JP6041897B2 - Paint composition used for ship with reduced frictional resistance utilizing gas lubrication function in water, coating film formed from the composition, ship coated with the coating film, method for manufacturing the ship, and reduction of frictional resistance Method for predicting effect, apparatus used for predicting frictional resistance reduction effect, and frictional resistance reducing system used for frictional resistance-reducing ship - Google Patents
Paint composition used for ship with reduced frictional resistance utilizing gas lubrication function in water, coating film formed from the composition, ship coated with the coating film, method for manufacturing the ship, and reduction of frictional resistance Method for predicting effect, apparatus used for predicting frictional resistance reduction effect, and frictional resistance reducing system used for frictional resistance-reducing ship Download PDFInfo
- Publication number
- JP6041897B2 JP6041897B2 JP2014549902A JP2014549902A JP6041897B2 JP 6041897 B2 JP6041897 B2 JP 6041897B2 JP 2014549902 A JP2014549902 A JP 2014549902A JP 2014549902 A JP2014549902 A JP 2014549902A JP 6041897 B2 JP6041897 B2 JP 6041897B2
- Authority
- JP
- Japan
- Prior art keywords
- frictional resistance
- ship
- coating film
- water
- coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011248 coating agent Substances 0.000 title claims description 327
- 238000000576 coating method Methods 0.000 title claims description 326
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 151
- 230000009467 reduction Effects 0.000 title claims description 119
- 239000000203 mixture Substances 0.000 title claims description 112
- 239000003973 paint Substances 0.000 title claims description 106
- 238000000034 method Methods 0.000 title claims description 59
- 230000002829 reductive effect Effects 0.000 title claims description 46
- 238000005461 lubrication Methods 0.000 title claims description 45
- 230000001603 reducing effect Effects 0.000 title claims description 44
- 238000004519 manufacturing process Methods 0.000 title claims description 30
- 230000000694 effects Effects 0.000 title description 70
- 230000003373 anti-fouling effect Effects 0.000 claims description 149
- 238000012360 testing method Methods 0.000 claims description 110
- 230000003068 static effect Effects 0.000 claims description 78
- 229920001296 polysiloxane Polymers 0.000 claims description 76
- 230000002209 hydrophobic effect Effects 0.000 claims description 71
- 238000005096 rolling process Methods 0.000 claims description 69
- 239000008199 coating composition Substances 0.000 claims description 55
- 238000007654 immersion Methods 0.000 claims description 47
- 150000001282 organosilanes Chemical class 0.000 claims description 39
- 230000036961 partial effect Effects 0.000 claims description 36
- 229920002545 silicone oil Polymers 0.000 claims description 36
- 239000000463 material Substances 0.000 claims description 31
- 238000000691 measurement method Methods 0.000 claims description 25
- 239000007788 liquid Substances 0.000 claims description 20
- 238000005259 measurement Methods 0.000 claims description 20
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 16
- 239000002519 antifouling agent Substances 0.000 claims description 14
- 229910052731 fluorine Inorganic materials 0.000 claims description 13
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 13
- 239000004800 polyvinyl chloride Substances 0.000 claims description 13
- 239000011737 fluorine Substances 0.000 claims description 12
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 108
- 239000007789 gas Substances 0.000 description 82
- 239000000377 silicon dioxide Substances 0.000 description 48
- -1 polysiloxane skeleton Polymers 0.000 description 44
- 125000004432 carbon atom Chemical group C* 0.000 description 29
- 230000006870 function Effects 0.000 description 29
- 125000000217 alkyl group Chemical group 0.000 description 19
- 239000003795 chemical substances by application Substances 0.000 description 15
- 239000002904 solvent Substances 0.000 description 15
- 125000001183 hydrocarbyl group Chemical group 0.000 description 14
- 229920005989 resin Polymers 0.000 description 13
- 239000011347 resin Substances 0.000 description 13
- 239000010410 layer Substances 0.000 description 12
- 125000003118 aryl group Chemical group 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 10
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 10
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 9
- 229910052782 aluminium Inorganic materials 0.000 description 9
- 239000003054 catalyst Substances 0.000 description 9
- 229910021485 fumed silica Inorganic materials 0.000 description 9
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 9
- 239000000049 pigment Substances 0.000 description 9
- 239000005871 repellent Substances 0.000 description 9
- 239000002585 base Substances 0.000 description 8
- 230000008859 change Effects 0.000 description 8
- 239000001993 wax Substances 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- 125000003710 aryl alkyl group Chemical group 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- 239000003921 oil Substances 0.000 description 7
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 238000007665 sagging Methods 0.000 description 7
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 6
- 125000003545 alkoxy group Chemical group 0.000 description 6
- 125000003277 amino group Chemical group 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000000975 dye Substances 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 239000013535 sea water Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 239000008096 xylene Substances 0.000 description 6
- 239000011701 zinc Substances 0.000 description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical class [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 5
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 5
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 5
- 238000009833 condensation Methods 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 238000007598 dipping method Methods 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- 125000000524 functional group Chemical group 0.000 description 5
- 230000000704 physical effect Effects 0.000 description 5
- 239000004014 plasticizer Substances 0.000 description 5
- 229920003216 poly(methylphenylsiloxane) Polymers 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 125000005372 silanol group Chemical group 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 5
- 229910052725 zinc Inorganic materials 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- 239000004593 Epoxy Substances 0.000 description 4
- 125000002252 acyl group Chemical group 0.000 description 4
- 239000011324 bead Substances 0.000 description 4
- 238000006482 condensation reaction Methods 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 125000000753 cycloalkyl group Chemical group 0.000 description 4
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 4
- 229920001971 elastomer Polymers 0.000 description 4
- 125000003700 epoxy group Chemical group 0.000 description 4
- 230000007774 longterm Effects 0.000 description 4
- 230000014759 maintenance of location Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 4
- 229910010271 silicon carbide Inorganic materials 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 239000005749 Copper compound Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 3
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 3
- 125000003668 acetyloxy group Chemical group [H]C([H])([H])C(=O)O[*] 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- 125000001931 aliphatic group Chemical group 0.000 description 3
- 125000003342 alkenyl group Chemical group 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 150000001880 copper compounds Chemical class 0.000 description 3
- 239000012975 dibutyltin dilaurate Substances 0.000 description 3
- 239000004205 dimethyl polysiloxane Substances 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- 239000003063 flame retardant Substances 0.000 description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 3
- 239000012188 paraffin wax Substances 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 229920001451 polypropylene glycol Polymers 0.000 description 3
- 239000011164 primary particle Substances 0.000 description 3
- 229910000077 silane Inorganic materials 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- 238000009736 wetting Methods 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- 235000014692 zinc oxide Nutrition 0.000 description 3
- IANQTJSKSUMEQM-UHFFFAOYSA-N 1-benzofuran Chemical compound C1=CC=C2OC=CC2=C1 IANQTJSKSUMEQM-UHFFFAOYSA-N 0.000 description 2
- ZVPQMESWKIQHGS-UHFFFAOYSA-N 3-(2,3-dichlorophenyl)-1,1-dimethylurea Chemical compound CN(C)C(=O)NC1=CC=CC(Cl)=C1Cl ZVPQMESWKIQHGS-UHFFFAOYSA-N 0.000 description 2
- UZIRFBMYVLTOHJ-UHFFFAOYSA-N 3-(2,4,6-trichlorophenyl)pyrrole-2,5-dione Chemical compound ClC1=CC(Cl)=CC(Cl)=C1C1=CC(=O)NC1=O UZIRFBMYVLTOHJ-UHFFFAOYSA-N 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- 229920006310 Asahi-Kasei Polymers 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 229910018540 Si C Inorganic materials 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- 239000006087 Silane Coupling Agent Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- YSMRWXYRXBRSND-UHFFFAOYSA-N TOTP Chemical compound CC1=CC=CC=C1OP(=O)(OC=1C(=CC=CC=1)C)OC1=CC=CC=C1C YSMRWXYRXBRSND-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 229920004482 WACKER® Polymers 0.000 description 2
- 125000004423 acyloxy group Chemical group 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 125000003302 alkenyloxy group Chemical group 0.000 description 2
- 125000003368 amide group Chemical group 0.000 description 2
- 125000002344 aminooxy group Chemical group [H]N([H])O[*] 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- CRQQGFGUEAVUIL-UHFFFAOYSA-N chlorothalonil Chemical compound ClC1=C(Cl)C(C#N)=C(Cl)C(C#N)=C1Cl CRQQGFGUEAVUIL-UHFFFAOYSA-N 0.000 description 2
- 229940125904 compound 1 Drugs 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 125000003709 fluoroalkyl group Chemical group 0.000 description 2
- 125000003827 glycol group Chemical group 0.000 description 2
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 239000001023 inorganic pigment Substances 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- CUHVIMMYOGQXCV-UHFFFAOYSA-N medetomidine Chemical compound C=1C=CC(C)=C(C)C=1C(C)C1=CNC=N1 CUHVIMMYOGQXCV-UHFFFAOYSA-N 0.000 description 2
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- DNIAPMSPPWPWGF-UHFFFAOYSA-N monopropylene glycol Natural products CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 125000000962 organic group Chemical group 0.000 description 2
- 239000012860 organic pigment Substances 0.000 description 2
- 239000004209 oxidized polyethylene wax Substances 0.000 description 2
- 235000013873 oxidized polyethylene wax Nutrition 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- 239000012974 tin catalyst Substances 0.000 description 2
- 125000003944 tolyl group Chemical group 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 2
- NJYFRQQXXXRJHK-UHFFFAOYSA-N (4-aminophenyl) thiocyanate Chemical compound NC1=CC=C(SC#N)C=C1 NJYFRQQXXXRJHK-UHFFFAOYSA-N 0.000 description 1
- QMTFKWDCWOTPGJ-KVVVOXFISA-N (z)-octadec-9-enoic acid;tin Chemical compound [Sn].CCCCCCCC\C=C/CCCCCCCC(O)=O QMTFKWDCWOTPGJ-KVVVOXFISA-N 0.000 description 1
- CZSRXHJVZUBEGW-UHFFFAOYSA-N 1,2-thiazolidine Chemical compound C1CNSC1 CZSRXHJVZUBEGW-UHFFFAOYSA-N 0.000 description 1
- XOILGBPDXMVFIP-UHFFFAOYSA-N 1-(diiodomethylsulfonyl)-4-methylbenzene Chemical compound CC1=CC=C(S(=O)(=O)C(I)I)C=C1 XOILGBPDXMVFIP-UHFFFAOYSA-N 0.000 description 1
- BMVXCPBXGZKUPN-UHFFFAOYSA-N 1-hexanamine Chemical compound CCCCCCN BMVXCPBXGZKUPN-UHFFFAOYSA-N 0.000 description 1
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical class CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- NCDBYAPSWOPDRN-UHFFFAOYSA-N 2-[dichloro(fluoro)methyl]sulfanylisoindole-1,3-dione Chemical compound C1=CC=C2C(=O)N(SC(Cl)(Cl)F)C(=O)C2=C1 NCDBYAPSWOPDRN-UHFFFAOYSA-N 0.000 description 1
- 125000001731 2-cyanoethyl group Chemical group [H]C([H])(*)C([H])([H])C#N 0.000 description 1
- 125000006176 2-ethylbutyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(C([H])([H])*)C([H])([H])C([H])([H])[H] 0.000 description 1
- 229940044120 2-n-octyl-4-isothiazolin-3-one Drugs 0.000 description 1
- 125000000094 2-phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- 229940099451 3-iodo-2-propynylbutylcarbamate Drugs 0.000 description 1
- WYVVKGNFXHOCQV-UHFFFAOYSA-N 3-iodoprop-2-yn-1-yl butylcarbamate Chemical compound CCCCNC(=O)OCC#CI WYVVKGNFXHOCQV-UHFFFAOYSA-N 0.000 description 1
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 1
- PORQOHRXAJJKGK-UHFFFAOYSA-N 4,5-dichloro-2-n-octyl-3(2H)-isothiazolone Chemical compound CCCCCCCCN1SC(Cl)=C(Cl)C1=O PORQOHRXAJJKGK-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 229910002012 Aerosil® Inorganic materials 0.000 description 1
- 241000584629 Aosa Species 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- RBLNICCKPGGVJW-UHFFFAOYSA-N C(C)O[Si](O[Sn])(OCC)OCC Chemical compound C(C)O[Si](O[Sn])(OCC)OCC RBLNICCKPGGVJW-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 241000238586 Cirripedia Species 0.000 description 1
- 229920001174 Diethylhydroxylamine Polymers 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 241000372132 Hydrometridae Species 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- PMDCZENCAXMSOU-UHFFFAOYSA-N N-ethylacetamide Chemical group CCNC(C)=O PMDCZENCAXMSOU-UHFFFAOYSA-N 0.000 description 1
- 241000233855 Orchidaceae Species 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 241000237502 Ostreidae Species 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical group CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- FMRLDPWIRHBCCC-UHFFFAOYSA-L Zinc carbonate Chemical compound [Zn+2].[O-]C([O-])=O FMRLDPWIRHBCCC-UHFFFAOYSA-L 0.000 description 1
- ISKQADXMHQSTHK-UHFFFAOYSA-N [4-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=C(CN)C=C1 ISKQADXMHQSTHK-UHFFFAOYSA-N 0.000 description 1
- NBJODVYWAQLZOC-UHFFFAOYSA-L [dibutyl(octanoyloxy)stannyl] octanoate Chemical compound CCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCC NBJODVYWAQLZOC-UHFFFAOYSA-L 0.000 description 1
- AWFFJJAOMMAGFE-BGSQTJHASA-L [dibutyl-[(z)-octadec-9-enoyl]oxystannyl] (z)-octadec-9-enoate Chemical compound CCCC[Sn+2]CCCC.CCCCCCCC\C=C/CCCCCCCC([O-])=O.CCCCCCCC\C=C/CCCCCCCC([O-])=O AWFFJJAOMMAGFE-BGSQTJHASA-L 0.000 description 1
- PXAJQJMDEXJWFB-UHFFFAOYSA-N acetone oxime Chemical group CC(C)=NO PXAJQJMDEXJWFB-UHFFFAOYSA-N 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 125000005595 acetylacetonate group Chemical group 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000002318 adhesion promoter Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 125000005370 alkoxysilyl group Chemical group 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 150000008052 alkyl sulfonates Chemical class 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 125000004103 aminoalkyl group Chemical group 0.000 description 1
- 230000003712 anti-aging effect Effects 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 229910000410 antimony oxide Inorganic materials 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000003849 aromatic solvent Substances 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000003899 bactericide agent Substances 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 1
- 125000001231 benzoyloxy group Chemical group C(C1=CC=CC=C1)(=O)O* 0.000 description 1
- CCDWGDHTPAJHOA-UHFFFAOYSA-N benzylsilicon Chemical compound [Si]CC1=CC=CC=C1 CCDWGDHTPAJHOA-UHFFFAOYSA-N 0.000 description 1
- 125000006267 biphenyl group Chemical group 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- FPCJKVGGYOAWIZ-UHFFFAOYSA-N butan-1-ol;titanium Chemical compound [Ti].CCCCO.CCCCO.CCCCO.CCCCO FPCJKVGGYOAWIZ-UHFFFAOYSA-N 0.000 description 1
- 125000004106 butoxy group Chemical group [*]OC([H])([H])C([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 150000004657 carbamic acid derivatives Chemical class 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 125000004218 chloromethyl group Chemical group [H]C([H])(Cl)* 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229920006026 co-polymeric resin Polymers 0.000 description 1
- QAEKNCDIHIGLFI-UHFFFAOYSA-L cobalt(2+);2-ethylhexanoate Chemical compound [Co+2].CCCCC(CC)C([O-])=O.CCCCC(CC)C([O-])=O QAEKNCDIHIGLFI-UHFFFAOYSA-L 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 229940125782 compound 2 Drugs 0.000 description 1
- 229940126214 compound 3 Drugs 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(I) oxide Inorganic materials [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 description 1
- XCJYREBRNVKWGJ-UHFFFAOYSA-N copper(II) phthalocyanine Chemical compound [Cu+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 XCJYREBRNVKWGJ-UHFFFAOYSA-N 0.000 description 1
- QHNCWVQDOPICKC-UHFFFAOYSA-N copper;1-hydroxypyridine-2-thione Chemical compound [Cu].ON1C=CC=CC1=S.ON1C=CC=CC1=S QHNCWVQDOPICKC-UHFFFAOYSA-N 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 229940112669 cuprous oxide Drugs 0.000 description 1
- KRFJLUBVMFXRPN-UHFFFAOYSA-N cuprous oxide Chemical compound [O-2].[Cu+].[Cu+] KRFJLUBVMFXRPN-UHFFFAOYSA-N 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 125000006165 cyclic alkyl group Chemical group 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- JGFBRKRYDCGYKD-UHFFFAOYSA-N dibutyl(oxo)tin Chemical compound CCCC[Sn](=O)CCCC JGFBRKRYDCGYKD-UHFFFAOYSA-N 0.000 description 1
- ZXDVQYBUEVYUCG-UHFFFAOYSA-N dibutyltin(2+);methanolate Chemical compound CCCC[Sn](OC)(OC)CCCC ZXDVQYBUEVYUCG-UHFFFAOYSA-N 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- FVCOIAYSJZGECG-UHFFFAOYSA-N diethylhydroxylamine Chemical compound CCN(O)CC FVCOIAYSJZGECG-UHFFFAOYSA-N 0.000 description 1
- LIKFHECYJZWXFJ-UHFFFAOYSA-N dimethyldichlorosilane Chemical compound C[Si](C)(Cl)Cl LIKFHECYJZWXFJ-UHFFFAOYSA-N 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- LRCFXGAMWKDGLA-UHFFFAOYSA-N dioxosilane;hydrate Chemical compound O.O=[Si]=O LRCFXGAMWKDGLA-UHFFFAOYSA-N 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- SHZIWNPUGXLXDT-UHFFFAOYSA-N ethyl hexanoate Chemical compound CCCCCC(=O)OCC SHZIWNPUGXLXDT-UHFFFAOYSA-N 0.000 description 1
- SBRXLTRZCJVAPH-UHFFFAOYSA-N ethyl(trimethoxy)silane Chemical compound CC[Si](OC)(OC)OC SBRXLTRZCJVAPH-UHFFFAOYSA-N 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 239000000417 fungicide Substances 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- HTDJPCNNEPUOOQ-UHFFFAOYSA-N hexamethylcyclotrisiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O1 HTDJPCNNEPUOOQ-UHFFFAOYSA-N 0.000 description 1
- 125000004836 hexamethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 125000006038 hexenyl group Chemical group 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000009878 intermolecular interaction Effects 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- WTFXARWRTYJXII-UHFFFAOYSA-N iron(2+);iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[Fe+2].[Fe+3].[Fe+3] WTFXARWRTYJXII-UHFFFAOYSA-N 0.000 description 1
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 1
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 229910000464 lead oxide Inorganic materials 0.000 description 1
- 229940057995 liquid paraffin Drugs 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229960002140 medetomidine Drugs 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 239000005055 methyl trichlorosilane Substances 0.000 description 1
- 125000000250 methylamino group Chemical group [H]N(*)C([H])([H])[H] 0.000 description 1
- JLUFWMXJHAVVNN-UHFFFAOYSA-N methyltrichlorosilane Chemical compound C[Si](Cl)(Cl)Cl JLUFWMXJHAVVNN-UHFFFAOYSA-N 0.000 description 1
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- GEMHFKXPOCTAIP-UHFFFAOYSA-N n,n-dimethyl-n'-phenylcarbamimidoyl chloride Chemical compound CN(C)C(Cl)=NC1=CC=CC=C1 GEMHFKXPOCTAIP-UHFFFAOYSA-N 0.000 description 1
- VMESOKCXSYNAKD-UHFFFAOYSA-N n,n-dimethylhydroxylamine Chemical compound CN(C)O VMESOKCXSYNAKD-UHFFFAOYSA-N 0.000 description 1
- WHIVNJATOVLWBW-UHFFFAOYSA-N n-butan-2-ylidenehydroxylamine Chemical group CCC(C)=NO WHIVNJATOVLWBW-UHFFFAOYSA-N 0.000 description 1
- ORLKVONXSOKAAS-UHFFFAOYSA-N n-dodecyldodecan-1-amine;phosphoric acid Chemical compound OP(O)(O)=O.CCCCCCCCCCCCNCCCCCCCCCCCC ORLKVONXSOKAAS-UHFFFAOYSA-N 0.000 description 1
- OHLUUHNLEMFGTQ-AZXPZELESA-N n-methylacetamide Chemical group C[15NH]C(C)=O OHLUUHNLEMFGTQ-AZXPZELESA-N 0.000 description 1
- NCCHARWOCKOHIH-UHFFFAOYSA-N n-methylbenzamide Chemical group CNC(=O)C1=CC=CC=C1 NCCHARWOCKOHIH-UHFFFAOYSA-N 0.000 description 1
- NAQQTJZRCYNBRX-UHFFFAOYSA-N n-pentan-3-ylidenehydroxylamine Chemical group CCC(CC)=NO NAQQTJZRCYNBRX-UHFFFAOYSA-N 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- HMMGMWAXVFQUOA-UHFFFAOYSA-N octamethylcyclotetrasiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O1 HMMGMWAXVFQUOA-UHFFFAOYSA-N 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 150000003961 organosilicon compounds Chemical class 0.000 description 1
- 125000005375 organosiloxane group Chemical group 0.000 description 1
- 125000001181 organosilyl group Chemical group [SiH3]* 0.000 description 1
- AICOOMRHRUFYCM-ZRRPKQBOSA-N oxazine, 1 Chemical compound C([C@@H]1[C@H](C(C[C@]2(C)[C@@H]([C@H](C)N(C)C)[C@H](O)C[C@]21C)=O)CC1=CC2)C[C@H]1[C@@]1(C)[C@H]2N=C(C(C)C)OC1 AICOOMRHRUFYCM-ZRRPKQBOSA-N 0.000 description 1
- 125000003544 oxime group Chemical group 0.000 description 1
- 150000002923 oximes Chemical class 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 1
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 1
- 125000006353 oxyethylene group Chemical group 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 235000020636 oyster Nutrition 0.000 description 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000010702 perfluoropolyether Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- XEBWQGVWTUSTLN-UHFFFAOYSA-M phenylmercury acetate Chemical compound CC(=O)O[Hg]C1=CC=CC=C1 XEBWQGVWTUSTLN-UHFFFAOYSA-M 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920001921 poly-methyl-phenyl-siloxane Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001228 polyisocyanate Polymers 0.000 description 1
- 239000005056 polyisocyanate Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 235000011056 potassium acetate Nutrition 0.000 description 1
- 125000001501 propionyl group Chemical group O=C([*])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- FGVVTMRZYROCTH-UHFFFAOYSA-N pyridine-2-thiol N-oxide Chemical compound [O-][N+]1=CC=CC=C1S FGVVTMRZYROCTH-UHFFFAOYSA-N 0.000 description 1
- WJSXSXUHWBSPEP-UHFFFAOYSA-N pyridine;triphenylborane Chemical compound C1=CC=NC=C1.C1=CC=CC=C1B(C=1C=CC=CC=1)C1=CC=CC=C1 WJSXSXUHWBSPEP-UHFFFAOYSA-N 0.000 description 1
- 229960002026 pyrithione Drugs 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000002940 repellent Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 229960004029 silicic acid Drugs 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- WSFQLUVWDKCYSW-UHFFFAOYSA-M sodium;2-hydroxy-3-morpholin-4-ylpropane-1-sulfonate Chemical compound [Na+].[O-]S(=O)(=O)CC(O)CN1CCOCC1 WSFQLUVWDKCYSW-UHFFFAOYSA-M 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- NVBFHJWHLNUMCV-UHFFFAOYSA-N sulfamide Chemical compound NS(N)(=O)=O NVBFHJWHLNUMCV-UHFFFAOYSA-N 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- KUAZQDVKQLNFPE-UHFFFAOYSA-N thiram Chemical compound CN(C)C(=S)SSC(=S)N(C)C KUAZQDVKQLNFPE-UHFFFAOYSA-N 0.000 description 1
- 229960002447 thiram Drugs 0.000 description 1
- 239000013008 thixotropic agent Substances 0.000 description 1
- 230000009974 thixotropic effect Effects 0.000 description 1
- 150000003606 tin compounds Chemical class 0.000 description 1
- 235000010215 titanium dioxide Nutrition 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 1
- CPUDPFPXCZDNGI-UHFFFAOYSA-N triethoxy(methyl)silane Chemical compound CCO[Si](C)(OCC)OCC CPUDPFPXCZDNGI-UHFFFAOYSA-N 0.000 description 1
- 125000000725 trifluoropropyl group Chemical group [H]C([H])(*)C([H])([H])C(F)(F)F 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000004073 vulcanization Methods 0.000 description 1
- 125000005023 xylyl group Chemical group 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 239000011667 zinc carbonate Substances 0.000 description 1
- 235000004416 zinc carbonate Nutrition 0.000 description 1
- 229910000010 zinc carbonate Inorganic materials 0.000 description 1
- 229940043810 zinc pyrithione Drugs 0.000 description 1
- PICXIOQBANWBIZ-UHFFFAOYSA-N zinc;1-oxidopyridine-2-thione Chemical compound [Zn+2].[O-]N1C=CC=CC1=S.[O-]N1C=CC=CC1=S PICXIOQBANWBIZ-UHFFFAOYSA-N 0.000 description 1
- AMHNZOICSMBGDH-UHFFFAOYSA-L zineb Chemical compound [Zn+2].[S-]C(=S)NCCNC([S-])=S AMHNZOICSMBGDH-UHFFFAOYSA-L 0.000 description 1
- DUBNHZYBDBBJHD-UHFFFAOYSA-L ziram Chemical compound [Zn+2].CN(C)C([S-])=S.CN(C)C([S-])=S DUBNHZYBDBBJHD-UHFFFAOYSA-L 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B1/00—Hydrodynamic or hydrostatic features of hulls or of hydrofoils
- B63B1/32—Other means for varying the inherent hydrodynamic characteristics of hulls
- B63B1/34—Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction
- B63B1/38—Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction using air bubbles or air layers gas filled volumes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D183/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
- C09D183/04—Polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/16—Antifouling paints; Underwater paints
- C09D5/1656—Antifouling paints; Underwater paints characterised by the film-forming substance
- C09D5/1662—Synthetic film-forming substance
- C09D5/1675—Polyorganosiloxane-containing compositions
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N13/00—Investigating surface or boundary effects, e.g. wetting power; Investigating diffusion effects; Analysing materials by determining surface, boundary, or diffusion effects
- G01N13/02—Investigating surface tension of liquids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N13/00—Investigating surface or boundary effects, e.g. wetting power; Investigating diffusion effects; Analysing materials by determining surface, boundary, or diffusion effects
- G01N13/02—Investigating surface tension of liquids
- G01N2013/0208—Investigating surface tension of liquids by measuring contact angle
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N13/00—Investigating surface or boundary effects, e.g. wetting power; Investigating diffusion effects; Analysing materials by determining surface, boundary, or diffusion effects
- G01N13/02—Investigating surface tension of liquids
- G01N2013/0241—Investigating surface tension of liquids bubble, pendant drop, sessile drop methods
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T70/00—Maritime or waterways transport
- Y02T70/10—Measures concerning design or construction of watercraft hulls
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Fluid Mechanics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Ocean & Marine Engineering (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Combustion & Propulsion (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Paints Or Removers (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Description
本発明は、主に、水中での気体潤滑機能を利用する摩擦抵抗低減船舶に用いられる塗料組成物、該組成物から形成される塗膜、該塗膜で被覆された船舶、該船舶の製造方法、前記摩擦抵抗低減の効果を予測する方法、前記摩擦抵抗低減効果の予測に用いられる装置および前記摩擦抵抗低減船舶に用いられる摩擦抵抗低減システムに関する。 The present invention mainly relates to a coating composition used for a ship with reduced frictional resistance utilizing a gas lubrication function in water, a coating film formed from the composition, a ship coated with the coating film, and production of the ship The present invention relates to a method, a method for predicting the effect of reducing frictional resistance, a device used for predicting the effect of reducing frictional resistance, and a frictional resistance reducing system used for the frictional resistance reducing ship.
航行する船舶には、波の発生による造波抵抗、船底の形状に起因する圧力形状抵抗や水の粘性による摩擦抵抗(水流摩擦抵抗)が作用する。造波抵抗や形状抵抗は、これまでの研究により大幅に低減されてきているが、摩擦抵抗は船体全抵抗の60%〜80%を占めており、省エネルギーのために摩擦抵抗の低減が切望されている。上記水流摩擦抵抗の低減方法としては、船底に空気を供給する空気潤滑法や海水などの流体中にポリマーを添加する方法(トムズ効果を利用する方法)が提案され研究されており、前者については、船舶への実用化が進められている。 The navigating ship is subjected to wave-making resistance due to the generation of waves, pressure shape resistance due to the shape of the bottom of the ship, and frictional resistance due to water viscosity (water frictional resistance). Wave resistance and shape resistance have been greatly reduced by previous research, but friction resistance accounts for 60% to 80% of the total resistance of the hull, and reduction of friction resistance is eagerly desired to save energy. ing. As methods for reducing the water friction resistance, air lubrication for supplying air to the ship bottom and methods for adding polymers to fluids such as seawater (methods utilizing the Toms effect) have been proposed and studied. Practical application to ships is underway.
例えば、特許文献1〜4に、船底表面をコーティング剤などにより処理し、船底表面に撥水性を付与して気泡や空気層を保持し摩擦抵抗を低減する方法が開示されている。これらの方法は、いずれも、特定の疎水性塗膜が形成された船底に空気を供給して該船底表面を空気層で覆い、空気潤滑効果により摩擦抵抗を低減するものである。 For example, Patent Documents 1 to 4 disclose a method in which a ship bottom surface is treated with a coating agent, water repellency is imparted to the ship bottom surface, air bubbles and an air layer are held, and frictional resistance is reduced. In any of these methods, air is supplied to the ship bottom on which a specific hydrophobic coating film is formed to cover the surface of the ship bottom with an air layer, and friction resistance is reduced by an air lubrication effect.
