JP5598831B2 - Scanning distance measuring device - Google Patents

Scanning distance measuring device Download PDF

Info

Publication number
JP5598831B2
JP5598831B2 JP2007229828A JP2007229828A JP5598831B2 JP 5598831 B2 JP5598831 B2 JP 5598831B2 JP 2007229828 A JP2007229828 A JP 2007229828A JP 2007229828 A JP2007229828 A JP 2007229828A JP 5598831 B2 JP5598831 B2 JP 5598831B2
Authority
JP
Japan
Prior art keywords
light
measurement
deflecting
scanning
deflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007229828A
Other languages
Japanese (ja)
Other versions
JP2009063339A (en
Inventor
利宏 森
真一 佃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuyo Automatic Co Ltd
Original Assignee
Hokuyo Automatic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuyo Automatic Co Ltd filed Critical Hokuyo Automatic Co Ltd
Priority to JP2007229828A priority Critical patent/JP5598831B2/en
Publication of JP2009063339A publication Critical patent/JP2009063339A/en
Application granted granted Critical
Publication of JP5598831B2 publication Critical patent/JP5598831B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Description

本発明は、測定対象空間に測定光を走査して、測定光と測定対象空間に存在する測定対象物からの反射光に基づいて測定対象物までの距離を測定する走査式測距装置に関する。   The present invention relates to a scanning distance measuring apparatus that scans measurement light in a measurement target space and measures the distance to the measurement target based on the measurement light and reflected light from the measurement target existing in the measurement target space.

この種の走査式測距装置は、ロボットや無人車の視覚認識センサとしてのナビゲーション用センサ、或いは、ドアの開閉センサや危険な装置に人や物が近づくのを検出し、機械を安全に停止する安全センサ、車の形状を検出して車種の判別および通過する車の数をカウントするETCシステム用センサ、人を検出して人数をカウントして込み具合や、人の流れを検出する検出用センサ、さらには、監視領域への侵入者の有無を検出する監視センサ等に利用され、測定光を出力する投光部と、投光部から出力された測定光を測定対象空間に向けて走査する走査部と、測定対象空間に存在する測定対象物からの反射光を検出する受光部を備え、測定光と受光部で検出された反射光に基づいて測定対象物までの距離が測定される。   This type of scanning distance measuring device can safely stop a machine by detecting the approach of a human or object to a navigation sensor as a visual recognition sensor for a robot or an unmanned vehicle, or a door opening / closing sensor or a dangerous device. Safety sensor, ETC system sensor that detects the shape of the vehicle and counts the number of vehicles passing, and detects the number of people by detecting the number of people Used for sensors and monitoring sensors that detect the presence or absence of intruders in the monitoring area, and scans the measurement light output from the light projecting unit that outputs measurement light toward the measurement target space. And a light receiving unit that detects reflected light from the measurement object existing in the measurement target space, and the distance to the measurement target is measured based on the measurement light and the reflected light detected by the light receiving unit. .

このような走査式測距装置として、特許文献1には、図13に示すように、レーザ光源504とレンズ505を備えた投光部と、受光レンズ508とフォトダイオード等の受光素子509を備えた受光部と、モータ502の回転軸501に取り付けた投受光用ミラー503と、投光部からの測定光を投受光用ミラー503に向けて偏向する反射ミラー506を備え、投受光用ミラー503により測定対象空間に向けて偏向された測定光のうち、測定対象空間内の障害物507からの反射光が投受光用ミラー503で受光部509に向けて偏向されるように構成され、モータ502の回転により測定光が水平面内で走査される走査式測距装置500が提案されている。   As such a scanning distance measuring apparatus, Patent Document 1 includes a light projecting unit including a laser light source 504 and a lens 505, a light receiving lens 508, and a light receiving element 509 such as a photodiode, as shown in FIG. A light receiving / receiving part, a light projecting / receiving mirror 503 attached to the rotating shaft 501 of the motor 502, and a reflection mirror 506 for deflecting the measuring light from the light projecting part toward the light projecting / receiving mirror 503. Among the measurement lights deflected toward the measurement target space, the reflected light from the obstacle 507 in the measurement target space is deflected toward the light receiving unit 509 by the light projecting / receiving mirror 503, and the motor 502 There has been proposed a scanning distance measuring device 500 in which measurement light is scanned in a horizontal plane by rotation of.

また、特許文献2には、図14に示すように、投光部201と、投光部201から出力された測定光の光軸P上に対向配置された受光部202と、モータ210により光軸P周りに回転駆動されるキャップ部材204と、光軸Pに対して所定の傾斜角度でキャップ部材204の上壁上面に配置され、且つ、投光部200からの測定光を光軸Pと直角方向に向けて偏向する投光ミラー206と、光軸Pに対して所定の傾斜角度でキャップ部材204の上壁下面に固定され、且つ、測定対象空間に出力された測定光のうち障害物Rからの反射光を受光部202に向けて偏向する受光ミラー208を備えた走査式測距装置200が提案されている。
米国特許5,455,669号明細書 特開2006−349449号公報
Further, in Patent Document 2, as shown in FIG. 14, light is emitted by a light projecting unit 201, a light receiving unit 202 disposed opposite to the optical axis P of measurement light output from the light projecting unit 201, and a motor 210. A cap member 204 that is driven to rotate about the axis P, and is disposed on the upper surface of the upper wall of the cap member 204 at a predetermined inclination angle with respect to the optical axis P, and the measurement light from the light projecting unit 200 is the optical axis P. A projection mirror 206 that deflects in a direction perpendicular to the optical axis P, and is fixed to the lower surface of the upper wall of the cap member 204 at a predetermined inclination angle with respect to the optical axis P. A scanning distance measuring apparatus 200 including a light receiving mirror 208 that deflects reflected light from R toward a light receiving unit 202 has been proposed.
US Pat. No. 5,455,669 JP 2006-349449 A

上述した特許文献1に開示された走査式測距装置は、投光部から測定対象空間へ測定光を偏向する偏向ミラーと、測定対象空間から受光部へ反射光を偏向する偏向ミラーが、一枚の投受光用ミラー503で兼用され、光路径が大きな反射光をミラーの周辺部で受光部に向けて偏向するために、投受光用ミラー503を面積が広い偏向面に形成する必要があり、さらには、反射光を受光部に導く光路長が長くなるため、受光レンズ508の口径が大きくなり、装置の小型化が困難になるという問題が内在している。   The scanning distance measuring device disclosed in Patent Document 1 described above includes a deflection mirror that deflects measurement light from a light projecting unit to a measurement target space, and a deflection mirror that deflects reflected light from the measurement target space to a light receiving unit. In order to deflect reflected light having a large optical path diameter toward the light receiving portion at the periphery of the mirror, it is necessary to form the light projecting / receiving mirror 503 on a deflecting surface having a large area. Furthermore, since the optical path length for guiding the reflected light to the light receiving portion becomes long, there is a problem that the aperture of the light receiving lens 508 becomes large and it is difficult to reduce the size of the apparatus.

特許文献2に開示された走査式測距装置は、投光ミラー206及び受光ミラー208がキャップ部材204の上壁部を介して相互に近接して配置されているので、投光ミラーの投光光軸と受光ミラーの受光光軸の光軸間距離も必然的に小さくなり、近距離での死角を実用上問題の無い程度まで小さくでき、また、受光レンズ209がキャップ部材204のうち受光ミラーの入射側に設けられているので、受光ミラーを小さくでき、走査式測距装置を小型化できる。   In the scanning distance measuring device disclosed in Patent Document 2, since the light projecting mirror 206 and the light receiving mirror 208 are arranged close to each other via the upper wall portion of the cap member 204, the light projecting of the light projecting mirror is performed. The distance between the optical axes of the optical axis and the light-receiving optical axis of the light-receiving mirror is inevitably small, and the blind spot at a short distance can be reduced to a practically non-problem. Since the light receiving mirror can be made small, the scanning distance measuring device can be miniaturized.

しかし、投光ミラー206と受光ミラー208がキャップ部材204によって分離され、測定光と反射光の光路が分離されているため、故意または不注意で透明窓に当接するように遮光シート等が貼られた場合に、投光部201から出力された測定光が遮光シートから反射しても反射光が受光部に入光せず、走査式測距装置としての機能が損なわれ、監視センサ等の用途で信頼性が確保できなくなるという問題があった。   However, since the light projecting mirror 206 and the light receiving mirror 208 are separated by the cap member 204 and the optical paths of the measurement light and the reflected light are separated, a light shielding sheet or the like is attached so as to contact the transparent window intentionally or carelessly. In this case, even if the measurement light output from the light projecting unit 201 is reflected from the light shielding sheet, the reflected light does not enter the light receiving unit, and the function as a scanning distance measuring device is impaired. There was a problem that reliability could not be secured.

本発明の目的は、上述した問題点に鑑み、小型化を可能としながらも、光学窓が遮光シート等で覆われたことが容易に検出できる安価な走査式測距装置を提供する点にある。   In view of the above-described problems, an object of the present invention is to provide an inexpensive scanning rangefinder that can easily detect that an optical window is covered with a light-shielding sheet or the like while allowing for downsizing. .

この目的達成をするため、本発明による走査式測距装置の第一の特徴構成は、特許請求の範囲の書類の請求項1に記載した通り、投光部から出力された測定光を測定対象空間に向けて偏向する第一偏向部材と、前記測定対象空間に存在する測定対象物からの反射光を集光する受光レンズと、前記受光レンズを透過した反射光を、前記第一偏向部材を挟んで前記投光部と対向配置された受光部に向けて偏向する、前記第一偏向部材と偏向面が異なる第二偏向部材とを備えた光学系と、前記光学系を所定の軸心周りに回転させる走査機構を備え、測定光と前記受光部で検出された反射光に基づいて前記測定対象物までの距離を測定する走査式測距装置であって、前記第一偏向部材によって偏向された測定光を、前記第二偏向部材への反射光の入射光路内にある領域であって、当該入射光路の光軸から入射光の径方向に離隔した領域から出力する光学部材を前記走査機構に備えている点にある。 In order to achieve this object, the first characteristic configuration of the scanning distance measuring device according to the present invention is that the measurement light output from the light projecting unit is measured as described in claim 1 of the claims. A first deflecting member that deflects toward the space, a light receiving lens that collects reflected light from the measurement object existing in the measurement target space, and a reflected light that has passed through the light receiving lens , sandwiched therebetween deflected toward the light projecting section and the oppositely disposed light-receiving portion, the first deflecting member and the optical system deflecting surface has a different second deflecting member, wherein around the predetermined axis optical system A scanning distance measuring device that measures a distance to the measurement object based on measurement light and reflected light detected by the light receiving unit, and is deflected by the first deflection member. The reflected measurement light is incident on the second deflecting member. An area within the road, there an optical member to be output from a region spaced in the radial direction of the incident light from the optical axis of the incident light path to the point that provided the scanning mechanism.

上述の構成によれば、第一偏向部材によって偏向された測定光が第二偏向部材への反射光の入射光路内にある領域であって、当該入射光路の光軸から入射光の径方向に離隔した領域から出力されるため、光学窓に遮光シート等が貼り付けられた場合でも、遮光シート等からの反射光の一部が入射光路に沿って第二偏向部材へ入射するようになり、そのような測定光と反射光に基づいて至近距離に遮光シート等の異物が存在することを確実に検出できるようになる。 According to the above-described configuration, the measurement light deflected by the first deflecting member is a region in the incident optical path of the reflected light to the second deflecting member, and extends from the optical axis of the incident optical path in the radial direction of the incident light. Since the light is output from the separated area , even when a light shielding sheet or the like is attached to the optical window, a part of the reflected light from the light shielding sheet or the like enters the second deflecting member along the incident light path, Based on such measurement light and reflected light, it is possible to reliably detect the presence of a foreign substance such as a light shielding sheet at a close distance.

同第二の特徴構成は、同請求項2に記載した通り、上述の第一特徴構成に加えて、受光レンズのうち、前記第二偏向部材への反射光の入射光路内にある領域であって、前記測定光が通過する領域が切り欠かれている点にある。 In addition to the first feature configuration described above, the second feature configuration is a region in the incident light path of the reflected light to the second deflection member, in addition to the first feature configuration described above. Thus, the region through which the measurement light passes is cut out.

上述の構成によれば、前記第一偏向部材によって偏向された測定光が、受光レンズの切り欠かれた領域を通過するので、測定光が受光レンズにより屈折することなく、適切に測定対象空間に向けて出力することができる。   According to the above configuration, the measurement light deflected by the first deflecting member passes through the notched region of the light receiving lens, so that the measurement light is appropriately refracted by the light receiving lens and appropriately enters the measurement target space. Can be output.

同第三の特徴構成は、同請求項3に記載した通り、上述の第一特徴構成または第二特徴構成に加えて、前記光学部材が、前記第二偏向部材と、前記第二偏向部材の偏向面のうち前記走査方向に沿った領域の一部に偏向面が延出形成された前記第一偏向部材で構成されている点にある。   According to the third feature configuration, in addition to the first feature configuration or the second feature configuration described above, the optical member includes the second deflection member and the second deflection member. The deflecting surface is constituted by the first deflecting member in which the deflecting surface is extended and formed in a part of the region along the scanning direction.

上述の構成によれば、第一偏向部材の偏向面のうち、第二偏向部材への延出領域から測定対象空間に出力された測定光が遮光シート等の異物に反射すると、反射光の一部が第二偏向部材の偏向面のうち走査方向に沿って当該延出領域に隣接する領域に入光するため、光シート等の異物が存在することを確実に検出できるようになる。   According to the above-described configuration, when the measurement light output from the extension area to the second deflection member of the first deflection member to the measurement target space is reflected by a foreign object such as a light shielding sheet, one of the reflected light is reflected. Since the portion enters the region adjacent to the extension region along the scanning direction on the deflection surface of the second deflection member, it is possible to reliably detect the presence of foreign matter such as a light sheet.

同第四の特徴構成は、同請求項4に記載した通り、上述の第三特徴構成に加えて、前記第一偏向部材と第二偏向部材が一体形成されている点にある。   The fourth characteristic configuration is that, in addition to the third characteristic configuration described above, the first deflection member and the second deflection member are integrally formed as described in the fourth aspect.

上述の構成によれば、第一偏向部材の偏向面と第二偏向部材の偏向面の成す角度が所定の角度となるように光学部材を一体形成することで、測定光及び反射光夫々の偏向面での入射角度及び反射角度の調整が不要となり、少ない部品点数で精度良く、走査式測距装置を容易に組み立てることができるようになる。   According to the above-described configuration, the optical member is integrally formed so that the angle formed by the deflection surface of the first deflection member and the deflection surface of the second deflection member becomes a predetermined angle, thereby deflecting each of the measurement light and the reflected light. It is not necessary to adjust the incident angle and the reflection angle on the surface, and the scanning distance measuring device can be easily assembled with a small number of parts and with high accuracy.

同第五の特徴構成は、同請求項5に記載した通り、上述の第三特徴構成または第四特徴構成に加えて、前記光学系に、前記第一偏向部材により偏向された測定光を測定対象空間に案内する筒状のガイド部材を備えている点にある。   In the fifth feature configuration, as described in claim 5, in addition to the third feature configuration or the fourth feature configuration described above, the measurement light deflected by the first deflection member is measured in the optical system. It is in the point provided with the cylindrical guide member which guides to object space.

上述の構成によれば、第一偏向部材により偏向された測定光が筒状のガイド部材の中を通過して測定対象空間に案内されるので、投光部から出力された測定光の一部が装置内部で反射して発生する迷光が受光部で誤検出されるような不都合を解消することができる。   According to the above-described configuration, the measurement light deflected by the first deflection member passes through the cylindrical guide member and is guided to the measurement target space, so a part of the measurement light output from the light projecting unit However, it is possible to eliminate the inconvenience that stray light generated by reflection inside the apparatus is erroneously detected by the light receiving unit.

同第六の特徴構成は、同請求項6に記載した通り、上述の第一特徴構成に加えて、前記光学部材が、前記第一偏向部材によって偏向された測定光を、前記第二偏向部材への反射光の入射光路内から出力するように平行移動させる二つの反射面を備えた第三偏向部材で構成されている点にある。   In the sixth feature configuration, in addition to the first feature configuration described above, in the sixth feature configuration, the optical member causes the second deflection member to transmit the measurement light deflected by the first deflection member. It is in the point comprised by the 3rd deflection | deviation member provided with the two reflective surfaces made to translate so that it may output from the inside of the incident optical path of the reflected light to.

上述の構成によれば、第一偏向部材によって測定対象空間に向けて偏向された測定光の光軸が、第三偏向部材の二つの反射面で偏向され、測定光が第二偏向部材への反射光の入射光路内から出力されるように平行移動される。   According to the above-described configuration, the optical axis of the measurement light deflected toward the measurement target space by the first deflection member is deflected by the two reflecting surfaces of the third deflection member, and the measurement light is directed to the second deflection member. The reflected light is translated so as to be output from the incident light path.

同第七の特徴構成は、請求項7に記載したとおり、上述の第六特徴構成に加え、受光レンズのうち、前記第二偏向部材への反射光の入射光路内にある領域であって、前記測定光が通過する領域が切り欠かれ、前記第三偏向部材が前記受光レンズの切欠部に配置されている点にある。 In the seventh feature configuration, as described in claim 7, in addition to the sixth feature configuration described above, in the light receiving lens , a region in the incident light path of the reflected light to the second deflection member, The region through which the measurement light passes is notched, and the third deflection member is disposed in the notch portion of the light receiving lens.

上述の構成によれば、第一偏向部材によって偏向された測定光が、受光レンズの切欠部に配置された第三偏向部材を通過するので、測定光が受光レンズにより屈折することなく、適切に測定対象空間に向けて出力することができる。   According to the above configuration, the measurement light deflected by the first deflecting member passes through the third deflecting member disposed in the notch portion of the light receiving lens, so that the measuring light is appropriately refracted by the light receiving lens. It can output toward the measurement object space.

以上説明したように、本発明によれば、小型化を可能としながらも、光学窓が遮光シート等で覆われたことが容易に検出できる安価な走査式測距装置を提供することができるようになった。   As described above, according to the present invention, it is possible to provide an inexpensive scanning distance measuring device that can easily detect that the optical window is covered with a light-shielding sheet or the like while allowing a reduction in size. Became.

以下、本発明による走査式測距装置の第一の実施形態について説明する。   Hereinafter, a first embodiment of a scanning distance measuring device according to the present invention will be described.

図1に示すように、本発明による走査式測距装置1は、横断面視で略半円形状の湾曲面に形成された光透過性の光学窓2aが上部ハウジング21と下部ハウジング22の間に配置され、上部ハウジング21の正面には装置1の状態が判別可能なモニタ表示部79が設けられている。光学窓2aに対向配置された背部ハウジング23の上面に装置1で検出された距離情報を外部に取り出す信号ケーブルを接続する一対のケーブルクランプ78が取り付けられている。   As shown in FIG. 1, the scanning distance measuring device 1 according to the present invention includes a light-transmitting optical window 2 a formed on a curved surface having a substantially semicircular shape in a cross-sectional view, between an upper housing 21 and a lower housing 22. A monitor display unit 79 that can determine the state of the device 1 is provided on the front surface of the upper housing 21. A pair of cable clamps 78 for connecting a signal cable for taking out distance information detected by the apparatus 1 to the outside is attached to the upper surface of the back housing 23 arranged to face the optical window 2a.

走査式測距装置1は、レーザ等の光源LDから出力される測定光に変調を加えて光学窓2aを通して対象物Rに照射し、対象物Rからの反射光を光学窓2aを通して受光素子PDで検出して距離を測定するもので、測定光の変調方式としてAM(Amplitude Modify)方式とTOF(Time of Flight)方式の二種類が実用化されている。   The scanning distance measuring device 1 modulates measurement light output from a light source LD such as a laser and irradiates the object R through the optical window 2a, and receives the reflected light from the object R through the optical window 2a. The distance is detected and detected, and AM (Amplitude Modify) method and TOF (Time of Flight) method have been put into practical use as the measurement light modulation method.

AM方式は、図11(a)及び(数1)に示すように、正弦波でAM変調された測定光とその反射光を光電変換して、それらの信号間の位相差Δφを計算し、位相差Δφから距離を演算する方式であり、TOF方式は、図11(b)及び(数2)に示すように、パルス状に変調された測定光とその反射光を光電変換し、それらの信号間の遅延時間Δtから距離を演算する方式であり、本発明が適用される走査式測距装置1は、上述の何れの方式をも採用することができるものである。
[数1]
L=Δφ・C/(4π・f)
[数2]
L=Δt・C/2
As shown in FIGS. 11A and 11, the AM method photoelectrically converts measurement light modulated by a sine wave and its reflected light, and calculates a phase difference Δφ between these signals. This is a method for calculating the distance from the phase difference Δφ, and the TOF method photoelectrically converts the measurement light modulated in a pulse shape and its reflected light as shown in FIGS. This is a method for calculating the distance from the delay time Δt between signals, and the scanning distance measuring apparatus 1 to which the present invention is applied can employ any of the above-described methods.
[Equation 1]
L = Δφ · C / (4π · f)
[Equation 2]
L = Δt · C / 2

図2及び図3に示すように、走査式測距装置1は、内壁面が迷光を吸収する暗幕等の吸光部材で被覆されたハウジング21,22,23の内部に、測定光を出力する投光部3と反射光を検出する受光部5が光軸L1に沿って対向配置され、投光部3と受光部5との間に測定光を回転走査する走査機構4が配置されている。   As shown in FIGS. 2 and 3, the scanning distance measuring device 1 projects measurement light into the housings 21, 22 and 23 whose inner wall surfaces are covered with a light absorbing member such as a dark curtain that absorbs stray light. The light unit 3 and the light receiving unit 5 that detects the reflected light are arranged to face each other along the optical axis L 1, and the scanning mechanism 4 that rotates and scans the measurement light is disposed between the light projecting unit 3 and the light receiving unit 5.

走査機構4は、投光部3と受光部5を結ぶ光軸L1と一致する回転軸心P周りに光学系9を回転させる筒状の回転体8と、回転体8を回転駆動するモータ11を備えて構成されている。   The scanning mechanism 4 includes a cylindrical rotating body 8 that rotates the optical system 9 around a rotation axis P that coincides with the optical axis L <b> 1 that connects the light projecting unit 3 and the light receiving unit 5, and a motor 11 that rotationally drives the rotating body 8. It is configured with.

回転体8は、下端部が縮径された円筒状の周壁部8aと天板部8bとからなり、その内周面に備えた軸受12を介して中空軸13によって回転可能に支承されている。   The rotating body 8 includes a cylindrical peripheral wall portion 8a having a reduced diameter at the lower end portion and a top plate portion 8b, and is rotatably supported by a hollow shaft 13 via a bearing 12 provided on an inner peripheral surface thereof. .

モータ11は、縮径された周壁部8aの下端部の外周面に取り付けられたマグネット11bでなる回転子と、ケーシング側に配置されたコイル11aでなる固定子とで構成され、コイル11aとマグネット11bとの相互作用により、回転体8が回転軸心P周りで回転可能に構成されている。   The motor 11 includes a rotor made up of a magnet 11b attached to the outer peripheral surface of the lower end portion of the peripheral wall 8a having a reduced diameter, and a stator made up of a coil 11a arranged on the casing side. The rotating body 8 is configured to be rotatable around the rotation axis P by the interaction with 11b.

投光部3は、半導体レーザを用いた発光素子3aと、発光素子3aの駆動回路3bを備えて構成され、発光素子3aは、そこから出力される測定光の光軸L1と軸心Pが一致するように上部ハウジング21に固定配置されるとともに光軸L1上に光のビーム径を一定にする光学レンズ3cが配置されている。   The light projecting unit 3 includes a light emitting element 3a using a semiconductor laser and a drive circuit 3b for the light emitting element 3a. The light emitting element 3a has an optical axis L1 and an axis P of measurement light output therefrom. An optical lens 3c that is fixedly disposed on the upper housing 21 so as to coincide with each other and that makes the beam diameter of light constant on the optical axis L1 is disposed.

受光部5は、回転軸心P上に走査機構4を挟んで投光部3と対向するように回転体8の内部に固定配置され、反射光を検出するアバランシェフォトダイオードでなる受光素子5aと、受光素子5aで光電変換された反射信号を増幅する増幅回路5bを備えて構成されている。   The light receiving unit 5 is fixedly disposed inside the rotating body 8 so as to face the light projecting unit 3 with the scanning mechanism 4 sandwiched on the rotation axis P, and a light receiving element 5a formed of an avalanche photodiode that detects reflected light. The amplifier circuit 5b amplifies the reflection signal photoelectrically converted by the light receiving element 5a.

回転体8には、投光部3から光軸L1に沿って出力された測定光を測定対象空間に向けて90度偏向する第一偏向部材としての第一偏向ミラー9aと、測定対象空間に存在する測定対象物Rからの反射光を集光する受光レンズ9cと、受光レンズ9cを透過した反射光を光軸L1に沿って投光部3と対向配置された受光部5に向けて90度偏向する第二偏向部材としての第二偏向ミラー9bを備えた光学系9が取り付けられている。   The rotating body 8 includes a first deflection mirror 9a as a first deflection member that deflects the measurement light output from the light projecting unit 3 along the optical axis L1 by 90 degrees toward the measurement target space, and the measurement target space. The light receiving lens 9c that collects the reflected light from the existing measurement object R and the reflected light that has passed through the light receiving lens 9c are directed 90 toward the light receiving unit 5 that is disposed opposite to the light projecting unit 3 along the optical axis L1. An optical system 9 having a second deflecting mirror 9b as a second deflecting member that deflects the lens is attached.

つまり、投光部3から光軸L1に沿った光路Laで出射された測定光が、第一偏向ミラー9aで光軸L1と垂直な光軸L2に沿った光路Lbに偏向された後に、光学窓2aを通過して測定対象空間に照射され、光軸L2と平行な光軸L3に沿った光路Lcで光学窓2aを通過した測定対象物からの反射光が、受光レンズ9cで収束され、第二偏向ミラー9bにより光軸L1と等しい光軸L4に偏向されて受光部5に導かれる。   That is, the measurement light emitted from the light projecting unit 3 along the optical path La along the optical axis L1 is deflected by the first deflection mirror 9a into the optical path Lb along the optical axis L2 perpendicular to the optical axis L1, and then the optical The reflected light from the measurement object that has passed through the window 2a and is irradiated onto the measurement target space and passed through the optical window 2a along the optical path Lc along the optical axis L3 parallel to the optical axis L2 is converged by the light receiving lens 9c. The light is deflected by the second deflecting mirror 9b to the optical axis L4 equal to the optical axis L1 and guided to the light receiving unit 5.

回転体8の周壁8aの一部に受光レンズ9cを取り付ける開口部8cが形成され、開口部8cに対応して天板部8bに偏向ミラー9a,9bを取り付ける切欠部8dが形成されている。   An opening 8c for attaching the light receiving lens 9c is formed in a part of the peripheral wall 8a of the rotating body 8, and a notch 8d for attaching the deflection mirrors 9a and 9b is formed in the top plate 8b corresponding to the opening 8c.

図4(a)に示すように、樹脂または光学ガラスで一体成形された光学部材90の直交する二つの平面に、金またはアルミニウムが反射部材としてコーティングされた偏向面91,92が形成され、第一偏向面91により光軸L1に対して測定光を測定対象領域に向けて90度偏向させる第一偏向ミラー9aが構成され、第二偏向面92により反射光を光軸L4に沿った受光部5に向けて90度偏向させる第二偏向ミラー9bが構成されている。   As shown in FIG. 4A, deflecting surfaces 91 and 92 coated with gold or aluminum as a reflecting member are formed on two orthogonal planes of an optical member 90 integrally formed of resin or optical glass. A first deflection mirror 9a that deflects measurement light 90 degrees toward the measurement target region with respect to the optical axis L1 is configured by one deflection surface 91, and a light receiving unit that reflects reflected light along the optical axis L4 by the second deflection surface 92 A second deflecting mirror 9 b that deflects 90 degrees toward 5 is configured.

第二偏向面92の上端側中央部が切り欠かれ、当該切欠部95に第一偏向ミラー9aが延出形成されるとともに、第一偏向ミラー91の両側部に回転体8の天板部8bへの取り付け姿勢を規制する基準面93が形成され、基準面93には内周面に螺条が形成された取付穴94が形成されている。   A central portion on the upper end side of the second deflection surface 92 is cut out, and a first deflection mirror 9 a is formed to extend in the cutout portion 95, and the top plate portion 8 b of the rotating body 8 is formed on both sides of the first deflection mirror 91. A reference surface 93 that regulates the mounting posture is formed, and the reference surface 93 is formed with an attachment hole 94 in which a thread is formed on the inner peripheral surface.

図2及び図3に示すように、回転体8に形成された開口部8cから、一体形成された偏向ミラー9a,9bを挿入し、天板部8bに形成された切欠部8dの周面と上述の基準面93を接合させて取付穴94にビスを螺合させることにより、偏向ミラー9a,9bが回転体8に固定され、その後、開口部8cに受光レンズ9cが固定される。   As shown in FIGS. 2 and 3, the deflection mirrors 9a and 9b that are integrally formed are inserted through the opening 8c formed in the rotating body 8, and the peripheral surface of the notch 8d formed in the top plate 8b and By joining the above-described reference surface 93 and screwing screws into the mounting holes 94, the deflection mirrors 9a and 9b are fixed to the rotating body 8, and then the light receiving lens 9c is fixed to the opening 8c.

受光レンズ9cのレンズ中心より上部側の一部が直線状に切り欠かれ、さらにその中央部がレンズ中心方向に一部切り欠かれた切欠部が形成されている。第一偏向ミラー9aにより偏向された測定光を測定対象空間に案内する中空筒状のガイド部材9dが回転体8の天板部8bに形成された切欠部8dに固定され、ガイド部材9dの先端側端部が受光レンズ9cに形成された切欠部から延出するように、そしてガイド部材9dの基端側端部が第一偏向ミラー9aの下端側と接当するように配置されている。即ち、受光レンズのうち前記測定光が通過する領域が切り欠かれている。   A part of the light receiving lens 9c on the upper side from the lens center is cut out linearly, and a cutout part is formed in which the central part is cut out in the lens center direction. A hollow cylindrical guide member 9d for guiding the measurement light deflected by the first deflection mirror 9a to the measurement target space is fixed to a notch 8d formed in the top plate portion 8b of the rotating body 8, and the tip of the guide member 9d The side end portion is arranged so as to extend from the notch formed in the light receiving lens 9c, and the base end side end portion of the guide member 9d is arranged to contact the lower end side of the first deflection mirror 9a. That is, a region of the light receiving lens through which the measurement light passes is cut out.

ガイド部材9dの外周は遮光部材で被覆され、第一偏向ミラー9aにより偏向された測定光がガイド部材9dの中を通過して測定対象空間に案内される。従って、投光部3から出力された測定光の一部が回転体8内部に漏れて発生する迷光が受光部5で誤検出されるような不都合を解消することができる。   The outer periphery of the guide member 9d is covered with a light shielding member, and the measurement light deflected by the first deflection mirror 9a passes through the guide member 9d and is guided to the measurement target space. Accordingly, it is possible to eliminate the inconvenience that stray light generated by a part of the measurement light output from the light projecting unit 3 leaking into the rotating body 8 is erroneously detected by the light receiving unit 5.

上部ハウジング21と下部ハウジング22間に設けられた光学窓2aは、投光部3から出力された測定光が走査機構4により測定対象空間に照射され、測定対象空間に存在する測定対象物Rで反射した反射光が受光部5で検出されるように、上下方向に一定幅を有するとともに、上端から下端にかけて内側に僅かに傾斜するように配置され、測定光が回転軸心Pを中心として約250度範囲で走査可能に配置されている。これにより光学窓2a表面に埃等が積もりにくくしながらも、広範囲に亘る空間を走査できる。   The optical window 2a provided between the upper housing 21 and the lower housing 22 is a measurement object R that is irradiated with the measurement light output from the light projecting unit 3 by the scanning mechanism 4 and is present in the measurement target space. In order to detect the reflected light reflected by the light receiving unit 5, the light receiving unit 5 has a certain width in the vertical direction and is arranged so as to be slightly inclined inward from the upper end to the lower end, and the measurement light is about about the rotation axis P. It is arranged so as to be able to scan in a range of 250 degrees. As a result, it is possible to scan a wide space while it is difficult for dust or the like to accumulate on the surface of the optical window 2a.

なお、図12に示すように、前記光学窓2aは、下端から上端にかけて内側に僅かに傾斜するように配置してもよい。光学窓2aの傾斜角度及び、回転軸心Pを中心とした走査角度は、走査式測距装置の設置位置、用途に応じ適宜設定されるものである。   In addition, as shown in FIG. 12, you may arrange | position the said optical window 2a so that it may incline slightly inside from a lower end to an upper end. The inclination angle of the optical window 2a and the scanning angle around the rotation axis P are appropriately set according to the installation position and application of the scanning distance measuring device.

上述した光学部材90を採用すると、図2に示すように、第一偏向ミラー9aによって偏向された測定光が、第一偏向ミラー9aの設置角度と異なる設置角度で設置された第二偏向ミラー9bへの反射光の入射光路Lc内から出力されるようになり、光学窓2aの周囲に遮光シート等が貼り付けられた場合でも、遮光シート等からの反射光の一部が入射光路Lcに沿って第二偏向ミラー9bへ入射するようになり、そのような測定光と反射光に基づいて至近距離に遮光シート等の異物が存在することを確実に検出できるようになる。   When the above-described optical member 90 is employed, as shown in FIG. 2, the second deflection mirror 9b in which the measurement light deflected by the first deflection mirror 9a is installed at an installation angle different from the installation angle of the first deflection mirror 9a. Even when a light shielding sheet or the like is affixed around the optical window 2a, a part of the reflected light from the light shielding sheet or the like is along the incident light path Lc. Then, the light enters the second deflecting mirror 9b, and it is possible to reliably detect the presence of a foreign substance such as a light shielding sheet at a close distance based on such measurement light and reflected light.

具体的には、図5に示すように、第一偏向ミラー9aの偏向面のうち、第二偏向ミラー9bへの延出領域96から測定対象空間に出力された測定光が遮光シート等の異物に反射すると、反射光の一部が第二偏向ミラー9bの偏向面のうち走査方向に沿って当該延出領域96に隣接する領域97に入光するため、光シート等の異物が存在することが検出できる。尚、第二偏向面92に形成される切欠部95は上端側中央部に限るものではなく、測定光が第二偏向ミラー9bへの反射光の入射光路Lc内から出力されるように測定光の光路Lbが形成されるものであれば、第二偏向面92の上端側の端部に形成されるものであってもよい。   Specifically, as shown in FIG. 5, the measurement light output from the extension area 96 to the second deflection mirror 9b in the deflection surface of the first deflection mirror 9a into the measurement target space is a foreign object such as a light shielding sheet. When the light is reflected, a part of the reflected light enters the region 97 adjacent to the extension region 96 along the scanning direction on the deflection surface of the second deflection mirror 9b, so that there is a foreign substance such as a light sheet. Can be detected. The notch 95 formed in the second deflection surface 92 is not limited to the central portion on the upper end side, and the measurement light is output so that the measurement light is output from the incident light path Lc of the reflected light to the second deflection mirror 9b. As long as the optical path Lb is formed, it may be formed at the upper end of the second deflection surface 92.

即ち、第二偏向ミラー9aと、第二偏向ミラー9bの偏向面のうち走査方向に沿った領域の一部に偏向面が延出形成された第一偏向ミラー9aで構成される上述の光学部材90が、本発明の特徴部である、第一偏向部材9aによって偏向された測定光を、第一偏向部材9bの偏向面の設置角度と異なる設置角度の偏向面を備えた第二偏向部材9bへの反射光の入射光路Lc内から出力する光学部材を構成するものである。   That is, the above-described optical member composed of the second deflection mirror 9a and the first deflection mirror 9a in which the deflection surface is extended and formed in a part of the region along the scanning direction among the deflection surfaces of the second deflection mirror 9b. 90 is a second deflecting member 9b having a deflecting surface having a setting angle different from the setting angle of the deflecting surface of the first deflecting member 9b, for measuring light deflected by the first deflecting member 9a, which is a feature of the present invention. The optical member which outputs from the inside of the incident optical path Lc of the reflected light to is comprised.

このような光学部材90として、図4(a)に示すものの他に、図4(b)に示すように、第一偏向ミラー9aの上端側が基準面93と面一に形成されるものや、図4(c)に示すように、第一偏向ミラー9aの上端側が基準面93と面一に形成され、且つ、第一偏向ミラー9aの下端側が第二偏向ミラー9bの偏向面から突出するように形成されるものであってもよい。何れの場合にも、投光部3から光軸L1に沿って出力された光路La内の測定光を光軸L1と垂直な方向に偏向可能な面積を有していれば良い。   As such an optical member 90, in addition to the optical member 90 shown in FIG. 4A, as shown in FIG. 4B, the upper end side of the first deflection mirror 9a is formed flush with the reference surface 93, As shown in FIG. 4C, the upper end side of the first deflection mirror 9a is formed flush with the reference surface 93, and the lower end side of the first deflection mirror 9a protrudes from the deflection surface of the second deflection mirror 9b. It may be formed. In any case, it is sufficient that the measurement light in the optical path La output along the optical axis L1 from the light projecting unit 3 has an area that can be deflected in a direction perpendicular to the optical axis L1.

回転体8の外周面に周方向に複数の光学的スリットが形成されたスリット板15aが設置されるとともに、スリット板15aの回転経路上にフォトインタラプタ15bが配置され、これらにより回転体8の走査角度を検出する走査角度検出部15が構成されている。   A slit plate 15a having a plurality of optical slits formed in the circumferential direction on the outer peripheral surface of the rotator 8 is installed, and a photo interrupter 15b is disposed on the rotation path of the slit plate 15a, thereby scanning the rotator 8. A scanning angle detector 15 for detecting an angle is configured.

下部ハウジング22の上部には、走査機構4を回転制御するとともに、発光素子3aを駆動制御して、受光部5で検出された反射信号に基づいて測定対象物までの距離を算出する信号処理基板7が配置されている。   In the upper part of the lower housing 22, a signal processing board that controls the rotation of the scanning mechanism 4 and drives and controls the light emitting element 3 a to calculate the distance to the measurement object based on the reflected signal detected by the light receiving unit 5. 7 is arranged.

信号処理基板7では、走査角度検出部15から入力されるパルス信号に基づいて走査機構4の回転角度が算出されて、反射光に対応する測定対象物の位置する方向が把握される。   In the signal processing board 7, the rotation angle of the scanning mechanism 4 is calculated based on the pulse signal input from the scanning angle detector 15, and the direction in which the measurement object corresponding to the reflected light is located is grasped.

光学窓2aに対向する背部ハウジング23の内壁部に、信号処理基板7で算出される距離を補正するための基準光を導くプリズム等の導光部材17が配置されている。   A light guide member 17 such as a prism for guiding reference light for correcting the distance calculated by the signal processing board 7 is disposed on the inner wall portion of the back housing 23 facing the optical window 2a.

走査機構4により測定光が一走査される度に、投光部3から導光部材17を介して受光部5に直接入射する基準光に基づいて、測距装置内での投光部3から受光部5までの基準距離が算出され、これに基づいて測定対象空間の対象物からの反射光に基づいて算出される距離が補正されるのである。   Each time the measurement light is scanned by the scanning mechanism 4, based on the reference light that is directly incident on the light receiving unit 5 from the light projecting unit 3 via the light guide member 17, the light projecting unit 3 in the distance measuring device The reference distance to the light receiving unit 5 is calculated, and based on this, the distance calculated based on the reflected light from the object in the measurement target space is corrected.

尚、受光部5からの出力信号線は、中空軸13の内部空間に挿通され、信号処理基板7に接続されている。   The output signal line from the light receiving unit 5 is inserted into the internal space of the hollow shaft 13 and connected to the signal processing board 7.

次に、本発明による走査式測距装置の第二の実施形態を説明する。   Next, a second embodiment of the scanning distance measuring device according to the present invention will be described.

第二の実施形態は、第一偏向ミラー9aによって偏向された測定光を、第一偏向ミラー9bの偏向面の設置角度と異なる設置角度の偏向面を備えた第二偏向ミラー9bへの反射光の入射光路Lc内から出力する光学部材90の構成が、上述した第一の実施形態と相違するものである。以下では、相違点となる光学部材90の構成を中心に説明し、共通の構成要素については同符号を付して詳しい説明を省略する。   In the second embodiment, the measurement light deflected by the first deflection mirror 9a is reflected to the second deflection mirror 9b having a deflection surface having an installation angle different from the installation angle of the deflection surface of the first deflection mirror 9b. The configuration of the optical member 90 that outputs from within the incident optical path Lc is different from that of the first embodiment described above. Below, it demonstrates centering around the structure of the optical member 90 used as a difference, and attaches | subjects the same code | symbol about a common component, and abbreviate | omits detailed description.

図6及び図7に示すように、走査式測距装置10に組み込まれた回転体8には、投光部3から光軸L1に沿って出力された測定光を測定対象空間に向けて90度偏向する第一偏向部材としての第一偏向ミラー9aと、測定対象空間に存在する測定対象物Rからの反射光を集光する受光レンズ9cと、受光レンズ9cを透過した反射光を光軸L1に沿って投光部3と対向配置された受光部5に向けて90度偏向する第二偏向部材としての第二偏向ミラー9bを備えた光学系9が取り付けられている。   As shown in FIGS. 6 and 7, the rotating body 8 incorporated in the scanning distance measuring device 10 has a measurement light 90 output from the light projecting unit 3 along the optical axis L <b> 1 toward the measurement target space. A first deflecting mirror 9a as a first deflecting member that deflects the light, a light receiving lens 9c that condenses the reflected light from the measuring object R existing in the measurement target space, and a reflected light that has passed through the light receiving lens 9c as an optical axis. An optical system 9 including a second deflecting mirror 9b as a second deflecting member that deflects 90 degrees toward the light receiving unit 5 disposed to face the light projecting unit 3 along L1 is attached.

樹脂または光学ガラスで一体成形された光学部材90の直交する二つの平面に、金またはアルミニウムが反射部材としてコーティングされた偏向面91,92が形成され、第一偏向面91により光軸L1に対して測定光を測定対象領域に向けて90度偏向させる第一偏向ミラー9aが構成され、第一偏向面92により反射光を光軸L1の延長上に沿った受光部5に向けて90度偏向させる第二偏向ミラー9bが構成されている。   Deflection surfaces 91 and 92 coated with gold or aluminum as a reflecting member are formed on two orthogonal planes of an optical member 90 integrally formed of resin or optical glass, and the first deflection surface 91 forms an optical axis L1. The first deflecting mirror 9a is configured to deflect the measuring light by 90 degrees toward the measurement target region, and the first deflecting surface 92 deflects the reflected light by 90 degrees toward the light receiving unit 5 along the extension of the optical axis L1. A second deflection mirror 9b is configured.

光学部材90のうち偏向面91,92を挟む両側面に、回転体8の天板部8bへの取り付け姿勢を規制する基準面93が延出形成され、基準面93には内周面に螺条が形成された取付穴94が形成されている。   A reference surface 93 for restricting the mounting posture of the rotating body 8 to the top plate portion 8b is formed on both side surfaces of the optical member 90 with the deflection surfaces 91 and 92 therebetween, and the reference surface 93 is threaded on the inner peripheral surface. A mounting hole 94 in which a strip is formed is formed.

回転体8に形成された開口部8cから、一体形成された偏向ミラー9a,9bを挿入し、天板部8bに形成された切欠部8dの周面と上述の基準面93を接合させて取付穴94にビスを螺合させることにより、偏向ミラー9a,9bが回転体8に固定され、その後、開口部8cに受光レンズ9cが固定される。   The integrally formed deflection mirrors 9a and 9b are inserted from the opening 8c formed in the rotating body 8, and the peripheral surface of the notch 8d formed in the top plate 8b and the reference surface 93 described above are joined and attached. By screwing screws into the holes 94, the deflection mirrors 9a and 9b are fixed to the rotating body 8, and then the light receiving lens 9c is fixed to the opening 8c.

受光レンズ9cのレンズ中心より上部側の一部が直線状に切り欠かれ、さらにその中央部がレンズ中心方向に一部切り欠かれた切欠部が形成されている。回転体8の天板部8bに形成された切欠部8eに、第三偏向部材9eが固定され、その一端が受光レンズ9cに形成された切欠部に嵌入されるように配置されている。   A part of the light receiving lens 9c on the upper side from the lens center is cut out linearly, and a cutout part is formed in which the central part is cut out in the lens center direction. A third deflection member 9e is fixed to a notch 8e formed in the top plate portion 8b of the rotating body 8, and one end thereof is disposed so as to be fitted into the notch formed in the light receiving lens 9c.

第三偏向部材9eは、第一偏向ミラー9aによって偏向された測定光を、第一偏向ミラー9aの偏向面の設置角度と異なる設置角度の偏向面を備えた第二偏向ミラー9bへの反射光の入射光路内から出力するように、平行移動させる二枚の偏向ミラー9f,9gと、外周が遮光部材で被覆されたミラー保持部9hを備えている。   The third deflecting member 9e reflects the measurement light deflected by the first deflecting mirror 9a to the second deflecting mirror 9b having a deflecting surface having a setting angle different from the setting angle of the deflecting surface of the first deflecting mirror 9a. Are provided with two deflecting mirrors 9f and 9g to be translated and a mirror holding portion 9h whose outer periphery is covered with a light shielding member.

偏向ミラー9f,9gは偏向面が対向するように配置され、ともに光軸L2に対して45度傾斜するように、外周が遮光部材で被覆されたミラー保持部9hによって保持されている。   The deflection mirrors 9f and 9g are arranged so that their deflection surfaces face each other, and are held by a mirror holding portion 9h whose outer periphery is covered with a light shielding member so as to be inclined by 45 degrees with respect to the optical axis L2.

第一偏向ミラー9aによって光軸L1に垂直な光軸L2に偏向された測定光が第三偏向ミラー9fによって光軸Lと平行な光軸に沿うように偏向され、さらに第四偏向ミラー9gによって光軸L2に平行な光軸L2´に偏向されるのである。   The measurement light deflected by the first deflecting mirror 9a to the optical axis L2 perpendicular to the optical axis L1 is deflected by the third deflecting mirror 9f along the optical axis parallel to the optical axis L, and further by the fourth deflecting mirror 9g. It is deflected to an optical axis L2 ′ parallel to the optical axis L2.

即ち、第一偏向部材9aによって偏向された測定光を、第一偏向部材9aの偏向面の設置角度と異なる設置角度の偏向面を備えた第二偏向部材9bへの反射光の入射光路Lc内から出力する光学部材が、第三偏向部材9eで構成されている。   That is, the measurement light deflected by the first deflection member 9a is reflected in the incident light path Lc of the reflected light to the second deflection member 9b having a deflection surface having an installation angle different from the installation angle of the deflection surface of the first deflection member 9a. The optical member output from is constituted by a third deflecting member 9e.

従って、第一偏向ミラー9aによって偏向された測定光が、第一偏向ミラー9aの設置角度と異なる設置角度で設置された第二偏向ミラー9bへの反射光の入射光路Lc内から出力されるようになり、光学窓2aの周囲に遮光シート等が貼り付けられた場合でも、遮光シート等からの反射光の一部が入射光路Lcに沿って第二偏向ミラー9bへ入射するようになり、そのような測定光と反射光に基づいて至近距離に遮光シート等の異物が存在することを確実に検出できるようになる。   Accordingly, the measurement light deflected by the first deflection mirror 9a is output from the incident optical path Lc of the reflected light to the second deflection mirror 9b installed at an installation angle different from the installation angle of the first deflection mirror 9a. Even when a light shielding sheet or the like is pasted around the optical window 2a, a part of the reflected light from the light shielding sheet or the like enters the second deflection mirror 9b along the incident light path Lc. Based on such measurement light and reflected light, it is possible to reliably detect the presence of a foreign substance such as a light shielding sheet at a close distance.

上述した実施形態では、第三偏向部材9eがミラー保持部9hに保持された一対の偏向ミラー9f,9gで構成されるものを説明したが、図8に示すように、第三偏向部材9eが偏向面が対向するように配置され、ともに光軸L2に対して45度傾斜するように平成されたプリズムで構成されるものであってもよい。   In the above-described embodiment, the third deflecting member 9e is configured by the pair of deflecting mirrors 9f and 9g held by the mirror holding portion 9h. However, as shown in FIG. It may be composed of prisms arranged such that the deflection surfaces face each other and both are inclined by 45 degrees with respect to the optical axis L2.

尚、第一偏向ミラー9a及び第二偏向ミラー9bは一体形成されることが取付精度等の観点で望ましいが、必ずしも一体形成されている必要は無く、第一偏向ミラー9a及び第二偏向ミラー9bが夫々別体で構成され、所定の角度で回転体8の天板部8bへ取り付けられるものであればよい。   The first deflecting mirror 9a and the second deflecting mirror 9b are preferably formed integrally from the viewpoint of mounting accuracy, but are not necessarily formed integrally, and the first deflecting mirror 9a and the second deflecting mirror 9b are not necessarily formed. May be configured as separate bodies and attached to the top plate portion 8b of the rotating body 8 at a predetermined angle.

以下に、上述した第一及び第二の実施形態で説明した走査式測距装置1,10に組み込まれた信号処理基板7により、測定光と反射光に基づいて測定対象物までの距離を測定する演算処理について説明する。   Hereinafter, the distance to the measurement object is measured based on the measurement light and the reflected light by the signal processing board 7 incorporated in the scanning rangefinders 1 and 10 described in the first and second embodiments. The calculation processing to be performed will be described.

信号処理基板7には、測定光の出力タイミングに同期して受光部5により検出される基準光に基づいて測定対象物までの距離を算出するTOF方式の信号処理回路70が設けられている。   The signal processing board 7 is provided with a TOF type signal processing circuit 70 that calculates the distance to the measurement object based on the reference light detected by the light receiving unit 5 in synchronization with the output timing of the measurement light.

図9に示すように、信号処理回路70は、走査角度検出部15から出力された走査角度を示す角度信号に基づいて、角度信号に同期した発光駆動信号を出力する発光制御部71と、測定光が導光部材17に入射される基準回転位置に走査部4が位置しないときに、受光部5から出力された電気信号を測定光信号として検出する測定光検出部72と、走査部4が基準回転位置に位置するときに、受光部5から出力された電気信号を基準光信号として検出する基準光検出部73と、基準光検出部73で検出された基準光信号に基づいて当該走査式測距装置と測定対象物との測定距離に対する補正値を算出する補正値算出部74と、測定光検出部72で検出された測定光信号に基づいて測定距離を算出し、測定距離と補正値に基づいて最終測定距離を算出する距離算出部75と、角度信号と最終測定距離から測定対象物の位置を演算して出力するシステム制御部76等を備えて構成されている。   As shown in FIG. 9, the signal processing circuit 70 includes a light emission control unit 71 that outputs a light emission drive signal synchronized with the angle signal based on the angle signal indicating the scanning angle output from the scanning angle detection unit 15, and the measurement. When the scanning unit 4 is not positioned at the reference rotation position where light is incident on the light guide member 17, the measurement light detection unit 72 that detects the electrical signal output from the light receiving unit 5 as a measurement light signal, and the scanning unit 4 A reference light detection unit 73 that detects an electrical signal output from the light receiving unit 5 as a reference light signal when positioned at the reference rotation position, and the scanning type based on the reference light signal detected by the reference light detection unit 73 A correction value calculation unit 74 that calculates a correction value for the measurement distance between the distance measuring device and the measurement object, a measurement distance is calculated based on the measurement light signal detected by the measurement light detection unit 72, and the measurement distance and the correction value are calculated. Based on the final measurement distance A distance calculating unit 75 that calculates, from the angle signal and the final measurement distance by calculating the position of the measurement object is configured to include a like system control unit 76 for outputting.

システムに電源が投入されると、システム制御部76からモータ制御回路77にモータ駆動信号が出力され、モータ制御回路77によりモータ11が所定速度で駆動される。   When the system is powered on, a motor drive signal is output from the system controller 76 to the motor control circuit 77, and the motor 11 is driven at a predetermined speed by the motor control circuit 77.

モータの回転駆動に伴って走査角度検出部15から出力されるパルス信号が発光制御部71に入力され、当該パルス信号に基づいて発光制御部71では走査部4による測定光の出力方向が把握される。   A pulse signal output from the scanning angle detection unit 15 as the motor is driven to rotate is input to the light emission control unit 71, and the light emission control unit 71 grasps the output direction of the measurement light from the scanning unit 4 based on the pulse signal. The

走査角度検出部15を構成するスリット板15aのスリット間隔が予め設定された回転体の基準回転位置で他の回転位置と異なるように形成され、パルス信号の波形に基づいて基準回転位置が検出され、基準回転位置からのパルス数をカウントすることにより基準回転位置からの回転角度が算出される。   The slit interval of the slit plate 15a constituting the scanning angle detector 15 is formed to be different from other rotation positions at a preset reference rotation position of the rotating body, and the reference rotation position is detected based on the waveform of the pulse signal. The rotation angle from the reference rotation position is calculated by counting the number of pulses from the reference rotation position.

図10に示すように、走査角度検出部15から出力される角度信号であるパルス信号に基づいて計測タイミングを算出したシステム制御部76から、発光制御部71に計測タイミング信号が入力されると、発光制御部71から当該計測タイミング信号を基準とする所定タイミングで投光部3に所定デューティ比の発光駆動信号S1が出力される。   As shown in FIG. 10, when the measurement timing signal is input to the light emission control unit 71 from the system control unit 76 that calculates the measurement timing based on the pulse signal that is an angle signal output from the scanning angle detection unit 15. A light emission drive signal S1 having a predetermined duty ratio is output from the light emission control unit 71 to the light projecting unit 3 at a predetermined timing based on the measurement timing signal.

発光駆動信号S1を受け取った投光部3では、駆動回路3bによって半導体レーザ3aが駆動されパルス状の測定光が出力される。   In the light projecting unit 3 that has received the light emission drive signal S1, the semiconductor laser 3a is driven by the drive circuit 3b to output pulsed measurement light.

走査部4が基準回転位置に位置しないときには、出力された測定光S2(S2a)のうち測定対象物で反射した反射光S4が受光素子5aで光電変換され、増幅回路5bで増幅されて測定光検出部72に出力される。   When the scanning unit 4 is not located at the reference rotation position, the reflected light S4 reflected by the measurement object in the output measurement light S2 (S2a) is photoelectrically converted by the light receiving element 5a, amplified by the amplifier circuit 5b, and measured light. It is output to the detector 72.

測定光検出部72は、当該電気信号を反射信号S5aとして検出して、距離算出部75へ出力する。なお、走査部4が基準回転位置に位置する場合は、測定光検出部72は信号を検出しないように構成されている。   The measurement light detector 72 detects the electrical signal as the reflected signal S5a and outputs the detected signal to the distance calculator 75. When the scanning unit 4 is located at the reference rotation position, the measurement light detection unit 72 is configured not to detect a signal.

一方、走査部4が基準回転位置に位置する場合は、出力された測定光S2(S2b)が基準光S3として装置外部に出射されることなく上述の導光部材17を介して受光部5で検出され、増幅回路51において基準光S3の光電変換が行なわれて変換後の電気信号が信号解析可能なレベルまで増幅させられて出力される。   On the other hand, when the scanning unit 4 is positioned at the reference rotation position, the output measurement light S2 (S2b) is not emitted to the outside of the apparatus as the reference light S3 and is received by the light receiving unit 5 via the light guide member 17 described above. Then, the amplifier circuit 51 performs photoelectric conversion of the reference light S3, and the converted electric signal is amplified to a level at which signal analysis is possible and output.

基準光検出部73は、当該電気信号を基準信号S5bとして検出して、補正値算出部74へ出力する。尚、走査部4が基準回転位置に位置しないときは、基準光検出部73は信号を検出しないように構成されている。   The reference light detection unit 73 detects the electrical signal as the reference signal S5b and outputs it to the correction value calculation unit 74. When the scanning unit 4 is not located at the reference rotation position, the reference light detection unit 73 is configured not to detect a signal.

補正値算出部74では、測定光S2bに対応する発光駆動信号S1と基準信号S5bの時間差t1が算出され、時間差t1より当該走査式測距装置と測定対象物との測定距離に対する補正値ΔLを〔数2〕に基づいて算出する。尚、補正値ΔLは、〔数2〕のTに時間差t1を代入して得られる距離Lとして求められる。   In the correction value calculation unit 74, a time difference t1 between the light emission drive signal S1 corresponding to the measurement light S2b and the reference signal S5b is calculated, and a correction value ΔL for the measurement distance between the scanning distance measuring device and the measurement object is calculated from the time difference t1. It calculates based on [Formula 2]. The correction value ΔL is obtained as a distance L obtained by substituting the time difference t1 for T in [Expression 2].

距離算出部75では、測定光S2aに対応する発光駆動信号S1と反射信号S5aの時間差t2が算出され、時間差t2より測定距離L1を〔数2〕に基づいて算出する。尚、測定距離L1は、〔数2〕のTに時間差t2を代入して得られる距離Lとして求められる。   The distance calculation unit 75 calculates a time difference t2 between the light emission drive signal S1 corresponding to the measurement light S2a and the reflection signal S5a, and calculates the measurement distance L1 from the time difference t2 based on [Equation 2]. In addition, the measurement distance L1 is calculated | required as the distance L obtained by substituting the time difference t2 for T of [Formula 2].

そして、距離算出部75では、算出された測定距離L1から補正値ΔLを減算することにより最終測定距離L2が算出される。   Then, the distance calculation unit 75 calculates the final measurement distance L2 by subtracting the correction value ΔL from the calculated measurement distance L1.

システム制御部76では、走査角度検出部15から出力される角度信号と最終測定距離L2から測定対象物の方向と位置が出力される。つまり、角度信号から走査式測距装置に対する測定対象物の方向が算出され、最終測定距離から走査式測距装置から測定対象物までの距離L2が特定される。   The system controller 76 outputs the direction and position of the measurement object from the angle signal output from the scanning angle detector 15 and the final measurement distance L2. That is, the direction of the measurement object relative to the scanning distance measuring device is calculated from the angle signal, and the distance L2 from the scanning distance measuring device to the measurement object is specified from the final measurement distance.

以上説明したように、所定周期で出力される計測タイミング信号と同周期で発光素子が間歇駆動されることにより、回転軸心Pを中心として約250度範囲の測定対象空間に位置する測定対象物の方向及び距離が求められる。   As described above, the measurement object is located in the measurement object space in the range of about 250 degrees around the rotation axis P when the light emitting element is intermittently driven in the same period as the measurement timing signal output in a predetermined period. Direction and distance.

測定光検出部72または基準光検出部73では、発光駆動信号S1と反射信号S5aまたは基準信号S5bとの時間差t1、t2が、各信号の立ち上がりタイミングを基準に検出される。立ち上がりタイミングは、夫々の信号が所定の閾値を超えた時点を検出するコンパレータを設けることにより容易に検出できる。   In the measurement light detection unit 72 or the reference light detection unit 73, time differences t1 and t2 between the light emission drive signal S1 and the reflection signal S5a or the reference signal S5b are detected based on the rising timing of each signal. The rise timing can be easily detected by providing a comparator that detects when each signal exceeds a predetermined threshold.

コンパレータによる立ち上がりタイミングの検出では、反射光の強度による信号の立ち上がりの微小な変動による影響を受けて誤差が発生するため、そのような誤差を吸収するために、以下の手法を採用することができる。   In the detection of the rise timing by the comparator, an error occurs due to the influence of a minute fluctuation of the rise of the signal due to the intensity of the reflected light. Therefore, the following method can be adopted to absorb such an error. .

例えば、反射信号または基準信号の立ち上がり波形を、例えばピーク値を示す範囲までの間で時間積分し、予めメモリに記憶された複数の積分値に夫々対応する立ち上がりタイミングの補正値マップデータから、当該積分値に対応する立ち上がりタイミングデータを導出するように構成すれば、反射信号または基準信号の立ち上がりタイミングが正確に算出できる。反射光や基準光の強度の変動に起因する立ち上がり時間の変動が、信号の積分値と相関を有するという特性を利用するものである。   For example, the rising waveform of the reflected signal or the reference signal is time-integrated, for example, up to a range indicating the peak value, and the correction value map data of the rising timing corresponding to each of a plurality of integrated values stored in the memory in advance is used. If the rising timing data corresponding to the integrated value is derived, the rising timing of the reflected signal or the reference signal can be accurately calculated. The characteristic is that the rise time fluctuation caused by the fluctuation of the intensity of the reflected light or the reference light has a correlation with the integral value of the signal.

さらに、反射信号または基準信号のピーク値を算出し、複数のピーク値に夫々対応する補正値を予めメモリに記憶しておいたマップデータから、当該ピーク値に対応する補正値を導出することで、コンパレータにより求められる反射信号または基準信号の立ち上がりタイミングを補正する構成であってもよい。立ち上がり時間の変動が信号のピーク値と相関を有するという特性を利用するものである。   Further, the peak value of the reflected signal or the reference signal is calculated, and the correction value corresponding to the peak value is derived from the map data in which the correction values corresponding to the plurality of peak values are stored in the memory in advance. The rising timing of the reflected signal or reference signal obtained by the comparator may be corrected. The characteristic is that the rise time fluctuation has a correlation with the peak value of the signal.

さらに別の方法として、反射信号または基準信号を時間微分することで微分信号を生成し、微分信号の正領域の時間軸上での重心位置を、基準信号及び反射信号の立ち上がり位置として求める構成であってもよい。   As another method, a differential signal is generated by time-differentiating the reflected signal or the reference signal, and the center of gravity position on the time axis of the positive region of the differential signal is obtained as the rising position of the reference signal and the reflected signal. There may be.

また、反射信号または基準信号の立ち上がり部分の時間軸上での重心位置を算出して立ち上がりタイミングを求める方法や、反射信号または基準信号の立ち上がり部分を直線近似または多項式近似して、その近似線と出力信号のオフセットレベルとの交点の位置を立ち上がりタイミングとして算出する方法等を採用するものであってもよい。   In addition, the method of calculating the center of gravity position on the time axis of the rising portion of the reflected signal or reference signal to obtain the rising timing, or by approximating the rising portion of the reflected signal or reference signal by linear approximation or polynomial approximation, For example, a method of calculating the position of the intersection with the offset level of the output signal as the rising timing may be adopted.

上述の実施形態では、本発明による走査式測距装置に、パルス状に変調された測定光とその反射光を光電変換し、それらの信号間の遅延時間から距離を演算するTOF方式が採用される場合を説明したが、正弦波でAM変調された測定光とその反射光を光電変換して、それらの信号間の位相差を求め、位相差から距離を演算するAM方式が採用されるものであってもよい。   In the above-described embodiment, the scanning distance measuring device according to the present invention employs the TOF method that photoelectrically converts the measurement light modulated in a pulse shape and its reflected light, and calculates the distance from the delay time between these signals. In this case, the AM method is used in which the measurement light modulated with a sine wave and the reflected light are photoelectrically converted, the phase difference between these signals is obtained, and the distance is calculated from the phase difference. It may be.

この場合、発光制御部71から発光駆動信号を受け取った投光部3からは、駆動回路3bで半導体レーザから正弦波で変調された測定光が出射される。   In this case, from the light projecting unit 3 that has received the light emission drive signal from the light emission control unit 71, measurement light modulated by a sine wave is emitted from the semiconductor laser by the drive circuit 3b.

そして、補正値算出部74と距離算出部75では、発光素子3aから出力された測定光と増幅回路84から出力された測定光信号または基準光信号との間の位相差が算出され、算出された位相差を(数1)に代入することにより距離または補正値が算出される。   Then, the correction value calculation unit 74 and the distance calculation unit 75 calculate and calculate the phase difference between the measurement light output from the light emitting element 3a and the measurement light signal or reference light signal output from the amplification circuit 84. The distance or the correction value is calculated by substituting the obtained phase difference into (Equation 1).

光源に用いられる発光素子は、半導体レーザに限るものではなく、発光ダイオード等の他の発光素子を用いることも可能である。   The light emitting element used for the light source is not limited to the semiconductor laser, and other light emitting elements such as a light emitting diode may be used.

上述した何れの実施形態も、本発明の一実施例であり、走査式測距装置の具体的形状、構成、使用材料、信号処理のための回路構成等各部の具体的な構成は、本発明による作用効果を奏する範囲において適宜変更設計できることはいうまでもない。   Any of the above-described embodiments is an example of the present invention, and the specific configuration of each part such as the specific shape, configuration, material used, circuit configuration for signal processing of the scanning distance measuring device is the present invention. Needless to say, the design can be changed as appropriate within the range where the effects of the above are achieved.

本発明による走査式測距装置を示し、(a)は走査式測距装置の外観を示す正面図、(b)は平面図、(c)は側面図1 shows a scanning distance measuring device according to the present invention, wherein (a) is a front view showing the appearance of the scanning distance measuring device, (b) is a plan view, and (c) is a side view. 本発明による走査式測距装置の第一の実施形態を示す概略縦断面図1 is a schematic longitudinal sectional view showing a first embodiment of a scanning rangefinder according to the present invention. 本発明による走査式測距装置の第一の実施形態を示す要部の正面図The front view of the principal part which shows 1st embodiment of the scanning rangefinder by this invention (a)は第一の実施形態を示す光学部材の斜視図、(b)は別実施形態を示す光学部材の斜視図、(c)は別実施形態を示す光学部材の斜視図(A) is a perspective view of the optical member which shows 1st embodiment, (b) is a perspective view of the optical member which shows another embodiment, (c) is a perspective view of the optical member which shows another embodiment. 図4(a)に示す光学部材による測定光の光路及び反射光の光路の説明図Explanatory drawing of the optical path of the measurement light by the optical member shown to Fig.4 (a), and the optical path of reflected light 本発明による走査式測距装置の第二の実施形態を示す概略縦断面図Schematic longitudinal sectional view showing a second embodiment of the scanning distance measuring device according to the present invention. 本発明による走査式測距装置の第二の実施形態を示す要部の正面図The front view of the principal part which shows 2nd embodiment of the scanning rangefinder by this invention. 本発明による走査式測距装置の別実施形態を示す要部の正面図The front view of the principal part which shows another embodiment of the scanning distance measuring device by this invention. 本発明による走査式測距装置の信号処理回路のブロック構成図Block diagram of a signal processing circuit of a scanning distance measuring device according to the present invention. 走査式測距装置の光信号波形と電気信号波形のタイミングを示す説明図Explanatory drawing showing timing of optical signal waveform and electrical signal waveform of scanning distance measuring device 走査式測距装置の測定原理の説明図で、(a)はAM方式の説明図、(b)はTOF方式の説明図It is explanatory drawing of the measurement principle of a scanning distance measuring device, (a) is explanatory drawing of AM system, (b) is explanatory drawing of TOF system. 本発明による走査式測距装置の別実施形態を示す概略縦断面図Schematic longitudinal sectional view showing another embodiment of the scanning distance measuring device according to the present invention. 従来の走査式測距装置の概略縦断面図Schematic longitudinal sectional view of a conventional scanning rangefinder 従来の走査式測距装置の概略縦断面図Schematic longitudinal sectional view of a conventional scanning rangefinder

1:走査式測距装置
2a:光学窓
2:ハウジング
21:上部ハウジング
22:下部ハウジング
23:背部ハウジング
3:投光部
3a:発光素子
3b:駆動回路
4:走査機構
5:受光部
5a:受光素子
5b:増幅回路
7:信号処理回路基板
8:回転体
9:光学系
9a:第一偏向ミラー
9b:第二偏向ミラー
9c:受光レンズ
9d:ガイド部材
9e:第三偏向部材
9f,9g:偏向ミラー
9h:ミラー保持部
11:モータ
15:走査角度検出部
17:導光部材
70:信号処理回路
71:発光制御部
72:測定光検出部
73:基準光検出部
74:補正値算出部
75:距離算出部
76:システム制御部
90:光学部材
91:第一偏向面91
92:第二偏向面92
93:基準面
94:取付穴

1: Scanning distance measuring device 2a: optical window 2: housing 21: upper housing 22: lower housing 23: back housing 3: light projecting unit 3a: light emitting element 3b: drive circuit 4: scanning mechanism 5: light receiving unit 5a: light receiving Element 5b: Amplifier circuit 7: Signal processing circuit board 8: Rotating body 9: Optical system 9a: First deflection mirror 9b: Second deflection mirror 9c: Light receiving lens 9d: Guide member 9e: Third deflection member 9f, 9g: Deflection Mirror 9h: Mirror holding unit 11: Motor 15: Scan angle detection unit 17: Light guide member 70: Signal processing circuit 71: Light emission control unit 72: Measurement light detection unit 73: Reference light detection unit 74: Correction value calculation unit 75: Distance calculation unit 76: system control unit 90: optical member 91: first deflection surface 91
92: Second deflection surface 92
93: Reference plane 94: Mounting hole

Claims (7)

投光部から出力された測定光を測定対象空間に向けて偏向する第一偏向部材と、前記測定対象空間に存在する測定対象物からの反射光を集光する受光レンズと、前記受光レンズを透過した反射光を、前記第一偏向部材を挟んで前記投光部と対向配置された受光部に向けて偏向する、前記第一偏向部材と偏向面が異なる第二偏向部材とを備えた光学系と、前記光学系を所定の軸心周りに回転させる走査機構を備え、測定光と前記受光部で検出された反射光に基づいて前記測定対象物までの距離を測定する走査式測距装置であって、
前記第一偏向部材によって偏向された測定光を、前記第二偏向部材への反射光の入射光路内にある領域であって、当該入射光路の光軸から入射光の径方向に離隔した領域から出力する光学部材を前記走査機構に備えている走査式測距装置。
A first deflection member that deflects the measurement light output from the light projecting unit toward the measurement target space, a light reception lens that collects reflected light from the measurement target existing in the measurement target space, and the light reception lens. An optical system comprising: a first deflecting member and a second deflecting member having a different deflecting surface that deflects transmitted reflected light toward a light receiving unit disposed opposite to the light projecting unit across the first deflecting member. System and a scanning mechanism that rotates the optical system around a predetermined axis, and measures the distance to the measurement object based on the measurement light and the reflected light detected by the light receiving unit Because
The measurement light deflected by the first deflecting member is a region in the incident optical path of the reflected light to the second deflecting member, from a region separated from the optical axis of the incident optical path in the radial direction of the incident light A scanning distance measuring device provided with an optical member for output in the scanning mechanism.
受光レンズのうち、前記第二偏向部材への反射光の入射光路内にある領域であって、前記測定光が通過する領域が切り欠かれている請求項1記載の走査式測距装置。 The scanning distance measuring device according to claim 1, wherein a region of the light receiving lens that is in an incident optical path of reflected light to the second deflecting member and through which the measurement light passes is cut out. 前記光学部材が、前記第二偏向部材と、前記第二偏向部材の偏向面のうち前記走査方向に沿った領域の一部に偏向面が延出形成された前記第一偏向部材で構成されている請求項1または2記載の走査式測距装置。   The optical member includes the second deflecting member and the first deflecting member having a deflecting surface extending in a part of a region along the scanning direction of the deflecting surface of the second deflecting member. The scanning rangefinder according to claim 1 or 2. 前記第一偏向部材と第二偏向部材が一体形成されている請求項3記載の走査式測距装置。   The scanning distance measuring device according to claim 3, wherein the first deflection member and the second deflection member are integrally formed. 前記光学系に、前記第一偏向部材により偏向された測定光を測定対象空間に案内する筒状のガイド部材を備えている請求項3または4記載の走査式測距装置。   The scanning distance measuring device according to claim 3 or 4, wherein the optical system includes a cylindrical guide member that guides the measurement light deflected by the first deflection member to a measurement target space. 前記光学部材が、前記第一偏向部材によって偏向された測定光を、前記第二偏向部材への反射光の入射光路内から出力するように平行移動させる二つの偏向面を備えた第三偏向部材で構成されている請求項1記載の走査式測距装置。   A third deflecting member provided with two deflecting surfaces for translating the optical member so that the measuring light deflected by the first deflecting member is output from the incident light path of the reflected light to the second deflecting member. The scanning rangefinder according to claim 1, comprising: 受光レンズのうち、前記第二偏向部材への反射光の入射光路内にある領域であって、前記測定光が通過する領域が切り欠かれ、前記第三偏向部材が前記受光レンズの切欠部に配置されている請求項6記載の走査式測距装置。 Of the light receiving lens , a region in the incident optical path of the reflected light to the second deflecting member, the region through which the measurement light passes is cut out, and the third deflecting member is formed in the notched portion of the light receiving lens. The scanning rangefinder according to claim 6, which is arranged.
JP2007229828A 2007-09-05 2007-09-05 Scanning distance measuring device Active JP5598831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007229828A JP5598831B2 (en) 2007-09-05 2007-09-05 Scanning distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007229828A JP5598831B2 (en) 2007-09-05 2007-09-05 Scanning distance measuring device

Publications (2)

Publication Number Publication Date
JP2009063339A JP2009063339A (en) 2009-03-26
JP5598831B2 true JP5598831B2 (en) 2014-10-01

Family

ID=40558050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007229828A Active JP5598831B2 (en) 2007-09-05 2007-09-05 Scanning distance measuring device

Country Status (1)

Country Link
JP (1) JP5598831B2 (en)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006031580A1 (en) 2006-07-03 2008-01-17 Faro Technologies, Inc., Lake Mary Method and device for the three-dimensional detection of a spatial area
DE102009010465B3 (en) 2009-02-13 2010-05-27 Faro Technologies, Inc., Lake Mary laser scanner
DE102009015920B4 (en) 2009-03-25 2014-11-20 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9551575B2 (en) 2009-03-25 2017-01-24 Faro Technologies, Inc. Laser scanner having a multi-color light source and real-time color receiver
DE102009035337A1 (en) 2009-07-22 2011-01-27 Faro Technologies, Inc., Lake Mary Method for optically scanning and measuring an object
DE102009055989B4 (en) 2009-11-20 2017-02-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
DE102009055988B3 (en) 2009-11-20 2011-03-17 Faro Technologies, Inc., Lake Mary Device, particularly laser scanner, for optical scanning and measuring surrounding area, has light transmitter that transmits transmission light ray by rotor mirror
DE102009057101A1 (en) * 2009-11-20 2011-05-26 Faro Technologies, Inc., Lake Mary Device for optically scanning and measuring an environment
US9210288B2 (en) 2009-11-20 2015-12-08 Faro Technologies, Inc. Three-dimensional scanner with dichroic beam splitters to capture a variety of signals
US9113023B2 (en) 2009-11-20 2015-08-18 Faro Technologies, Inc. Three-dimensional scanner with spectroscopic energy detector
US9529083B2 (en) 2009-11-20 2016-12-27 Faro Technologies, Inc. Three-dimensional scanner with enhanced spectroscopic energy detector
JP5428804B2 (en) * 2009-11-26 2014-02-26 株式会社デンソーウェーブ Object detection system
US9628775B2 (en) 2010-01-20 2017-04-18 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
CN102713498B (en) 2010-01-20 2014-07-16 法罗技术股份有限公司 Mounting device for a coordinate measuring machine
US9607239B2 (en) 2010-01-20 2017-03-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US9879976B2 (en) 2010-01-20 2018-01-30 Faro Technologies, Inc. Articulated arm coordinate measurement machine that uses a 2D camera to determine 3D coordinates of smoothly continuous edge features
DE102010020925B4 (en) 2010-05-10 2014-02-27 Faro Technologies, Inc. Method for optically scanning and measuring an environment
DE102010032726B3 (en) 2010-07-26 2011-11-24 Faro Technologies, Inc. Device for optically scanning and measuring an environment
DE102010032725B4 (en) 2010-07-26 2012-04-26 Faro Technologies, Inc. Device for optically scanning and measuring an environment
DE102010032723B3 (en) 2010-07-26 2011-11-24 Faro Technologies, Inc. Device for optically scanning and measuring an environment
DE102012100609A1 (en) 2012-01-25 2013-07-25 Faro Technologies, Inc. Device for optically scanning and measuring an environment
DE102012107544B3 (en) 2012-08-17 2013-05-23 Faro Technologies, Inc. Optical scanning device i.e. laser scanner, for evaluating environment, has planetary gears driven by motor over vertical motor shaft and rotating measuring head relative to foot, where motor shaft is arranged coaxial to vertical axle
DE102012109481A1 (en) 2012-10-05 2014-04-10 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US10067231B2 (en) 2012-10-05 2018-09-04 Faro Technologies, Inc. Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner
US9513107B2 (en) 2012-10-05 2016-12-06 Faro Technologies, Inc. Registration calculation between three-dimensional (3D) scans based on two-dimensional (2D) scan data from a 3D scanner
JP2014228492A (en) * 2013-05-24 2014-12-08 リコー光学株式会社 Laser device
JP2015025901A (en) 2013-07-25 2015-02-05 船井電機株式会社 Laser scanning apparatus
JP2015212647A (en) 2014-05-02 2015-11-26 株式会社リコー Object detection device and sensing device
JP6330539B2 (en) * 2014-07-14 2018-05-30 船井電機株式会社 Laser scanning device
US10067222B2 (en) 2014-08-01 2018-09-04 Funai Electric Co., Ltd. Laser rangefinder
JP6537011B2 (en) 2014-08-28 2019-07-03 株式会社リコー Optical scanning device, object detection device and sensing device
JP2016133341A (en) 2015-01-16 2016-07-25 株式会社リコー Object detection device, sensing device, mobile device, and object detection method
JP6547942B2 (en) 2015-03-05 2019-07-24 株式会社リコー Semiconductor laser drive device, light scanning device, object detection device, and moving body device
JP6671629B2 (en) 2015-03-18 2020-03-25 株式会社リコー Object detection device, sensing device, and mobile device
JP2017032552A (en) 2015-08-05 2017-02-09 株式会社リコー Pulse light detection device, object detection device, sensing device, mobile device, and pulse light detection method
JP6700575B2 (en) 2015-09-25 2020-05-27 株式会社リコー Circuit device, photodetector, object detection device, sensing device, mobile device, photodetection method, and object detection method
JP6672715B2 (en) * 2015-11-05 2020-03-25 船井電機株式会社 measuring device
JP2017090135A (en) * 2015-11-06 2017-05-25 アイシン精機株式会社 Distance measuring device
JP2017090137A (en) * 2015-11-06 2017-05-25 アイシン精機株式会社 Distance measuring device
DE102015122844A1 (en) 2015-12-27 2017-06-29 Faro Technologies, Inc. 3D measuring device with battery pack
JP6676974B2 (en) * 2016-01-14 2020-04-08 コニカミノルタ株式会社 Object detection device
JP6780308B2 (en) 2016-06-10 2020-11-04 株式会社リコー Object detection device, sensing device and mobile device
KR101861433B1 (en) * 2016-06-30 2018-05-25 광주과학기술원 Optical System for Transmitting and Receiving Laser
JP6819098B2 (en) 2016-07-01 2021-01-27 株式会社リコー Object detection device, sensing device and mobile device
KR102162047B1 (en) * 2017-02-17 2020-10-06 호쿠요덴키 가부시키가이샤 Object capture device
JP6893428B2 (en) * 2017-03-17 2021-06-23 大成建設株式会社 Distance measuring machine and excavation status management system
JP2019078631A (en) 2017-10-24 2019-05-23 シャープ株式会社 Pulse light irradiation/reception device and light radar device
JP7135350B2 (en) 2018-03-13 2022-09-13 株式会社リコー OBJECT DETECTION DEVICE, MOBILE DEVICE, AND OBJECT DETECTION METHOD
JP7234816B2 (en) * 2019-06-11 2023-03-08 株式会社デンソー rangefinder
WO2021019903A1 (en) * 2019-07-26 2021-02-04 パナソニックIpマネジメント株式会社 Laser radar
CN114041066A (en) * 2019-07-26 2022-02-11 松下知识产权经营株式会社 Laser radar
JP7424273B2 (en) * 2020-11-06 2024-01-30 株式会社デンソー laser radar equipment

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0365995U (en) * 1989-10-27 1991-06-26
JPH07154909A (en) * 1993-11-26 1995-06-16 Sumitomo Electric Ind Ltd Device for measuring distance to object under overhead wire
JP3137307B2 (en) * 1993-12-27 2001-02-19 アステックス株式会社 Omnidirectional distance detector
JPH09152483A (en) * 1995-11-29 1997-06-10 Nikon Corp Light wave distance measuring apparatus
JP2001311612A (en) * 2000-04-28 2001-11-09 Minolta Co Ltd Shape input device
JP3726720B2 (en) * 2001-07-05 2005-12-14 ソニー株式会社 Light emitting / receiving device structure
JP3915742B2 (en) * 2003-06-20 2007-05-16 株式会社デンソー Vehicle object recognition device
JP3908226B2 (en) * 2004-02-04 2007-04-25 日本電産株式会社 Scanning range sensor
JP2007170917A (en) * 2005-12-20 2007-07-05 Hokuyo Automatic Co Light scanning device and device for detecting object to be measured

Also Published As

Publication number Publication date
JP2009063339A (en) 2009-03-26

Similar Documents

Publication Publication Date Title
JP5598831B2 (en) Scanning distance measuring device
US8305561B2 (en) Scanning-type distance measuring apparatus
JP4098341B1 (en) Optical window dirt detector for scanning rangefinder
JP4160611B2 (en) Scanning distance measuring device
JP2009229255A (en) Scanning range finder
JP5804467B2 (en) Signal processing device and scanning distance measuring device
CN107918118B (en) Laser radar
JP4116052B2 (en) Ranging device
JP5310098B2 (en) Laser distance measuring device
US8300215B2 (en) Optical sensor operating on the transit time principle
US7388655B2 (en) High-precision laser rangefinder using burst emission
JP5900722B2 (en) Scanning distance measuring device signal processing device, signal processing method, and scanning distance measuring device
JP2013210378A (en) Laser radar device
JP6175835B2 (en) Laser radar equipment
JPH08122061A (en) Obstacle detection device
JP2008111855A (en) Scanning range finder
JP5765698B2 (en) Multi-signal processing device, distance measuring device, and multi-range measuring system
US8045182B2 (en) Location detection apparatus
WO2021117527A1 (en) Electromagnetic motor, optical deflection device, and ranging device
KR102645857B1 (en) Laser scanner
JP2011122999A (en) Optical waveguide device and calibration system
JP2005308483A (en) Anemometer
JP4317441B2 (en) Detection head and projection head of photoelectric sensor and detection head of wafer detection sensor
JPH0567418A (en) Optical sensor
WO2014157511A1 (en) Reflected light measurement device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130627

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140516

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140715

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140805

R150 Certificate of patent or registration of utility model

Ref document number: 5598831

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250