JP6040077B2 - Printing apparatus and printing method - Google Patents
Printing apparatus and printing method Download PDFInfo
- Publication number
- JP6040077B2 JP6040077B2 JP2013067682A JP2013067682A JP6040077B2 JP 6040077 B2 JP6040077 B2 JP 6040077B2 JP 2013067682 A JP2013067682 A JP 2013067682A JP 2013067682 A JP2013067682 A JP 2013067682A JP 6040077 B2 JP6040077 B2 JP 6040077B2
- Authority
- JP
- Japan
- Prior art keywords
- ejection
- nozzle
- discharge
- ink
- abnormality
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Ink Jet (AREA)
Description
本発明は、印刷装置および印刷方法に関するものである。 The present invention relates to a printing apparatus and a printing method .
液滴吐出装置の一つであるインクジェットプリンタは、複数のノズルからインク滴(液滴)を吐出して所定の用紙上に画像形成を行っている。インクジェットプリンタの印刷ヘッド(インクジェットヘッド)には、多数のノズルが設けられているが、インクの粘度の増加や、気泡の混入、塵や紙粉の付着等の原因によって、いくつかのノズルが目詰まりしてインク滴を吐出できない場合がある。ノズルが目詰まりするとプリントされた画像内にドット抜けが生じ、画質を劣化させる原因となっている。 Inkjet printers, which are one type of droplet ejection device, form images on predetermined paper by ejecting ink droplets (droplets) from a plurality of nozzles. A print head (inkjet head) of an ink jet printer is provided with a number of nozzles. However, some nozzles may become visible due to an increase in ink viscosity, air bubbles, dust or paper dust. There are cases where clogged and ink droplets cannot be ejected. When the nozzles are clogged, dots are missing in the printed image, which causes the image quality to deteriorate.
従来、このようなインク滴の吐出異常(以下、「ドット抜け」ともいう)を検出する方法として、インクジェットヘッドのノズルからインク滴が吐出されない状態(インク滴吐出異常状態)をインクジェットヘッドのノズル毎に光学的に検出する方法が考案されている(例えば、特許文献1など)。この方法により、ドット抜け(吐出異常)を発生しているノズルを特定することが可能となっている。 Conventionally, as a method for detecting such an ink droplet ejection abnormality (hereinafter also referred to as “dot missing”), a state in which ink droplets are not ejected from the nozzles of the inkjet head (ink droplet ejection abnormal state) is determined for each nozzle of the inkjet head. A method for optical detection has been devised (for example, Patent Document 1). By this method, it is possible to identify a nozzle that has a missing dot (ejection abnormality).
しかしながら、上述の光学式のドット抜け(液滴吐出異常)検出方法では、光源および光学センサを含む検出器が液滴吐出装置(例えば、インクジェットプリンタ)に取付けられている。この検出方法では、一般に、液滴吐出ヘッド(インクジェットヘッド)のノズルから吐出する液滴が光源と光学センサの間を通過し、光源と光学センサの間の光を遮断するように、光源および光学センサを精密な精度で(高精度に)設定(設置)しなければならないという問題がある。また、このような検出器は通常高価であり、インクジェットプリンタの製造コストが増大してしまうという問題もある。さらに、ノズルからのインクミストや印刷用紙等の紙粉によって、光源の出力部や光学センサの検出部が汚れてしまい、検出器の信頼性が問題となる可能性もある。 However, in the above-described optical dot dropout (droplet ejection abnormality) detection method, a detector including a light source and an optical sensor is attached to a droplet ejection apparatus (for example, an ink jet printer). In this detection method, in general, a light source and an optical device are arranged such that a droplet discharged from a nozzle of a droplet discharge head (inkjet head) passes between the light source and the optical sensor and blocks light between the light source and the optical sensor. There is a problem that the sensor must be set (installed) with high accuracy (high accuracy). In addition, such a detector is usually expensive, and there is a problem that the manufacturing cost of the ink jet printer increases. Further, the output part of the light source and the detection part of the optical sensor may be contaminated by ink mist from the nozzles or paper dust such as printing paper, and the reliability of the detector may become a problem.
さらに、上述の光学式のドット抜け検出方法では、ノズルのドット抜け、すなわち、インク滴の吐出異常(不吐出)を検出することはできるが、その検出結果に基づいてドット抜け(吐出異常)の原因を特定(判定)することができず、ドット抜けの原因に対応する適切な回復処理を選択し、実行することが不可能であるという問題もある。そのため、従来のドット抜け検出方法では、ドット抜けの原因に関係なくシーケンシャルな回復処理が実行され、例えば、ワイピング処理で回復可能な状態であるにもかかわらず、インクジェットヘッドからインクをポンプ吸引などすることにより、排インク(無駄なインク)が増加することや、適切な回復処理が行われないために必ずしも必要でない複数の回復処理を実施することによって、インクジェットプリンタ(液滴吐出装置)のスループットを低下あるいは悪化させてしまう。 Furthermore, in the above-described optical dot missing detection method, it is possible to detect nozzle missing dots, that is, ink droplet ejection abnormalities (non-ejections), but based on the detection results, dot missing (ejection abnormalities) is detected. There is also a problem that the cause cannot be specified (determined) and it is impossible to select and execute an appropriate recovery process corresponding to the cause of the missing dot. For this reason, in the conventional dot missing detection method, sequential recovery processing is executed regardless of the cause of dot missing. For example, ink is pumped from the inkjet head even though it can be recovered by wiping processing. This increases the throughput of inkjet printers (droplet ejection devices) by increasing the amount of waste ink (waste ink) and performing multiple recovery processes that are not necessary because appropriate recovery processes are not performed. It will decrease or worsen.
本発明の目的は、液滴吐出ヘッドの吐出異常が検出された場合、その吐出異常の原因を特定し、従来のようなシーケンシャルな回復処理ではなく、その原因に応じた適切な回復処理を実行することができ、また、回復処理によって液滴吐出ヘッドが正常状態に回復したかどうかを効率良く確認することができる印刷装置および印刷方法を提供することにある。 The object of the present invention is to identify the cause of the ejection abnormality when the ejection abnormality of the droplet ejection head is detected, and execute an appropriate recovery process according to the cause instead of the sequential recovery process as in the prior art. Another object of the present invention is to provide a printing apparatus and a printing method capable of efficiently confirming whether or not the droplet discharge head has been restored to a normal state by the recovery process.
このような目的は、下記の本発明により達成される。
本発明の検出方法は、液滴吐出装置が備える液滴吐出ヘッドの吐出異常の検出方法であって、
前記液滴吐出装置は、前記液滴吐出ヘッドと、吐出異常検出手段と、回復手段と、を備え、
前記液滴吐出ヘッドは、液体が充填されたキャビティ内の圧力がアクチュエータの駆動により変化し、前記キャビティに連通するノズルから前記液体を液滴として吐出し、
前記吐出異常検出手段により、前記キャビティ内の圧力の変化に応じた信号の周波数を検出する工程と、
前記回復手段により、複数種類の回復処理のうち、検出した前記信号の周波数に基づく回復処理を、前記液滴吐出ヘッドに対し行う工程と、
を有し、
前記信号の周波数は、前記キャビティ内に気泡が混入した場合の方が、正常吐出の場合よりも高く、前記ノズルにおいて前記液体が固着したことにより前記液滴を吐出できない場合の方が、前記キャビティ内に気泡が混入した場合よりも低いことを特徴とする。
本発明の検出方法では、前記信号を検出する工程は、印刷動作中に行われ、
前記回復処理を行う工程は、前記印刷動作を中断して行われることが好ましい。
Such an object is achieved by the present invention described below.
The detection method of the present invention is a method for detecting a discharge abnormality of a droplet discharge head provided in a droplet discharge device,
The liquid droplet ejection apparatus includes the liquid droplet ejection head, ejection abnormality detection means, and recovery means,
The droplet discharge head changes the pressure in the cavity filled with the liquid by driving the actuator, and discharges the liquid as a droplet from a nozzle communicating with the cavity.
A step of detecting a frequency of a signal corresponding to a change in pressure in the cavity by the discharge abnormality detecting means;
A step of performing recovery processing based on the detected frequency of the signal among a plurality of types of recovery processing on the droplet discharge head by the recovery means;
Have
The frequency of the signal is higher when bubbles are mixed in the cavity than when normal ejection is performed, and when the liquid cannot be ejected due to the liquid adhering to the nozzle, the cavity It is characterized by being lower than when bubbles are mixed in.
In the detection method of the present invention, the step of detecting the signal is performed during a printing operation,
The step of performing the recovery process is preferably performed by interrupting the printing operation.
本発明の液滴吐出装置は、液体が充填されたキャビティ内の圧力がアクチュエータの駆動により変化し、前記キャビティに連通するノズルから前記液体を液滴として吐出する液滴吐出ヘッドと、
前記キャビティ内の圧力の変化に応じた信号の周波数を検出する吐出異常検出手段と、
複数種類の回復処理のうち、検出した前記信号の周波数に基づく回復処理を、前記液滴吐出ヘッドに対し行う回復手段と、
を備え、
前記信号の周波数は、前記キャビティ内に気泡が混入した場合の方が、正常吐出の場合よりも高く、前記ノズルにおいて前記液体が固着したことにより前記液滴を吐出できない場合の方が、前記キャビティ内に気泡が混入した場合よりも低いことを特徴とする。
本発明の液滴吐出装置では、前記吐出異常検出手段による検出を、印刷動作中に行い、
前記回復手段による回復処理を、前記印刷動作を中断して行うことが好ましい。
The droplet discharge device of the present invention includes a droplet discharge head that discharges the liquid as droplets from a nozzle that communicates with the cavity, and the pressure in the cavity filled with the liquid changes by driving of the actuator.
A discharge abnormality detecting means for detecting a frequency of a signal according to a change in pressure in the cavity;
Recovery means for performing recovery processing on the droplet discharge head based on the detected frequency of the signal among a plurality of types of recovery processing;
With
The frequency of the signal is higher when bubbles are mixed in the cavity than when normal ejection is performed, and when the liquid cannot be ejected due to the liquid adhering to the nozzle, the cavity It is characterized by being lower than when bubbles are mixed in.
In the droplet discharge device of the present invention, the detection by the discharge abnormality detection means is performed during the printing operation,
It is preferable that the recovery process by the recovery means is performed by interrupting the printing operation.
本発明の液滴吐出装置は、駆動回路によりアクチュエータを駆動して液体が充填されたキャビティ内の圧力を変化させることにより前記キャビティに連通するノズルから前記液体を液滴として吐出する複数の液滴吐出ヘッドを備え、前記液滴吐出ヘッドと液滴受容物とを相対的に走査しつつ前記ノズルから前記液滴を吐出して前記液滴受容物に着弾させる液滴吐出装置であって、
前記ノズルからの液滴の吐出異常と当該吐出異常の原因とを検出する吐出異常検出手段と、
前記液滴吐出ヘッドに対し、液滴の吐出異常を解消させる回復処理を行う回復手段と、
前記吐出異常検出手段によって吐出異常が検出されたノズルと当該ノズルの吐出異常の原因とを関連付けて記憶する記憶手段とを備え、
前記回復手段は、前記アクチュエータを駆動して前記液滴吐出ヘッドのクリーニングのために前記ノズルから前記液滴を吐出するフラッシング処理を実行するフラッシング手段を含み、
前記全ノズルについて前記吐出異常検出手段による検出を行った場合、吐出異常が発生した異常ノズルがあったときには、前記異常ノズルの吐出異常の原因にかかわらず、前記異常ノズルに対してのみフラッシング処理を実行した後、前記異常ノズルに対してのみ液滴吐出動作を行って前記吐出異常検出手段による検出を行い、吐出異常が解消していない再異常ノズルがあったときには、該再異常ノズルの吐出異常の原因に応じた回復処理を少なくとも前記再異常ノズルに対して前記回復手段により実行し、その後、前記再異常ノズルに対してのみ液滴吐出動作を行って前記吐出異常検出手段による検出を行うことを特徴とする。
The droplet discharge device of the present invention has a plurality of droplets that discharge the liquid as droplets from a nozzle communicating with the cavity by driving an actuator by a drive circuit to change the pressure in the cavity filled with the liquid. A droplet discharge device comprising a discharge head, discharging the droplet from the nozzle while relatively scanning the droplet discharge head and the droplet receiver, and landing on the droplet receiver;
A discharge abnormality detecting means for detecting a discharge abnormality of the droplet from the nozzle and a cause of the discharge abnormality;
A recovery means for performing recovery processing for eliminating droplet discharge abnormality with respect to the droplet discharge head;
A storage unit that associates and stores the nozzle in which the discharge abnormality is detected by the discharge abnormality detection unit and the cause of the discharge abnormality of the nozzle;
The recovery means includes a flushing means for driving the actuator to perform a flushing process for discharging the droplets from the nozzles for cleaning the droplet discharge head;
When detection is performed by the discharge abnormality detection unit for all the nozzles, if there is an abnormal nozzle in which a discharge abnormality has occurred, flushing processing is performed only on the abnormal nozzle regardless of the cause of the abnormal discharge of the abnormal nozzle. After the execution, a droplet discharge operation is performed only on the abnormal nozzle and detection is performed by the discharge abnormality detection means. If there is a re-abnormal nozzle that has not been eliminated, the abnormal discharge of the re-abnormal nozzle is detected. A recovery process according to the cause of at least the re-abnormal nozzle is performed by the recovery unit, and then a droplet discharge operation is performed only on the re-abnormal nozzle, and detection by the discharge abnormality detection unit is performed. It is characterized by.
これにより、液滴吐出ヘッドの吐出異常が検出された場合、その異常ノズルの吐出異常の原因が軽微なものである場合などには、フラッシング処理によって異常ノズルを正常な状態に迅速に回復させることができる。また、この際、正常だったノズルからは液滴を吐出しないので、例えばインク等の吐出対象液を無駄に消費することもない。
また、フラッシング処理の後、異常ノズルに対し吐出異常検出手段による検出を再度行って正常状態に回復したかどうかを確認するので、その後の印刷動作において吐出異常が発生するのをより確実に防止することができる。また、ここでは、異常ノズルのみに液滴吐出動作を行わせて吐出異常検出手段による検出を行うので、前回の検出で正常だったノズルからは液滴を吐出しないで済む。よって、吐出対象液を無駄に吐出するのを回避することとなり、吐出対象液の消費量をさらに低減することができる。
As a result, when a discharge abnormality of the droplet discharge head is detected, or when the cause of the abnormal discharge of the abnormal nozzle is minor, the abnormal nozzle can be quickly recovered to a normal state by a flushing process. Can do. At this time, since the droplets are not ejected from the normal nozzle, for example, the ejection target liquid such as ink is not wasted.
In addition, after the flushing process, the abnormal nozzle is again detected by the discharge abnormality detecting means to check whether or not the normal state has been restored, so that it is possible to more reliably prevent the occurrence of a discharge abnormality in the subsequent printing operation. be able to. Further, here, only the abnormal nozzle is caused to perform the droplet discharge operation, and the detection by the discharge abnormality detection means is performed, so that it is not necessary to discharge the droplet from the nozzle that was normal in the previous detection. Therefore, it is possible to avoid wasteful discharge of the discharge target liquid, and the consumption of the discharge target liquid can be further reduced.
また、異常ノズルが回復したかどうかを確認した結果、吐出異常が解消していない再異常ノズルがあったときには、その再異常ノズルの吐出異常の原因に応じて、適切な回復処理を実行するので、従来の液滴吐出装置におけるシーケンシャルな回復処理とは異なり、回復処理時に吐出対象液を無駄に排出するのを防止することができるので、吐出対象液の消費量をさらに低減することができる。また、必要でない種類の回復処理を行わないので、回復処理に要する時間を短縮でき、液滴吐出装置のスループット(単位時間当たりの印刷枚数)の向上が図れる。 Also, as a result of checking whether or not the abnormal nozzle has recovered, if there is a re-abnormal nozzle for which the discharge abnormality has not been resolved, an appropriate recovery process is executed depending on the cause of the discharge abnormality of the re-abnormal nozzle. Unlike the sequential recovery process in the conventional droplet discharge device, it is possible to prevent the discharge target liquid from being discharged unnecessarily during the recovery process, so that the consumption of the discharge target liquid can be further reduced. Further, since unnecessary types of recovery processing are not performed, the time required for the recovery processing can be shortened, and the throughput (number of printed sheets per unit time) of the droplet discharge device can be improved.
また、再異常ノズルに対する回復処理の後、再異常ノズルに対し吐出異常検出手段による検出を再度行って正常状態に回復したかどうかを確認するので、その後の印刷動作において吐出異常が発生するのをより確実に防止することができる。また、ここでは、再異常ノズルのみに液滴吐出動作を行わせて吐出異常検出手段による検出を行うので、前回の検出で正常だったノズルからは液滴を吐出しないで済む。よって、吐出対象液を無駄に吐出するのを回避することとなり、吐出対象液の消費量をさらに低減することができる。さらに、吐出異常検出手段等の負担も軽減することができる。 In addition, after the recovery process for the re-abnormal nozzle, the re-abnormal nozzle is again detected by the discharge abnormality detection means to check whether it has recovered to the normal state. It can prevent more reliably. Here, since only the re-abnormal nozzle performs the droplet discharge operation and the detection by the discharge abnormality detection means is performed, it is not necessary to discharge the droplet from the nozzle that was normal in the previous detection. Therefore, it is possible to avoid wasteful discharge of the discharge target liquid, and the consumption of the discharge target liquid can be further reduced. Furthermore, the burden on the discharge abnormality detecting means can be reduced.
本発明の液滴吐出装置では、前記回復手段は、前記液滴吐出ヘッドのノズルが配列されるノズル面をワイパにより拭き取るワイピング処理を実行するワイピング手段と、前記液滴吐出ヘッドのノズル面を覆うキャップに接続するポンプによりポンプ吸引処理を実行するポンピング手段とを含み、
前記吐出異常検出手段が検出し得る吐出異常の原因は、前記キャビティへの気泡混入と、前記ノズル付近の液体の乾燥による増粘と、前記ノズル出口付近への紙粉付着との少なくともいずれか一つを含み、
前記回復手段は、前記再異常ノズルの吐出異常の原因が、気泡混入または乾燥増粘の場合には前記ポンピング手段によるポンプ吸引処理を実行させ、紙粉付着の場合には少なくとも前記ワイパによるワイピング処理を実行させることが好ましい。
In the liquid droplet ejection apparatus according to the aspect of the invention, the recovery unit covers a wiping unit that performs a wiping process of wiping the nozzle surface on which the nozzles of the liquid droplet ejection head are arranged with a wiper, and the nozzle surface of the liquid droplet ejection head Pumping means for performing a pump suction process with a pump connected to the cap,
The cause of the ejection abnormality that can be detected by the ejection abnormality detection means is at least one of the mixing of bubbles into the cavity, the thickening due to the drying of the liquid near the nozzle, and the adhesion of paper dust near the nozzle outlet. Including
The recovery means causes the pump suction process by the pumping means to be executed when the cause of the abnormal discharge of the re-abnormal nozzle is air bubble mixing or dry thickening, and at least the wiping process by the wiper in the case of paper dust adhesion Is preferably executed.
これにより、回復手段は、吐出異常の原因に応じ、ワイピング処理、フラッシング処理、ポンプ吸引処理から適切かつ無駄のない回復処理を選択して実行することができる。
また、吐出異常の原因として、キャビティへの気泡混入、ノズル付近での液体の乾燥・増粘、ノズル出口付近への紙粉付着、のそれぞれに応じて適切かつ無駄のない回復処理を行うことができる。なお、本発明において、「紙粉」とは、単に記録用紙などから発生した紙粉のみに限らず、例えば、紙送りローラ(給紙ローラ)などのゴムの切れ端や、空気中に浮遊するごみなどを含むノズル付近に付着して液滴吐出の妨げとなるすべてのものをいう。
Thereby, the recovery means can select and execute an appropriate and wasteful recovery process from the wiping process, the flushing process, and the pump suction process according to the cause of the ejection abnormality.
In addition, it is possible to perform appropriate and wasteful recovery processing according to each of the causes of ejection abnormalities, such as air bubbles in the cavity, drying / thickening of liquid near the nozzle, and paper dust adhering to the vicinity of the nozzle outlet. it can. In the present invention, “paper dust” is not limited to paper dust generated from recording paper or the like. For example, a piece of rubber such as a paper feed roller (paper feed roller) or dust floating in the air. This means anything that adheres to the vicinity of the nozzle including the above and hinders droplet discharge.
本発明の液滴吐出装置では、前記ワイピング手段は、複数組のノズル群ごと別々にワイピング処理を実行することができるように構成され、前記再異常ノズルの吐出異常の原因に応じてワイピング処理を実行するとき、前記再異常ノズルを含むノズル群に対してのみワイピング処理を実行することが好ましい。
これにより、ワイピング処理が必要なノズルを含むノズル群のみを選択的にワイピング処理することができるので、全ノズルに対して一括してワイピング処理を行う場合と比べ、無駄なく、効率の良いワイピング処理を行うことができる。
In the droplet discharge device of the present invention, the wiping means is configured to be able to execute the wiping process separately for each of a plurality of nozzle groups, and performs the wiping process according to the cause of the discharge abnormality of the re-abnormal nozzle. When executing, it is preferable to execute the wiping process only for the nozzle group including the re-abnormal nozzle.
As a result, only the nozzle group including the nozzles that require wiping processing can be selectively wiped, so there is no waste and efficient wiping processing compared to the case where all nozzles are collectively wiped. It can be performed.
本発明の液滴吐出装置では、前記ポンピング手段は、複数組のノズル群ごと別々にポンプ吸引処理を実行することができるように構成され、前記再異常ノズルの吐出異常の原因に応じてポンプ吸引処理を実行するとき、前記再異常ノズルを含むノズル群に対してのみポンプ吸引処理を実行することが好ましい。
これにより、ポンプ吸引処理が必要なノズルを含むノズル群のみを選択的にポンプ吸引処理することができるので、全ノズルに対して一括してポンプ吸引処理を行う場合と比べ、無駄なく、効率の良いポンプ吸引処理を行うことができる。
In the droplet discharge device of the present invention, the pumping means is configured to be able to execute pump suction processing separately for each of a plurality of sets of nozzle groups, and pump suction according to the cause of discharge abnormality of the re-abnormal nozzle. When executing the processing, it is preferable to execute the pump suction processing only for the nozzle group including the re-abnormal nozzle.
As a result, only a group of nozzles including nozzles that require pump suction processing can be selectively pumped, so there is no waste and efficiency compared to the case where pump suction processing is performed for all nozzles at once. A good pump suction process can be performed.
本発明の液滴吐出装置では、前記複数組のノズル群は、吐出する液滴の種類が互いに異なることが好ましい。
これにより、種類の相異なる吐出対象液を吐出するノズル群ごとにワイピング処理やポンプ吸引処理を行うことができるので、無駄なく効率の良い回復処理が行えるとともに、種類の異なる吐出対象液が混合するのを防止することもできる。
In the droplet discharge device of the present invention, it is preferable that the plurality of sets of nozzle groups have different types of droplets to be discharged.
As a result, wiping processing and pump suction processing can be performed for each nozzle group that discharges different types of discharge target liquids, so that efficient recovery processing can be performed without waste, and different types of discharge target liquids are mixed. Can also be prevented.
本発明の液滴吐出装置では、前記吐出異常検出手段による検出を行った結果、吐出異常が検出されたノズルがあった場合、ノズルからの液滴の吐出異常があったことを報知する報知手段を備えることが好ましい。
これにより、吐出異常の発生を使用者(操作者)に迅速に知らせることができる。
本発明の液滴吐出装置では、前記液滴吐出ヘッドのアクチュエータは、前記キャビティ内の圧力を変化させるように変位し得る振動板を有し、
前記吐出異常検出手段は、前記振動板の残留振動を検出し、該検出された前記振動板の残留振動の振動パターンに基づいて、吐出異常を検出することが好ましい。
これにより、比較的簡単な構成で、吐出異常およびその原因を正確かつ確実に検出することができる。
In the droplet discharge device of the present invention, when there is a nozzle in which an abnormal discharge is detected as a result of the detection by the abnormal discharge detecting unit, a notification unit that notifies that there has been an abnormal discharge of the droplet from the nozzle It is preferable to provide.
Thereby, it is possible to promptly notify the user (operator) of the occurrence of the discharge abnormality.
In the droplet discharge device of the present invention, the actuator of the droplet discharge head has a diaphragm that can be displaced to change the pressure in the cavity,
Preferably, the ejection abnormality detection means detects residual vibration of the diaphragm, and detects ejection abnormality based on the detected vibration pattern of residual vibration of the diaphragm.
Thereby, it is possible to accurately and reliably detect the ejection abnormality and the cause thereof with a relatively simple configuration.
本発明の液滴吐出装置では、前記アクチュエータは、静電式アクチュエータであることが好ましい。
これにより、静電式アクチュエータを利用した液滴吐出ヘッドの場合、比較的簡単な構成で、吐出異常およびその原因を正確かつ確実に検出することができる。
本発明の液滴吐出装置では、前記アクチュエータは、圧電素子のピエゾ効果を利用した圧電アクチュエータであることが好ましい。
これにより、圧電アクチュエータを利用した液滴吐出ヘッドの場合、比較的簡単な構成で、吐出異常およびその原因を正確かつ確実に検出することができる。
In the droplet discharge device of the present invention, it is preferable that the actuator is an electrostatic actuator.
