JP6037560B2 - Water drop detection device and water drop removal device - Google Patents

Water drop detection device and water drop removal device Download PDF

Info

Publication number
JP6037560B2
JP6037560B2 JP2013011369A JP2013011369A JP6037560B2 JP 6037560 B2 JP6037560 B2 JP 6037560B2 JP 2013011369 A JP2013011369 A JP 2013011369A JP 2013011369 A JP2013011369 A JP 2013011369A JP 6037560 B2 JP6037560 B2 JP 6037560B2
Authority
JP
Japan
Prior art keywords
light receiving
receiving member
glass
water droplet
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013011369A
Other languages
Japanese (ja)
Other versions
JP2014142283A (en
Inventor
雅隆 南
雅隆 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Parts Ind Co Ltd
Original Assignee
Tokyo Parts Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Parts Ind Co Ltd filed Critical Tokyo Parts Ind Co Ltd
Priority to JP2013011369A priority Critical patent/JP6037560B2/en
Publication of JP2014142283A publication Critical patent/JP2014142283A/en
Application granted granted Critical
Publication of JP6037560B2 publication Critical patent/JP6037560B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ガラスに付着した水滴を検出する水滴検出装置と、この水滴検出装置を備えた水滴除去装置に関する。   The present invention relates to a water droplet detection device that detects water droplets attached to glass and a water droplet removal device that includes the water droplet detection device.

例えば、特許文献1には、車両のウインドガラスに装着される水滴検出装置が記載されている。この水滴検出装置は、ウインドガラスに約45度の入射角を持って光を照射する発光手段と、このウインドガラスから約45度の反射角を持って反射される光を受光する受光手段と、この受光手段の出力が入力される制御手段を有する。この制御手段は、受光手段の出力をレインセンサや防曇センサを駆動させる閾値と比較し、その比較結果に応じてワイパ駆動装置や空調装置を駆動させている。   For example, Patent Document 1 describes a water droplet detection device mounted on a window glass of a vehicle. The water droplet detection device includes a light emitting means for irradiating light with an incident angle of about 45 degrees to the window glass, a light receiving means for receiving light reflected from the window glass with a reflection angle of about 45 degrees, Control means for receiving the output of the light receiving means is provided. The control unit compares the output of the light receiving unit with a threshold value for driving the rain sensor or the anti-fogging sensor, and drives the wiper driving device or the air conditioner according to the comparison result.

特開2007−33153号公報JP 2007-33153 A

上述のような水滴検出装置を車両のウインドガラスに装着する場合、運転者の視野の妨げにならないように水滴検出装置を小型化する必要がある。
しかしながら、従来の水滴検出装置は、水滴の付着によって光が散乱することによる光量変化(減光量)を検出するものであるため、光量変化を大きくして水滴の検出精度を高めるためにはウインドガラスに45度以上の入射角を持って光を照射する必要があると共に、光路長をある程度長くする必要がある。このため、発光手段と受光手段との距離が長くなり、十分に装置の小型化を図ることができないという問題がある。
When the water droplet detection device as described above is mounted on the window glass of a vehicle, it is necessary to downsize the water droplet detection device so as not to obstruct the driver's visual field.
However, since the conventional water droplet detection device detects a change in light amount (reduced light amount) due to scattering of light due to adhesion of the water droplet, in order to increase the light amount change and improve the detection accuracy of the water droplet, In addition, it is necessary to irradiate light with an incident angle of 45 degrees or more, and it is necessary to lengthen the optical path length to some extent. For this reason, there is a problem that the distance between the light emitting means and the light receiving means becomes long, and the apparatus cannot be sufficiently downsized.

そこで本発明は、従来技術が抱える上記課題を解決し得る水滴検出装置と、この水滴検出装置を備えた水滴除去装置を提供しようとするものである。   Therefore, the present invention intends to provide a water droplet detection device capable of solving the above-described problems of the prior art and a water droplet removal device equipped with this water droplet detection device.

上記の課題を解決するため、本発明の水滴検出装置は、
ガラスの内表面に設けた反射部材にパルス光をほぼ垂直入射する発光部材と、
前記反射部材からほぼ垂直反射されるパルス光を受光する基準受光部材と、
前記ガラスからほぼ垂直反射されるパルス光を受光する検出受光部材と、
前記基準受光部材と前記検出受光部材の出力信号の位相を比べる位相比較部と、を備えており、
前記位相比較部の結果より、前記ガラスの内表面あるいは外表面の水滴の有無を検出することを特徴とする。
In order to solve the above problems, the water droplet detection device of the present invention is:
A light-emitting member that makes the pulsed light substantially perpendicularly incident on the reflecting member provided on the inner surface of the glass;
A reference light receiving member that receives pulsed light that is substantially vertically reflected from the reflecting member; and
A detection light-receiving member that receives pulsed light reflected substantially vertically from the glass;
A phase comparison unit that compares the phases of the output signals of the reference light receiving member and the detection light receiving member,
The presence or absence of water droplets on the inner surface or outer surface of the glass is detected from the result of the phase comparison unit.

本発明の水滴検出装置は、更なる好ましい特徴として、
「前記基準受光部材と前記検出受光部材は、前記発光部材から同じ距離に配されると共に、前記ガラスから同じ距離に配されること」、
「前記反射部材から反射されるパルス光を前記検出受光部材に受光させない第1遮蔽部材が設けられていること」、
「前記ガラスから反射されるパルス光を前記基準受光部材に受光させない第2遮蔽部材が設けられていること」、
「前記発光部材は、前記基準受光部材と前記検出受光部材より前記ガラス側に近づいて配されること」、
「前記検出受光部材の受光軸および前記基準受光部材の受光軸は、前記ガラス面に対してほぼ垂直であること」、
を含む。
The water droplet detection device of the present invention has a further preferable feature as follows:
“The reference light receiving member and the detection light receiving member are arranged at the same distance from the light emitting member and at the same distance from the glass”,
“A first shielding member that prevents the detection light receiving member from receiving the pulsed light reflected from the reflecting member is provided.”
“A second shielding member that prevents the reference light receiving member from receiving the pulsed light reflected from the glass is provided.”
“The light emitting member is arranged closer to the glass side than the reference light receiving member and the detection light receiving member”,
"The light receiving axis of the detection light receiving member and the light receiving axis of the reference light receiving member are substantially perpendicular to the glass surface",
including.

また、本発明の水滴除去装置は、前記水滴検出装置と、ワイパ駆動装置と、空調装置とを備えているものであって、
前記水滴検出装置が前記ガラスの外表面に水滴があることを検出すると、前記ワイパ駆動装置が動作し、
前記水滴検出装置が前記ガラスの内表面に水滴があることを検出すると、前記空調装置が動作することを特徴としているものである。
Further, the water droplet removal device of the present invention comprises the water droplet detection device, a wiper drive device, and an air conditioner,
When the water droplet detection device detects that there are water droplets on the outer surface of the glass, the wiper driving device operates,
When the water droplet detection device detects that there is a water droplet on the inner surface of the glass, the air conditioner operates.

本発明の水滴検出装置は、水滴検出装置全体を小型化できる。   The water droplet detection device of the present invention can downsize the entire water droplet detection device.

