JP2010156551A - Method for evaluating wettability of member, and method for manufacturing hydrophilic-water-repellent member - Google Patents

Method for evaluating wettability of member, and method for manufacturing hydrophilic-water-repellent member Download PDF

Info

Publication number
JP2010156551A
JP2010156551A JP2008333459A JP2008333459A JP2010156551A JP 2010156551 A JP2010156551 A JP 2010156551A JP 2008333459 A JP2008333459 A JP 2008333459A JP 2008333459 A JP2008333459 A JP 2008333459A JP 2010156551 A JP2010156551 A JP 2010156551A
Authority
JP
Japan
Prior art keywords
test
wettability
test surface
liquid
bubble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008333459A
Other languages
Japanese (ja)
Inventor
Naotaka Aoyama
直高 青山
Kurato Maeda
蔵人 前田
Masakazu Kato
正和 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYOWA INTERFACE SCIENCE CO Ltd
Toyota Motor Corp
Original Assignee
KYOWA INTERFACE SCIENCE CO Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYOWA INTERFACE SCIENCE CO Ltd, Toyota Motor Corp filed Critical KYOWA INTERFACE SCIENCE CO Ltd
Priority to JP2008333459A priority Critical patent/JP2010156551A/en
Publication of JP2010156551A publication Critical patent/JP2010156551A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reliably evaluate the wettability of a member, and manufacture a hydrophilic or water-repellent member at the high quality, based on the evaluation of the wettability of the member of high reliability. <P>SOLUTION: A liquid W contacts a surface to be tested, by immersing a member to be tested 100 in the liquid, regardless of the wettability of the member to be tested. When an inclination angle of the member to be tested 100 is increased from 0° to 3°, 6°, 9°, 12° and 15°, images of air bubbles 102 attached to the member to be tested, having the bad wettability are indicated in a column B; and the images of the air bubbles 102 attached to the member to be tested having proper wettability are indicated in a column G. Even if the inclination angle of a stage 18a is increased to 15°, the air bubbles 102 attached to the member to be tested having poor wettability is attached to the member to be tested 100. When the inclination angle of the stage 18a is increased to 12°, the air bubbles 102 attached to the member to be tested having proper wettability, despite the attachment of the air bubbles 102 to the member to be tested 100 is transferred on the surface to be tested of the member to be tested, and is moved out of an imaging range as shown in a simulated arrow in the figure. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、部材の濡れ性評価方法及び親水・撥水性部材の製造方法に関するものである。   The present invention relates to a method for evaluating wettability of a member and a method for producing a hydrophilic / water-repellent member.

従来から、液中若しくは高湿度雰囲気で使用される部材表面の濡れ性を評価する必要がある場合に、その評価手法として、液滴法、転落法、拡張収縮法、ウィルヘルミー法などが用いられている(例えば、特許文献1、2参照)。
特開2007−42446号公報 特開2006−19252号公報
Conventionally, when it is necessary to evaluate the wettability of the surface of a member used in a liquid or in a high humidity atmosphere, the droplet method, the falling method, the expansion / contraction method, the Wilhelmy method, etc. have been used as the evaluation method. (For example, refer to Patent Documents 1 and 2).
JP 2007-42446 A JP 2006-19252 A

しかしながら、液滴法は、例えば供試面と液滴との接触角が30°を下回るような親水性の高い供試部材の場合には、そのデータの信頼性が著しく低下することが指摘されている。その理由は、液滴自体の表面張力に対し、供試面と液滴との表面張力の方が上回ることから、供試面の影響を強く受けることにより、液滴がヒステリシスを持つ球面となり難いことによるものである。しかも、このような場合には、液滴形状も平衡状態ではなくなるため、液滴形状が逐次変化してしまい、液滴形状を視覚的に取得する意味が無くなる。又、この問題は、液滴の素材吸収が生じる場合にはより顕著となる。
又、転落法は、供試面が撥水性を有する場合には、信頼性のあるデータを取得することができるが、供試面が親水性を有する場合には、やはり不適となる。近年、液滴の前進角、後退角に基づく評価手法も試みられているが、供試面の凹凸により親水性を確保している材料では、凹凸内に液体を取り込みながら液滴が供試面を転落することから、液滴サイズが変化してしまい、正しい評価をすることができない。この問題は、拡張収縮法においても同様である。
However, it is pointed out that the reliability of the data of the droplet method is significantly reduced in the case of a highly hydrophilic test member whose contact angle between the test surface and the droplet is less than 30 °, for example. ing. The reason is that since the surface tension of the test surface and the droplet exceeds the surface tension of the droplet itself, the droplet is unlikely to become a spherical surface with hysteresis by being strongly influenced by the test surface. It is because. In addition, in such a case, since the droplet shape is not in an equilibrium state, the droplet shape changes sequentially, and the meaning of visually acquiring the droplet shape is lost. This problem becomes more conspicuous when the material of the droplet is absorbed.
In addition, the falling method can acquire reliable data when the test surface has water repellency, but is still unsuitable when the test surface has hydrophilicity. In recent years, evaluation methods based on the advancing and receding angles of droplets have also been attempted, but in the case of a material whose hydrophilicity is ensured by the unevenness of the test surface, the liquid droplets are taken into the test surface while incorporating the liquid into the unevenness. , The droplet size changes and cannot be evaluated correctly. This problem also applies to the expansion / contraction method.

又、ウィルヘルミー法は、供試部材を液中に入れ、その素材の表面張力を測ることにより、部材表面の濡れ性を評価する手法であるが、供試部材が小さい板材であれば、両面均一処理をする必要がある等、供試部材の形状に制約があるといった問題がある。
本発明は上記課題に鑑みてなされたものであり、その目的とするところは、信頼性の高い部材の濡れ性評価を行うことにある。又、高い信頼性を有する部材の濡れ性評価に裏打ちされた、高品質の親水性又は撥水性部材を製造することを目的とするものである。
The Wilhelmy method is a method for evaluating the wettability of the surface of the member by placing the sample member in the liquid and measuring the surface tension of the material. There is a problem that the shape of the sample member is restricted, such as the need for processing.
The present invention has been made in view of the above problems, and an object thereof is to perform highly reliable wettability evaluation of a member. Another object of the present invention is to produce a high-quality hydrophilic or water-repellent member that is backed by wettability evaluation of a highly reliable member.

上記課題を解決するために、本発明に係る部材の濡れ性評価方法は、液中若しくは高湿度雰囲気で使用される部材表面の濡れ性を評価するために、部材の実際の使用条件に即した検査環境下で、供試部材の濡れ性を評価するものである。
又、本発明に係る親水性又は撥水性部材の製造方法は、上記供試部材の濡れ性評価方法により、表面の改質処理を行った供試部材の濡れ性を評価する肯定を含むことで、所望の親水性又は撥水性を有する部材を製造するものである。
(発明の態様)
以下の発明の態様は、本発明の構成を例示するものであり、本発明の多様な構成の理解を容易にするために、項別けして説明するものである。各項は、本発明の技術的範囲を限定するものではなく、発明を実施するための最良の形態を参酌しつつ、各項の構成要素の一部を置換し、削除し、又は、更に他の構成要素を付加したものについても、本願発明の技術的範囲に含まれ得るものである。
In order to solve the above problems, the member wettability evaluation method according to the present invention is based on the actual use conditions of the member in order to evaluate the wettability of the member surface used in a liquid or high-humidity atmosphere. This evaluates the wettability of the specimen under the inspection environment.
Further, the method for producing a hydrophilic or water-repellent member according to the present invention includes an affirmation for evaluating the wettability of the test member subjected to the surface modification treatment by the wettability evaluation method for the test member. A member having desired hydrophilicity or water repellency is produced.
(Aspect of the Invention)
The following aspects of the present invention exemplify the configuration of the present invention, and will be described separately for easy understanding of various configurations of the present invention. Each section does not limit the technical scope of the present invention, and some of the components of each section are replaced, deleted, or further while referring to the best mode for carrying out the invention. Those to which the above components are added can also be included in the technical scope of the present invention.