Thereby, in the case of a droplet discharge head using an electrostatic actuator, it is possible to accurately and reliably detect a discharge abnormality and its cause with a relatively simple configuration.
In the droplet discharge device of the present invention, it is preferable that the actuator is a piezoelectric actuator using a piezoelectric effect of a piezoelectric element.
Thereby, in the case of a droplet discharge head using a piezoelectric actuator, it is possible to accurately and reliably detect a discharge abnormality and its cause with a relatively simple configuration.
本発明の液滴吐出装置では、前記吐出異常検出手段は、発振回路を備え、前記振動板の残留振動によって変化する前記アクチュエータの静電容量成分に基づいて、該発振回路が発振することが好ましい。
これにより、低廉で簡単な構造の回路構成で、吐出異常をより正確に検出することができる。
In the liquid droplet ejection apparatus according to the aspect of the invention, it is preferable that the ejection abnormality detection unit includes an oscillation circuit, and the oscillation circuit oscillates based on a capacitance component of the actuator that changes due to residual vibration of the diaphragm. .
Thereby, it is possible to detect the ejection abnormality more accurately with a low-cost and simple circuit configuration.
本発明の液滴吐出装置では、前記発振回路は、前記アクチュエータの静電容量成分と、前記アクチュエータに接続される抵抗素子の抵抗成分とによるCR発振回路を構成することが好ましい。
これにより、振動板の残留振動をより正確に検出することができ、それによって、吐出異常をより正確に検出することができる。
In the droplet discharge device according to the aspect of the invention, it is preferable that the oscillation circuit constitutes a CR oscillation circuit including a capacitance component of the actuator and a resistance component of a resistance element connected to the actuator.
As a result, the residual vibration of the diaphragm can be detected more accurately, and thereby the ejection abnormality can be detected more accurately.
本発明の液滴吐出装置では、前記液滴吐出ヘッドのアクチュエータは、前記キャビティ内に充填された液体を加熱して膜沸騰を生じさせ得る発熱体を有し、
前記液滴吐出ヘッドは、前記キャビティ内の圧力の変化に追従して弾性的に変位する振動板と、前記振動板と対向するように設置された電極とを備え、
前記吐出異常検出手段は、前記振動板の残留振動を検出し、該検出された前記振動板の残留振動の振動パターンに基づいて、吐出異常を検出することが好ましい。
これにより、サーマルジェット方式の液滴吐出ヘッドの場合、比較的簡単な構成で、吐出異常およびその原因を正確かつ確実に検出することができる。
In the droplet discharge device of the present invention, the actuator of the droplet discharge head includes a heating element that can cause film boiling by heating the liquid filled in the cavity,
The droplet discharge head includes a vibration plate that elastically displaces following a change in pressure in the cavity, and an electrode that is disposed to face the vibration plate.
Preferably, the ejection abnormality detection means detects residual vibration of the diaphragm, and detects ejection abnormality based on the detected vibration pattern of residual vibration of the diaphragm.
As a result, in the case of a thermal jet type droplet discharge head, it is possible to accurately and reliably detect discharge abnormality and its cause with a relatively simple configuration.
本発明の液滴吐出装置では、前記吐出異常検出手段は、発振回路を備え、前記振動板と前記電極とで構成されるコンデンサの静電容量の、前記振動板の残留振動に伴う経時的変動に基づいて、該発振回路が発振することが好ましい。
これにより、低廉で簡単な構造の回路構成で、吐出異常をより正確に検出することができる。
In the droplet discharge device according to the aspect of the invention, the discharge abnormality detection unit includes an oscillation circuit, and the capacitance of a capacitor formed by the diaphragm and the electrode varies with time due to residual vibration of the diaphragm. Based on the above, it is preferable that the oscillation circuit oscillates.
Thereby, it is possible to detect the ejection abnormality more accurately with a low-cost and simple circuit configuration.
本発明の液滴吐出装置では、前記発振回路は、前記コンデンサの静電容量成分と、抵抗素子の抵抗成分とによるCR発振回路を構成することが好ましい。
これにより、振動板の残留振動をより正確に検出することができ、それによって、吐出異常をより正確に検出することができる。
本発明の液滴吐出装置では、前記振動板の残留振動の振動パターンは、前記残留振動の周期を含むことが好ましい。
これにより、吐出異常をより高い精度で検出することができる。
In the droplet discharge device according to the aspect of the invention, it is preferable that the oscillation circuit constitutes a CR oscillation circuit including a capacitance component of the capacitor and a resistance component of the resistance element.
As a result, the residual vibration of the diaphragm can be detected more accurately, and thereby the ejection abnormality can be detected more accurately.
In the droplet discharge device of the present invention, it is preferable that the vibration pattern of the residual vibration of the diaphragm includes a period of the residual vibration.
Thereby, it is possible to detect the ejection abnormality with higher accuracy.
本発明の液滴吐出装置では、前記吐出異常検出手段は、前記振動板の残留振動の振動パターンに基づいて、前記液滴吐出ヘッドの液滴の吐出異常の有無を判定するとともに、前記液滴吐出ヘッドの液滴の吐出異常があると判定した際、前記液滴吐出ヘッドの吐出異常の原因を判定する判定手段を含むことが好ましい。
これにより、吐出異常の有無および原因をより確実に判定することができる。
In the droplet discharge device of the present invention, the discharge abnormality detecting means determines whether or not there is a droplet discharge abnormality of the droplet discharge head based on a vibration pattern of residual vibration of the diaphragm, and the droplet It is preferable to include a determination unit that determines the cause of the ejection abnormality of the droplet ejection head when it is determined that the ejection abnormality of the droplet of the ejection head is present.
This makes it possible to more reliably determine the presence and cause of the ejection abnormality.
本発明の液滴吐出装置では、前記判定手段は、前記振動板の残留振動の周期が所定の範囲の周期よりも短いときには、前記キャビティ内に気泡が混入したものと判定し、前記振動板の残留振動の周期が所定の閾値よりも長いときには、前記ノズル付近の液体が乾燥により増粘したものと判定し、前記振動板の残留振動の周期が前記所定の範囲の周期よりも長く、前記所定の閾値よりも短いときには、前記ノズルの出口付近に紙粉が付着したものと判定することが好ましい。
これにより、吐出異常の原因として、キャビティ内への気泡の混入、ノズル付近での液体の乾燥・増粘、ノズルの出口付近への紙粉付着を判別することができる。
In the droplet discharge device of the present invention, when the period of the residual vibration of the diaphragm is shorter than a predetermined range, the determination unit determines that bubbles are mixed in the cavity, and When the period of residual vibration is longer than a predetermined threshold, it is determined that the liquid near the nozzle is thickened by drying, and the period of residual vibration of the diaphragm is longer than the period of the predetermined range. When it is shorter than the threshold value, it is preferable to determine that paper dust has adhered to the vicinity of the nozzle outlet.
As a result, it is possible to determine the cause of the ejection abnormality, for example, the mixing of bubbles into the cavity, the drying / thickening of the liquid near the nozzle, and the adhesion of paper dust near the nozzle outlet.
本発明の液滴吐出装置では、前記吐出異常検出手段は、前記発振回路の出力信号における発振周波数の変化に基づいて生成される所定の信号群により、前記振動板の残留振動の電圧波形を生成するF/V変換回路を含むことが好ましい。
これにより、残留振動波形を検出する際、その検出感度を大きく設定することができる。
In the droplet discharge device according to the aspect of the invention, the discharge abnormality detection unit generates a voltage waveform of the residual vibration of the diaphragm by a predetermined signal group generated based on a change in the oscillation frequency in the output signal of the oscillation circuit. It is preferable to include an F / V conversion circuit.
Thereby, when detecting a residual vibration waveform, the detection sensitivity can be set large.
本発明の液滴吐出装置では、前記吐出異常検出手段は、前記F/V変換回路によって生成された前記振動板の残留振動の電圧波形を所定の波形に整形する波形整形回路を含むことが好ましい。
これにより、残留振動波形を検出する際、その検出感度を大きく設定することができる。
In the liquid droplet ejection apparatus according to the aspect of the invention, it is preferable that the ejection abnormality detection unit includes a waveform shaping circuit that shapes the voltage waveform of the residual vibration of the diaphragm generated by the F / V conversion circuit into a predetermined waveform. .
Thereby, when detecting a residual vibration waveform, the detection sensitivity can be set large.
本発明の液滴吐出装置では、前記波形整形回路は、前記F/V変換回路によって生成された前記振動板の残留振動の電圧波形から直流成分を除去するDC成分除去手段と、このDC成分除去手段によって直流成分を除去された電圧波形と所定の電圧値とを比較する比較器とを含み、該比較器は、該電圧比較に基づいて、矩形波を生成して出力することが好ましい。
これにより、残留振動波形を検出する際、その検出感度を大きく設定することができる。
In the droplet discharge device of the present invention, the waveform shaping circuit includes a DC component removing unit that removes a DC component from the voltage waveform of the residual vibration of the diaphragm generated by the F / V conversion circuit, and the DC component removal. Preferably, the comparator includes a comparator that compares the voltage waveform from which the DC component has been removed with a predetermined voltage value, and the comparator generates and outputs a rectangular wave based on the voltage comparison.
Thereby, when detecting a residual vibration waveform, the detection sensitivity can be set large.
本発明の液滴吐出装置では、前記吐出異常検出手段は、前記波形整形回路によって生成された前記矩形波から前記振動板の残留振動の周期を計測する計測手段を含むことが好ましい。
これにより、振動板の残留振動の周期をより簡単に、そしてより正確に検出することができる。
In the liquid droplet ejection apparatus according to the aspect of the invention, it is preferable that the ejection abnormality detection unit includes a measurement unit that measures a period of residual vibration of the diaphragm from the rectangular wave generated by the waveform shaping circuit.
Thereby, the period of the residual vibration of the diaphragm can be detected more easily and more accurately.
本発明の液滴吐出装置では、前記計測手段は、カウンタを有し、該カウンタが基準信号のパルスをカウントすることによって、前記矩形波の立ち上がりエッジ間あるいは立ち上がりエッジと立ち下がりエッジの間の時間を計測することが好ましい。
これにより、振動板の残留振動の周期をより簡単に、そしてより正確に検出することができる。
本発明のインクジェットプリンタは、本発明の液滴吐出装置を備えることを特徴とする。
これにより、上記効果を達成することができるインクジェットプリンタを提供することができる。
In the droplet discharge device of the present invention, the measuring means has a counter, and the counter counts the pulses of the reference signal, whereby the time between the rising edges of the rectangular wave or the time between the rising edge and the falling edge. Is preferably measured.
Thereby, the period of the residual vibration of the diaphragm can be detected more easily and more accurately.
An inkjet printer according to the present invention includes the droplet discharge device according to the present invention.
Thereby, the inkjet printer which can achieve the said effect can be provided.
以下、図1〜図49を参照して本発明の液滴吐出装置およびインクジェットプリンタの好適な実施形態を詳細に説明する。なお、この実施形態は例示として挙げるものであり、これにより本発明の内容を限定的に解釈すべきではない。なお、以下、本実施形態では、一例として、インク(液状材料)を吐出して記録用紙(液滴受容物)に画像をプリントするインクジェットプリンタを用いて説明する。 Hereinafter, preferred embodiments of the droplet discharge device and the ink jet printer of the present invention will be described in detail with reference to FIGS. Note that this embodiment is given as an example, and the contents of the present invention should not be construed in a limited manner. In the following, in this embodiment, as an example, an ink jet printer that discharges ink (liquid material) and prints an image on recording paper (droplet receiver) will be described.
<第1実施形態>
図1は、本発明の第1実施形態における液滴吐出装置の一種であるインクジェットプリンタ1の構成を示す概略図である。なお、以下の説明では、図1中、上側を「上部」、下側を「下部」という。まず、このインクジェットプリンタ1の構成について説明する。
図1に示すインクジェットプリンタ1は、装置本体2を備えており、上部後方に記録用紙Pを設置するトレイ21と、下部前方に記録用紙Pを排出する排紙口22と、上部面に操作パネル7とが設けられている。
<First Embodiment>
FIG. 1 is a schematic diagram showing a configuration of an
An
操作パネル7は、例えば、液晶ディスプレイ、有機ELディスプレイ、LEDランプ等で構成され、エラーメッセージ等を表示する表示部(図示せず)と、各種スイッチ等で構成される操作部(図示せず)とを備えている。この操作パネル7の表示部は、報知手段として機能する。
また、装置本体2の内部には、主に、往復動する印字手段(移動体)3を備える印刷装置(印刷手段)4と、記録用紙Pを印刷装置4に対し供給・排出する給紙装置(液滴受容物搬送手段)5と、印刷装置4および給紙装置5を制御する制御部(制御手段)6とを有している。
The
Further, inside the apparatus
制御部6の制御により、給紙装置5は、記録用紙Pを一枚ずつ間欠送りする。この記録用紙Pは、印字手段3の下部近傍を通過する。このとき、印字手段3が記録用紙Pの送り方向とほぼ直交する方向に往復移動して、記録用紙Pへの印刷が行なわれる。すなわち、印字手段3の往復動と記録用紙Pの間欠送りとが、印刷における主走査および副走査となって、インクジェット方式の印刷が行なわれる。
Under the control of the
印刷装置4は、印字手段3と、印字手段3を主走査方向に移動(往復動)させる駆動源となるキャリッジモータ41と、キャリッジモータ41の回転を受けて、印字手段3を往復動させる往復動機構42とを備えている。
印字手段3は、複数のヘッドユニット35と、各ヘッドユニット35にインクを供給するインクカートリッジ(I/C)31と、各ヘッドユニット35およびインクカートリッジ31を搭載したキャリッジ32とを有している。なお、インクの消費量が多いインクジェットプリンタの場合には、インクカートリッジ31がキャリッジ32に搭載されず別な場所に設置され、チューブでヘッドユニット35と連通されインクが供給されるように構成してもよい(図示せず)。
The
The
なお、インクカートリッジ31として、イエロー、シアン、マゼンタ、ブラック(黒)の4色のインクを充填したものを用いることにより、フルカラー印刷が可能となる。この場合、印字手段3には、各色にそれぞれ対応したヘッドユニット35(この構成については、後に詳述する。)が設けられることになる。ここで、図1では、4色のインクに対応した4つのインクカートリッジ31を示しているが、印字手段3は、その他の色、例えば、ライトシアン、ライトマゼンダ、ダークイエロー、特色インクなどのインクカートリッジ31をさらに備えるように構成されてもよい。
Note that full-color printing is possible by using an
往復動機構42は、その両端をフレーム(図示せず)に支持されたキャリッジガイド軸422と、キャリッジガイド軸422と平行に延在するタイミングベルト421とを有している。
キャリッジ32は、往復動機構42のキャリッジガイド軸422に往復動自在に支持されるとともに、タイミングベルト421の一部に固定されている。
The
The
キャリッジモータ41の作動により、プーリを介してタイミングベルト421を正逆走行させると、キャリッジガイド軸422に案内されて、印字手段3が往復動する。そして、この往復動の際に、印刷されるイメージデータ(印刷データ)に対応して、ヘッドユニット35の各インクジェットヘッド100から適宜インク滴が吐出され、記録用紙Pへの印刷が行われる。
When the
給紙装置5は、その駆動源となる給紙モータ51と、給紙モータ51の作動により回転する給紙ローラ52とを有している。
給紙ローラ52は、記録用紙Pの搬送経路(記録用紙P)を挟んで上下に対向する従動ローラ52aと駆動ローラ52bとで構成され、駆動ローラ52bは給紙モータ51に連結されている。これにより、給紙ローラ52は、トレイ21に設置した多数枚の記録用紙Pを、印刷装置4に向かって1枚ずつ送り込んだり印刷装置4から1枚ずつ排出したりようになっている。なお、トレイ21に代えて、記録用紙Pを収容する給紙カセットを着脱自在に装着し得るような構成であってもよい。
さらに給紙モータ51は、印字手段3の往復動作と連動して、画像の解像度に応じた記録用紙Pの紙送りも行う。給紙動作と紙送り動作については、それぞれ別のモータで行うことも可能であり、また、電磁クラッチなどのトルク伝達の切り替えを行う部品によって同じモータで行うことも可能である。
The
The
Further, the
制御部6は、例えば、パーソナルコンピュータ(PC)やディジタルカメラ(DC)等のホストコンピュータ8から入力された印刷データに基づいて、印刷装置4や給紙装置5等を制御することにより記録用紙Pに印刷処理を行うものである。また、制御部6は、操作パネル7の表示部にエラーメッセージ等を表示させ、あるいはLEDランプ等を点灯/点滅させるとともに、操作部から入力された各種スイッチの押下信号に基づいて、対応する処理を各部に実行させるものである。さらに、制御部6は、必要に応じてエラーメッセージや吐出異常などの情報をホストコンピュータ8に転送することもある。
For example, the
図2は、本発明のインクジェットプリンタの主要部を概略的に示すブロック図である。この図2において、本発明のインクジェットプリンタ1は、ホストコンピュータ8から入力された印刷データなどを受け取るインターフェース部(IF:Interface)9と、制御部6と、キャリッジモータ41と、キャリッジモータ41を駆動制御するキャリッジモータドライバ43と、給紙モータ51と、給紙モータ51を駆動制御する給紙モータドライバ53と、ヘッドユニット35と、ヘッドユニット35を駆動制御するヘッドドライバ33と、吐出異常検出手段10と、回復手段24と、操作パネル7とを備える。なお、吐出異常検出手段10、回復手段24およびヘッドドライバ33については、詳細を後述する。
FIG. 2 is a block diagram schematically showing the main part of the ink jet printer of the present invention. In FIG. 2, the
この図2において、制御部6は、印刷処理や吐出異常検出処理などの各種処理を実行するCPU(Central Processing Unit)61と、ホストコンピュータ8からIF9を介して入力される印刷データを図示しないデータ格納領域に格納する不揮発性半導体メモリの一種であるEEPROM(Electrically Erasable Programmable Read−Only Memory)(記憶手段)62と、後述する吐出異常検出処理などを実行する際に各種データを一時的に格納し、あるいは印刷処理などのアプリケーションプログラムを一時的に展開するRAM(Random Access Memory)63と、各部を制御する制御プログラム等を格納する不揮発性半導体メモリの一種であるPROM64とを備えている。なお、制御部6の各構成要素は、図示しないバスを介して電気的に接続されている。
In FIG. 2, the
上述のように、印字手段3は、各色のインクに対応した複数のヘッドユニット35を備える。また、各ヘッドユニット35は、複数のノズル110と、これらの各ノズル110にそれぞれ対応する静電アクチュエータ120とを備える。すなわち、ヘッドユニット35は、1組のノズル110および静電アクチュエータ120を有してなるインクジェットヘッド100(液滴吐出ヘッド)を複数個備えた構成になっている。そして、ヘッドドライバ33は、各インクジェットヘッド100の静電アクチュエータ120を駆動して、インクの吐出タイミングを制御する駆動回路18と、切替手段23とから構成される(図16参照)。なお、静電アクチュエータ120の構成については後述する。
As described above, the
また、制御部6には、図示しないが、例えば、インクカートリッジ31のインク残量、印字手段3の位置、温度、湿度等の印刷環境等を検出可能な各種センサが、それぞれ電気的に接続されている。
制御部6は、IF9を介して、ホストコンピュータ8から印刷データを入手すると、その印刷データをEEPROM62に格納する。そして、CPU61は、この印刷データに所定の処理を実行して、この処理データおよび各種センサからの入力データに基づいて、各ドライバ33、43、53に駆動信号を出力する。各ドライバ33、43、53を介してこれらの駆動信号が入力されると、ヘッドユニット35の複数の静電アクチュエータ120、印刷装置4のキャリッジモータ41および給紙装置5がそれぞれ作動する。これにより、記録用紙Pに印刷処理が実行される。
Although not shown, the
When the
次に、印字手段3内の各ヘッドユニット35の構造を説明する。図3は、図1に示すヘッドユニット35(インクジェットヘッド100)の概略的な断面図であり、図4は、1色のインクに対応するヘッドユニット35の概略的な構成を示す分解斜視図であり、図5は、図3および図4に示すヘッドユニット35を適用した印字手段3のノズル面の一例を示す平面図である。なお、図3および図4は、通常使用される状態とは上下逆に示されている。
Next, the structure of each
図3に示すように、ヘッドユニット35は、インク取り入れ口131、ダンパ室130およびインク供給チューブ311を介して、インクカートリッジ31に接続されている。ここで、ダンパ室130は、ゴムからなるダンパ132を備えている。このダンパ室130により、キャリッジ32が往復走行する際のインクの揺れおよびインク圧の変化を吸収することができ、これにより、ヘッドユニット35に所定量のインクを安定的に供給することができる。
As shown in FIG. 3, the
また、ヘッドユニット35は、シリコン基板140を挟んで、上側に同じくシリコン製のノズルプレート150と、下側にシリコンと熱膨張率が近いホウ珪酸ガラス基板(ガラス基板)160とがそれぞれ積層された3層構造をなしている。中央のシリコン基板140には、独立した複数のキャビティ(圧力室)141(図4では、7つのキャビティを示す)と、1つのリザーバ(共通インク室)143と、このリザーバ143を各キャビティ141に連通させるインク供給口(オリフィス)142としてそれぞれ機能する溝が形成されている。各溝は、例えば、シリコン基板140の表面からエッチング処理を施すことにより形成することができる。このノズルプレート150と、シリコン基板140と、ガラス基板160とがこの順序で接合され、各キャビティ141、リザーバ143、各インク供給口142が区画形成されている。
The
これらのキャビティ141は、それぞれ短冊状(直方体状)に形成されており、後述する振動板121の振動(変位)によりその容積が可変であり、この容積変化によりノズル110からインク(液状材料)を吐出するよう構成されている。ノズルプレート150には、各キャビティ141の先端側の部分に対応する位置に、ノズル110が形成されており、これらが各キャビティ141に連通している。また、リザーバ143が位置しているガラス基板160の部分には、リザーバ143に連通するインク取入れ口131が形成されている。インクは、インクカートリッジ31からインク供給チューブ311、ダンパ室130を経てインク取入れ口131を通り、リザーバ143に供給される。リザーバ143に供給されたインクは、各インク供給口142を通って、独立した各キャビティ141に供給される。なお、各キャビティ141は、ノズルプレート150と、側壁(隔壁)144と、底壁121とによって、区画形成されている。
Each of these
独立した各キャビティ141は、その底壁121が薄肉に形成されており、底壁121は、その面外方向(厚さ方向)、すなわち、図3において上下方向に弾性変形(弾性変位)可能な振動板(ダイヤフラム)として機能するように構成されている。したがって、この底壁121の部分を、以後の説明の都合上、振動板121と称して説明することもある(すなわち、以下、「底壁」と「振動板」のいずれにも符号121を用いる)。
Each
ガラス基板160のシリコン基板140側の表面には、シリコン基板140の各キャビティ141に対応した位置に、それぞれ、浅い凹部161が形成されている。したがって、各キャビティ141の底壁121は、凹部161が形成されたガラス基板160の対向壁162の表面に、所定の間隙を介して対峙している。すなわち、キャビティ141の底壁121と後述するセグメント電極122の間には、所定の厚さ(例えば、0.2ミクロン程度)の空隙が存在する。なお、前記凹部161は、例えば、エッチングなどで形成することができる。
On the surface of the
ここで、各キャビティ141の底壁(振動板)121は、ヘッドドライバ33から供給される駆動信号によってそれぞれ電荷を蓄えるための各キャビティ141側の共通電極124の一部を構成している。すなわち、各キャビティ141の振動板121は、それぞれ、後述する対応する静電アクチュエータ120の対向電極(コンデンサの対向電極)の一方を兼ねている。そして、ガラス基板160の凹部161の表面には、各キャビティ141の底壁121に対峙するように、それぞれ、共通電極124に対向する電極であるセグメント電極122が形成されている。また、図3に示すように、各キャビティ141の底壁121の表面は、シリコンの酸化膜(SiO2)からなる絶縁層123により覆われている。このように、各キャビティ141の底壁121、すなわち、振動板121と、それに対応する各セグメント電極122とは、キャビティ141の底壁121の図3中下側の表面に形成された絶縁層123と凹部161内の空隙とを介し、対向電極(コンデンサの対向電極)を形成(構成)している。したがって、振動板121と、セグメント電極122と、これらの間の絶縁層123および空隙とにより、静電アクチュエータ120の主要部が構成される。
Here, the bottom wall (diaphragm) 121 of each
図3に示すように、これらの対向電極の間に駆動電圧を印加するための駆動回路18を含むヘッドドライバ33は、制御部6から入力される印字信号(印字データ)に応じて、これらの対向電極間の充放電を行う。ヘッドドライバ(電圧印加手段)33の一方の出力端子は、個々のセグメント電極122に接続され、他方の出力端子は、シリコン基板140に形成された共通電極124の入力端子124aに接続されている。なお、シリコン基板140には不純物が注入されており、それ自体が導電性をもつために、この共通電極124の入力端子124aから底壁121の共通電極124に電圧を供給することができる。また、例えば、シリコン基板140の一方の面に金や銅などの導電性材料の薄膜を形成してもよい。これにより、低い電気抵抗で(効率良く)共通電極124に電圧(電荷)を供給することができる。この薄膜は、例えば、蒸着あるいはスパッタリング等によって形成すればよい。ここで、本実施形態では、例えば、シリコン基板140とガラス基板160とを陽極接合によって結合(接合)させるので、その陽極結合において電極として用いる導電膜をシリコン基板140の流路形成面側(図3に示すシリコン基板140の上部側)に形成している。そして、この導電膜をそのまま共通電極124の入力端子124aとして用いる。なお、本発明では、例えば、共通電極124の入力端子124aを省略してもよく、また、シリコン基板140とガラス基板160との接合方法は、陽極接合に限定されない。
As shown in FIG. 3, the
図4に示すように、ヘッドユニット35は、複数のノズル110が形成されたノズルプレート150と、複数のキャビティ141、複数のインク供給口142、1つのリザーバ143が形成されたシリコン基板(インク室基板)140と、絶縁層123とを備え、これらがガラス基板160を含む基体170に収納されている。基体170は、例えば、各種樹脂材料、各種金属材料等で構成されており、この基体170にシリコン基板140が固定、支持されている。
As shown in FIG. 4, the
なお、ノズルプレート150に形成されたノズル110は、図4では簡潔に示すためにリザーバ143に対して略並行に直線的に配列されているが、ノズルの配列パターンはこの構成に限らず、通常は、例えば、図5に示すノズル配置パターンのように、段をずらして配置される。また、このノズル110間のピッチは、印刷解像度(dpi:dot per inch)に応じて適宜設定され得るものである。なお、図5では、4色のインク(インクカートリッジ31)を適用した場合におけるノズル110の配置パターンを示している。
The
図6は、図3のIII−III断面の駆動信号入力時の各状態を示す。ヘッドドライバ33から対向電極間に駆動電圧が印加されると、対向電極間にクーロン力が発生し、底壁(振動板)121は、初期状態(図6(a))に対して、セグメント電極122側へ撓み、キャビティ141の容積が拡大する(図6(b))。この状態において、ヘッドドライバ33の制御により、対向電極間の電荷を急激に放電させると、振動板121は、その弾性復元力によって図中上方に復元し、初期状態における振動板121の位置を越えて上部に移動し、キャビティ141の容積が急激に収縮する(図6(c))。このときキャビティ141内に発生する圧縮圧力により、キャビティ141を満たすインク(液状材料)の一部が、このキャビティ141に連通しているノズル110からインク滴として吐出される。
FIG. 6 shows each state when a drive signal is input in the III-III cross section of FIG. When a driving voltage is applied between the counter electrodes from the
各キャビティ141の振動板121は、この一連の動作(ヘッドドライバ33の駆動信号によるインク吐出動作)により、次の駆動信号(駆動電圧)が入力されて再びインク滴を吐出するまでの間、減衰振動をしている。以下、この減衰振動を残留振動とも称する。振動板121の残留振動は、ノズル110やインク供給口142の形状、あるいはインク粘度等による音響抵抗rと、流路内のインク重量によるイナータンスmと、振動板121のコンプライアンスCmとによって決定される固有振動周波数を有するものと想定される。
The
上記想定に基づく振動板121の残留振動の計算モデルについて説明する。図7は、振動板121の残留振動を想定した単振動の計算モデルを示す回路図である。このように、振動板121の残留振動の計算モデルは、音圧Pと、上述のイナータンスm、コンプライアンスCmおよび音響抵抗rとで表せる。そして、図7の回路に音圧Pを与えた時のステップ応答を体積速度uについて計算すると、次式が得られる。
A calculation model of residual vibration of the
この式から得られた計算結果と、別途行ったインク滴の吐出後の振動板121の残留振動の実験における実験結果とを比較する。図8は、振動板121の残留振動の実験値と計算値との関係を示すグラフである。この図8に示すグラフからも分かるように、実験値と計算値の2つの波形は、概ね一致している。
The calculation result obtained from this equation is compared with the experimental result in the residual vibration experiment of the
さて、ヘッドユニット35の各インクジェットヘッド100では、前述したような吐出動作を行ったにもかかわらずノズル110からインク滴が正常に吐出されない現象、すなわち液滴の吐出異常が発生する場合がある。この吐出異常が発生する原因としては、後述するように、(1)キャビティ141内への気泡の混入、(2)ノズル110付近でのインクの乾燥・増粘(固着)、(3)ノズル110出口付近への紙粉付着、等が挙げられる。
Now, in each
この吐出異常が発生すると、その結果としては、典型的にはノズル110から液滴が吐出されないこと、すなわち液滴の不吐出現象が現れ、その場合、記録用紙Pに印刷(描画)した画像における画素のドット抜けを生じる。また、吐出異常の場合には、ノズル110から液滴が吐出されたとしても、液滴の量が過少であったり、その液滴の飛行方向(弾道)がずれたりして適正に着弾しないので、やはり画素のドット抜けとなって現れる。このようなことから、以下の説明では、液滴の吐出異常のことを単に「ドット抜け」と言う場合もある。
When this ejection abnormality occurs, typically, as a result, a droplet is not ejected from the
以下においては、図8に示す比較結果に基づいて、インクジェットヘッド100のノズル110に発生する印刷処理時のドット抜け(吐出異常)現象(液滴不吐出現象)の原因別に、振動板121の残留振動の計算値と実験値がマッチ(概ね一致)するように、音響抵抗rおよび/またはイナータンスmの値を調整する。
まず、ドット抜けの1つの原因であるキャビティ141内への気泡の混入について検討する。図9は、図3のキャビティ141内に気泡Bが混入した場合のノズル110付近の概念図である。この図9に示すように、発生した気泡Bは、キャビティ141の壁面に発生付着しているものと想定される(図9では、気泡Bの付着位置の一例として、気泡Bがノズル110付近に付着している場合を示す)。
In the following, based on the comparison results shown in FIG. 8, the
First, the mixing of bubbles into the
このように、キャビティ141内に気泡Bが混入した場合には、キャビティ141内を満たすインクの総重量が減り、イナータンスmが低下するものと考えられる。また、気泡Bは、キャビティ141の壁面に付着しているので、その径の大きさだけノズル110の径が大きくなったような状態となり、音響抵抗rが低下するものと考えられる。
したがって、インクが正常に吐出された図8の場合に対して、音響抵抗r、イナータンスmを共に小さく設定して、気泡混入時の残留振動の実験値とマッチングすることにより、図10のような結果(グラフ)が得られた。図8および図10のグラフから分かるように、キャビティ141内に気泡が混入した場合には、正常吐出時に比べて周波数が高くなる特徴的な残留振動波形が得られる。なお、音響抵抗rの低下などにより、残留振動の振幅の減衰率も小さくなり、残留振動は、その振幅をゆっくりと下げていることも確認することができる。
Thus, when bubbles B are mixed in the
Therefore, with respect to the case of FIG. 8 in which the ink is normally ejected, by setting both the acoustic resistance r and the inertance m to be small and matching with the experimental value of the residual vibration at the time of bubble mixing, as shown in FIG. A result (graph) was obtained. As can be seen from the graphs of FIGS. 8 and 10, when bubbles are mixed in the
次に、ドット抜けのもう1つの原因であるノズル110付近でのインクの乾燥(固着、増粘)について検討する。図11は、図3のノズル110付近のインクが乾燥により固着した場合のノズル110付近の概念図である。この図11に示すように、ノズル110付近のインクが乾燥して固着した場合、キャビティ141内のインクは、キャビティ141内に閉じこめられたような状況となる。このように、ノズル110付近のインクが乾燥、増粘した場合には、音響抵抗rが増加するものと考えられる。
Next, the drying (fixing and thickening) of the ink near the
したがって、インクが正常に吐出された図8の場合に対して、音響抵抗rを大きく設定して、ノズル110付近のインク乾燥固着(増粘)時の残留振動の実験値とマッチングすることにより、図12のような結果(グラフ)が得られた。なお、図12に示す実験値は、数日間図示しないキャップを装着しない状態でヘッドユニット35を放置し、ノズル110付近のインクが乾燥、増粘したことによりインクを吐出することができなくなった(インクが固着した)状態における振動板121の残留振動を測定したものである。図8および図12のグラフから分かるように、ノズル110付近のインクが乾燥により固着した場合には、正常吐出時に比べて周波数が極めて低くなるとともに、残留振動が過減衰となる特徴的な残留振動波形が得られる。これは、インク滴を吐出するために振動板121が図3中下方に引き寄せられることによって、キャビティ141内にリザーバ143からインクが流入した後に、振動板121が図3中上方に移動するときに、キャビティ141内のインクの逃げ道がないために、振動板121が急激に振動できなくなるため(過減衰となるため)である。
Therefore, with respect to the case of FIG. 8 in which the ink has been ejected normally, the acoustic resistance r is set to be large and matched with the experimental value of the residual vibration at the time of ink dry adhesion (thickening) near the
次に、ドット抜けのさらにもう1つの原因であるノズル110出口付近への紙粉付着について検討する。図13は、図3のノズル110出口付近に紙粉が付着した場合のノズル110付近の概念図である。この図13に示すように、ノズル110の出口付近に紙粉が付着した場合、キャビティ141内から紙粉を介してインクが染み出してしまうとともに、ノズル110からインクを吐出することができなくなる。このように、ノズル110の出口付近に紙粉が付着し、ノズル110からインクが染み出している場合には、振動板121からみてキャビティ141内および染み出し分のインクが正常時よりも増えることにより、イナータンスmが増加するものと考えられる。また、ノズル110の出口付近に付着した紙粉の繊維によって音響抵抗rが増大するものと考えられる。
Next, paper dust adhesion near the
したがって、インクが正常に吐出された図8の場合に対して、イナータンスm、音響抵抗rを共に大きく設定して、ノズル110の出口付近への紙粉付着時の残留振動の実験値とマッチングすることにより、図14のような結果(グラフ)が得られた。図8および図14のグラフから分かるように、ノズル110の出口付近に紙粉が付着した場合には、正常吐出時に比べて周波数が低くなる特徴的な残留振動波形が得られる(ここで、紙粉付着の場合、インクの乾燥の場合よりは、残留振動の周波数が高いことも、図12および図14のグラフから分かる。)。なお、図15は、この紙粉付着前後におけるノズル110の状態を示す写真である。ノズル110の出口付近に紙粉が付着すると、紙粉に沿ってインクがにじみ出している状態を、図15(b)から見出すことができる。
Therefore, with respect to the case of FIG. 8 in which the ink has been ejected normally, both the inertance m and the acoustic resistance r are set large to match the experimental value of the residual vibration when paper dust adheres to the vicinity of the
ここで、ノズル110付近のインクが乾燥して増粘した場合と、ノズル110の出口付近に紙粉が付着した場合とでは、いずれも正常にインク滴が吐出された場合に比べて減衰振動の周波数が低くなっている。これら2つのドット抜け(インク不吐出:吐出異常)の原因を振動板121の残留振動の波形から特定するために、例えば、減衰振動の周波数や周期、位相において所定のしきい値を持って比較するか、あるいは、残留振動(減衰振動)の周期変化や振幅変化の減衰率から特定することができる。このようにして、各インクジェットヘッド100におけるノズル110からのインク滴が吐出されたときの振動板121の残留振動の変化、特に、その周波数の変化によって、各インクジェットヘッド100の吐出異常を検出することができる。また、その場合の残留振動の周波数を正常吐出時の残留振動の周波数と比較することにより、吐出異常の原因を特定することもできる。
Here, in the case where the ink near the
次に、吐出異常検出手段10について説明する。図16は、図3に示す吐出異常検出手段10の概略的なブロック図である。この図16に示すように、吐出異常検出手段10は、発振回路11と、F/V変換回路12と、波形整形回路15とから構成される残留振動検出手段16と、この残留振動検出手段16によって検出された残留振動波形データから周期や振幅などを計測する計測手段17と、この計測手段17によって計測された周期などに基づいてインクジェットヘッド100の吐出異常を判定する判定手段20とを備えている。吐出異常検出手段10では、残留振動検出手段16は、静電アクチュエータ120の振動板121の残留振動に基づいて、発振回路11が発振し、その発振周波数からF/V変換回路12および波形整形回路15において振動波形を形成して、検出する。そして、計測手段17は、検出された振動波形に基づいて残留振動の周期などを計測し、判定手段20は、計測された残留振動の周期などに基づいて、印字手段3内の各ヘッドユニット35が備える各インクジェットヘッド100の吐出異常を検出、判定する。以下、吐出異常検出手段10の各構成要素について説明する。
Next, the ejection abnormality detection means 10 will be described. FIG. 16 is a schematic block diagram of the ejection abnormality detecting means 10 shown in FIG. As shown in FIG. 16, the ejection
まず、静電アクチュエータ120の振動板121の残留振動の周波数(振動数)を検出するために、発振回路11を用いる方法を説明する。図17は、図3の静電アクチュエータ120を平行平板コンデンサとした場合の概念図であり、図18は、図3の静電アクチュエータ120から構成されるコンデンサを含む発振回路11の回路図である。なお、図18に示す発振回路11は、シュミットトリガのヒステリシス特性を利用するCR発振回路であるが、本発明はこのようなCR発振回路に限定されず、アクチュエータ(振動板を含む)の静電容量成分(コンデンサC)を用いる発振回路であればどのような発振回路でもよい。発振回路11は、例えば、LC発振回路を利用した構成としてもよい。また、本実施形態では、シュミットトリガインバータを用いた例を示して説明しているが、例えば、インバータを3段用いたCR発振回路を構成してもよい。
First, a method of using the
図3に示すインクジェットヘッド100では、上述のように、振動板121と非常にわずかな間隔(空隙)を隔てたセグメント電極122とが対向電極を形成する静電アクチュエータ120を構成している。この静電アクチュエータ120は、図17に示すような平行平板コンデンサと考えることができる。このコンデンサの静電容量をC、振動板121およびセグメント電極122のそれぞれの表面積をS、2つの電極121、122の距離(ギャップ長)をg、両電極に挟まれた空間(空隙)の誘電率をε(真空の誘電率をε0、空隙の比誘電率をεrとすると、ε=ε0・εr)とすると、図17に示すコンデンサ(静電アクチュエータ120)の静電容量C(x)は、次式で表される。
In the
なお、式(4)のxは、図17に示すように、振動板121の残留振動によって生じる振動板121の基準位置からの変位量を示している。
この式(4)から分かるように、ギャップ長g(ギャップ長g−変位量x)が小さくなれば、静電容量C(x)は大きくなり、逆にギャップ長g(ギャップ長g−変位量x)が大きくなれば、静電容量C(x)は小さくなる。このように、静電容量C(x)は、(ギャップ長g−変位量x)(xが0の場合は、ギャップ長g)に反比例している。なお、図3に示す静電アクチュエータ120では、空隙は空気で満たされているので、比誘電率εr=1である。
Note that x in Expression (4) indicates the amount of displacement from the reference position of the
As can be seen from the equation (4), when the gap length g (gap length g−displacement amount x) is decreased, the capacitance C (x) is increased, and conversely, the gap length g (gap length g−displacement amount). As x) increases, the capacitance C (x) decreases. Thus, the capacitance C (x) is inversely proportional to (gap length g−displacement amount x) (gap length g when x is 0). In the
また、一般に、液滴吐出装置(本実施形態では、インクジェットプリンタ1)の解像度が高まるにつれて、吐出されるインク滴(インクドット)が微小化されるので、この静電アクチュエータ120は、高密度化、小型化される。それによって、インクジェットヘッド100の振動板121の表面積Sが小さくなり、小さな静電アクチュエータ120が構成される。さらに、インク滴吐出による残留振動によって変化する静電アクチュエータ120のギャップ長gは、初期ギャップg0の1割程度となるため、式(4)から分かるように、静電アクチュエータ120の静電容量の変化量は非常に小さな値となる。
In general, as the resolution of the droplet discharge device (in the present embodiment, the ink jet printer 1) increases, the discharged ink droplets (ink dots) are miniaturized. And miniaturized. Accordingly, the surface area S of the
この静電アクチュエータ120の静電容量の変化量(残留振動の振動パターンにより異なる)を検出するために、以下のような方法、すなわち、静電アクチュエータ120の静電容量に基づいた図18のような発振回路を構成し、発振された信号に基づいて残留振動の周波数(周期)を解析する方法を用いる。図18に示す発振回路11は、静電アクチュエータ120から構成されるコンデンサ(C)と、シュミットトリガインバータ111と、抵抗素子(R)112とから構成される。
In order to detect the amount of change in the capacitance of the electrostatic actuator 120 (depending on the vibration pattern of residual vibration), the following method, that is, based on the capacitance of the
シュミットトリガインバータ111の出力信号がHighレベルの場合、抵抗素子112を介してコンデンサCを充電する。コンデンサCの充電電圧(振動板121とセグメント電極122との間の電位差)が、シュミットトリガインバータ111の入力スレッショルド電圧VT+に達すると、シュミットトリガインバータ111の出力信号がLowレベルに反転する。そして、シュミットトリガインバータ111の出力信号がLowレベルとなると、抵抗素子112を介してコンデンサCに充電されていた電荷が放電される。この放電によりコンデンサCの電圧がシュミットトリガインバータ111の入力スレッショルド電圧VT−に達すると、シュミットトリガインバータ111の出力信号が再びHighレベルに反転する。以降、この発振動作が繰り返される。
When the output signal of the
ここで、上述のそれぞれの現象(気泡混入、乾燥、紙粉付着、および正常吐出)におけるコンデンサCの静電容量の時間変化を検出するためには、この発振回路11による発振周波数は、残留振動の周波数が最も高い気泡混入時(図10参照)の周波数を検出することができる発振周波数に設定される必要がある。そのため、発振回路11の発振周波数は、例えば、検出する残留振動の周波数の数倍から数十倍以上、すなわち、気泡混入時の周波数よりおよそ1桁以上高い周波数となるようにしなければならない。この場合、好ましくは、気泡混入時の残留振動の周波数が正常吐出の場合と比較して高い周波数を示すため、気泡混入時の残留振動周波数が検知可能な発振周波数に設定するとよい。そうしなければ、吐出異常の現象に対して正確な残留振動の周波数を検出することができない。そのため、本実施形態では、発振周波数に応じて、発振回路11のCRの時定数を設定している。このように、発振回路11の発振周波数を高く設定することにより、この発振周波数の微小変化に基づいて、より正確な残留振動波形を検出することができる。
Here, in order to detect the time change of the capacitance of the capacitor C in each of the above-mentioned phenomena (bubble mixing, drying, paper dust adhesion, and normal ejection), the oscillation frequency by the
なお、発振回路11から出力される発振信号の発振周波数の周期(パルス)毎に、測定用のカウントパルス(カウンタ)を用いてそのパルスをカウントし、初期ギャップg0におけるコンデンサCの静電容量で発振させた場合の発振周波数のパルスのカウント量を測定したカウント量から減算することにより、残留振動波形について発振周波数毎のデジタル情報が得られる。これらのデジタル情報に基づいて、デジタル/アナログ(D/A)変換を行うことにより、概略的な残留振動波形が生成され得る。このような方法を用いてもよいが、測定用のカウントパルス(カウンタ)には、発振周波数の微小変化を測定することができる高い周波数(高解像度)のものが必要となる。このようなカウントパルス(カウンタ)は、コストをアップさせるため、吐出異常検出手段10では、図19に示すF/V変換回路12を用いている。
Incidentally, in each period of the oscillation frequency of the oscillation signal outputted from the oscillation circuit 11 (pulse), counts the pulses by using a measuring count pulse (counter), the capacitance of the capacitor C in the initial gap g 0 By subtracting the count amount of the pulse at the oscillation frequency when oscillating at, the digital information for each oscillation frequency is obtained for the residual vibration waveform. A rough residual vibration waveform can be generated by performing digital / analog (D / A) conversion based on the digital information. Although such a method may be used, a count pulse (counter) for measurement requires a high frequency (high resolution) capable of measuring a minute change in oscillation frequency. In order to increase the cost of such a count pulse (counter), the ejection abnormality detection means 10 uses the F /
図19は、図16に示す吐出異常検出手段10のF/V変換回路12の回路図である。この図19に示すように、F/V変換回路12は、3つのスイッチSW1、SW2、SW3と、2つのコンデンサC1、C2と、抵抗素子R1と、定電流Isを出力する定電流源13と、バッファ14とから構成される。このF/V変換回路12の動作を図20のタイミングチャートおよび図21のグラフを用いて説明する。
FIG. 19 is a circuit diagram of the F /
まず、図20のタイミングチャートに示す充電信号、ホールド信号およびクリア信号の生成方法について説明する。充電信号は、発振回路11の発振パルスの立ち上がりエッジから固定時間trを設定し、その固定時間trの間Highレベルとなるようにして生成される。ホールド信号は、充電信号の立ち上がりエッジに同期して立ち上がり、所定の固定時間だけHighレベルに保持され、Lowレベルに立ち下がるようにして生成される。クリア信号は、ホールド信号の立ち下がりエッジに同期して立ち上がり、所定の固定時間だけHighレベルに保持され、Lowレベルに立ち下がるようにして生成される。なお、後述するように、コンデンサC1からコンデンサC2への電荷の移動およびコンデンサC1の放電は瞬時に行われるので、ホールド信号およびクリア信号のパルスは、発振回路11の出力信号の次の立ち上がりエッジまでにそれぞれ1つのパルスが含まれればよく、上記のような立ち上がりエッジ、立ち下がりエッジに限定されない。
First, a method for generating the charge signal, hold signal, and clear signal shown in the timing chart of FIG. 20 will be described. The charging signal is generated so as to set a fixed time tr from the rising edge of the oscillation pulse of the
きれいな残留振動の波形(電圧波形)を得るために、図21を参照して、固定時間trおよびt1の設定方法を説明する。固定時間trは、静電アクチュエータ120が初期ギャップ長g0のときにおける静電容量Cで発振した発振パルスの周期から調整され、充電時間t1による充電電位がC1の充電範囲のおよそ1/2付近となるように設定される。また、ギャップ長gが最大(Max)の位置における充電時間t2から最小(Min)の位置における充電時間t3の間で、コンデンサC1の充電範囲を超えないように充電電位の傾きが設定される。すなわち、充電電位の傾きは、dV/dt=Is/C1によって決定されるため、定電流源13の出力定電流Isを適当な値に設定すればよい。この定電流源13の出力定電流Isをその範囲内でできるだけ高く設定することによって、静電アクチュエータ120によって構成されるコンデンサの微小な静電容量の変化を高感度で検出することができ、静電アクチュエータ120の振動板121の微小な変化を検出することが可能となる。
In order to obtain a clean residual vibration waveform (voltage waveform), a method of setting the fixed times tr and t1 will be described with reference to FIG. The fixed time tr is adjusted from the period of the oscillation pulse oscillated by the capacitance C when the
次いで、図22を参照して、図16に示す波形整形回路15の構成を説明する。図22は、図16の波形整形回路15の回路構成を示す回路図である。この波形整形回路15は、残留振動波形を矩形波として判定手段20に出力するものである。この図22に示すように、波形整形回路15は、2つのコンデンサC3(DC成分除去手段)、C4と、2つの抵抗素子R2、R3と、2つの直流電圧源Vref1、Vref2と、増幅器(オペアンプ)151と、比較器(コンパレータ)152とから構成される。なお、残留振動波形の波形整形処理において、検出される波高値をそのまま出力して、残留振動波形の振幅を計測するように構成してもよい。
Next, the configuration of the
F/V変換回路12のバッファ14の出力には、静電アクチュエータ120の初期ギャップg0に基づくDC成分(直流成分)の静電容量成分が含まれている。この直流成分は各インクジェットヘッド100によりばらつきがあるため、コンデンサC3は、この静電容量の直流成分を除去するものである。そして、コンデンサC3は、バッファ14の出力信号におけるDC成分を除去し、残留振動のAC成分のみをオペアンプ151の反転入力端子に出力する。
The output of the
オペアンプ151は、直流成分が除去されたF/V変換回路12のバッファ14の出力信号を反転増幅するとともに、その出力信号の高域を除去するためのローパスフィルタを構成している。なお、このオペアンプ151は、単電源回路を想定している。オペアンプ151は、2つの抵抗素子R2、R3による反転増幅器を構成し、入力された残留振動(交流成分)は、−R3/R2倍に振幅される。
The
また、オペアンプ151の単電源動作のために、その非反転入力端子に接続された直流電圧源Vref1によって設定された電位を中心に振動する、増幅された振動板121の残留振動波形が出力される。ここで、直流電圧源Vref1は、オペアンプ151が単電源で動作可能な電圧範囲の1/2程度に設定されている。さらに、このオペアンプ151は、2つのコンデンサC3、C4により、カットオフ周波数1/(2π×C4×R3)となるローパスフィルタを構成している。そして、直流成分を除去された後に増幅された振動板121の残留振動波形は、図20のタイミングチャートに示すように、次段の比較器(コンパレータ)152でもう一つの直流電圧源Vref2の電位と比較され、その比較結果が矩形波として波形整形回路15から出力される。なお、直流電圧源Vref2は、もう一つの直流電圧源Vref1を共用してもよい。
In addition, for the single power supply operation of the
次に、図20に示すタイミングチャートを参照して、図19のF/V変換回路12および波形整形回路15の動作を説明する。上述のように生成された充電信号、クリア信号およびホールド信号に基づいて、図19に示すF/V変換回路12は動作する。図20のタイミングチャートにおいて、静電アクチュエータ120の駆動信号がヘッドドライバ33を介してインクジェットヘッド100に入力されると、図6(b)に示すように、静電アクチュエータ120の振動板121がセグメント電極122側に引きつけられ、この駆動信号の立ち下がりエッジに同期して、図6中上方に向けて急激に収縮する(図6(c)参照)。
Next, operations of the F /
この駆動信号の立ち下がりエッジに同期して、駆動回路18と吐出異常検出手段10とを切り替える駆動/検出切替信号がHighレベルとなる。この駆動/検出切替信号は、対応するインクジェットヘッド100の駆動休止期間中、Highレベルに保持され、次の駆動信号が入力される前に、Lowレベルになる。この駆動/検出切替信号がHighレベルの間、図18の発振回路11は、静電アクチュエータ120の振動板121の残留振動に対応して発振周波数を変えながら発振している。
上述のように、駆動信号の立ち下がりエッジ、すなわち、発振回路11の出力信号の立ち上がりエッジから、残留振動の波形がコンデンサC1に充電可能な範囲を超えないように予め設定された固定時間trだけ経過するまで、充電信号は、Highレベルに保持される。なお、充電信号がHighレベルである間、スイッチSW1はオフの状態である。
In synchronization with the falling edge of the drive signal, the drive / detection switching signal for switching between the
As described above, from the falling edge of the drive signal, that is, from the rising edge of the output signal of the
固定時間tr経過し、充電信号がLowレベルになると、その充電信号の立ち下がりエッジに同期して、スイッチSW1がオンされる(図19参照)。そして、定電流源13とコンデンサC1とが接続され、コンデンサC1は、上述のように、傾きIs/C1で充電される。充電信号がLowレベルである期間、すなわち、発振回路11の出力信号の次のパルスの立ち上がりエッジに同期してHighレベルになるまでの間、コンデンサC1は充電される。
When the fixed time tr elapses and the charge signal becomes low level, the switch SW1 is turned on in synchronization with the falling edge of the charge signal (see FIG. 19). Then, the constant
充電信号がHighレベルになると、スイッチSW1はオフ(オープン)となり、定電流源13とコンデンサC1は切り離される。このとき、コンデンサC1には、充電信号がLowレベルの期間t1の間に充電された電位(すなわち、理想的にはIs×t1/C1(V))が保存されている。この状態で、ホールド信号がHighレベルになると、スイッチSW2がオンされ(図19参照)、コンデンサC1とコンデンサC2が、抵抗素子R1を介して接続される。スイッチSW2の接続後、2つのコンデンサC1、C2の充電電位差によって互いに充放電が行われ、2つのコンデンサC1、C2の電位差が概ね等しくなるように、コンデンサC1からコンデンサC2に電荷が移動する。
When the charge signal becomes high level, the switch SW1 is turned off (opened), and the constant
ここで、コンデンサC1の静電容量に対してコンデンサC2の静電容量は、約1/10以下程度に設定されている。そのため、2つのコンデンサC1、C2間の電位差によって生じる充放電で移動する(使用される)電荷量は、コンデンサC1に充電されている電荷の1/10以下となる。したがって、コンデンサC1からコンデンサC2へ電荷が移動した後においても、コンデンサC1の電位差は、それほど変化しない(それほど下がらない)。なお、図19のF/V変換回路12では、コンデンサC2に充電されるときF/V変換回路12の配線のインダクタンス等により充電電位が急激に跳ね上がらないようにするために、抵抗素子R1とコンデンサC2により一次のローパスフィルタを構成している。
Here, the capacitance of the capacitor C2 is set to about 1/10 or less with respect to the capacitance of the capacitor C1. For this reason, the amount of charge that is moved (used) by charging / discharging caused by the potential difference between the two capacitors C1 and C2 is 1/10 or less of the charge charged in the capacitor C1. Therefore, even after the charge moves from the capacitor C1 to the capacitor C2, the potential difference of the capacitor C1 does not change so much (it does not decrease so much). In the F /
コンデンサC2にコンデンサC1の充電電位と概ね等しい充電電位が保持された後、ホールド信号がLowレベルとなり、コンデンサC1はコンデンサC2から切り離される。さらに、クリア信号がHighレベルとなり、スイッチSW3がオンすることにより、コンデンサC1がグラウンドGNDに接続され、コンデンサC1に充電されていた電荷が0となるように放電動作が行なわれる。コンデンサC1の放電後、クリア信号はLowレベルとなり、スイッチSW3がオフすることにより、コンデンサC1の図19中上部の電極がグラウンドGNDから切り離され、次の充電信号が入力されるまで、すなわち、充電信号がLowレベルになるまで待機している。 After the charging potential approximately equal to the charging potential of the capacitor C1 is held in the capacitor C2, the hold signal becomes the low level, and the capacitor C1 is disconnected from the capacitor C2. Further, when the clear signal becomes a high level and the switch SW3 is turned on, the capacitor C1 is connected to the ground GND, and the discharging operation is performed so that the charge charged in the capacitor C1 becomes zero. After the capacitor C1 is discharged, the clear signal becomes a low level, and the switch SW3 is turned off, whereby the upper electrode in FIG. 19 of the capacitor C1 is disconnected from the ground GND, that is, until the next charging signal is input, that is, the charging is performed. Waiting until the signal becomes low level.
コンデンサC2に保持されている電位は、充電信号の立ち上がりのタイミング毎、すなわち、コンデンサC2への充電完了のタイミング毎に更新され、バッファ14を介して振動板121の残留振動波形として図22の波形整形回路15に出力される。したがって、発振回路11の発振周波数が高くなるように静電アクチュエータ120の静電容量(この場合、残留振動による静電容量の変動幅も考慮しなければならない)と抵抗素子112の抵抗値を設定すれば、図20のタイミングチャートに示すコンデンサC2の電位(バッファ14の出力)の各ステップ(段差)がより詳細になるので、振動板121の残留振動による静電容量の時間的な変化をより詳細に検出することが可能となる。
The potential held in the capacitor C2 is updated every time the charging signal rises, that is, every time when charging of the capacitor C2 is completed, and the waveform shown in FIG. It is output to the shaping
以下同様に、充電信号がLowレベル→Highレベル→Lowレベル・・・と繰り返し、上記所定のタイミングでコンデンサC2に保持されている電位がバッファ14を介して波形整形回路15に出力される。波形整形回路15では、バッファ14から入力された電圧信号(図20のタイミングチャートにおいて、コンデンサC2の電位)の直流成分がコンデンサC3によって除去され、抵抗素子R2を介してオペアンプ151の反転入力端子に入力される。入力された残留振動の交流(AC)成分は、このオペアンプ151によって反転増幅され、コンパレータ152の一方の入力端子に出力される。コンパレータ152は、予め直流電圧源Vref2によって設定されている電位(基準電圧)と、残留振動波形(交流成分)の電位とを比較し、矩形波を出力する(図20のタイミングチャートにおける比較回路の出力)。
Similarly, the charging signal is repeatedly changed from Low level → High level → Low level... And the potential held in the capacitor C2 is output to the
次に、インクジェットヘッド100のインク滴吐出動作(駆動)と吐出異常検出動作(駆動休止)との切り替えタイミングについて説明する。図23は、駆動回路18と吐出異常検出手段10との切替手段23の概略を示すブロック図である。なお、この図23では、図16に示すヘッドドライバ33内の駆動回路18をインクジェットヘッド100の駆動回路として説明する。図20のタイミングチャートでも示したように、吐出異常検出処理は、インクジェットヘッド100の駆動信号と駆動信号の間、すなわち、駆動休止期間に実行されている。
Next, the switching timing between the ink droplet ejection operation (drive) and the ejection abnormality detection operation (drive suspension) of the
図23において、静電アクチュエータ120を駆動するために、切替手段23は、最初は駆動回路18側に接続されている。上述のように、駆動回路18から駆動信号(電圧信号)が振動板121に入力されると、静電アクチュエータ120が駆動し、振動板121は、セグメント電極122側に引きつけられ、印加電圧が0になるとセグメント電極122から離れる方向に急激に変位して振動(残留振動)を開始する。このとき、インクジェットヘッド100のノズル110からインク滴が吐出される。
In FIG. 23, in order to drive the
駆動信号のパルスが立ち下がると、その立ち下がりエッジに同期して駆動/検出切替信号(図20のタイミングチャート参照)が切替手段23に入力され、切替手段23は、駆動回路18から吐出異常検出手段(検出回路)10側に切り替えられ、静電アクチュエータ120(発振回路11のコンデンサとして利用)は吐出異常検出手段10と接続される。
When the pulse of the drive signal falls, a drive / detection switching signal (see the timing chart of FIG. 20) is input to the switching means 23 in synchronization with the falling edge, and the switching means 23 detects the ejection abnormality from the
そして、吐出異常検出手段10は、上述のような吐出異常(ドット抜け)の検出処理を実行し、波形整形回路15の比較器152から出力される振動板121の残留振動波形データ(矩形波データ)を計測手段17によって残留振動波形の周期や振幅などに数値化する。本実施形態では、計測手段17は、残留振動波形データから特定の振動周期を測定し、その計測結果(数値)を判定手段20に出力する。
Then, the discharge abnormality detection means 10 executes the discharge abnormality (dot missing) detection process as described above, and the residual vibration waveform data (rectangular wave data) of the
具体的には、計測手段17は、比較器152の出力信号の波形(矩形波)の最初の立ち上がりエッジから次の立ち上がりエッジまでの時間(残留振動の周期)を計測するために、図示しないカウンタを用いて基準信号(所定の周波数)のパルスをカウントし、そのカウント値から残留振動の周期(特定の振動周期)を計測する。なお、計測手段17は、最初の立ち上がりエッジから次の立ち下がりエッジまでの時間を計測し、その計測された時間の2倍の時間を残留振動の周期として判定手段20に出力してもよい。以下、このようにして得られた残留振動の周期をTwとする。
Specifically, the measuring means 17 is a counter (not shown) for measuring the time (residual vibration period) from the first rising edge to the next rising edge of the waveform (rectangular wave) of the output signal of the
判定手段20は、計測手段17によって計測された残留振動波形の特定の振動周期など(計測結果)に基づいて、ノズルの吐出異常の有無、吐出異常の原因、比較偏差量などを判定し、その判定結果を制御部6に出力する。制御部6は、EEPROM(記憶手段)62の所定の格納領域にこの判定結果を保存する。そして、駆動回路18からの次の駆動信号が入力されるタイミングで、駆動/検出切替信号が切替手段23に再び入力され、駆動回路18と静電アクチュエータ120とを接続する。駆動回路18は、一旦駆動電圧を印加するとグラウンド(GND)レベルを維持するので、切替手段23によって上記のような切り替えを行っている(図20のタイミングチャート参照)。これにより、駆動回路18からの外乱などに影響されることなく、静電アクチュエータ120の振動板121の残留振動波形を正確に検出することができる。
Based on a specific vibration period (measurement result) of the residual vibration waveform measured by the measurement unit 17, the
なお、本発明では、残留振動波形データは、比較器152により矩形波化したものに限定されない。例えば、オペアンプ1551から出力された残留振動振幅データは、比較器152により比較処理を行うことなく、A/D変換を行う計測手段17によって随時数値化され、その数値化されたデータに基づいて、判定手段20により吐出異常の有無などを判定し、この判定結果を記憶手段62に記憶するように構成してもよい。
In the present invention, the residual vibration waveform data is not limited to the rectangular waveform generated by the
また、ノズル110のメニスカス(ノズル110内インクが大気と接する面)は、振動板121の残留振動に同期して振動するため、インクジェットヘッド100は、インク滴の吐出動作後、このメニスカスの残留振動が音響抵抗rによって概ね決まった時間で減衰するのを待ってから(所定の時間待機して)、次の吐出動作を行っている。本発明では、この待機時間を有効に利用して振動板121の残留振動を検出しているので、インクジェットヘッド100の駆動に影響しない吐出異常検出を行うことができる。すなわち、インクジェットプリンタ1(液滴吐出装置)のスループットを低下させることなく、インクジェットヘッド100のノズル110の吐出異常検出処理を実行することができる。
Further, since the meniscus of the nozzle 110 (the surface where the ink in the
上述のように、インクジェットヘッド100のキャビティ141内に気泡が混入した場合には、正常吐出時の振動板121の残留振動波形に比べて、周波数が高くなるので、その周期は逆に正常吐出時の残留振動の周期よりも短くなる。また、ノズル110付近のインクが乾燥により増粘、固着した場合には、残留振動が過減衰となり、正常吐出時の残留振動波形に比べて、周波数が相当低くなるので、その周期は正常吐出時の残留振動の周期よりもかなり長くなる。また、ノズル110の出口付近に紙粉が付着した場合には、残留振動の周波数は、正常吐出時の残留振動の周波数よりも低く、しかし、インクの乾燥時の残留振動の周波数よりも高くなるので、その周期は、正常吐出時の残留振動の周期よりも長く、インク乾燥時の残留振動の周期よりも短くなる。
As described above, when bubbles are mixed in the
したがって、正常吐出時の残留振動の周期として、所定の範囲Trを設け、また、ノズル110出口に紙粉が付着した場合における残留振動の周期と、ノズル110の出口付近でインクが乾燥した場合における残留振動の周期とを区別するために、所定のしきい値(所定の閾値)T1を設定することにより、このようなインクジェットヘッド100の吐出異常の原因を決定することができる。判定手段20は、上記吐出異常検出処理によって検出された残留振動波形の周期Twが所定の範囲の周期であるか否か、また、所定のしきい値よりも長いか否かを判定し、それによって、吐出異常の原因を判定する。
Therefore, a predetermined range Tr is provided as a period of residual vibration at the time of normal ejection, and a period of residual vibration when paper dust adheres to the
次に、本発明の液滴吐出装置の動作を、上述のインクジェットプリンタ1の構成に基づいて説明する。まず、1つのインクジェットヘッド100のノズル110に対する吐出異常検出処理(駆動/検出切替処理を含む)について説明する。図24は、吐出異常検出・判定処理を示すフローチャートである。印刷される印字データ(フラッシング動作における吐出データでもよい)がホストコンピュータ8からインターフェース(IF)9を介して制御部6に入力されると、所定のタイミングでこの吐出異常検出処理が実行される。なお、説明の都合上、この図24に示すフローチャートでは、1つのインクジェットヘッド100、すなわち、1つのノズル110の吐出動作に対応する吐出異常検出処理を示す。
Next, the operation of the droplet discharge device of the present invention will be described based on the configuration of the
まず、印字データ(吐出データ)に対応する駆動信号がヘッドドライバ33の駆動回路18から入力され、それにより、図20のタイミングチャートに示すような駆動信号のタイミングに基づいて、静電アクチュエータ120の両電極間に駆動信号(電圧信号)が印加される(ステップS101)。そして、制御部6は、駆動/検出切替信号に基づいて、吐出したインクジェットヘッド100が駆動休止期間であるか否かを判断する(ステップS102)。ここで、駆動/検出切替信号は、駆動信号の立ち下がりエッジに同期してHighレベルとなり(図20参照)、制御部6から切替手段23に入力される。
First, a drive signal corresponding to the print data (ejection data) is input from the
駆動/検出切替信号が切替手段23に入力されると、切替手段23によって、静電アクチュエータ120、すなわち、発振回路11を構成するコンデンサは、駆動回路18から切り離され、吐出異常検出手段10(検出回路)側、すなわち、残留振動検出手段16の発振回路11に接続される(ステップS103)。そして、後述する残留振動検出処理を実行し(ステップS104)、計測手段17は、この残留振動検出処理において検出された残留振動波形データから所定の数値を計測する(ステップS105)。ここでは、上述のように、計測手段17は、残留振動波形データからその残留振動の周期を計測する。
When the drive / detection switching signal is input to the
次いで、判定手段20によって、計測手段の計測結果に基づいて、後述する吐出異常判定処理が実行され(ステップS106)、その判定結果を制御部6のEEPROM(記憶手段)62の所定の格納領域に保存する。そして、ステップS108においてインクジェットヘッド100が駆動期間であるか否かが判断される。すなわち、駆動休止期間が終了して、次の駆動信号が入力されたか否かが判断され、次の駆動信号が入力されるまで、このステップS108で待機している。
Next, based on the measurement result of the measurement unit, the
次の駆動信号のパルスが入力されるタイミングで、駆動信号の立ち上がりエッジに同期して駆動/検出切替信号がLowレベルになると(ステップS108で「yes」)、切替手段23は、静電アクチュエータ120との接続を、吐出異常検出手段(検出回路)10から駆動回路18に切り替えて(ステップS109)、この吐出異常検出処理を終了する。
When the drive / detection switching signal becomes low level in synchronization with the rising edge of the driving signal at the timing when the pulse of the next driving signal is input (“Yes” in step S108), the switching
なお、図24に示すフローチャートでは、計測手段17が残留振動検出処理(残留振動検出手段16)によって検出された残留振動波形から周期を計測する場合について示したが、本発明はこのような場合に限定されず、例えば、計測手段17は、残留振動検出処理において検出された残留振動波形データから、残留振動波形の位相差や振幅などの計測を行ってもよい。 In the flowchart shown in FIG. 24, the case where the measurement unit 17 measures the period from the residual vibration waveform detected by the residual vibration detection process (residual vibration detection unit 16) is shown. For example, the measurement unit 17 may measure the phase difference or amplitude of the residual vibration waveform from the residual vibration waveform data detected in the residual vibration detection process.
次に、図24に示すフローチャートのステップS104における残留振動検出処理(サブルーチン)について説明する。図25は、残留振動検出処理を示すフローチャートである。上述のように、切替手段23によって、静電アクチュエータ120と発振回路11とを接続すると(図24のステップS103)、発振回路11は、CR発振回路を構成し、静電アクチュエータ120の静電容量の変化(静電アクチュエータ120の振動板121の残留振動)に基づいて、発振する(ステップS201)。
Next, the residual vibration detection process (subroutine) in step S104 of the flowchart shown in FIG. 24 will be described. FIG. 25 is a flowchart showing the residual vibration detection process. As described above, when the
上述のタイミングチャートなどに示すように、発振回路11の出力信号(パルス信号)に基づいて、F/V変換回路12において、充電信号、ホールド信号およびクリア信号が生成され、これらの信号に基づいてF/V変換回路12によって発振回路11の出力信号の周波数から電圧に変換するF/V変換処理が行われ(ステップS202)、F/V変換回路12から振動板121の残留振動波形データが出力される。F/V変換回路12から出力された残留振動波形データは、波形整形回路15のコンデンサC3により、DC成分(直流成分)が除去され(ステップS203)、オペアンプ151により、DC成分が除去された残留振動波形(AC成分)が増幅される(ステップS204)。
As shown in the above timing chart and the like, the F /
増幅後の残留振動波形データは、所定の処理により波形整形され、パルス化される(ステップS205)。すなわち、本実施形態では、比較器152において、直流電圧源Vref2によって設定された電圧値(所定の電圧値)とオペアンプ151の出力電圧とが比較される。比較器152は、この比較結果に基づいて、2値化された波形(矩形波)を出力する。この比較器152の出力信号は、残留振動検出手段16の出力信号であり、吐出異常判定処理を行うために、計測手段17に出力され、この残留振動検出処理が終了する。
The amplified residual vibration waveform data is shaped and pulsed by a predetermined process (step S205). That is, in the present embodiment, the
次に、図24に示すフローチャートのステップS106における吐出異常判定処理(サブルーチン)について説明する。図26は、制御部6および判定手段20によって実行される吐出異常判定処理を示すフローチャートである。判定手段20は、上述の計測手段17によって計測された周期などの計測データ(計測結果)に基づいて、該当するインクジェットヘッド100からインク滴が正常に吐出したか否か、正常に吐出していない場合、すなわち、吐出異常の場合にはその原因が何かを判定する。
Next, the ejection abnormality determination process (subroutine) in step S106 of the flowchart shown in FIG. 24 will be described. FIG. 26 is a flowchart showing a discharge abnormality determination process executed by the
まず、制御部6は、EEPROM62に保存されている残留振動の周期の所定の範囲Trおよび残留振動の周期の所定のしきい値T1を判定手段20に出力する。残留振動の周期の所定の範囲Trは、正常吐出時の残留振動周期に対して、正常と判定できる許容範囲を持たせたものである。これらのデータは、判定手段20の図示しないメモリに格納され、以下の処理が実行される。
First, the
図24のステップS105において計測手段17によって計測された計測結果が判定手段20に入力される(ステップS301)。ここで、本実施形態では、計測結果は、振動板121の残留振動の周期Twである。
ステップS202において、判定手段20は、残留振動の周期Twが存在するか否か、すなわち、吐出異常検出手段10によって残留振動波形データが得られなかったか否かを判定する。残留振動の周期Twが存在しないと判定された場合には、判定手段20は、そのインクジェットヘッド100のノズル110は吐出異常検出処理においてインク滴を吐出していない未吐出ノズルであると判定する(ステップS306)。また、残留振動波形データが存在すると判定された場合には、続いて、ステップS303において、判定手段20は、その周期Twが正常吐出時の周期と認められる所定の範囲Tr内にあるか否かを判定する。
The measurement result measured by the measurement unit 17 in step S105 in FIG. 24 is input to the determination unit 20 (step S301). Here, in the present embodiment, the measurement result is a period Tw of residual vibration of the
In step S202, the
残留振動の周期Twが所定の範囲Tr内にあると判定された場合には、対応するインクジェットヘッド100からインク滴が正常に吐出されたことを意味し、判定手段20は、そのインクジェットヘッド100のノズル110は正常にインク滴と吐出した(正常吐出)と判定する(ステップS307)。また、残留振動の周期Twが所定の範囲Tr内にないと判定された場合には、続いて、ステップS304において、判定手段20は、残留振動の周期Twが所定の範囲Trよりも短いか否かを判定する。
When it is determined that the period Tw of the residual vibration is within the predetermined range Tr, it means that the ink droplet has been normally ejected from the corresponding
残留振動の周期Twが所定の範囲Trよりも短いと判定された場合には、残留振動の周波数が高いことを意味し、上述のように、インクジェットヘッド100のキャビティ141内に気泡が混入しているものと考えられ、判定手段20は、そのインクジェットヘッド100のキャビティ141に気泡が混入しているもの(気泡混入)と判定する(ステップS308)。
If it is determined that the period Tw of the residual vibration is shorter than the predetermined range Tr, it means that the frequency of the residual vibration is high. As described above, bubbles are mixed in the
また、残留振動の周期Twが所定の範囲Trよりも長いと判定された場合には、続いて、判定手段20は、残留振動の周期Twが所定のしきい値T1よりも長いか否かを判定する(ステップS305)。残留振動の周期Twが所定のしきい値T1よりも長いと判定された場合には、残留振動が過減衰であると考えられ、判定手段20は、そのインクジェットヘッド100のノズル110付近のインクが乾燥により増粘しているもの(乾燥)と判定する(ステップS309)。
When it is determined that the residual vibration period Tw is longer than the predetermined range Tr, the
そして、ステップS305において、残留振動の周期Twが所定のしきい値T1よりも短いと判定された場合には、この残留振動の周期Twは、Tr<Tw<T1を満たす範囲の値であり、上述のように、乾燥よりも周波数が高いノズル110の出口付近への紙粉付着であると考えられ、判定手段20は、そのインクジェットヘッド100のノズル110出口付近に紙粉が付着しているもの(紙粉付着)と判定する(ステップS310)。
このように、判定手段20によって、対象となるインクジェットヘッド100の正常吐出あるいは吐出異常の原因などが判定されると(ステップS306〜S310)、その判定結果は、制御部6に出力され、この吐出異常判定処理を終了する。
In step S305, if it is determined that the period Tw of the residual vibration is shorter than the predetermined threshold value T1, the period Tw of the residual vibration is a value in a range that satisfies Tr <Tw <T1, As described above, it is considered that paper dust adheres to the vicinity of the outlet of the
As described above, when the
次に、複数のインクジェットヘッド100(液滴吐出ヘッド)100、すなわち、複数のノズル110を備えるインクジェットプリンタ1を想定し、そのインクジェットプリンタ1における吐出選択手段(ノズルセレクタ)182と、各インクジェットヘッド100の吐出異常検出・判定のタイミングについて説明する。
なお、以下では、説明を分かりやすくするため、印字手段3が備える複数のヘッドユニット35のうちの1つのヘッドユニット35について説明し、また、このヘッドユニット35は、5つのインクジェットヘッド100a〜100eを備える(すなわち、5つのノズル110を備える)ものとするが、本発明では、印字手段3が備えるヘッドユニット35の数量や、各ヘッドユニット35が備えるインクジェットヘッド100(ノズル110)の数量は、それぞれ、いくつであってもよい。
Next, assuming an
In the following, in order to make the description easy to understand, one
図27〜図30は、吐出選択手段182を備えるインクジェットプリンタ1における吐出異常検出・判定タイミングのいくつかの例を示すブロック図である。以下、各図の構成例を順次説明する。
図27は、複数(5つ)のインクジェットヘッド100a〜100eの吐出異常検出のタイミングの一例(吐出異常検出手段10が1つの場合)である。この図27に示すように、複数のインクジェットヘッド100a〜100eを有するインクジェットプリンタ1は、駆動波形を生成する駆動波形生成手段181と、いずれのノズル110からインク滴を吐出するかを選択することができる吐出選択手段182と、この吐出選択手段182によって選択され、駆動波形生成手段181によって駆動される複数のインクジェットヘッド100a〜100eとを備えている。なお、図27の構成では、上記以外の構成は図2、図16および図23に示したものと同様であるため、その説明を省略する。
27 to 30 are block diagrams illustrating some examples of ejection abnormality detection / determination timing in the
FIG. 27 is an example of a discharge abnormality detection timing of a plurality (five) of
なお、本実施形態では、駆動波形生成手段181および吐出選択手段182は、ヘッドドライバ33の駆動回路18に含まれるものとして説明するが(図27では、切替手段23を介して2つのブロックとして示しているが、一般的には、いずれもヘッドドライバ33内に構成される)、本発明はこの構成に限定されず、例えば、駆動波形生成手段181は、ヘッドドライバ33とは独立した構成としてもよい。
In this embodiment, the drive
この図27に示すように、吐出選択手段182は、シフトレジスタ182aと、ラッチ回路182bと、ドライバ182cとを備えている。シフトレジスタ182aには、図2に示すホストコンピュータ8から出力され、制御部6において所定の処理をされた印字データ(吐出データ)と、クロック信号(CLK)が順次入力される。この印字データは、クロック信号(CLK)の入力パルスに応じて(クロック信号の入力の度に)シフトレジスタ182aの初段から順次後段側にシフトして入力され、各インクジェットヘッド100a〜100eに対応する印字データとしてラッチ回路182bに出力される。なお、後述する吐出異常検出処理では、印字データではなくフラッシング(予備吐出)時の吐出データが入力されるが、この吐出データとは、すべてのインクジェットヘッド100a〜100eに対する印字データを意味している。なお、フラッシング時は、ラッチ回路182bのすべての出力が吐出となる値に設定されるようにハード的に処理をしてもよい。
As shown in FIG. 27, the ejection selection means 182 includes a
ラッチ回路182bは、ヘッドユニット35のノズル110の数、すなわち、インクジェットヘッド100の数に対応する印字データがシフトレジスタ182aに格納された後、入力されるラッチ信号によってシフトレジスタ182aの各出力信号をラッチする。ここで、CLEAR信号が入力された場合には、ラッチ状態が解除され、ラッチされていたシフトレジスタ182aの出力信号は0(ラッチの出力停止)となり、印字動作は停止される。CLEAR信号が入力されていない場合には、ラッチされたシフトレジスタ182aの印字データがドライバ182cに出力される。シフトレジスタ182aから出力される印字データがラッチ回路182bによってラッチされた後、次の印字データをシフトレジスタ182aに入力し、印字タイミングに合わせてラッチ回路182bのラッチ信号を順次更新している。
The
ドライバ182cは、駆動波形生成手段181と各インクジェットヘッド100の静電アクチュエータ120とを接続するものであり、ラッチ回路182bから出力されるラッチ信号で指定(特定)された各静電アクチュエータ120(インクジェットヘッド100a〜100eのいずれかあるいはすべての静電アクチュエータ120)に駆動波形生成手段181の出力信号(駆動信号)を入力し、それによって、その駆動信号(電圧信号)が静電アクチュエータ120の両電極間に印加される。
The
この図27に示すインクジェットプリンタ1は、複数のインクジェットヘッド100a〜100eを駆動する1つの駆動波形生成手段181と、各インクジェットヘッド100a〜100eのいずれかのインクジェットヘッド100に対して吐出異常(インク滴不吐出)を検出する吐出異常検出手段10と、この吐出異常検出手段10によって得られた吐出異常の原因などの判定結果を保存(格納)する記憶手段62と、駆動波形生成手段181と吐出異常検出手段10とを切り替える1つの切替手段23とを備えている。したがって、このインクジェットプリンタ1は、駆動波形生成手段181から入力される駆動信号に基づいて、ドライバ182cによって選択されたインクジェットヘッド100a〜100eのうちの1つまたは複数を駆動し、駆動/検出切替信号が吐出駆動動作後に切替手段23に入力されることによって、切替手段23が駆動波形生成手段181から吐出異常検出手段10にインクジェットヘッド100の静電アクチュエータ120との接続を切り替えた後、振動板121の残留振動波形に基づいて、吐出異常検出手段10によって、そのインクジェットヘッド100のノズル110における吐出異常(インク滴不吐出)を検出し、吐出異常の場合にはその原因を判定するものである。
In the
そして、このインクジェットプリンタ1は、1つのインクジェットヘッド100のノズル110について吐出異常を検出・判定すると、次に駆動波形生成手段181から入力される駆動信号に基づいて、次に指定されたインクジェットヘッド100のノズル110について吐出異常を検出・判定し、以下同様に、駆動波形生成手段181の出力信号によって駆動されるインクジェットヘッド100のノズル110についての吐出異常を順次検出・判定する。そして、上述のように、残留振動検出手段16が振動板121の残留振動波形を検出すると、計測手段17がその波形データに基づいて残留振動波形の周期などを計測し、判定手段20が、計測手段17の計測結果に基づいて、正常吐出か吐出異常か、および、吐出異常(ヘッド異常)の場合には吐出異常の原因を判定して、記憶手段62にその判定結果を出力する。
When the
このように、この図27に示すインクジェットプリンタ1では、複数のインクジェットヘッド100a〜100eの各ノズル110についてインク滴吐出駆動動作の際に順次吐出異常を検出・判定する構成としているので、吐出異常検出手段10と切替手段23とを1つずつ備えるだけでよく、吐出異常を検出・判定可能なインクジェットプリンタ1の回路構成をスケールダウンできるとともに、その製造コストの増加を防止することができる。
In this way, the
図28は、複数のインクジェットヘッド100の吐出異常検出のタイミングの一例(吐出異常検出手段10の数がインクジェットヘッド100の数と同じ場合)である。この図28に示すインクジェットプリンタ1は、1つの吐出選択手段182と、5つの吐出異常検出手段10a〜10eと、5つの切替手段23a〜23eと、5つのインクジェットヘッド100a〜100eに共通の1つの駆動波形生成手段181と、1つの記憶手段62とを備えている。なお、各構成要素は、図27の説明において既に上述しているので、その説明を省略し、これらの接続について説明する。
FIG. 28 is an example of the timing of ejection abnormality detection of a plurality of inkjet heads 100 (when the number of ejection abnormality detection means 10 is the same as the number of inkjet heads 100). The
図27に示す場合と同様に、吐出選択手段182は、ホストコンピュータ8から入力される印字データ(吐出データ)とクロック信号CLKに基づいて、各インクジェットヘッド100a〜100eに対応する印字データをラッチ回路182bにラッチし、駆動波形生成手段181からドライバ182cに入力される駆動信号(電圧信号)に応じて、印字データに対応するインクジェットヘッド100a〜100eの静電アクチュエータ120を駆動させる。駆動/検出切替信号は、すべてのインクジェットヘッド100a〜100eに対応する切替手段23a〜23eにそれぞれ入力され、切替手段23a〜23eは、対応する印字データ(吐出データ)の有無にかかわらず、駆動/検出切替信号に基づいて、インクジェットヘッド100の静電アクチュエータ120に駆動信号を入力後、駆動波形生成手段181から吐出異常検出手段10a〜10eにインクジェットヘッド100との接続を切り替える。
As in the case shown in FIG. 27, the ejection selecting means 182 latches print data corresponding to each of the
すべての吐出異常検出手段10a〜10eにより、それぞれのインクジェットヘッド100a〜100eの吐出異常を検出・判定した後、その検出処理で得られたすべてのインクジェットヘッド100a〜100eの判定結果が、記憶手段62に出力され、記憶手段62は、各インクジェットヘッド100a〜100eの吐出異常の有無および吐出異常の原因を所定の保存領域に格納する。
After detecting and determining the ejection abnormality of each
このように、この図28に示すインクジェットプリンタ1では、複数のインクジェットヘッド100a〜100eの各ノズル110に対応して複数の吐出異常検出手段10a〜10eを設け、それらに対応する複数の切替手段23a〜23eによって切替動作を行って、吐出異常検出およびその原因判定を行っているので、一度にすべてのノズル110について短時間に吐出異常検出およびその原因判定を行うことができる。
As described above, in the
図29は、複数のインクジェットヘッド100の吐出異常検出のタイミングの一例(吐出異常検出手段10の数がインクジェットヘッド100の数と同じであり、印字データがあるときに吐出異常検出を行う場合)である。この図29に示すインクジェットプリンタ1は、図28に示すインクジェットプリンタ1の構成に、切替制御手段19を追加(付加)したものである。本実施形態では、この切替制御手段19は、複数のAND回路(論理積回路)ANDa〜ANDeから構成され、各インクジェットヘッド100a〜100eに入力される印字データと、駆動/検出切替信号とが入力されると、対応する切替手段23a〜23eにHighレベルの出力信号を出力するものである。なお、切替制御手段19はAND回路(論理積回路)に限定されず、駆動するインクジェットヘッド100が選択されるラッチ回路182bの出力に一致した切替手段23が選択されるように構成されればよい。
FIG. 29 is an example of ejection abnormality detection timings of a plurality of inkjet heads 100 (when ejection abnormality detection is performed when the number of ejection abnormality detection means 10 is the same as the number of inkjet heads 100 and there is print data). is there. The
各切替手段23a〜23eは、切替制御手段19のそれぞれ対応するAND回路ANDa〜ANDeの出力信号に基づいて、駆動波形生成手段181からそれぞれ対応する吐出異常検出手段10a〜10eへ、対応するインクジェットヘッド100a〜100eの静電アクチュエータ120との接続を切り替える。具体的には、対応するAND回路ANDa〜ANDeの出力信号がHighレベルであるとき、すなわち、駆動/検出切替信号がHighレベルの状態で対応するインクジェットヘッド100a〜100eに入力される印字データがラッチ回路182bからドライバ182cに出力されている場合には、そのAND回路に対応する切替手段23a〜23eは、対応するインクジェットヘッド100a〜100eへの接続を、駆動波形生成手段181から吐出異常検出手段10a〜10eに切り替える。
Each of the switching
印字データが入力されたインクジェットヘッド100に対応する吐出異常検出手段10a〜10eにより、各インクジェットヘッド100の吐出異常の有無および吐出異常の場合にはその原因を検出した後、その吐出異常検出手段10は、その検出処理で得られた判定結果を記憶手段62に出力する。記憶手段62は、このように入力された(得られた)1または複数の判定結果を所定の保存領域に格納する。
The ejection abnormality detecting means 10a to 10e corresponding to the
このように、この図29に示すインクジェットプリンタ1では、複数のインクジェットヘッド100a〜100eの各ノズル110に対応して複数の吐出異常検出手段10a〜10eを設け、それぞれのインクジェットヘッド100a〜100eに対応する印字データがホストコンピュータ8から制御部6を介して吐出選択手段182に入力されたときに、切替制御手段19によって指定された切替手段23a〜23eのみが所定の切替動作を行って、インクジェットヘッド100の吐出異常検出およびその原因判定を行っているので、吐出駆動動作をしていないインクジェットヘッド100についてはこの検出・判定処理を行わない。したがって、このインクジェットプリンタ1によって、無駄な検出および判定処理を回避することができる。
As described above, in the
図30は、複数のインクジェットヘッド100の吐出異常検出のタイミングの一例(吐出異常検出手段10の数がインクジェットヘッド100の数と同じであり、各インクジェットヘッド100を巡回して吐出異常検出を行う場合)である。この図30に示すインクジェットプリンタ1は、図29に示すインクジェットプリンタ1の構成において吐出異常検出手段10を1つとし、駆動/検出切替信号を走査する(検出・判定処理を実行するインクジェットヘッド100を1つずつ特定する)切替選択手段19aを追加したものである。
FIG. 30 shows an example of ejection abnormality detection timing of a plurality of inkjet heads 100 (the number of ejection abnormality detection means 10 is the same as the number of inkjet heads 100, and ejection abnormality detection is performed by circulating through each
この切替選択手段19aは、図29に示す切替制御手段19に接続されるものであり、制御部6から入力される走査信号(選択信号)に基づいて、複数のインクジェットヘッド100a〜100eに対応するAND回路ANDa〜ANDeへの駆動/検出切替信号の入力を走査する(選択して切り替える)セレクタである。この切替選択手段19aの走査(選択)順は、シフトレジスタ182aに入力される印字データの順、すなわち、複数のインクジェットヘッド100の吐出順であってもよいが、単純に複数のインクジェットヘッド100a〜100eの順であってもよい。
This switching selection means 19a is connected to the switching control means 19 shown in FIG. 29, and corresponds to the plurality of
走査順がシフトレジスタ182aに入力される印字データの順である場合、吐出選択手段182のシフトレジスタ182aに印字データが入力されると、その印字データはラッチ回路182bにラッチされ、ラッチ信号の入力によりドライバ182cに出力される。印字データのシフトレジスタ182aへの入力、あるいはラッチ信号のラッチ回路182bへの入力に同期して、印字データに対応するインクジェットヘッド100を特定するための走査信号が切替選択手段19aに入力され、対応するAND回路に駆動/検出切替信号が出力される。なお、切替選択手段19aの出力端子は、非選択時にはLowレベルを出力する。
When the scanning order is the order of the print data input to the
その対応するAND回路(切替制御手段19)は、ラッチ回路182bから入力された印字データと、切替選択手段19aから入力された駆動/検出切替信号とを論理積演算することにより、Highレベルの出力信号を対応する切替手段23に出力する。そして、切替制御手段19からHighレベルの出力信号が入力された切替手段23は、対応するインクジェットヘッド100の静電アクチュエータ120への接続を、駆動波形生成手段181から吐出異常検出手段10に切り替える。
吐出異常検出手段10は、印字データが入力されたインクジェットヘッド100の吐出異常を検出し、吐出異常がある場合にはその原因を判定した後、その判定結果を記憶手段62に出力する。そして、記憶手段62は、このように入力された(得られた)判定結果を所定の保存領域に格納する。
The corresponding AND circuit (switch control means 19) performs a logical AND operation on the print data input from the
The ejection abnormality detection means 10 detects an ejection abnormality of the
また、走査順が単純なインクジェットヘッド100a〜100eの順である場合、吐出選択手段182のシフトレジスタ182aに印字データが入力されると、その印字データはラッチ回路182bにラッチされ、ラッチ信号の入力によりドライバ182cに出力される。印字データのシフトレジスタ182aへの入力、あるいはラッチ信号のラッチ回路182bへの入力に同期して、印字データに対応するインクジェットヘッド100を特定するための走査(選択)信号が切替選択手段19aに入力され、切替制御手段19の対応するAND回路に駆動/検出切替信号が出力される。
Further, when the scanning order is the order of the
ここで、切替選択手段19aに入力された走査信号により定められたインクジェットヘッド100に対する印字データがシフトレジスタ182aに入力されたときには、それに対応するAND回路(切替制御手段19)の出力信号がHighレベルとなり、切替手段23は、対応するインクジェットヘッド100への接続を、駆動波形生成手段181から吐出異常検出手段10に切り替える。しかしながら、上記印字データがシフトレジスタ182aに入力されないときには、AND回路の出力信号はLowレベルであり、対応する切替手段23は、所定の切替動作を実行しない。したがって、切替選択手段19aの選択結果と切替制御手段19によって指定された結果との論理積に基づいて、インクジェットヘッド100の吐出異常検出処理が行われる。
Here, when print data for the
切替手段23によって切替動作が行われた場合には、上記と同様に、吐出異常検出手段10は、印字データが入力されたインクジェットヘッド100の吐出異常を検出し、吐出異常がある場合にはその原因を判定した後、その判定結果を記憶手段62に出力する。そして、記憶手段62は、このように入力された(得られた)判定結果を所定の保存領域に格納する。
When the switching operation is performed by the switching
なお、切替選択手段19aで特定されたインクジェットヘッド100に対する印字データがないときには、上述のように、対応する切替手段23が切替動作を実行しないので、吐出異常検出手段10による吐出異常検出処理を実行する必要はないが、そのような処理が実行されてもよい。切替動作が行われずに吐出異常検出処理が実行された場合、吐出異常検出手段10の判定手段20は、図26のフローチャートに示すように、対応するインクジェットヘッド100のノズル110を未吐出ノズルであると判定し(ステップS306)、その判定結果を記憶手段62の所定の保存領域に格納する。
Note that when there is no print data for the
このように、この図30に示すインクジェットプリンタ1では、図28または図29に示すインクジェットプリンタ1とは異なり、複数のインクジェットヘッド100a〜100eの各ノズル110に対して1つの吐出異常検出手段10のみを設け、それぞれのインクジェットヘッド100a〜100eに対応する印字データがホストコンピュータ8から制御部6を介して吐出選択手段182に入力され、それと同時に走査(選択)信号により特定されて、その印字データに応じて吐出駆動動作をするインクジェットヘッド100に対応する切替手段23のみが切替動作を行って、対応するインクジェットヘッド100の吐出異常検出およびその原因判定を行っているので、一度に大量の検出結果を処理することがなく制御部6のCPU61への負担を軽減することができる。また、吐出異常検出手段10が吐出動作とは別にノズルの状態を巡回しているため、駆動印字中でも1ノズル毎に吐出の異常を把握することができ、ヘッドユニット35全体のノズル110状態を知ることができる。これにより、例えば、定期的に吐出異常の検出を行っているために、印刷停止中に1ノズル毎に吐出の異常を検出する工程を少なくすることができる。以上から、効率的にインクジェットヘッド100の吐出異常検出およびその原因判定を行うことができる。
As described above, in the
また、図28または図29に示すインクジェットプリンタ1とは異なり、図30に示すインクジェットプリンタ1は、吐出異常検出手段10を1つのみ備えていればよいので、図28および図29に示すインクジェットプリンタ1に比べ、インクジェットプリンタ1の回路構成をスケールダウンすることができるとともに、その製造コストの増加を防止することができる。
Further, unlike the
次に、図27〜図30に示すプリンタ1の動作、すなわち、複数のインクジェットヘッド100を備えるインクジェットプリンタ1における吐出異常検出処理(主に、検出タイミング)について説明する。吐出異常検出・判定処理(多ノズルにおける処理)は、各インクジェットヘッド100の静電アクチュエータ120がインク滴吐出動作を行ったときの振動板121の残留振動を検出し、その残留振動の周期に基づいて、該当するインクジェットヘッド100に対し吐出異常(ドット抜け、インク滴不吐出)が生じているか否か、ドット抜け(インク滴不吐出)が生じた場合には、その原因が何であるかを判定している。このように、本発明では、インクジェットヘッド100によるインク滴(液滴)の吐出動作が行われれば、これらの検出・判定処理を実行できるが、インクジェットヘッド100がインク滴を吐出するのは、実際に記録用紙Pに印刷(プリント)している場合だけでなく、フラッシング動作(予備吐出あるいは予備的吐出)をしている場合もある。以下、この2つの場合について、吐出異常検出・判定処理(多ノズル)を説明する。
Next, an operation of the
ここで、フラッシング(予備吐出)処理とは、図1では図示していないキャップの装着時や、記録用紙P(メディア)にインク滴(液滴)がかからない場所において、ヘッドユニット35のすべてのあるいは対象となるノズル110からインク滴を吐出するヘッドクリーニング動作である。このフラッシング処理(フラッシング動作)は、例えば、ノズル110内のインク粘度を適正範囲の値に保持するために、定期的にキャビティ141内のインクを排出する際に実施したり、あるいは、インク増粘時の回復動作としても実施したりされる。さらに、フラッシング処理は、インクカートリッジ31を印字手段3に装着した後に、インクを各キャビティ141に初期充填する場合にも実施される。
Here, the flushing (preliminary ejection) process is the entire or all of the
また、ノズルプレート(ノズル面)150をクリーニングするためにワイピング処理(印字手段3のヘッド面に付着している付着物(紙粉やごみなど)を、図1では図示していないワイパで拭き取る処置)を行う場合があるが、このときノズル110内が負圧になって、他の色のインク(他の種類の液滴)を引込んでしまう可能性がある。そのため、ワイピング処理後に、ヘッドユニット35のすべてのノズル110から一定量のインク滴を吐出させるためにもフラッシング処理が実施される。さらに、フラッシング処理は、ノズル110のメニスカスの状態を正常に保持して良好な印字を確保するためにも適時に実施され得る。
Further, a wiping process for cleaning the nozzle plate (nozzle surface) 150 (a measure of wiping off deposits (paper dust, dust, etc.) adhering to the head surface of the printing means 3 with a wiper not shown in FIG. 1) In this case, there is a possibility that the pressure inside the
まず、図31〜図33に示すフローチャートを参照して、フラッシング処理時における吐出異常検出・判定処理について説明する。なお、これらのフローチャートは、図27〜図30のブロック図を参照しながら説明する(以下、印字動作時においても同様)。図31は、図27に示すインクジェットプリンタ1のフラッシング動作時における吐出異常検出のタイミングを示すフローチャートである。
First, the ejection abnormality detection / determination process during the flushing process will be described with reference to the flowcharts shown in FIGS. These flowcharts will be described with reference to the block diagrams of FIGS. 27 to 30 (hereinafter, the same applies to the printing operation). FIG. 31 is a flowchart showing the timing of ejection abnormality detection during the flushing operation of the
所定のタイミングにおいて、インクジェットプリンタ1のフラッシング処理が実行されるとき、この図31に示す吐出異常検出・判定処理が実行される。制御部6は、吐出選択手段182のシフトレジスタ182aに1ノズル分の吐出データを入力し(ステップS401)、ラッチ回路182bにラッチ信号が入力されて(ステップS402)、この吐出データがラッチされる。そのとき、切替手段23は、その吐出データの対象であるインクジェットヘッド100の静電アクチュエータ120と駆動波形生成手段181とを接続する(ステップS403)。
When the flushing process of the
そして、吐出異常検出手段10によって、インク吐出動作を行ったインクジェットヘッド100に対して、図24のフローチャートに示す吐出異常検出・判定処理が実行される(ステップS404)。ステップS405において、制御部6は、吐出選択手段182に出力した吐出データに基づいて、図27に示すインクジェットプリンタ1のすべてのインクジェットヘッド100a〜100eのノズル110について吐出異常検出・判定処理が終了したか否かを判断する。そして、すべてのノズル110についてこれらの処理が終わっていないと判断されるときには、制御部6は、シフトレジスタ182aに次のインクジェットヘッド100のノズル110に対応する吐出データを入力し(ステップS406)、ステップS402に移行して同様の処理を繰り返す。
Then, the ejection
また、ステップS405において、すべてのノズル110について上述の吐出異常検出および判定処理が終わったと判断される場合には、制御部6は、ラッチ回路182bにCLEAR信号を入力し、ラッチ回路182bのラッチ状態を解除して、図27に示すインクジェットプリンタ1における吐出異常検出・判定処理を終了する。
上述のように、この図27に示すプリンタ1における吐出異常検出・判定処理では、1つの吐出異常検出手段10と1つの切替手段23とから検出回路が構成されているので、吐出異常検出処理および判定処理は、インクジェットヘッド100の数だけ繰り返されるが、吐出異常検出手段10を構成する回路はそれほど大きくならないという効果を有する。
In step S405, when it is determined that the above-described ejection abnormality detection and determination processing has been completed for all the
As described above, in the ejection abnormality detection / determination process in the
次いで、図32は、図28および図29に示すインクジェットプリンタ1のフラッシング動作時における吐出異常検出のタイミングを示すフローチャートである。図28に示すインクジェットプリンタ1と図29に示すインクジェットプリンタ1とは回路構成が若干異なるが、吐出異常検出手段10および切替手段23の数が、インクジェットヘッド100の数に対応する(同じである)点で一致している。そのため、フラッシング動作時における吐出異常検出・判定処理は、同様のステップから構成される。
Next, FIG. 32 is a flowchart showing the timing of ejection abnormality detection during the flushing operation of the
所定のタイミングにおいて、インクジェットプリンタ1のフラッシング処理が実行されるとき、制御部6は、吐出選択手段182のシフトレジスタ182aに全ノズル分の吐出データを入力し(ステップS501)、ラッチ回路182bにラッチ信号が入力されて(ステップS502)、この吐出データがラッチされる。そのとき、切替手段23a〜23eは、すべてのインクジェットヘッド100a〜100eと駆動波形生成手段181とをそれぞれ接続する(ステップS503)。
When the flushing process of the
そして、それぞれのインクジェットヘッド100a〜100eに対応する吐出異常検出手段10a〜10eによって、インク吐出動作を行ったすべてのインクジェットヘッド100に対して、図24のフローチャートに示す吐出異常検出・判定処理が並列的に実行される(ステップS504)。この場合、すべてのインクジェットヘッド100a〜100eに対応する判定結果が、処理対象となるインクジェットヘッド100と関連付けられて、記憶手段62の所定の格納領域に保存される(図24のステップS107)。
そして、吐出選択手段182のラッチ回路182bにラッチされている吐出データをクリアするために、制御部6は、CLEAR信号をラッチ回路182bに入力して(ステップS505)、ラッチ回路182bのラッチ状態を解除して、図28および図29に示すインクジェットプリンタ1における吐出異常検出処理および判定処理を終了する。
Then, the ejection abnormality detection / determination process shown in the flowchart of FIG. 24 is performed in parallel for all the inkjet heads 100 that have performed the ink ejection operation by the ejection
Then, in order to clear the ejection data latched in the
上述のように、この図28および図29に示すプリンタ1における処理では、インクジェットヘッド100a〜100eに対応する複数(この実施形態では5つ)の吐出異常検出手段10と複数の切替手段23とから検出および判定回路が構成されているので、吐出異常検出・判定処理は、一度にすべてのノズル110について短時間に実行され得るという効果を有する。
As described above, in the processing in the
次いで、図33は、図30に示すインクジェットプリンタ1のフラッシング動作時における吐出異常検出のタイミングを示すフローチャートである。以下同様に、図30に示すインクジェットプリンタ1の回路構成を用いて、フラッシング動作時における吐出異常検出処理および原因判定処理について説明する。
所定のタイミングにおいて、インクジェットプリンタ1のフラッシング処理が実行されるとき、まず、制御部6は、走査信号を切替選択手段(セレクタ)19aに出力し、この切替選択手段19aおよび切替制御手段19により、最初の切替手段23aおよびインクジェットヘッド100aを設定(特定)する(ステップS601)。そして、吐出選択手段182のシフトレジスタ182aに全ノズル分の吐出データを入力し(ステップS602)、ラッチ回路182bにラッチ信号が入力されて(ステップS603)、この吐出データがラッチされる。そのとき、切替手段23aは、インクジェットヘッド100aの静電アクチュエータ120と駆動波形生成手段181とを接続している(ステップS604)。
Next, FIG. 33 is a flowchart showing the timing of ejection abnormality detection during the flushing operation of the
When the flushing process of the
そして、インク吐出動作を行ったインクジェットヘッド100aに対して、図24のフローチャートに示す吐出異常検出・判定処理が実行される(ステップS605)。この場合、図24のステップS103において、切替選択手段19aの出力信号である駆動/検出切替信号と、ラッチ回路182bから出力された吐出データとがAND回路ANDaに入力され、AND回路ANDaの出力信号がHighレベルとなることにより、切替手段23aは、インクジェットヘッド100aの静電アクチュエータ120と吐出異常検出手段10とを接続する。そして、図24のステップS106において実行される吐出異常判定処理の判定結果が、処理対象となるインクジェットヘッド100(ここでは、100a)と関連付けられて、記憶手段62の所定の格納領域に保存される(図24のステップS107)。
Then, the ejection abnormality detection / determination process shown in the flowchart of FIG. 24 is executed on the
ステップS606において、制御部6は、吐出異常検出・判定処理がすべてのノズルに対して終了したか否かを判断する。そして、まだすべてのノズル110について吐出異常検出・判定処理が終了していないと判断された場合には、制御部6は、走査信号を切替選択手段(セレクタ)19aに出力し、この切替選択手段19aおよび切替制御手段19により、次の切替手段23bおよびインクジェットヘッド100bを設定(特定)し(ステップS607)、ステップS603に移行して、同様の処理を繰り返す。以下、すべてのインクジェットヘッド100について吐出異常検出・判定処理が終了するまでこのループを繰り返す。
In step S606, the
また、ステップS606において、すべてのノズル110について吐出異常検出処理および判定処理が終了したと判断される場合には、吐出選択手段182のラッチ回路182bにラッチされている吐出データをクリアするために、制御部6は、CLEAR信号をラッチ回路182bに入力して(ステップS609)、ラッチ回路182bのラッチ状態を解除して、図30に示すインクジェットプリンタ1における吐出異常検出処理および判定処理を終了する。
If it is determined in step S606 that the discharge abnormality detection process and the determination process have been completed for all the
上述のように、図30に示すインクジェットプリンタ1における処理では、複数の切替手段23と1つの吐出異常検出手段10から検出回路が構成され、切替選択手段(セレクタ)19aの走査信号により特定され、吐出データに応じて吐出駆動をするインクジェットヘッド100に対応する切替手段23のみが切替動作を行って、対応するインクジェットヘッド100の吐出異常検出および原因判定を行っているので、より効率的にインクジェットヘッド100の吐出異常検出および原因判定を行うことができる。
As described above, in the process in the
なお、このフローチャートのステップS602では、シフトレジスタ182bにすべてのノズル110に対応する吐出データを入力しているが、図31に示すフローチャートのように、切替選択手段19aによるインクジェットヘッド100の走査順に合わせて、シフトレジスタ182aに入力する吐出データを対応する1つのインクジェットヘッド100に入力し、1ノズル110ずつ吐出異常検出・判定処理を行ってもよい。
In step S602 of this flowchart, ejection data corresponding to all the
次に、図34および図35に示すフローチャートを参照して、印字動作時におけるインクジェットプリンタ1の吐出異常検出・判定処理について説明する。図27に示すインクジェットプリンタ1においては、主に、フラッシング動作時における吐出異常検出処理および判定処理に適しているので、印字動作時のフローチャートおよびその動作説明を省略するが、この図27に示すインクジェットプリンタ1においても印字動作時に吐出異常検出・判定処理が行われてもよい。
Next, the ejection abnormality detection / determination process of the
図34は、図28および図29に示すインクジェットプリンタ1の印字動作時における吐出異常検出のタイミングを示すフローチャートである。ホストコンピュータ8からの印刷(印字)指示により、このフローチャートの処理が実行(開始)される。制御部6を介してホストコンピュータ8から印字データが吐出選択手段182のシフトレジスタ182aに入力されると(ステップS701)、ラッチ回路182bにラッチ信号が入力されて(ステップS702)、その印字データがラッチされる。このとき、切替手段23a〜23eは、すべてのインクジェットヘッド100a〜100eと駆動波形生成手段181とを接続している(ステップS703)。
FIG. 34 is a flowchart showing the timing of ejection abnormality detection during the printing operation of the
そして、インク吐出動作を行ったインクジェットヘッド100に対応する吐出異常検出手段10は、図24のフローチャートに示す吐出異常検出・判定処理を実行する(ステップS704)。この場合、各インクジェットヘッド100に対応するそれぞれの判定結果が、処理対象となるインクジェットヘッド100と関連付けられて、記憶手段62の所定の格納領域に保存される。
Then, the ejection abnormality detection means 10 corresponding to the
ここで、図28に示すインクジェットプリンタ1の場合には、切替手段23a〜23eは、制御部6から出力される駆動/検出切替信号に基づいて、インクジェットヘッド100a〜100eを吐出異常検出手段10a〜10eに接続する(図24のステップS103)。そのため、印字データの存在しないインクジェットヘッド100では、静電アクチュエータ120が駆動していないので、吐出異常検出手段10の残留振動検出手段16は、振動板121の残留振動波形を検出しない。一方、図29に示すインクジェットプリンタ1の場合には、切替手段23a〜23eは、制御部6から出力される駆動/検出切替信号と、ラッチ回路182bから出力される印字データとが入力されるAND回路の出力信号に基づいて、印字データの存在するインクジェットヘッド100を吐出異常検出手段10に接続する(図24のステップS103)。
Here, in the case of the
ステップS705において、制御部6は、インクジェットプリンタ1の印字動作が終了したか否かを判断する。そして、印字動作が終わっていないと判断されるときには、制御部6は、ステップS701に移行して、次の印字データをシフトレジスタ182aに入力し、同様の処理を繰り返す。また、印字動作が終了したと判断されるときには、吐出選択手段182のラッチ回路182bにラッチされている吐出データをクリアするために、制御部6は、CLEAR信号をラッチ回路182bに入力して(ステップS707)、ラッチ回路182bのラッチ状態を解除して、図28および図29に示すインクジェットプリンタ1における吐出異常検出処理および判定処理を終了する。
In step S705, the
上述のように、図28および図29に示すインクジェットプリンタ1は、複数の切替手段23a〜23eと、複数の吐出異常検出手段10a〜10eとを備え、一度にすべてのインクジェットヘッド100に対して吐出異常検出・判定処理を行っているので、これらの処理を短時間に行うことができる。また、図29に示すインクジェットプリンタ1は、切替制御手段19、すなわち、駆動/検出切替信号と印字データとを論理積演算するAND回路ANDa〜ANDeをさらに備え、印字動作を行うインクジェットヘッド100のみに対して切替手段23による切替動作を行っているので、無駄な検出を行うことなく、吐出異常検出処理および判定処理を行うことができる。
As described above, the
次いで、図35は、図30に示すインクジェットプリンタ1の印字動作時における吐出異常検出のタイミングを示すフローチャートである。ホストコンピュータ8からの印刷指示により、図30に示すインクジェットプリンタ1においてこのフローチャートの処理が実行される。まず、切替選択手段19aは、最初の切替手段23aおよびインクジェットヘッド100aを予め設定(特定)しておく(ステップS801)。
Next, FIG. 35 is a flowchart showing the timing of ejection abnormality detection during the printing operation of the
制御部6を介してホストコンピュータ8から印字データが吐出選択手段182のシフトレジスタ182aに入力されると(ステップS802)、ラッチ回路182bにラッチ信号が入力されて(ステップS803)、その印字データがラッチされる。ここで、切替手段23a〜23eは、この段階では、すべてのインクジェットヘッド100a〜100eと駆動波形生成手段181(吐出選択手段182のドライバ182c)とを接続している(ステップS804)。
When print data is input from the
そして、制御部6は、インクジェットヘッド100aに印字データがある場合には、切替選択手段19aによって吐出動作後静電アクチュエータ120が吐出異常検出手段10に接続され(図24のステップS103)、図24(図25)のフローチャートに示す吐出異常検出・判定処理を実行する(ステップS805)。そして、図24のステップS106において実行される吐出異常判定処理の判定結果が、処理対象となるインクジェットヘッド100(ここでは、100a)と関連付けられて、記憶手段62の所定の格納領域に保存される(図24のステップS107)。
Then, when there is print data in the
ステップS806において、制御部6は、すべてのノズル110(すべてのインクジェットヘッド100)について上述の吐出異常検出・判定処理を終了したか否かを判断する。そして、すべてのノズル110について上記処理が終了したと判断される場合には、制御部6は、走査信号に基づいて、また最初のノズル110に対応する切替手段23aを設定し(ステップS808)、すべてのノズル110について上記処理が終了していないと判断される場合には、次のノズル110に対応する切替手段23bを設定する(ステップS807)。
In step S806, the
ステップS809において、制御部6は、ホストコンピュータ8から指示された所定の印字動作が終了したか否かを判断する。そして、まだ印字動作が終了していないと判断された場合には、次の印字データがシフトレジスタ182aに入力され(ステップS802)、同様の処理を繰り返す。印字動作が終了したと判断された場合には、吐出選択手段182のラッチ回路182bにラッチされている吐出データをクリアするために、制御部6は、CLEAR信号をラッチ回路182bに入力して(ステップS811)、ラッチ回路182bのラッチ状態を解除して、図30に示すインクジェットプリンタ1における吐出異常検出・判定処理を終了する。
In step S809, the
以上のように、本発明の液滴吐出装置(インクジェットプリンタ1)は、振動板121と、振動板121を変位させる静電アクチュエータ120と、内部に液体が充填され、振動板121の変位により、該内部の圧力が変化(増減)されるキャビティ141と、キャビティ141に連通し、キャビティ141内の圧力の変化(増減)により液体を液滴として吐出するノズル110とを有するインクジェットヘッド(液滴吐出ヘッド)100を複数個備え、さらに、これらの静電アクチュエータ120を駆動する駆動波形生成手段181と、複数のノズル110のうちいずれのノズル110から液滴を吐出するかを選択する吐出選択手段182と、振動板121の残留振動を検出し、この検出された振動板121の残留振動に基づいて、液滴の吐出の異常を検出する1つまたは複数の吐出異常検出手段10と、静電アクチュエータ120の駆動による液滴の吐出動作後、駆動/検出切替信号や印字データ、あるいは走査信号に基づいて、静電アクチュエータ120を駆動波形生成手段181から吐出異常検出手段10に切り替える1つまたは複数の切替手段23とを備え、一度(並列的)にあるいは順次に複数のノズル110の吐出異常を検出することとした。
As described above, the droplet discharge device (inkjet printer 1) of the present invention includes the
したがって、本発明の液滴吐出装置および液滴吐出ヘッドの吐出異常検出・判定方法によって、吐出異常検出およびその原因判定を短時間に行うことができるとともに、吐出異常検出手段10を含む検出回路の回路構成をスケールダウンすることができ、液滴吐出装置の製造コストの増加を防止することができる。また、静電アクチュエータ120の駆動後、吐出異常検出手段10に切り替えて吐出異常検出および原因判定を行っているので、アクチュエータの駆動に影響を与えることがなく、それによって、本発明の液滴吐出装置のスループットを低下または悪化させることがない。また、所定の構成要素を備えている既存の液滴吐出装置(インクジェットプリンタ)に、吐出異常検出手段10を装備することも可能である。
Therefore, according to the discharge abnormality detection / determination method of the droplet discharge device and the droplet discharge head of the present invention, discharge abnormality detection and cause determination can be performed in a short time, and the detection circuit including the discharge abnormality detection means 10 includes: The circuit configuration can be scaled down, and an increase in manufacturing cost of the droplet discharge device can be prevented. Further, after the
また、本発明の液滴吐出装置は、上記構成と異なり、複数の切替手段23と、切替制御手段19と、1つあるいはノズル110の数量と対応する複数の吐出異常検出手段10とを備え、駆動/検出切替信号および吐出データ(印字データ)、あるいは、走査信号、駆動/検出切替信号および吐出データ(印字データ)に基づいて、対応する静電アクチュエータ120を駆動波形生成手段181または吐出選択手段182から吐出異常検出手段10に切り替えて、吐出異常検出および原因判定を行うこととした。
Further, unlike the above configuration, the droplet discharge device of the present invention includes a plurality of switching means 23, a switching control means 19, and a plurality of discharge abnormality detection means 10 corresponding to one or the number of
したがって、本発明の液滴吐出装置によって、吐出データ(印字データ)が入力されていない、すなわち、吐出駆動動作をしていない静電アクチュエータ120に対応する切替手段は切替動作を行わないので、無駄な検出・判定処理を回避することができる。また、切替選択手段19aを利用する場合には、液滴吐出装置は、1つの吐出異常検出手段10のみを備えていればよいので、液滴吐出装置の回路構成をスケールダウンすることができるとともに、液滴吐出装置の製造コストの増加を防止することができる。
Therefore, the switching means corresponding to the
次に、本発明の液滴吐出装置におけるインクジェットヘッド100(ヘッドユニット35)に対し、吐出異常(ヘッド異常)の原因を解消させる回復処理を実行する構成(回復手段24)について説明する。図36は、図1に示すインクジェットプリンタ1の上部から見た概略的な構造(一部省略)を示す図である。この図36に示すインクジェットプリンタ1は、図1の斜視図で示した構成以外に、インク滴不吐出(ヘッド異常)の回復処理を実行するためのワイパ300とキャップ310とを備える。
Next, a configuration (recovery means 24) for executing a recovery process for eliminating the cause of the discharge abnormality (head abnormality) for the inkjet head 100 (head unit 35) in the droplet discharge apparatus of the present invention will be described. FIG. 36 is a diagram showing a schematic structure (partially omitted) viewed from the top of the
回復手段24が実行する回復処理としては、各インクジェットヘッド100のノズル110から液滴を予備的に吐出するフラッシング処理と、後述するワイパ300(図37参照)によるワイピング処理と、後述するチューブポンプ320によるポンピング処理(ポンプ吸引処理)が含まれる。すなわち、回復手段24は、チューブポンプ320およびそれを駆動するパルスモータと、ワイパ300およびワイパ300の上下動駆動機構と、キャップ310の上下動駆動機構(図示せず)とを備え、フラッシング処理においてはヘッドドライバ33およびヘッドユニット35などが、また、ワイピング処理においてはキャリッジモータ41などが回復手段24の一部として機能する。フラッシング処理については上述しているので、以降、ワイピング処理およびポンピング処理について説明する。
The recovery process executed by the
ここで、ワイピング処理とは、ヘッドユニット35のノズルプレート150(ノズル面)に付着した紙粉などの異物をワイパ300により拭き取る処理のことをいう。また、ポンピング処理(ポンプ吸引処理)とは、後述するチューブポンプ320を駆動して、ヘッドユニット35の各ノズル110から、キャビティ141内のインクを吸引して排出する処理をいう。このように、ワイピング処理は、上述のようなインクジェットヘッド100の液滴の吐出異常の原因の1つである紙粉付着の状態における回復処理として適切な処理である。また、ポンプ吸引処理は、前述のフラッシング処理では取り除けないキャビティ141内の気泡を除去し、あるいは、ノズル110付近のインクが乾燥によりまたはキャビティ141内のインクが経年劣化により増粘した場合に、増粘したインクを除去する回復処理として適切な処理である。なお、それほど増粘が進んでおらず粘度がそれほど大きくない場合には、上述のフラッシング処理による回復処理も行われ得る。この場合、排出するインク量が少ないので、スループットやランニングコストを低下させずに適切な回復処理を行うことができる。
Here, the wiping process refers to a process of wiping off foreign matters such as paper dust attached to the nozzle plate 150 (nozzle surface) of the
複数のヘッドユニット35は、キャリッジ32に搭載され、2本のキャリッジガイド軸422にガイドされてキャリッジモータ41により、図中その上端に備えられた連結部34を介してタイミングベルト421に連結して移動する。キャリッジ32に搭載されたヘッドユニット35は、キャリッジモータ41の駆動により移動するタイミングベルト421を介して(タイミングベルト421に連動して)主走査方向に移動可能である。なお、キャリッジモータ41は、タイミングベルト421を連続的に回転させるためのプーリの役割を果たし、他端側にも同様にプーリ44が備えられている。
また、キャップ310は、ヘッドユニット35のノズルプレート150(図5参照)のキャッピングを行うためのものである。キャップ310には、その底部側面に孔が形成され、後述するように、チューブポンプ320の構成要素である可撓性のチューブ321が接続されている。なお、チューブポンプ320については、図39において後述する。
The plurality of
The
記録(印字)動作時には、所定のインクジェットヘッド100(液滴吐出ヘッド)の静電アクチュエータ120を駆動しながら、記録用紙Pは副走査方向、すなわち、図36中下方に移動し、印字手段3は、主走査方向、すなわち、図36中左右に移動することにより、インクジェットプリンタ(液滴吐出装置)1は、ホストコンピュータ8から入力された印刷データ(印字データ)に基づいて所定の画像などを記録用紙Pに印刷(記録)する。
During the recording (printing) operation, while driving the
図37は、図36に示すワイパ300と印字手段3(ヘッドユニット35)との位置関係を示す図である。この図37において、ヘッドユニット35とワイパ300は、図36に示すインクジェットプリンタ1の図中下側から上側を見た場合の側面図の一部として示される。ワイパ300は、図37(a)に示すように、印字手段3のノズル面、すなわち、ヘッドユニット35のノズルプレート150と当接可能なように、上下移動可能に配置される。
FIG. 37 is a diagram showing a positional relationship between the
ここで、ワイパ300を利用する回復処理であるワイピング処理について説明する。ワイピング処理を行う際、図37(a)に示すように、ノズル面(ノズルプレート150)よりもワイパ300の先端が上側に位置するように図示しない駆動装置によってワイパ300は上方に移動される。この場合において、キャリッジモータ41を駆動して図中左方向(矢印の方向)に印字手段3(ヘッドユニット35)を移動させると、ワイピング部材301がノズルプレート150(ノズル面)に当接することになる。
Here, a wiping process that is a recovery process using the
なお、ワイピング部材301は可撓性のゴム部材等から構成されるので、図37(b)に示すように、ワイピング部材301のノズルプレート150と当接する先端部分は撓み、その先端部によってノズルプレート150(ノズル面)の表面をクリーニング(拭き掃除)する。これにより、ノズルプレート150(ノズル面)に付着した紙粉などの異物(例えば、紙粉、空気中に浮遊するごみ、ゴムの切れ端など)を除去することができる。また、このような異物の付着状態に応じて(異物が多く付着している場合には)、印字手段3にワイパ300の上方を往復移動させることによって、ワイピング処理を複数回実施することもできる。
Since the wiping
図38は、ポンプ吸引処理時における、ヘッドユニット35と、キャップ310およびポンプ320との関係を示す図である。チューブ321は、ポンピング処理(ポンプ吸引処理)におけるインク排出路を形成するものであり、その一端は、上述のように、キャップ310の底部に接続され、他端は、チューブポンプ320を介して排インクカートリッジ340に接続されている。
FIG. 38 is a diagram illustrating a relationship among the
キャップ310の内部底面には、インク吸収体330が配置されている。このインク吸収体330は、ポンプ吸引処理やフラッシング処理においてインクジェットヘッド100のノズル110から吐出されるインクを吸収して、一時貯蔵する。なお、インク吸収体330によって、キャップ310内へのフラッシング動作時に、吐出された液滴が跳ね返ってノズルプレート150を汚すことを防止することができる。
An
図39は、図38に示すチューブポンプ320の構成を示す概略図である。この図39(B)に示すように、チューブポンプ320は、回転式ポンプであり、回転体322と、その回転体322の円周部に配置された4つのローラ323と、ガイド部材350とを備えている。なお、ローラ323は、回転体322により支持されており、ガイド部材350のガイド351に沿って円弧状に載置された可撓性のチューブ321を加圧するものである。
FIG. 39 is a schematic diagram showing the configuration of the
このチューブポンプ320は、軸322aを中心にして回転体322を図39に示す矢印X方向に回転させることにより、チューブ321に当接している1つまたは2つのローラ323が、Y方向に回転しながら、ガイド部材350の円弧状のガイド351に載置されたチューブ321を順次加圧する。これにより、チューブ321が変形し、このチューブ321内に発生した負圧により、各インクジェットヘッド100のキャビティ141内のインク(液状材料)がキャップ310を介して吸引され、気泡が混入し、あるいは乾燥により増粘した不要なインクがノズル110を介して、インク吸収体330に排出され、このインク吸収体330に吸収された排インクがチューブポンプ320を介して排インクカートリッジ340(図38参照)に排出される。
In the
なお、このチューブポンプ320は、図示しないパルスモータなどのモータにより駆動される。パルスモータは、制御部6により制御される。チューブポンプ320の回転制御に対する駆動情報、例えば、回転速度、回転数が記述されたルックアップテーブル、シーケンス制御が記述された制御プログラムなどは、制御部6のPROM64などに格納されており、これらの駆動情報に基づいて、制御部6のCPU61によってチューブポンプ320の制御が行われている。
The
次に、回復手段24の動作(吐出異常回復処理)を説明する。図40は、本発明のインクジェットプリンタ1(液滴吐出装置)における吐出異常回復処理を示すフローチャートである。上述の吐出異常検出・判定処理(図24のフローチャート参照)において吐出異常のノズル110が検出され、その原因が判定されると、印刷動作(印字動作)などを行っていない所定のタイミングで、印字手段3が所定の待機領域(例えば、図36において印字手段3のノズルプレート150をキャップ310で覆う位置、あるいは、ワイパ300によるワイピング処理を実施可能な位置)まで移動されて、吐出異常回復処理が実行される。
Next, the operation of the recovery means 24 (ejection abnormality recovery process) will be described. FIG. 40 is a flowchart showing a discharge abnormality recovery process in the inkjet printer 1 (droplet discharge apparatus) of the present invention. When the
まず、制御部6は、図24のステップS107において制御部6のEEPROM62に保存された各ノズル110に対応する判定結果(ここで、この判定結果は、各ノズル110に限定した内容の判定結果ではなく、各インクジェットヘッド100に対するものである。そのため、以下において、吐出異常のノズル110とは、吐出異常が発生したインクジェットヘッド100をも意味する。)を読み出す(ステップS901)。ステップS902において、制御部6は、この読み出した判定結果に吐出異常のノズル110があるか否かを判定する。そして、吐出異常のノズル110がないと判定された場合、すなわち、すべてのノズル110から正常に液滴が吐出された場合には、そのまま、この吐出異常回復処理を終了する。
First, the
一方、いずれかのノズル110が吐出異常であったと判定された場合には、ステップS903において、制御部6は、その吐出異常と判定されたノズル110が紙粉付着であるか否かを判定する。そして、そのノズル110の出口付近に紙粉が付着していないと判定された場合には、ステップS905に移行し、紙粉が付着していると判定された場合には、上述のワイパ300によるノズルプレート150へのワイピング処理を実行する(ステップS904)。
On the other hand, if it is determined that any of the
ステップS905において、続いて、制御部6は、上記吐出異常と判定されたノズル110が気泡混入であるか否かを判定する。そして、気泡混入であると判定された場合には、制御部6は、すべてのノズル110に対してチューブポンプ320によるポンプ吸引処理を実行し(ステップS906)、この吐出異常回復処理を終了する。一方、気泡混入でないと判定された場合には、制御部6は、上記計測手段17によって計測された振動板121の残留振動の周期の長短に基づいて、チューブポンプ320によるポンプ吸引処理または吐出異常と判定されたノズル110のみもしくはすべてのノズル110に対するフラッシング処理を実行し(ステップS907)、この吐出異常回復処理を終了する。
Next, in step S905, the
図41は、ワイパ(ワイピング手段)の他の構成例(ワイパ300’)を説明するための図であり、(a)が印字手段3(ヘッドユニット35)のノズル面(ノズルプレート150)を示す図、(b)がワイパ300’を示す図である。図42は、図41に示すワイパ300’の作動状態を示す図である。
以下、これらの図に基づいて、ワイパの他の構成例であるワイパ300’について説明するが、前述したワイパ300との相違点を中心に説明し、同様の事項はその説明を省略する。
FIG. 41 is a view for explaining another configuration example (
Hereinafter, a
図41(a)に示すように、印字手段3のノズル面においては、複数のノズル110は、イエロー(Y)、マゼンタ(M)、シアン(C)、ブラック(K)の各色のインクに対応して、4組のノズル群に分かれている。本構成例のワイパ300’は、以下に述べるような構成により、これら4組のノズル群に対し、各色のノズル群ごとに別々にワイピング処理することができるようになっている。
As shown in FIG. 41A, on the nozzle surface of the
図41(b)に示すように、ワイパ300’は、イエローのノズル群用のワイピング部材301aと、マゼンタのノズル群用のワイピング部材301bと、シアンのノズル群用のワイピング部材301cと、ブラックのノズル群用のワイピング部材301dとを有している。図42に示すように、各ワイピング部材301a〜301dは、図示しない移動機構により、それぞれ独立して副走査方向に移動可能になっている。
前述したワイパ300は、全ノズル110のノズル面に対し一括してワイピング処理をするものであったが、本構成例のワイパ300’によれば、ワイピング処理が必要なノズル群のみをワイピングすることができるので、無駄のない回復処理を行うことができる。
As shown in FIG. 41B, the
The above-described
図43は、ポンピング手段の他の構成例を説明するための図である。以下、この図に基づいて、ポンピング手段の他の構成例について説明するが、前述したポンピング手段との相違点を中心に説明し、同様の事項はその説明を省略する。
図43に示すように、本構成例のポンピング手段は、イエローのノズル群用のキャップ310aと、マゼンタのノズル群用のキャップ310bと、シアンのノズル群用のキャップ310cと、ブラックのノズル群用のキャップ310dとを有している。
FIG. 43 is a diagram for explaining another configuration example of the pumping means. Hereinafter, another example of the configuration of the pumping means will be described with reference to this figure, but the description will focus on the differences from the pumping means described above, and the description of the same matters will be omitted.
As shown in FIG. 43, the pumping means of this configuration example includes a yellow
チューブポンプ320のチューブ321は、4本の分岐チューブ325a〜325dに分岐しており、この各分岐チューブ325a〜325dが各キャップ310a〜310dにそれぞれ接続されている。各分岐チューブ325a〜325dの途中には、それぞれ、バルブ326a〜326dが設けられている。
以上のような本構成例のポンピング手段は、各バルブ326a〜326dの開閉を選択することにより、印字手段3の4組のノズル群に対し、各色のノズル群ごとに別々にポンプ吸引処理することができるようになっている。これにより、ポンプ吸引処理が必要なノズル群のみを吸引することができるので、無駄のない回復処理を行うことができる。なお、図43では、チューブポンプ320が4色分同じチューブ321で吸引している例を示したが、チューブポンプ320にチューブが4色分別々にあっても良い。
The
The pumping means of this configuration example as described above performs pump suction processing separately for each nozzle group of each color for the four nozzle groups of the printing means 3 by selecting opening and closing of the
さて、以上説明したような本発明のインクジェットプリンタ1は、全ノズル110に対して吐出異常検出手段10による検出を行った場合、次に述べるような流れで作動する。以下、本発明のインクジェットプリンタ1において、吐出異常検出手段10による検出を行った場合の、それ以降の動作の流れについて、2つのパターンを順次説明するが、まず、1番目のパターンについて説明する。
Now, the
[1A] インクジェットプリンタ1は、フラッシング処理(フラッシング動作)時、または印刷動作時において、前述したようにして、全ノズル110に対し、吐出異常検出手段10による検出を行う。
この検出の結果、吐出異常が発生したノズル110(以下、「異常ノズル」と言う)があったときには、インクジェットプリンタ1は、その旨を報知するのが好ましい。この報知の手段(方法)としては、特に限定されず、例えば、操作パネル7に表示したり、音声、警報音、ランプの点灯によるもの、あるいはインターフェース9を経由してホストコンピュータ8などへ、またはネットワークを経由してプリントサーバーなどへそれぞれ吐出異常情報を伝達するものなど、いかなるものでもよい。
[1A] The
As a result of this detection, when there is a nozzle 110 (hereinafter referred to as “abnormal nozzle”) in which ejection abnormality has occurred, it is preferable that the
[2A] [1A]での検出の結果、吐出異常が発生したノズル110(異常ノズル)があったときには、(印刷動作中であった場合には印刷動作を中断して)回復手段24による回復処理を行う。この場合、回復手段24は、前述した図40のフローチャートのようにして、異常ノズルの吐出異常の原因に応じた種類の回復処理を行う。これにより、例えば、異常ノズルの吐出異常の原因が紙粉付着の場合、すなわち、ポンプ吸引処理を行う必要がないような場合にまでポンプ吸引処理が行われるようなことがないので、インクを無駄に排出することを防止することができ、インクの消費量を低減することができる。また、必要でない種類の回復処理を行わないので、回復処理に要する時間を短縮でき、インクジェットプリンタ1のスループット(単位時間当たりの印刷枚数)の向上が図れる。
[2A] When there is a nozzle 110 (abnormal nozzle) in which ejection abnormality has occurred as a result of detection in [1A] (if the printing operation is in progress, the printing operation is interrupted) and the recovery by the recovery means 24 Process. In this case, the recovery means 24 performs the type of recovery processing according to the cause of abnormal discharge of the abnormal nozzle as in the flowchart of FIG. 40 described above. As a result, for example, when the cause of abnormal discharge of the abnormal nozzle is paper dust adhesion, that is, the pump suction processing is not performed until the pump suction processing is not necessary, the ink is wasted. Can be prevented and ink consumption can be reduced. Further, since unnecessary types of recovery processing are not performed, the time required for the recovery processing can be shortened, and the throughput (number of printed sheets per unit time) of the
また、この回復処理は、全ノズル110に対して行ってもよいが、少なくとも異常ノズルに対して行えばよい。例えば、回復処理としてフラッシング処理を行う場合、異常ノズルのみにフラッシング動作を行わせてもよい。また、ワイピング手段やポンピング手段が、図41〜図43に示すような各色のノズル群ごとに別々に回復処理できるよう構成されたものである場合には、[1A]で検出された異常ノズルを含むノズル群のみに対してワイピング処理またはポンプ吸引処理をするようにしてもよい。
また、[1A]において、吐出異常の原因が異なる複数の異常ノズルが検出された場合には、その全ての吐出異常の原因を解消できるように、複数種類の回復処理を行うのが好ましい。
This recovery process may be performed for all
Further, in [1A], when a plurality of abnormal nozzles having different causes of ejection abnormality are detected, it is preferable to perform a plurality of types of recovery processing so as to eliminate all the causes of ejection abnormality.
[3A] [2A]の回復処理を終えたら、[1A]で検出された異常ノズルに対してのみ液滴吐出動作を行い、この異常ノズルのみに対し吐出異常検出手段10による検出を再度行う。これにより、[1A]で検出された異常ノズルが正常な状態に回復したかどうかを確認することができるので、その後の印刷動作において吐出異常が発生するのをより確実に防止することができる。 [3A] When the recovery process of [2A] is completed, the droplet discharge operation is performed only for the abnormal nozzle detected in [1A], and the detection by the discharge abnormality detection means 10 is performed again only for this abnormal nozzle. This makes it possible to confirm whether or not the abnormal nozzle detected in [1A] has returned to a normal state, and thus it is possible to more reliably prevent the occurrence of ejection abnormality in the subsequent printing operation.
また、ここでは、異常ノズルのみに液滴吐出動作を行わせて吐出異常検出手段10による検出を行うので、[1A]で正常だったノズル110からはインク滴を吐出しないで済む。よって、無駄にインクを吐出するのを回避することとなり、インクの消費量を低減することができる。さらに、吐出異常検出手段10や制御部6の負担も軽減することができる。
なお、[3A]での検出によっても吐出異常のノズル110があった場合には、回復手段24による回復処理を再度行うのが好ましい。
Here, only the abnormal nozzle is caused to perform the droplet discharge operation and the detection by the discharge abnormality detection means 10 is performed, so that it is not necessary to discharge ink droplets from the
In addition, when there is a discharge
以下、本発明のインクジェットプリンタ1において、吐出異常検出手段10による検出を行った場合の、それ以降の動作の流れの2番目のパターンについて説明する。すなわち、本発明では、前記[1A]〜[3A]に代えて、以下の[1B]〜[5B]のような流れで制御してもよい。
Hereinafter, in the
[1B] 前記[1A]と同様に、全ノズル110に対し、吐出異常検出手段10による検出を行う。
[2B] [1B]での検出の結果、吐出異常が発生したノズル110(以下、「異常ノズル」と言う)があったときには、(印刷動作中であった場合には印刷動作を中断して)その異常ノズルに対してのみフラッシング処理を実行する。異常ノズルの吐出異常の原因が軽微なものである場合などには、このフラッシング処理によって異常ノズルを正常な状態に回復させることができる。また、この際、正常だったノズル110からはインク滴を吐出しないので、インクを無駄に消費することもない。吐出異常検出手段10による検出を頻繁に行っているときなどには、吐出異常の原因が軽微であることが多いので、このように吐出異常の原因にかかわらず異常ノズルにまずフラッシング処理を行うことにより、回復処理を効率良く、迅速に行うことができる。
[1B] Similarly to [1A], detection by the ejection abnormality detection means 10 is performed for all the
[2B] When there is a nozzle 110 (hereinafter referred to as “abnormal nozzle”) in which a discharge abnormality has occurred as a result of the detection in [1B] (if the printing operation is being performed, the printing operation is interrupted). ) The flushing process is executed only for the abnormal nozzle. When the cause of abnormal discharge of the abnormal nozzle is minor, the abnormal nozzle can be restored to a normal state by this flushing process. Further, at this time, ink droplets are not ejected from the
[3B] [2B]のフラッシング処理を終えたら、[1B]で検出された異常ノズルに対してのみ液滴吐出動作を行い、この異常ノズルのみに対し吐出異常検出手段10による検出を再度行う。これにより、[1B]で検出された異常ノズルが正常な状態に回復したかどうかを確認することができるので、その後の印刷動作において吐出異常が発生するのをより確実に防止することができる。 [3B] When the flushing process of [2B] is finished, the droplet discharge operation is performed only for the abnormal nozzle detected in [1B], and the detection by the discharge abnormality detecting means 10 is performed again only for the abnormal nozzle. This makes it possible to confirm whether or not the abnormal nozzle detected in [1B] has returned to a normal state, and thus it is possible to more reliably prevent the occurrence of ejection abnormality in the subsequent printing operation.
また、ここでは、異常ノズルのみに液滴吐出動作を行わせて吐出異常検出手段10による検出を行うので、[1B]で正常だったノズル110からはインク滴を吐出しないで済む。よって、無駄にインクを吐出するのを回避することとなり、インクの消費量を低減することができる。さらに、吐出異常検出手段10や制御部6の負担も軽減することができる。
In addition, here, only the abnormal nozzle is caused to perform the droplet discharge operation and the detection by the discharge abnormality detection means 10 is performed, so that it is not necessary to discharge ink droplets from the
[4B] [3B]での検出の結果、吐出異常が解消していないノズル110(以下、「再異常ノズル」と言う)があったときには、回復手段24による回復処理を行う。この場合、回復手段24は、前述した図40のフローチャートのようにして、再異常ノズルの吐出異常の原因に応じた種類の回復処理を行う。これにより、例えば、再異常ノズルの吐出異常の原因が紙粉付着の場合、すなわち、ポンプ吸引処理を行う必要がないような場合にまでポンプ吸引処理が行われるようなことがないので、インクを無駄に排出することを防止することができ、インクの消費量を低減することができる。また、必要でない種類の回復処理を行わないので、回復処理に要する時間を短縮でき、インクジェットプリンタ1のスループット(単位時間当たりの印刷枚数)の向上が図れる。
[4B] As a result of the detection in [3B], when there is a
また、[2B]でフラッシング処理を行っているので、この[4B]ではそれ以外の回復処理を行うのが好ましい。すなわち、再異常ノズルの吐出異常の原因が、気泡混入または乾燥増粘の場合にはポンプ吸引処理を実行し、紙粉付着の場合にはワイパ300または300’によるワイピング処理を実行することとするのが好ましい。
なお、この[4B]では、上記の点の他は、前記[2A]と同様である。
Further, since the flushing process is performed in [2B], it is preferable to perform other recovery processes in [4B]. That is, if the cause of the abnormal discharge of the re-nozzle nozzle is air bubbles mixed or dry thickening, the pump suction process is executed, and if paper dust adheres, the wiper process by the
[4B] is the same as [2A] except for the points described above.
[5B] [4B]の回復処理を終えたら、[3B]で検出された再異常ノズルに対してのみ液滴吐出動作を行い、この再異常ノズルのみに対し吐出異常検出手段10による検出を再度行う。これにより、[3B]で検出された再異常ノズルが正常な状態に回復したかどうかを確認することができるので、その後の印刷動作において吐出異常が発生するのをさらに確実に防止することができる。 [5B] When the recovery process of [4B] is completed, the droplet discharge operation is performed only for the re-abnormal nozzle detected in [3B], and the detection by the discharge abnormality detection means 10 is performed again only for the re-abnormal nozzle. Do. As a result, it is possible to confirm whether or not the re-abnormal nozzle detected in [3B] has recovered to a normal state, so that it is possible to more reliably prevent the occurrence of ejection abnormality in the subsequent printing operation. .
また、ここでは、再異常ノズルのみに液滴吐出動作を行わせて吐出異常検出手段10による検出を行うので、[1B]や[3B]で正常だったノズル110からはインク滴を吐出しないで済む。よって、無駄にインクを吐出するのを回避することとなり、インクの消費量を低減することができる。さらに、吐出異常検出手段10や制御部6の負担も軽減することができる。
Further, here, only the re-abnormal nozzle is caused to perform the droplet discharge operation and the detection by the discharge abnormality detection means 10 is performed, so that ink droplets are not discharged from the
以上説明した[1A]〜[3A]および[1B]〜[5B]においては、吐出異常の原因に応じた回復処理を行った後、各ノズル110(全ノズル110)に対してフラッシング処理を実行するのが好ましい。これにより、ノズル面(ノズルプレート150)に残留した各色のインクが混合するのを防止することができ、インクの混色を防止することができる。 In [1A] to [3A] and [1B] to [5B] described above, after performing the recovery process according to the cause of the ejection abnormality, the flushing process is executed for each nozzle 110 (all nozzles 110). It is preferable to do this. Thereby, it is possible to prevent the inks of the respective colors remaining on the nozzle surface (nozzle plate 150) from being mixed, and it is possible to prevent color mixing of the inks.
以上説明したような、本実施形態の液滴吐出装置では、従来の吐出異常を検出可能な液滴吐出装置に比べ、他の部品(例えば、光学式のドット抜け検出装置など)を必要としないので、液滴吐出ヘッドのサイズを大きくすることなく液滴の吐出異常を検出することができるとともに、吐出異常(ドット抜け)検出を行うことができる液滴吐出装置の製造コストを低く抑えることができる。また、液滴吐出動作後の振動板の残留振動を用いて液滴の吐出異常を検出しているので、記録動作の途中でも液滴の吐出異常を検出することができる。 As described above, the droplet discharge device according to the present embodiment does not require other components (for example, an optical dot dropout detection device) as compared with a conventional droplet discharge device that can detect discharge abnormality. Therefore, it is possible to detect a droplet discharge abnormality without increasing the size of the droplet discharge head, and to reduce the manufacturing cost of a droplet discharge apparatus capable of detecting a discharge abnormality (dot missing). it can. Further, since the droplet ejection abnormality is detected by using the residual vibration of the diaphragm after the droplet ejection operation, the droplet ejection abnormality can be detected even during the recording operation.
<第2実施形態>
次に、本発明におけるインクジェットヘッドの他の構成例について説明する。図44〜図47は、それぞれ、インクジェットヘッド(ヘッドユニット)の他の構成例の概略を示す断面図である。以下、これらの図に基づいて説明するが、前述した実施形態と相違する点を中心に説明し、同様の事項についてはその説明を省略する。
Second Embodiment
Next, another configuration example of the ink jet head in the present invention will be described. 44 to 47 are cross-sectional views each showing an outline of another configuration example of the inkjet head (head unit). The following description will be made based on these drawings. However, the description will focus on the points different from the above-described embodiment, and the description of the same matters will be omitted.
図44に示すインクジェットヘッド100Aは、圧電素子200の駆動により振動板212が振動し、キャビティ208内のインク(液体)がノズル203から吐出するものである。ノズル(孔)203が形成されたステンレス鋼製のノズルプレート202には、ステンレス鋼製の金属プレート204が接着フィルム205を介して接合されており、さらにその上に同様のステンレス鋼製の金属プレート204が接着フィルム205を介して接合されている。そして、その上には、連通口形成プレート206およびキャビティプレート207が順次接合されている。
In the
ノズルプレート202、金属プレート204、接着フィルム205、連通口形成プレート206およびキャビティプレート207は、それぞれ所定の形状(凹部が形成されるような形状)に成形され、これらを重ねることにより、キャビティ208およびリザーバ209が形成される。キャビティ208とリザーバ209とは、インク供給口210を介して連通している。また、リザーバ209は、インク取り入れ口211に連通している。
The
キャビティプレート207の上面開口部には、振動板212が設置され、この振動板212には、下部電極213を介して圧電素子(ピエゾ素子)200が接合されている。また、圧電素子200の下部電極213と反対側には、上部電極214が接合されている。ヘッドドライブ215は、駆動電圧波形を生成する駆動回路を備え、上部電極214と下部電極213との間に駆動電圧波形を印加(供給)することにより、圧電素子200が振動し、それに接合された振動板212が振動する。この振動板212の振動によりキャビティ208の容積(キャビティ内の圧力)が変化し、キャビティ208内に充填されたインク(液体)がノズル203より液滴として吐出する。
液滴の吐出によりキャビティ208内で減少した液量は、リザーバ209からインクが供給されて補給される。また、リザーバ209へは、インク取り入れ口211からインクが供給される。
A
The amount of liquid that has decreased in the
図45に示すインクジェットヘッド100Bも前記と同様に、圧電素子200の駆動によりキャビティ221内のインク(液体)がノズルから吐出するものである。このインクジェットヘッド100Bは、一対の対向する基板220を有し、両基板220間に、複数の圧電素子200が所定間隔をおいて間欠的に設置されている。
隣接する圧電素子200同士の間には、キャビティ221が形成されている。キャビティ221の図45中前方にはプレート(図示せず)、後方にはノズルプレート222が設置され、ノズルプレート222の各キャビティ221に対応する位置には、ノズル(孔)223が形成されている。
In the
A
各圧電素子200の一方の面および他方の面には、それぞれ、一対の電極224が設置されている。すなわち、1つの圧電素子200に対し、4つの電極224が接合されている。これらの電極224のうち所定の電極間に所定の駆動電圧波形を印加することにより、圧電素子200がシェアモード変形して振動し(図45において矢印で示す)、この振動によりキャビティ221の容積(キャビティ内の圧力)が変化し、キャビティ221内に充填されたインク(液体)がノズル223より液滴として吐出する。すなわち、インクジェットヘッド100Bでは、圧電素子200自体が振動板として機能する。
A pair of
図46に示すインクジェットヘッド100Cも前記と同様に、圧電素子200の駆動によりキャビティ233内のインク(液体)がノズル231から吐出するものである。このインクジェットヘッド100Cは、ノズル231が形成されたノズルプレート230と、スペーサ232と、圧電素子200とを備えている。圧電素子200は、ノズルプレート230に対しスペーサ232を介して所定距離離間して設置されており、ノズルプレート230と圧電素子200とスペーサ232とで囲まれる空間にキャビティ233が形成されている。
Similarly to the above, the
圧電素子200の図46中上面には、複数の電極が接合されている。すなわち、圧電素子200のほぼ中央部には、第1電極234が接合され、その両側部には、それぞれ第2の電極235が接合されている。第1電極234と第2電極235との間に所定の駆動電圧波形を印加することにより、圧電素子200がシェアモード変形して振動し(図46において矢印で示す)、この振動によりキャビティ233の容積(キャビティ内の圧力)が変化し、キャビティ233内に充填されたインク(液体)がノズル231より液滴として吐出する。すなわち、インクジェットヘッド100Cでは、圧電素子200自体が振動板として機能する。
A plurality of electrodes are joined to the upper surface of the
図47に示すインクジェットヘッド100Dも前記と同様に、圧電素子200の駆動によりキャビティ245内のインク(液体)がノズル241から吐出するものである。このインクジェットヘッド100Dは、ノズル241が形成されたノズルプレート240と、キャビティプレート242と、振動板243と、複数の圧電素子200を積層してなる積層圧電素子201とを備えている。
キャビティプレート242は、所定の形状(凹部が形成されるような形状)に成形され、これにより、キャビティ245およびリザーバ246が形成される。キャビティ245とリザーバ246とは、インク供給口247を介して連通している。また、リザーバ246は、インク供給チューブ311を介してインクカートリッジ31と連通している。
In the
The
積層圧電素子201の図47中下端は、中間層244を介して振動板243と接合されている。積層圧電素子201には、複数の外部電極248および内部電極249が接合されている。すなわち、積層圧電素子201の外表面には、外部電極248が接合され、積層圧電素子201を構成する各圧電素子200同士の間(または各圧電素子の内部)には、内部電極249が設置されている。この場合、外部電極248と内部電極249の一部が、交互に、圧電素子200の厚さ方向に重なるように配置される。
The lower end in FIG. 47 of the laminated
そして、外部電極248と内部電極249との間にヘッドドライバ33より駆動電圧波形を印加することにより、積層圧電素子201が図47中の矢印で示すように変形して(図47上下方向に伸縮して)振動し、この振動により振動板243が振動する。この振動板243の振動によりキャビティ245の容積(キャビティ内の圧力)が変化し、キャビティ245内に充填されたインク(液体)がノズル241より液滴として吐出する。
液滴の吐出によりキャビティ245内で減少した液量は、リザーバ246からインクが供給されて補給される。また、リザーバ246へは、インクカートリッジ31からインク供給チューブ311を介してインクが供給される。
Then, by applying a driving voltage waveform from the
The amount of liquid that has decreased in the
以上のような圧電素子を備えるインクジェットヘッド100A〜100Dにおいても、前述した静電容量方式のインクジェットヘッド100と同様にして、振動板または振動板として機能する圧電素子の残留振動に基づき、液滴吐出の異常を検出しあるいはその異常の原因を特定することができる。なお、インクジェットヘッド100Bおよび100Cにおいては、キャビティに面した位置にセンサとしての振動板(残留振動検出用の振動板)を設け、この振動板の残留振動を検出するような構成とすることもできる。
In the inkjet heads 100A to 100D including the piezoelectric elements as described above, droplet ejection is performed based on the vibration plate or the residual vibration of the piezoelectric element functioning as the vibration plate, in the same manner as the electrostatic capacitance
<第3実施形態>
次に、本発明におけるインクジェットヘッドのさらに他の構成例について説明する。図48は、本実施形態におけるヘッドユニット35の構成を示す斜視図、図49は、図48に示すヘッドユニット35(インクジェットヘッド100H)の断面図である。以下、これらの図に基づいて説明するが、前述した実施形態と相違する点を中心に説明し、同様の事項についてはその説明を省略する。
<Third Embodiment>
Next, still another configuration example of the ink jet head in the present invention will be described. FIG. 48 is a perspective view showing the configuration of the
図48および図49に示すヘッドユニット35(インクジェットヘッド100H)は、いわゆる膜沸騰インクジェット方式(サーマルジェット方式)によるもので、支持板410と、基板420と、外壁430および隔壁431と、天板440とが、図48および図49中下側からこの順に接合された構成のものである。
基板420と天板440とは、外壁430および等間隔で平行に配置された複数(図示の例では6枚)の隔壁431を介して所定の間隔をおいて設置されている。そして、基板420と天板440との間には、隔壁431によって区画された複数(図示の例では5個)のキャビティ(圧力室:インク室)141が形成されている。各キャビティ141は、短冊状(直方体状)をなしている。
The head unit 35 (
The
また、図48および図49に示すように、各キャビティ141の図49中左側端部(図48中上端)は、ノズルプレート(前板)433により覆われている。このノズルプレート433には、各キャビティ141に連通するノズル(孔)110が形成されており、このノズル110からインク(液状材料)が吐出する。
図48では、ノズルプレート433に対しノズル110が直線的に、すなわち列状に配置されているが、ノズルの配置パターンはこれに限定されないことは言うまでもない。
As shown in FIGS. 48 and 49, the left end portion (upper end in FIG. 48) of each
In FIG. 48, the
なお、ノズルプレート433を設けず、各キャビティ141の図48中上端(図49中左端)が開放しており、この開放した開口がノズルとなるような構成のものでもよい。
また、天板440には、インク取り入れ口441が形成され、該インク取り入れ口441には、インク供給チューブ311を介して、インクカートリッジ31に接続されている。
The
Further, the
基板420の各キャビティ141に対応する箇所には、それぞれ、発熱体450が設置(埋設)されている。各発熱体450は、駆動回路18を含むヘッドドライバ(通電手段)33により、それぞれ別個に通電され、発熱する。ヘッドドライバ33は、制御部6から入力される印刷信号(印刷データ)に応じ、発熱体450の駆動信号として例えばパルス状の信号を出力する。
また、発熱体450のキャビティ141側の面は、保護膜(耐キャビテーション膜)451で覆われている。この保護膜451は、発熱体450がキャビティ141内のインクと直接接触するのを防止するために設けられたものである。この保護膜451を設けることにより、発熱体450がインクと接触することによる変質、劣化等を防止することができる。
基板420の各発熱体450の近傍であって、各キャビティ141に対応する箇所には、それぞれ、凹部460が形成されている。この凹部460は、例えばエッチング、打ち抜き等の方法により形成することができる。
The surface of the
凹部460のキャビティ141側を遮蔽するように振動板(ダイヤフラム)461が設置されている。この振動板461は、キャビティ141内の圧力(液圧)の変化に追従して図49中の上下方向に弾性的に変形(弾性的に変位)する。
この振動板461は、電極としても機能する。振動板461は、その全体が導電性のものであっても、導電層と絶縁層とが積層されたものでもよい。
A diaphragm (diaphragm) 461 is installed so as to shield the
The
一方、凹部460の他方の側は、支持板410により覆われており、該支持板410の図49中上面の各振動板461に対応する箇所には、それぞれ、電極(セグメント電極)462が設置されている。
振動板461と電極462とは、所定の間隙距離をおいてほぼ平行に対向するように配置されている。
On the other hand, the other side of the
The
このように、わずかな間隔距離を隔てて振動板461と電極462とを配置することにより、平行平板コンデンサを形成することができる。そして、振動板461がキャビティ141内の圧力に追従して図49中の上下方向に弾性的に変位(変形)すると、それに応じて振動板461と電極462と間隙距離が変化し、前記平行平板コンデンサの静電容量が変化する。インクジェットヘッド100Hでは、振動板461および電極462は、振動板461の振動(残留振動(減衰振動))に伴う前記静電容量の経時的変動に基づき当該インクジェットヘッド100Hの異常を検出するセンサとして機能する。
In this way, a parallel plate capacitor can be formed by disposing the
基板420のキャビティ141外には、共通電極470が形成されている。また、支持板410のキャビティ141外には、セグメント電極471が形成されている。電極462、共通電極470およびセグメント電極471は、それぞれ、例えば金属箔の接合、メッキ、蒸着、スパッタリング等の方法により形成することができる。
各振動板461と共通電極470とは、導体475により電気的に接続され、各電極462と各セグメント電極471とは、導体476により電気的に接続されている。
導体475、476としては、それぞれ、[1]金属線等の導線を配設したもの、[2]基板420または支持板410の表面に例えば金、銅等の導電性材料よりなる薄膜を形成したもの、あるいは、[3]基板420等の導体形成部位にイオンドーピング等を施して導電性を付与したもの等が挙げられる。
A
Each
As the
次に、インクジェットヘッド100Hの作用(作動原理)について説明する。
ヘッドドライバ33から駆動信号(パルス信号)が出力されて発熱体450に通電されると、発熱体450は、瞬時に300℃以上の温度に発熱する。これにより、保護膜451上に膜沸騰による気泡(前述した吐出異常の原因となるキャビティ内に混入、発生する気泡とは異なる)480が発生し、該気泡480は瞬時に膨張する。これにより、キャビティ141内に満たされたインク(液状材料)の液圧が増大し、インクの一部がノズル110から液滴として吐出される。
インク滴の吐出によりキャビティ141内で減少した液量は、インク取り入れ口441から新たなインクがキャビティ141内に供給されて補給される。このインクは、インクカートリッジ31からインク供給チューブ311内を通って供給される。
Next, the operation (operation principle) of the
When a driving signal (pulse signal) is output from the
The amount of liquid reduced in the
インクの液滴が吐出された直後、気泡480は急激に収縮し、元の状態に戻る。このときのキャビティ141内の圧力変化により振動板461が弾性的に変位(変形)して、次の駆動信号が入力され再びインク滴が吐出されるまでの間、減衰振動(残留振動)を生じる。振動板461が減衰振動を生じると、それに応じて、振動板461と、これと対向する電極462とで構成されるコンデンサの静電容量が変化する。本実施形態のインクジェットヘッド100Hでは、この静電容量の経時的変動を利用して、前述した第1実施形態のインクジェットヘッド100と同様に、吐出異常を検出することができる。
Immediately after the ink droplet is ejected, the
以上、本発明の液滴吐出装置およびインクジェットプリンタを図示の各実施形態に基づいて説明したが、本発明は、これに限定されるものではなく、液滴吐出ヘッドあるいは液滴吐出装置を構成する各部は、同様の機能を発揮し得る任意の構成のものと置換することができる。また、本発明の液滴吐出ヘッドあるいは液滴吐出装置に、他の任意の構成物が付加されていてもよい。 The liquid droplet ejection apparatus and the ink jet printer according to the present invention have been described based on the illustrated embodiments. However, the present invention is not limited to this, and constitutes a liquid droplet ejection head or a liquid droplet ejection apparatus. Each part can be replaced with any component that can exhibit the same function. In addition, any other component may be added to the droplet discharge head or the droplet discharge apparatus of the present invention.
なお、本発明の液滴吐出装置の液滴吐出ヘッド(上述の実施形態では、インクジェットヘッド100)から吐出する吐出対象液(液滴)としては、特に限定されず、例えば以下のような各種の材料を含む液体(サスペンション、エマルション等の分散液を含む)とすることができる。すなわち、カラーフィルタのフィルタ材料(インク)、有機EL(Electro Luminescence)装置におけるEL発光層を形成するための発光材料、電子放出装置における電極上に蛍光体を形成するための蛍光材料、PDP(Plasma Display Panel)装置における蛍光体を形成するための蛍光材料、電気泳動表示装置における泳動体を形成する泳動体材料、基板Wの表面にバンクを形成するためのバンク材料、各種コーティング材料、電極を形成するための液状電極材料、2枚の基板間に微小なセルギャップを構成するためのスペーサを構成する粒子材料、金属配線を形成するための液状金属材料、マイクロレンズを形成するためのレンズ材料、レジスト材料、光拡散体を形成するための光拡散材料、DNAチップやプロテインチップなどのバイオセンサに利用する各種試験液体材料などである。
また、本発明では、液滴を吐出する対象となる液滴受容物は、記録用紙のような紙に限らず、フィルム、織布、不織布等の他のメディアや、ガラス基板、シリコン基板等の各種基板のようなワークであってもよい。
The discharge target liquid (droplet) discharged from the droplet discharge head (in the above-described embodiment, the inkjet head 100) of the droplet discharge apparatus of the present invention is not particularly limited. It can be a liquid containing a material (including a dispersion such as a suspension or an emulsion). That is, a filter material (ink) for a color filter, a light emitting material for forming an EL light emitting layer in an organic EL (Electro Luminescence) device, a fluorescent material for forming a phosphor on an electrode in an electron emitting device, PDP (Plasma Fluorescent material for forming phosphors in display panel devices, migrating material for forming electrophores in electrophoretic display devices, bank materials for forming banks on the surface of the substrate W, various coating materials, and electrodes Liquid electrode material to form, a particle material to form a spacer for forming a minute cell gap between two substrates, a liquid metal material to form a metal wiring, a lens material to form a microlens, Used for resist materials, light diffusion materials for forming light diffusers, biosensors such as DNA chips and protein chips Various test liquid materials.
Further, in the present invention, the droplet receiver to which droplets are to be ejected is not limited to paper such as recording paper, but to other media such as films, woven fabrics, nonwoven fabrics, glass substrates, silicon substrates, etc. It may be a workpiece such as various substrates.
また、本発明の液滴吐出装置では、吐出異常とその原因を検出する手段および方法は、上述のような振動板の残留振動の振動パターンを検出して解析する方法に限定されず、どのような検出方法を用いたとしても、吐出異常の原因が特定されていれば、適切な回復処理を選択することができる。吐出異常(ドット抜け)の検出方法としては、例えば、レーザ等の光学センサを直接ノズル内のインクメニスカスに照射反射させ受光素子によってメニスカスの振動状態を検知し、振動状態から目詰まりの原因を特定する方法や、一般的な光学式のドット抜け検出装置(飛翔液滴がセンサの検知範囲に入ったか否かを検出する)と、吐出動作後の時間経過の計測結果から、液滴の有無を検出すると共にドット抜けが生じた場合のインクジェットヘッドの時間経過データを基に乾燥時間内で発生した現象については乾燥と推定し、乾燥時間外に発生した現象については紙粉、あるいは気泡と推定する方法や、上記の構成に振動センサを追加し、ドット抜けが発生した前に気泡が混入しうる振動が加わったかどうかを判定し、加わっていた場合は気泡混入と推定する方法(この場合、ドット抜けの検出手段は光学式に限定される必要はなく、例えば、インク吐出を受けて熱感知部の温度変化を検知する熱感知式や、インク滴を帯電させて吐出し着弾した検出電極の電荷量の変化を検出する方法や、インク滴が電極間を通過する事によって変化する静電容量式の検出を用いてもよい)や、紙粉付着の検出方法として、ヘッド面の状態をカメラ等により画像情報として検出、あるいはレーザ等の光学センサをヘッド面付近で走査し紙粉付着の有無を検出する方法などが考えられる。 Further, in the droplet discharge device of the present invention, the means and method for detecting the discharge abnormality and the cause thereof are not limited to the method for detecting and analyzing the vibration pattern of the residual vibration of the diaphragm as described above. Even if such a detection method is used, if the cause of the ejection abnormality is specified, an appropriate recovery process can be selected. As a method of detecting abnormal discharge (missing dots), for example, an optical sensor such as a laser is directly irradiated and reflected on the ink meniscus in the nozzle, the vibration state of the meniscus is detected by the light receiving element, and the cause of clogging is identified from the vibration state The presence or absence of liquid droplets can be determined based on the measurement results of the elapsed time after the discharge operation and the general optical dot dropout detection device (detecting whether or not the flying liquid droplets have entered the detection range of the sensor) Based on the time-lapse data of the inkjet head when a dot dropout is detected, the phenomenon that occurred within the drying time is estimated as dry, and the phenomenon that occurred outside the drying time is estimated as paper dust or bubbles. If a vibration sensor is added to the method or the above configuration, and it is determined whether vibration that may contain bubbles is added before dot dropout occurs, Method for estimating the presence of bubbles (in this case, the means for detecting missing dots need not be limited to an optical type. For example, a thermal sensing type that detects temperature changes in the thermal sensing unit by receiving ink ejection, or an ink drop is used. A method of detecting a change in the amount of charge of a detection electrode that has been charged, discharged, and landed, or a capacitance-type detection that changes as an ink droplet passes between the electrodes) may be used. As a detection method, a method of detecting the state of the head surface as image information by a camera or the like, or a method of detecting the presence or absence of paper dust by scanning an optical sensor such as a laser in the vicinity of the head surface can be considered.
また、回復手段24が実行する回復処理の一つであるポンプ吸引回復処理は、乾燥などにより増粘が進んだ場合と気泡混入の場合に対して有効な処理であり、いずれの原因においても同様の回復処理が取られ得るため、ヘッドユニット内にポンプ吸引処理が必要な気泡混入と乾燥増粘のインクジェットヘッド100を検出した場合には、図40のフローチャートのステップS905〜S907のように個別に処理を決定せず、気泡混入のインクジェットヘッド100と乾燥増粘のインクジェットヘッド100に対して一度にポンプ吸引処理を実行してもよい。すなわち、ノズル110付近に紙粉が付着しているか否かを判断した後は、気泡混入か乾燥増粘かの判断をせず、ポンプ吸引処理を実行してもよい。
Further, the pump suction recovery process, which is one of the recovery processes executed by the recovery means 24, is an effective process for the case where the viscosity increases due to drying or the like and the case where air bubbles are mixed in. Therefore, when air bubbles mixed in the head unit that require pump suction processing and the
1……インクジェットプリンタ 2……装置本体 21……トレイ 22……排紙口 3……印字手段 31……インクカートリッジ 311……インク供給チューブ 32……キャリッジ 33……ヘッドドライバ 34……連結部 35……ヘッドユニット 4……印刷装置 41……キャリッジモータ 42……往復動機構 421……タイミングベルト 422……キャリッジガイド軸 43……キャリッジモータドライバ 44……プーリ 5……給紙装置 51……給紙モータ 52……給紙ローラ 52a……従動ローラ 52b……駆動ローラ 53……給紙モータドライバ 6……制御部 61……CPU 62……EEPROM(記憶手段) 63……RAM 64……PROM 7……操作パネル 8……ホストコンピュータ 9……IF 10、10a〜10e……吐出異常検出手段 11……発振回路 111……シュミットトリガインバータ 112……抵抗素子 12……F/V変換回路 13……定電流源 14……バッファ 15……波形整形回路 151……増幅器(オペアンプ) 152……比較器(コンパレータ) 16……残留振動検出手段 17……計測手段 18……駆動回路 181……駆動波形生成手段 182……吐出選択手段 182a……シフトレジスタ 182b……ラッチ回路 182c……ドライバ 19……切替制御手段 19a……切替選択手段(セレクタ) 20……判定手段 23、23a〜23e……切替手段 24……回復手段 100……ヘッドユニット 100、100a〜100e……インクジェットヘッド 110‥‥ノズル 120……静電アクチュエータ 121……振動板(底壁) 122……セグメント電極 123……絶縁層 124……共通電極 124a……入力端子130……ダンパ室 131……インク取入れ口 132……ダンパ 140……シリコン基板 141……キャビティ 142……インク供給口 143……リザーバ 150……ノズルプレート 160……ガラス基板 161……凹部 162……対向壁 170……基体 200……圧電素子 201……積層圧電素子 202、222、230、240……ノズルプレート 203、223、231、241……ノズル 204……金属プレート 205……接着フィルム 206……連通口形成プレート 207、242……キャビティプレート 208、221、233、245……キャビティ 209、246……リザーバ 210、247……インク供給口 211……インク取り入れ口 212、243……振動板 213……下部電極 214……上部電極 215……ヘッドドライブ 220……基板 224……電極 232……スペーサ 234……第1電極 235……第2電極 244……中間層 248……外部電極 249……内部電極 300、300’……ワイパ 301、301a〜301d……ワイピング部材 310、310a〜310d……キャップ 320……チューブポンプ(回転式ポンプ) 321……(可撓性)チューブ 322……回転体 322a……軸 323……ローラ 325a〜325d……分岐チューブ 326a〜326d……バルブ 330……インク吸収体 340……排インクカートリッジ 350……ガイド部材 351……ガイド 410……支持板 420……基板 430……外壁 431……隔壁 433……ノズルプレート(前板) 440……天板 441……インク取り入れ口 450……発熱体 451……保護膜(キャビテーション膜) 460……凹部 461……振動板 462……対向電極 470……共通電極 471……セグメント電極 475……導体 746……導体 480……気泡 P……記録用紙 S101〜S111、S201〜S211、S401〜S408、S501〜S506、S601〜S609、S701〜S707、S801〜S811、S901〜S907……ステップ
DESCRIPTION OF
Claims (3)
振動板と、前記振動板を変位させるアクチュエータと、内部に液体が充填され、前記振動板の変位により、該内部の圧力が増減されるキャビティと、前記キャビティに連通し、前記キャビティ内の圧力の増減により前記液体を前記液滴として吐出するノズルとを有する複数の液滴吐出ヘッドと、
前記振動板の残留振動を用いて液滴の吐出異常を検出し、前記残留振動から生成した矩形波の波形から求めた前記残留振動の周期の長さに基づき前記吐出異常の原因を特定する異常検出手段と、
前記吐出異常の原因を解消させる複数種の回復処理を行うことが可能であり、前記異常検出手段により特定された前記吐出異常の原因に基づき、前記複数種の回復処理から所定の前記回復処理を選択し、前記所定の回復処理を行う回復手段と、を有し、
印字データに基づき、前記用紙上に記録を行う動作の途中に、前記異常検出手段により、前記吐出異常を検出し、前記異常検出手段により、前記吐出異常の原因を特定し、
前記異常検出手段により特定された前記吐出異常の原因に基づき、前記回復手段により、前記複数種の回復処理から前記吐出異常の原因を解消させる所定の前記回復処理を選択し、前記所定の回復処理を行うことを特徴する印刷装置。 A printing apparatus for recording on paper by discharging droplets,
A diaphragm, an actuator for displacing the diaphragm, a cavity filled with liquid, and the pressure inside the cavity is increased or decreased by the displacement of the diaphragm, communicated with the cavity, and the pressure in the cavity A plurality of liquid droplet ejection heads having nozzles for ejecting the liquid as the liquid droplets by increase and decrease; and
An abnormality that detects a discharge abnormality of a droplet using the residual vibration of the diaphragm and identifies the cause of the discharge abnormality based on a length of a period of the residual vibration obtained from a rectangular wave waveform generated from the residual vibration Detection means;
It is possible to perform a plurality of types of recovery processing for eliminating the cause of the discharge abnormality, and based on the cause of the discharge abnormality specified by the abnormality detection means, the predetermined recovery processing is performed from the plurality of types of recovery processing. Recovery means for selecting and performing the predetermined recovery process,
Based on the print data, during the operation of recording on the paper, the abnormality detection unit detects the discharge abnormality, and the abnormality detection unit identifies the cause of the discharge abnormality.
Based on the cause of the ejection abnormality identified by the abnormality detection means, the recovery means selects a predetermined recovery process for eliminating the cause of the ejection abnormality from the plurality of types of recovery processes, and the predetermined recovery process A printing apparatus characterized by performing.
前記発振回路の発振周波数をF/V変換するF/V変換回路と、
前記F/V変換回路によって生成された前記液滴吐出ヘッドの残留振動の電圧波形を所定の波形に整形する波形整形回路と、を有する請求項1に記載の印刷装置。 The abnormality detecting means includes an oscillation circuit that oscillates in response to a signal from the droplet discharge head;
An F / V conversion circuit for F / V converting the oscillation frequency of the oscillation circuit;
The printing apparatus according to claim 1, further comprising: a waveform shaping circuit that shapes a voltage waveform of residual vibration of the droplet discharge head generated by the F / V conversion circuit into a predetermined waveform.
前記振動板の残留振動を用いて液滴の吐出異常を検出し、前記残留振動から生成した矩形波の波形から求めた前記残留振動の周期の長さに基づき前記吐出異常の原因を特定する異常検出手段と、
前記吐出異常の原因を解消させる複数種の回復処理を行うことが可能であり、前記異常検出手段により特定された前記吐出異常の原因に基づき、前記複数種の回復処理から所定の前記回復処理を選択し、前記所定の回復処理を行う回復手段と、を有し、前記液滴の吐出により用紙上に記録を行う印刷装置の印刷方法であって、
印字データに基づき、前記用紙上に記録を行う動作の途中に、前記異常検出手段により、前記吐出異常を検出し、前記異常検出手段により、前記吐出異常の原因を特定し、
前記異常検出手段により特定された前記吐出異常の原因に基づき、前記回復手段により、前記複数種の回復処理から前記吐出異常の原因を解消させる所定の前記回復処理を選択し、前記所定の回復処理を行うことを特徴する印刷方法。 A diaphragm, an actuator for displacing the diaphragm, a cavity filled with liquid, and the pressure inside the cavity is increased or decreased by the displacement of the diaphragm, communicated with the cavity, and the pressure in the cavity A plurality of droplet discharge heads having nozzles for discharging the liquid as droplets by increase and decrease; and
An abnormality that detects a discharge abnormality of a droplet using the residual vibration of the diaphragm and identifies the cause of the discharge abnormality based on a length of a period of the residual vibration obtained from a rectangular wave waveform generated from the residual vibration Detection means;
It is possible to perform a plurality of types of recovery processing for eliminating the cause of the discharge abnormality, and based on the cause of the discharge abnormality specified by the abnormality detection means, the predetermined recovery processing is performed from the plurality of types of recovery processing. And a recovery unit that performs the predetermined recovery process, and a printing method for a printing apparatus that records on a sheet by discharging the droplets,
Based on the print data, during the operation of recording on the paper, the abnormality detection unit detects the discharge abnormality, and the abnormality detection unit identifies the cause of the discharge abnormality.
Based on the cause of the ejection abnormality identified by the abnormality detection means, the recovery means selects a predetermined recovery process for eliminating the cause of the ejection abnormality from the plurality of types of recovery processes, and the predetermined recovery process A printing method characterized by performing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013067682A JP6040077B2 (en) | 2013-03-27 | 2013-03-27 | Printing apparatus and printing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013067682A JP6040077B2 (en) | 2013-03-27 | 2013-03-27 | Printing apparatus and printing method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012246548A Division JP5273285B2 (en) | 2012-11-08 | 2012-11-08 | Liquid ejection device |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015117722A Division JP6065056B2 (en) | 2015-06-10 | 2015-06-10 | Droplet discharge device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013126776A JP2013126776A (en) | 2013-06-27 |
JP6040077B2 true JP6040077B2 (en) | 2016-12-07 |
Family
ID=48777582
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013067682A Expired - Lifetime JP6040077B2 (en) | 2013-03-27 | 2013-03-27 | Printing apparatus and printing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6040077B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6326922B2 (en) | 2014-04-08 | 2018-05-23 | セイコーエプソン株式会社 | Printing apparatus, printing system, and printing method |
JP6326923B2 (en) | 2014-04-08 | 2018-05-23 | セイコーエプソン株式会社 | Liquid discharge control device and liquid discharge control method |
US10360483B2 (en) * | 2017-03-23 | 2019-07-23 | Xerox Corporation | Ink jet pre-fire waveform control |
JP2019123203A (en) | 2018-01-19 | 2019-07-25 | セイコーエプソン株式会社 | Liquid discharge device and mobile unit |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5818275A (en) * | 1981-07-28 | 1983-02-02 | Sharp Corp | Ink jet recorder |
DE3319353A1 (en) * | 1983-05-27 | 1984-11-29 | Siemens AG, 1000 Berlin und 8000 München | Method and circuit arrangement for adjusting the ejection speed of droplets in ink jet printers |
JP2812593B2 (en) * | 1991-11-11 | 1998-10-22 | アルプス電気株式会社 | Bubble detector for inkjet recording head |
NL1010798C2 (en) * | 1998-12-14 | 2000-06-19 | Oce Tech Bv | Printing device. |
US6460964B2 (en) * | 2000-11-29 | 2002-10-08 | Hewlett-Packard Company | Thermal monitoring system for determining nozzle health |
-
2013
- 2013-03-27 JP JP2013067682A patent/JP6040077B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2013126776A (en) | 2013-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6051978B2 (en) | Printing apparatus and nozzle inspection method | |
JP4269731B2 (en) | Droplet ejection device and inkjet printer | |
JP6421573B2 (en) | Droplet discharge device | |
JP3867787B2 (en) | Droplet discharge device and inkjet printer | |
JP6318625B2 (en) | Droplet discharge device | |
JP3867791B2 (en) | Droplet ejection device and inkjet printer | |
JP3867792B2 (en) | Droplet ejection device and inkjet printer | |
JP3794431B2 (en) | Droplet ejection device and ejection abnormality detection / judgment method of droplet ejection head | |
JP5273285B2 (en) | Liquid ejection device | |
JP3867788B2 (en) | Droplet discharge device and inkjet printer | |
JP2017136787A (en) | Droplet discharge device and calculation method for liquid used amount in the same | |
JP6040077B2 (en) | Printing apparatus and printing method | |
JP3900373B2 (en) | Droplet discharge device and inkjet printer | |
JP2009101699A (en) | Liquid droplet ejector and inkjet printer | |
JP3933186B2 (en) | Droplet ejection apparatus, inkjet printer, and ejection abnormality detection / judgment method for droplet ejection head | |
JP6065056B2 (en) | Droplet discharge device | |
JP2017052191A (en) | Droplet discharge device | |
JP5257476B2 (en) | Detection method and droplet discharge device | |
JP4314849B2 (en) | Droplet ejection device, ink jet printer, and bubble amount detection method | |
JP3900372B2 (en) | Droplet discharge device and inkjet printer | |
JP4389464B2 (en) | Droplet discharge device | |
JP3901210B2 (en) | Droplet ejection device, inkjet printer, and ejection abnormality recovery method | |
JP6040076B2 (en) | Droplet discharge method and droplet discharge apparatus | |
JP2019014264A (en) | Liquid droplet discharge device | |
JP5853980B2 (en) | Droplet discharge method and droplet discharge apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130426 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130426 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140521 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140527 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140728 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20150310 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150610 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20150617 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20150731 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160610 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20161107 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6040077 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
EXPY | Cancellation because of completion of term |