本発明の第1の実施形態例に係る水滴検出装置のブロック図である。1 is a block diagram of a water droplet detection device according to a first embodiment of the present invention. 本発明の第1の実施形態例に係る水滴検出装置の検出原理を示し、(a)はガラスの内表面に水滴がある場合のパルス光の経路であり、(b)は(a)の信号説明図である。The detection principle of the water droplet detection apparatus according to the first embodiment of the present invention is shown, (a) is the path of pulsed light when there are water droplets on the inner surface of the glass, (b) is the signal of (a) It is explanatory drawing. 本発明の第1の実施形態例に係る水滴検出装置の検出原理を示し、(a)はガラスの外表面に水滴がある場合のパルス光の経路であり、(b)は(a)の信号説明図である。The detection principle of the water droplet detection apparatus according to the first embodiment of the present invention is shown, (a) is the path of pulsed light when there are water droplets on the outer surface of the glass, (b) is the signal of (a) It is explanatory drawing. 本発明の第1の実施形態例に係る水滴検出装置の検出原理を示し、(a)はガラスに水滴がない場合のパルス光の経路であり、(b)は(a)の信号説明図である。The detection principle of the water droplet detection apparatus according to the first embodiment of the present invention is shown, (a) is a path of pulsed light when there is no water droplet on the glass, (b) is a signal explanatory diagram of (a). is there. 本発明の第1の実施形態例に係る水滴検出装置のフローチャートである。It is a flowchart of the water droplet detection apparatus which concerns on the 1st Example of this invention. 本発明の第2の実施形態例に係る水滴検出装置の検出原理を示し、(a)はガラスの内表面に水滴がある場合のパルス光の経路であり、(b)は(a)の信号説明図である。The detection principle of the water droplet detection apparatus according to the second embodiment of the present invention is shown, (a) is the path of pulsed light when there are water droplets on the inner surface of the glass, (b) is the signal of (a) It is explanatory drawing.

以下、図面に基づいて本発明の実施の形態を例示的に説明する。   Hereinafter, embodiments of the present invention will be exemplarily described based on the drawings.

(第1の実施形態例)
本発明の実施形態例を図1ないし図4を用いて説明する。
本実施形態例に係る水滴検出装置1は、車両のフロントガラス2の内表面に固定される。この水滴検出装置1の設置場所として、特に限定されないが、運転者の視界の妨げにならない位置が好ましい。例えば、ルームミラーの取り付けベースの周辺等がある。
(First embodiment)
An embodiment of the present invention will be described with reference to FIGS.
A water droplet detection device 1 according to this embodiment is fixed to the inner surface of a windshield 2 of a vehicle. The installation location of the water droplet detection device 1 is not particularly limited, but a position that does not hinder the driver's field of view is preferable. For example, there is a periphery of the mounting base of the room mirror.

この水滴検出装置1がガラスの内表面3に水滴があることを検出すると、車両内に設けた水滴除去装置である不図示の空調装置が動作し、この空調装置がガラスの内表面の水滴を除去する。
また水滴検出装置1がガラスの外表面4に水滴があることを検出すると、ガラスの外表面4に設けた水滴除去装置である不図示のワイパ駆動装置が動作し、このワイパ駆動装置がガラスの外表面の水滴を除去する。
When the water droplet detection device 1 detects that there are water droplets on the inner surface 3 of the glass, an air conditioner (not shown) which is a water droplet removing device provided in the vehicle operates, and the air conditioner removes water droplets on the inner surface of the glass. Remove.
When the water droplet detection device 1 detects that there are water droplets on the outer surface 4 of the glass, a wiper driving device (not shown), which is a water droplet removing device provided on the outer surface 4 of the glass, operates. Remove water droplets on the outer surface.

本例の水滴検出装置1は、発光部材10と、基準受光部材20と、検出受光部材30と、第1遮蔽部材40と、第2遮蔽部材50、位相比較部60と、マイクロコンピュータ70を有する。   The water droplet detection apparatus 1 of this example includes a light emitting member 10, a reference light receiving member 20, a detection light receiving member 30, a first shielding member 40, a second shielding member 50, a phase comparison unit 60, and a microcomputer 70. .

発光部材10は、ガラスの内表面3に設けた反射部材11にパルス光をほぼ垂直入射するものである。発光部材10は、例えば、発光ダイオードからなり、ガラス2に向けてパルス光を照射している。この発光部材10には、駆動回路12から駆動信号が入力され、発光部材の駆動信号S1は、図2(b)に示すように、振幅V1=3Vp−p、周期T1=0.5s、パルス幅T1P=0.25sのパルス波形となっている。   The light emitting member 10 is a unit in which pulsed light is substantially perpendicularly incident on a reflecting member 11 provided on an inner surface 3 of glass. The light emitting member 10 is made of a light emitting diode, for example, and irradiates the glass 2 with pulsed light. A driving signal is input to the light emitting member 10 from the driving circuit 12, and the driving signal S1 of the light emitting member has an amplitude V1 = 3 Vp-p, a period T1 = 0.5 s, a pulse, as shown in FIG. The pulse waveform has a width T1P = 0.25 s.

この発光部材10は、図1に示すように、基準受光部材20と検出受光部材30との間に配置されており、基準受光部材20と検出受光部材30は、発光部材10から同じ距離に配されると共に、ガラスの内表面3から同じ距離に配される。そして、水滴検出装置1の小型化のため、基準受光部材20と検出受光部材30は、発光部材10にそれぞれ近接して配されることが好ましい。   As shown in FIG. 1, the light emitting member 10 is disposed between the reference light receiving member 20 and the detection light receiving member 30, and the reference light receiving member 20 and the detection light receiving member 30 are arranged at the same distance from the light emitting member 10. And at the same distance from the inner surface 3 of the glass. In order to reduce the size of the water droplet detection device 1, it is preferable that the reference light receiving member 20 and the detection light receiving member 30 are arranged close to the light emitting member 10.

また発光部材10は、ガラス2側にのみパルス光を照射する指向性の高いもの(本例では、発光部材10の照射軸(図2の上下方向)から30度未満の広がり角のもの)であり、パルス光を直接、基準受光部材20と検出受光部材30に入射させないため、基準受光部材20と検出受光部材30の位置よりガラス2側に近づいて配されている。   Further, the light emitting member 10 has a high directivity for irradiating pulsed light only on the glass 2 side (in this example, with a spread angle of less than 30 degrees from the irradiation axis (vertical direction in FIG. 2) of the light emitting member 10). In addition, since the pulsed light is not directly incident on the reference light receiving member 20 and the detection light receiving member 30, they are arranged closer to the glass 2 side than the positions of the reference light receiving member 20 and the detection light receiving member 30.

本例のガラスの内表面3には、このガラスの内表面3と平行に配された反射部材11が発光部材10の照射軸から僅かに外れて(本例では図2の照射軸から右側に)設けられている。この反射部材11は、例えば、アルミニウム蒸着されている反射膜により形成され、発光部材10のパルス光が、反射膜面にほぼ垂直方向に入射され、高効率でパルス光を反射する。
本明細書において、ほぼ垂直入射とは、反射膜面あるいはガラス面に対して0度から10度の入射角を言う。
なお、反射膜の厚み(図2の上下方向)は、発光部材10とガラスの内表面3との距離、あるいは、ガラス2の厚みH(図2の上下方向)と比べて小さく形成されており、ほぼ無視できるものである。
On the inner surface 3 of the glass of this example, the reflecting member 11 arranged in parallel with the inner surface 3 of the glass is slightly deviated from the irradiation axis of the light emitting member 10 (in this example, on the right side from the irradiation axis of FIG. 2). ) Is provided. The reflecting member 11 is formed of, for example, a reflecting film deposited with aluminum, and the pulsed light of the light emitting member 10 is incident on the reflecting film surface in a substantially vertical direction, and reflects the pulsed light with high efficiency.
In this specification, “substantially normal incidence” refers to an incident angle of 0 to 10 degrees with respect to the reflective film surface or the glass surface.
The thickness of the reflective film (vertical direction in FIG. 2) is smaller than the distance between the light emitting member 10 and the inner surface 3 of the glass or the thickness H of the glass 2 (vertical direction in FIG. 2). Is almost negligible.