(1)部材の濡れ性評価方法であって、供試部材を液体中に浸漬させ、その供試面を下方に向けて水平に保持した状態で該供試面に下方から気泡を付着させ、前記供試部材を傾斜させて前記気泡の転昇角を測り、該転昇角を基準に供試部材の濡れ性を評価する評価方法(請求項1)。
本項に記載の部材の濡れ性評価方法は、液中若しくは高湿度雰囲気で使用される部材表面の濡れ性を評価する際に、供試部材を液体中に浸漬させることで、供試部材の持つ濡れ性の如何に関わらず供試面に液体を接触させる。このとき、供試部材の濡れ性が悪い場合には、液中において供試面に下方から気泡を付着させると、気中で供試面に付着した液体を弾くのと同様に、供試面と液体との表面張力よりも供試面と気泡との表面張力が勝り、気泡は供試面と直接的に接触するような態様で供試面に付着する。
一方、供試部材の濡れ性が良い場合には、液中において供試面に下方から気泡を付着させると、気中で供試面に液膜が広がり易いのと同様に、供試面と気泡との表面張力よりも供試面と液体との表面張力が勝り、供試面の凹凸の有無や表面粗さの如何に関わらず、気泡は液体層を介するような態様(供試面とは直接的に接触しない)で供試面に付着する。
(1) A method for evaluating the wettability of a member, wherein the test member is immersed in a liquid, and bubbles are attached to the test surface from below in a state where the test surface is held horizontally facing downward, An evaluation method in which the test member is tilted to measure the angle of rise and fall of the bubbles, and the wettability of the test member is evaluated based on the angle of rise and rise (Claim 1).
The method for evaluating the wettability of the member described in this section is to immerse the test member in the liquid when evaluating the wettability of the surface of the member used in the liquid or in a high humidity atmosphere. The liquid is brought into contact with the test surface regardless of the wettability. At this time, in the case where the wettability of the test member is poor, when bubbles are attached to the test surface in the liquid from below, the test surface is repelled in the same way as the liquid adhering to the test surface is repelled in the air. The surface tension between the test surface and the bubbles is superior to the surface tension between the liquid and the liquid, and the bubbles adhere to the test surface in such a manner that they directly contact the test surface.
On the other hand, when the wettability of the test member is good, when bubbles are attached to the test surface in the liquid from below, the liquid surface easily spreads in the air in the same way as the test surface. The surface tension between the test surface and the liquid is superior to the surface tension with the bubbles, and regardless of whether the test surface has irregularities or the surface roughness, the bubbles pass through the liquid layer (the test surface and Adheres to the test surface.

ここで、濡れ性が良く供試面に凹凸が形成された供試部材の場合、空気中において液滴を供試面に付着させると(従来の液滴法)、予め供試面に液体が付着しているような場合には、供試面の凹凸に付着した液体と液滴とが吸着し合い、液滴の接触角は低下する。ところが、供試面が乾燥した状態では、既存の液体と液滴との吸着は生じないために、時として、濡れ性が悪い場合のように、供試面に滴下された液滴に高い接触角が現れることがある。本項に記載の部材の濡れ性評価方法は、このような供試面の既存の液体の有無に起因する接触角のばらつきによる部材の濡れ性判断の誤りを、供試部材を液体中に浸漬させ液中において気泡の転昇角を測ることにより、回避するものである。
なお、本説明において「気泡の転昇角」とは、液体中に浸漬させた供試部材の供試面を下方に向けて水平に保持した状態で、下方から供試面に付着した気泡が、供試面の傾斜角度増大の結果、傾斜する供試面を伝って浮き上がるときの、供試面の傾斜角度を意味するものである。
Here, in the case of a test member having good wettability and unevenness formed on the test surface, when a droplet is attached to the test surface in the air (conventional droplet method), the liquid is previously applied to the test surface. In such a case, the liquid adhering to the unevenness of the test surface and the liquid droplet adsorb each other, and the contact angle of the liquid droplet decreases. However, when the test surface is dry, there is no adsorption between the existing liquid and the liquid droplets, and sometimes there is high contact with the liquid droplets dropped on the sample surface, as in the case of poor wettability. Horns may appear. The method for evaluating the wettability of a member described in this section describes the error in determining the wettability of a member due to the variation in the contact angle caused by the presence or absence of the existing liquid on the test surface. This is avoided by measuring the angle of bubble elevation in the liquid.
In the present description, the “bubble rising angle” means that the test surface of the test member immersed in the liquid is held horizontally with the test surface facing downward, and the bubbles attached to the test surface from below are As a result of increasing the inclination angle of the test surface, it means the inclination angle of the test surface when it floats along the inclined test surface.

(2)上記(1)項において、雰囲気温度を前記液体の液相温度の範囲内とする評価方法(請求項2)。
本項に記載の部材の濡れ性評価方法は、雰囲気温度を前記液体の液相温度の範囲内とすることで、液中における気泡の転昇角に基づく濡れ性判断を行うことを可能とし、上述の如き、供試面の既存の液体の有無に起因する接触角のばらつきによる、部材の濡れ性判断の誤りを回避するものである。
(2) The evaluation method according to (1) above, wherein the ambient temperature is within the range of the liquid phase temperature of the liquid (claim 2).
The method for evaluating the wettability of the member described in this section enables the determination of wettability based on the angle of bubble elevation in the liquid by setting the atmospheric temperature within the range of the liquid phase temperature of the liquid. As described above, an error in determining the wettability of the member due to the variation in the contact angle due to the presence or absence of the existing liquid on the test surface is avoided.

(3)上記(1)、(2)項において、前記気泡の容量を、前記供試部材の供試面の面積に応じて定められる量に計量して、前記供試面に付着させる請求項1又は2記載の評価方法(請求項3)。
本項に記載の部材の濡れ性評価方法は、気泡の容量を、供試部材の供試面の面積に応じて定めら得る量に計量して、供試面に付着させるものである。すなわち、供試面の面積に対して気泡が大き過ぎると、気泡が傾斜する供試面を伝って浮き上がる動作は生じ得ないが、計量した気泡を供試面に付着させることで、供試部材の供試面の面積の広狭に関わらず、供試面における気泡の動作を引き起こし、気泡の転昇角を測るものである。
(3) In the above items (1) and (2), the volume of the bubble is measured to an amount determined according to the area of the test surface of the test member, and attached to the test surface. The evaluation method according to 1 or 2 (Claim 3).
In the member wettability evaluation method described in this section, the volume of bubbles is measured to an amount that can be determined according to the area of the test surface of the test member, and attached to the test surface. That is, if the bubbles are too large relative to the area of the test surface, the bubble cannot move up along the inclined test surface, but the sample member can be attached by attaching the measured bubbles to the test surface. Regardless of the area of the test surface, the movement of the bubbles on the test surface is caused, and the bubble ascending angle is measured.

(4)部材の濡れ性評価方法であって、供試部材の供試面に液滴又は気泡を配置し、この際、雰囲気温度を前記液滴の液相温度の範囲内とし、若しくは、雰囲気湿度を相対湿度0%以上100%以下の範囲として、前記液滴の転落角若しくは前記気泡の転昇角を基準に、供試部材の濡れ性を評価する評価方法(請求項4)。
本項に記載の部材の濡れ性評価方法は、液中若しくは高湿度雰囲気で使用される部材表面の濡れ性を評価する際に、液体の液相温度の範囲内の雰囲気温度中、若しくは、相対湿度0%以上100%以下の雰囲気湿度中に、供試部材を置くことにより、部材の実際の使用条件に即した検査環境を、供試面に再現するものである。
(4) A method for evaluating the wettability of a member, wherein droplets or bubbles are arranged on a test surface of a test member, and at this time, the ambient temperature is set within the range of the liquid phase temperature of the droplet, or the atmosphere An evaluation method for evaluating the wettability of a test member on the basis of a drop angle of the droplet or an angle of rise of the bubble with a humidity in a range of 0% to 100% relative humidity (Claim 4).
The method for evaluating the wettability of a member described in this section is a method for evaluating the wettability of the surface of a member used in a liquid or a high-humidity atmosphere. By placing the test member in an atmospheric humidity of 0% or more and 100% or less, the test environment that matches the actual use conditions of the member is reproduced on the test surface.

そして、供試面に液滴を滴下し、液滴の転落角を基準に供試部材の濡れ性を評価し、又、設定された雰囲気環境下で供試面の全体が濡れた状態となる場合には、供試面に気泡を配置して、気泡の転昇角を基準に供試部材の濡れ性を評価するものである。
なお、本説明において「液滴の転落角」とは、供試部材の供試面を水平に保持した状態で、供試面に配置された液滴が、供試面の傾斜角度増大の結果、傾斜する供試面を伝って落下するときの、供試面の傾斜角度を意味するものである。
Then, a droplet is dropped on the test surface, the wettability of the test member is evaluated based on the drop angle of the droplet, and the entire test surface becomes wet under the set atmospheric environment. In this case, air bubbles are arranged on the test surface, and the wettability of the test member is evaluated based on the bubble ascending angle.
In this description, the “dropping angle of the droplet” means that the droplet placed on the test surface is the result of an increase in the tilt angle of the test surface while the test surface of the test member is held horizontally. This means the inclination angle of the test surface when falling along the inclined test surface.

(5)上記(4)項において、前記供試面に液滴又は気泡を配置する際の、雰囲気気体の種類、圧力、又は前記供試面に対する液滴の吐出圧力を、適宜変更する評価方法(請求項5)。
本項に記載の部材の濡れ性評価方法は、供試面に液滴又は気泡を配置する際の、雰囲気気体の種類、圧力、又は供試面に対する液滴の吐出圧力を、適宜変更することで、部材の実際の使用条件に即した検査環境を、供試面に再現するものである。
ところで、供試面に液滴を配置する際に、供試部材の濡れ性が悪い場合には、供試面に付着した液体を弾くことで、液滴の接触角が増大することは良く知られているが、供試部材の濡れ性が良い場合であっても、液滴の接触角が増大することがある。すなわち、濡れ性が良く供試面に凹凸が形成された供試部材の場合、空気中において液滴を供試面に付着させると、かかる供試面に予め液体が付着しているような場合には、供試面の凹凸に付着した液体と液滴とが吸着し合い、液滴が供試面に広がって接触角は低下する。一方、供試面が乾燥した状態では、既存の液体と液滴との吸着は生じないために、時として、供試面の凹凸の空気溜りによって液膜の広がりが阻害され、濡れ性が悪い場合のように、供試面に滴下された液滴に高い接触角が現れることがある。本項に記載の部材の濡れ性評価方法は、このような供試面の空気溜りの有無に起因する接触角のばらつきを、供試面に対する液滴の吐出圧力を変更する、すなわち、吐出圧力を液滴自体が吹き飛ばない程度に適宜高めることで、供試面の凹凸の空気溜りを跳ね除け、液滴の形状及び大きさを維持して、転落角を測るものである。
(5) In the above item (4), the evaluation method for appropriately changing the type and pressure of the atmospheric gas or the discharge pressure of the liquid droplets on the test surface when the liquid droplets or bubbles are arranged on the test surface (Claim 5).
The method for evaluating the wettability of a member described in this section should appropriately change the type and pressure of the atmospheric gas or the discharge pressure of the liquid droplets on the test surface when the liquid droplets or bubbles are arranged on the test surface. Thus, the inspection environment in accordance with the actual use conditions of the member is reproduced on the test surface.
By the way, when placing a droplet on the test surface, if the wettability of the test member is poor, it is well known that the contact angle of the droplet increases by repelling the liquid adhering to the test surface. However, even when the wettability of the test member is good, the contact angle of the droplet may increase. That is, in the case of a test member with good wettability and unevenness on the test surface, when a droplet is attached to the test surface in the air, the liquid is pre-adhered to the test surface. In this case, the liquid adhering to the unevenness of the test surface and the droplet adsorb each other, the droplet spreads on the test surface, and the contact angle decreases. On the other hand, when the test surface is in a dry state, adsorption of the existing liquid and droplets does not occur, so sometimes the liquid film spreading is inhibited by the air pockets on the test surface, resulting in poor wettability. As in the case, a high contact angle may appear in the droplet dropped on the test surface. The member wettability evaluation method described in this section changes the discharge pressure of droplets on the test surface by changing the contact angle due to the presence or absence of air accumulation on the test surface. Is appropriately increased to the extent that the droplets themselves do not blow off, so that the air pockets on the surface of the test surface are repelled, the shape and size of the droplets are maintained, and the falling angle is measured.

(6)上記(4)、(5)項において、前記液滴又は前記気泡の容量を、前記供試部材の供試面の面積に応じて定められる量に計量して、前記供試面に配置する評価方法。(請求項6)。
本項に記載の部材の濡れ性評価方法は、液滴又は気泡の容量を、供試部材の供試面の面積に応じて定めら得る量に計量して、供試面に付着させるものである。すなわち、供試面の面積に対して液滴又は気泡が大き過ぎると、液滴又は気泡が傾斜する供試面を伝って落下し又は浮き上がる動作は生じ得ないが、計量した液滴又は気泡を供試面に付着させることで、供試部材の供試面の面積の広狭に関わらず、供試面における液滴又は気泡の動作を引き起こし、液滴又は気泡の転落角、転昇角を測るものである。
(6) In the above items (4) and (5), the volume of the droplet or the bubble is measured to an amount determined according to the area of the test surface of the test member, and the test surface is measured. Evaluation method to place. (Claim 6).
The member wettability evaluation method described in this section measures the volume of droplets or bubbles to an amount that can be determined according to the area of the test surface of the test member, and attaches it to the test surface. is there. That is, if the droplet or bubble is too large relative to the area of the test surface, the droplet or bubble cannot drop or float along the inclined test surface, but the measured droplet or bubble cannot be Regardless of whether the area of the test surface of the test member is wide or small, by attaching it to the test surface, it causes the movement of the droplet or bubble on the test surface, and measures the falling angle or the rising angle of the droplet or bubble. Is.

(7)部材に要求される濡れ性を得るために部材表面の改質処理を行い、上記(1)から(6)項記載の供試部材の濡れ性評価方法により、表面の改質処理を行った供試部材の濡れ性を評価し、該評価に応じ適宜部材表面の更なる改質処理を行う工程を含む親水性又は撥水性部材の製造方法
本項に記載の親水性又は撥水性部材の製造方法は、上記(1)から(6)項記載の供試部材の濡れ性評価方法により、表面の改質処理を行った供試部材の濡れ性を評価することで、所望の親水性又は撥水性を有する部材を、効率的に製造するものである。
(7) In order to obtain the wettability required for the member, the surface of the member is modified, and the surface modification treatment is performed by the method for evaluating the wettability of the test member described in (1) to (6) above. A method for producing a hydrophilic or water-repellent member, comprising the step of evaluating the wettability of a test member that has been performed, and further modifying the surface of the member as appropriate according to the evaluation. The production method of (1) to (6) above evaluates the wettability of the test member subjected to the surface modification treatment by the wettability evaluation method of the test member described in the above items (1) to (6). Or the member which has water repellency is manufactured efficiently.

(8)上記(1)から(6)項において、前記液体は水又はエタノール等の有機溶媒であり、前記気泡は、空気、酸素、窒素又はアルゴン等の不活性ガスである評価方法。
本項に記載の部材の濡れ性評価方法は、特に、濡れ性を評価する部材が、燃料電池のセル構成部材である場合に、部材の実際の使用条件に即した検査環境を、供試面に再現するものである。
(8) The method according to (1) to (6), wherein the liquid is an organic solvent such as water or ethanol, and the bubbles are an inert gas such as air, oxygen, nitrogen, or argon.
The method for evaluating the wettability of a member described in this section, particularly when the member to be evaluated for wettability is a cell constituent member of a fuel cell, provides an inspection environment in accordance with the actual use conditions of the member. To reproduce.

(9)部材の濡れ性評価装置であって、供試部材を液体中に浸漬させる水槽と、前記供試部材の供試面を下方に向けて水平に保持する保持手段と、前記供試部材の供試面に下方から気泡を付着させる気泡供給手段と、前記供試部材を傾斜させる駆動手段と、前記気泡の転昇角を測る測定手段のうち、一部又は全部を含む評価装置。
(10)上記(9)項において、雰囲気温度を前記液体の液相温度の範囲内に制御する雰囲気温度制御手段を備える評価装置。
(11)上記(9)、(10)項において、前記気泡の容量を、前記供試部材の供試面の面積に応じて定められる量に計量して、前記供試部面に付着させる計量手段を備える評価装置。
(12)上記(9)から(11)項において、前記測定手段には、前記供試部材の供試面に下方から気泡を付着させた気泡を撮影する撮影手段と、該撮影手段により撮影された画像を記録する記録手段と、該画像に基づき転昇角を求め供試部材の濡れ性を評価する評価手段のうち、一部又は全部を含む評価装置。
上記(9)から(12)項に係る評価装置によれば、上記(1)から(3)項のいずれかに記載の評価方法を実施して、各項記載の作用を奏するものである。
(9) A wettability evaluation apparatus for a member, a water tank for immersing the test member in a liquid, a holding means for holding the test surface of the test member horizontally downward, and the test member An evaluation apparatus comprising a part or all of a bubble supply means for attaching bubbles to the test surface from below, a drive means for inclining the test member, and a measurement means for measuring a bubble elevation angle.
(10) In the above item (9), an evaluation apparatus comprising an atmospheric temperature control means for controlling the atmospheric temperature within the range of the liquid phase temperature of the liquid.
(11) In the above items (9) and (10), the volume of the bubble is measured to an amount determined according to the area of the test surface of the test member, and is attached to the surface of the test part An evaluation apparatus comprising means.
(12) In the above items (9) to (11), the measuring means is photographed by photographing means for photographing bubbles in which bubbles are attached to the test surface of the test member from below, and the photographing means. An evaluation apparatus that includes a part or all of a recording unit that records an image and an evaluation unit that obtains a rolling angle based on the image and evaluates the wettability of a test member.
According to the evaluation apparatus according to the items (9) to (12) above, the evaluation method according to any one of the items (1) to (3) is performed, and the effects described in the respective items are exhibited.

(13)部材の濡れ性評価装置であって、雰囲気温度を水の液相温度の範囲内とする雰囲気温度制御手段と、雰囲気湿度を相対湿度0%以上100%以下の範囲とする雰囲気湿度制御手段と、供試部材の供試面に液滴又は気泡を配置する液滴又は気泡供給手段と、前記液滴の転落角若しくは前記気泡の転昇角を測る測定手段のうち、一部又は全部を含む評価装置。
(14)上記(13)項において、前記供試面に液滴又は気泡を配置する際の、雰囲気気体の種類を変更する気体供給手段、雰囲気気体の圧力を制御する圧力制御手段、又は、前記供試面に対する液滴の吐出圧力を制御する圧力制御手段のうち、一部又は全部を含む評価装置。
(15)上記(13)、(14)項において、前記液滴又は前記気泡の容量を、前記供試部材の供試面の面積に応じて定められる量に計量して、前記供試面に配置する計量手段を備える評価装置。
(16)上記(13)から(15)項において、前記測定手段には、前記供試部材の供試面に配置された液滴又は気泡を撮影する撮影手段と、該撮影手段により撮影された画像を記録する記録手段と、該画像に基づき転昇角又は転昇角を求め供試部材の濡れ性を評価する評価手段のうち、一部又は全部を含む評価装置。
上記(13)から(16)項に係る評価装置によれば、上記(4)から(6)項のいずれかに記載の評価方法を実施して、各項記載の作用を奏するものである。
(13) An apparatus for evaluating the wettability of a member, wherein an atmospheric temperature control means for setting the atmospheric temperature within the range of the liquid phase temperature of water, and an atmospheric humidity control for setting the atmospheric humidity in the range of 0% to 100% relative humidity A part or all of the means, the droplet or bubble supply means for arranging the droplet or the bubble on the test surface of the test member, and the measurement means for measuring the drop angle of the droplet or the bubble rise angle Evaluation device including
(14) In the above (13), a gas supply means for changing the type of the atmospheric gas, a pressure control means for controlling the pressure of the atmospheric gas, when the droplets or bubbles are arranged on the test surface, An evaluation apparatus including a part or all of the pressure control means for controlling the discharge pressure of the droplet with respect to the test surface.
(15) In the above items (13) and (14), the volume of the droplet or the bubble is measured to an amount determined according to the area of the test surface of the test member, and the test surface is measured. An evaluation device comprising a weighing means to be arranged.
(16) In the above items (13) to (15), the measuring means is photographed by a photographing means for photographing a droplet or a bubble arranged on a test surface of the test member, and the photographing means. An evaluation apparatus including a part or all of a recording means for recording an image and an evaluation means for obtaining a roll-up angle or roll-up angle based on the image and evaluating the wettability of a test member.
According to the evaluation apparatus according to the items (13) to (16), the evaluation method according to any one of the items (4) to (6) is performed, and the effects described in the respective items are exhibited.

本発明はこのように構成したので、信頼性の高い部材の濡れ性評価を行うことが可能となる。又、高い信頼性を有する部材の濡れ性評価に裏打ちされた、高品質の親水性又は撥水性部材を製造することが可能となる。   Since this invention was comprised in this way, it becomes possible to perform the wettability evaluation of a highly reliable member. In addition, it is possible to manufacture a high quality hydrophilic or water repellent member backed by the wettability evaluation of a highly reliable member.

以下、本発明を実施するための最良の形態を添付図面に基づいて説明する。
まず、本発明の第1の実施の形態に係る部材の濡れ性評価方法を、図1から図5を参照しながら説明する。本発明の第1の実施の形態に係る部材の濡れ性評価方法は、図1に示されるように、供試部材100を水Wに浸漬させ、その供試面を下方に向けて水平に保持した状態で供試面に下方から気泡102を付着させ、供試部材100を傾斜させて気泡102の転昇角θを測り、転昇角θを基準に供試部材の濡れ性を評価するものである。
この際、雰囲気温度を液体Wの液相温度の範囲内とする。従って、液体Wに水を用いる場合には、水の温度を0℃以上100℃以下にして、転昇角θの測定を行う。又、気泡102の容量を、供試部材100の供試面の面積に応じて定められる量に計量して、供試面に付着させる。具体的には、供試部材100の供試面の面積に応じて、供試面における気泡102の動作(気泡102が傾斜する供試面を伝って浮き上がる動作)が生じ得る容量の気泡を供試面に付着させることで、かかる動作中、液中において気泡102が安定した形状及び大きさを維持する量に計量するものである。
The best mode for carrying out the present invention will be described below with reference to the accompanying drawings.
First, a member wettability evaluation method according to a first embodiment of the present invention will be described with reference to FIGS. In the member wettability evaluation method according to the first embodiment of the present invention, as shown in FIG. 1, the test member 100 is immersed in water W, and the test surface is held horizontally with the test surface facing downward. In this state, the bubble 102 is attached to the test surface from below, the test member 100 is tilted, the rising angle θ of the bubble 102 is measured, and the wettability of the test member is evaluated based on the rising angle θ. It is.
At this time, the ambient temperature is set within the range of the liquid phase temperature of the liquid W. Therefore, when water is used for the liquid W, the temperature of the water is set to 0 ° C. or more and 100 ° C. or less, and the angle of rise θ is measured. In addition, the volume of the bubble 102 is measured to an amount determined according to the area of the test surface of the test member 100 and attached to the test surface. Specifically, in accordance with the area of the test surface of the test member 100, a bubble having a capacity capable of causing the operation of the bubble 102 on the test surface (the operation of lifting the bubble 102 along the test surface where the bubble 102 is inclined) is provided. By adhering to the test surface, the amount is measured so that the bubble 102 maintains a stable shape and size in the liquid during the operation.

又、図3及び図4には、本発明の第1の実施の形態に係る部材の濡れ性評価方法を実施するための検査装置10が示されている。この検査装置10は、供試部材100を水中に浸漬させる水槽12と、供試部材100の供試面を下方に向けて水平に保持する保持手段14と、供試部材100の供試面に下方から気泡102を付着させる気泡供給手段16と、水槽12ごと供試部材100を傾斜させる駆動手段18と、気泡102の転昇角を測る測定手段20と、雰囲気温度を水の液相温度の範囲内に制御する雰囲気温度制御手段22を備えている。   3 and 4 show an inspection apparatus 10 for carrying out the member wettability evaluation method according to the first embodiment of the present invention. The inspection apparatus 10 includes a water tank 12 for immersing the test member 100 in water, a holding means 14 for horizontally holding the test surface of the test member 100 downward, and a test surface of the test member 100. The bubble supplying means 16 for attaching the bubbles 102 from below, the driving means 18 for inclining the test member 100 together with the water tank 12, the measuring means 20 for measuring the angle of rise of the bubbles 102, and the ambient temperature of the liquid phase temperature of water. Atmospheric temperature control means 22 for controlling within the range is provided.

水槽12は内部の様子が視認できるように、透明な角形の容器が用いられる。又、保持手段14は、供試部材100を水中で安定保持できるものであれば何でも良いが、図示の例では長椅子状の台が用いられている。又、図示の気泡供給手段16は、先端部を下方から上方へと湾曲させ、保持手段14の下面に取付けられた供試部材100の供試面に供給する注射針状のエア供給管16aを備えている。そして、気泡供給手段16のエア供給配管には、供給するエアを正確に計量するための任意の計量手段を備えている。又、駆動手段18は、図示の例では水槽12を載置するステージ18aと、ステージ18aの傾斜角度を制御する3軸アクチュエータ18bとを具備している。   The water tank 12 is a transparent rectangular container so that the inside can be visually recognized. The holding means 14 may be anything as long as it can stably hold the test member 100 in water, but in the example shown, a chaise long table is used. Further, the bubble supply means 16 shown in the figure has an injection needle-like air supply pipe 16a that is bent from the lower part to the upper part and is supplied to the test surface of the test member 100 attached to the lower surface of the holding means 14. I have. The air supply pipe of the bubble supply means 16 is provided with an arbitrary measuring means for accurately measuring the supplied air. In the illustrated example, the driving means 18 includes a stage 18a on which the water tank 12 is placed, and a triaxial actuator 18b that controls the inclination angle of the stage 18a.

気泡102の転昇角を測る測定手段20は、供試部材100の供試面に付着させた気泡102を撮影する撮影手段(図示の例ではカメラ20a及びライト20bであり、ステージ18aと一体に傾斜するよう、固定されている。)と、該撮影手段により撮影された画像を記録する記録手段(図示の例ではパソコン20c等の情報処理手段)と、該画像に基づき転昇角を求め供試部材の濡れ性を評価する評価手段(図示の例ではパソコン20c等の情報処理手段)を備えている。又、3軸アクチュエータ18bの角度を測定するエンコーダ等の角度測定手段も、測定手段20に含まれる。なお、濡れ性評価は、画像処理によって自動的に行っても良く、作業者が画像を確認して任意に判断することとしても良い。
雰囲気温度制御手段22は、図示の例では、圧縮エア配管22a、フローコントローラ22b、加湿器(分流式加湿器)22c、ドライガス供給器22d、環境槽22e、背圧調整弁22fを備える。ここで、環境槽22eは、少なくともステージ18a上に載置された水槽12を覆うことが可能な容器(この場合は液中の気泡の撮影を考慮した透明容器)である。
なお、液体Wは水に限らずエタノール等の有機溶媒を適宜用いることが可能であり、気泡102は、空気のみならず、酸素、窒素又はアルゴン等の不活性ガスを用いることも可能であり、これらは供試部材100の実際の使用環境に応じて適宜選択するものである。
The measuring means 20 for measuring the angle of elevation of the bubble 102 is an imaging means for photographing the bubble 102 attached to the test surface of the test member 100 (in the example shown, a camera 20a and a light 20b, which are integrated with the stage 18a). And a recording means (in the illustrated example, an information processing means such as a personal computer 20c) for recording an image photographed by the photographing means, and the angle of elevation is obtained based on the image. Evaluating means for evaluating the wettability of the test member (information processing means such as the personal computer 20c in the illustrated example) is provided. The measuring means 20 also includes angle measuring means such as an encoder for measuring the angle of the triaxial actuator 18b. The wettability evaluation may be automatically performed by image processing, or may be arbitrarily determined by an operator confirming the image.
In the illustrated example, the ambient temperature control means 22 includes a compressed air pipe 22a, a flow controller 22b, a humidifier (divergence type humidifier) 22c, a dry gas supply device 22d, an environmental tank 22e, and a back pressure adjustment valve 22f. Here, the environmental tank 22e is a container that can cover at least the water tank 12 placed on the stage 18a (in this case, a transparent container in consideration of photographing of bubbles in the liquid).
Note that the liquid W is not limited to water, and an organic solvent such as ethanol can be used as appropriate, and the bubbles 102 can use not only air but also an inert gas such as oxygen, nitrogen, or argon. These are appropriately selected according to the actual use environment of the test member 100.

図1は、供試部材100の供試面に付着させた気泡102を、カメラ20aによって撮影したものである。具体的には、ステージ18aの傾斜角度を0°から3°、6°、9°、12°、15°と増加させた際の、濡れ性が悪い供試部材に付着させた気泡102の画像をBの列に、濡れ性が良い供試部材に付着させた気泡102の画像をGの列に示したものである。図1の例では、濡れ性が悪い供試部材に付着させた気泡102は、ステージ18aの傾斜角度を15°へと増加させても、気泡102が供試部材100に付着しているのに対し、濡れ性が良い供試部材に付着させた気泡102は、ステージ18aの傾斜角度を12°まで増加させた時点で、図中模擬的に矢印で示されるように、供試部材100の供試面を伝って撮影範囲外へと移動した。   FIG. 1 is a photograph of the bubble 102 attached to the test surface of the test member 100 taken by the camera 20a. Specifically, when the inclination angle of the stage 18a is increased from 0 ° to 3 °, 6 °, 9 °, 12 °, and 15 °, an image of the bubble 102 attached to the test member having poor wettability Is an image of the bubble 102 attached to the test member having good wettability in the B column, and the G column. In the example of FIG. 1, the bubble 102 attached to the test member with poor wettability is attached to the test member 100 even if the inclination angle of the stage 18 a is increased to 15 °. On the other hand, the bubbles 102 attached to the test member having good wettability, when the inclination angle of the stage 18a is increased to 12 °, the test sample 100 is supplied as shown by an arrow in the figure. Moved outside the shooting range along the test surface.

上記構成をなす、本発明の第1の実施の形態によれば、次のような作用効果を得ることが可能である。まず、本項に記載の部材の濡れ性評価方法は、図1に示されるように、供試部材100を液体中に浸漬させることで、供試部材の持つ濡れ性の如何に関わらず供試面に液体Wを接触させるものである。このとき、供試部材100の濡れ性が悪い場合には、液中において供試面100aに下方から気泡を付着させると、図2(a)に示されるように、供試面100aと液体Wとの表面張力よりも、供試面100aと気泡102との表面張力が勝り、気泡102は濡れ性が悪い供試部材100Bと直接的に接触するような態様で、供試面100aに付着する。
一方、供試部材100の濡れ性が良い場合には、液中において供試面100aに下方から気泡を付着させると、図2(b)に示されるように、供試面100aと気泡102との表面張力よりも、供試面100aと液体Wとの表面張力が勝り、供試面100aの凹凸の有無や表面粗さの如何に関わらず、気泡102は液体層Waを介するような(供試面100aとは直接的に接触しない)態様で供試面100aに付着する。
According to the first embodiment of the present invention configured as described above, the following operational effects can be obtained. First, as shown in FIG. 1, the member wettability evaluation method described in this section is performed by immersing the test member 100 in a liquid, regardless of the wettability of the test member. The liquid W is brought into contact with the surface. At this time, in the case where the wettability of the test member 100 is poor, if bubbles are attached to the test surface 100a from below in the liquid, the test surface 100a and the liquid W as shown in FIG. The surface tension of the test surface 100a and the bubble 102 is superior to the surface tension of the test sample 100a, and the bubble 102 adheres to the test surface 100a in such a manner that it directly contacts the test member 100B having poor wettability. .
On the other hand, in the case where the wettability of the test member 100 is good, when bubbles are attached to the test surface 100a from below in the liquid, as shown in FIG. The surface tension between the test surface 100a and the liquid W is superior to the surface tension of the test surface 100a, and the bubbles 102 are mediated through the liquid layer Wa regardless of the presence or absence of the surface roughness of the test surface 100a and the surface roughness. It adheres to the test surface 100a in such a manner that it does not come into direct contact with the test surface 100a.

ここで、図2(b)に示されるような濡れ性が良い供試部材100Gであって、供試面100aに凹凸が形成されている場合、空気中において液滴を供試面に付着させると(従来の液滴法)、予め供試面100aに液体が付着しているような場合には、供試面100aの凹凸に付着した液体と液滴とが吸着し合い、液滴の接触角は低下する。ところが、供試面100aが乾燥した状態では、既存の液体と液滴との吸着は生じないために、時として、濡れ性が悪い場合のように、供試面に滴下された液滴に高い接触角が現れることがある(後述する図5のθの数値を参照)。本発明の第1の実施の形態に係る部材の濡れ性評価方法は、このような供試面100aの既存の液体の有無に起因する接触角のばらつきによる部材の濡れ性判断の誤りを、供試部材100を液体W中に浸漬させ、液中において気泡102の転昇角を測ることにより回避するものである。 Here, when the test member 100G has good wettability as shown in FIG. 2B and the test surface 100a has irregularities, the droplets adhere to the test surface in the air. (Conventional droplet method) When the liquid adheres to the test surface 100a in advance, the liquid adhering to the irregularities of the test surface 100a adsorbs to each other, and the droplet contacts The corner drops. However, when the test surface 100a is in a dry state, the existing liquid and droplets do not adsorb, and sometimes the droplets dropped on the test surface are high, as in the case of poor wettability. is the contact angle appears (see figures theta a of FIG. 5 described later). The member wettability evaluation method according to the first embodiment of the present invention provides an error in determining the wettability of a member due to the variation in contact angle caused by the presence or absence of the existing liquid on the test surface 100a. This is avoided by immersing the test member 100 in the liquid W and measuring the rising angle of the bubbles 102 in the liquid.

又、本発明の第1の実施の形態に係る、部材の濡れ性評価方法では、雰囲気温度を液体Wの液相温度の範囲内とすることで、液中における気泡102の転昇角に基づく濡れ性判断を行うことを可能とし、上述の如き、供試面の既存の液体の有無に起因する接触角のばらつきによる部材の濡れ性判断の誤りを、回避するものである。
又、本発明の第1の実施の形態に係る部材の濡れ性評価方法では、気泡102の容量を、供試部材100の供試面100aの面積に応じて定めら得る量に計量して、供試面に付着させるものである。すなわち、供試面100aの面積に対して、気泡012が大き過ぎると、気泡102が傾斜する供試面100aを伝って浮き上がる動作は生じ得ないが、供試部材100の供試面100aの面積に応じて計量した気泡を供試面に付着させることで、供試部材100の供試面100aの面積の広狭に関わらず、供試面100aにおける気泡102の動作を引き起こし、液中において安定した形状及び大きさを維持する気泡102の転昇角を測ることが可能となる。一例として、燃料電池のセル構成部材である、いわゆるエキスパンドメタルあるいはラスカットメタルを供試部材とする場合には、メッシュのピッチ等の関係から、気泡102を20ml以下に計量して供給することとする。
Further, in the member wettability evaluation method according to the first embodiment of the present invention, the atmospheric temperature is set within the range of the liquid phase temperature of the liquid W, so that it is based on the ascending angle of the bubbles 102 in the liquid. This makes it possible to determine the wettability, and avoids an error in determining the wettability of the member due to the variation in the contact angle caused by the presence or absence of the existing liquid on the test surface as described above.
In the member wettability evaluation method according to the first embodiment of the present invention, the volume of the bubble 102 is measured to an amount that can be determined according to the area of the test surface 100a of the test member 100, It is attached to the test surface. That is, if the bubble 012 is too large relative to the area of the test surface 100a, the bubble 102 cannot move up along the inclined test surface 100a, but the area of the test surface 100a of the test member 100 is not increased. By adhering the bubbles measured in accordance with the test surface to the test surface, regardless of the area of the test surface 100a of the test member 100, the operation of the bubble 102 on the test surface 100a was caused and stabilized in the liquid. It becomes possible to measure the angle of rise and fall of the bubble 102 that maintains its shape and size. As an example, in the case where so-called expanded metal or lath cut metal, which is a cell constituent member of a fuel cell, is used as a test member, the bubble 102 is measured and supplied to 20 ml or less because of the mesh pitch or the like. .

よって、以上説明したように、本発明の第1の実施の形態によれば、信頼性の高い部材の濡れ性評価を行うことが可能となる。
図5には、発明者らにより行われた実験結果の一例として、燃料電池のセル構成部材であるセパレータを供試部材100としたときの結果が、図表にて示されている。この事例は、このセパレータを具備するセルの運転状態を0.2A/cm(水素利用率60%に固定、セル温度80℃)として、雰囲気温度を25℃に設定し、ステージ18aの傾斜角度の増大速度を1°/秒とし、限界酸素利用率Lorが85%、75%、65%、50%のときの、従来の液滴法による液滴接触角θ、本発明の実施の形態に係る検査装置10により得られた気泡の空気接触角θ、同装置により得られた転昇角θで比較したものである。
この図表からも明らかなように、本発明の第1の実施の形態によれば、限界酸素利用率Lorが高く、発電性能が良好なほど、セパレータの転昇角θが小さくなっており、セパレータの濡れ性が良好であればセルの発電性能も高まるといった、原理原則に即した濡れ性判断が可能となる。
Therefore, as described above, according to the first embodiment of the present invention, it is possible to perform highly reliable wettability evaluation of a member.
In FIG. 5, as an example of the results of experiments conducted by the inventors, the results when a separator, which is a cell constituent member of a fuel cell, is used as a test member 100 are shown in a chart. In this example, the operating state of the cell equipped with this separator is 0.2 A / cm 2 (hydrogen utilization rate fixed at 60%, cell temperature 80 ° C.), the ambient temperature is set to 25 ° C., and the tilt angle of the stage 18a The droplet contact angle θ A according to the conventional droplet method when the rate of increase in the pressure is 1 ° / second and the limiting oxygen utilization rate Lor is 85%, 75%, 65%, 50%, and the embodiment of the present invention This is a comparison between the air contact angle θ B of the bubbles obtained by the inspection apparatus 10 and the rolling angle θ I obtained by the apparatus.
As is clear from this chart, according to the first embodiment of the present invention, the higher the critical oxygen utilization rate Lor and the better the power generation performance, the smaller the angle of elevation θ I of the separator is, If the separator has good wettability, the wettability can be determined based on the principle that the power generation performance of the cell is improved.

続いて、本発明の第2の実施の形態について説明する。本発明の第2の実施の形態に係る部材の濡れ性評価方法は、本発明の第1の実施の形態に係る、液中において気泡102の転昇角を測る手法に加えて、図6に示されるように、供試部材100の供試面100aに液滴を配置し、液滴の転落角を基準に供試部材の濡れ性を評価する手法を含むものである。
しかも、本発明の第2の実施の形態の特徴として、雰囲気温度を液滴の液相温度の範囲内とし、若しくは、雰囲気湿度を相対湿度0%以上100%以下の範囲とするものである。又、供試面100aに液滴を配置する際の、雰囲気気体の種類、圧力の一部若しくは全部を適宜変更する。ここで、液体は水又はエタノール等の有機溶媒が用いられる。又、供試面100aに対する液滴の吐出圧力についても、後述する理由から適宜変更する。更に、本発明の第2の実施の形態においても、液滴104の容量を、供試部材100の供試面100aの面積に応じて定められる量に計量して、供試面100aに配置する。
Next, a second embodiment of the present invention will be described. The method for evaluating the wettability of a member according to the second embodiment of the present invention is shown in FIG. 6 in addition to the method of measuring the ascending angle of the bubbles 102 in the liquid according to the first embodiment of the present invention. As shown, the method includes a method in which a droplet is placed on the test surface 100a of the test member 100 and the wettability of the test member is evaluated based on the drop angle of the droplet.
Moreover, as a feature of the second embodiment of the present invention, the atmospheric temperature is set within the range of the liquid phase temperature of the droplets, or the atmospheric humidity is set within the range of 0% to 100% relative humidity. In addition, the type of atmospheric gas and a part or all of the pressure when the droplets are arranged on the test surface 100a are appropriately changed. Here, an organic solvent such as water or ethanol is used as the liquid. Further, the discharge pressure of the droplets on the test surface 100a is also changed as appropriate for the reasons described later. Furthermore, also in the second embodiment of the present invention, the volume of the droplet 104 is measured to an amount determined according to the area of the test surface 100a of the test member 100 and arranged on the test surface 100a. .

さて、上記構成をなす、本発明の第2の実施の形態によれば、次のような作用効果を得ることが可能となる。すなわち、本発明の第2の実施の形態に係る部材の濡れ性評価方法は、液体の液相温度の範囲内の雰囲気温度中、若しくは、相対湿度0%以上100%以下の雰囲気湿度中に、供試部材100を置くことにより、部材の実際の使用条件に即した検査環境を、供試面に再現するものである。
そして、供試面100aに液滴104を滴下し、供試部材100を傾斜させて、液滴104の転落角を基準に供試部材100の濡れ性を評価する。又、設定された雰囲気環境下で供試面100aの全体が濡れた状態となる場合には、本発明の第1の実施の形態と同様に、供試面100aに気泡102を配置して、気泡102の転昇角を基準に供試部材の濡れ性を評価するものである。
Now, according to the second embodiment of the present invention configured as described above, the following operational effects can be obtained. That is, in the member wettability evaluation method according to the second embodiment of the present invention, the atmospheric temperature within the range of the liquid phase temperature of the liquid, or the atmospheric humidity of 0% to 100% relative humidity, By placing the test member 100, the inspection environment according to the actual use conditions of the member is reproduced on the test surface.
Then, the droplet 104 is dropped on the sample surface 100a, the sample member 100 is tilted, and the wettability of the sample member 100 is evaluated based on the falling angle of the droplet 104. Further, when the entire test surface 100a is in a wet state under the set atmosphere environment, as in the first embodiment of the present invention, the bubble 102 is arranged on the test surface 100a, The wettability of the test member is evaluated on the basis of the rising angle of the bubble 102.

また、本発明の第2の実施の形態では、供試面100aに液滴104又は気泡102を配置する際の、雰囲気気体の種類、圧力、又は供試面に対する液滴の吐出圧力を、適宜変更することで、部材の実際の使用条件に即した検査環境を、供試面100aに再現するものである。
ところで、図6に示されるように、供試面100aに液滴104を配置する際、供試部材100の濡れ性が悪い場合には、供試面100aに付着した液体を弾くことで、液滴の接触角が増大することは良く知られているが、供試部材の濡れ性が良い場合であっても、液滴104の接触角が増大することがある。すなわち、濡れ性が良く供試面100aに凹凸が形成された供試部材100の場合、空気中において液滴104を供試面100aに付着させると、供試面100aに予め液体が付着しているような場合には、供試面100aの凹凸に付着した液体と液滴とが吸着し合い、液滴104が供試面に広がって接触角は低下する。一方、供試面100aが乾燥した状態では、既存の液体と液滴104との吸着は生じないために、時として、供試面100aの凹凸の空気溜りによって液膜の広がりが阻害され、濡れ性が悪い場合のように、供試面100aに滴下された液滴104に高い接触角が現れることがある。そこで、本発明の第2の実施の形態に係る部材の濡れ性評価方法は、このような供試面100aの空気溜りの有無に起因する接触角のばらつきを、供試面100aに対する液滴104の吐出圧力を変更する、すなわち、吐出圧力を液滴104自体が吹き飛ばない程度に適宜高めることで、供試面100aの凹凸の空気溜りを跳ね除け、液滴104の形状及び大きさを維持して、転落角を測るものである。
Further, in the second embodiment of the present invention, when the droplet 104 or the bubble 102 is arranged on the test surface 100a, the kind of atmospheric gas, the pressure, or the discharge pressure of the droplet with respect to the test surface is appropriately set. By changing, the inspection environment in accordance with the actual use conditions of the member is reproduced on the test surface 100a.
By the way, as shown in FIG. 6, when placing the droplet 104 on the test surface 100a, if the wettability of the test member 100 is poor, the liquid attached to the test surface 100a is repelled, Although it is well known that the contact angle of the droplet increases, the contact angle of the droplet 104 may increase even when the test member has good wettability. In other words, in the case of the test member 100 having good wettability and unevenness formed on the test surface 100a, when the droplet 104 is attached to the test surface 100a in the air, the liquid is attached to the test surface 100a in advance. In such a case, the liquid adhering to the unevenness of the test surface 100a and the liquid droplet adsorb each other, the liquid droplet 104 spreads on the test surface, and the contact angle decreases. On the other hand, when the test surface 100a is in a dry state, the existing liquid and the droplets 104 do not adsorb. Therefore, the spread of the liquid film is sometimes obstructed by the air pockets on the test surface 100a. A high contact angle may appear in the droplet 104 dropped on the test surface 100a as in the case where the property is poor. In view of this, the member wettability evaluation method according to the second embodiment of the present invention uses such a variation in contact angle due to the presence or absence of air accumulation on the test surface 100a as a droplet 104 on the test surface 100a. In other words, by appropriately increasing the discharge pressure to such an extent that the droplet 104 itself does not blow away, the irregular air pockets on the test surface 100a are repelled and the shape and size of the droplet 104 are maintained. Measure the falling angle.

なお、本発明の第2の実施の形態においても、液滴104又は気泡102の容量を、供試部材100の供試面100aの面積に応じて定めら得る量に計量して、供試面100aに付着させるものである。すなわち、供試面100aの面積に対して、液滴104又は気泡102が大き過ぎると、液滴104又は気泡102が傾斜する供試面100aを伝って落下し又は浮き上がる動作は生じ得ないが、供試部材100の供試面100aの面積に応じて計量した液滴又は気泡を供試面100aに付着させることで、供試部材100の供試面100aの面積の広狭に関わらず、供試面100aにおける液滴104又は気泡102の動作を引き起こし、液滴104又は気泡102の転落角又は転昇角を測るものである。   Also in the second embodiment of the present invention, the volume of the droplet 104 or the bubble 102 is measured to an amount that can be determined according to the area of the test surface 100a of the test member 100, and the test surface It is attached to 100a. That is, if the droplet 104 or the bubble 102 is too large relative to the area of the test surface 100a, the droplet 104 or the bubble 102 cannot drop or float along the sample surface 100a inclined, Regardless of whether the area of the test surface 100a of the test member 100 is wide or narrow, the droplets or bubbles measured according to the area of the test surface 100a of the test member 100 are attached to the test surface 100a. The movement of the droplet 104 or the bubble 102 on the surface 100a is caused, and the falling angle or the rising angle of the droplet 104 or the bubble 102 is measured.

さらに、親水性又は撥水性部材の製造工程中に、本発明の第1、第2の実施の形態に係る部材の濡れ性評価方法を実施することが望ましい。すなわち、図7に示される親水性又は撥水性部材の製造工程において、狙いの濡れ性を持った材料を検討し(S50)、部材に要求される濡れ性を得るために、エッチング等により部材表面の改質処理を行う(S60)。そして、本発明の第1、第2の実施の形態に係る部材の濡れ性評価方法により、表面の改質処理を行った供試部材の濡れ性を評価し(S70)、該評価に応じ、適宜部材表面の更なる改質処理を行うことで、所望の親水性又は撥水性を有する部材を、効率的に製造することができる。   Furthermore, it is desirable to implement the member wettability evaluation method according to the first and second embodiments of the present invention during the manufacturing process of the hydrophilic or water repellent member. That is, in the manufacturing process of the hydrophilic or water-repellent member shown in FIG. 7, a material having a target wettability is examined (S50), and in order to obtain the wettability required for the member, the surface of the member is obtained by etching or the like. The reforming process is performed (S60). And by the wettability evaluation method for members according to the first and second embodiments of the present invention, the wettability of the test member subjected to the surface modification treatment is evaluated (S70), and according to the evaluation, A member having desired hydrophilicity or water repellency can be efficiently produced by appropriately further modifying the surface of the member.

本発明の第1の実施の形態に係る部材の濡れ性評価方法において、供試部材の供試面に付着させた気泡を、カメラによって撮影した図である。It is the figure which image | photographed the bubble adhering to the test surface of a test member with the camera in the wettability evaluation method of the member which concerns on the 1st Embodiment of this invention. 液中において、供試部材の供試面に下方から気泡を付着させた状態を示す模式図であり、(a)は供試部材の濡れ性が悪い場合、(b)は供試部材の濡れ性が良い場合を示すものである。It is a schematic diagram which shows the state which made the bubble adhere from the downward direction to the test surface of a test member in a liquid, (a) is the wettability of a test member, (b) is the wetness of a test member. The case where the property is good is shown. 本発明の第1の実施の形態に係る検査装置の全体図である。1 is an overall view of an inspection apparatus according to a first embodiment of the present invention. 本発明の第1の実施の形態に係る検査装置の、一部拡大図である。It is a partially expanded view of the inspection apparatus which concerns on the 1st Embodiment of this invention. 供試部材を燃料電池のセル構成部材であるセパレータとしたときの、試験結果を示す図表である。It is a graph which shows a test result when making a test member into the separator which is a cell structural member of a fuel cell. 本発明の第2の実施の形態に係る、供試部材の供試面に液滴を配置し、液滴の転落角を基準に供試部材の濡れ性を評価する手法を示す模式図である。FIG. 5 is a schematic diagram showing a method for evaluating the wettability of a test member based on a drop angle of the liquid drop, by placing a droplet on the test surface of the test member, according to a second embodiment of the present invention. . 本発明の第1、第2の実施の形態に係る部材の濡れ性評価方法を、親水性又は撥水性部材の製造工程に含めたフローチャートである。It is the flowchart which included the wettability evaluation method of the member which concerns on the 1st, 2nd embodiment of this invention in the manufacturing process of a hydrophilic property or a water-repellent member.

符号の説明Explanation of symbols

100:供試部材、102:気泡、θ:転昇角、W:液体   100: Test member, 102: Bubble, θ: Rotation angle, W: Liquid

Claims (7)

部材の濡れ性評価方法であって、供試部材を液体中に浸漬させ、その供試面を下方に向けて水平に保持した状態で該供試面に下方から気泡を付着させ、前記供試部材を傾斜させて前記気泡の転昇角を測り、該転昇角を基準に供試部材の濡れ性を評価することを特徴とする評価方法。 A method for evaluating the wettability of a member, wherein the test member is immersed in a liquid, and the test surface is held horizontally with the test surface held downward to allow bubbles to adhere to the test surface from below. An evaluation method, wherein a member is tilted to measure a bubble rising angle, and the wettability of a test member is evaluated based on the rising angle. 雰囲気温度を前記液体の液相温度の範囲内とすることを特徴とする請求項1記載の評価方法。 The evaluation method according to claim 1, wherein the ambient temperature is set within a range of a liquid phase temperature of the liquid. 前記気泡の容量を、前記供試部材の供試面の面積に応じて定められる量に計量して、前記供試面に付着させることを特徴とする請求項1又は2記載の評価方法。 The evaluation method according to claim 1 or 2, wherein the volume of the bubble is measured to an amount determined according to the area of the test surface of the test member and attached to the test surface. 部材の濡れ性評価方法であって、供試部材の供試面に液滴又は気泡を配置し、この際、雰囲気温度を前記液滴の液相温度の範囲内とし、若しくは、雰囲気湿度を相対湿度0%以上100%以下の範囲として、前記液滴の転落角若しくは前記気泡の転昇角を基準に、供試部材の濡れ性を評価することを特徴とする評価方法。 A method for evaluating the wettability of a member, wherein droplets or bubbles are arranged on a test surface of a test member, and at this time, the ambient temperature is within the range of the liquid phase temperature of the droplets, or the relative humidity is An evaluation method characterized by evaluating the wettability of a test member in a humidity range of 0% or more and 100% or less with reference to a drop angle of the droplet or a bubble rise angle. 前記供試面に液滴又は気泡を配置する際の、雰囲気気体の種類、圧力、又は前記供試面に対する液滴の吐出圧力を、適宜変更することを特徴とする請求項4記載の評価方法。 The evaluation method according to claim 4, wherein the kind or pressure of the atmospheric gas or the discharge pressure of the liquid droplet on the test surface is appropriately changed when the liquid droplet or the bubble is arranged on the test surface. . 前記液滴又は前記気泡の容量を、前記供試部材の供試面の面積に応じて定められる量に計量して、前記供試面に配置することを特徴とする請求項4又は5記載の評価方法。 The volume of the droplet or the bubble is measured to an amount determined according to the area of the test surface of the test member, and is disposed on the test surface. Evaluation methods. 部材に要求される濡れ性を得るために部材表面の改質処理を行い、請求項1から6のいずれか1項記載の供試部材の濡れ性評価方法により、表面の改質処理を行った供試部材の濡れ性を評価し、該評価に応じ適宜部材表面の更なる改質処理を行う工程を含むことを特徴とする親水性又は撥水性部材の製造方法。 In order to obtain the wettability required for the member, the member surface was subjected to a modification treatment, and the surface modification treatment was performed by the wettability evaluation method for a test member according to any one of claims 1 to 6. A method for producing a hydrophilic or water-repellent member, comprising a step of evaluating the wettability of a test member and performing a further modification treatment of the member surface as appropriate according to the evaluation.
JP2008333459A 2008-12-26 2008-12-26 Method for evaluating wettability of member, and method for manufacturing hydrophilic-water-repellent member Pending JP2010156551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008333459A JP2010156551A (en) 2008-12-26 2008-12-26 Method for evaluating wettability of member, and method for manufacturing hydrophilic-water-repellent member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008333459A JP2010156551A (en) 2008-12-26 2008-12-26 Method for evaluating wettability of member, and method for manufacturing hydrophilic-water-repellent member

Publications (1)

Publication Number Publication Date
JP2010156551A true JP2010156551A (en) 2010-07-15

Family

ID=42574580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008333459A Pending JP2010156551A (en) 2008-12-26 2008-12-26 Method for evaluating wettability of member, and method for manufacturing hydrophilic-water-repellent member

Country Status (1)

Country Link
JP (1) JP2010156551A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014084324A1 (en) * 2012-11-30 2014-06-05 中国塗料株式会社 Coating composition for use in ship with reduced friction drag utilizing gas-lubricating function in water, coating film formed from said composition, ship coated with said coating film, method for manufacturing said ship, method for predicting said friction drag reduction effect, device used for prediction of said friction drag reduction effect, and friction drag reduction system for use in said ship with reduced friction drag
CN104833615A (en) * 2015-05-12 2015-08-12 东华大学 Wettability testing method for prepreg
CN110776038A (en) * 2019-10-25 2020-02-11 中国计量大学 Method for controlling adhesion of bubbles and super-hydrophilic rail with vertical or inclined upper surface
CN112748108A (en) * 2020-12-15 2021-05-04 中国科学院国家空间科学中心 Real-time measuring system for wettability parameter of space high-temperature melt material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014084324A1 (en) * 2012-11-30 2014-06-05 中国塗料株式会社 Coating composition for use in ship with reduced friction drag utilizing gas-lubricating function in water, coating film formed from said composition, ship coated with said coating film, method for manufacturing said ship, method for predicting said friction drag reduction effect, device used for prediction of said friction drag reduction effect, and friction drag reduction system for use in said ship with reduced friction drag
JP6041897B2 (en) * 2012-11-30 2016-12-14 中国塗料株式会社 Paint composition used for ship with reduced frictional resistance utilizing gas lubrication function in water, coating film formed from the composition, ship coated with the coating film, method for manufacturing the ship, and reduction of frictional resistance Method for predicting effect, apparatus used for predicting frictional resistance reduction effect, and frictional resistance reducing system used for frictional resistance-reducing ship
JP2017037080A (en) * 2012-11-30 2017-02-16 中国塗料株式会社 Method for predicting effect for reducing friction resistance and apparatus used in prediction of effect for reducing friction resistance
CN104833615A (en) * 2015-05-12 2015-08-12 东华大学 Wettability testing method for prepreg
CN110776038A (en) * 2019-10-25 2020-02-11 中国计量大学 Method for controlling adhesion of bubbles and super-hydrophilic rail with vertical or inclined upper surface
CN110776038B (en) * 2019-10-25 2022-07-12 中国计量大学 Method for controlling adhesion of bubbles and super-hydrophilic rail with vertical or inclined upper surface
CN112748108A (en) * 2020-12-15 2021-05-04 中国科学院国家空间科学中心 Real-time measuring system for wettability parameter of space high-temperature melt material

Similar Documents

Publication Publication Date Title
JP2010156551A (en) Method for evaluating wettability of member, and method for manufacturing hydrophilic-water-repellent member
US8468872B2 (en) Hydrogen sensor and method of manufacturing the same
US20130071941A1 (en) Graphene defect detection
TWI384228B (en) A manufacturing method of a probe support plate, a computer storage medium, and a probe support plate
JP2006190997A5 (en)
JPWO2008053929A1 (en) Micro structure inspection apparatus, micro structure inspection method, and substrate holding apparatus
US20120152136A1 (en) Imprint method, computer storage medium and imprint apparatus
JP5109738B2 (en) Evaluation method of surface condition
JP2006023282A (en) Method and apparatus for evaluating adhesion of member
JP2022169624A (en) Inspection jig
JP2020017603A (en) Reduced pressure drying apparatus, substrate treatment apparatus and reduced pressure drying method
CN1744202A (en) Magnetic recording medium, head slider and manufacture method thereof
Santangelo et al. An experimental approach to evaluate drying kinetics and foam formation in inks for inkjet printing of fuel-cell layers
JP5416143B2 (en) Method for predicting conformability of sheet material to reference plane
JP2010118455A (en) Member for use in immersion lithography apparatus, immersion lithography apparatus, and device manufacturing method
JP2018113390A (en) Substrate processing apparatus
CN114131125B (en) Tool electrode with surface hydrophobic structure and preparation method thereof
KR101775825B1 (en) Hydrogen sensor and method for manufacturing the same
WO2015083767A1 (en) Chip for analyzing biomolecular characteristics and method for producing same
JP2012023104A (en) Substrate-setting device
JP7467176B2 (en) Adhesive application method and application device
JP2009010247A (en) Method of manufacturing mask blank and coating device
JP2007205964A (en) Specific substance observation device and specific substance observation method
CN106019824A (en) Imprinting apparatus, imprinting method, method of creating data on material distribution, and article manufacturing method
JP2006162363A (en) Positioning device and frequency temperature characteristic inspection device