該疎水性塗膜は、コーティング剤に含まれる疎水性(微)粒子と疎水性バインダー樹脂により形成され、空気との親和性が高い疎水性の凸凹粗面を有する。疎水性の凸凹粗面を有する疎水性塗膜(以下、「疎水性凹凸塗膜」ともいう)は、空気中では凹部へ空気が付着して空気層として保持されること、および、凸部の表面自由エネルギーが小さいことに起因して、高い撥水性を発現する。しかしながら、このような疎水性凹凸塗膜は、水中では、経時変化してその撥水性を消失し、空気親和性も消失する。特に、航行する船舶の船底では、この経時変化が顕著である。つまり、空気(気体分子)と疎水性凹凸塗膜(表面構成分子)との分子間相互作用力が小さいため、徐々にこの凹部に水(分子)が浸入して空気が排除される。この現象は“浸漬濡れ”として説明される。疎水性凹凸塗膜表面に水流がある場合は、空気の排除はさらに促進される。この疎水性凹凸塗膜の凹部に水が浸入して空気(層)が排除されると、この表面に新たに空気を供給しても、水(分子)の凝集エネルギーや質量が空気に比べて圧倒的に大きいため、空気は疎水性凹凸塗膜の凹部に浸入することはできない。つまり、空気(層)保持性能は復活しない。従って、疎水性凸凹塗膜は、空気中では凹部に空気層を形成しているため空気親和性を発現するが、水中では凹部へ浸入した水で塗膜表面が覆われるため親水性となり、空気との親和性を消失する。 The hydrophobic coating film is formed of hydrophobic (fine) particles contained in a coating agent and a hydrophobic binder resin, and has a hydrophobic rough surface having a high affinity with air. A hydrophobic coating film having a hydrophobic rough surface (hereinafter also referred to as a “hydrophobic uneven coating film”) is that air adheres to the concave portion in the air and is retained as an air layer, and Due to the small surface free energy, high water repellency is exhibited. However, such hydrophobic concavo-convex coating film loses its water repellency over time in water and loses its air affinity. In particular, this change over time is remarkable at the bottom of a ship that is sailing. That is, since the intermolecular interaction force between air (gas molecules) and the hydrophobic concavo-convex coating film (surface constituent molecules) is small, water (molecules) gradually permeates into the concave portions and air is excluded. This phenomenon is described as “immersion wet”. When there is a water flow on the surface of the hydrophobic uneven coating film, the elimination of air is further promoted. If water intrudes into the recesses of this hydrophobic uneven coating and air (layer) is eliminated, even if new air is supplied to this surface, the cohesive energy and mass of water (molecules) will be higher than that of air Since it is overwhelmingly large, air cannot permeate into the recesses of the hydrophobic uneven coating film. That is, the air (layer) retention performance is not restored. Therefore, the hydrophobic uneven coating film exhibits air affinity because an air layer is formed in the recesses in the air, but in water, the surface of the coating film is covered with water that has penetrated into the recesses, so that it becomes hydrophilic. Loses affinity.
また、疎水性凹凸塗膜は、凝集エネルギー(表面自由エネルギー)が小さく、機械的強度も小さい。よって、そのような疎水性凹凸塗膜は、脆弱であり付着性に乏しく、航行中における水流の作用などにより、上記微粒子や疎水性凹凸塗膜が船底表面から剥離、脱落して、該疎水性凹凸塗膜による空気保持性能が低下する。 Further, the hydrophobic uneven coating film has a small cohesive energy (surface free energy) and a low mechanical strength. Therefore, such a hydrophobic uneven coating film is fragile and poor in adhesion, and the above-mentioned fine particles and hydrophobic uneven coating film are peeled off from the ship bottom surface due to the action of water flow during navigation, etc. Air retention performance due to the uneven coating film is reduced.
さらに、上記疎水性凸凹塗膜には防汚性能が無い。船舶停泊時の水中生物の付着による船底表面の汚損により、船底表面の粗度が大きくなって摩擦抵抗が増大することを防止するという観点からは、船底に形成される塗膜は防汚性を有することが望まれる。特許文献5では、凸凹表面に防汚性を持たせるために、酸化性気体や酸化性液体を、これら気体や液体が船底を流れるように海中に供給することが記載されているが、船底表面の全てを常時その雰囲気下におくことは困難であり、さらに酸化性気体や酸化性液体による海洋の汚染が危惧されるので実用性に乏しい。
Furthermore, the hydrophobic uneven coating film has no antifouling performance. From the viewpoint of preventing the surface of the ship bottom from becoming dirty due to the contamination of the bottom of the ship due to the adhesion of aquatic organisms when the ship is anchored, the coating film formed on the ship bottom has antifouling properties. It is desirable to have. In
このように、これらの従来技術は長期間使用される船舶の摩擦抵抗低減方法として有効とはいえない。
また、特許文献6に記載されているように、膜表面の水に対する接触角で摩擦抵抗の低減の効果を判断する方法も知られているが、このような方法は、水中の塗膜表面における気泡の状態や挙動などを精度よく反映しているとは言い難い。As described above, these conventional techniques are not effective as a method for reducing the frictional resistance of a ship used for a long time.
Further, as described in
上述したように、従来技術は空気親和性を有する疎水性凸凹塗膜に空気を注入することにより、この塗膜が空気層を保持して摩擦抵抗低減効果を発現するものであるが、水中では疎水性凸凹塗膜の表面は経時変化して親水性となり、空気との親和性が消失し、上述のような摩擦抵抗低減効果が低下する。さらに、この疎水性凸凹塗膜には防汚性能が無いので、微生物などによる汚損により塗膜の粗度が著しく大きくなり摩擦抵抗が増大する傾向にある。 As described above, the conventional technology injects air into a hydrophobic uneven coating film having air affinity, and this coating film retains the air layer and expresses the frictional resistance reduction effect. The surface of the hydrophobic uneven coating film changes with time to become hydrophilic and loses its affinity with air, and the frictional resistance reducing effect as described above is reduced. Furthermore, since this hydrophobic uneven film has no antifouling performance, the roughness of the coating film tends to be significantly increased due to fouling by microorganisms and the like, and the frictional resistance tends to increase.
また、船底に大量の空気を供給して摩擦抵抗低減効果を持続させる方法も試みられているが、この空気の供給に大きな動力が必要となり、摩擦抵抗低減による省エネ効果が相殺されて、実用性が無くなる。 In addition, attempts have been made to supply a large amount of air to the bottom of the ship to maintain the frictional resistance reduction effect. However, this air supply requires a large amount of power, which offsets the energy-saving effect of reducing frictional resistance and is practical. Disappears.
また、上記について検討するに当たり、より簡便に、塗膜の水中での空気潤滑機能を利用する摩擦抵抗低減効果を予測する方法、前記予測に用いることのできる装置があれば有用である。 Moreover, in examining the above, it is useful to have a method for predicting the frictional resistance reduction effect using the air lubrication function of the coating film in water and an apparatus that can be used for the prediction.
上記を鑑み、本発明は、水中で空気などの気体との親和性が長期に渡って持続し、少量の気体の供給で高い摩擦抵抗低減効果を奏し、かつ、航行中でも静置条件下でも防汚機能を有する塗膜を形成することができる塗料組成物、該組成物から形成される塗膜、該塗膜が形成された摩擦抵抗低減船舶および該摩擦抵抗低減船舶の製造方法を提供することを第一の課題とするものである。 In view of the above, the present invention has a long-term affinity with water and other gases such as air, provides a high frictional resistance reduction effect by supplying a small amount of gas , and prevents both navigation and stationary conditions. To provide a coating composition capable of forming a coating film having a soiling function, a coating film formed from the composition, a frictional resistance-reducing ship formed with the coating film, and a method for producing the frictional resistance-reducing ship Is the first issue.
さらに、本発明は、水中で空気などの気体親和性が長期に渡って持続し、気体の供給に大きな動力を導入せずとも流体摩擦抵抗低減効果が大きく、経済的であり、環境に与える影響の少ない塗膜を形成することができる塗料組成物、該組成物から形成される塗膜、該塗膜が形成された摩擦抵抗低減船舶、該摩擦抵抗低減船舶の製造方法や、塗膜の水中での気体潤滑機能を利用した摩擦抵抗低減効果を予測する方法および前記予測に用いられる装置を提供することを第二の課題とするものである。 Furthermore, the present invention has a long-term affinity for gas such as air in water, has a great effect of reducing fluid frictional resistance without introducing large power into the gas supply, is economical, and has an impact on the environment. Coating composition capable of forming a coating film with a small amount of coating, a coating film formed from the composition, a frictional resistance-reducing ship formed with the coating film, a method for producing the frictional resistance-reducing ship, A second problem is to provide a method for predicting the frictional resistance reduction effect using the gas lubrication function in the above and a device used for the prediction.
また、本発明は、上述のような摩擦抵抗低減船舶に用いられる摩擦抵抗低減システムおよび該システムを具備する水中での気体潤滑機能を利用する摩擦抵抗低減船舶を提供することを第三の課題とするものである。 The third object of the present invention is to provide a frictional resistance reduction system for use in a frictional resistance-reducing ship as described above, and a frictional resistance-reducing ship that uses a gas lubrication function in water that includes the system. To do.
本発明者らは、上記課題を解決すべく、鋭意検討した結果、特定のオルガノポリシロキサン(A)、特定の疎水性材料(C)、および、必要に応じて特定のオルガノシラン及び/又はその部分縮合物(B)を含有し、水中での気体潤滑機能を利用する摩擦抵抗低減船舶に用いられる防汚塗料組成物により、上記第一の課題を解決できることを見出した。 As a result of intensive studies to solve the above problems, the present inventors have found that a specific organopolysiloxane (A), a specific hydrophobic material (C), and, if necessary, a specific organosilane and / or its It has been found that the above first problem can be solved by an antifouling paint composition used for a frictional resistance-reducing ship that contains a partial condensate (B) and uses a gas lubrication function in water.
さらに、本発明者らは、後述する静的水中気泡接触角および水中気泡転がり(滑り)角が特定の範囲である塗膜を有し、水中での気体潤滑機能を利用する摩擦抵抗低減船舶に用いられる防汚塗料組成物や、該静的水中気泡接触角および水中気泡転がり(滑り)角を利用した上記摩擦抵抗低減効果を予測する方法、該静的水中気泡接触角および水中気泡転がり(滑り)角を測定できる特定の構成を有する装置により、上記第二の課題を解決できることを見出した。 Furthermore, the present inventors have a coating film in which a static underwater bubble contact angle and underwater bubble rolling (sliding) angle, which will be described later, are in a specific range, and to a ship with reduced frictional resistance that utilizes a gas lubrication function in water. Antifouling paint composition used, method for predicting the frictional resistance reduction effect using the static underwater bubble contact angle and underwater bubble rolling (sliding) angle, the static underwater bubble contact angle and underwater bubble rolling (sliding) It has been found that the second problem can be solved by an apparatus having a specific configuration capable of measuring an angle.
また、本発明者らは、上述の第一の課題あるいは第二の課題を解決できる組成物から形成される塗膜と、該塗膜の表面に空気などの気体を供給する気体供給装置とを具備する摩擦抵抗低減システムにより、上記第三の課題を解決できることを見出した。 In addition, the present inventors include a coating film formed from a composition that can solve the first problem or the second problem, and a gas supply device that supplies a gas such as air to the surface of the coating film. It has been found that the third problem can be solved by the frictional resistance reduction system provided.
本発明は、本発明者らが新規に発見した下記知見に基づくものである。
・特定のオルガノポリシロキサンと、特定の疎水性材料と、必要に応じて特定のオルガノシラン及び/又はその部分縮合物とを含有する防汚塗料組成物によって形成される塗膜が空気潤滑効果を効率的に発現して、水流摩擦抵抗が効率よく低減される。
・ポリシロキサン骨格構造を有する化合物が防汚塗料組成物中に配合されていると、それら化合物のレベリング性が該防汚塗料組成物から形成される防汚塗膜の形状に影響を与え、後述の特定の形状の塗膜形状が形成されると推定される。
・上述した防汚塗料組成物により形成される塗膜は、粗度が小さく、山谷平均間隔が長い(表面粗度50μm以下で、山谷平均間隔が700μm以上)。この塗膜形状は、静的水中気泡接触角が90度未満でかつ気泡転がり(滑り)角が30度未満という特性の発揮に貢献する。そしてこの塗膜形状は、従来の微細な凹凸が形成されていることを必要とする従来の塗膜(例えば前記特許文献1〜4)とは異なり、それら塗膜に比してなだらかな起伏を有する塗膜であり、優れた摩擦抵抗低減効果を奏する。
・疎水性成分は、25℃において液状またはグリース状であり、上記塗料組成物から形成された塗膜を船舶外板の没水面に有する船舶においては、航行中に該疎水性成分がブリードアウトして塗膜表面を覆うこととなり、上記塗料組成物から形成された塗膜は防汚性を発揮する。
・塗膜の静的水中気泡接触角が90度未満でかつ気泡転がり(滑り)角が30度未満であると、該塗膜が外板の没水面に形成された船舶において、気泡及び/又は気体層が該塗膜に充分に接触しながらかつ滞りなく流動するため、空気潤滑効果が効率的に発現して、水流摩擦抵抗が効率よく低減される。
・上記塗膜は、上記性状や特性を長期維持することができ、しかも、少ない空気量で高い摩擦抵抗低減効果を奏する。そのため、該塗膜が船舶外板の没水面に形成された摩擦抵抗低減船舶は、空気供給に大きな動力を必要としないため省エネ効果が大きい。
・疎水性材料や防汚剤を含有する防汚塗料組成物から形成される塗膜が船舶外板の没水面に形成された摩擦抵抗低減船舶である場合には、さらに、水中生物の付着を防止し、より長期に渡って空気潤滑効果を奏することができる。The present invention is based on the following findings newly discovered by the present inventors.
A coating film formed by an antifouling paint composition containing a specific organopolysiloxane, a specific hydrophobic material, and, if necessary, a specific organosilane and / or a partial condensate thereof has an air lubrication effect. The water frictional resistance is effectively reduced by efficiently expressing.
When compounds having a polysiloxane skeleton structure are blended in the antifouling paint composition, the leveling properties of these compounds affect the shape of the antifouling coating film formed from the antifouling paint composition, which will be described later. It is estimated that a specific shape of the coating film is formed.
-The coating film formed with the antifouling paint composition described above has a low roughness and a long average interval between the peaks and valleys (the surface roughness is 50 μm or less and the average valley interval is 700 μm or more). This coating film shape contributes to exhibiting the characteristics that the static water bubble contact angle is less than 90 degrees and the bubble rolling (slip) angle is less than 30 degrees. And unlike the conventional coating film (for example, the said patent documents 1-4) which requires that this fine-film unevenness | corrugation is formed, this coating-film shape has gentle undulation compared with those coating films. It has a coating film having an excellent effect of reducing frictional resistance.
The hydrophobic component is liquid or grease-like at 25 ° C., and the hydrophobic component bleeds out during navigation on a ship that has a coating film formed from the coating composition on the submerged surface of the ship's outer plate. The coating film surface is covered, and the coating film formed from the coating composition exhibits antifouling properties.
-When the static underwater bubble contact angle of the coating film is less than 90 degrees and the bubble rolling (slip) angle is less than 30 degrees, in the ship in which the coating film is formed on the submerged surface of the outer plate, bubbles and / or Since the gas layer flows without stagnation while sufficiently in contact with the coating film, the air lubrication effect is efficiently exhibited and the water frictional resistance is efficiently reduced.
-The said coating film can maintain the said property and characteristic for a long term, and there exists a high frictional resistance reduction effect with little air quantity. Therefore, the frictional resistance reduction ship in which the coating film is formed on the submerged surface of the ship outer plate has a large energy saving effect because it does not require large power for air supply.
・ If the coating film formed from an antifouling paint composition containing a hydrophobic material or an antifouling agent is a ship with reduced frictional resistance formed on the submerged surface of the ship's outer plate, further adhere to aquatic organisms. This can prevent the air lubrication effect over a longer period.
すなわち、本発明は、下記の通りである。
本発明に係る水中での気体潤滑機能を利用する摩擦抵抗低減船舶に用いられる防汚塗料組成物は、(A)25℃における粘度が20〜400000mm2/sである、反応硬化型オルガノポリシロキサンと、(C)25℃において液状またはグリース状である疎水性材料(但し、上記オルガノポリシロキサン(A)および下記オルガノシラン及び/又はその部分縮合物(B)を除く)と、必要に応じて、(B)ヒドロキシ基および加水分解性基のうちの少なくとも1つの基を1分子中に少なくとも2個有するオルガノシラン及び/又はその部分縮合物とを含有することを特徴とする(第一の塗料組成物ともいう)。(以下、「水中での気体潤滑機能を利用する摩擦抵抗低減船舶」を「特殊摩擦抵抗低減船舶」ともいう。)
本発明に係る上記防汚塗料組成物は、上記疎水性材料(C)が、シリコーンオイル、フッ素系オイルおよびパラフィン類から選択された少なくとも1種を含むことが、該防汚塗料組成物の防汚性がより優れたものとなる観点より好ましい。That is, the present invention is as follows.
The antifouling paint composition used for a ship with reduced frictional resistance utilizing the gas lubrication function in water according to the present invention is (A) a reaction-curable organopolysiloxane having a viscosity of 20 to 400,000 mm 2 / s at 25 ° C. And (C) a hydrophobic material that is liquid or grease-like at 25 ° C. (excluding the above organopolysiloxane (A) and the following organosilane and / or its partial condensate (B)), and if necessary (B) an organosilane having at least two hydroxyl groups and hydrolyzable groups in one molecule and / or a partial condensate thereof (first paint) Also called composition). (Hereinafter, “a ship with reduced frictional resistance utilizing a gas lubrication function in water” is also referred to as “a ship with reduced special frictional resistance”.)
In the antifouling paint composition according to the present invention, the hydrophobic material (C) contains at least one selected from silicone oil, fluorine oil and paraffins. It is preferable from the viewpoint that the soiling is more excellent.
本発明に係る上記防汚塗料組成物は、さらに、防汚剤(D)を前記オルガノポリシロキサン100重量部に対して5〜100重量部含有することが、該防汚塗料組成物の防汚性がより優れたものとなる観点より好ましい。 The antifouling paint composition according to the present invention further contains an antifouling agent (D) in an amount of 5 to 100 parts by weight based on 100 parts by weight of the organopolysiloxane. It is preferable from the viewpoint of improving the properties.
本発明に係る特殊摩擦抵抗低減船舶に用いられる防汚塗膜は、上記防汚塗料組成物から形成されることを特徴とする(第一の塗膜ともいう)。
本発明に係る上記防汚塗膜の表面形状は、JIS B 0601に準拠して測定された凹部の底から凸部の頂までの最大高さが30μm以下であり、JIS B 0601に準拠して測定された、1つの凸及びそれに隣り合う1つの凹の1周期分の長さの平均である山谷平均間隔が700μm以上であることが、より効果的に摩擦抵抗を低減できる観点より好ましい。The antifouling coating film used for the special frictional resistance reducing ship according to the present invention is formed from the antifouling coating composition (also referred to as a first coating film).
As for the surface shape of the antifouling coating film according to the present invention, the maximum height from the bottom of the concave portion to the top of the convex portion measured in accordance with JIS B 0601 is 30 μm or less, and in accordance with JIS B 0601. It is preferable from the viewpoint of more effectively reducing the frictional resistance that the average interval between the peaks and valleys, which is the average of the length of one convex and one concave adjacent to it, is 700 μm or more.
本発明に係る上記防汚塗膜は、下記静的水中気泡接触角の測定法により測定した静的水中気泡接触角が90度未満であり、上記水中気泡転がり(滑り)角の測定法により測定した水中気泡転がり(滑り)角が30度未満であることが、より効果的に摩擦抵抗を低減できる観点より好ましい。
<静的水中気泡接触角の測定法>
乾燥膜厚が150μmの塗膜が形成されるように塗料組成物を塗装した硬質ポリ塩化ビニル試験板(JIS B 0601に準拠して測定された最大高さが1μm以下)を30日間25℃の水に浸漬し、浸漬30日後の硬質ポリ塩化ビニル試験板を塗膜表面が水平かつ該試験板の下側になるように水中に設置し、該塗膜表面に気泡が1つ形成されるように0.1ccの空気を水中に注入して、該塗膜表面に形成された気泡の塗膜表面からの高さa、および、塗膜表面と気泡との接触部の直径bを測定し、下記(1)式より、該塗膜面と気泡との接触角である静的水中気泡接触角(θs、単位:度)を求める。The antifouling coating film according to the present invention has a static underwater bubble contact angle of less than 90 degrees as measured by the following static underwater bubble contact angle measurement method, and is measured by the underwater bubble rolling (slip) angle measurement method. The underwater bubble rolling (sliding) angle is preferably less than 30 degrees from the viewpoint of more effectively reducing the frictional resistance.
<Measurement method of static underwater bubble contact angle>
A hard polyvinyl chloride test plate (maximum height measured in accordance with JIS B 0601 of 1 μm or less) coated with a coating composition so that a coating film having a dry film thickness of 150 μm is formed at 25 ° C. for 30 days. Immerse in water and place the hard polyvinyl
<水中気泡転がり(滑り)角の測定法>
上記静的水中気泡接触角の測定法において、気泡の形成された塗膜面を水平面に対して徐々に傾け、気泡が移動し始めた際の塗膜面の、水平面に対する傾斜角度である水中気泡転がり(滑り)角(θm、単位:度)を測定する。<Measurement of underwater bubble rolling (slip) angle>
In the method for measuring the static underwater bubble contact angle, an underwater bubble having an inclination angle with respect to a horizontal plane of a coating film surface when bubbles are gradually tilted with respect to the horizontal plane and the bubble starts to move. Measure the rolling (sliding) angle (θ m , unit: degree).
本発明に係る特殊摩擦抵抗低減船舶は、上記防汚塗膜で船舶外板の没水面が被覆されていることを特徴とする(第一の特殊摩擦抵抗低減船舶ともいう)。
本発明に係る第一の特殊摩擦抵抗低減船舶の製造方法は、被塗装船舶の外板の没水予定面に、上記防汚塗膜を形成することを特徴とする。The special frictional resistance reduction ship according to the present invention is characterized in that the submerged surface of the ship outer plate is covered with the antifouling coating film (also referred to as a first special frictional resistance reduction ship).
The first method for producing a special frictional resistance-reducing ship according to the present invention is characterized in that the antifouling coating film is formed on a planned submerged surface of the outer plate of the ship to be painted.
本発明に係る摩擦抵抗低減システムは、上述の塗膜(第一の塗膜)と、該塗膜の表面に空気などの気体を供給する気体供給装置とを具備することを特徴とする(第一の摩擦抵抗低減システムともいう)。 A frictional resistance reduction system according to the present invention includes the above-described coating film (first coating film) and a gas supply device that supplies a gas such as air to the surface of the coating film (first). Also called a frictional resistance reduction system.
本発明に係る特殊摩擦抵抗低減船舶は、第一の摩擦抵抗低減システムを具備することを特徴とする(第三の特殊摩擦抵抗低減船舶ともいう)。
本発明に係る塗料組成物は、水中での気体潤滑機能を利用する摩擦抵抗低減船舶に用いられ、下記静的水中気泡接触角の測定法により測定した静的水中気泡接触角が90度未満であり、下記水中気泡転がり(滑り)角の測定法により測定した水中気泡転がり(滑り)角が30度未満である塗膜を形成できることを特徴とする(第二の塗料組成物ともいう)。The special frictional resistance reduction ship according to the present invention includes the first frictional resistance reduction system (also referred to as a third special frictional resistance reduction ship).
The coating composition according to the present invention is used for a ship with reduced frictional resistance utilizing a gas lubrication function in water, and the static underwater bubble contact angle measured by the following static underwater bubble contact angle measurement method is less than 90 degrees. In addition, a coating film having an underwater bubble rolling (sliding) angle of less than 30 degrees measured by a method for measuring an underwater bubble rolling (sliding) angle can be formed (also referred to as a second coating composition).
<静的水中気泡接触角の測定法>
乾燥膜厚が150μmの塗膜が形成されるように塗料組成物を塗装した硬質ポリ塩化ビニル試験板(JIS B 0601に準拠して測定された最大高さが1μm以下)を30日間25℃の水に浸漬し、浸漬30日後の硬質ポリ塩化ビニル試験板を塗膜表面が水平かつ該試験板の下側になるように水中に設置し、該塗膜表面に気泡が1つ形成されるように0.1ccの空気を水中に注入して、該塗膜表面に形成された気泡の塗膜表面からの高さa、および、塗膜表面と気泡との接触部の直径bを測定し、下記(1)式より、該塗膜面と気泡との接触角である静的水中気泡接触角(θs、単位:度)を求める。<Measurement method of static underwater bubble contact angle>
A hard polyvinyl chloride test plate (maximum height measured in accordance with JIS B 0601 of 1 μm or less) coated with a coating composition so that a coating film having a dry film thickness of 150 μm is formed at 25 ° C. for 30 days. Immerse in water and place the hard polyvinyl
<水中気泡転がり(滑り)角の測定法>
上記静的水中気泡接触角の測定法において、気泡の形成された塗膜面を水平面に対して徐々に傾け、気泡が移動し始めた際の塗膜面の、水平面に対する傾斜角度である水中気泡転がり(滑り)角(θm、単位:度)を測定する。<Measurement of underwater bubble rolling (slip) angle>
In the method for measuring the static underwater bubble contact angle, an underwater bubble having an inclination angle with respect to a horizontal plane of a coating film surface when bubbles are gradually tilted with respect to the horizontal plane and the bubble starts to move. Measure the rolling (sliding) angle (θ m , unit: degree).
本発明に係る上記防汚塗膜は、JIS B 0601に準拠して測定された最大高さが30μm以下であり、JIS B 0601に準拠して測定された山谷平均間隔が700μm以上であることが、より効果的に摩擦抵抗を低減できる観点より好ましい。 The antifouling coating film according to the present invention has a maximum height measured in accordance with JIS B 0601 of 30 μm or less and an average interval between peaks and valleys measured in accordance with JIS B 0601 of 700 μm or more. From the viewpoint of more effectively reducing frictional resistance.
本発明に係る上記塗膜は、特殊摩擦抵抗低減船舶に用いられる塗料組成物により形成されることを特徴とする(第二の塗膜ともいう)。
本発明に係る特殊摩擦抵抗低減船舶は、上記塗膜を船舶外板の没水面に有することを特徴とする(第二の特殊摩擦抵抗低減船舶ともいう)。The said coating film which concerns on this invention is formed with the coating composition used for a special frictional resistance reduction ship (it is also called 2nd coating film).
The special frictional resistance-reducing ship according to the present invention has the coating film on the submerged surface of the ship's outer plate (also referred to as a second special frictional resistance-reducing ship).
本発明に係る摩擦抵抗低減システムは、上述の塗膜(第二の塗膜)と、該塗膜の表面に空気などの気体を供給する気体供給装置とを具備することを特徴とする(第二の摩擦抵抗低減システムともいう)。 A frictional resistance reduction system according to the present invention includes the above-described coating film (second coating film) and a gas supply device that supplies a gas such as air to the surface of the coating film (first) This is also called the second frictional resistance reduction system).
本発明に係る特殊摩擦抵抗低減船舶は、第二の摩擦抵抗低減システムを具備することを特徴とする(第四の特殊摩擦抵抗低減船舶ともいう)。
本発明に係る第二の特殊摩擦抵抗低減船舶の製造方法は、被塗装船舶の外板の没水予定面に、上記塗膜を形成することを特徴とする。The special frictional resistance reduction ship according to the present invention includes a second frictional resistance reduction system (also referred to as a fourth special frictional resistance reduction ship).
The second method for manufacturing a special frictional resistance reducing ship according to the present invention is characterized in that the coating film is formed on a planned submerged surface of the outer plate of the ship to be painted.
本発明に係る塗膜の水中での気体潤滑機能を利用した摩擦抵抗低減効果を予測する方法は、下記静的水中気泡接触角の測定法により静的水中気泡接触角を測定し、かつ、下記水中気泡転がり(滑り)角の測定法により水中気泡転がり(滑り)角を測定して、前記静的水中気泡接触角および水中気泡転がり(滑り)角から、塗膜の水中での気体潤滑機能を利用した摩擦抵抗低減効果を予測することを特徴とする。
<静的水中気泡接触角の測定法>
塗膜が形成されるように塗料組成物を塗装した試験板を水に浸漬し、浸漬後の試験板を塗膜表面が水平かつ該試験板の下側になるように水中に設置し、該塗膜表面に気泡が形成されるように空気を水中に注入して、該塗膜表面に形成された気泡の塗膜表面からの高さa、および、塗膜表面と気泡との接触部の直径bを測定し、下記(1)式より、該塗膜面と気泡との接触角である静的水中気泡接触角(θs、単位:度)を求める。The method for predicting the frictional resistance reduction effect using the gas lubrication function in water of the coating film according to the present invention measures the static underwater bubble contact angle by the following static underwater bubble contact angle measurement method, and Underwater bubble rolling (sliding) angle is measured by measuring the underwater bubble rolling (sliding) angle. From the static underwater bubble contact angle and underwater bubble rolling (sliding) angle, the film can be lubricated in water. It is characterized by predicting the frictional resistance reduction effect used.
<Measurement method of static underwater bubble contact angle>
The test plate coated with the coating composition is immersed in water so that a coating film is formed, and the immersed test plate is placed in water so that the coating surface is horizontal and below the test plate. Air is injected into water so that bubbles are formed on the coating surface, and the height a of the bubbles formed on the coating surface from the coating surface and the contact portion between the coating surface and the bubbles are The diameter b is measured, and the static underwater bubble contact angle (θ s , unit: degree), which is the contact angle between the coating film surface and the bubble, is obtained from the following formula (1).
<水中気泡転がり(滑り)角の測定法>
上記静的水中気泡接触角の測定法において、気泡の形成された塗膜面を水平面に対して徐々に傾け、気泡が移動し始めた際の塗膜面の、水平面に対する傾斜角度である水中気泡転がり(滑り)角(θm、単位:度)を測定する。<Measurement of underwater bubble rolling (slip) angle>
In the method for measuring the static underwater bubble contact angle, an underwater bubble having an inclination angle with respect to a horizontal plane of a coating film surface when bubbles are gradually tilted with respect to the horizontal plane and the bubble starts to move. Measure the rolling (sliding) angle (θ m , unit: degree).
本発明に係る塗膜の水中での気体潤滑機能を利用した摩擦抵抗低減効果の予測に用いられる装置は、試験台、傾斜角制御装置、浸漬用容器、観察用装置を具備する装置であって、上記試験台には、傾斜角制御装置が接続されており、上記試験台は、表面に塗膜が形成された試験板が、該試験板の裏面が該試験台の下面に接するように取り付けられて、水の入った上記浸漬用容器内に、該試験板を浸漬し、該試験板の塗膜表面に気泡を形成した状態で設置され、上記観察用装置は、上記試験板と上記気泡の状態を観測できるように設置され、上記試験板が水平のときの上記試験板の塗膜の表面に形成させた気泡の状態を上記観察用装置により観測して、静的水中気泡接触角を測定し、上記傾斜角制御装置により試験板を水平に対して傾斜させて、上記観察用装置により気泡の挙動を観測して、上記試験板の塗膜の表面に形成させた気泡の水中気泡転がり(滑り)角を測定することを特徴とする。 The apparatus used for predicting the frictional resistance reduction effect using the gas lubrication function in water of the coating film according to the present invention is an apparatus comprising a test bench, an inclination angle control device, an immersion vessel, and an observation device. The tilt angle control device is connected to the test stand, and the test stand is mounted so that the test plate having the coating film formed on the surface thereof is in contact with the lower surface of the test stand. The test plate is immersed in the immersion container containing water, and is installed in a state where bubbles are formed on the coating film surface of the test plate. The observation device includes the test plate and the bubbles. The state of bubbles formed on the surface of the coating film on the test plate when the test plate is horizontal is observed with the observation device, and the static underwater bubble contact angle is determined. Measure and tilt the test plate with respect to the horizontal using the tilt angle control device. By observing the behavior of the bubbles by the microscopy apparatus, and measuring the coating rolling water bubbles bubbles was formed on the surface of the membrane (slip) angle of the test plate.