基準受光部材20は、例えば、フォトダイオードからなる。発光部材10から出射されたパルス光は、反射部材11でほぼ垂直反射し、基準受光部材20に入射することにより、受光されたパルス光に応じた出力信号が得られる。すなわち、パルス光の入射がない場合には出力信号は現れず、パルス光が入射した場合には所定の出力信号が現れる。
本例の基準受光部材の出力信号S2は、図2(b)に示すように、一例として発光部材の駆動信号S1に比べ、パルス光の移動距離に応じて位相がθ1遅れた、振幅V2=0.5Vp−p、周期T1=0.5s、パルス幅T1P=0.25sのパルス波形となる。そして、基準受光部材の出力信号S2の位相は、後述の検出受光部材30の出力信号S3に対する基準の位相として設定される。
The reference light receiving member 20 is made of a photodiode, for example. The pulsed light emitted from the light emitting member 10 is reflected almost vertically by the reflecting member 11 and enters the reference light receiving member 20, whereby an output signal corresponding to the received pulsed light is obtained. That is, the output signal does not appear when the pulsed light is not incident, and the predetermined output signal appears when the pulsed light is incident.
As shown in FIG. 2B, the output signal S2 of the reference light receiving member of this example has an amplitude V2 = a phase delayed by θ1 in accordance with the moving distance of the pulsed light as compared with the driving signal S1 of the light emitting member. The pulse waveform is 0.5 Vp-p, cycle T1 = 0.5 s, and pulse width T1P = 0.25 s. The phase of the output signal S2 of the reference light receiving member is set as a reference phase with respect to an output signal S3 of the detection light receiving member 30 described later.

検出受光部材30は、ガラス2からほぼ垂直方向に反射されるパルス光を受光するものである。この検出受光部材30は、例えば、フォトダイオードからなり、受光されたパルス光に応じた出力信号が得られる。すなわち、パルス光の入射がない場合には出力信号は現れず、パルス光が入射した場合には所定の出力信号が現れる。   The detection light receiving member 30 receives pulsed light reflected from the glass 2 in a substantially vertical direction. The detection light receiving member 30 is made of, for example, a photodiode, and an output signal corresponding to the received pulsed light is obtained. That is, the output signal does not appear when the pulsed light is not incident, and the predetermined output signal appears when the pulsed light is incident.

例えば、ガラスの内表面3に水滴5が付着している場合には、図2(a)に示すように、発光部材10から出射されたパルス光は、ガラスの内表面3で乱反射し、検出受光部材30に入射する。すると、図2(b)に示すように、検出受光部材の出力信号S3は、一例として基準受光部材の出力信号S2と同相となり(すなわち、発光部材の駆動信号S1に比べて、位相がθ1遅れた)、振幅V3=0.3Vp−p、周期T1=0.5s、パルス幅T1P=0.25sのパルス波形となる。   For example, when water droplets 5 adhere to the inner surface 3 of the glass, as shown in FIG. 2A, the pulsed light emitted from the light emitting member 10 is irregularly reflected on the inner surface 3 of the glass and detected. The light enters the light receiving member 30. Then, as shown in FIG. 2B, for example, the output signal S3 of the detection light receiving member is in phase with the output signal S2 of the reference light receiving member (that is, the phase is delayed by θ1 compared to the drive signal S1 of the light emitting member). And a pulse waveform having an amplitude V3 = 0.3 Vp-p, a period T1 = 0.5 s, and a pulse width T1P = 0.25 s.

また、ガラスの外表面4に水滴5が付着している場合には、図3(a)に示すように、発光部材から出射されたパルス光は、ガラスの外表面4で乱反射し、検出受光部材30に入射する。すると、検出受光部材の出力信号S3は、図3(b)に示すように、一例として基準受光部材の出力信号S2と比べて、ガラスの厚みHの2倍分、位相がθ2遅れて(すなわち、発光部材の駆動信号S1に比べて、位相が(θ1+θ2)遅れた)、振幅V3=0.3Vp−p、周期T1=0.5s、パルス幅T1P=0.25sのパルス波形となる。   When water droplets 5 are attached to the outer surface 4 of the glass, as shown in FIG. 3A, the pulsed light emitted from the light emitting member is irregularly reflected on the outer surface 4 of the glass and detected and received. Incident on the member 30. Then, as shown in FIG. 3B, for example, the output signal S3 of the detection light receiving member is delayed in phase by θ2 by two times the glass thickness H compared to the output signal S2 of the reference light receiving member (that is, As compared with the drive signal S1 of the light emitting member, the phase is delayed by (θ1 + θ2)), the amplitude V3 = 0.3Vp−p, the period T1 = 0.5s, and the pulse width T1P = 0.25s.

また、ガラスの内表面3とガラスの外表面4に水滴5が付着していない場合、図4(a)に示すように、発光部材10から出射されたパルス光は、発光部材10から、ガラス2へと進むが、ガラス2からほとんど反射されない。そして、検出受光部材30にはパルス光が入射せず、図4(b)に示すように、検出受光部材の出力信号S3は現れない。   Further, when water droplets 5 are not attached to the inner surface 3 and the outer surface 4 of the glass, the pulsed light emitted from the light emitting member 10 is emitted from the light emitting member 10 to the glass as shown in FIG. Although it progresses to 2, it is hardly reflected from the glass 2. Then, no pulsed light is incident on the detection light receiving member 30, and the output signal S3 of the detection light receiving member does not appear as shown in FIG.

なお、検出受光部材30の受光軸および基準受光部材20の受光軸は、反射光を最も効率よく受光できるように、ガラス2の面にほぼ垂直に形成されることが好ましい。   The light receiving axis of the detection light receiving member 30 and the light receiving axis of the reference light receiving member 20 are preferably formed substantially perpendicular to the surface of the glass 2 so that the reflected light can be received most efficiently.

第1遮蔽部材40は、反射部材11から反射されるパルス光を検出受光部材30に受光させないものであり、発光部材10と検出受光部材30との間に設けられている。本例の第1遮蔽部材40は、発光部材10と検出受光部材30との間に設けた遮蔽板により形成されており、検出受光部材30の外周を覆った遮蔽筒により形成されてもよい。   The first shielding member 40 prevents the detection light receiving member 30 from receiving the pulsed light reflected from the reflecting member 11, and is provided between the light emitting member 10 and the detection light receiving member 30. The first shielding member 40 of this example is formed by a shielding plate provided between the light emitting member 10 and the detection light receiving member 30, and may be formed by a shielding cylinder covering the outer periphery of the detection light receiving member 30.

第2遮蔽部材50は、ガラス2から反射されるパルス光を基準受光部材20に受光させないものであり、発光部材10と基準受光部材20との間に設けられている。本例の第2遮蔽部材50は、発光部材10と基準受光部材20との間に設けた遮蔽板により形成されており、基準受光部材20の外周を覆った遮蔽筒により形成されてもよい。   The second shielding member 50 prevents the reference light receiving member 20 from receiving the pulsed light reflected from the glass 2, and is provided between the light emitting member 10 and the reference light receiving member 20. The second shielding member 50 of this example is formed by a shielding plate provided between the light emitting member 10 and the reference light receiving member 20, and may be formed by a shielding cylinder that covers the outer periphery of the reference light receiving member 20.

位相比較部60は、基準受光部材の出力信号S2の位相と検出受光部材の出力信号S3の位相を比べるものである。この位相比較部60には、基準受光部材の出力信号S2と検出受光部材の出力信号S3がそれぞれ入力され、位相比較部60は、基準受光部材の出力信号S2の位相を基準として、検出受光部材の出力信号S3の位相の遅れの程度を出力する。   The phase comparison unit 60 compares the phase of the output signal S2 of the reference light receiving member with the phase of the output signal S3 of the detection light receiving member. The phase comparison unit 60 receives the output signal S2 of the reference light receiving member and the output signal S3 of the detection light receiving member. The phase comparison unit 60 detects the detection light receiving member with reference to the phase of the output signal S2 of the reference light receiving member. The degree of phase delay of the output signal S3 is output.

具体的には、本例の位相比較部60は、不図示の排他的論理和の論理演算回路で構成され、出力信号S2と出力信号S3が同相の場合には「ロー」が出力され、それ以外の場合には「ハイ」が出力され、本例の場合、次のようになる。
まず、ガラスの内表面3に水滴5が付着している場合、図2(b)に示すように、出力信号S2と出力信号S3の位相は同じであるため、位相比較部60の出力信号S4はすべて「ロー」のままである。
また、ガラスの外表面4に水滴5が付着している場合、図3(b)に示すように、出力信号S3は出力信号S2よりも位相がθ2だけ遅れているため、位相比較部60の出力信号S4は、パルス幅T2Pのパルス波形が現れ、このパルス幅T2Pは、出力信号S2と出力信号S3の位相差(θ2)と等しい。
また、ガラスの内表面3とガラスの外表面4に水滴5が付着していない場合、図4(b)に示すように、出力信号S3がないため、位相比較部60の出力信号S4は、パルス幅T3Pのパルス波形が現れ、このパルス幅T3Pは、出力信号S2のパルス幅T1Pと等しい。
そして、この位相比較部60の出力信号S4は、マイクロコンピュータ70に入力される。
Specifically, the phase comparison unit 60 of this example is configured by an exclusive OR logic operation circuit (not shown), and when the output signal S2 and the output signal S3 are in phase, “low” is output. In other cases, “high” is output. In this example, the result is as follows.
First, when the water droplet 5 is attached to the inner surface 3 of the glass, the phase of the output signal S2 and the output signal S3 is the same as shown in FIG. All remain “low”.
Further, when water droplets 5 are attached to the outer surface 4 of the glass, the phase of the output signal S3 is delayed by θ2 from the output signal S2 as shown in FIG. In the output signal S4, a pulse waveform having a pulse width T2P appears, and this pulse width T2P is equal to the phase difference (θ2) between the output signal S2 and the output signal S3.
Further, when water droplets 5 are not attached to the inner surface 3 and the outer surface 4 of the glass, as shown in FIG. 4B, there is no output signal S3, so the output signal S4 of the phase comparison unit 60 is A pulse waveform having a pulse width T3P appears, and this pulse width T3P is equal to the pulse width T1P of the output signal S2.
The output signal S4 of the phase comparison unit 60 is input to the microcomputer 70.

マイクロコンピュータ70は、位相比較部60の出力信号を用いて、ガラスの内表面あるいは外表面の水滴の有無を検出するものである。このマイクロコンピュータ70の出力は、水滴除去装置であるワイパ駆動装置や空調装置に入力されており、マイクロコンピュータ70は、ワイパ駆動装置や空調装置を始動あるいは停止できるようになっている。   The microcomputer 70 detects the presence or absence of water droplets on the inner or outer surface of the glass using the output signal of the phase comparison unit 60. The output of the microcomputer 70 is input to a wiper driving device or an air conditioner that is a water droplet removing device, and the microcomputer 70 can start or stop the wiper driving device or the air conditioning device.

次に、水滴検出ルーチンを図5のフローチャートを用いて説明する。   Next, the water droplet detection routine will be described with reference to the flowchart of FIG.

[水滴検出ルーチン]
まず、マイクロコンピュータ70は、発光部材10に入力させる信号を出力する。発光部材10はパルス光を照射し、基準受光部材20は、反射部材11からほぼ垂直方向に反射されるパルス光を受光する。そして、マイクロコンピュータ70は、位相比較部60の出力信号と発光部材の駆動信号S1を用いて次の判断を行う。
具体的には、図4(b)に示すように、基準受光部材の出力波形S2のパルス幅T1Pと位相比較部の出力波形S4のパルス幅T3Pが同じ場合、マイクロコンピュータ70は、ガラスの内表面及び外表面に水滴がないことを検出する。
前記判断以外の場合、マイクロコンピュータ70は、ガラスの内表面あるいは外表面に水滴があることを検出する(S101〜S103)。
[Water drop detection routine]
First, the microcomputer 70 outputs a signal to be input to the light emitting member 10. The light emitting member 10 emits pulsed light, and the reference light receiving member 20 receives pulsed light reflected from the reflecting member 11 in a substantially vertical direction. Then, the microcomputer 70 makes the following determination using the output signal of the phase comparison unit 60 and the drive signal S1 of the light emitting member.
Specifically, as shown in FIG. 4B, when the pulse width T1P of the output waveform S2 of the reference light receiving member and the pulse width T3P of the output waveform S4 of the phase comparison unit are the same, the microcomputer 70 Detect the absence of water droplets on the surface and the outer surface.
In cases other than the above determination, the microcomputer 70 detects the presence of water droplets on the inner or outer surface of the glass (S101 to S103).

ガラス2の内表面あるいは外表面に水滴があることを検出した場合、マイクロコンピュータ70は、次の判断を行う。
図2(b)に示すように、位相比較部60の出力信号が現れない場合、マイクロコンピュータ70は、ガラスの内表面3に水滴5が有ることを検出して、空調装置動作信号を出力し、空調装置は水滴の除去を行う。
また、図3(b)に示すように、位相比較部60の出力信号が現れると、マイクロコンピュータ70は、ガラスの外表面4に水滴5が有ることを検出して、ワイパ駆動装置動作信号を出力し、ワイパ駆動装置は水滴の除去を行う(S104〜S106)。
When it is detected that there is a water droplet on the inner surface or the outer surface of the glass 2, the microcomputer 70 makes the following determination.
As shown in FIG. 2B, when the output signal of the phase comparator 60 does not appear, the microcomputer 70 detects the presence of the water droplet 5 on the inner surface 3 of the glass and outputs an air conditioner operation signal. The air conditioner removes water droplets.
Further, as shown in FIG. 3B, when the output signal of the phase comparison unit 60 appears, the microcomputer 70 detects the presence of the water droplet 5 on the outer surface 4 of the glass, and outputs the wiper driving device operation signal. The wiper drive device outputs the water droplets (S104 to S106).

このように本例は、ガラスの内表面3に設けた反射部材11にパルス光をほぼ垂直入射する発光部材10と、反射部材11からほぼ垂直反射されるパルス光を受光する基準受光部材20と、ガラス2からほぼ垂直方向に反射されるパルス光を受光する検出受光部材30と、基準受光部材20と検出受光部材30の出力信号の位相を比べる位相比較部60と、を備えている。そして、本例は、位相比較部60の出力結果より、ガラス2の内表面あるいは外表面の水滴の有無を検出している。   As described above, in this example, the light emitting member 10 that makes the pulsed light substantially perpendicularly incident on the reflecting member 11 provided on the inner surface 3 of the glass, and the reference light receiving member 20 that receives the pulsed light reflected almost vertically from the reflecting member 11, A detection light receiving member 30 that receives pulsed light reflected from the glass 2 in a substantially vertical direction, and a phase comparison unit 60 that compares the phases of the output signals of the reference light receiving member 20 and the detection light receiving member 30 are provided. In this example, the presence or absence of water droplets on the inner surface or outer surface of the glass 2 is detected from the output result of the phase comparison unit 60.

よって、本例は、基準受光部材と検出受光部材の出力信号の位相を比べる位相比較部を有することにより、発光部材は、ガラスや反射部材にほぼ垂直入射させることが可能となる。そのため、本例は、従来例のように、発光手段と受光手段を離す必要がなくなり、基準受光部材と検出受光部材を発光部材に近接させることができ、水滴検出装置全体を大幅に小型化できる。
すなわち、従来例のような構成では、水滴の検出精度を高めるためにウインドガラスに45度以上の入射角を持って光を照射する必要があり、受光手段と発光手段との距離を縮められず水滴検出装置の小型化が出来なかった。
一方、本例は、基準受光部材と検出受光部材の出力信号の位相を比べる位相比較部を有することにより、光量によって変化しない位相を比べるため検出精度を高められると共に、発光部材は、ガラスや反射部材にほぼ垂直入射させることが可能となり、その結果、基準受光部材と検出受光部材を発光部材に近接して配置でき、水滴検出装置全体を大幅に小型化できる。
Therefore, this example has a phase comparison unit that compares the phases of the output signals of the reference light-receiving member and the detection light-receiving member, so that the light-emitting member can be substantially perpendicularly incident on the glass or the reflecting member. Therefore, in this example, unlike the conventional example, it is not necessary to separate the light emitting unit and the light receiving unit, the reference light receiving member and the detection light receiving member can be brought close to the light emitting member, and the entire water droplet detection device can be greatly reduced in size. .
That is, in the configuration as in the conventional example, it is necessary to irradiate the window glass with light having an incident angle of 45 degrees or more in order to improve the detection accuracy of water droplets, and the distance between the light receiving means and the light emitting means cannot be shortened. The water droplet detector could not be downsized.
On the other hand, this example has a phase comparison unit that compares the phases of the output signals of the reference light receiving member and the detection light receiving member, so that the detection accuracy can be improved because the phase that does not change depending on the amount of light is compared. As a result, the reference light-receiving member and the detection light-receiving member can be disposed close to the light-emitting member, and the entire water droplet detection device can be greatly reduced in size.

また、従来例のような構成では、水滴の検出精度を高めるために光路長をある程度長くする必要があり、発光手段と受光手段はガラス面に近づけて配置できなかった。
一方、本例では、基準受光部材と検出受光部材の出力信号の位相を比べる位相比較部を有するため、水滴検出装置をガラス面に近づけて配置しても、ガラスの内表面あるいは外表面の水滴の有無を位相差によって検出できることにより、水滴検出装置はガラス面に対して設置距離を短くできる。そのため、本例は、水滴検出装置全体の小型化と相俟って、水滴検出装置をガラス面に非常にコンパクトに装着できる。
Further, in the configuration as in the conventional example, it is necessary to lengthen the optical path length to some extent in order to improve the detection accuracy of water droplets, and the light emitting means and the light receiving means cannot be arranged close to the glass surface.
On the other hand, in this example, since the phase comparison unit that compares the phases of the output signals of the reference light receiving member and the detection light receiving member is provided, water drops on the inner surface or the outer surface of the glass even if the water drop detection device is arranged close to the glass surface. By being able to detect the presence / absence of a water droplet by the phase difference, the water droplet detection device can shorten the installation distance with respect to the glass surface. Therefore, in this example, in combination with the downsizing of the entire water droplet detection device, the water droplet detection device can be mounted on the glass surface very compactly.

また、本例は、ガラスの内表面3に反射部材11を設けたことにより、ガラスの内表面及び外表面の水滴の有無を確実に検出できる。
すなわち、反射部材11をガラスの外表面4に設けると、ガラスの内表面あるいは外表面に水滴が付着した際、基準受光部材の出力信号S2と検出受光部材の出力信号S3は、同じ信号となり、ガラスの内表面あるいは外表面の水滴の有無を検出できない。
具体的には、ガラスの外表面に水滴が付着した場合、検出受光部材の出力信号S3は、基準受光部材の出力信号S2と同相となる。また、ガラスの内表面に水滴が付着した場合も、反射部材11に対応するガラスの内表面に付着した水滴に反射して、検出受光部材の出力信号S3は、基準受光部材の出力信号S2と同相となる。よって、この場合では、位相比較部60の出力を検出しても、ガラスの内表面あるいは外表面の水滴の有無を検出できない。
一方、本例は、ガラスの内表面3に反射部材11を設けたことにより、ガラスの内表面3に水滴5が付着している場合、検出受光部材の出力信号S3は、基準受光部材の出力信号S2と同相となり、ガラスの外表面4に水滴5が付着している場合、検出受光部材の出力信号S3は、基準受光部材20の出力信号S2と比べて、ガラスの厚みの2倍分、位相が遅れて現れる。よって、本例は、位相比較部の出力結果より、ガラスの内表面及び外表面の水滴の有無を確実に検出できる。
Moreover, in this example, by providing the reflecting member 11 on the inner surface 3 of the glass, it is possible to reliably detect the presence or absence of water droplets on the inner surface and the outer surface of the glass.
That is, when the reflecting member 11 is provided on the outer surface 4 of the glass, when a water droplet adheres to the inner surface or the outer surface of the glass, the output signal S2 of the reference light receiving member and the output signal S3 of the detection light receiving member become the same signal, The presence or absence of water droplets on the inner or outer surface of the glass cannot be detected.
Specifically, when a water droplet adheres to the outer surface of the glass, the output signal S3 of the detection light receiving member is in phase with the output signal S2 of the reference light receiving member. Further, even when a water droplet adheres to the inner surface of the glass, it is reflected by the water droplet adhered to the inner surface of the glass corresponding to the reflecting member 11, and the output signal S3 of the detection light receiving member is the output signal S2 of the reference light receiving member. Be in phase. Therefore, in this case, even if the output of the phase comparison unit 60 is detected, the presence or absence of water droplets on the inner surface or the outer surface of the glass cannot be detected.
On the other hand, in this example, when the reflection member 11 is provided on the inner surface 3 of the glass, and the water droplet 5 is attached to the inner surface 3 of the glass, the output signal S3 of the detection light receiving member is the output of the reference light receiving member. When the water phase 5 is in phase with the signal S2 and the water droplet 5 is attached to the outer surface 4 of the glass, the output signal S3 of the detection light receiving member is twice the thickness of the glass as compared with the output signal S2 of the reference light receiving member 20. Appears out of phase. Therefore, in this example, the presence or absence of water droplets on the inner surface and the outer surface of the glass can be reliably detected from the output result of the phase comparison unit.

また、基準受光部材20と検出受光部材30は、発光部材10から等距離に配されると共に、ガラス2から等距離に配される。
よって、基準受光部材の出力信号S2の位相を基準として、この位相と、検出受光部材の出力信号S3の位相とを単に比べることにより、マイクロコンピュータ70は、ガラスの外表面あるいは内表面の水滴の有無を容易に検出でき、装置が簡素化され製造コストが低減する。
具体的には、ガラスの内表面に水滴があると、検出受光部材の出力信号S3の位相が基準受光部材の出力信号S2の位相と同相となることを利用して、マイクロコンピュータは、ガラスの内表面に水滴が有ることを出力する。また、ガラスの外表面に水滴があると、検出受光部材の出力信号S3の位相が基準受光部材の出力信号S2の位相より遅れる(ガラスの厚みHの2倍分、位相が遅れる)ことを利用して、マイクロコンピュータは、ガラスの外表面に水滴が有ることを出力する。そのため、基準受光部材と検出受光部材の出力信号の位相を単に比べることで、ガラスの外表面あるいは内表面の水滴の有無を容易に検出でき、装置が簡素化され製造コストが低減できるものである。
Further, the reference light receiving member 20 and the detection light receiving member 30 are arranged at an equal distance from the light emitting member 10 and at an equal distance from the glass 2.
Therefore, by simply comparing the phase of the output signal S2 of the reference light receiving member with the phase of the output signal S3 of the detection light receiving member, the microcomputer 70 can detect the water droplets on the outer surface or inner surface of the glass. Presence / absence can be easily detected, the apparatus is simplified, and the manufacturing cost is reduced.
Specifically, when there is a water drop on the inner surface of the glass, the microcomputer uses the fact that the phase of the output signal S3 of the detection light receiving member is in phase with the phase of the output signal S2 of the reference light receiving member. Outputs that there are water droplets on the inner surface. Further, when there is a water drop on the outer surface of the glass, the phase of the output signal S3 of the detection light receiving member is delayed from the phase of the output signal S2 of the reference light receiving member (the phase is delayed by twice the thickness H of the glass). Then, the microcomputer outputs that there are water droplets on the outer surface of the glass. Therefore, by simply comparing the phases of the output signals of the reference light-receiving member and the detection light-receiving member, it is possible to easily detect the presence or absence of water droplets on the outer surface or inner surface of the glass, simplifying the apparatus and reducing the manufacturing cost. .

また、反射部材11から反射されるパルス光を検出受光部材30に受光させない第1遮蔽部材40が設けられている。
よって、検出受光部材は、反射部材から反射されるパルス光の影響を受けにくくなるため、誤検出を低減できる。
特に、本例の場合、基準受光部材に入射されるパルス光は、検出受光部材に入射されるパルス光に比べて強いため(振幅値が大きいため)、検出受光部材は、反射部材からのパルス光の影響を確実に少なくでき、誤検出を低減できる。
Further, a first shielding member 40 that prevents the detection light receiving member 30 from receiving the pulsed light reflected from the reflecting member 11 is provided.
Therefore, the detection light receiving member is less susceptible to the influence of the pulsed light reflected from the reflecting member, so that erroneous detection can be reduced.
In particular, in the case of this example, the pulsed light incident on the reference light receiving member is stronger than the pulsed light incident on the detection light receiving member (because the amplitude value is large). The influence of light can be reliably reduced and false detection can be reduced.

また、ガラス2から反射されるパルス光を基準受光部材20に受光させない第2遮蔽部材50が設けられている。
よって、基準受光部材は、ガラスから反射されるパルス光の影響を受けにくくなるため、誤検出を低減できる。
In addition, a second shielding member 50 that prevents the reference light receiving member 20 from receiving the pulsed light reflected from the glass 2 is provided.
Therefore, since the reference light receiving member is not easily affected by the pulsed light reflected from the glass, erroneous detection can be reduced.

また、本例の発光部材10は、基準受光部材20と検出受光部材30よりガラス2側に近づいて配されている。よって、発光部材10のパルス光は、基準受光部材20と検出受光部材30に直接入射しにくくなるため、誤検出をより低減できる。   Further, the light emitting member 10 of this example is disposed closer to the glass 2 side than the reference light receiving member 20 and the detection light receiving member 30. Therefore, the pulsed light of the light emitting member 10 is less likely to be directly incident on the reference light receiving member 20 and the detection light receiving member 30, so that erroneous detection can be further reduced.

また、本例の検出受光部材30の受光軸および基準受光部材20の受光軸は、ガラス面に対してほぼ垂直に形成されている。
よって、基準受光部材と検出受光部材は、反射部材とガラスからの反射光を最も効率よく受光でき検出精度が向上する。
In addition, the light receiving axis of the detection light receiving member 30 and the light receiving axis of the reference light receiving member 20 in this example are formed substantially perpendicular to the glass surface.
Therefore, the reference light receiving member and the detection light receiving member can receive the reflected light from the reflecting member and the glass most efficiently, and the detection accuracy is improved.

また、本例の発光部材10は第1遮蔽部材40と第2遮蔽部材50と接していると共に、基準受光部材20が第2遮蔽部材50に接し、さらに、検出受光部材30が第1遮蔽部材40に接していると、水滴検出装置をさらに小型化できる。   Further, the light emitting member 10 of this example is in contact with the first shielding member 40 and the second shielding member 50, the reference light receiving member 20 is in contact with the second shielding member 50, and the detection light receiving member 30 is the first shielding member. If it contacts 40, the water droplet detection device can be further miniaturized.

また、水滴除去装置は、水滴検出装置1と、ワイパ駆動装置と、空調装置を備え、水滴検出装置がガラスの外表面4に水滴があることを検出すると、ワイパ駆動装置が動作して、ワイパ駆動装置がガラスの外表面4の水滴を除去し、水滴検出装置がガラスの内表面3に水滴があることを検出すると、空調装置が動作して、空調装置がガラス内表面の水滴を除去する。
よって、水滴除去装置は、車両の運転者による手動操作を行わずに、水滴除去装置の始動、停止の判断を自動的に行うことができる。したがって、本例は、ワイパ駆動装置や空調装置の駆動を自動的に行うことができる小型の水滴検出装置を備えた水滴除去装置を提供できる。
Further, the water droplet removing device includes a water droplet detecting device 1, a wiper driving device, and an air conditioner. When the water droplet detecting device detects that there are water droplets on the outer surface 4 of the glass, the wiper driving device operates to wipe the wiper. When the driving device removes water droplets on the outer surface 4 of the glass and the water droplet detection device detects that there are water droplets on the inner surface 3 of the glass, the air conditioner operates to remove the water droplets on the inner surface of the glass. .
Therefore, the water droplet removal apparatus can automatically determine whether the water droplet removal apparatus is started or stopped without manual operation by the vehicle driver. Therefore, this example can provide a water droplet removing device including a small water droplet detecting device that can automatically drive the wiper driving device and the air conditioner.

(第2の実施形態例)
図6は、本発明の第2の実施形態例に係る水滴検出装置の検出原理を示し、(a)はガラスの内表面に水滴がある場合のパルス光の経路であり、(b)は(a)の信号説明図である。図6において、図1ないし図5中の符号と同一の符号は同等の部材を指しており、詳細な説明は省略する。
(Second Embodiment)
FIG. 6 shows the detection principle of the water droplet detection apparatus according to the second embodiment of the present invention. (A) is a path of pulsed light when there is a water droplet on the inner surface of the glass, and (b) is ( It is signal explanatory drawing of a). In FIG. 6, the same reference numerals as those in FIGS. 1 to 5 denote the same members, and a detailed description thereof will be omitted.

第1の実施形態例の発光部材10は、基準受光部材20と検出受光部材30との間に1つ配置されているが、本例では、駆動回路12から駆動信号が同時に入力される、2つの発光部材13、14が設けられている。一方の発光部材13は基準受光部材20の斜め左前方に配置され、他方の発光部材14は検出受光部材30の斜め右前方に配置されている。
この一方の発光部材13と他方の発光部材14は、ガラスの内表面3から同じ距離に近接して配されていると共に、基準受光部材20と検出受光部材30は、ガラスの内表面3から同じ距離に配される。また、この基準受光部材20と検出受光部材30は、一方の発光部材13と他方の発光部材14からそれぞれ同じ距離に配される。
よって、本例も、基準受光部材20と検出受光部材30を発光部材13、14に近接させることができ、水滴検出装置全体を大幅に小型化できると共に、基準受光部材の出力信号S2の位相を基準として、この位相と、検出受光部材の出力信号S3の位相とを単に比べることにより、マイクロコンピュータ70は、ガラスの外表面あるいは内表面の水滴の有無を容易に検出でき、装置が簡素化され製造コストを低減できる。
また、本例の発光部材13、14は、基準受光部材20と検出受光部材30よりガラス2側に近づいて配されているため、発光部材13、14のパルス光は、基準受光部材20と検出受光部材30に直接入射しにくくなり、誤検出を低減できる。
Although one light emitting member 10 of the first embodiment is arranged between the reference light receiving member 20 and the detection light receiving member 30, in this example, a drive signal is simultaneously input from the drive circuit 12. Two light emitting members 13 and 14 are provided. One light emitting member 13 is disposed obliquely left front of the reference light receiving member 20, and the other light emitting member 14 is disposed obliquely right forward of the detection light receiving member 30.
The one light emitting member 13 and the other light emitting member 14 are arranged close to the same distance from the inner surface 3 of the glass, and the reference light receiving member 20 and the detection light receiving member 30 are the same from the inner surface 3 of the glass. Arranged in the distance. The reference light receiving member 20 and the detection light receiving member 30 are arranged at the same distance from the one light emitting member 13 and the other light emitting member 14, respectively.
Therefore, also in this example, the reference light receiving member 20 and the detection light receiving member 30 can be brought close to the light emitting members 13 and 14, and the entire water droplet detection apparatus can be greatly reduced in size, and the phase of the output signal S2 of the reference light receiving member can be changed. By simply comparing this phase with the phase of the output signal S3 of the detection light receiving member as a reference, the microcomputer 70 can easily detect the presence or absence of water droplets on the outer surface or inner surface of the glass, and the apparatus is simplified. Manufacturing cost can be reduced.
Further, since the light emitting members 13 and 14 of this example are arranged closer to the glass 2 side than the reference light receiving member 20 and the detection light receiving member 30, the pulsed light of the light emitting members 13 and 14 is detected with the reference light receiving member 20. It becomes difficult to directly enter the light receiving member 30, and detection errors can be reduced.

また、第1の実施形態例では、発光部材10と検出受光部材30との間に、第1遮蔽部材40が設けられ、発光部材10と基準受光部材20との間に、第2遮蔽部材50が設けられているが、本例の第3遮蔽部材80は1つ設けられ、第3遮蔽部材80の一側(右側)には、一方の発光部材13と基準受光部材20が配置され、第3遮蔽部材80の他側(左側)には、他方の発光部材14と検出受光部材30が配置されている。
この第3遮蔽部材80は、反射部材11から反射されるパルス光を検出受光素子30に受光させないように配されていると共に、ガラス2から反射されるパルス光を基準受光部材20に受光させないように配されている。すなわち、第3遮蔽部材80は、第1実施形態例における第1遮蔽部材40と第2遮蔽部材50の両方の役割を1つの部材で構成している。
よって、検出受光部材は、反射部材から反射されるパルス光の影響を受けにくくなるため、誤検出を低減できると共に、基準受光部材は、ガラスから反射されるパルス光の影響を受けにくくなり、誤検出を低減できる。
In the first embodiment, the first shielding member 40 is provided between the light emitting member 10 and the detection light receiving member 30, and the second shielding member 50 is disposed between the light emitting member 10 and the reference light receiving member 20. However, one third shielding member 80 of this example is provided, and on one side (right side) of the third shielding member 80, the one light emitting member 13 and the reference light receiving member 20 are disposed. The other light emitting member 14 and the detection light receiving member 30 are arranged on the other side (left side) of the three shielding members 80.
The third shielding member 80 is arranged so that the detection light receiving element 30 does not receive the pulsed light reflected from the reflecting member 11, and the reference light receiving member 20 does not receive the pulsed light reflected from the glass 2. It is arranged in. That is, the third shielding member 80 constitutes both roles of the first shielding member 40 and the second shielding member 50 in the first embodiment as a single member.
Therefore, the detection light receiving member is less affected by the pulsed light reflected from the reflecting member, so that erroneous detection can be reduced, and the reference light receiving member is less affected by the pulsed light reflected from the glass. Detection can be reduced.

また、本例の場合、一方の発光部材13と基準受光部材20間には、遮蔽部材を配置していないと共に、他方の発光部材14と検出受光部材30間には、遮蔽部材を配置していない。
よって、本例では、基準受光部材20は、照射軸の垂直方向に対して、一方の発光部材13と一部重畳して配置できると共に、検出受光部材30は、照射軸の垂直方向に対して、他方の発光部材14と一部重畳して配置できるため、水滴検出装置全体をより小型化できる。
In the case of this example, a shielding member is not disposed between one light emitting member 13 and the reference light receiving member 20, and a shielding member is disposed between the other light emitting member 14 and the detection light receiving member 30. Absent.
Therefore, in this example, the reference light receiving member 20 can be disposed so as to partially overlap the one light emitting member 13 with respect to the vertical direction of the irradiation axis, and the detection light receiving member 30 can be disposed with respect to the vertical direction of the irradiation axis. Since the light emitting member 14 can be partially overlapped with the other light emitting member 14, the entire water droplet detecting device can be further downsized.

なお、図6は、ガラスの内表面に水滴がある場合を説明しており、図6(a)は、図2(a)において2つの発光部材13、14から照射される場合のパルス光の経路となり、図6(b)は、図2(b)と同様な信号説明図となる。
また、本例のガラスの外表面に水滴がある場合のパルス光の経路は、図3(a)において2つの発光部材13、14から照射される場合のパルス光の経路となり、この場合の信号説明図は、図3(b)と同様となる。
また、本例のガラスの内表面と外表面に水滴がない場合のパルス光の経路は、図4(a)において2つの発光部材13、14から照射される場合のパルス光の経路となり、この場合の信号説明図は、図4(b)と同様となる。
そして、本例の水滴検出ルーチンは、第1の実施形態例と同様のルーチンとなる。
FIG. 6 illustrates the case where there are water droplets on the inner surface of the glass, and FIG. 6A shows the pulsed light emitted from the two light emitting members 13 and 14 in FIG. 6 (b) is a signal explanatory diagram similar to FIG. 2 (b).
Further, the path of the pulsed light when there are water droplets on the outer surface of the glass of this example is the path of the pulsed light when irradiated from the two light emitting members 13 and 14 in FIG. The explanatory diagram is the same as FIG.
Further, the path of the pulsed light when there is no water droplet on the inner surface and the outer surface of the glass of this example is the path of the pulsed light when irradiated from the two light emitting members 13 and 14 in FIG. The signal explanatory diagram in this case is the same as FIG.
The water droplet detection routine of this example is the same routine as that of the first embodiment.

以上、本発明の2つの実施形態例を説明したが、本発明はこれらの実施形態例に限定されるものではなく、本発明の趣旨を逸脱しない範囲で上記実施形態例を適宜に変形可能である。例えば、本例の発光部材の駆動信号S1(パルス波形)が振幅変調(例えば、変調周波数100kHz)されて発光部材により照射されてもよい。この場合、基準受光部材と検知受光部材の出力信号が不図示の復調回路に入力され、この復調回路は振幅変化を出力することで、上述の実施形態例と同様に扱うことができる。   The two embodiments of the present invention have been described above. However, the present invention is not limited to these embodiments, and the above embodiments can be appropriately modified without departing from the spirit of the present invention. is there. For example, the drive signal S1 (pulse waveform) of the light emitting member of this example may be amplitude-modulated (for example, modulation frequency 100 kHz) and irradiated by the light emitting member. In this case, output signals from the reference light receiving member and the detection light receiving member are input to a demodulating circuit (not shown), and this demodulating circuit outputs the change in amplitude, and can be handled in the same manner as the above-described embodiment.

また、上述の基準受光部材20と検出受光部材30は、ガラス2から同じ距離に配されているが、基準受光部材20と検出受光部材30は、ガラス2から同じ距離に配されなくてもよい。例えば、検出受光部材が基準受光部材に対してガラス側から離れて配されれば、その離された距離分だけ、検出受光部材の出力信号S3が遅れることになる。そして、得られた検出受光部材の出力信号S3に、その離された距離分だけ位相を進ませるように構成すれば、本例は、上記実施形態例と同様に扱うことができる。   Further, although the above-described reference light receiving member 20 and the detection light receiving member 30 are arranged at the same distance from the glass 2, the reference light receiving member 20 and the detection light receiving member 30 may not be arranged at the same distance from the glass 2. . For example, if the detection light-receiving member is arranged away from the glass side with respect to the reference light-receiving member, the output signal S3 of the detection light-receiving member is delayed by the separated distance. Then, if the output signal S3 of the detected light receiving member is configured to advance the phase by the separated distance, this example can be handled in the same manner as the above embodiment.

1 水滴検出装置
2 ガラス
3 ガラスの内表面
4 ガラスの外表面
5 水滴
10 発光部材
11 反射部材
12 駆動回路
13 一方の発光部材
14 他方の発光部材
20 基準受光部材
30 検出受光部材
40 第1遮蔽部材
50 第2遮蔽部材
60 位相比較部
70 マイクロコンピュータ
80 第3遮蔽部材
H ガラスの厚み
S1 発光部材の駆動信号
S2 基準受光部材の出力信号
S3 検出受光部材の出力信号
S4 位相比較部の出力信号
DESCRIPTION OF SYMBOLS 1 Water drop detection apparatus 2 Glass 3 Glass inner surface 4 Glass outer surface 5 Water drop 10 Light emitting member 11 Reflective member 12 Drive circuit 13 One light emitting member 14 The other light emitting member 20 Reference light receiving member 30 Detection light receiving member 40 First shielding member 50 Second shielding member 60 Phase comparison unit 70 Microcomputer 80 Third shielding member H Glass thickness S1 Light emitting member drive signal S2 Reference light receiving member output signal S3 Detection light receiving member output signal S4 Phase comparison unit output signal

Claims (7)

ガラスの内表面に設けた反射部材にパルス光をほぼ垂直入射する発光部材と、
前記反射部材からほぼ垂直反射されるパルス光を受光する基準受光部材と、
前記ガラスからほぼ垂直反射されるパルス光を受光する検出受光部材と、
前記基準受光部材と前記検出受光部材の出力信号の位相を比べる位相比較部と、を備えており、
前記位相比較部の結果より、前記ガラスの内表面あるいは外表面の水滴の有無を検出することを特徴とする水滴検出装置。
A light-emitting member that makes the pulsed light substantially perpendicularly incident on the reflecting member provided on the inner surface of the glass;
A reference light receiving member that receives pulsed light that is substantially vertically reflected from the reflecting member; and
A detection light-receiving member that receives pulsed light reflected substantially vertically from the glass;
A phase comparison unit that compares the phases of the output signals of the reference light receiving member and the detection light receiving member,
A water droplet detection apparatus that detects the presence or absence of water droplets on the inner surface or outer surface of the glass from the result of the phase comparison unit.
前記基準受光部材と前記検出受光部材は、前記発光部材から同じ距離に配されると共に、前記ガラスから同じ距離に配されることを特徴とする請求項1に記載の水滴検出装置。   The water droplet detection device according to claim 1, wherein the reference light receiving member and the detection light receiving member are disposed at the same distance from the light emitting member and at the same distance from the glass. 前記反射部材から反射されるパルス光を前記検出受光部材に受光させない第1遮蔽部材が設けられていることを特徴とする請求項1または2に記載の水滴検出装置。   The water droplet detection device according to claim 1, wherein a first shielding member that prevents the detection light receiving member from receiving pulsed light reflected from the reflection member is provided. 前記ガラスから反射されるパルス光を前記基準受光部材に受光させない第2遮蔽部材が設けられていることを特徴とする請求項1ないし3のいずれか1項に記載の水滴検出装置。   4. The water droplet detection device according to claim 1, wherein a second shielding member that prevents the reference light receiving member from receiving pulsed light reflected from the glass is provided. 5. 前記発光部材は、前記基準受光部材と前記検出受光部材より前記ガラス側に近づいて配されることを特徴とする請求項1ないし4のいずれか1項に記載の水滴検出装置。   5. The water droplet detection device according to claim 1, wherein the light emitting member is disposed closer to the glass side than the reference light receiving member and the detection light receiving member. 6. 前記検出受光部材の受光軸および前記基準受光部材の受光軸は、前記ガラス面に対してほぼ垂直であることを特徴とする請求項1ないし5のいずれか1項に記載の水滴検出装置。   6. The water droplet detection device according to claim 1, wherein a light receiving axis of the detection light receiving member and a light receiving axis of the reference light receiving member are substantially perpendicular to the glass surface. 請求項1ないし6のいずれか1項に記載の水滴検出装置と、ワイパ駆動装置と、空調装置とを備えた水滴除去装置であって、
前記水滴検出装置が前記ガラスの外表面に水滴があることを検出すると、前記ワイパ駆動装置が動作し、
前記水滴検出装置が前記ガラスの内表面に水滴があることを検出すると、前記空調装置が動作することを特徴とする水滴除去装置。
A water droplet removing device comprising the water droplet detection device according to any one of claims 1 to 6, a wiper drive device, and an air conditioner,
When the water droplet detection device detects that there are water droplets on the outer surface of the glass, the wiper driving device operates,
When the water droplet detection device detects that there are water droplets on the inner surface of the glass, the air conditioner operates.
JP2013011369A 2013-01-24 2013-01-24 Water drop detection device and water drop removal device Expired - Fee Related JP6037560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013011369A JP6037560B2 (en) 2013-01-24 2013-01-24 Water drop detection device and water drop removal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013011369A JP6037560B2 (en) 2013-01-24 2013-01-24 Water drop detection device and water drop removal device

Publications (2)

Publication Number Publication Date
JP2014142283A JP2014142283A (en) 2014-08-07
JP6037560B2 true JP6037560B2 (en) 2016-12-07

Family

ID=51423688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013011369A Expired - Fee Related JP6037560B2 (en) 2013-01-24 2013-01-24 Water drop detection device and water drop removal device

Country Status (1)

Country Link
JP (1) JP6037560B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5631624A (en) * 1979-08-24 1981-03-31 Noritake Co Ltd Photoelectronic type smoke detector of scattered light detecting type
JPS6243543A (en) * 1985-08-21 1987-02-25 Honda Motor Co Ltd Water drop detector for window glass
FR2785051A1 (en) * 1998-10-27 2000-04-28 Thomson Csf Sensor for detecting rain on motor vehicle windscreen, comprises light source, diffraction grating supplying diffracted and undiffracted light beams, optical system, diaphragm and photodetector
JP4513681B2 (en) * 2005-07-25 2010-07-28 株式会社デンソー Raindrop / condensation detector
JP4098341B1 (en) * 2006-12-28 2008-06-11 北陽電機株式会社 Optical window dirt detector for scanning rangefinder
JP5648168B2 (en) * 2010-07-15 2015-01-07 北陽電機株式会社 Signal processing device and scanning distance measuring device

Also Published As

Publication number Publication date
JP2014142283A (en) 2014-08-07

Similar Documents

Publication Publication Date Title
JP4098341B1 (en) Optical window dirt detector for scanning rangefinder
JP5598831B2 (en) Scanning distance measuring device
TWI399677B (en) Optical detection apparatus and method
EP2063255B1 (en) Fog detector and method of placing detector in vehicle
JP5251858B2 (en) Laser radar equipment
US20160024825A1 (en) Collision protection device for a pivotable hatch of a motor vehicle, hatch, motor vehicle and corresponding method
US20160341848A1 (en) Object detection apparatus, object removement control system, object detection method, and storage medium storing object detection program
KR20110060495A (en) Rain-sensor using light scattering
JP2015025770A (en) Detection device, vehicle
JP2018103725A (en) Wiper operation detection device
JP5678719B2 (en) Photodetector
JP2008506130A (en) Photoelectric sensor device for automobile
JP5632352B2 (en) Object detection device
KR20210104667A (en) object detection device
JP6037560B2 (en) Water drop detection device and water drop removal device
US7209272B2 (en) Object detecting apparatus having operation monitoring function
JP2015184026A (en) laser radar device
JP2007033153A (en) Raindrop and dew condensation detector
KR102508988B1 (en) Lidar sensing device
JP2015184037A (en) laser radar device
JP2021135232A5 (en)
JP2009042156A (en) Photosensor device
JP4193724B2 (en) Distance detector
US20190204422A1 (en) Detecting system for detecting distant objects
JP2009064265A (en) Glass crack detector for window of automobile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151224

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161031

R150 Certificate of patent or registration of utility model

Ref document number: 6037560

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees