)2とから構成される。   FIG. 1 shows a stacked structure diagram of quantum wells used in this experiment. The quantum well is composed of an InGaAlAs barrier layer (barrier layer) 1 and an InGaAlAs quantum well layer (QW layer) 2.

図2(a)にリッジ状のパターンを形成した基板の構造図を示す。リッジ状のパターンは基板と同じ材料である。図2(a)は基板面の上方から見た図であり、リッジ幅を途中から変えたパターンとしており、幅は50μm、500μmと変えている。またリッジの高さは15μmとした。幅を変えることにより、リッジ周辺の原料濃度が拡散により変化し、成長速度を制御することができる。計算結果によると50μm幅の領域と500μm幅の領域にそれぞれ形成したレーザ(LD)部と電界吸収型光変調器(EA)部では低圧力成長した場合の成長速度比は1.1、塩化水素ガスエッチング時のエッチング速度比が1.8と求まった。この結果からLD部、EA部の量子井戸、障壁層の厚さ、周期数の見積もり結果を表1に示す。量子井戸レーザにおける発振波長とEA変調器における吸収波長が、量子井戸層の厚さと組成により決まることは周知であるのでここではこれらの組み合わせについての説明を割愛する。通信に適した光半導体装置としては、量子井戸構造の材料はInGaAsP、InGaAlAs、InGaAsN、InGaAsのいずれかであり、レーザ部分の波長が1.1〜1.6μmとする材料が選択され得る。   FIG. 2A shows a structural diagram of a substrate on which a ridge-like pattern is formed. The ridge pattern is the same material as the substrate. FIG. 2A is a view as seen from above the substrate surface. The ridge width is changed from the middle, and the width is changed to 50 μm and 500 μm. The height of the ridge was 15 μm. By changing the width, the raw material concentration around the ridge changes due to diffusion, and the growth rate can be controlled. According to the calculation results, the growth rate ratio for the laser (LD) part and electroabsorption optical modulator (EA) part formed in the 50 μm wide and 500 μm wide areas, respectively, is 1.1, and hydrogen chloride gas etching. The etching rate ratio was 1.8. Table 1 shows the results of estimation of the LD well and EA quantum wells, the thickness of the barrier layer, and the number of periods. Since it is well known that the oscillation wavelength in the quantum well laser and the absorption wavelength in the EA modulator are determined by the thickness and composition of the quantum well layer, description of these combinations is omitted here. As an optical semiconductor device suitable for communication, the material of the quantum well structure is any one of InGaAsP, InGaAlAs, InGaAsN, and InGaAs, and a material having a laser part wavelength of 1.1 to 1.6 μm can be selected.

Figure 0006043698
Figure 0006043698

このようにLD部と変調器部のリッジ幅を変化させ、また量子井戸成長時の成長圧力を24 Torrと低くし、エッチング時の圧力を200 Torrと高くすることにより、LD部とEA部で最適な量子井戸周期数を持った構造の一括成長による作製が可能となった。   In this way, by changing the ridge width of the LD part and modulator part, reducing the growth pressure during quantum well growth to 24 Torr, and increasing the pressure during etching to 200 Torr, the LD part and EA part Fabrication of a structure with an optimal number of quantum well periods was possible by batch growth.

この技術を用いて、あらかじめInP基板にリッジ(図2(a))をパターニングし、光閉じ込め層および量子井戸活性層(1、2)を成長後(図2(b))、圧力を変化させて、エッチングを行い(図2(c)中の4で示す領域)、再び圧力を戻して、光閉じ込め層(図示しない)を成長する。LD部には回折格子を掘り、InPクラッド層およびコンタクト層(図示しない)を成長する。なお、光閉じ込め層は、必要に応じて成長させればよく、省略することも可能である。その後、加工プロセスとして、光を導波させるためのリッジメサをエッチングし、両側を誘電体膜で埋めて、裏面を研磨し、電極を形成し、両端面をへき開し、LD側を高反射率コーティングし、EA側を無反射コーティングを施すことで、EA変調器集積型DFBレーザを実現できる。このような活性層の一括成長技術を用いることで、LDの低閾値化とEAの低電圧駆動化を両立が可能となる。   Using this technique, the ridge (FIG. 2A) is patterned on the InP substrate in advance, and after the optical confinement layer and the quantum well active layer (1, 2) are grown (FIG. 2B), the pressure is changed. Etching is performed (region indicated by 4 in FIG. 2C), and the pressure is returned again to grow a light confinement layer (not shown). A diffraction grating is dug in the LD portion, and an InP cladding layer and a contact layer (not shown) are grown. The optical confinement layer may be grown as necessary, and may be omitted. After that, as a processing process, the ridge mesa for guiding light is etched, both sides are filled with a dielectric film, the back side is polished, electrodes are formed, both ends are cleaved, and the LD side is coated with high reflectivity By applying an anti-reflection coating on the EA side, an EA modulator integrated DFB laser can be realized. By using such an active layer collective growth technique, it is possible to achieve both lower threshold of LD and lower voltage drive of EA.

この例ではエッチングガスとしてHClを用いたが塩化メチル(CH3Cl)や4臭化炭素(CBr4)を用いてもよい。   In this example, HCl is used as an etching gas, but methyl chloride (CH 3 Cl) or carbon tetrabromide (CBr 4) may be used.

以上説明したように、本発明によれば、通信波長帯に発振波長を有し、高性能であるEA-DFB集積型量子井戸半導体レーザが得られるという優れた効果がある。   As described above, according to the present invention, there is an excellent effect that an EA-DFB integrated quantum well semiconductor laser having an oscillation wavelength in the communication wavelength band and having high performance can be obtained.

1 InGaAlAs障壁層
2 InGaAlAs量子井戸層
3 InP基板
4 圧力を上げて反応管内で塩化水素エッチングされた部分
1 InGaAlAs barrier layer 2 InGaAlAs quantum well layer 3 InP substrate 4 Hydrogen chloride etched in the reaction tube with increased pressure

Claims (4)

1つの半導体基板上に複数の半導体素子が集積された光半導体装置の製造方法であって、
所定の圧力の下で相成長法により、前記半導体基板に形成された互いに接したパターン幅が異なる2つの領域を有するリッジ上に多重量子井戸構造を成長することと、
前記所定の圧力よりも高い圧力の下で、前記多重量子井戸構造をエッチングすることと
を含み、前記光半導体装置の前記2つの領域のうちの前記パターン幅が狭い領域には活性層に前記多重量子井戸構造をもつ分布帰還形レーザが集積され、前記光半導体装置の前記2つの領域のうちの前記パターン幅が広い領域には前記分布帰還形レーザの発振波長より短い波長の吸収端をもつ前記多重量子井戸構造よりなる光変調器が集積され、前記エッチングすることにより、前記分布帰還形レーザの前記多重量子井戸構造の井戸層の数を、前記光変調器の前記多重量子井戸構造の井戸層の数より少なくする、ことを特徴とする製造方法。
A manufacturing how an optical semiconductor device in which a plurality of semiconductor elements are integrated on a single semiconductor substrate,
Growing a multiple quantum well structure on a ridge having two regions with different pattern widths in contact with each other formed on the semiconductor substrate by a vapor phase growth method under a predetermined pressure;
Under higher pressure than the predetermined pressure, the saw including a etching the multiple quantum well structure, the pattern width is narrow regions of said two areas of said optical semiconductor device is the active layer A distributed feedback laser having a multiple quantum well structure is integrated, and an area having a wide pattern width in the two regions of the optical semiconductor device has an absorption edge having a wavelength shorter than the oscillation wavelength of the distributed feedback laser. The optical modulator having the multiple quantum well structure is integrated, and the etching allows the number of well layers of the multiple quantum well structure of the distributed feedback laser to be the number of well layers of the multiple quantum well structure of the optical modulator. The manufacturing method characterized by making it less than the number of layers .
前記相成長法は、有機金属気相成長法によることを特徴とする請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the vapor deposition method is an organic metal vapor deposition method. 前記エッチングすることは、反応性ガスエッチングによることを特徴とする請求項1または2に記載の製造方法。   The manufacturing method according to claim 1, wherein the etching is performed by reactive gas etching. 前記多重量子井戸構造の材料は、InGaAsP、InGaAlAs、InGaAsN、InGaAsのいずれかであり、前記分布帰還形レーザの発振波長が1.1μm以上1.6μm以下とする材料が選択され、前記多重量子井戸構造は前記分布帰還形レーザの発振波長を達成する厚みおよび結晶格子間の歪を有していることを特徴とする請求項1ないしのいずれかに記載の製造方法。 The material of the multiple quantum well structure is any one of InGaAsP, InGaAlAs, InGaAsN, and InGaAs, and a material having an oscillation wavelength of the distributed feedback laser of 1.1 μm to 1.6 μm is selected, and the multiple quantum well the process according to any one of claims 1 to 3 structure is characterized in that it has a distortion between the thickness and the crystal lattice to achieve the oscillation wavelength before Symbol distributed feedback laser.
JP2013186752A 2013-09-09 2013-09-09 Manufacturing method of optical semiconductor device Active JP6043698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013186752A JP6043698B2 (en) 2013-09-09 2013-09-09 Manufacturing method of optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013186752A JP6043698B2 (en) 2013-09-09 2013-09-09 Manufacturing method of optical semiconductor device

Publications (2)

Publication Number Publication Date
JP2015053457A JP2015053457A (en) 2015-03-19
JP6043698B2 true JP6043698B2 (en) 2016-12-14

Family

ID=52702242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013186752A Active JP6043698B2 (en) 2013-09-09 2013-09-09 Manufacturing method of optical semiconductor device

Country Status (1)

Country Link
JP (1) JP6043698B2 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3158651B2 (en) * 1991-07-04 2001-04-23 三菱化学株式会社 Compound semiconductor and method of manufacturing the same
JPH06232509A (en) * 1993-01-29 1994-08-19 Sanyo Electric Co Ltd Semiconductor laser, semiconductor laser device and optical integrated circuit
JPH06283804A (en) * 1993-03-25 1994-10-07 Nippon Telegr & Teleph Corp <Ntt> Distributed reflector laser and fabrication thereof
JPH06283803A (en) * 1993-03-25 1994-10-07 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light emitting device
JPH06283801A (en) * 1993-03-25 1994-10-07 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser
JP3421999B2 (en) * 1993-03-25 2003-06-30 日本電信電話株式会社 Optical functional device, optical integrated device including the same, and manufacturing method thereof
JP3374878B2 (en) * 1994-09-02 2003-02-10 三菱電機株式会社 Semiconductor etching method
JP2900824B2 (en) * 1995-03-31 1999-06-02 日本電気株式会社 Method for manufacturing optical semiconductor device
JPH11220217A (en) * 1998-02-04 1999-08-10 Hitachi Ltd Semiconductor optical element and its manufacture
JP2000082673A (en) * 1998-09-04 2000-03-21 Telecommunication Advancement Organization Of Japan Thin-film formation method and device
CN100384038C (en) * 2004-09-16 2008-04-23 中国科学院半导体研究所 Method for producing stacked electric absorption modulated laser structure of selected zone epitaxial growth

Also Published As

Publication number Publication date
JP2015053457A (en) 2015-03-19

Similar Documents

Publication Publication Date Title
US5436195A (en) Method of fabricating an integrated semiconductor light modulator and laser
CN1945365B (en) Buried heterostructure device fabricated by single step MOCVD
JP2842292B2 (en) Semiconductor optical integrated device and manufacturing method
JPH1075009A (en) Optical semiconductor device and its manufacture
JP3339488B2 (en) Optical semiconductor device and method of manufacturing the same
JPH10173277A (en) Optical semiconductor device and manufacture thereof
JP2937751B2 (en) Method for manufacturing optical semiconductor device
WO1992007401A1 (en) Distributed feedback semiconductor laser
US6261857B1 (en) Process for fabricating an optical waveguide
US20070183470A1 (en) Distributed feedback semiconductor laser
WO2007072807A1 (en) Semiconductor element and method for manufacturing semiconductor element
JP2015133381A (en) Method of manufacturing semiconductor device, semiconductor device, and system of manufacturing semiconductor device
JP5314435B2 (en) Integrated optical device and manufacturing method thereof
JPH09232625A (en) Side light-emitting optical semiconductor element and manufacture thereof
JP2018078290A (en) Semiconductor laser element
JP3264369B2 (en) Optical modulator integrated semiconductor laser and method of manufacturing the same
JP6043698B2 (en) Manufacturing method of optical semiconductor device
KR20030069879A (en) Method of producing a semiconductor laser and optical integrated semiconductor device including the same
KR19990030322A (en) Manufacturing Method of Optical Semiconductor Device
JP4151043B2 (en) Manufacturing method of optical semiconductor device
JP4953392B2 (en) Optical semiconductor device
US8846425B2 (en) Diode laser and method for manufacturing a high-efficiency diode laser
JP6414306B2 (en) Semiconductor device manufacturing method, semiconductor device
JP2003234540A (en) Distributed feedback laser, semiconductor optical device and method for fabricating distributed feedback laser
JPH08274406A (en) Distributed feedback semiconductor laser and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161114

R150 Certificate of patent or registration of utility model

Ref document number: 6043698

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150