本発明の特殊摩擦抵抗低減船舶に用いられる防汚塗料組成物は、特定の成分が配合されているため、少量の気体の供給でも効率よく船舶外板の没水面に対しての摩擦抵抗(以下、単に、「船体の摩擦抵抗」ともいう)を低減できる塗膜を形成することができ、省エネ効果も大きい。そして、該防汚塗料組成物から形成される塗膜は、特定の疎水性材料を含有しているので優れた防汚性を発揮して水中生物の付着を防止することができ、水中生物などの付着による船体の摩擦抵抗の増大を防止することができる。しかも、該防汚塗料組成物から形成される塗膜は、それら効果を長期間にわたって維持することができる。 Since the antifouling paint composition used in the special frictional resistance-reducing ship of the present invention is blended with specific components, the frictional resistance against the submerged surface of the ship's outer plate (hereinafter referred to as “low-gas”) can be efficiently supplied even with a small amount of gas supply. In other words, it is possible to form a coating film that can reduce the frictional resistance of the hull. And since the coating film formed from the antifouling paint composition contains a specific hydrophobic material, it can exhibit excellent antifouling properties and prevent the attachment of underwater organisms, The increase in the frictional resistance of the hull due to the adhesion of the hull can be prevented. And the coating film formed from this antifouling coating composition can maintain those effects over a long period of time.
本発明の上記特殊摩擦抵抗低減船舶に用いられる防汚塗料組成物に配合される疎水性材料(C)がシリコーンオイル、フッ素系オイルおよびパラフィン類から選択された少なくとも1つを含むと、該防汚塗料組成物はより高い防汚性能を発揮する塗膜を形成でき、ひいては、該塗膜の摩擦低減効果がより長期に渡って維持される。該防汚塗料組成物が防汚剤(D)を含むとその効果はさらに増大される。 When the hydrophobic material (C) blended in the antifouling paint composition used for the special friction resistance-reducing ship of the present invention contains at least one selected from silicone oil, fluorine-based oil and paraffins, The dirty paint composition can form a coating film exhibiting higher antifouling performance, and as a result, the friction reducing effect of the coating film is maintained for a longer period of time. When the antifouling coating composition contains an antifouling agent (D), the effect is further increased.
本発明の防汚塗膜の表面形状は、JIS B 0601に準拠して測定された凹部の底から凸部の頂までの最大高さが30μm以下であり、JIS B 0601に準拠して測定された、1つの凸及びそれに隣り合う1つの凹の1周期分の長さの平均である山谷平均間隔が700μm以上であるので、気泡および/または気体層の保持力が高く、船舶外板などからの剥離、脱落が生じにくいため、長期に渡って船体の摩擦抵抗を安定して低減できる。 The surface shape of the antifouling coating film of the present invention has a maximum height of 30 μm or less from the bottom of the concave portion to the top of the convex portion measured in accordance with JIS B 0601, and is measured in accordance with JIS B 0601. In addition, since the average interval between the peaks and valleys, which is the average of the length of one convex and one concave adjacent to it, is 700 μm or more, the retention force of the bubbles and / or the gas layer is high. Since the peeling and dropping of the hull are difficult to occur, the frictional resistance of the hull can be stably reduced over a long period.
本発明の、船舶外板の没水面が上記防汚塗料組成物から形成された防汚塗膜で被覆された第一の特殊摩擦抵抗低減船舶は、上述の防汚塗料組成物から形成される防汚塗膜を有するので、船舶外板に供給される気体が少量であっても、高い水流摩擦抵抗低減効果を奏し、しかも該効果を長期に亘って安定に奏することができる。 The first special frictional resistance reducing ship in which the submerged surface of the ship outer plate of the present invention is coated with the antifouling coating film formed from the antifouling paint composition is formed from the above antifouling paint composition. Since it has an antifouling coating film, even if a small amount of gas is supplied to the outer skin of the ship, a high water frictional resistance reduction effect can be achieved and the effect can be stably achieved over a long period of time.
本発明の第一の特殊摩擦抵抗低減船舶の製造方法は、上記防汚塗料組成物から形成される防汚塗膜を船舶外板の没水面に形成するという簡易な方法で、上記効果を奏する特定船舶を製造することができる。 The first method for producing a ship with reduced special frictional resistance according to the present invention provides the above-described effect by a simple method of forming an antifouling coating film formed from the antifouling paint composition on the submerged surface of the ship outer plate. A specific ship can be manufactured.
本発明の特殊摩擦抵抗低減船舶に用いられる塗料組成物は、水中で静的水中気泡接触角が90度未満でかつ気泡転がり(滑り)角が30度未満である塗膜を形成できるので、気泡及び/又は気体層が該塗膜に充分に接触しながらかつ滞りなく流動する。そのため、該塗膜の形成を外板の没水面に有する(第二の)特殊摩擦抵抗低減船舶では、効率的な気体潤滑効果が発現して、供給する空気の量が少量でも船体の摩擦抵抗が効率よく低減され、省エネ効果も大きい。 Since the coating composition used in the special frictional resistance reducing ship of the present invention can form a coating film having a static underwater bubble contact angle of less than 90 degrees and a bubble rolling (slip) angle of less than 30 degrees in water. And / or the gas layer flows without stagnation while in sufficient contact with the coating. Therefore, in the (second) special frictional resistance reduced ship having the coating film formed on the submerged surface of the outer plate, an efficient gas lubrication effect is exhibited, and the frictional resistance of the hull is supplied even if the amount of air supplied is small. Is effectively reduced and the energy-saving effect is great.
本発明の第二の摩擦抵抗低減船舶の製造方法は、被塗装船舶の外板の没水予定面に上記塗膜を形成するので、上述のような、供給する空気の量が少量でも船舶外板の没水面に対しての摩擦抵抗が効率よく低減され、省エネ効果も大きい特殊摩擦抵抗低減船舶を製造できる。 In the second method for manufacturing a ship with reduced frictional resistance according to the present invention, the coating film is formed on the submerged planned surface of the outer plate of the ship to be coated. The frictional resistance against the submerged surface of the plate can be efficiently reduced, and a special frictional resistance-reducing ship with a large energy saving effect can be manufactured.
本発明の塗膜の水中での気体潤滑機能を利用した摩擦抵抗低減効果を予測する方法は、水中で塗膜の表面に形成された気泡の静的接触角や、転がり(滑り)角を測定することで実施できる。すなわち、水中で塗膜の表面に形成された気泡の静的接触角および転がり(滑り)角の測定結果により、それらが特定の範囲にあると、水中での気体潤滑機能を利用する摩擦抵抗低減効果に優れると予測できる。 The method of predicting the frictional resistance reduction effect of the coating film of the present invention utilizing the gas lubrication function in water measures the static contact angle and rolling (slip) angle of bubbles formed on the surface of the coating film in water. This can be done. That is, when the static contact angle and rolling (slip) angle of the bubbles formed on the surface of the coating film in water are within a specific range, the frictional resistance is reduced by utilizing the gas lubrication function in water. It can be predicted that the effect is excellent.
また、本発明の上記摩擦抵抗低減効果を予測する方法は、水中の塗膜の気泡の静的接触角や転がり(滑り)角の測定結果から水中での気泡の形成のしやすさを評価できるだけでなく、実際の水中での気泡の状態や挙動(例えば、塗料に対する気泡の流れやすさなど)の観察が可能である。 Further, the method for predicting the frictional resistance reduction effect of the present invention can only evaluate the ease of formation of bubbles in water from the measurement results of the static contact angle and rolling (slip) angle of the bubbles in the coating film in water. In addition, it is possible to observe the state and behavior of bubbles in actual water (for example, ease of flow of bubbles with respect to the paint).
本発明の上記予測方法は、上記の点で、接触角から塗膜の疎水性を評価することはできるが、水中における気泡の挙動は評価できない従来技術の方法に対して優れている。
本発明の塗膜の水中での気体潤滑機能を利用した摩擦抵抗低減効果の予測に用いられる装置は、複雑な装置構成を必要とせず、操作も簡便に、静的水中気泡接触角及び気泡転がり(滑り)角を測定することができるので、上述のような摩擦抵抗低減効果の予測に好適に用いることができる。The above prediction method of the present invention is superior to the prior art method in that it can evaluate the hydrophobicity of the coating film from the contact angle but cannot evaluate the behavior of bubbles in water.
The apparatus used for predicting the frictional resistance reduction effect using the gas lubrication function in water of the coating film of the present invention does not require a complicated apparatus configuration, and the operation is simple, static underwater bubble contact angle and bubble rolling. Since the (slip) angle can be measured, it can be suitably used for prediction of the frictional resistance reduction effect as described above.
本発明の水中での気体潤滑機能を利用する摩擦抵抗低減船舶に用いられる第一および第二の摩擦抵抗低減システムは、前記のような第一または第二の塗膜と、該塗膜の表面に空気などの気体を供給する気体供給装置とを具備しているので、優れた摩擦抵抗低減効果を発揮する、水中での気体潤滑機能を利用する摩擦抵抗低減船舶に用いられる摩擦抵抗低減システムを提供することができる。そのため、水中で空気などの気体親和性が長期に渡って持続し、気体の供給に大きな動力を導入せずとも流体摩擦抵抗低減効果が大きく、経済的であり、環境に与える影響が少ない。 The first and second frictional resistance reduction systems used in the frictional resistance reduction ship utilizing the gas lubrication function in water of the present invention are the first or second coating film as described above, and the surface of the coating film. And a gas supply device for supplying a gas such as air to the friction resistance reduction system used in a friction resistance reduction ship using a gas lubrication function in water that exhibits an excellent friction resistance reduction effect. Can be provided. Therefore, the affinity of gas such as air in water is maintained for a long period of time, and the effect of reducing fluid friction resistance is great without introducing large power into the gas supply, which is economical and has little impact on the environment.
本発明の第三および第四の特殊摩擦抵抗低減船舶は、摩擦抵抗低減システムを具備するので、優れた摩擦抵抗低減効果を発揮する。そのため、水中で空気などの気体親和性が長期に渡って持続し、気体の供給に大きな動力を導入せずとも流体摩擦抵抗低減効果が大きく、経済的であり、環境に与える影響が少ない。 Since the 3rd and 4th special frictional resistance reduction ship of this invention comprises a frictional resistance reduction system, it exhibits the outstanding frictional resistance reduction effect. Therefore, the affinity of gas such as air in water is maintained for a long period of time, and the effect of reducing fluid friction resistance is great without introducing large power into the gas supply, which is economical and has little impact on the environment.
以下では、便宜的に、本発明を次のように大きく3つの群に分類して、それぞれの群について、順に、最良の形態について、具体的に説明する。
第一群:特殊摩擦抵抗低減船舶に用いられる防汚塗料組成物(第一の塗料組成物)、該組成物から形成される防汚塗膜(第一の塗膜)、該第一の塗膜で被覆された船舶(第一の特殊摩擦抵抗低減船舶)および該第一の船舶の製造方法。Below, for convenience, the present invention is roughly classified into three groups as follows, and the best mode will be specifically described in order for each group.
First group: Antifouling paint composition (first paint composition) used for ships with reduced special frictional resistance, antifouling paint film (first paint film) formed from the composition, first paint A ship covered with a film (first special frictional resistance reducing ship) and a manufacturing method of the first ship.
第二群:特殊摩擦抵抗低減船舶に用いられる塗料組成物(第二の塗料組成物)、該組成物から形成される塗膜(第二の塗膜)、該塗膜で被覆された船舶(第二の特殊摩擦抵抗低減船舶)、該第二の船舶の製造方法、塗膜の水中での気体潤滑機能を利用した摩擦抵抗低減効果を予測する方法および前記摩擦抵抗低減効果の予測に用いられる装置。 Second group: paint composition (second paint composition) used for ships with reduced special frictional resistance, paint film (second paint film) formed from the composition, ship coated with the paint film (second paint composition) Second special frictional resistance reduction ship), method for producing the second ship, method for predicting the frictional resistance reduction effect using the gas lubrication function of the coating film in water, and the prediction of the frictional resistance reduction effect apparatus.
第三群:水中での気体潤滑機能を利用した摩擦抵抗低減船舶に用いられる摩擦抵抗低減システム(第一および第二の摩擦抵抗低減システム)および該システムを具備する特殊摩擦抵抗低減船舶(第三および第四の特殊摩擦抵抗低減船舶)。 Third group: Friction resistance reduction system (first and second friction resistance reduction systems) used in a frictional resistance reduction ship using a gas lubrication function in water and a special frictional resistance reduction ship (third) And the fourth special frictional resistance reduction ship).
なお、後述する各種特性測定は、特に指定がない場合は、圧力条件は常圧(約0.1013MPa)、同じく温度条件は常温(約25℃)で行う。
また、本発明に係る第一、第二、第三、第四の特殊摩擦抵抗低減船舶は、下記の点で共通である。Note that various characteristic measurements described below are performed at normal pressure (about 0.1013 MPa) and temperature conditions at room temperature (about 25 ° C.) unless otherwise specified.
Moreover, the 1st, 2nd, 3rd, 4th special frictional resistance reduction ship which concerns on this invention is common in the following points.
気体潤滑機能により水流摩擦抵抗を低減するためには、特殊摩擦抵抗低減船舶の水流と接する面(船舶外板の没水面)に気泡及び/又は気体層が充分に接触することが必要である。 In order to reduce the water flow frictional resistance by the gas lubrication function, it is necessary that the bubbles and / or the gas layer are sufficiently in contact with the surface (the submerged surface of the ship outer plate) in contact with the water flow of the special frictional resistance reduced ship.
ここで、本明細書において、「水」には、真水以外にも、海水、河川水、湖水なども含まれる。
また、本明細書において、「気体」とは、例えば、空気、窒素ガス、二酸化炭素ガス、酸素ガス、水素ガスなど、船舶に損傷を与えないような気体を包括的に表すものである。環境への影響、コストなどの観点から、特に好適には空気をいう。Here, in this specification, “water” includes seawater, river water, lake water, and the like in addition to fresh water.
Moreover, in this specification, "gas" comprehensively represents gas which does not damage a ship, such as air, nitrogen gas, carbon dioxide gas, oxygen gas and hydrogen gas. Air is particularly preferred from the viewpoint of environmental impact and cost.
1.第一群
本発明に係る第一の特殊摩擦抵抗低減船舶では、例えば、特定のオルガノポリシロキサン(A)と、特定の疎水性材料(C)と、必要に応じて特定のオルガノシラン及び/又はその部分縮合物(B)とを、それぞれ特定量含有する特殊抵抗低減船舶用防汚塗料組成物から形成される防汚塗膜が外板の没水部に形成されている。 1. First group
In the first special frictional resistance reduction ship according to the present invention, for example, a specific organopolysiloxane (A), a specific hydrophobic material (C), and a specific organosilane and / or a partial condensation thereof as necessary. An antifouling coating film formed from a special resistance-reducing marine antifouling paint composition containing a specific amount of the product (B) is formed on the submerged portion of the outer plate.
また、このような特殊抵抗低減船舶用防汚塗料組成物を用いることで、上述の摩擦低減特性などの各種特性を有する塗膜を形成することができる。
1−1.特定の組成を有する防汚塗料組成物
本発明に係る防汚塗料組成物は、ポリシロキサン骨格構造を有する化合物が配合されており、それら化合物の特有のレベリング性が該防汚塗料組成物から形成される塗膜の形状に影響を与えると推察される。そのため、本発明に係る防汚塗料組成物は、後述のような、粗度の高さが30μm以下であり、山谷平均間隔が700μm以上である塗膜を形成することができると推察される。また、本発明に係る防汚塗料組成物は、そのような形状を有する塗膜を形成でき、該形状は塗膜表面での気体保持や気体流動性などの気体潤滑性能を発揮するに非常に好適であるため、水中における静的水中気泡接触角が通常90度未満と小さく、かつ気泡の転がり(滑り)角が通常30度未満と小さい防汚塗膜を形成できるものと推察される。
Moreover, the coating film which has various characteristics, such as the above-mentioned friction reduction characteristic, can be formed by using such a special resistance reduction marine antifouling paint composition.
1-1. Antifouling paint composition having a specific composition The antifouling paint composition according to the present invention is formulated with compounds having a polysiloxane skeleton structure, and the characteristic leveling properties of these compounds are formed from the antifouling paint composition. It is inferred that it affects the shape of the coated film. Therefore, it is speculated that the antifouling paint composition according to the present invention can form a coating film having a roughness height of 30 μm or less and an average interval between peaks and valleys of 700 μm or more, as will be described later. In addition, the antifouling paint composition according to the present invention can form a coating film having such a shape, which is very useful for exhibiting gas lubrication performance such as gas retention and gas fluidity on the coating film surface. It is presumed that an antifouling coating film having a small static underwater bubble contact angle in water of usually less than 90 degrees and a bubble rolling (slip) angle of usually less than 30 degrees in water can be formed.
防汚塗料組成物中の疎水性材料(C)は、後述するように、硬化塗膜中に充填材のような形態で存在する。そして、疎水性材料(C)は、該硬化塗膜が外板部の没水面に形成された船舶の航行中には徐々にブリードアウトして塗膜表面を覆う。この疎水性材料は、25℃において液状またはグリース状であるので、例えれば潤滑剤のように表面の潤滑性を向上させて、水中の微生物の付着などを防止でき、上記防汚塗膜に防汚性を付与している。 As will be described later, the hydrophobic material (C) in the antifouling coating composition is present in the cured coating film in the form of a filler. The hydrophobic material (C) gradually bleeds out to cover the coating film surface during the navigation of the ship in which the cured coating film is formed on the submerged surface of the outer plate. Since this hydrophobic material is liquid or grease-like at 25 ° C., for example, it can improve the surface lubricity like a lubricant and prevent the adhesion of microorganisms in the water, etc. Dirty is imparted.
以下、防汚塗料組成物中の各成分などについて、説明する。
1−1−1.反応硬化型オルガノポリシロキサン(A)
反応硬化型オルガノポリシロキサン(A)は、25℃における粘度が20〜400000mm2/sである。Hereinafter, each component in the antifouling coating composition will be described.
1-1-1. Reaction-curing organopolysiloxane (A)
The reaction curable organopolysiloxane (A) has a viscosity at 25 ° C. of 20 to 400,000 mm 2 / s.
ここで、反応硬化型オルガノポリシロキサンとは、1分子中に少なくとも2つの縮合性反応基を有するオルガノポリシロキサンであり、好ましくは、両末端に少なくとも2つの縮合性反応基を有するオルガノポリシロキサンであり、該オルガノポリシロキサンのみで硬化反応により硬化できるものや、該オルガノポリシロキサンのみでは硬化反応しないが、後述のオルガノシラン及び/又はその部分縮合物(B)のような化合物との硬化反応により硬化できるオルガノポリシロキサンをいう。 Here, the reaction-curable organopolysiloxane is an organopolysiloxane having at least two condensable reactive groups in one molecule, preferably an organopolysiloxane having at least two condensable reactive groups at both ends. Yes, it can be cured by a curing reaction only with the organopolysiloxane, or it cannot be cured only with the organopolysiloxane, but by a curing reaction with a compound such as an organosilane and / or a partial condensate thereof (B) described later. An organopolysiloxane that can be cured.
分子の両末端とは、主鎖の2つの末端をいい、縮合性反応基とは、通常、ヒドロキシ基または加水分解性基であり、2つの末端基は、同一であっても異なっていてもよい。また分子の両末端に存在するヒドロキシ基や加水分解性基以外に、後述のオルガノシラン及び/又はその部分縮合物(B)と反応する官能基を主鎖や側鎖に有していてもよい。両末端に少なくとも2つの縮合性反応基を有するとは、換言すれば、2つの末端のそれぞれの末端において、少なくとも1つの縮合性反応基を有するということである。 Both ends of the molecule refer to the two ends of the main chain, and the condensable reactive group is usually a hydroxy group or a hydrolyzable group, and the two end groups may be the same or different. Good. In addition to the hydroxy group and hydrolyzable group present at both ends of the molecule, the main chain or side chain may have a functional group that reacts with an organosilane and / or its partial condensate (B) described later. . Having at least two condensable reactive groups at both ends means, in other words, having at least one condensable reactive group at each of the two ends.
上記加水分解性基の具体例は、後述のオルガノポリシロキサン(A)としてのX3-bR3 bSiO(R1R2SiO)mR3 bSiX3-bのXの具体例と同じである。
また、後述するオルガノシラン及び/又はその部分縮合物(B)と反応させることができるという観点からは、オルガノポリシロキサン(A)の加水分解性基は、後述するオルガノシラン及び/又はその部分縮合物(B)の加水分解性基と同様のものであることが好ましい。Specific examples of the hydrolyzable group are the same as the specific examples of X in X 3-b R 3 b SiO (R 1 R 2 SiO) m R 3 b SiX 3-b as organopolysiloxane (A) described later. It is.
Further, from the viewpoint that it can be reacted with an organosilane and / or its partial condensate (B) described later, the hydrolyzable group of the organopolysiloxane (A) is an organosilane and / or its partial condensation described below. It is preferable that they are the same as the hydrolyzable group of the product (B).
上記粘度は、硬化性、硬化塗膜のゴム強度、厚膜化及びハンドリング性などの塗装性、得られる組成物を溶剤希釈した時のタレ防止などの観点からは、25〜200000mm2/sであることが好ましく、500〜100000mm2/sであることがより好ましい。The viscosity is 25 to 200,000 mm 2 / s from the viewpoint of curability, coating strength such as rubber strength of a cured coating film, thickening and handling properties, and prevention of sagging when the resulting composition is diluted with a solvent. It is preferable that it is 500 to 100,000 mm 2 / s.
尚、本明細書において、粘度は、「JIS Z 8803液体の粘度−測定方法」により、毛細管粘度計(ウベローデ粘度計)を使用し測定する。
上記オルガノポリシロキサン(A)としては、例えば、HO(R1R2SiO)mHで表され、分子の両末端にシラノール基を有するオルガノポリシロキサンが挙げられる。R1、R2がメチル基、フェニル基、ビニル基などの炭素数1〜10の1価炭化水素基であり、mは重合度に相当する正数であり、上記粘度の範囲を満たす範囲内にある。In the present specification, the viscosity is measured using a capillary viscometer (Ubbelohde viscometer) according to “JIS Z 8803 liquid viscosity—measurement method”.
Examples of the organopolysiloxane (A) include organopolysiloxanes represented by HO (R 1 R 2 SiO) m H and having silanol groups at both ends of the molecule. R 1 and R 2 are monovalent hydrocarbon groups having 1 to 10 carbon atoms such as a methyl group, a phenyl group, and a vinyl group, and m is a positive number corresponding to the degree of polymerization and is within a range satisfying the above viscosity range. It is in.
その他には、X3-bR3 bSiO(R1R2SiO)mR3 bSiX3-bで表され、分子の末端に加水分解性基を有するオルガノポリシロキサンが挙げられる。R1とR2は前記構造式と同様であり、R3はR1、R2と同様の1価炭化水素基であり、Xは下記加水分解性基であり、bは0、1または2であり、mは重合度に相当する正数であり、上記粘度の範囲を満たす範囲内にある。Other are represented by X 3-b R 3 b SiO (R 1 R 2 SiO) m R 3 b SiX 3-b, organopolysiloxanes having a hydrolyzable group at the terminal of the molecule. R 1 and R 2 are the same as in the above structural formula, R 3 is a monovalent hydrocarbon group similar to R 1 and R 2 , X is the following hydrolyzable group, b is 0, 1 or 2 And m is a positive number corresponding to the degree of polymerization and is in a range satisfying the above viscosity range.
Xの加水分解性基としては、例えば、アルコキシ基、アシロキシ基、アルケニルオキシ基、イミノキシ基、アミノ基、アミド基、アミノオキシ基等が挙げられ、アルコキシ基が好ましい。 Examples of the hydrolyzable group for X include an alkoxy group, an acyloxy group, an alkenyloxy group, an iminoxy group, an amino group, an amide group, and an aminooxy group, and an alkoxy group is preferable.
上記アルコキシ基としては、総炭素数が1〜10のものが望ましく、また炭素原子間に1箇所以上酸素原子が介在していてもよく、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、メトキシエトキシ基、エトキシエトキシ基等が挙げられる。 As the alkoxy group, those having 1 to 10 carbon atoms are desirable, and one or more oxygen atoms may be interposed between carbon atoms. For example, methoxy group, ethoxy group, propoxy group, butoxy group, A methoxyethoxy group, an ethoxyethoxy group, etc. are mentioned.
アシロキシ基としては、式:R4COO−(式中、R4は炭素数1〜10のアルキル基、炭素数6〜12の芳香族基)で示される脂肪族系または芳香族系のものが望ましく、例えば、アセトキシ基、プロピオノキシ基、ブチロキシ基、ベンゾイルオキシ基等が挙げられる。As the acyloxy group, an aliphatic group or an aromatic group represented by the formula: R 4 COO— (wherein R 4 is an alkyl group having 1 to 10 carbon atoms and an aromatic group having 6 to 12 carbon atoms) is used. Desirable examples include an acetoxy group, a propionoxy group, a butyroxy group, and a benzoyloxy group.
アルケニルオキシ基としては、炭素数3〜10程度のものが望ましく、例えば、イソプロペニルオキシ基、イソブテニルオキシ基、1−エチル−2−メチルビニルオキシ基等が挙げられる。イミノキシ基(=N−OH、オキシイミノ基、ケトオキシム基とも言う。)としては、炭素数3〜10程度のものが望ましく、例えば、ケトオキシム基、ジメチルケトオキシム基、メチルエチルケトオキシム基、ジエチルケトオキシム基、シクロペンタノキシム基、シクロヘキサノキシム基等が挙げられる。 The alkenyloxy group preferably has about 3 to 10 carbon atoms, and examples thereof include an isopropenyloxy group, an isobutenyloxy group, and a 1-ethyl-2-methylvinyloxy group. The iminoxy group (= N-OH, oxyimino group, ketoxime group) is preferably one having about 3 to 10 carbon atoms, for example, a ketoxime group, a dimethyl ketoxime group, a methyl ethyl ketoxime group, a diethyl ketoxime group, A cyclopentanoxime group, a cyclohexanoxime group, etc. are mentioned.
アミノ基としては、炭素数1〜10のものが望ましく、例えば、N−メチルアミノ基、N−エチルアミノ基、N−プロピルアミノ基、N−ブチルアミノ基、N,N−ジメチルアミノ基、N,N−ジエチルアミノ基、シクロヘキシルアミノ基等が挙げられる。アミド基としては、総炭素数2〜10のものが望ましく、例えば、N−メチルアセトアミド基、N−エチルアセトアミド基、N−メチルベンズアミド基等が挙げられる。 The amino group is preferably one having 1 to 10 carbon atoms, for example, N-methylamino group, N-ethylamino group, N-propylamino group, N-butylamino group, N, N-dimethylamino group, N , N-diethylamino group, cyclohexylamino group and the like. The amide group preferably has 2 to 10 carbon atoms, and examples thereof include an N-methylacetamide group, an N-ethylacetamide group, and an N-methylbenzamide group.
アミノオキシ基としては、総炭素数2〜10のものが望ましく、例えば、N,N−ジメチルアミノオキシ基、N,N−ジエチルアミノオキシ基等が挙げられる。
R1、R2およびR3は、それぞれ独立に、炭素数が1〜12、さらに好ましくは1〜10、特に好ましくは1〜8の非置換または置換の1価炭化水素基を示し、このような1価炭化水素基としては、例えば、アルキル基、アルケニル基、アリール基、シクロアルキル基、アラルキル基等が挙げられる。The aminooxy group preferably has 2 to 10 carbon atoms in total, and examples thereof include an N, N-dimethylaminooxy group and an N, N-diethylaminooxy group.
R 1 , R 2 and R 3 each independently represents an unsubstituted or substituted monovalent hydrocarbon group having 1 to 12 carbon atoms, more preferably 1 to 10 carbon atoms, and particularly preferably 1 to 8 carbon atoms. Examples of such monovalent hydrocarbon groups include alkyl groups, alkenyl groups, aryl groups, cycloalkyl groups, aralkyl groups, and the like.
上記アルキル基としては、直鎖状、分岐状または脂環状の何れタイプのアルキル基であってもよく、その炭素数が1〜10、好ましくは1〜8程度の直鎖状または分岐状アルキル基;炭素数が3〜6のシクロアルキル基;が好ましい。このような直鎖状あるいは分岐状のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、2−エチルブチル基、オクチル基等アルキル基、特に好ましくはメチル基が挙げられ、脂環状のアルキル基としては、例えば、シクロヘキシル基、シクロペンチル基等が挙げられる。 The alkyl group may be any type of linear, branched or alicyclic alkyl group, and the linear or branched alkyl group having 1 to 10, preferably about 1 to 8 carbon atoms. A cycloalkyl group having 3 to 6 carbon atoms is preferred. Examples of such linear or branched alkyl groups include alkyl groups such as methyl group, ethyl group, propyl group, butyl group, 2-ethylbutyl group and octyl group, particularly preferably methyl group. Examples of the cyclic alkyl group include a cyclohexyl group and a cyclopentyl group.
アルケニル基としては、炭素数が2〜10、好ましくは2〜8程度のものが望ましく、例えば、ビニル基、ヘキセニル基、アリル基等が挙げられる。
アリール基としては、炭素数が6〜15、好ましくは6〜12程度のものが望ましく、例えば、フェニル基、トリル基、キシリル基、ナフチル基、ジフェニル基等が挙げられ、特にフェニル基が好ましい。The alkenyl group preferably has 2 to 10 carbon atoms, preferably about 2 to 8 carbon atoms, and examples thereof include a vinyl group, a hexenyl group, and an allyl group.
The aryl group preferably has 6 to 15 carbon atoms, preferably about 6 to 12 carbon atoms, and examples thereof include a phenyl group, a tolyl group, a xylyl group, a naphthyl group, a diphenyl group, and the like, and a phenyl group is particularly preferable.
シクロアルキル基としては、炭素数3〜8のものが望ましく、例えば、シクロヘキシル基等が挙げられる。アラルキル基としては、総炭素数が7〜10、好ましくは7〜8程度のものが望ましく、例えば、ベンジル基、2−フェニルエチル基等が挙げられる。 As a cycloalkyl group, a C3-C8 thing is desirable, for example, a cyclohexyl group etc. are mentioned. The aralkyl group preferably has a total carbon number of 7 to 10, preferably about 7 to 8, and examples thereof include a benzyl group and a 2-phenylethyl group.
これらの基の炭素原子に結合した水素原子の一部あるいは全部は、F、Cl、Br、I等のハロゲン原子、シアノ基等で置換されていてもよく、ハロゲン化アルキル基としては、例えば、クロロメチル基、3,3,3−トリフルオロプロピル基、2−シアノエチル基等が挙げられる。 Some or all of the hydrogen atoms bonded to the carbon atoms of these groups may be substituted with halogen atoms such as F, Cl, Br, and I, cyano groups, etc. Examples of halogenated alkyl groups include: Examples include chloromethyl group, 3,3,3-trifluoropropyl group, 2-cyanoethyl group and the like.
なお、R1、R2およびR3としては、なかでも未置換の1価炭化水素基が好ましく、特にメチル基、フェニル基が好ましい。なお、上記式で表される分子末端に加水分解性基を有するオルガノポリシロキサン中に、複数個のR3、複数個のR1、R2が存在する場合、これら複数個のR3同士、複数個のR1、R2同士、あるいはR3とR1、R2とは、互いに同一でも異なっていてもよい。R 1 , R 2 and R 3 are preferably an unsubstituted monovalent hydrocarbon group, particularly preferably a methyl group or a phenyl group. In the case where a plurality of R 3 , a plurality of R 1 , and R 2 are present in the organopolysiloxane having a hydrolyzable group at the molecular end represented by the above formula, the plurality of R 3 , A plurality of R 1 , R 2 , or R 3 and R 1 , R 2 may be the same or different from each other.
また、前述の通り、反応硬化型オルガノポリシロキサン(A)は分子の両末端に存在するヒドロキシ基や加水分解性シリル基以外に、後述のオルガノシラン及び/又はその部分縮合物(B)と反応する官能基を主鎖や側鎖に有していてもよく、例えば、前記HO(R1R2SiO)mHやX3-bR3 bSiO(R1R2SiO)mR3 bSiX3-bにおけるR1、R2およびR3が前述のオルガノシラン及び/又はその部分縮合物(B)と反応する官能基であるものもオルガノポリシロキサン(A)として用いることができる。Further, as described above, the reaction-curable organopolysiloxane (A) reacts with the organosilane and / or its partial condensate (B) described later in addition to the hydroxy group and hydrolyzable silyl group present at both ends of the molecule. May be present in the main chain or side chain, for example, HO (R 1 R 2 SiO) m H or X 3-b R 3 b SiO (R 1 R 2 SiO) m R 3 b A compound in which R 1 , R 2 and R 3 in SiX 3-b are a functional group that reacts with the aforementioned organosilane and / or its partial condensate (B) can also be used as the organopolysiloxane (A).
そのようなオルガノポリシロキサン(A)としては、分子鎖の両末端がシラノール基で封止されたジメチルポリシロキサン(例えば、商品名「XF3905」、モメンティブ社製)、脱オキシム型オルガノポリシロキサン(例えば、商品名「KE-445」、信越化学工業社製)などが挙げられる。 Examples of such organopolysiloxane (A) include dimethylpolysiloxane having both ends of molecular chains sealed with silanol groups (for example, trade name “XF3905”, manufactured by Momentive), deoxime-type organopolysiloxane (for example, Trade name “KE-445”, manufactured by Shin-Etsu Chemical Co., Ltd.).
オルガノポリシロキサン(A)は、コスト削減や塗料組成物の取り扱いなどの観点から、自己縮合性であることが好ましく、常温付近(通常約10℃〜30℃、以下同じ)において自己縮合性であることがより好ましい。 The organopolysiloxane (A) is preferably self-condensable from the viewpoints of cost reduction and handling of the coating composition, and is self-condensable near room temperature (usually about 10 ° C. to 30 ° C., the same applies hereinafter). It is more preferable.
先に例示したオルガノポリシロキサン(A)の中では、分子鎖の両末端がシラノール基で封止されたジメチルポリシロキサン(例えば、商品名「XF3905」、モメンティブ社製)、脱オキシム型オルガノポリシロキサン(例えば、商品名「KE-445」、信越化学工業社製)などが、自己縮合性のポリシロキサンである。 Among the organopolysiloxanes (A) exemplified above, dimethylpolysiloxane (for example, trade name “XF3905” manufactured by Momentive Co., Ltd.) in which both ends of the molecular chain are sealed with silanol groups, deoxime-type organopolysiloxane (For example, trade name “KE-445”, manufactured by Shin-Etsu Chemical Co., Ltd.) is a self-condensable polysiloxane.
これらオルガノポリシロキサン(A)は、摩擦抵抗低減船舶に用いる防汚塗料組成物に、1種単独で配合されていてもよいし、2種以上が配合されていてもよい。
1−1−2.特定のオルガノシラン及び/又はその部分縮合物(B)
成分(B)は、ヒドロキシ基および加水分解性基のうちの少なくとも1つの基を、1分子中に少なくとも2個有するオルガノシラン及び/又はその部分縮合物である。These organopolysiloxanes (A) may be blended singly or in combination of two or more in the antifouling paint composition used in a ship with reduced frictional resistance.
1-1-2. Specific organosilane and / or its partial condensate (B)
Component (B) is an organosilane having at least two of at least one of a hydroxy group and a hydrolyzable group in one molecule and / or a partial condensate thereof.
ヒドロキシ基および加水分解性基は、オルガノシラン中に、いずれか一方のみが2つ以上あってもよいし、双方合わせて2つ以上あってもよい。
成分(B)は、下記観点より、望ましくは、上記オルガノポリシロキサン(A)の架橋剤として働くものである。Only one of the hydroxy group and the hydrolyzable group may be present in the organosilane, or two or more in combination.
The component (B) desirably functions as a crosslinking agent for the organopolysiloxane (A) from the following viewpoints.
オルガノシラン及び/又はその部分縮合物(B)は任意成分であり、必要に応じて防汚塗料組成物に配合すればよい。
上記オルガノポリシロキサン(A)が、オルガノポリシロキサン(A)同士で縮合反応をして(すなわち自己縮合をして)硬化するものである場合、オルガノシラン及び/又はその部分縮合物(B)がなくとも該防汚塗料組成物から優れた硬度を有する硬化塗膜が得られるが、オルガノシラン及び/又はその部分縮合物(B)を配合すると、硬化速度や塗膜の塗膜の硬化度などをより精度よく制御できるなどの利点がある。Organosilane and / or its partial condensate (B) are optional components and may be blended into the antifouling coating composition as necessary.
When the organopolysiloxane (A) is cured by a condensation reaction between the organopolysiloxanes (A) (ie, by self-condensation), the organosilane and / or its partial condensate (B) At least, a cured coating film having excellent hardness can be obtained from the antifouling coating composition. However, when organosilane and / or its partial condensate (B) are blended, the curing speed, the degree of curing of the coating film, etc. There is an advantage that can be controlled more accurately.
この場合、オルガノポリシロキサン(A)が、触媒などにより常温付近で自己縮合するものである場合は、室温加硫が可能である。
また、オルガノポリシロキサン(A)が常温付近で自己縮合しないものであっても、オルガノシラン及び/又はその部分縮合物(B)を配合することで、防汚塗料の塗装時に、常温で、大気中の湿気などの水による加水分解反応を利用して、オルガノポリシロキサン(A)とオルガノシラン及び/又はその部分縮合物(B)との縮合反応を生じさせ、常温付近においても硬化塗膜を得ることができるなどの利点もある。In this case, room temperature vulcanization is possible when the organopolysiloxane (A) is self-condensing at around room temperature with a catalyst or the like.
Even if organopolysiloxane (A) does not self-condense at around room temperature, it can be mixed with organosilane and / or its partial condensate (B) at room temperature at the time of application of antifouling paint. Utilizing a hydrolysis reaction with water such as moisture in the interior, a condensation reaction between organopolysiloxane (A) and organosilane and / or its partial condensate (B) is caused, and a cured coating film is formed even at around room temperature. There is also an advantage that it can be obtained.
上記オルガノポリシロキサン(A)が自己縮合をしないものである場合は、該自己縮合しないオルガノポリシロキサンの縮合反応性官能基と縮合反応をする官能基を有するオルガノシラン及び/又はその部分縮合物(B)を配合することが、硬化速度や得られる塗膜の硬化度等の観点から望ましい。 When the organopolysiloxane (A) is not self-condensed, organosilane having a functional group that undergoes a condensation reaction with the condensation-reactive functional group of the organopolysiloxane that does not self-condense and / or a partial condensate thereof ( It is desirable to blend B) from the viewpoints of the curing speed and the degree of curing of the resulting coating film.
本発明で用いられるオルガノシランおよび/またはその部分縮合物(B)の加水分解性基は、反応硬化型オルガノポリシロキサン(A)の有する縮合性反応基と縮合反応可能な官能基である。この成分(B)としては、下記一般式(α)で表されるオルガノシランを用いることができる。 The hydrolyzable group of the organosilane and / or its partial condensate (B) used in the present invention is a functional group capable of undergoing a condensation reaction with the condensable reactive group of the reaction-curable organopolysiloxane (A). As this component (B), an organosilane represented by the following general formula (α) can be used.
上記一般式(α)中、R5は、互いに同一でも異なっていてもよく、ヒドロキシル基、加水分解性基あるいは炭素原子数1〜8の1価炭化水素基を示す。ただし、両末端のR5は、それぞれの末端において、少なくとも1つがヒドロキシ基または加水分解性基である(双方合わせて両末端にヒドロキシ基および/または加水分解性基が2つ以上)。それら両末端のヒドロキシ基および/または加水分解性基を含めて、R5の少なくとも2つ、望ましくは3つ以上は縮合反応性基である。zは0〜10、好ましくは0〜8の整数を示す。In the general formula (α), R 5 may be the same or different from each other, and represents a hydroxyl group, a hydrolyzable group, or a monovalent hydrocarbon group having 1 to 8 carbon atoms. However, at least one of R 5 at both ends is a hydroxy group or a hydrolyzable group at each end (both are two or more hydroxy groups and / or hydrolyzable groups at both ends). At least two, preferably three or more of R 5 , including the hydroxyl groups and / or hydrolyzable groups at both ends, are condensation-reactive groups. z represents an integer of 0 to 10, preferably 0 to 8.
一般式(α)における炭素原子数1〜8の1価炭化水素基としては、それぞれ置換または非置換の、アルキル基、アルケニル基、アリール基、シクロアルキル基、アラルキル基などが挙げられる。一般式(α)における加水分解性基としては、前記反応硬化型オルガノポリシロキサン(A)の一例として挙げたX3-bR3 bSiO(R1R2SiO)mR3 bSiX3-bのXのうちの加水分解性基の場合と同様のものが挙げられるが、なかでも、オキシム基、アセチルオキシ基またはアルコキシ基が好ましい。Examples of the monovalent hydrocarbon group having 1 to 8 carbon atoms in the general formula (α) include a substituted or unsubstituted alkyl group, alkenyl group, aryl group, cycloalkyl group, and aralkyl group. Examples of the hydrolyzable group in the general formula (α) include X 3-b R 3 b SiO (R 1 R 2 SiO) m R 3 b SiX 3- mentioned as an example of the reaction-curable organopolysiloxane (A). Although the same thing as the case of the hydrolysable group among X of b is mentioned, Especially, an oxime group, an acetyloxy group, or an alkoxy group is preferable.
また、例えば上記アセチルオキシ基、アルコキシ基などの加水分解性基が部分的に加水分解されたオルガノシランを、上記成分(B)として用いることもできる(すなわち、加水分解性基を2つ以上有するオルガノシランの部分加水分解縮合物を、上記成分(B)として用いることができる)。 In addition, for example, an organosilane in which a hydrolyzable group such as the acetyloxy group or alkoxy group is partially hydrolyzed can be used as the component (B) (that is, it has two or more hydrolyzable groups). A partially hydrolyzed condensate of organosilane can be used as the component (B)).
また、少なくとも2つのヒドロキシ基間で部分的に脱水縮合したオルガノシランを、上記成分(B)として用いることもできる(すなわち、加水分解性基を2つ以上有するオルガノシランの部分縮合物を、上記成分(B)として用いることができる)。 Alternatively, an organosilane partially dehydrated and condensed between at least two hydroxy groups can also be used as the component (B) (that is, a partial condensate of an organosilane having two or more hydrolyzable groups is used as the above component (B). Can be used as component (B)).
本発明では、特に、上記アルコキシ基を含有するオルガノシラン、すなわちアルコキシシラン(アルキルシリケート)またはその部分縮合物を好適に用いることができる。
上記アルコキシシランとしては、例えば、テトラエチルオルトシリケート(TEOS)等のテトラアルキルオルトシリケート(アルキルテトラアルコキシシラン)、またはメチルトリメトキシシラン、エチルトリメトキシシランもしくはメチルトリエトキシシラン等のアルキルトリアルコキシシランなどが挙げられる。アルコキシシランとしては、得られる硬化塗膜の硬化性などの観点より、アルキルテトラアルコキシシランやアルキルトリアルコキシシランがより好ましい。In the present invention, in particular, the above-mentioned alkoxysilane-containing organosilane, that is, alkoxysilane (alkyl silicate) or a partial condensate thereof can be suitably used.
Examples of the alkoxysilane include tetraalkylorthosilicate (alkyltetraalkoxysilane) such as tetraethylorthosilicate (TEOS), or alkyltrialkoxysilane such as methyltrimethoxysilane, ethyltrimethoxysilane, and methyltriethoxysilane. Can be mentioned. As the alkoxysilane, alkyltetraalkoxysilane and alkyltrialkoxysilane are more preferable from the viewpoint of curability of the resulting cured coating film.
特に、両末端に水酸基を有するオルガノポリシロキサンを成分(A)として用いる場合、これらのアルキルシリケート(アルコキシシラン)および/またはその部分縮合物を成分(B)として組み合わせて用いることが好ましい。このようなオルガノシラン及び/又はその部分縮合物(B)は上市されているものを用いることができる。例えば、テトラエチルオルトシリケートとしては「エチルシリケート28」(コルコート社製)、「正珪酸エチル」(多摩化学工業製)が、テトラエチルオルトシリケートの部分加水分解物としては「シリケート40」(多摩化学工業製)、「TES40 WN」(旭化成ワッカーシリコーン製)が、アルキルトリアルコキシシランとしては「KBM−13」(信越化学工業製)などが挙げられる。
In particular, when an organopolysiloxane having hydroxyl groups at both ends is used as the component (A), it is preferable to use these alkyl silicates (alkoxysilanes) and / or partial condensates thereof in combination as the component (B). As such organosilane and / or its partial condensate (B), those marketed can be used. For example, “ethyl silicate 28” (manufactured by Colcoat Co.) and “normal ethyl silicate” (manufactured by Tama Chemical Industry) are used as tetraethyl orthosilicate, and “
オルガノシラン及び/又はその部分縮合物(B)は、上記オルガノポリシロキサン(A)100重量部に対して、合計で、1〜60重量部の量で使用可能であるが、硬化性および硬化塗膜の物性の観点から、通常、1〜20重量部の量で、好ましくは2〜10重量部の量で上記防汚塗料組成物中に含まれていることが望ましい。 The organosilane and / or the partial condensate thereof (B) can be used in a total amount of 1 to 60 parts by weight with respect to 100 parts by weight of the organopolysiloxane (A). From the viewpoint of the physical properties of the film, it is usually desirable to be contained in the antifouling coating composition in an amount of 1 to 20 parts by weight, preferably 2 to 10 parts by weight.
これらオルガノシラン及び/又はその部分縮合物(B)は、摩擦抵抗低減船舶に用いられる防汚塗料組成物に、オルガノシラン及びその部分縮合物のうちいずれかが、1種単独で配合されていてもよいし、2種共に配合されていてもよい。また、オルガノシラン及びその部分縮合物それぞれについても、1種単独または2種以上を混合して配合することもできる。 These organosilanes and / or partial condensates thereof (B) are blended in an antifouling coating composition used for ships with reduced frictional resistance, either of organosilanes or their partial condensates alone. Alternatively, both of them may be blended. Moreover, about each of organosilane and its partial condensate, it can also mix | blend individually by 1 type or in mixture of 2 or more types.
1−1−3.疎水性材料(C)
成分(C)は、25℃において液状またはグリース状である疎水性材料である。
疎水性材料(C)としては、シリコーンオイル、フッ素含有シリコーンオイル、フッ素系オイル、パラフィン類またはワックスなどのうち、常温において液状またはグリース状であればいずれでもよい。例えば、疎水性材料(C)は、これらから選択された少なくとも1種を含む。 1-1-3. Hydrophobic material (C)
Component (C) is a hydrophobic material that is liquid or grease-like at 25 ° C.
As the hydrophobic material (C), any of silicone oil, fluorine-containing silicone oil, fluorine-based oil, paraffins, wax and the like may be used as long as it is liquid or grease-like at room temperature. For example, the hydrophobic material (C) includes at least one selected from these.
但し、上記オルガノポリシロキサン(A)に該当する疎水性材料および上記オルガノシラン及び/又はその部分縮合物(B)に該当する疎水性材料は、疎水性材料(C)には包含されない。 However, the hydrophobic material corresponding to the organopolysiloxane (A) and the hydrophobic material corresponding to the organosilane and / or the partial condensate (B) thereof are not included in the hydrophobic material (C).
<シリコーンオイル>
シリコーンオイルとしては、非反応性(非縮合性)のシリコーンオイルや特殊摩擦抵抗低減船舶に用いられる防汚塗料組成物の硬化物中からブリードアウトしていくシリコーンオイルなら特に制限されないが、下記式[I]、[II]で示されるシリコーンオイル、下記式[III]で示される基を有するシリコーンオイルが好ましい。<Silicone oil>
The silicone oil is not particularly limited as long as it is a non-reactive (non-condensable) silicone oil or a silicone oil that bleeds out from a cured product of an antifouling coating composition used in ships with reduced special frictional resistance. Silicone oils represented by [I] and [II] and silicone oils having a group represented by the following formula [III] are preferred.
このようなシリコーンオイルのうち、シリコーンオイル[I]、[II]は、オルガノポリシロキサン(A)などとの反応性や自己縮合性を示さず、特段の化学変化を伴わずにブリードアウトすることで、塗膜表面(層)に防汚機能層(膜)を形成する働きを有していると考えられる。 Of these silicone oils, silicone oils [I] and [II] do not exhibit reactivity or self-condensation with organopolysiloxane (A) or the like and bleed out without any particular chemical change. Thus, it is considered that the antifouling functional layer (film) is formed on the coating film surface (layer).
その一方で、シリコーンオイル[III]は、塗膜形成成分となるオルガノポリシロキサン(A)などと反応し、硬化塗膜を形成し、長期間海水に浸漬されていると経時的に加水分解され、末端基がアルコール性水酸基を有する基「≡SiR8OH」等となって塗膜表面にブリードアウトし、海中生物付着防止効果を発揮するのであろうと考えられる。On the other hand, silicone oil [III] reacts with organopolysiloxane (A) or the like as a coating film forming component to form a cured coating film, and is hydrolyzed over time when immersed in seawater for a long time. It is considered that the terminal group becomes a group “≡SiR 8 OH” having an alcoholic hydroxyl group, and the like, bleeds out to the surface of the coating film and exhibits an effect of preventing the adhesion of marine organisms.
(式[I]中、複数個のR6は互いに同一または異なってもよく、炭素数1〜10のアルキル基、アリール基、アラルキル基またはフルオロアルキル基を示し、複数個のR7は互いに同一または異なってもよく、各R7は、炭素数1〜10のアルキル基、アリール基、アラルキル基またはフルオロアルキル基を示し、nは0〜150の数を示す。)(In the formula [I], a plurality of R 6 s may be the same or different from each other and represent an alkyl group, aryl group, aralkyl group or fluoroalkyl group having 1 to 10 carbon atoms, and a plurality of R 7 s are the same Or each R 7 represents an alkyl group having 1 to 10 carbon atoms, an aryl group, an aralkyl group or a fluoroalkyl group, and n represents a number from 0 to 150.)
(式[III]中、R8は非置換または置換の2価炭化水素基またはエーテル結合を含む2価炭化水素基を表し、R9は非置換または置換の1価炭化水素基、Yは加水分解性基、bは0,1または2である。)(In the formula [III], R 8 represents an unsubstituted or substituted divalent hydrocarbon group or a divalent hydrocarbon group containing an ether bond, R 9 represents an unsubstituted or substituted monovalent hydrocarbon group, and Y represents a hydrolyzed group. A decomposable group, b is 0, 1 or 2)
(式[II]中、R10は、水素原子、それぞれ炭素数1〜10のアルキル基、アリール基またはアラルキル基を示し、R11は、エーテル基、エステル基または−NH−が介在していてもよい炭素数1〜10の2価脂肪族炭化水素基を示し、Zは、アミノ基、カルボキシル基、エポキシ基または末端が炭素数1〜6のアルキル基もしくはアシル基で封鎖されていてもよいポリエチレングリコールまたはポリプロピレングリコール基である1価の極性基を示し、x、yは、それぞれ0.01≦x<3.99、0.01≦y<3.99であり、かつ、0.02≦x+y<4である。)(In the formula [II], R 10 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an aryl group or an aralkyl group, and R 11 has an ether group, an ester group or —NH— interposed therebetween. Represents a divalent aliphatic hydrocarbon group having 1 to 10 carbon atoms, and Z may be blocked with an amino group, a carboxyl group, an epoxy group, or an alkyl group or acyl group having 1 to 6 carbon atoms. 1 represents a monovalent polar group that is a polyethylene glycol or polypropylene glycol group, and x and y are 0.01 ≦ x <3.99, 0.01 ≦ y <3.99, and 0.02 ≦ x + y <4.)
上記シリコーンオイルのうち、シリコーンオイル[I]としては、特開平10−316933号公報に記載されているようなものが使用でき、GPC法で測定した数平均分子量が180〜20,000、好ましくは1,000〜10,000であり、前記ウベローデ粘度計で測定した粘度が20〜30,000mm2/s、好ましくは50〜3,000mm2/sであるものが望ましい。Among the silicone oils, as the silicone oil [I], those described in JP-A-10-316933 can be used, and the number average molecular weight measured by the GPC method is 180 to 20,000, preferably The viscosity is 1,000 to 10,000, and the viscosity measured with the Ubbelohde viscometer is 20 to 30,000 mm 2 / s, preferably 50 to 3,000 mm 2 / s.
このようなシリコーンオイル[I]としては、例えば、R6、R7の全てがメチル基であるジメチルシリコーンオイル、これらのジメチルシリコーンオイルのメチル基の一部がフェニル基に置換されたフェニルメチルシリコーンオイルが挙げられ、なかでもメチルフェニルシリコーンオイルが好ましい。このようなメチルフェニルシリコーンオイルとしては、具体的には、例えば、「KF−54、KF−56、KF−50」(信越化学工業社製)、「SH510、SH550」(東レダウコーニングシリコーン社製)、「TSF431、TSF433」(東芝シリコーン社製)等の商品名で上市されているものが挙げられる。Examples of such silicone oil [I] include, for example, dimethyl silicone oil in which all of R 6 and R 7 are methyl groups, and phenylmethyl silicone in which a part of the methyl groups of these dimethyl silicone oils are substituted with phenyl groups. Examples of the oil include methylphenyl silicone oil. Specifically, as such methylphenyl silicone oil, for example, “KF-54, KF-56, KF-50” (manufactured by Shin-Etsu Chemical Co., Ltd.), “SH510, SH550” (manufactured by Toray Dow Corning Silicone Co., Ltd.) ), “TSF431, TSF433” (manufactured by Toshiba Silicone Co., Ltd.), etc.
また、上記式[III]で示される基を有するシリコーンオイル(シリコーンオイル[III])としては、本願出願人らの提案した特許第2522854号公報に記載されているものが使用でき、GPC法で測定した数平均分子量が250〜20,000、好ましくは1,000〜10,000であり、前記方法で測定した粘度が20〜30,000mm2/s、好ましくは50〜3000mm2/sのものが望ましい。Further, as the silicone oil having a group represented by the above formula [III] (silicone oil [III]), those described in Japanese Patent No. 2522854 proposed by the applicants of the present application can be used. The measured number average molecular weight is 250 to 20,000, preferably 1,000 to 10,000, and the viscosity measured by the above method is 20 to 30,000 mm 2 / s, preferably 50 to 3000 mm 2 / s. Is desirable.
上記R8としては、具体的には、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ヘキサメチレン基等のような非置換または置換の2価炭化水素基;または、「−(CH2)p−O−(CH2)q−」(式中、p、qはそれぞれ独立に1〜6の整数を示す。)等で示されるエーテル結合を含む2価炭化水素基等が挙げられる。Specific examples of R 8 include unsubstituted or substituted divalent hydrocarbon groups such as a methylene group, an ethylene group, a propylene group, a butylene group, and a hexamethylene group; or “— (CH 2 ) p -O- (CH 2) q - "(wherein, p, q can be mentioned each independently represent an integer of 1-6) divalent hydrocarbon group containing an ether bond represented by like..
R9としては、炭素数1〜8の非置換または置換の1価炭化水素基を示す。Yは、反応硬化型オルガノポリシロキサン(A)の一例として挙げたX3-bR3 bSiO(R1R2SiO)mR3 bSiX3-bの加水分解性基Xと同様の基を示す。このような式[III]で示される基を少なくとも1個有するシリコーンオイル[III]としては、具体的には、例えば、上記特許第2522854号公報に記載されているような、(CH3)3SiO[(CH3)2SiO]h[R12R13SiO]i(CH3)2SiC3H6−OH、HO−C3H6−[(CH3)2SiO][(CH3)2SiO]h[R12R13SiO]i−(CH3)2Si−C3H6−OH、(CH3)3SiO[(CH3)2SiO]h[R12R13SiO]i[(CH3)(C3H6−OH)SiO]j[(CH3)2SiCH3]で表されるシリコーンオイルの水酸基を加水分解基で封鎖したもの等が挙げられる。但し、上記各式中、R12、R13としては、フェニル基、トリル基等のアリール基;ベンジル基、β−フェニルエチル基等のアラルキル基;トリフルオロプロピル基等のハロゲン化アルキル基等のように、R12、R13のうち少なくとも一方がメチル基以外の基から選択される非置換または置換の1価炭化水素基が挙げられる。h、i、jは何れも正数を示す。R 9 represents an unsubstituted or substituted monovalent hydrocarbon group having 1 to 8 carbon atoms. Y is a group similar to the hydrolyzable group X of X 3-b R 3 b SiO (R 1 R 2 SiO) m R 3 b SiX 3-b mentioned as an example of the reaction-curable organopolysiloxane (A). Indicates. Specific examples of the silicone oil [III] having at least one group represented by the formula [III] include (CH 3 ) 3 as described in the above-mentioned Japanese Patent No. 2522854. SiO [(CH 3 ) 2 SiO] h [R 12 R 13 SiO] i (CH 3 ) 2 SiC 3 H 6 —OH, HO—C 3 H 6 — [(CH 3 ) 2 SiO] [(CH 3 ) 2 SiO] h [R 12 R 13 SiO] i — (CH 3 ) 2 Si—C 3 H 6 —OH, (CH 3 ) 3 SiO [(CH 3 ) 2 SiO] h [R 12 R 13 SiO] i Examples include those obtained by blocking the hydroxyl group of silicone oil represented by [(CH 3 ) (C 3 H 6 —OH) SiO] j [(CH 3 ) 2 SiCH 3 ] with a hydrolyzable group. In the above formulas, R 12 and R 13 are each an aryl group such as a phenyl group or a tolyl group; an aralkyl group such as a benzyl group or a β-phenylethyl group; a halogenated alkyl group such as a trifluoropropyl group; Thus, an unsubstituted or substituted monovalent hydrocarbon group in which at least one of R 12 and R 13 is selected from a group other than a methyl group can be mentioned. h, i, and j all represent positive numbers.
また、得られる組成物の保存安定性の点から、下記に例示するように、上記のシリコーンオイルを、式:「R9 bSiY3-b」(R9、Y、bは式[III]の場合と同様。)で示されるオルガノシランと反応させたものでもよい。In addition, from the viewpoint of storage stability of the resulting composition, as exemplified below, the above silicone oil is represented by the formula: “R 9 b SiY 3-b ” (R 9 , Y, and b are represented by the formula [III]. It may be the same as in the case of the above)).
例えば、(CH3)3SiO[(CH3)2SiO]h[R12R13SiO]i(CH3)2SiC3H6−O−R9 bSiY3-b、HO−C3H6−[(CH3)2SiO][(CH3)2SiO]h[R12R13SiO]i−(CH3)2Si−C3H6−O−R9 bSiY3-b、(CH3)3SiO[(CH3)2SiO]m[R12R13SiO]i[(CH3)(C3H6−O−R9 bSiY3-b)SiO]l[(CH3)2SiCH3]などが挙げられる。For example, (CH 3 ) 3 SiO [(CH 3 ) 2 SiO] h [R 12 R 13 SiO] i (CH 3 ) 2 SiC 3 H 6 —O—R 9 b SiY 3-b , HO—C 3 H 6 -[(CH 3 ) 2 SiO] [(CH 3 ) 2 SiO] h [R 12 R 13 SiO] i — (CH 3 ) 2 Si—C 3 H 6 —O—R 9 b SiY 3-b , (CH 3 ) 3 SiO [(CH 3 ) 2 SiO] m [R 12 R 13 SiO] i [(CH 3 ) (C 3 H 6 —O—R 9 b SiY 3-b ) SiO] l [(CH 3 ) 2 SiCH 3 ] and the like.
シリコーンオイル[II]としては、具体的には、特開平10−316933号公報に記載されているようなものが使用でき、GPC法で測定した数平均分子量が250〜30,000好ましくは1,000〜20,000であり、前記方法で測定した粘度が20〜30,000mm2/s好ましくは50〜3,000mm2/sであるものが望ましい。As the silicone oil [II], specifically, those described in JP-A-10-316933 can be used, and the number average molecular weight measured by GPC method is 250 to 30,000, preferably 1, The viscosity is 000 to 20,000, and the viscosity measured by the above method is 20 to 30,000 mm 2 / s, preferably 50 to 3,000 mm 2 / s.
このようなシリコーンオイル[II]としては、好ましくは、上記式[II]において、R10が、メチル基またはフェニル基であり、R11が、メチレン基、エチレン基またはプロピレン基であるものが望ましい。また、Zとしては、末端が炭素数6以下のアルキル基もしくはアシル基で封鎖されていてもよいポリエチレングリコールまたはポリプロピレングリコール基である場合、繰り返し単位としてのオキシエチレン、オキシプロピレンの数は10〜60が好ましい。また、末端封鎖用の上記アルキル基としては、メチル基、エチル基、プロピル基、ブチル基等が挙げられ、末端封鎖用の上記アシル基としては、ケトオキシム基、アセチル基、プロピオニル基等が挙げられる。As such a silicone oil [II], preferably, in the above formula [II], R 10 is a methyl group or a phenyl group, and R 11 is a methylene group, an ethylene group or a propylene group. . In addition, as Z, when the terminal is a polyethylene glycol or polypropylene glycol group which may be blocked with an alkyl group or an acyl group having 6 or less carbon atoms, the number of oxyethylene and oxypropylene as a repeating unit is 10 to 60. Is preferred. Examples of the alkyl group for end-capping include a methyl group, an ethyl group, a propyl group, and a butyl group. Examples of the acyl group for end-capping include a ketoxime group, an acetyl group, and a propionyl group. .
具体的には、極性基Zがアミノ基であるシリコーンオイルとしては、「SF8417」(東レダウコーニング社製)、「ISI4700、ISI4701」(東芝シリコーン社製)、「FZ3712、AFL−40」(日本ユニカー社製)等が挙げられる。極性基Zがカルボキシル基であるシリコーンオイルとしては、「XI42−411」(東芝シリコーン社製)、「SF8418」(東レダウコーニングシリコーン社製)、「FXZ4707」(日本ユニカー社製)等が挙げられる。また極性基がエポキシ基であるシリコーンオイルとしては、「SF8411」(東レダウコーニングシリコーン社製)、「XI42−301」(東芝シリコーン社製)、「L−93,T−29」(日本ユニカー社製)等が挙げられる。極性基Zがアルキル基またはアシル基であるシリコーンオイルとしては、「ISI4460,ISI4445、ISI4446」(東芝シリコーン社製)、「SH3746、SH8400、SH3749、SH3700」(東レダウコーニングシリコーン社製)、「KF6009」(信越化学工業社製)等が挙げられる。 Specifically, as silicone oils in which the polar group Z is an amino group, “SF8417” (manufactured by Toray Dow Corning), “ISI4700, ISI4701” (manufactured by Toshiba Silicone), “FZ3712, AFL-40” (Japan) Unicar) and the like. Examples of the silicone oil in which the polar group Z is a carboxyl group include “XI42-411” (manufactured by Toshiba Silicone), “SF8418” (manufactured by Toray Dow Corning Silicone), “FXZ4707” (manufactured by Nihon Unicar), and the like. . Silicone oils whose polar groups are epoxy groups include “SF8411” (manufactured by Toray Dow Corning Silicone), “XI42-301” (manufactured by Toshiba Silicone), “L-93, T-29” (Nihon Unicar Company). Manufactured) and the like. Examples of the silicone oil in which the polar group Z is an alkyl group or an acyl group include “ISI4460, ISI4445, ISI4446” (manufactured by Toshiba Silicone), “SH3746, SH8400, SH3749, SH3700” (manufactured by Toray Dow Corning Silicone), “KF6009”. (Shin-Etsu Chemical Co., Ltd.).
<フッ素含有シリコーンオイル>
フッ素含有シリコーンオイルとしては、X−22−821(信越化学工業社製)、X−22−822(信越化学工業社製;側鎖型フロロアルキル変性シリコーンオイル)が挙げられる。<Fluorine-containing silicone oil>
Examples of the fluorine-containing silicone oil include X-22-821 (manufactured by Shin-Etsu Chemical Co., Ltd.) and X-22-822 (manufactured by Shin-Etsu Chemical Co., Ltd .; side chain type fluoroalkyl-modified silicone oil).
<フッ素系オイル>
フッ素系オイルとしては、デムナムS−65(ダイキン工業社製;パーフルオロポリエーテル油)が挙げられる。<Fluorine oil>
Examples of the fluorinated oil include demnum S-65 (manufactured by Daikin Industries, Ltd .; perfluoropolyether oil).
<パラフィン類またはワックス>
パラフィン類またはワックスとしては、スモイルP−350(松村石油社製;流動パラフィン)が挙げられる。<Paraffins or wax>
Examples of paraffins or waxes include Sumoyle P-350 (manufactured by Matsumura Oil Co., Ltd .; liquid paraffin).
本発明に係る特殊摩擦抵抗低減船舶に用いられる防汚塗料組成物中の疎水性材料(C)の量は、オルガノポリシロキサン成分(A)100重量部に対して、通常0.1〜200重量部、好ましくは20〜100重量部である。 The amount of the hydrophobic material (C) in the antifouling paint composition used in the special frictional resistance reducing ship according to the present invention is usually 0.1 to 200 weights per 100 parts by weight of the organopolysiloxane component (A). Parts, preferably 20 to 100 parts by weight.
疎水性材料(C)の量が上記範囲にあると、防汚性、塗膜強度共に優れた(防汚)塗膜が得られる。疎水性材料(C)の量が上記範囲より少ないと防汚性が低下し、また上記範囲を超えると塗膜強度が低下することがある。 When the amount of the hydrophobic material (C) is in the above range, a (antifouling) coating film having excellent antifouling properties and coating film strength can be obtained. When the amount of the hydrophobic material (C) is less than the above range, the antifouling property is lowered, and when it exceeds the above range, the coating strength may be lowered.
これら疎水性材料(C)は、特殊摩擦抵抗低減船舶に用いられる防汚塗料組成物に、1種単独で配合されていてもよいし、2種以上が配合されていてもよい。
1−2.特殊摩擦抵抗低減船舶に用いられる防汚塗料組成物の製造
このような本発明に係る特殊摩擦抵抗低減船舶に用いられる防汚塗料組成物は、次の方法で製造することが出来る。まず、必要に応じて、オルガノポリシロキサン(A)の一部または全部と、後述の親水性シリカ、または親水性シリカと疎水性シリカとの両者を、常圧下または減圧下に、100℃以上で配合成分の分解温度以下、好ましくは100〜300℃、さらに好ましくは140℃〜200℃程度の温度で、通常30分〜3時間程度加熱処理する。次いで、親水性シリカや疎水性シリカを用いた場合は、残部のオルガノポリシロキサン(A)と、親水性シリカ、または親水性シリカと疎水性シリカとの両者と、必要に応じてオルガノシラン及び/又はその部分縮合物(B)とに加えて、さらに疎水性材料(C)を配合することによって製造することができる。親水性シリカや疎水性シリカを用いない場合は、オルガノポリシロキサン(A)と、必要に応じてオルガノシラン及び/又はその部分縮合物(B)とに加えて、さらに疎水性材料(C)を配合することによって製造することができる。また、いずれの場合も、従来公知のオルガノシロキサン硬化触媒、防汚剤、チクソトロピー性付与剤、可塑剤、無機脱水剤(安定剤)、タレ止め・沈降防止剤(増粘剤)、顔料・染料、その他の塗膜形成成分、溶剤(例:キシレン)、殺菌剤、防カビ剤、老化防止剤、酸化防止剤、帯電防止剤、難燃剤、熱伝導改良剤、アミノ基、エポキシ基、メルカプト基などの反応性有機基を有するシランカップリング剤などの付着性付与剤などを所定の割合で一度にあるいは任意の順序で加えて撹拌・混合し、溶媒に溶解・分散することもできる。These hydrophobic materials (C) may be blended singly or in combination of two or more in the antifouling paint composition used in the special frictional resistance-reducing ship.
1-2. Manufacture of antifouling paint composition used for ship with reduced special friction resistance Such antifouling paint composition used for ship with reduced special friction resistance according to the present invention can be manufactured by the following method. First, if necessary, a part or all of the organopolysiloxane (A) and the later-described hydrophilic silica, or both hydrophilic silica and hydrophobic silica are heated at 100 ° C. or higher under normal pressure or reduced pressure. The heat treatment is usually performed for about 30 minutes to 3 hours at a temperature equal to or lower than the decomposition temperature of the blended components, preferably about 100 to 300 ° C, more preferably about 140 to 200 ° C. Next, when hydrophilic silica or hydrophobic silica is used, the remaining organopolysiloxane (A), hydrophilic silica, or both hydrophilic silica and hydrophobic silica, and if necessary, organosilane and / or Or in addition to the partial condensate (B), it can manufacture by mix | blending hydrophobic material (C) further. When no hydrophilic silica or hydrophobic silica is used, in addition to the organopolysiloxane (A) and, if necessary, the organosilane and / or its partial condensate (B), a hydrophobic material (C) is further added. It can manufacture by mix | blending. In any case, conventionally known organosiloxane curing catalysts, antifouling agents, thixotropy imparting agents, plasticizers, inorganic dehydrating agents (stabilizers), sagging and anti-settling agents (thickening agents), pigments and dyes , Other film forming components, solvents (eg xylene), bactericides, fungicides, anti-aging agents, antioxidants, antistatic agents, flame retardants, heat conduction improvers, amino groups, epoxy groups, mercapto groups It is also possible to add an adhesion-imparting agent such as a silane coupling agent having a reactive organic group such as at a predetermined ratio all at once or in any order, and stir and mix to dissolve / disperse in a solvent.
なお、上記のような配合成分の攪拌・混合の際には、ロスミキサー、プラネタリーミキサー、万能品川攪拌機など、従来公知の混合・攪拌装置が適宜用いられる。
<任意成分>
(触媒)
上記触媒としては、例えば、特許第2522854号公報に記載されているものを好適に使用でき、具体的には、例えば、ナフテン酸錫、オレイン酸錫等のカルボン酸錫類;ジブチル錫ジアセテート、ジブチル錫ジオクトエート、ジブチル錫ジラウレート、ジブチル錫ジオレート、ジブチル錫オキサイド、ジブチル錫ジメトキシド、ジブチルビス(トリエトキシシロキシ)錫等の錫化合物類;テトライソプロポキシチタン、テトラn−ブトキシチタン、テトラキス(2−エチルヘキソキシ)チタン、ジプロポキシビス(アセチルアセトナト)チタン、チタニウムイソプロポキシオクチルグリコール等のチタン酸エステル類あるいはチタンキレート化合物;等の他、ナフテン酸亜鉛、ステアリン酸亜鉛、亜鉛−2−エチルオクトエート、鉄−2−エチルヘキソエート、コバルト−2−エチルヘキソエート、マンガン−2−エチルヘキソエート、ナフテン酸コバルト、アルコキシアルミニウム化合物等の有機金属化合物類;3−アミノプロピルトリメトキシシラン、N−β(アモノエチル)γ−アモノプロピルトリメトキシシラン等のアミノアルキル基置換アルコキシシラン類;ヘキシルアミン、リン酸ドデシルドデシルアミン、ジメチルヒドロキシルアミン、ジエチルヒドロキシルアミン等のアミン化合物及びその塩類;ベンジルトリエチルアンモニウムアセテート等の第4級アンモニウム塩;酢酸カリウム、酢酸ナトリウム、臭酸リチウム等のアルカリ金属の低級脂肪酸塩類;テトラメチルグアニジルプロピルトリメトキシシラン、テトラメチルグアニジルプロピルメチルジメトキシシラン、テトラメチルグアニジルプロピルトリス(トリメチルシロキシ)シラン等のグアニジル基を含有するシラン又はシロキサン類;等が挙げられる。In the case of stirring and mixing the above-described blending components, conventionally known mixing and stirring devices such as a loss mixer, a planetary mixer, and a universal Shinagawa stirrer are appropriately used.
<Optional component>
(catalyst)
As the catalyst, for example, those described in Japanese Patent No. 2522854 can be preferably used. Specifically, for example, tin carboxylates such as tin naphthenate and tin oleate; dibutyltin diacetate, Tin compounds such as dibutyltin dioctoate, dibutyltin dilaurate, dibutyltin dioleate, dibutyltin oxide, dibutyltin dimethoxide, dibutylbis (triethoxysiloxy) tin; tetraisopropoxy titanium, tetra n-butoxy titanium, tetrakis (2-ethylhexoxy) In addition to titanate esters or titanium chelate compounds such as titanium, dipropoxybis (acetylacetonato) titanium, titanium isopropoxyoctyl glycol; etc., zinc naphthenate, zinc stearate, zinc-2-ethyl octoate, iron- 2 Organometallic compounds such as ethylhexoate, cobalt-2-ethylhexoate, manganese-2-ethylhexoate, cobalt naphthenate, alkoxyaluminum compound; 3-aminopropyltrimethoxysilane, N-β (amonoethyl ) Aminoalkyl group-substituted alkoxysilanes such as γ-amonopropyltrimethoxysilane; amine compounds such as hexylamine, dodecyldodecylamine phosphate, dimethylhydroxylamine, diethylhydroxylamine, and salts thereof; and benzyltriethylammonium acetate Quaternary ammonium salts; lower fatty acid salts of alkali metals such as potassium acetate, sodium acetate and lithium odorate; tetramethylguanidylpropyltrimethoxysilane, tetramethylguanidylpropylmethyldimethoxy Orchids, silanes or siloxanes containing tetramethylguanidylpropyltrimethoxysilane (trimethylsiloxy) guanidyl group such as a silane; and the like.
これらの触媒は、オルガノポリシロキサン(A)100重量部に対して、10重量部以下、好ましくは5重量部以下、さらには1重量部以下の量で用いられ、使用する場合の好ましい下限値は0.001重量部以上、特に0.01重量部以上である。 These catalysts are used in an amount of 10 parts by weight or less, preferably 5 parts by weight or less, and more preferably 1 part by weight or less based on 100 parts by weight of the organopolysiloxane (A). 0.001 part by weight or more, particularly 0.01 part by weight or more.
(疎水性シリカ、親水性シリカ)
シリカには、湿式法シリカ(水和シリカ)、乾式法シリカ(フュームドシリカ、無水シリカ)等の親水性シリカ(表面未処理シリカ);疎水性湿式シリカ、疎水性フュームドシリカ等の表面処理された疎水性シリカがある。 (Hydrophobic silica, hydrophilic silica)
Silica includes hydrophilic silica (surface untreated silica) such as wet method silica (hydrated silica) and dry method silica (fumed silica, anhydrous silica); surface treatment such as hydrophobic wet silica and hydrophobic fumed silica There is an improved hydrophobic silica.
これらシリカは1種単独で用いても2種以上を併用してもよい。疎水性シリカと親水性シリカとを併用すると、調製・保管・貯蔵時の安定性に優れ、十分なチクソ性を有し、一回の塗装で厚膜化可能な特殊摩擦抵抗低減船舶に用いられる防汚塗料組成物が得られる観点より好ましい。また該特殊摩擦抵抗低減船舶に用いられる防汚塗料組成物から、得られる塗膜は、硬さ、引張強さ、伸び等のゴム物性にバランス良く優れ、しかも、防汚性などにも優れている。 These silicas may be used alone or in combination of two or more. When used in combination with hydrophobic silica and hydrophilic silica, it has excellent stability during preparation, storage and storage, has sufficient thixotropy, and can be used for ships with special frictional resistance that can be thickened with a single coating. This is preferable from the viewpoint of obtaining an antifouling coating composition. In addition, the coating film obtained from the antifouling paint composition used in the ship with reduced special frictional resistance has a good balance of rubber properties such as hardness, tensile strength, elongation, etc., and also has excellent antifouling properties. Yes.
本発明では、これらシリカ成分としては、下記特性のものをそのまま用いてもよいが、その好ましい態様においては、塗料のチクソ性や、得られた塗膜の物性、強度等の向上という観点から、後で詳述するように、この疎水性シリカと親水性シリカのうちの少なくとも親水性シリカは、上記オルガノポリシロキサン(A)の一部または全部と共に熱処理されていることが好ましく、さらには、親水性シリカと疎水性シリカとの両者が、上記成分(A)の一部または全部と共に熱処理されていることがより好ましい。 In the present invention, as these silica components, those having the following characteristics may be used as they are, but in a preferred embodiment thereof, from the viewpoint of improving the thixotropy of the paint, the physical properties of the obtained coating film, strength, etc. As will be described in detail later, at least the hydrophilic silica of the hydrophobic silica and the hydrophilic silica is preferably heat-treated together with a part or all of the organopolysiloxane (A). More preferably, both the functional silica and the hydrophobic silica are heat treated together with a part or all of the component (A).
これらのシリカのうちで、湿式法シリカは、通常、吸着水分含量(水分含量とも言う)が4〜8%程度であり、嵩密度は200〜300g/Lであり、1次粒子径は10〜30mμであり、比表面積(BET表面積)は、10m2/g以上であればよいが、好ましくは50〜800m2/g、さらに好ましくは100〜300m2/g程度である。Among these silicas, wet-process silica usually has an adsorbed moisture content (also referred to as moisture content) of about 4 to 8%, a bulk density of 200 to 300 g / L, and a primary particle size of 10 to 10%. The specific surface area (BET surface area) may be 10 m 2 / g or more, preferably 50 to 800 m 2 / g, and more preferably about 100 to 300 m 2 / g.
乾式法シリカ(フュームドシリカ)は、水分含量が通常、1.5%以下である。なお、この乾式法シリカは、製造直後など初期の水分含量は例えば、0.3%以下と低いが、放置しておくと次第に吸湿して水分含量が増加し、製造後数ヶ月経過後の時点では、例えば、0.5〜1.0%程度になる。またこのような乾式法シリカの嵩密度はその種類により異なり一概に決定されないが、例えば、50〜100g/Lであり、1次粒子径は8〜20mμであり、比表面積(BET表面積)は、10m2/g以上であればよいが、好ましくは100〜400m2/g、さらに好ましくは180〜300m2/g程度である。Dry process silica (fumed silica) usually has a moisture content of 1.5% or less. This dry silica has a low initial moisture content of, for example, 0.3% or less, such as immediately after production. However, the moisture content gradually increases if left untreated, and after several months have passed since production. Then, for example, it becomes about 0.5 to 1.0%. In addition, the bulk density of such dry process silica varies depending on the type and is not unconditionally determined. For example, it is 50 to 100 g / L, the primary particle diameter is 8 to 20 mμ, and the specific surface area (BET surface area) is: 10m may be any 2 / g or more, but is preferably 100 to 400 m 2 / g, more preferably 180~300M 2 / g approximately.
疎水性フュームドシリカは、乾式法シリカをメチルトリクロロシラン、ジメチルジクロロシラン、ヘキサメチルジシラザン、ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン等の有機珪素化合物で表面処理したものであり、経時的な水分吸着は少なく、水分含量は通常0.3%以下、多くの場合0.1〜0.2%であり、比表面積は10m2/g以上であればよいが、好ましくは100〜300m2/g、さらに好ましくは120〜230m2/gであり、1次粒子径は5〜50mμであり、嵩密度は50〜100g/Lである。Hydrophobic fumed silica is a surface-treated dry process silica with an organosilicon compound such as methyltrichlorosilane, dimethyldichlorosilane, hexamethyldisilazane, hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, etc. The water content is usually 0.3% or less, in many cases 0.1 to 0.2%, and the specific surface area may be 10 m 2 / g or more, preferably 100 to 300 m 2. / G, more preferably 120 to 230 m 2 / g, the primary particle size is 5 to 50 mμ, and the bulk density is 50 to 100 g / L.
なお、オルガノポリシロキサン(A)と共に熱処理された疎水性フュームドシリカ(熱処理疎水性ヒュームドシリカ)では、疎水性シリカの表面に吸着されている水分が物理的に低減・除去されており、水分含量が通常、0.2%以下、好ましくは0.1%以下、特に0.05〜0.1%であり、嵩密度等のその他の物性値は、上記疎水性シリカと同様である。 In addition, in the hydrophobic fumed silica (heat treated hydrophobic fumed silica) heat-treated with the organopolysiloxane (A), the moisture adsorbed on the surface of the hydrophobic silica is physically reduced and removed. The content is usually 0.2% or less, preferably 0.1% or less, particularly 0.05 to 0.1%, and other physical property values such as bulk density are the same as those of the hydrophobic silica.
このようなシリカ成分は、上記成分(A)100重量部に対し、通常、1〜100重量部、好ましくは2〜50重量部、特に好ましくは5〜30重量部の量で本発明の特殊摩擦抵抗低減船舶に用いられる防汚塗料組成物中に含有されていることが望ましい。このような量でシリカ成分が特殊摩擦抵抗低減船舶に用いられる防汚塗料組成物中に含まれていると、塗膜強度、塗膜硬度に優れ、チクソ性が良好で、適度の粘度を有し、良好に塗装特にスプレー塗装でき、例えば、垂直に起立した基材面等であっても1回の塗装で塗膜の厚膜化を図ることができるため好ましい。 Such a silica component is usually 1 to 100 parts by weight, preferably 2 to 50 parts by weight, particularly preferably 5 to 30 parts by weight, based on 100 parts by weight of the component (A). It is desirable that it be contained in an antifouling paint composition used for resistance-reducing ships. When the silica component is contained in such an amount in an antifouling coating composition used for ships with reduced special frictional resistance, it has excellent coating strength and coating hardness, good thixotropy, and moderate viscosity. In addition, it can be applied particularly well by spray coating. For example, even on a vertically upright base material surface or the like, it is preferable because the coating film can be thickened by a single coating.
なお、上記シリカ成分が上記範囲より少ないと、十分な塗膜強度、塗膜硬度が得られず、所望のチクソ性が得られず1回の塗装特にスプレー塗装で所望の厚膜化が図れないことがあり、また、上記シリカ成分が上記範囲より多いと塗料の粘度が過度に高くなり、塗装に適した適正粘度までシンナーなどの溶剤で希釈する必要が生じ、1回のスプレー塗装による厚膜化が図れないことがある。 If the silica component is less than the above range, sufficient coating strength and coating hardness cannot be obtained, the desired thixotropy cannot be obtained, and the desired film thickness cannot be increased by a single coating, particularly spray coating. In addition, if the silica component is more than the above range, the viscosity of the coating becomes excessively high, and it is necessary to dilute with a solvent such as thinner to an appropriate viscosity suitable for coating. May not be achieved.
また、本発明ではシリカ成分として、上記疎水性フュームドシリカ等の疎水性シリカ(イ)と、表面未処理シリカ等の親水性シリカ(ロ)とを、重量比((イ)/(ロ))が1/99〜99/1、好ましくは20/80〜80/20、特に好ましくは30/70〜70/30となるような量でこれらを用いることが望ましい。このような量比で疎水性ヒュームドシリカ(イ)と親水性シリカ(ロ)とを併用すると、得られる特殊摩擦抵抗低減船舶に用いられる防汚塗料組成物は、調製・保管・貯蔵時の塗料安定性に優れ、十分なチクソ性を有し、また該組成物を硬化して得られる塗膜は塗膜強度、塗膜硬度に優れる傾向がある。 Further, in the present invention, as a silica component, a hydrophobic ratio ((i) / (b)) of hydrophobic silica (b) such as the above-described hydrophobic fumed silica and hydrophilic silica (b) such as untreated surface silica is used. ) Is 1/99 to 99/1, preferably 20/80 to 80/20, particularly preferably 30/70 to 70/30. When hydrophobic fumed silica (I) and hydrophilic silica (B) are used in combination in such a quantitative ratio, the resulting antifouling paint composition used in ships with reduced special frictional resistance can be obtained during preparation, storage and storage. A coating film having excellent coating stability, sufficient thixotropy, and a film obtained by curing the composition tends to be excellent in coating film strength and coating film hardness.
<防汚剤(D)>
本発明に係る特殊摩擦抵抗低減船舶に用いられる防汚塗料組成物は、上述の通り、上記疎水性材料(C)を配合することにより、優れた防汚性を発揮するものであるが、防汚剤(D)をさらに配合することで、より優れた防汚性を発揮することができる。 <Anti-fouling agent (D)>
As described above, the antifouling paint composition used in the special frictional resistance reducing ship according to the present invention exhibits excellent antifouling properties by blending the hydrophobic material (C). By further blending the soiling agent (D), more excellent antifouling properties can be exhibited.
防汚剤(D)としては、無機系、有機系の何れであってもよい。
無機系防汚剤としては、銅、亜酸化銅、ロダン銅、無機銅化合物等が挙げられ、中でも銅、無機銅化合物が好ましい。The antifouling agent (D) may be either inorganic or organic.
Examples of the inorganic antifouling agent include copper, cuprous oxide, rhodan copper, inorganic copper compounds, etc. Among them, copper and inorganic copper compounds are preferable.
有機防汚剤としては、その他にも、下記式(β)で示される金属−ピリチオン類[式中R14〜R17は、それぞれ独立に水素、アルキル基、アルコキシ基、ハロゲン化アルキル基を示し、Mは、Cu、Zn、Na、Mg、Ca、Ba、Pb、Fe、Al等の金属を示し、nは価数を示す]:As other organic antifouling agents, metal-pyrithiones represented by the following formula (β) [wherein R 14 to R 17 each independently represent hydrogen, an alkyl group, an alkoxy group, or a halogenated alkyl group. , M represents a metal such as Cu, Zn, Na, Mg, Ca, Ba, Pb, Fe, Al, and n represents a valence]:
、テトラメチルチウラムジサルファイド、カーバメート系の化合物(例:ジンクジメチルジチオカーバメート、マンガン−2−エチレンビスジチオカーバメート、ジンクエチレンビスジチオカーバメート)、2,4,5,6−テトラクロロイソフタロニトリル、N,N−ジメチルジクロロフェニル尿素、4,5−ジクロロ−2−n−オクチル−3(2H)イソチアゾリン、2,4,6−トリクロロフェニルマレイミド、2−メチルチオ−4−t−ブチルアミノ−6−シクロプロピルsトリアジン、N−(フルオロジクロロメチルチオ)フタルイミド、N,N′−ジメチル−N′−フェニル−(N−フルオロジクロロメチルチオ)スルファミド、N−ジクロロフルオロメチルチオ−N′,N′−ジメチル−N−p−トリルスルファミド、2,3,5,6−テトラクロロ−4−(メチルスルホニル)ピリジン、3−ヨード−2−プロピニールブチルカーバメート、ジヨードメチルパラトリルスルホン、ビスジメチルジチオカルバモイルジンクエチレンビスジチオカーバメート、ピリジン−トリフェニルボラン(PK)、4−[1−(2,3−ジメチルフェニル)エチル]−1H−イミダゾール(メデトミジン)等を挙げることができる。 , Tetramethylthiuram disulfide, carbamate compounds (eg, zinc dimethyldithiocarbamate, manganese-2-ethylenebisdithiocarbamate, zincethylenebisdithiocarbamate), 2,4,5,6-tetrachloroisophthalonitrile, N , N-dimethyldichlorophenylurea, 4,5-dichloro-2-n-octyl-3 (2H) isothiazoline, 2,4,6-trichlorophenylmaleimide, 2-methylthio-4-t-butylamino-6-cyclopropyl striazine, N- (fluorodichloromethylthio) phthalimide, N, N'-dimethyl-N'-phenyl- (N-fluorodichloromethylthio) sulfamide, N-dichlorofluoromethylthio-N ', N'-dimethyl-Np -Tolylsulfamide, 2, 3 5,6-tetrachloro-4- (methylsulfonyl) pyridine, 3-iodo-2-propynylbutylcarbamate, diiodomethylparatolylsulfone, bisdimethyldithiocarbamoyl zinc ethylenebisdithiocarbamate, pyridine-triphenylborane (PK) ), 4- [1- (2,3-dimethylphenyl) ethyl] -1H-imidazole (medetomidine), and the like.
上記有機防汚剤の中では、銅ピリチオン(式(β)中、M=Cu)、ジンクピリチオン(式(β)中、M=Zn)、N,N−ジメチルジクロロフェニル尿素、2,4,6−トリクロロフェニルマレイミド、2−メチルチオ−4−t−ブチルアミノ−6−シクロプロピルsトリアジン、4,5−ジクロロ−2−n−オクチル−4−イソチアゾリン−3−オン、2,4,5,6−テトラクロロイソフタロニトリルが好ましい。 Among the organic antifouling agents, copper pyrithione (in formula (β), M = Cu), zinc pyrithione (in formula (β), M = Zn), N, N-dimethyldichlorophenylurea, 2,4,6- Trichlorophenylmaleimide, 2-methylthio-4-t-butylamino-6-cyclopropylstriazine, 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one, 2,4,5,6- Tetrachloroisophthalonitrile is preferred.
これらの有機防汚剤の中では特に、金属ピリチオン類が好ましい。該金属ピリチオン類および5−ジクロロ−2−n−オクチル−4−イソチゾリン−3−オンを併用しても良い。これらの防汚剤は、単独で用いてもよく、2 種以上を併用してもよく、オルガノポリシロキサン(A)100 重量部に対して、1〜150重量部、好ましくは1〜100重量部の量で含まれていることが望ましい。 Among these organic antifouling agents, metal pyrithiones are particularly preferable. The metal pyrithione and 5-dichloro-2-n-octyl-4-isothiazolin-3-one may be used in combination. These antifouling agents may be used alone or in combination of two or more, and are 1 to 150 parts by weight, preferably 1 to 100 parts by weight, based on 100 parts by weight of organopolysiloxane (A). It is desirable to be included in the amount of.
このような防汚剤を含む特殊摩擦抵抗低減船舶に用いる防汚塗料組成物には、例えば、無機銅化合物および/または有機防汚剤が、防汚塗料組成物の総量から溶剤の量を除いた量を100重量%とした場合、通常、0.1〜50重量%、好ましくは0.5〜40重量%の量で含まれていることが望ましい。 In the antifouling paint composition used in a special frictional resistance reducing ship containing such an antifouling agent, for example, an inorganic copper compound and / or an organic antifouling agent removes the amount of the solvent from the total amount of the antifouling paint composition. When the amount is 100% by weight, it is usually contained in an amount of 0.1 to 50% by weight, preferably 0.5 to 40% by weight.
<可塑剤(塩素化パラフィン)>
可塑剤としては、TCP(トリクレジルフォスフェート)、塩素化パラフィン、ポリビニルエチルエーテル等が挙げられる。これらの可塑剤は、1種または2種以上組み合わせて用いることができる。これらの可塑剤は、得られる特殊摩擦抵抗低減船舶に用いられる防汚塗料組成物からなる塗膜(以下、「防汚塗膜」とも言う。)の耐クラック性の向上に寄与する。 <Plasticizer (chlorinated paraffin)>
Examples of the plasticizer include TCP (tricresyl phosphate), chlorinated paraffin, polyvinyl ethyl ether, and the like. These plasticizers can be used alone or in combination of two or more. These plasticizers contribute to the improvement of crack resistance of a coating film (hereinafter, also referred to as “antifouling coating film”) made of the antifouling coating composition used in the special friction resistance-reducing ship obtained.
<タレ止め・沈降防止剤(増粘剤)>
タレ止め・沈降防止剤(搖変剤)としては、有機粘土系Al、Ca、Znのステアレート塩、レシチン塩、アルキルスルホン酸塩などの塩類、ポリエチレンワックス、アマイドワックス、水添ヒマシ油ワックス系、ポリアマイドワックス系および両者の混合物、合成微粉シリカ、酸化ポリエチレン系ワックス等が挙げられ、好ましくは、ポリアマイドワックス、合成微粉シリカ、酸化ポリエチレン系ワックス、有機粘土系が用いられる。このようなタレ止め・沈降防止剤としては、楠本化成(株)製の「ディスパロン305」、「ディスパロン4200-20」等の他、「ディスパロンA630-20X」等の商品名で上市されているものが挙げられる。 <Anti-sagging and anti-settling agent (thickener)>
Anti-sagging and anti-settling agents (fading agents) include organoclay Al, Ca, Zn stearate salts, lecithin salts, alkyl sulfonate salts, polyethylene wax, amide wax, hydrogenated castor oil wax system Polyamide wax and mixtures thereof, synthetic fine powder silica, oxidized polyethylene wax, and the like. Polyamide wax, synthetic fine powder silica, oxidized polyethylene wax, and organic clay are preferably used. Examples of such anti-sagging and anti-settling agents are those marketed under the trade names such as “DISPARON 305” and “DISPARON 4200-20” manufactured by Enomoto Kasei Co., Ltd. and “DISPARON A630-20X”. Is mentioned.
このようなタレ止め・沈降防止剤は、この特殊摩擦抵抗低減船舶に用いられる防汚塗料組成物中に、例えば、0.1〜10重量%の量で配合される。
<顔料・染料>
顔料としては、従来公知の有機系、無機系の各種顔料を用いることができる。有機系顔料としては、カーボンブラック、フタロシアニンブルー、紺青等が挙げられる。無機系顔料としては、例えば、チタン白、ベンガラ、バライト粉、シリカ、炭酸カルシウム、タルク、白亜、酸化鉄粉等のように中性で非反応性のもの;亜鉛華(ZnO、酸化亜鉛)、鉛白、鉛丹、亜鉛末、亜酸化鉛粉等のように塩基性で塗料中の酸性物質と反応性のもの(活性顔料)等が挙げられる。Such an anti-sagging / settling-preventing agent is blended in an amount of 0.1 to 10% by weight, for example, in the antifouling coating composition used in the special frictional resistance-reducing ship.
<Pigments and dyes>
As the pigment, various conventionally known organic and inorganic pigments can be used. Examples of organic pigments include carbon black, phthalocyanine blue, and bitumen. Examples of the inorganic pigment include neutral and non-reactive pigments such as titanium white, bengara, barite powder, silica, calcium carbonate, talc, chalk, iron oxide powder; zinc white (ZnO, zinc oxide), Examples are basic (active pigments) that are basic and reactive with acidic substances in the paint, such as lead white, red lead, zinc dust, and lead oxide powder.
さらには、けいそう土、アルミナ等の金属酸化物あるいはこれらの表面をシラン化合物で表面処理したもの;炭酸マグネシウム、炭酸亜鉛等の金属炭酸塩;その他、アスベスト、ガラス繊維、石英粉、水酸化アルミ、金粉、銀粉、表面処理炭酸カルシウム、ガラスバルーン等が挙げられる。 In addition, metal oxides such as diatomaceous earth and alumina, or surfaces thereof treated with a silane compound; metal carbonates such as magnesium carbonate and zinc carbonate; others, asbestos, glass fiber, quartz powder, aluminum hydroxide , Gold powder, silver powder, surface treated calcium carbonate, glass balloon and the like.
なお、染料等の各種着色剤も含まれていてもよい。
これらの顔料・染料等は、1種または2種以上併用してもよい。
このような各種顔料・染料は、特殊摩擦抵抗低減船舶に用いられる防汚塗料組成物中に、例えば、合計で0.5〜45重量%程度の量で配合されることが好ましい。また、このような各種顔料・染料は、オルガノポリシロキサン(A)100重量部に対して1〜40重量部配合されることが好ましい。Various colorants such as dyes may also be included.
These pigments and dyes may be used alone or in combination of two or more.
Such various pigments and dyes are preferably blended in an amount of about 0.5 to 45% by weight, for example, in the antifouling coating composition used in a ship with reduced special frictional resistance. Moreover, it is preferable that 1-40 weight part of such various pigments / dyes are mix | blended with respect to 100 weight part of organopolysiloxane (A).
<その他の塗膜形成成分>
塗膜形成成分としては、上記したオルガノポリシロキサン(A)など以外の塗膜形成成分が本発明の目的に反しない範囲で含まれていてもよく、このような「その他の塗膜形成成分」としては、例えば、アクリル樹脂、アクリルシリコーン樹脂、不飽和ポリエステル樹脂、フッ素樹脂、ポリブテン樹脂、シリコーンゴム、ウレタン樹脂(ゴム)、ポリアミド樹脂、塩化ビニル系共重合樹脂、塩化ゴム(樹脂)、塩素化オレフィン樹脂、スチレン・ブタジエン共重合樹脂、エチレン−酢酸ビニル共重合樹脂、塩化ビニル樹脂、アルキッド樹脂、クマロン樹脂、トリアルキルシリルアクリレート(共)重合体(シリル系樹脂)、石油樹脂等の難あるいは非水溶性樹脂(以下、難/非水溶性樹脂ともいう)が挙げられる。 <Other coating film forming components>
As the coating film forming component, a coating film forming component other than the above-described organopolysiloxane (A) may be contained within a range not contrary to the object of the present invention. For example, acrylic resin, acrylic silicone resin, unsaturated polyester resin, fluorine resin, polybutene resin, silicone rubber, urethane resin (rubber), polyamide resin, vinyl chloride copolymer resin, chlorinated rubber (resin), chlorinated Olefin resins, styrene / butadiene copolymer resins, ethylene-vinyl acetate copolymer resins, vinyl chloride resins, alkyd resins, coumarone resins, trialkylsilyl acrylate (co) polymers (silyl resins), petroleum resins, etc. Examples thereof include water-soluble resins (hereinafter also referred to as difficult / non-water-soluble resins).
<その他のチクソトロピー性付与剤、難燃剤、熱伝導改良剤、付着性付与剤など>
チクソトロピー性付与剤としては、ポリエチレングリコール、ポリプロピレングリコール及びこれらの誘導体等が挙げられる。難燃剤としては、酸化アンチモン、酸化パラフィンなどが挙げられる。熱伝導改良剤としては、窒化ホウ素、酸化アルミニウム等が挙げられる。接着成分としては、アミノ基、メルカプト基、アルコキシシリル基、エポキシ基、ヒドロシリル基、アクリル基、ヒドロキシシリル基等の反応性有機基を1種または2種以上含有する物質、例えばシランカップリング剤など、あるいはこれらの物質の混合物が挙げられる。 <Other thixotropic agents, flame retardants, heat conduction improvers, adhesion promoters, etc.>
Examples of the thixotropic property-imparting agent include polyethylene glycol, polypropylene glycol, and derivatives thereof. Examples of the flame retardant include antimony oxide and paraffin oxide. Examples of the heat conduction improver include boron nitride and aluminum oxide. Adhesive components include substances containing one or more reactive organic groups such as amino groups, mercapto groups, alkoxysilyl groups, epoxy groups, hydrosilyl groups, acrylic groups, hydroxysilyl groups, such as silane coupling agents, etc. Or a mixture of these substances.
<溶剤>
本発明の特殊摩擦抵抗低減船舶に用いられる防汚塗料組成物には、溶剤が含まれていてもよく、また含まれていなくともよいが、上記のような各種成分は、必要に応じて、溶剤に溶解若しくは分散して用いることができる。ここで使用される溶剤としては、例えば、脂肪族系、芳香族系、ケトン系、エステル系、エーテル系、アルコール系など、通常、防汚塗料に配合されるような各種溶剤が用いられる。上記芳香族系溶剤としては、例えば、キシレン、トルエン等が挙げられ、ケトン系溶剤としては、例えば、MIBK、シクロヘキサノン等が挙げられ、エーテル系溶剤としては、例えば、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート(PMAC)等が挙げられ、アルコール系溶剤としては、例えば、イソプロピルアルコール等が挙げられる。 <Solvent>
The antifouling paint composition used in the special frictional resistance-reducing ship of the present invention may or may not contain a solvent. It can be used by dissolving or dispersing in a solvent. As the solvent used here, for example, various solvents such as aliphatic, aromatic, ketone, ester, ether, alcohol and the like which are usually blended in antifouling paints are used. Examples of the aromatic solvent include xylene and toluene. Examples of the ketone solvent include MIBK and cyclohexanone. Examples of the ether solvent include propylene glycol monomethyl ether and propylene glycol monomethyl. Ether acetate (PMAC) etc. are mentioned, As an alcohol solvent, isopropyl alcohol etc. are mentioned, for example.
このような溶剤は、任意の量で使用可能であるが、上記成分(A)100重量部に対して例えば、0.1〜9999重量部の量で、好ましくは1〜50重量部の量で用いられる。また、本発明の防汚塗料組成物中に1〜99重量%、好ましくは5〜50重量%となるような量で用いられる。このような溶剤にて必要により希釈された特殊摩擦抵抗低減船舶に用いられる防汚塗料組成物等の特殊摩擦抵抗低減船舶に用いられる防汚塗料組成物の粘度(25℃、B型粘度計、3号ローター)は、塗工性(タレ性)、1回塗りで得られる膜厚などを考慮すると、通常0.001〜50Pa・s、好ましくは0.01〜20Pa・s程度である。 Such a solvent can be used in any amount, but for example, in an amount of 0.1 to 9999 parts by weight, preferably in an amount of 1 to 50 parts by weight with respect to 100 parts by weight of the component (A). Used. The antifouling coating composition of the present invention is used in an amount of 1 to 99% by weight, preferably 5 to 50% by weight. Viscosity of the antifouling paint composition used in the special frictional resistance-reducing ship such as antifouling paint composition used in the special frictional resistance-reducing ship diluted with such a solvent as necessary (25 ° C., B-type viscometer, The No. 3 rotor) is usually about 0.001 to 50 Pa · s, preferably about 0.01 to 20 Pa · s, considering the coating property (sagging property) and the film thickness obtained by one-time coating.
<その他>
上記防汚塗料組成物は、1液型であっても2液型や3液型などの多液型であってもよい。 <Others>
The antifouling coating composition may be a one-component type or a multi-component type such as a two-component type or a three-component type.
例えば、加水分解性基と空気中の水分との加水分解反応を利用できる配合の場合は、塗装直前まで水分源を絶っておけば硬化反応は起こらないので、1液型とすることができる。 For example, in the case of a formulation that can utilize a hydrolysis reaction between a hydrolyzable group and moisture in the air, the curing reaction does not occur if the moisture source is turned off until just before coating, so that it can be a one-pack type.
また、例えば、触媒の添加により常温で硬化反応が生じる成分を配合する場合は、触媒と触媒添加により反応が起こる成分とを別の液とした多液型とすることができる。
一液型防汚塗料組成物の具体例としては、オルガノポリシロキサン(A)として分子の両末端の縮合性反応基が脱オキシムなどの加水分解性基であるオルガノポリシロキサンを配合し、オルガノシラン及び/又はその部分縮合物(B)としてオキシムシランなどのオルガノシランを配合した防汚塗料組成物を挙げることができる。Further, for example, when a component that causes a curing reaction at room temperature by addition of a catalyst is blended, a multi-liquid type in which a catalyst and a component that undergoes a reaction by addition of the catalyst are separate liquids can be used.
As a specific example of the one-pack type antifouling coating composition, an organopolysiloxane (A) is blended with an organopolysiloxane in which the condensable reactive groups at both ends of the molecule are hydrolyzable groups such as deoxime. And / or the antifouling paint composition which mix | blended organosilanes, such as oxime silane, can be mentioned as the partial condensate (B).
また、3液型防汚塗料組成物としては、オルガノポリシロキサン(A)として分子の両末端の縮合性反応基がヒドロキシ基であるオルガノポリシロキサンを配合した主剤、オルガノシラン及び/又はその部分縮合物(B)としてエチルシリケートなどのポリアルコキシシランを配合した硬化剤、触媒を配合した硬化促進剤の3液からなる防汚塗料組成物を挙げることができる。 In addition, as a three-component antifouling paint composition, a main agent, organosilane and / or partial condensation thereof in which organopolysiloxane (A) is mixed with an organopolysiloxane having a condensable reactive group at both ends of the molecule as a hydroxy group. Examples of the product (B) include an antifouling coating composition composed of three liquids: a curing agent blended with a polyalkoxysilane such as ethyl silicate and a curing accelerator blended with a catalyst.
1−3.防汚塗膜(第一の塗膜)、特殊摩擦抵抗低減船舶(第一の特殊摩擦抵抗低減船舶)
本発明に係る特殊摩擦抵抗低減船舶に用いられる防汚塗料組成物により形成された塗膜は、後記の方法により測定された、水中における静的水中気泡接触角が通常90度未満と小さく、かつ気泡の転がり(滑り)角が通常30度未満と小さく、粗度の高さが30μm以下であり、山谷平均間隔が700μm以上であるという形状を有する。 1-3. Antifouling coating (first coating), special friction resistance reduction ship (first special friction resistance reduction ship)
The coating film formed from the antifouling paint composition used in the special frictional resistance reducing ship according to the present invention has a static underwater bubble contact angle in water as small as less than 90 degrees, as measured by the method described below, and The bubble has a shape in which the rolling (sliding) angle is usually as small as less than 30 degrees, the roughness is 30 μm or less, and the average interval between peaks and valleys is 700 μm or more.
船体の摩擦抵抗を効率よく低減させる、長期に渡る摩擦抵抗の低減を実現するなどの観点からは、水中における静的水中気泡接触角は80°以下であることが好ましく、気泡の転がり(滑り)角は20°以下であることが好ましく、粗度の最大高さは25μm以下であることが好ましく、粗度の山頂と谷底の間隔は800μm以上であることが好ましい。 From the standpoint of efficiently reducing the frictional resistance of the hull and realizing a long-term reduction in the frictional resistance, the static underwater bubble contact angle in water is preferably 80 ° or less, and the bubble rolling (sliding) The angle is preferably 20 ° or less, the maximum height of the roughness is preferably 25 μm or less, and the distance between the peak of the roughness and the valley bottom is preferably 800 μm or more.
静的水中気泡接触角が小であることは空気が塗膜に濡れる(親和する)性状を示し、気泡の転がり(滑り)角が小であることと粗度が小さく山谷平均間隔が長いことは空気が流動しやすい性状を示す。つまり気体潤滑性に優れる表面であることを示す。これらの性状は水中気泡接触角計を用いて調べることができ、気体潤滑効果(水流摩擦抵抗低減効果)は模型船の船底に塗料組成物を塗布し、形成された船底塗膜へ空気を供給した場合の水流抵抗を計側する(回流水槽試験)ことにより確認できる。 A small static water bubble contact angle indicates that the air gets wet with the coating film (affinity), that the bubble rolling (slip) angle is small, the roughness is small, and the average interval between the peaks and valleys is long. The property that air easily flows. That is, it indicates that the surface is excellent in gas lubricity. These properties can be examined using an underwater bubble contact angle meter, and the gas lubrication effect (water frictional resistance reduction effect) is applied to the bottom of the model ship by applying a coating composition and supplying air to the formed ship bottom coating. This can be confirmed by measuring the water flow resistance in the case of a test (circulating water tank test).
このような形状を有する塗膜は、例えば、上記特殊摩擦抵抗低減船舶に用いられる防汚塗料組成物を被塗物に塗布することで得られる。上記特殊摩擦抵抗低減船舶に用いられる防汚塗料組成物は上記形状の塗膜を形成しうる特定の組成を有しているので、該防汚塗料組成物を被塗物に塗布し、乾燥するといったごく一般的な方法以外に特別な操作は必要なく、このような簡易な方法で塗布するだけで、上記形状を有する塗膜を得ることができる。 The coating film having such a shape can be obtained, for example, by applying an antifouling coating composition used in the special frictional resistance reducing ship to an object to be coated. Since the antifouling paint composition used in the special frictional resistance reducing ship has a specific composition capable of forming a coating film having the above-mentioned shape, the antifouling paint composition is applied to an object to be coated and dried. No special operation is required except for such a general method, and a coating film having the above-described shape can be obtained only by coating by such a simple method.
このような防汚塗膜が船舶外板の没水面に形成された特殊摩擦抵抗低減船舶は、少量の気体の供給でも優れた摩擦抵抗低減効果を奏し、併せてすぐれた防汚効果を発揮し、しかもそれら効果を長期に渡って安定に発揮することができる。 A special frictional resistance-reducing ship with such an antifouling coating film formed on the submerged surface of the ship's outer plate exhibits an excellent frictional resistance reducing effect even when a small amount of gas is supplied, and also exhibits an excellent antifouling effect. In addition, these effects can be exhibited stably over a long period of time.
静的水中気泡接触角および水中気泡転がり(滑り)角は、後述の接触角測定装置を用いて測定することができる。
<静的水中気泡接触角の測定法>
静的水中気泡接触角の測定法は、具体的には以下の通りである。The static underwater bubble contact angle and underwater bubble rolling (sliding) angle can be measured using a contact angle measuring device described later.
<Measurement method of static underwater bubble contact angle>
The measurement method of the static underwater bubble contact angle is specifically as follows.
乾燥膜厚が150μmの塗膜が形成されるように塗料組成物を塗装した硬質ポリ塩化ビニル試験板(JIS B 0601に準拠して測定された最大高さが1μm以下)を30日間25℃の水に浸漬する。具体的には試験板を円筒型の回転浸漬槽の内壁に取り付け、水中でその中心部を回転(周速度15ノット)し水流を発生させ、その状態で30日間浸漬する。浸漬後の硬質ポリ塩化ビニル試験板を塗膜表面が水平かつ該試験板の下側になるように水中に設置し、該塗膜表面に気泡が1つ形成されるように0.1ccの空気を水中に注入して、該塗膜表面に形成された気泡の塗膜表面からの高さa、および、塗膜表面と気泡との接触部の直径bを測定し、下記(1)式より、該塗膜面と気泡との接触角である静的水中気泡接触角(θs、単位:度)を求める。A hard polyvinyl chloride test plate (maximum height measured in accordance with JIS B 0601 of 1 μm or less) coated with a coating composition so that a coating film having a dry film thickness of 150 μm is formed at 25 ° C. for 30 days. Immerse in water. Specifically, the test plate is attached to the inner wall of a cylindrical rotary dipping bath, and its central portion is rotated in water (
<水中気泡転がり(滑り)角の測定法>
水中気泡転がり(滑り)角の測定法は、具体的には以下の通りである。
上記静的水中気泡接触角の測定法において、気泡の形成された塗膜面を水平面に対して徐々に傾け、気泡が移動し始めた際の塗膜表面の、水平面に対する傾斜角度(水中気泡転がり(滑り)角)(θm、単位:度)を測定する。<Measurement of underwater bubble rolling (slip) angle>
The method for measuring the underwater bubble rolling (slip) angle is specifically as follows.
In the method for measuring the static underwater bubble contact angle, the coating surface on which bubbles are formed is gradually tilted with respect to the horizontal plane, and the tilt angle of the coating surface with respect to the horizontal plane when the bubbles begin to move (underwater bubble rolling) (Slip) angle) (θ m , unit: degree) is measured.
1−4.特殊摩擦抵抗低減船舶の製造方法
本発明に係る特殊摩擦抵抗低減船舶の製造方法では、被塗装船舶の外板の没水予定面に、上記防汚塗膜を形成する。該防汚塗膜は、上記防汚塗料組成物より形成することができる。 1-4. Method for Manufacturing Special Friction Resistance-Reducing Ship In the method for manufacturing a special friction resistance-reducing ship according to the present invention, the antifouling coating film is formed on the submerged planned surface of the outer plate of the ship to be painted. The antifouling coating film can be formed from the above antifouling coating composition.
本発明の特殊摩擦抵抗低減船舶に用いられる防汚塗料組成物は、船舶の外板の没水部の表面に、常法に従って1回〜複数回塗布、硬化すれば、該表面に摩擦抵抗低減性能および防汚性能を付与することができる塗膜を形成でき、しかも上記性能を長期に亘って維持することができる。このような塗装の際には、刷毛、ロール、スプレー、ディップコーター等、従来公知の塗装手段が広く用いられる。 The antifouling paint composition for use in a special frictional resistance-reducing ship of the present invention reduces the frictional resistance to the surface of the submerged portion of the outer plate of the ship if applied and cured one or more times in accordance with a conventional method. A coating film capable of imparting performance and antifouling performance can be formed, and the above performance can be maintained over a long period of time. For such coating, conventionally known coating means such as brushes, rolls, sprays, dip coaters, etc. are widely used.
このような本発明に係る特殊摩擦抵抗低減船舶に用いられる防汚塗料組成物が硬化してなる防汚塗膜は、アオサ、フジツボ、アオノリ、セルプラ、カキ、フサコケムシ等の水棲生物の付着を長期間継続的に防止できるなど防汚性に優れている。 The antifouling coating film obtained by curing the antifouling paint composition used in the special frictional resistance reducing ship according to the present invention has a long adhesion to aquatic organisms such as Aosa, Barnacles, Aonori, Cell plastic, Oysters, and Flies. It has excellent antifouling properties such as continuous prevention during the period.
本発明に係る特殊摩擦抵抗低減船舶に用いられる防汚塗料組成物は、付着性、防食性の観点から、船舶の外板に予め塗装されている防食塗膜上に塗装することが望ましい。
本発明の特殊摩擦抵抗低減船舶に用いられる防汚塗料組成物による塗装が行われている船舶の表面に、補修用として本発明の特殊摩擦抵抗低減船舶に用いられる防汚塗料組成物を上塗りしてもよい。このようにして船舶外板の没水面に形成された防汚塗膜の厚さは特に限定されないが、例えば、30〜150μm/回程度である。It is desirable that the antifouling paint composition used in the special frictional resistance-reducing ship according to the present invention is applied on an anticorrosion coating film that has been previously applied to the outer plate of the ship from the viewpoints of adhesion and anticorrosion.
The antifouling paint composition used in the special frictional resistance-reducing ship of the present invention is overcoated on the surface of the ship that is coated with the antifouling paint composition used in the special frictional resistance-reducing ship of the present invention. May be. Thus, although the thickness of the antifouling coating film formed in the submerged surface of a ship outer plate is not specifically limited, For example, it is about 30-150 micrometers / time.
本発明に係る特殊摩擦抵抗低減船舶に用いられる防汚塗料組成物は、摩擦抵抗低減性能の観点から、船舶外板の没水面全面に塗装することが望ましい。
2.第二群
2−1.第二の塗料組成物、塗膜、特殊摩擦抵抗低減船舶
第二の塗料組成物は、下記静的水中気泡接触角および水中気泡転がり(滑り)角の条件を満たす塗膜を形成できる塗料組成物である。The antifouling paint composition used in the special frictional resistance-reducing ship according to the present invention is preferably applied to the entire submerged surface of the ship's outer plate from the viewpoint of the frictional resistance-reducing performance.
2. Second group
2-1. Second paint composition, paint film, special friction resistance reducing ship second paint composition is a paint composition that can form a paint film satisfying the following conditions of static underwater bubble contact angle and underwater bubble rolling (slip) angle It is.
このような条件を満たす塗膜を形成できる塗料組成物としては、前述の防汚塗料組成物(第一の塗料組成物)が挙げられる。第一の塗料組成物の詳細は前述のとおりである。
<静的水中気泡接触角および水中気泡転がり(滑り)角>
下記静的水中気泡接触角の測定法により測定した静的水中気泡接触角が90度未満であり、下記水中気泡転がり(滑り)角の測定法により測定した水中気泡転がり(滑り)角が30度未満である。Examples of the coating composition that can form a coating film satisfying such conditions include the aforementioned antifouling coating composition (first coating composition). The details of the first coating composition are as described above.
<Static underwater bubble contact angle and underwater bubble rolling (sliding) angle>
The static underwater bubble contact angle measured by the following static underwater bubble contact angle measurement method is less than 90 degrees, and the underwater bubble rolling (slip) angle measured by the following underwater bubble rolling (slip) angle measurement method is 30 degrees. Is less than.
静的水中気泡接触角および水中気泡転がり(滑り)角は、後述の接触角測定装置を用いて測定することができる。
静的水中気泡接触角の測定法は、具体的には以下の通りである。The static underwater bubble contact angle and underwater bubble rolling (sliding) angle can be measured using a contact angle measuring device described later.
The measurement method of the static underwater bubble contact angle is specifically as follows.
乾燥膜厚が150μmの塗膜が形成されるように塗料組成物を塗装した硬質ポリ塩化ビニル試験板(JIS B 0601に準拠して測定された最大高さが1μm以下)を30日間25℃の水に浸漬する。具体的には試験板を円筒型の回転浸漬槽の内壁に取り付け、水中でその中心部を回転(周速度15ノット)し水流を発生させ、その状態で30日間浸漬する。浸漬後の硬質ポリ塩化ビニル試験板を塗膜表面が水平かつ該試験板の下側になるように水中に設置し、該塗膜表面に気泡が1つ形成されるように0.1ccの空気を水中に注入して、該塗膜表面に形成された気泡の塗膜表面からの高さa、および、塗膜表面と気泡との接触部の直径bを測定し、下記(1)式より、該塗膜面と気泡との接触角である静的水中気泡接触角(θs、単位:度)を求める。A hard polyvinyl chloride test plate (maximum height measured in accordance with JIS B 0601 of 1 μm or less) coated with a coating composition so that a coating film having a dry film thickness of 150 μm is formed at 25 ° C. for 30 days. Immerse in water. Specifically, the test plate is attached to the inner wall of a cylindrical rotary dipping bath, and its central portion is rotated in water (
水中気泡転がり(滑り)角の測定法は、具体的には以下の通りである。
上記静的水中気泡接触角の測定法において、気泡の形成された塗膜面を水平面に対して徐々に傾け、気泡が移動し始めた際の塗膜表面の、水平面に対する傾斜角度(水中気泡転がり(滑り)角)(θm、単位:度)を測定する。The method for measuring the underwater bubble rolling (slip) angle is specifically as follows.
In the method for measuring the static underwater bubble contact angle, the coating surface on which bubbles are formed is gradually tilted with respect to the horizontal plane, and the tilt angle of the coating surface with respect to the horizontal plane when the bubbles begin to move (underwater bubble rolling) (Slip) angle) (θ m , unit: degree) is measured.
静的水中気泡接触角は、塗膜に対する気体の濡れの程度(親和の程度)を表すものである。静的水中気泡接触角が小であることは気体が塗膜に濡れる(親和する)程度が大きいことを表し、静的水中気泡接触角が大であることは気体が塗膜に濡れる(親和する)程度が小さいことを表す。 The static underwater bubble contact angle represents the degree of wetting of the gas to the coating film (degree of affinity). A small static underwater bubble contact angle indicates a large degree of gas wetting (affinity) on the coating, and a large static underwater bubble contact angle indicates that the gas wets (affinity) the coating. ) Indicates that the degree is small.
気泡の転がり(滑り)角は、塗膜表面における空気の流動のしやすさを表すものである。気泡の転がり(滑り)角が小であることは塗膜表面において空気が流動しやすいことを表し、気泡の転がり(滑り)角が大であることは塗膜表面において空気が流動しにくいことを表す。 The rolling (slip) angle of the bubbles represents the ease of air flow on the coating film surface. A small bubble rolling (sliding) angle indicates that air easily flows on the coating surface, and a large bubble rolling (sliding) angle indicates that air does not easily flow on the coating surface. Represent.
つまり、これら物性は、上記塗膜の形成された船舶外板の没水部が気体潤滑性に優れる表面を有するか否かを判断する指標となり、静的水中気泡接触角が小さく、かつ、気泡の転がり(滑り)角が小さいものが、より気体潤滑性に優れる。 That is, these physical properties serve as an index for determining whether or not the submerged portion of the ship outer plate on which the coating film is formed has a surface excellent in gas lubricity, the static water bubble contact angle is small, and the bubbles Those having a small rolling (sliding) angle are more excellent in gas lubricity.
摩擦抵抗を低減させ、ひいては船舶外板表面に形成された塗膜の性状を長期維持させるという観点からは、静的水中気泡接触角は、80度以下であることが好ましく、同観点から、水中気泡転がり(滑り)角は、20度以下であることが好ましい。 From the viewpoint of reducing the frictional resistance and thus maintaining the properties of the coating film formed on the surface of the ship outer plate for a long period of time, the static underwater bubble contact angle is preferably 80 degrees or less. The bubble rolling (slip) angle is preferably 20 degrees or less.
上記範囲の水中気泡接触角および水中気泡転がり(滑り)角を有する塗膜が外板の没水面に形成された特殊摩擦抵抗低減船舶は、上記の通り、外板の没水面の気体潤滑性に優れるので、少量の空気の供給でも船舶の摩擦抵抗を効率的に低減でき、省エネ性にも優れる。また、該特殊摩擦抵抗低減船舶は、上記塗膜により船舶外板の没水面に対する摩擦抵抗が低減されているため、該摩擦抵抗による外板の没水面の磨耗が大きく抑制されて、上記塗膜の性状が長期に渡って維持されるという効果も奏する。 The special friction resistance reducing ship in which the coating film having the underwater bubble contact angle and the underwater bubble rolling (sliding) angle in the above range is formed on the submerged surface of the outer plate, as described above, has the gas lubricity of the submerged surface of the outer plate. Because it is excellent, the frictional resistance of the ship can be reduced efficiently even with a small amount of air supplied, and energy saving is also excellent. In addition, since the special frictional resistance reducing ship has reduced frictional resistance against the submerged surface of the ship outer plate by the coating film, the wear of the submerged surface of the outer plate due to the frictional resistance is greatly suppressed, and the coating film There is also an effect that the property of is maintained for a long time.
<水への浸漬後の摩擦抵抗低減率、水への浸漬前後の摩擦抵抗低減率の差>
気体潤滑効果(水流摩擦抵抗低減効果)は模型船の船底に塗料組成物を塗布し、形成された船底塗膜の表面に空気を供給した場合の水流摩擦抵抗を計測する(回流水槽試験)ことにより確認できる。本明細書では、塗料組成物から形成された塗膜を有する試験板を、(通常25℃程度の)水(好ましくは海水)中で静置浸漬するか、回転浸漬槽の内壁に取り付け、(通常25℃程度の)水(好ましくは海水)を回転し周速度15ノットの水流を発生させ、一定期間経過したことを「浸漬X後」(Xは経過時間。例えば30日間浸漬した場合は浸漬30日後という。)と表す。また、このような処理をしていないことを浸漬前と表す。 <Friction resistance reduction rate after immersion in water, difference in frictional resistance reduction rate before and after immersion in water>
The gas lubrication effect (water friction resistance reduction effect) is to measure the water friction resistance when a paint composition is applied to the bottom of the model ship and air is supplied to the surface of the formed bottom paint film (circulating water tank test). Can be confirmed. In the present specification, a test plate having a coating film formed from a coating composition is immersed in water (usually about 25 ° C.) in water (preferably seawater) or attached to the inner wall of a rotary immersion tank. Rotating water (preferably about 25 ° C.) (preferably seawater) to generate a water flow with a peripheral speed of 15 knots, and “after X immersion” (X is the elapsed time. For example, immersion for 30 days) 30 days later.) In addition, the fact that such treatment is not performed is expressed as before immersion.
例えば、試験板を円筒型の回転浸漬槽の内壁に取り付け、水中でその中心部を回転(周速度15ノット)し水流を発生させて、30日間経過した試験板を用いて測定された浸漬前後の摩擦抵抗低減率の差を浸漬前と浸漬30日後の摩擦抵抗低減率の差という。
For example, a test plate is attached to the inner wall of a cylindrical rotary immersion bath, and its center is rotated in water (
浸漬前後の摩擦抵抗低減率の差の測定法の具体例は、以下の通りである。
図4に示すように全長が2.8m、型幅が0.24m、型深が0.14mである模型船の船底部に、30日間浸漬した長さが2.05m、幅が0.24m、面積が0.492m2である試験板をその塗膜表面が表になるように(塗膜表面が水に接するように)取り付ける。その試験板の塗膜部を試験塗膜部9とする。次いで、計測部の寸法が長さ8m、幅1.5m、水深1.2mである垂直循環型回流水槽に上記模型船を設置し、水(12℃)の流速が1.4m/sである条件下で、上記試験板が取り付けられた船底部へ上記模型船の船底部に設置された空気噴出し口8から空気を噴き出した場合(例えば、相当空気厚さ(ta)=1.0mm)と噴き出さない場合の船体の摩擦抵抗を計測する。次いで、下記式(2)より全抵抗低減率(ηT)と下記式(3)より試験板部分の摩擦抵抗低減率(ηF)を求める。浸漬前後の摩擦抵抗低減率の差は、浸漬前の摩擦抵抗低減率から30日間浸漬後の摩擦抵抗低減率を引いて求めることができる(水の流速や相当空気厚さの値は適宜設定することができる)。The specific example of the measuring method of the difference of the frictional resistance reduction rate before and behind immersion is as follows.
As shown in FIG. 4, a length of 2.05 m and a width of 0.24 m immersed for 30 days in the bottom of a model ship having a total length of 2.8 m, a mold width of 0.24 m, and a mold depth of 0.14 m. Then, a test plate having an area of 0.492 m 2 is attached so that the surface of the coating film becomes front (so that the coating film surface is in contact with water). Let the coating film part of the test plate be the test
Rt0:空気を噴き出さない場合の船体の全抵抗[kgf]、
Rt:空気を噴き出した場合の船体の全抵抗[kgf]、
Rf0:下記式(4)で表される試験板の空気を噴き出さない場合の摩擦抵抗[kgf]、R t0 : Total hull resistance [kgf] when air is not blown out,
R t : Total resistance of the hull when air is blown out [kgf],
R f0 : Friction resistance [kgf] when air of the test plate represented by the following formula (4) is not blown out,
ρ:水の密度[Kgf・s2/m4](12℃)、
S:試験板の面積[m2]、
U:水の流速[m/s]、
Cf0:下記式(5)で表される試験板の空気を噴き出さない場合の摩擦抵抗係数、ρ: density of water [Kgf · s 2 / m 4 ] (12 ° C.),
S: Area of test plate [m 2 ],
U: Flow rate of water [m / s],
C f0 : Friction resistance coefficient when the test plate air represented by the following formula (5) is not blown out,
Rn:下記式(6)で表される試験板のレイノルズ数、R n : Reynolds number of the test plate represented by the following formula (6),
U:水の流速[m/s]
L:試験板の長さ[m]、
ν:水の動粘性係数[m2/s](12℃)。U: Flow rate of water [m / s]
L: length of test plate [m],
ν: Kinematic viscosity coefficient of water [m 2 / s] (12 ° C.).
なお、前述の相当空気厚さ(ta)[mm]とは、噴き出した空気の量を示し、次式(7)で表される。 In addition, the above-mentioned equivalent air thickness (ta) [mm] indicates the amount of air ejected and is represented by the following equation (7).
Qa:噴き出した空気量[m3/s]、
U:水の流速[m/s]、
Ba:空気噴出し口の幅[m]。Qa: amount of air blown out [m 3 / s],
U: Flow rate of water [m / s],
Ba: The width of the air ejection port [m].
ここで、「全抵抗」とは、造波抵抗、形状抵抗、摩擦抵抗など、上記測定に関与する抵抗全てを合わせたものをいう。
試験板は、アルミ板(材質:A5052P)とする。Here, “total resistance” refers to a combination of all the resistances related to the measurement, such as wave resistance, shape resistance, and friction resistance.
The test plate is an aluminum plate (material: A5052P).
浸漬前後の摩擦抵抗低減率の差は、上記塗膜による摩擦抵抗の低減がどのくらいの期間に亘って維持されるかを表すものである。
つまり、浸漬前後の摩擦抵抗低減率の差が小さいほど、一定期間経過後の上記塗膜の性状の経時変化が小さいことを示す。The difference in the frictional resistance reduction rate before and after the immersion represents how long the reduction of the frictional resistance by the coating film is maintained.
That is, the smaller the difference in the frictional resistance reduction rate before and after the immersion, the smaller the change with time in the properties of the coating film after a certain period.
上記要件を満たす塗膜が外板の没水面に形成された特殊摩擦抵抗低減船舶は、浸漬前後の摩擦抵抗低減率の差(塗膜の経時変化)が小さいため、船舶外板表面に形成された塗膜の性状を長期維持させることができる。また、少ない空気量(例えばta=1.0mm)であっても、十分な抵抗低減効果を奏することができ、摩擦抵抗低減に必要な空気の供給するためのエネルギーも少なくて済むため、省エネ効果も高い。 Special friction resistance-reduced ships with coatings that satisfy the above requirements on the submerged surface of the outer plate are formed on the surface of the outer plate of the ship because the difference in the frictional resistance reduction rate before and after immersion (the change with time of the coating) is small. The properties of the coated film can be maintained for a long time. In addition, even with a small amount of air (for example, ta = 1.0 mm), a sufficient resistance reduction effect can be achieved and less energy is required to supply the air necessary for reducing the frictional resistance. Is also expensive.
2−2.第二の特殊摩擦抵抗低減船舶の製造方法
上記のような第二の特殊摩擦抵抗低減船舶の製造方法については、前述の防汚塗料組成物から形成される塗膜により被覆された特殊摩擦抵抗低減船舶(第一の特殊摩擦抵抗低減船舶)の製造方法に準じればよい。 2-2. Second Special Friction Resistance Reduction Ship Manufacturing Method Regarding the second special friction resistance reduction ship manufacturing method as described above, the special friction resistance reduction covered with the coating film formed from the antifouling paint composition described above. What is necessary is just to follow the manufacturing method of a ship (1st special frictional resistance reduction ship).
2−3.塗膜の水中での気体潤滑機能を利用した摩擦抵抗低減効果を予測する方法
本発明に係る塗膜の水中での気体潤滑機能を利用した摩擦抵抗低減効果を予測する方法は、静的水中気泡接触角の測定法により静的水中気泡接触角を測定し、かつ、水中気泡転がり(滑り)角の測定法により水中気泡転がり(滑り)角を測定して、前記静的水中気泡接触角および水中気泡転がり(滑り)角から、塗料組成物から形成される塗膜の、水中での気体潤滑機能を利用した摩擦抵抗低減効果を予測することを特徴とする。 2-3. Method for Predicting Friction Resistance Reduction Effect Utilizing Gas Lubricating Function of Coating Film Underwater Method for predicting frictional resistance reduction effect utilizing gas lubrication function of coating film according to the present invention is a static underwater bubble The static underwater bubble contact angle is measured by the contact angle measurement method, and the underwater bubble roll (slip) angle is measured by the underwater bubble roll (slip) angle measurement method. From the bubble rolling (slip) angle, the effect of reducing the frictional resistance of the coating film formed from the coating composition using the gas lubrication function in water is predicted.
静的水中気泡接触角および水中気泡転がり(滑り)角の測定法は、それぞれ下記の通りであり、静的水中気泡接触角は、塗膜に対する気体の濡れの程度(親和の程度)を表すものであり、気泡の転がり(滑り)角は、塗膜表面における空気の流動のしやすさを表すものである。
<静的水中気泡接触角の測定法>
塗膜が形成されるように塗料組成物を塗装した試験板を水に浸漬し、浸漬後の試験板を塗膜表面が水平かつ該試験板の下側になるように水中に設置し、該塗膜表面に気泡が形成されるように空気を水中に注入して、該塗膜表面に形成された気泡の塗膜表面からの高さa、および、塗膜表面と気泡との接触部の直径bを測定し、下記(1)式より、該塗膜面と気泡との接触角である静的水中気泡接触角(θs、単位:度)を求める。The measurement method of the static underwater bubble contact angle and underwater bubble rolling (slip) angle is as follows, respectively, and the static underwater bubble contact angle represents the degree of gas wetting to the coating film (degree of affinity). The bubble rolling (sliding) angle represents the ease of air flow on the surface of the coating film.
<Measurement method of static underwater bubble contact angle>
The test plate coated with the coating composition is immersed in water so that a coating film is formed, and the immersed test plate is placed in water so that the coating surface is horizontal and below the test plate. Air is injected into water so that bubbles are formed on the coating surface, and the height a of the bubbles formed on the coating surface from the coating surface and the contact portion between the coating surface and the bubbles are The diameter b is measured, and the static underwater bubble contact angle (θ s , unit: degree), which is the contact angle between the coating film surface and the bubble, is obtained from the following formula (1).
<水中気泡転がり(滑り)角の測定法>
上記静的水中気泡接触角の測定法において、気泡の形成された塗膜面を水平面に対して徐々に傾け、気泡が移動し始めた際の塗膜面の、水平面に対する傾斜角度である水中気泡転がり(滑り)角(θm、単位:度)を測定する。<Measurement of underwater bubble rolling (slip) angle>
In the method for measuring the static underwater bubble contact angle, an underwater bubble having an inclination angle with respect to a horizontal plane of a coating film surface when bubbles are gradually tilted with respect to the horizontal plane and the bubble starts to move. Measure the rolling (sliding) angle (θ m , unit: degree).
つまり、これら物性は、上記塗膜の形成された船舶外板の没水部が気体潤滑性に優れる表面を有するか否かを判断する指標となり、静的水中気泡接触角が小さく、かつ、気泡の転がり(滑り)角が小さいものが、より気体潤滑性に優れる。 That is, these physical properties serve as an index for determining whether or not the submerged portion of the ship outer plate on which the coating film is formed has a surface excellent in gas lubricity, the static water bubble contact angle is small, and the bubbles Those having a small rolling (sliding) angle are more excellent in gas lubricity.
本発明に係る上記摩擦抵抗低減効果を評価する方法では、上記2種の測定法の結果、静的水中気泡接触角が90度未満(好ましくは80度以下)であり、かつ、水中気泡転がり(滑り)角が30度未満(好ましくは20度以下)である塗膜は、気体潤滑性に優れ、水中での気体潤滑機能を利用した摩擦抵抗低減効果に優れていると評価される。 In the method for evaluating the frictional resistance reduction effect according to the present invention, as a result of the two kinds of measurement methods, the static underwater bubble contact angle is less than 90 degrees (preferably 80 degrees or less), and underwater bubble rolling ( A coating film having a slip angle of less than 30 degrees (preferably 20 degrees or less) is evaluated to be excellent in gas lubricity and excellent in frictional resistance reduction effect utilizing a gas lubrication function in water.
また、後述する実施例の結果が示すように、本発明に係る上記摩擦抵抗低減効果を評価する方法で評価の高かった塗料は、模型船を用いた水流摩擦抵抗の評価結果でも評価が高く、その逆もまた然りである。 In addition, as shown in the results of Examples to be described later, the paint that was highly evaluated by the method for evaluating the frictional resistance reduction effect according to the present invention has a high evaluation even in the evaluation result of the water flow frictional resistance using a model ship, The reverse is also true.
従って、本発明に係る塗膜の水中での気体潤滑機能を利用した摩擦抵抗低減効果を予測する方法は簡易であり、適切であるので塗膜選択に有効である。
2−4.塗膜の水中での気体潤滑機能を利用した摩擦抵抗低減効果の予測に用いられる装置
本発明に係る塗膜の水中での気体潤滑機能を利用した摩擦抵抗低減効果の予測に用いられる装置(接触角測定装置)は、試験台、傾斜角制御装置、浸漬用容器、観察用装置を具備する。Therefore, the method of predicting the frictional resistance reduction effect using the gas lubrication function in water of the coating film according to the present invention is simple and appropriate, and is effective for selecting a coating film.
2-4. Apparatus used for prediction of frictional resistance reduction effect using gas lubrication function of coating film in water Apparatus used for prediction of frictional resistance reduction effect of coating film according to present invention using gas lubrication function in water The angle measuring device includes a test bench, an inclination angle control device, a dipping container, and an observation device.
上記試験台には、傾斜角制御装置が接続される。
そして、上記試験台は、表面に塗膜が形成された試験板が、該試験板の裏面が該試験台の下面に接するように取り付けられて、水の入った上記浸漬用容器内に、該試験板が浸漬し、該試験板の塗膜表面に気泡を形成した状態で設置される。An inclination angle control device is connected to the test table.
And, the test plate is attached with a test plate having a coating film formed on the surface thereof so that the back surface of the test plate is in contact with the lower surface of the test table. The test plate is immersed and installed in a state in which bubbles are formed on the coating film surface of the test plate.
上記観察用装置は、上記試験板と上記気泡の状態を観測できるように設置される。
気泡の静的水中気泡接触角は、上記試験板が水平のときの上記試験板の塗膜の表面に形成させた気泡の状態を上記観察用装置により観測して、静的水中気泡接触角を測定する。The observation device is installed so that the state of the test plate and the bubbles can be observed.
The static underwater bubble contact angle of bubbles is determined by observing the state of bubbles formed on the surface of the coating film of the test plate when the test plate is horizontal, using the observation device, and calculating the static underwater bubble contact angle. taking measurement.
気泡の水中気泡転がり(滑り)角は、上記傾斜角制御装置により試験板を水平に対して傾斜させて、上記観察用装置により気泡の挙動を観測して、上記試験板の塗膜の表面に形成させて測定する。 The underwater bubble rolling (sliding) angle of the bubbles is determined by inclining the test plate with respect to the horizontal by the inclination angle control device, observing the behavior of the bubbles with the observation device, and applying it to the surface of the coating film on the test plate. Form and measure.
以下、上記接触角測定装置の一例としての図1に示される装置を参照しながら、具体的に説明する。
図1に示される装置においては、表面に塗膜が形成された試験板6を取り付ける試験台5が、回転駆動ハンドル4を含む傾斜角制御機構に連結され、回転駆動ハンドル4を回転させることで、試験台5の水平に対する傾斜角が制御される。角度計3により角度が測定される。該試験台5は、該試験台5を水中に設置できるように設計された浸漬用容器7によって、水中に設置されている。図1に示される装置においては、浸漬用容器7の少なくとも一部または全てが透過性のある部材(例えば、アクリル製、ガラス製)で構成され、浸漬用容器7の外部から試験台5や該試験板6に形成された気泡の様子が観測できる。上記試験板6は、塗膜が形成された表面が上記試験板台5の下側を向くように、上記試験台5の下側に取り付けられる。Hereinafter, a specific description will be given with reference to the apparatus shown in FIG. 1 as an example of the contact angle measuring apparatus.
In the apparatus shown in FIG. 1, a test table 5 to which a
試験板6の塗膜表面への気泡の形成は、例えばシリンジ2を用いて行えばよい。
気泡の観察はカメラ1を用いて行う。気泡の観察は肉眼で行うこともできるが、カメラ1を用いるとより正確に気泡の挙動を観測することができる。Formation of bubbles on the coating film surface of the
Bubbles are observed using the camera 1. Although the observation of bubbles can be performed with the naked eye, the behavior of the bubbles can be observed more accurately by using the camera 1.
静的水中気泡接触角の測定および水中気泡転がり(滑り)角は、前述の通りに行えばよいが、試験板の種類、塗膜の乾燥膜厚、浸漬時間、気泡の体積などは、目的に応じて適宜設定することもできる。 The measurement of the static underwater bubble contact angle and underwater bubble rolling (sliding) angle may be carried out as described above, but the type of test plate, dry film thickness of coating film, immersion time, bubble volume, etc. It can also be set as appropriate.
その場合、目的にもよるが、試験板の種類としては塩ビ板が挙げられ、塗膜の乾燥膜厚は通常50〜500μmの範囲であり、浸漬時間は通常1〜180日の範囲であり、気泡の体積としては通常0.1〜3ccの範囲である。また、上記試験板としては、JIS B 0601に準拠して測定された最大高さが1μm以下のものを用いる。 In that case, depending on the purpose, the type of test plate includes a vinyl chloride plate, the dry film thickness of the coating is usually in the range of 50 to 500 μm, the immersion time is usually in the range of 1 to 180 days, The volume of the bubbles is usually in the range of 0.1 to 3 cc. Further, as the test plate, one having a maximum height of 1 μm or less measured according to JIS B 0601 is used.
3.第三群
3−1.特殊摩擦抵抗低減船舶に用いられる摩擦抵抗低減システム(第一および第二の摩擦抵抗低減システム)および該システムを具備する特殊摩擦抵抗低減船舶(第三および第四の摩擦抵抗低減船舶)
本発明に係る特殊摩擦抵抗低減船舶に用いられる第一および第二の摩擦抵抗低減システムは、それぞれ第一の塗膜(防汚塗膜)および第二の塗膜と、該第一の塗膜または第二の塗膜の表面に気体を供給する気体供給装置とを具備する。 3. Third group
3-1. Friction resistance reduction system (first and second friction resistance reduction system) used for special friction resistance reduction ship and special friction resistance reduction ship (third and fourth friction resistance reduction ship) equipped with the system
The first and second frictional resistance reduction systems used in the special frictional resistance reducing ship according to the present invention are the first coating film (antifouling coating film) and the second coating film, respectively, and the first coating film. Or a gas supply device for supplying gas to the surface of the second coating film.
このような摩擦抵抗低減システムは、上述のように摩擦抵抗低減性能に優れる特定の物性を有する塗膜または上記防汚塗膜の表面に気体供給装置より空気などの気体が供給されるため、特殊摩擦抵抗低減船舶の摩擦抵抗を大きく低減することができる。 Such a frictional resistance reduction system is special because, as described above, gas such as air is supplied from the gas supply device to the surface of the coating film having specific properties excellent in the frictional resistance reduction performance or the antifouling coating film. Friction resistance reduction The frictional resistance of a ship can be greatly reduced.
気体供給装置や用いられる気体に関しては、前述の通りである。
また、そのような第一および第二の摩擦抵抗低減システムをそれぞれ具備する第三および第四の特殊摩擦抵抗低減船舶は、上述のシステムにより、該船舶の水中での摩擦抵抗が大きく低減されるので、空気などの気体の供給に大きな動力を導入せずとも流体摩擦抵抗低減効果が大きく、経済的であり、環境に与える影響が少ない。
The gas supply device and the gas used are as described above.
In addition, the third and fourth special frictional resistance reduction ships equipped with such first and second frictional resistance reduction systems, respectively, greatly reduce the frictional resistance of the ship in water by the above-described system. Therefore, the effect of reducing fluid frictional resistance is great without introducing large power into the supply of gas such as air, and it is economical and has little impact on the environment.
以下、実施例を参照しながら本発明をさらに詳細に説明するが、本発明はこれら実施例に何ら限定されるものではない。なお、特に断りがない場合は、圧力条件は常圧(約0.1013MPa)であり、温度条件は常温(約25℃)である。 EXAMPLES Hereinafter, although this invention is demonstrated further in detail, referring an Example, this invention is not limited to these Examples at all. Unless otherwise noted, the pressure condition is normal pressure (about 0.1013 MPa), and the temperature condition is room temperature (about 25 ° C.).
下記各実施例、比較例で行った各種試験の詳細は次の通りである。
<塗膜表面粗度の測定>
JIS B 0601に準拠し、触針式表面粗度計(ハンディサーフE−35A、東京精密社製)を用いて、各塗膜の表面状態を測定した。Details of various tests conducted in the following examples and comparative examples are as follows.
<Measurement of coating film surface roughness>
In accordance with JIS B 0601, the surface state of each coating film was measured using a stylus type surface roughness meter (Handy Surf E-35A, manufactured by Tokyo Seimitsu Co., Ltd.).
<接触角および転がり(滑り)角の経時変化の計測>
後述の実施例で製造した塗料組成物を、50×50×2 mmの硬質ポリ塩化ビニル板(JIS B 0601に準拠して測定された最大高さが1μm以下)に乾燥膜厚が150μmになるように塗装し、室温で5日間乾燥させて、試験板を作製した。該試験板を円筒型の回転浸漬槽の内壁に取り付け、該試験板に形成された塗膜を浸漬処理した。水中でその中心部を回転(周速度15ノット)させ、水流を発生させた。該試験板に形成された塗膜の静的水中気泡接触角および水中気泡転がり(滑り)角は、浸漬前、浸漬14日後、浸漬30日後の時点で、「接触角測定装置」を用いて以下の通り測定した(図1〜図4も参照)。<Measurement of changes over time in contact angle and rolling (slip) angle>
The coating composition produced in the examples described later is dried on a 50 × 50 × 2 mm hard polyvinyl chloride plate (maximum height measured in accordance with JIS B 0601 is 1 μm or less) to 150 μm. And dried at room temperature for 5 days to prepare a test plate. The test plate was attached to the inner wall of a cylindrical rotary dipping bath, and the coating film formed on the test plate was dipped. The center part was rotated in the water (
(静的水中気泡接触角の測定)
上述の浸漬前あるいは特定期間浸漬後の試験板を、塗膜表面が水平かつ該試験板の下側になるように、試験台5に取り付けて水中に設置した。シリンジ2を使用して、該塗膜表面に気泡が1つ形成されるように0.1ccの空気を水中に注入した。側面よりカメラ1(ビデオマイクロスコープ)を用いて観察し、該塗膜表面に形成された気泡の塗膜表面からの高さa、および、塗膜表面と気泡との接触部直径bを測定し、下記(1)式より、該塗膜面と気泡の接触角を求めた(以上、図1、図2参照)。この角度が静的水中気泡接触角(θs)であり、塗膜表面と空気泡との親和性が評価できる。このθsが小さければ小さいほど塗膜表面と空気との親和性は大きい。 (Measurement of static underwater bubble contact angle)
The test plate before immersion or after immersion for a specific period was attached to the test table 5 and placed in water so that the coating surface was horizontal and below the test plate. Using syringe 2, 0.1 cc of air was injected into water so that one bubble was formed on the surface of the coating film. Observe from the side using the camera 1 (video microscope), and measure the height a of the bubbles formed on the coating surface from the coating surface and the contact portion diameter b between the coating surface and the bubbles. From the following formula (1), the contact angle between the coating surface and the bubbles was determined (see FIGS. 1 and 2). This angle is the static underwater bubble contact angle (θ s ), and the affinity between the coating film surface and air bubbles can be evaluated. The smaller this θ s, the greater the affinity between the coating film surface and air.
(水中気泡転がり(滑り)角の測定)
上記静的水中気泡接触角の測定と同様の条件で塗膜表面に気泡が形成されるように0.1ccの空気を水中に注入し、次いで、回転駆動ハンドル4を回して除々に塗膜面を水平面に対して徐々に傾けて、気泡が移動し始めた際の角度を測定した(図1、図3参照)。この角度が水中気泡転がり(滑り)角(θm)であり、塗膜面上での空気泡の流動性が評価できる。このθm が小さければ小さいほど流動性は良い。 (Measurement of underwater bubble rolling (slip) angle)
0.1 cc of air is injected into the water so that bubbles are formed on the surface of the coating film under the same conditions as the measurement of the static underwater bubble contact angle, and then the rotation driving handle 4 is turned to gradually increase the coating surface. Was gradually tilted with respect to the horizontal plane, and the angle when the bubbles started to move was measured (see FIGS. 1 and 3). This angle is the underwater bubble rolling (sliding) angle (θ m ), and the fluidity of the air bubbles on the coating surface can be evaluated. The smaller θ m is, the better the fluidity is.
<静置防汚性試験方法>
100mm×300mm×2.3mmのサンドブラスト鋼板にエポキシ系ジンクリッチプライマー(中国塗料(株)製「エピコンジンクリッチプライマーB−2」)、エポキシ系防食塗料(中国塗料(株)製「バンノー500」)、ウレタン樹脂系防食塗料(中国塗料(株)製「CMPバイオクリンSG」)を、それぞれ乾燥膜厚が20μm、150μm、100μmとなるように、エアースプレーを用いて前記の順番で重ね塗りした。ウレタン樹脂系防食塗料から形成されたウレタン系バインダーコート表面上に、後述の実施例で製造した防汚塗料組成物を、その乾燥膜厚が100μm〜200μmとなるよう塗装し、試験板を作製した。得られた試験板を、一週間室内(室温20℃、相対湿度60%)で乾燥処理した後、広島湾内に設置された筏より水面下1mとなるように浸漬し、上記試験板の塗膜表面の1、3、6、12ヶ月間の生物付着状況を目視観察した。 <Standing antifouling test method>
Epoxy zinc rich primer ("Epicon zinc rich primer B-2" manufactured by China Paint Co., Ltd.), epoxy anticorrosive paint ("Banno 500" manufactured by China Paint Co., Ltd.) on 100mm x 300mm x 2.3mm sandblasted steel plate The urethane resin anticorrosive paint (“CMP Bioclin SG” manufactured by China Paint Co., Ltd.) was repeatedly applied in the order described above using air spray so that the dry film thicknesses were 20 μm, 150 μm, and 100 μm, respectively. On the surface of the urethane binder coating formed from the urethane resin anticorrosive paint, the antifouling paint composition produced in the examples described later was applied so that the dry film thickness was 100 μm to 200 μm, and a test plate was prepared. . The obtained test plate was dried in a room (
評価は、海中生物の付着面積(%)を目視観察にて行った。
評価基準は、表3に記載の通りとした。
<動的防汚性試験方法>
広島県呉市の海水中に設置した回転ドラムの側面に取り付け可能なように曲げ加工が施され、サイズが(縦)170mm×(横)70mm×(厚さ)2.3mmであるサンドブラスト鋼板を用意した。このサンドブラスト鋼板に、エポキシ系ジンクリッチプライマー(中国塗料(株)製「エピコンジンクリッチプライマーB−2」)、エポキシ系防食塗料(中国塗料(株)製「バンノー500」)、ウレタン樹脂系防食塗料(中国塗料(株)製「CMPバイオクリンSG」)を、それぞれ乾燥膜厚が20μm、150μm、100μmとなるように、エアースプレーを用いて前記の順番で重ね塗りした。ウレタン樹脂系防食塗料から形成されたウレタン系バインダーコート表面上に、後述の実施例で製造した防汚塗料組成物をその乾燥膜厚が100μm〜200μmとなるよう塗装し、試験板を作製した。得られた試験板を一週間室内(室温20℃、相対湿度60%)で乾燥処理した後、上記回転ドラムに取り付けて周速15ノットにて回転浸漬し、上記試験板の塗膜表面の1、3、6、12ヶ月間の動的環境における生物付着状況を目視観察した。Evaluation was made by visual observation of the adhesion area (%) of marine organisms.
Evaluation criteria were as shown in Table 3.
<Dynamic antifouling test method>
A sandblasted steel plate that is bent so that it can be attached to the side of a rotating drum installed in seawater in Kure City, Hiroshima Prefecture, and has a size of (vertical) 170 mm x (horizontal) 70 mm x (thickness) 2.3 mm Prepared. Epoxy zinc rich primer ("Epicon Zinc Rich Primer B-2" manufactured by China Paint Co., Ltd.), epoxy anticorrosive paint ("Banno 500" manufactured by China Paint Co., Ltd.), urethane resin anticorrosive paint (“CMP Bioclin SG” manufactured by China Paint Co., Ltd.) was overcoated in the order described above using air spray so that the dry film thicknesses were 20 μm, 150 μm, and 100 μm, respectively. The antifouling paint composition produced in the examples described later was applied onto the surface of the urethane binder coat formed from the urethane resin anticorrosive paint so that the dry film thickness was 100 μm to 200 μm to prepare a test plate. The obtained test plate was dried in a room (
<水流摩擦抵抗の計測>
図4に示す模型船(全長2.8m、型幅0.24m、型深0.14m)の船底部に、後述の実施例で製造した防汚塗料組成物を塗装した試験板(長さ2.05m、幅0.24m、面積0.492m2、基材:アルミ板(A5052P))を、塗膜表面が表になるように取り付ける。その試験板の塗膜部を試験塗膜部9とした。次いで、垂直循環型回流水槽(計測部寸法:長さ8m、幅1.5m、水深1.2m)を用いて、水(12℃)の流速が特定の速度となる条件下で、上記試験板が取り付けられた船底部(試験塗膜部9)へ上記模型船の船底部に設置された空気噴出し口8から特定の相当空気厚さ(ta:mm)の空気を噴き出した場合と噴き出さない場合の船体の摩擦抵抗を、浸漬前と浸漬後特定の期間を経た後に計測した。空気はコンプレッサーからの圧縮空気を流量制御し、試験板の前縁に設けた配列多孔板(2mm径×46個孔)より噴き出した。次いで、各水流速と各空気流量における全抵抗低減率(ηT)、試験板部分の摩擦抵抗低減率(ηF)を下記(2)、(3)式に従い求めた。浸漬前後の摩擦抵抗低減率の差は、浸漬前の摩擦抵抗低減率から30日間浸漬後の摩擦抵抗低減率を差し引いて求めた。 <Measurement of water friction resistance>
A test plate (length 2) coated with the antifouling paint composition produced in the examples described later on the bottom of the model ship (total length 2.8 m, mold width 0.24 m, mold depth 0.14 m) shown in FIG. 0.05 m, width 0.24 m, area 0.492 m 2 , base material: aluminum plate (A5052P)) is attached so that the coating film surface becomes the front. The coating film part of the test plate was designated as test
<防汚塗料組成物の製造>
[製造例1]
分子鎖両末端がシラノール基で封鎖され、25℃における粘度が700mm2/sのジメチルポリシロキサン(モメンティブ社製、XF3905)900重量部と、比表面積が200m2/gであり表面が疎水化処理されたヒュームドシリカ(日本アエロジル社製、R−972)100重量部を、撹拌混合機(ダルトン社製、5NDMV)を用いて150℃で2時間均一に混合して、ベースコンパウンド1を得た。ベースコンパウンド1の粘度は、1530mm2/sであった。 <Manufacture of antifouling paint composition>
[Production Example 1]
Both ends of the molecular chain are blocked with silanol groups, 900 parts by weight of dimethylpolysiloxane (XF3905, manufactured by Momentive Co., Ltd.) having a viscosity of 700 mm 2 / s at 25 ° C., a specific surface area of 200 m 2 / g, and the surface is hydrophobized. 100 parts by weight of fumed silica (produced by Nippon Aerosil Co., Ltd., R-972) was uniformly mixed at 150 ° C. for 2 hours using a stirring mixer (manufactured by Dalton Co., 5NDMV) to obtain a base compound 1. . The viscosity of the base compound 1 was 1530 mm 2 / s.
[製造例2〜4]
製造例1において、分子鎖両末端がシラノール基で封鎖されたジメチルポリシロキサンとして、YF3057(粘度:3000mm2/s、モメンティブ社製)、YF3807(粘度:20000mm2/s、モメンティブ社製)及びYF3802(粘度:80000mm2/s、モメンティブ社製)を用いた以外は製造例1と同様にしてベースコンパウンド2、3及び4を得た。ベースコンパウンド2、3の粘度は、それぞれ順に、8670mm2/s、46000mm2/sであった。ベースコンパウンド4は、高粘度のため、粘度測定はできなかった。[Production Examples 2 to 4]
In Production Example 1, YF3057 (viscosity: 3000 mm 2 / s, manufactured by Momentive), YF3807 (viscosity: 20000 mm 2 / s, manufactured by Momentive) and YF3802 were used as dimethylpolysiloxanes having both molecular chain ends blocked with silanol groups. Base compounds 2, 3 and 4 were obtained in the same manner as in Production Example 1 except that (viscosity: 80000 mm 2 / s, manufactured by Momentive) was used. The viscosity of the
[実施例1]
製造例1で得られた100重量部のベースコンパウンド1、10重量部のシリコーンオイルKF−50−3000(商品名「KF−50−3000」、信越化学工業社製、メチルフェニルシリコーンオイル)、顔料である12重量部の酸化チタン(商品名「R−5N」、堺化学(株)製)、顔料である1.5重量部の黒色酸化鉄(商品名「KN320」、戸田工業(株)製)を、ガラスビーズをメディアとしたペイントシェーカーに仕込んで1時間振とうした後、得られた混合物を120メッシュのフィルターでろ過して組成物(I液)を調製した。[Example 1]
100 parts by weight of base compound 1 obtained in Production Example 1, 10 parts by weight of silicone oil KF-50-3000 (trade name “KF-50-3000”, manufactured by Shin-Etsu Chemical Co., Ltd., methylphenyl silicone oil), pigment 12 parts by weight of titanium oxide (trade name “R-5N”, manufactured by Sakai Chemical Co., Ltd.), 1.5 parts by weight of black iron oxide (trade name “KN320”, manufactured by Toda Kogyo Co., Ltd.) ) Was placed in a paint shaker using glass beads as a medium and shaken for 1 hour, and then the resulting mixture was filtered through a 120 mesh filter to prepare a composition (liquid I).
塗装直前に、上記I液123.5重量部、II液としてエチルシリケート(商品名「TES40WN」旭化成ワッカーシリコーン(株)製、エチルシリケートオリゴマー)5重量部及びIII液としてスズ触媒(商品名「GLECK TL」、DIC(株)製、ジブチルチンジラウレート、10%キシレン溶液)10重量部を、I液とII液を充分混合した後、III液を加えて撹拌することで防汚塗料組成物を調製した。 Immediately before coating, 123.5 parts by weight of the above liquid I, ethyl silicate (trade name “TES40WN”, manufactured by Asahi Kasei Wacker Silicone Co., Ltd., ethyl silicate oligomer) as liquid II, and tin catalyst (trade name “GLECK” as liquid III) TL ", manufactured by DIC Corporation, dibutyltin dilaurate, 10% xylene solution) 10 parts by weight were mixed well with liquid I and liquid II, and then liquid III was added and stirred to prepare an antifouling paint composition. did.
得られた防汚塗料組成物について、下記表1、3〜6に示す条件下で、上述の各種試験を行った。
結果を表1、4〜6に示す。About the obtained antifouling paint composition, the above-mentioned various tests were performed under the conditions shown in the following Tables 1 and 3-6.
The results are shown in Tables 1 and 4-6.
[実施例2〜10]
表1に示すように各成分の種類と配合量を換えた以外は、実施例1と同様にして、防汚塗料組成物を調製した。[Examples 2 to 10]
As shown in Table 1, an antifouling coating composition was prepared in the same manner as in Example 1 except that the types and amounts of the components were changed.
得られた防汚塗料組成物について、下記表1、3〜6に示す条件下で、上述の各種試験を行った。
結果を表1、4〜6に示す。About the obtained antifouling paint composition, the above-mentioned various tests were performed under the conditions shown in the following Tables 1 and 3-6.
The results are shown in Tables 1 and 4-6.
[実施例11]
反応型オルガノポリシロキサンKE−445(商品名「KE−445」、信越化学工業社製、脱オキシム型オルガノポリシロキサン、粘度:4500mm2/s)100重量部、シリコーンオイルKF−50−100(商品名「KF−50−100」、信越化学工業社製、メチルフェニルシリコーンオイル)40重量部及びKF−50−3000(商品名「KF−50−3000」、信越化学工業社製、メチルフェニルシリコーンオイル)22重量部、キシレン20重量部を、ガラスビーズをメディアとしたペイントシェーカーに仕込み1時間振とうした後、120メッシュのフィルターにてろ過して防汚塗料組成物を調製した。[Example 11]
Reactive organopolysiloxane KE-445 (trade name “KE-445”, manufactured by Shin-Etsu Chemical Co., Ltd., deoxime organopolysiloxane, viscosity: 4500 mm 2 / s) 100 parts by weight, silicone oil KF-50-100 (product Name "KF-50-100", manufactured by Shin-Etsu Chemical Co., Ltd., methyl phenyl silicone oil) 40 parts by weight and KF-50-3000 (trade name "KF-50-3000", manufactured by Shin-Etsu Chemical Co., Ltd., methyl phenyl silicone oil) ) 22 parts by weight and 20 parts by weight of xylene were charged in a paint shaker using glass beads as a medium, shaken for 1 hour, and then filtered through a 120 mesh filter to prepare an antifouling paint composition.
得られた防汚塗料組成物について、下記表1、3〜6に示す条件下で、上述の各種試験を行った。
結果を表1、4〜6に示す。About the obtained antifouling paint composition, the above-mentioned various tests were performed under the conditions shown in the following Tables 1 and 3-6.
The results are shown in Tables 1 and 4-6.
[比較例1]
<超撥水性塗膜1>
超撥水性塗膜1としては、フッ素樹脂LF−200(商品名「ルミフロンLF−200」、旭硝子(株)製、フッ素系ポリオール)12.6重量部、フッ素パウダーL−2(商品名「ルブロンL−2」、ダイキン工業(株)製、低分子量四フッ化エチレン系超微粉末)24.2重量部、添加剤SF−1265−1000(商品名「SF−1265−1000」、東レ・ダウ製、フッ素化シリコーンオイル)1.8重量部、酢酸ブチル60.6重量部及び硬化促進剤としてスズ触媒(商品名「GLECK TL」DIC(株)製、ジブチルチンジラウレート、0.1%キシレン溶液)0.8重量部を、ガラスビーズをメディアとしたペイントシェーカーに仕込み1時間振とうした後、得られた混合物を60メッシュのフィルターでろ過して超撥水性塗料組成物を調製した。[Comparative Example 1]
<Super water-repellent coating film 1>
As the super water-repellent coating film 1, 12.6 parts by weight of fluorine resin LF-200 (trade name “Lumiflon LF-200”, manufactured by Asahi Glass Co., Ltd., fluorine polyol), fluorine powder L-2 (trade name “Lublon”) L-2 ", Daikin Industries, Ltd., low molecular weight tetrafluoroethylene ultrafine powder) 24.2 parts by weight, additive SF-1265-1000 (trade name" SF-1265-1000 ", Toray Dow Manufactured, fluorinated silicone oil) 1.8 parts by weight, butyl acetate 60.6 parts by weight and tin catalyst (trade name "GLECK TL" manufactured by DIC Corporation, dibutyltin dilaurate, 0.1% xylene solution) ) Charge 0.8 parts by weight into a paint shaker using glass beads as a medium, shake for 1 hour, and filter the resulting mixture through a 60 mesh filter for super water repellency. The charge composition was prepared.
塗装直前に上記超撥水性塗料組成物100重量部、硬化剤としてDN−980(商品名「バーノックDN−980、DIC(株)製、イソシアヌレート型ポリイソシアネート」)1.7重量部を混合して超撥水性塗料組成物を調製した。 Immediately before coating, 100 parts by weight of the super water-repellent coating composition and 1.7 parts by weight of DN-980 (trade name “Bernock DN-980, manufactured by DIC Corporation, isocyanurate type polyisocyanate”) as a curing agent are mixed. Thus, a super water-repellent coating composition was prepared.
得られた防汚塗料組成物について、下記表1、3〜6に示す条件下で、上述の各種試験を行った。
結果を表1、4〜6に示す。About the obtained antifouling paint composition, the above-mentioned various tests were performed under the conditions shown in the following Tables 1 and 3-6.
The results are shown in Tables 1 and 4-6.
[比較例2]
<超撥水性塗膜2>
超撥水性塗膜2としては、アクリル樹脂TZ−343(商品名「アクリディックTZ−343」、DIC(株)製)34.7重量部、疎水性微粉シリカ(商品名「Nipsil SS−70」東ソー・シリカ(株)製)19.6重量部、キシレン44.3重量部を、ガラスビーズをメディアとしたペイントシェーカーに仕込み1時間振とうし、次いで、更に添加剤(商品名「ディスパロンA630−20X」楠本化成(株)製)1.4重量部を加えて15分間振とうした後、得られた混合物を60メッシュのフィルターでろ過して超撥水性塗料組成物を調製した。[Comparative Example 2]
<Super water-repellent coating film 2>
As the super water-repellent coating film 2, acrylic resin TZ-343 (trade name “Acridick TZ-343”, manufactured by DIC Corporation) 34.7 parts by weight, hydrophobic fine silica (trade name “Nipsil SS-70”) 19.6 parts by weight of Tosoh Silica Co., Ltd. and 44.3 parts by weight of xylene were placed in a paint shaker using glass beads as a medium and shaken for 1 hour, and then an additive (trade name “DISPARON A630- After adding 1.4 parts by weight of “20X” (Enomoto Kasei Co., Ltd.) and shaking for 15 minutes, the resulting mixture was filtered through a 60-mesh filter to prepare a super water-repellent coating composition.
得られた防汚塗料組成物について、下記表1、3〜6に示す条件下で、上述の各種試験を行った。
結果を表1、4〜6に示す。About the obtained antifouling paint composition, the above-mentioned various tests were performed under the conditions shown in the following Tables 1 and 3-6.
The results are shown in Tables 1 and 4-6.
[比較例3]
<アルミ板>
無塗装板として、耐食アルミ板(材質A5052P)を供試し、該耐食アルミ板について、下記表1、3〜6に示す条件下で、上述の各種試験を行った。[Comparative Example 3]
<Aluminum plate>
A corrosion-resistant aluminum plate (material A5052P) was used as an uncoated plate, and the various tests described above were performed on the corrosion-resistant aluminum plate under the conditions shown in Tables 1 and 3-6 below.
結果を表1、4〜6に示す。
なお、下記表1において、配合量は重量部で表されている。
また、下記表4〜6において、Rt0(空気を噴き出さない場合の船体の全抵抗)およびRt(空気を噴き出した場合の船体の全抵抗)は[kgf]で表され、ηT(全抵抗低減率)およびηF(摩擦抵抗低減率)は[%]で表されている。The results are shown in Tables 1 and 4-6.
In Table 1 below, the compounding amount is expressed in parts by weight.
In Tables 4 to 6 below, R t0 (total resistance of the hull when air is not blown out) and R t (total resistance of the hull when air is blown out) are expressed in [kgf] and ηT (total Resistance reduction rate) and ηF (friction resistance reduction rate) are expressed in [%].
また、図5には、相当空気厚さtaと摩擦抵抗低減率の関係(浸漬前と浸漬30日後の比較)を示す。 FIG. 5 shows the relationship between the equivalent air thickness ta and the frictional resistance reduction rate (comparison before immersion and 30 days after immersion).
上記表1に記載の原料の略称は表2の通りであり、防汚試験の評価基準は表3に記載の通りである。 The abbreviations of the raw materials described in Table 1 are as shown in Table 2, and the evaluation criteria for the antifouling test are as shown in Table 3.
表1、4〜6に示されるように、オルガノポリシロキサンが主成分である実施例1〜11の組成物より得られる塗膜は無塗装アルミ板(比較例3)に比べて、水中気泡接触角が小さく(90度未満)、転がり或は滑り角も小さく、これらの角度の水中浸漬での経時変化も少なかった。比較例1、2は何れも水中浸漬での経時変化が大きく、親水性化して空気との親和性は消失した。これらの水流抵抗低減率は実施例1〜11が比較例1、2に比べて大きかった。 As shown in Tables 1 and 4-6, the coating film obtained from the compositions of Examples 1 to 11 containing organopolysiloxane as a main component was in contact with bubbles in water as compared to the uncoated aluminum plate (Comparative Example 3). The angle was small (less than 90 degrees), the rolling or sliding angle was small, and there was little change with time in immersion in water at these angles. In Comparative Examples 1 and 2, there was a great change over time in immersion in water, and hydrophilicity was lost and the affinity with air disappeared. In these water flow resistance reduction rates, Examples 1 to 11 were larger than Comparative Examples 1 and 2.
表6及び図5に示されるように、実施例の組成物より得られる塗膜は、無塗装アルミ板(比較例3)と比較して、少ない空気量(ta=1.0mm)において、摩擦低減効果を発現しており、空気を発生させるエネルギーを小さくすることが可能であり、船舶の正味のエネルギー低減に有効である。 As shown in Table 6 and FIG. 5, the coating film obtained from the composition of the example is frictionless with a small amount of air (ta = 1.0 mm) as compared with the uncoated aluminum plate (Comparative Example 3). The reduction effect is expressed, and it is possible to reduce the energy for generating air, which is effective in reducing the net energy of the ship.
表6及び図5に示されるように、実施例の組成物より得られる塗膜は、浸漬前後で摩擦抵抗低減率の変化は、超撥水性塗膜1、2(比較例1、2)に比べて、明らかにその変化量は小さい。 As shown in Table 6 and FIG. 5, the coating film obtained from the composition of the example shows a change in the frictional resistance reduction rate before and after the immersion in the super water-repellent coating films 1 and 2 (Comparative Examples 1 and 2). In comparison, the amount of change is clearly small.
防汚性試験においても、表1、3に示されるように、実施例1〜11の組成物は浸漬期間12ヶ月で汚損は認められなかったが、比較例1,2の組成物は超撥水塗膜にもかかわらず顕著に汚損が認められ、防汚塗料としての機能も十分ではなかった。 Also in the antifouling test, as shown in Tables 1 and 3, the compositions of Examples 1 to 11 showed no fouling in the immersion period of 12 months, but the compositions of Comparative Examples 1 and 2 were super repellent. Despite the water paint film, significant fouling was observed, and the function as an antifouling paint was not sufficient.
本発明の特殊摩擦抵抗低減船舶は、効率的な気体潤滑効果が発現して、供給する空気の量が少量でも船体の摩擦抵抗が効率よく低減され、省エネ効果も大きい。
本発明の特殊摩擦抵抗低減船舶に用いられる防汚塗料組成物は、少量の気体の供給でも効率よく船体の摩擦抵抗を低減できる塗膜を形成することができ、省エネ効果も大きい。さらに、該防汚塗料組成物から形成される塗膜は、優れた防汚性を発揮して、水中生物などの付着による船体の摩擦抵抗の増大を防止することができる。しかも、該防汚塗料組成物は、それら効果を長期間にわたって維持することができる。The special frictional resistance reduction ship of the present invention exhibits an efficient gas lubrication effect, and even if the amount of air supplied is small, the frictional resistance of the hull is efficiently reduced, and the energy saving effect is also great.
The antifouling paint composition used in the special frictional resistance-reducing ship of the present invention can form a coating film that can efficiently reduce the frictional resistance of the hull even by supplying a small amount of gas, and has a great energy saving effect. Furthermore, the coating film formed from the antifouling coating composition exhibits excellent antifouling properties and can prevent an increase in the frictional resistance of the hull due to adhesion of aquatic organisms. Moreover, the antifouling coating composition can maintain these effects over a long period of time.
本発明の上記特殊摩擦抵抗低減船舶の製造方法は、上記防汚塗料組成物から形成される防汚塗膜を船舶外板の没水面に形成するという簡易な方法で、上記効果を奏する特定船舶を製造することができる。 The method for manufacturing a ship with reduced special friction resistance according to the present invention is a specific ship that exhibits the above effect by a simple method of forming an antifouling coating film formed from the antifouling paint composition on a submerged surface of a ship outer plate. Can be manufactured.
本発明の上記摩擦抵抗低減効果を予測する方法は、簡便かつ低コストな設備や手法により、上記摩擦抵抗低減効果を予測することができる。
よって、本発明の特殊摩擦抵抗低減船舶、特殊摩擦抵抗低減船舶に用いられる防汚塗料組成物および特殊摩擦抵抗低減船舶の製造方法は、いずれも、摩擦抵抗低減が要求される各種船舶に利用することができ、海上輸送などの分野で利用できる。The method for predicting the frictional resistance reduction effect of the present invention can predict the frictional resistance reduction effect by a simple and low-cost facility or technique.
Therefore, the antifouling paint composition used for the special frictional resistance-reducing ship, the special frictional resistance-reducing ship of the present invention, and the method for manufacturing the special frictional resistance-reducing ship are both used for various ships that require reduced frictional resistance. Can be used in fields such as maritime transportation.
1 カメラ
2 シリンジ
3 角度計
4 回転駆動ハンドル
5 試験台
6 試験板
7 浸漬用容器
8 空気噴出し口
9 試験塗膜部
DESCRIPTION OF SYMBOLS 1 Camera 2
Claims (16)
(C)25℃において液状またはグリース状である疎水性材料(但し、上記オルガノポリシロキサン(A)および下記オルガノシラン及び/又はその部分縮合物(B)を除く)と、
必要に応じて、(B)ヒドロキシ基および加水分解性基のうちの少なくとも1つの基を1分子中に少なくとも2個有するオルガノシラン及び/又はその部分縮合物とを含有することを特徴とする、
気体を供給する気体供給装置を具備し、水中での気体潤滑機能を利用する摩擦抵抗低減船舶に用いられる防汚塗料組成物。 (A) a reaction-curable organopolysiloxane having a viscosity at 25 ° C. of 20 to 400,000 mm 2 / s;
(C) a hydrophobic material that is liquid or grease-like at 25 ° C. (excluding the organopolysiloxane (A) and the following organosilane and / or its partial condensate (B));
Optionally containing (B) an organosilane having at least two hydroxyl groups and hydrolyzable groups in one molecule and / or a partial condensate thereof.
An antifouling paint composition for use in a ship having a reduced frictional resistance , comprising a gas supply device for supplying gas and utilizing a gas lubrication function in water.
<静的水中気泡接触角の測定法>
乾燥膜厚が150μmの塗膜が形成されるように塗料組成物を塗装した硬質ポリ塩化ビニル試験板(JIS B 0601に準拠して測定された最大高さが1μm以下)を30日間25℃の水に浸漬し、浸漬30日後の硬質ポリ塩化ビニル試験板を塗膜表面が水平かつ該試験板の下側になるように水中に設置し、該塗膜表面に気泡が1つ形成されるように0.1ccの空気を水中に注入して、該塗膜表面に形成された気泡の塗膜表面からの高さa、および、塗膜表面と気泡との接触部の直径bを測定し、下記(1)式より、該塗膜面と気泡との接触角である静的水中気泡接触角(θs、単位:度)を求める;
上記静的水中気泡接触角の測定法において、気泡の形成された塗膜面を水平面に対して徐々に傾け、気泡が移動し始めた際の塗膜面の、水平面に対する傾斜角度である水中気泡転がり(滑り)角(θm、単位:度)を測定する。 The static underwater bubble contact angle measured by the following static underwater bubble contact angle measurement method is less than 90 degrees, and the underwater bubble rolling (slip) angle measured by the following underwater bubble rolling (slip) angle measurement method is 30 degrees. The antifouling coating film according to claim 4 or 5, wherein:
<Measurement method of static underwater bubble contact angle>
A hard polyvinyl chloride test plate (maximum height measured in accordance with JIS B 0601 of 1 μm or less) coated with a coating composition so that a coating film having a dry film thickness of 150 μm is formed at 25 ° C. for 30 days. Immerse in water and place the hard polyvinyl chloride test plate 30 days after immersion in water so that the coating surface is horizontal and below the test plate, so that one bubble is formed on the coating surface 0.1 cc of air was injected into the water, and the height a of the bubbles formed on the coating surface from the coating surface and the diameter b of the contact portion between the coating surface and the bubbles were measured. From the following formula (1), a static underwater bubble contact angle (θ s , unit: degree), which is a contact angle between the coating film surface and bubbles, is obtained;
In the method for measuring the static underwater bubble contact angle, an underwater bubble having an inclination angle with respect to a horizontal plane of a coating film surface when bubbles are gradually tilted with respect to the horizontal plane and the bubble starts to move. Measure the rolling (sliding) angle (θ m , unit: degree).
気体を供給する気体供給装置を具備し、水中での気体潤滑機能を利用する摩擦抵抗低減船舶に用いられる請求項1〜3のいずれかに記載の塗料組成物:
<静的水中気泡接触角の測定法>
乾燥膜厚が150μmの塗膜が形成されるように塗料組成物を塗装した硬質ポリ塩化ビニル試験板(JIS B 0601に準拠して測定された最大高さが1μm以下)を30日間25℃の水に浸漬し、浸漬30日後の硬質ポリ塩化ビニル試験板を塗膜表面が水平かつ該試験板の下側になるように水中に設置し、該塗膜表面に気泡が1つ形成されるように0.1ccの空気を水中に注入して、該塗膜表面に形成された気泡の塗膜表面からの高さa、および、塗膜表面と気泡との接触部の直径bを測定し、下記(1)式より、該塗膜面と気泡との接触角である静的水中気泡接触角(θs、単位:度)を求める;
上記静的水中気泡接触角の測定法において、気泡の形成された塗膜面を水平面に対して徐々に傾け、気泡が移動し始めた際の塗膜面の、水平面に対する傾斜角度である水中気泡転がり(滑り)角(θm、単位:度)を測定する。 The static underwater bubble contact angle measured by the following static underwater bubble contact angle measurement method is less than 90 degrees, and the underwater bubble rolling (slip) angle measured by the following underwater bubble rolling (slip) angle measurement method is 30 degrees. It is possible to form a coating film that is less than,
The coating composition according to any one of claims 1 to 3, which comprises a gas supply device for supplying a gas and is used for a frictional resistance-reducing ship using a gas lubrication function in water.
<Measurement method of static underwater bubble contact angle>
A hard polyvinyl chloride test plate (maximum height measured in accordance with JIS B 0601 of 1 μm or less) coated with a coating composition so that a coating film having a dry film thickness of 150 μm is formed at 25 ° C. for 30 days. Immerse in water and place the hard polyvinyl chloride test plate 30 days after immersion in water so that the coating surface is horizontal and below the test plate, so that one bubble is formed on the coating surface 0.1 cc of air was injected into the water, and the height a of the bubbles formed on the coating surface from the coating surface and the diameter b of the contact portion between the coating surface and the bubbles were measured. From the following formula (1), a static underwater bubble contact angle (θ s , unit: degree), which is a contact angle between the coating film surface and bubbles, is obtained;
In the method for measuring the static underwater bubble contact angle, an underwater bubble having an inclination angle with respect to a horizontal plane of a coating film surface when bubbles are gradually tilted with respect to the horizontal plane and the bubble starts to move. Measure the rolling (sliding) angle (θ m , unit: degree).
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012263186 | 2012-11-30 | ||
JP2012263186 | 2012-11-30 | ||
PCT/JP2013/082098 WO2014084324A1 (en) | 2012-11-30 | 2013-11-28 | Coating composition for use in ship with reduced friction drag utilizing gas-lubricating function in water, coating film formed from said composition, ship coated with said coating film, method for manufacturing said ship, method for predicting said friction drag reduction effect, device used for prediction of said friction drag reduction effect, and friction drag reduction system for use in said ship with reduced friction drag |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016184582A Division JP6209262B2 (en) | 2012-11-30 | 2016-09-21 | Method for predicting effect of reducing frictional resistance and apparatus used for predicting effect of reducing frictional resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6041897B2 true JP6041897B2 (en) | 2016-12-14 |
JPWO2014084324A1 JPWO2014084324A1 (en) | 2017-01-05 |
Family
ID=50827953
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014549902A Active JP6041897B2 (en) | 2012-11-30 | 2013-11-28 | Paint composition used for ship with reduced frictional resistance utilizing gas lubrication function in water, coating film formed from the composition, ship coated with the coating film, method for manufacturing the ship, and reduction of frictional resistance Method for predicting effect, apparatus used for predicting frictional resistance reduction effect, and frictional resistance reducing system used for frictional resistance-reducing ship |
JP2016184582A Active JP6209262B2 (en) | 2012-11-30 | 2016-09-21 | Method for predicting effect of reducing frictional resistance and apparatus used for predicting effect of reducing frictional resistance |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016184582A Active JP6209262B2 (en) | 2012-11-30 | 2016-09-21 | Method for predicting effect of reducing frictional resistance and apparatus used for predicting effect of reducing frictional resistance |
Country Status (5)
Country | Link |
---|---|
JP (2) | JP6041897B2 (en) |
KR (1) | KR101752578B1 (en) |
CN (1) | CN104854204B (en) |
SG (2) | SG10201707550UA (en) |
WO (1) | WO2014084324A1 (en) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102591554B1 (en) * | 2014-07-11 | 2023-10-20 | 헴펠 에이/에스 | Novel polysiloxane-based fouling-release coats comprising poly(oxyalkylene)-modified alcohols |
JP6487159B2 (en) * | 2014-07-14 | 2019-03-20 | 中国塗料株式会社 | Antifouling paint composition, antifouling film, method for producing antifouling film and antifouling substrate |
WO2016121995A1 (en) * | 2015-01-29 | 2016-08-04 | ダイキン工業株式会社 | Base material and application of same |
DE102015204896A1 (en) * | 2015-03-18 | 2016-09-22 | Evonik Degussa Gmbh | Paint system containing a antifouling metal oxide and a fumed silica |
JP6659023B2 (en) * | 2015-12-11 | 2020-03-04 | 中国塗料株式会社 | Coating composition, coating film, and substrate with a coating film for forming a frictional resistance reducing coating film |
JP6763722B2 (en) * | 2016-08-30 | 2020-09-30 | 日本ペイントマリン株式会社 | Paint composition and coating film formed from it |
KR102276521B1 (en) * | 2016-11-09 | 2021-07-12 | 주고꾸 도료 가부시키가이샤 | Antifouling coating composition, antifouling coating film, substrate with antifouling coating film, manufacturing method thereof, and antifouling method |
US10794812B2 (en) | 2017-09-27 | 2020-10-06 | Saudi Arabian Oil Company | Dynamically determining a rock wettability alteration |
US10718702B2 (en) * | 2018-02-05 | 2020-07-21 | Saudi Arabian Oil Company | Dynamic contact angle measurement |
US10794807B2 (en) * | 2018-02-05 | 2020-10-06 | Saudi Arabian Oil Company | Contact angle measurement with sonication |
WO2019189412A1 (en) * | 2018-03-28 | 2019-10-03 | 中国塗料株式会社 | Antifouling coating film and method of manufacturing same, water contacting structure with antifouling coating film, and antifouling tape and method of manufacturing same |
JP7295694B2 (en) | 2018-05-10 | 2023-06-21 | 中国塗料株式会社 | antifouling paint composition |
JP7172373B2 (en) * | 2018-09-27 | 2022-11-16 | 横河電機株式会社 | measuring system |
CN110018086B (en) * | 2019-05-13 | 2020-07-24 | 北京化工大学 | Device and method for quantitatively measuring hysteresis force between solid surface and bubbles or liquid drops |
CN110126975A (en) * | 2019-05-15 | 2019-08-16 | 南京理工大学 | A method of forming ventilated supercavitation |
CN110763596B (en) * | 2019-10-31 | 2021-07-09 | 清华大学 | Surface tension measuring method |
JP2020090102A (en) * | 2020-02-12 | 2020-06-11 | 日鉄鋼板株式会社 | Coated metal plate |
CN111665171B (en) * | 2020-07-14 | 2023-03-03 | 上海梭伦信息科技有限公司 | Wet contact angle measuring device and testing method thereof |
EP3974482A1 (en) * | 2020-09-29 | 2022-03-30 | Jotun A/S | Fouling release coating composition |
CN113029871A (en) * | 2021-03-12 | 2021-06-25 | 西安石油大学 | Device and method for measuring contact angle in multi-medium environment under high-temperature and high-pressure conditions |
CN113933215B (en) * | 2021-11-27 | 2023-09-12 | 中国南方电网有限责任公司超高压输电公司曲靖局 | Composite insulator hydrophobicity detection system, method and device and storage medium |
CN114839118A (en) * | 2022-04-04 | 2022-08-02 | 南京林业大学 | Device and test method for measuring water film distribution change rule in pressurization process |
CN116008129B (en) * | 2023-03-28 | 2023-06-02 | 叙镇铁路有限责任公司 | Negative pressure detection device in water distribution is divided to cement-based material surface hydrophobe |
CN118518576B (en) * | 2024-07-23 | 2024-09-17 | 常州市中桓新材料科技有限公司 | PVC film performance detection device and detection method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08268380A (en) * | 1995-03-31 | 1996-10-15 | Mitsui Eng & Shipbuild Co Ltd | Formation of gas film at solid-liquid interface |
JP2001139816A (en) * | 1999-11-17 | 2001-05-22 | Chugoku Marine Paints Ltd | Curable composition, composition for coating, coating material, stainproofing coating material, its cured product, and method of rendering substrate antifoulancy |
JP2009108154A (en) * | 2007-10-29 | 2009-05-21 | Shin Etsu Chem Co Ltd | Antifouling condensation-curing type organopolysiloxane composition, method for producing the same, and underwater structure |
JP2010156551A (en) * | 2008-12-26 | 2010-07-15 | Toyota Motor Corp | Method for evaluating wettability of member, and method for manufacturing hydrophilic-water-repellent member |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1323216C (en) * | 1989-05-02 | 1993-10-19 | Samuel Schurch | Captive bubble surface tensiometer |
JP2890340B2 (en) * | 1992-09-29 | 1999-05-10 | 三井造船株式会社 | Method of forming air film on submerged surface of structure having submerged part and film structure on submerged surface |
JP2679556B2 (en) | 1992-10-08 | 1997-11-19 | 信越化学工業株式会社 | Resin composition for coating |
CN1049396C (en) * | 1993-05-07 | 2000-02-16 | 三井造船株式会社 | Method and structure for formation of air film on water soaked surface of structure with water soaked portion |
US6451437B1 (en) * | 1999-10-13 | 2002-09-17 | Chugoku Marine Paints, Ltd. | Curable composition, coating composition, paint, antifouling paint, cured product thereof and method of rendering base material antifouling |
CN1195214C (en) * | 2003-02-13 | 2005-03-30 | 上海交通大学 | Method for forming nano air bubble on hydrophilic plain surface based on alcohol water replacement |
ES2385412T3 (en) * | 2006-12-25 | 2012-07-24 | Chugoku Marine Paints, Ltd. | Curable composition, anti-fouling coating composition, anti-fouling coating film, base with anti-fouling coating film, and method for preventing fouling on a base |
JP5622266B2 (en) * | 2009-08-12 | 2014-11-12 | 国立大学法人名古屋工業大学 | Surface property measuring method and measuring apparatus |
-
2013
- 2013-11-28 SG SG10201707550UA patent/SG10201707550UA/en unknown
- 2013-11-28 SG SG11201504114YA patent/SG11201504114YA/en unknown
- 2013-11-28 CN CN201380061663.8A patent/CN104854204B/en active Active
- 2013-11-28 KR KR1020157017113A patent/KR101752578B1/en active IP Right Grant
- 2013-11-28 WO PCT/JP2013/082098 patent/WO2014084324A1/en active Application Filing
- 2013-11-28 JP JP2014549902A patent/JP6041897B2/en active Active
-
2016
- 2016-09-21 JP JP2016184582A patent/JP6209262B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08268380A (en) * | 1995-03-31 | 1996-10-15 | Mitsui Eng & Shipbuild Co Ltd | Formation of gas film at solid-liquid interface |
JP2001139816A (en) * | 1999-11-17 | 2001-05-22 | Chugoku Marine Paints Ltd | Curable composition, composition for coating, coating material, stainproofing coating material, its cured product, and method of rendering substrate antifoulancy |
JP2009108154A (en) * | 2007-10-29 | 2009-05-21 | Shin Etsu Chem Co Ltd | Antifouling condensation-curing type organopolysiloxane composition, method for producing the same, and underwater structure |
JP2010156551A (en) * | 2008-12-26 | 2010-07-15 | Toyota Motor Corp | Method for evaluating wettability of member, and method for manufacturing hydrophilic-water-repellent member |
Non-Patent Citations (1)
Title |
---|
JPN6014005952; R. Latorre et al.: 'Investigation of Silicone and Self-Polishing Bottom Coating for High-Speed Craft' Nav. Eng. J. vol.115, No.4, 2003, pp.63-69 * |
Also Published As
Publication number | Publication date |
---|---|
JP6209262B2 (en) | 2017-10-04 |
CN104854204A (en) | 2015-08-19 |
SG11201504114YA (en) | 2015-07-30 |
JP2017037080A (en) | 2017-02-16 |
KR20150090911A (en) | 2015-08-06 |
CN104854204B (en) | 2018-06-12 |
JPWO2014084324A1 (en) | 2017-01-05 |
SG10201707550UA (en) | 2017-11-29 |
WO2014084324A1 (en) | 2014-06-05 |
KR101752578B1 (en) | 2017-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6209262B2 (en) | Method for predicting effect of reducing frictional resistance and apparatus used for predicting effect of reducing frictional resistance | |
JP6053816B2 (en) | Antifouling paint composition, antifouling coating film, antifouling substrate, and method for improving storage stability of antifouling paint composition | |
JP6074067B2 (en) | Antifouling composition with fluorinated oxyalkylene-containing polymer or fluorinated oxyalkylene-containing oligomer | |
JP4195537B2 (en) | Curable composition, coating composition, paint, antifouling paint, cured product thereof, and substrate antifouling method | |
ES2262490T3 (en) | A CURABLE COMPOSITION, A COATING COMPOSITION, A PAINT, AN ANTI-CORROSIVE PAINT, CURED PRODUCTS AND METHOD FOR GIVING ANTI-CORROSIVE PROPERTIES TO A SURFACE. | |
JP2007016096A (en) | Curable composition, composition for coating, coating material, antifouling coating material, cured product thereof and antifouling method of base material | |
JP4519289B2 (en) | Curable composition, coating composition, paint, antifouling paint, cured product thereof, and substrate antifouling method | |
JP6309626B2 (en) | Antifouling paint composition | |
JP6385437B2 (en) | Method for covering an aging coating layer on a substrate and a coating composition suitable for use in the method | |
JP6431549B2 (en) | Method for reinforcing antifouling coating |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160921 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20161018 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20161108 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6041897 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |