JPH09152483A - Light wave distance measuring apparatus - Google Patents

Light wave distance measuring apparatus

Info

Publication number
JPH09152483A
JPH09152483A JP7333982A JP33398295A JPH09152483A JP H09152483 A JPH09152483 A JP H09152483A JP 7333982 A JP7333982 A JP 7333982A JP 33398295 A JP33398295 A JP 33398295A JP H09152483 A JPH09152483 A JP H09152483A
Authority
JP
Japan
Prior art keywords
light
optical system
area
region
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7333982A
Other languages
Japanese (ja)
Inventor
Tadahiko Hoshi
忠彦 星
Yuji Kadomatsu
雄次 門松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP7333982A priority Critical patent/JPH09152483A/en
Publication of JPH09152483A publication Critical patent/JPH09152483A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the generation of a multi reflection light when a reflective sheet is used, by providing a light restriction means so that an unnecessary outside luminous flux does not reach a measuring reflecting member. SOLUTION: Only an infrared light entering an area P is reflected at a reflective sheet 10 among an infrared light from a light transmitter 5 which enters a DM face of a dichroic film of a dichroic prism 2, and an infrared light entering a light transmission area P is not guided to the sheet 10. The area P is formed of the film DM of a predetermined width (d) adjacent to a border line KL1 of transmission/reception optical paths. Therefore, the transmitted light reflected at the area P enters, through an objective lens 1, only a central reflecting body 10a of a plurality of minute reflecting bodies of the sheet 10 which extends in a vertical direction including an optical axis AX, along a lower area of the axis AX. Then, the light enters the lens 1 along an upper area of the axis AX. In other words, the transmitted light entering the reflecting body 10a is wholly guided to a photodetector 6. Accordingly, a distance can be highly accurately measured while the generation of a multi reflection light is restricted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は光波測距装置に関
し、特に測定点までの光路を往復した光の位相に基づい
て測定点までの距離を測定する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lightwave distance measuring device, and more particularly to a device for measuring the distance to a measuring point based on the phase of light that reciprocates in an optical path to the measuring point.

【0002】[0002]

【従来の技術】図3は、従来の光波測距装置の構成を概
略的に示す図である。なお、図3(b)は、図3(a)
のダイクロイック膜DMを膜の法線方向に沿って見た図
である。図4は、図3の装置における光路図である。図
3および図4を参照すると、発光器5からの赤外光は、
ダイクロイックプリズム2のダイクロイック膜DMの下
半分の領域Psで反射された後、対物レンズ1の下半分
に入射する。対物レンズ1を介して平行光となった赤外
光は、対物レンズ1の光軸AXの下側領域に沿って、送
信光L1〜L4として、測定点に設置されたコーナーキ
ューブ7に達する。
2. Description of the Related Art FIG. 3 is a diagram schematically showing a configuration of a conventional lightwave distance measuring apparatus. In addition, FIG.
FIG. 3 is a view of the dichroic film DM of FIG. 3B as viewed along the normal direction of the film. FIG. 4 is an optical path diagram in the apparatus of FIG. Referring to FIGS. 3 and 4, the infrared light from the light emitter 5 is
After being reflected by the lower half region Ps of the dichroic film DM of the dichroic prism 2, the light enters the lower half of the objective lens 1. The infrared light that has become parallel light through the objective lens 1 reaches the corner cube 7 installed at the measurement point as the transmission lights L1 to L4 along the lower region of the optical axis AX of the objective lens 1.

【0003】送信光L1〜L4は、コーナーキューブ7
で反射され、受信光RL1〜RL4となる。受信光RL
1〜RL4は、光軸AXの上側領域に沿って対物レンズ
1の上半分に入射する。対物レンズ1を介した受信光
は、ダイクロイック膜DMの上半分の領域Pjで反射さ
れた後、受光器6上に集光する。こうして、受光器6で
受光した光の位相に基づいて測定点までの距離を測定す
る。
The transmitted lights L1 to L4 are transmitted to the corner cube 7
The reflected light becomes reflected lights RL1 to RL4. Received light RL
1 to RL4 enter the upper half of the objective lens 1 along the upper region of the optical axis AX. The light received through the objective lens 1 is reflected by the upper half region Pj of the dichroic film DM and then focused on the light receiver 6. In this way, the distance to the measurement point is measured based on the phase of the light received by the light receiver 6.

【0004】図5は、図3の光波測距装置においてコー
ナーキューブ7に代えてレフシート10を測定点に設置
した場合の光路図である。図5に示すように、シート状
に配列された微小反射体からなるレフシート10を反射
鏡として用いた場合、送信光L1〜L3に対する受信光
RL1〜RL3は、光軸AXの下側領域に沿って対物レ
ンズ1に入射する。対物レンズ1を介した受信光RL1
〜RL3は、ダイクロイック膜DMの下半分の領域Ps
で反射された後、再び発光器5に戻ってしまう。
FIG. 5 is an optical path diagram when a ref sheet 10 is installed at a measuring point in place of the corner cube 7 in the light wave distance measuring apparatus of FIG. As shown in FIG. 5, when the reflection sheet 10 including the minute reflectors arranged in a sheet shape is used as a reflecting mirror, the reception lights RL1 to RL3 with respect to the transmission lights L1 to L3 are along the lower side region of the optical axis AX. And enters the objective lens 1. Received light RL1 through the objective lens 1
~ RL3 is the lower half region Ps of the dichroic film DM
After being reflected by, the light returns to the light emitting device 5 again.

【0005】すなわち、光軸AXの下側領域に沿ってレ
フシート10に入射する送信光L1〜L5のうち光軸A
Xに近接した送信光L4およびL5に対する受信光RL
4およびRL5だけが光軸AXの上側領域に沿って対物
レンズ1に入射する。さらに、レフシート10の反射面
で発生した散乱光SL6も、光軸AXの上側領域に沿っ
て対物レンズ1に入射する。こうして、受信光RL4お
よびRL5が、ダイクロイック膜DMの上半分の領域P
jで反射された後、受光器6に達する。
That is, the optical axis A of the transmitted lights L1 to L5 incident on the reflector sheet 10 along the lower region of the optical axis AX.
Received light RL for transmitted lights L4 and L5 close to X
Only 4 and RL5 enter the objective lens 1 along the upper region of the optical axis AX. Further, the scattered light SL6 generated on the reflecting surface of the reflex sheet 10 also enters the objective lens 1 along the upper region of the optical axis AX. Thus, the received lights RL4 and RL5 are transmitted to the upper half region P of the dichroic film DM.
After being reflected by j, it reaches the light receiver 6.

【0006】このように、図3の光波測距装置において
測定点に設置される測定用反射鏡としてレフシート10
を使用する場合、光軸AXから離れてレフシート10に
入射する送信光L1〜L3に対する受信光RL1〜RL
3は、再び発光器5に戻ってしまう。発光器5の表面で
反射された受信光RL1〜RL3は、対物レンズ1を介
して再びレフシート10に入射する。こうして、対物レ
ンズ1とレフシート10との間の光路を複数回往復して
受光器6に達する多重反射光が発生する。なお、多重反
射光は、受光器6に達した受信光に対する受光器6の表
面での反射によっても発生する。
As described above, the ref sheet 10 is used as the measuring reflecting mirror installed at the measuring point in the optical distance measuring apparatus of FIG.
When using, the received lights RL1 to RL with respect to the transmitted lights L1 to L3 that are incident on the ref sheet 10 apart from the optical axis AX.
3 returns to the light emitter 5 again. The received lights RL1 to RL3 reflected by the surface of the light emitter 5 enter the ref sheet 10 again via the objective lens 1. In this way, multiple reflection light that reaches the light receiver 6 is generated by reciprocating the optical path between the objective lens 1 and the ref sheet 10 a plurality of times. The multiple reflection light is also generated by the reflection of the received light reaching the light receiver 6 on the surface of the light receiver 6.

【0007】多重反射光は、対物レンズ1とレフシート
10との間の光路を1回だけ往復して受光器6に達する
正規受信光の位相に含まれている距離情報の複数倍の距
離情報に対応する位相を有する。受光器6が正規受信光
に重ね合わせて多重反射光を受光すると、受光器6の出
力信号の位相が変化して測距誤差が発生してしまう。従
来は、発光器や受光器の表面の反射率を低減させたり、
発光器や受光器の表面を光軸に対して傾斜させたり、あ
るいは発光器や受光器の前面に減光フィルタを配置した
りするとによって、多重反射光の発生を抑えて測距誤差
が発生しないようにしている。
The multiple-reflected light has a distance information that is a multiple of the distance information included in the phase of the regular received light that reaches the photodetector 6 after reciprocating once in the optical path between the objective lens 1 and the reflector sheet 10. It has a corresponding phase. When the light receiver 6 receives the multiple reflection light by superimposing it on the regular reception light, the phase of the output signal of the light receiver 6 changes and a distance measurement error occurs. Conventionally, the reflectance of the surface of the light emitter and the light receiver is reduced,
By tilting the surface of the light emitter or the light receiver with respect to the optical axis, or by arranging a neutral density filter on the front surface of the light emitter or the light receiver, the generation of multiple reflected light is suppressed and distance measurement error does not occur. I am trying.

【0008】[0008]

【発明が解決しようとする課題】上述のように、従来の
光波測距装置では、多重反射光の発生を抑えるために、
表面の反射率が低い発光器や受光器を選択しなければな
らないという制約を受ける。また、発光器や受光器を傾
斜設置したり減光フィルタを配置すると、発光効率や受
光効率が低下する。特に、受信光の強度が元々低いた
め、受光効率の低下は光波測距装置の測定可能距離を制
限することになってしまう。
As described above, in the conventional optical distance measuring device, in order to suppress the generation of multiple reflected light,
There is a constraint that a light emitter or a light receiver having a low surface reflectance must be selected. Further, if the light emitting device and the light receiving device are installed at an inclination or a neutral density filter is arranged, the light emitting efficiency and the light receiving efficiency decrease. In particular, since the intensity of received light is originally low, the reduction in light receiving efficiency limits the measurable distance of the lightwave distance measuring device.

【0009】本発明は、前述の課題に鑑みてなされたも
のであり、測定用反射鏡としてレフシートを使用する場
合も、表面反射率の制限を受けたり発光効率や受光効率
を低下させることなく、多重反射光の発生を抑えること
のできる光波測距装置を提供することを目的とする。
The present invention has been made in view of the above-mentioned problems, and even when a reflection sheet is used as a measuring reflecting mirror, the surface reflectance is not restricted and the luminous efficiency and the light receiving efficiency are not reduced. An object of the present invention is to provide an optical distance measuring device capable of suppressing the generation of multiple reflected light.

【0010】[0010]

【課題を解決するための手段】前記課題を解決するため
に、本発明においては、対物レンズの光軸を含む所定の
面に関して前記対物レンズの有効領域が2分される一方
の第1領域に沿って前記対物レンズを介した光を測定用
反射部材に送光するための送光光学系と、前記対物レン
ズの光軸を含む所定の面に関して前記対物レンズの有効
領域が2分される他方の第2領域に沿って前記対物レン
ズを介した前記測定用反射部材からの反射光を受光する
ための受光光学系と、前記対物レンズを介して前記測定
用反射部材を視準観察するための視準光学系と、前記対
物レンズと前記視準光学系との間の光路中に配置され且
つ前記測定用反射部材からの反射光を前記受光光学系と
前記視準光学系とにそれぞれ導くための光分割手段とを
備えた光波測距装置において、前記第1領域内において
前記第2領域に隣接するとともに前記対物レンズの光軸
に少なくとも隣接する所定領域に沿って通過する前記送
光光学系の内側光束が前記測定用反射部材に達し、且つ
前記送光光学系の光束のうち前記所定領域に対応する部
分以外の外側光束が前記測定用反射部材に達しないよう
に、前記送光光学系の光束を制限するための光制限手段
を備えていることを特徴とする光波測距装置を提供す
る。
In order to solve the above-mentioned problems, in the present invention, the effective area of the objective lens is divided into two first areas with respect to a predetermined surface including the optical axis of the objective lens. A light sending optical system for sending light passing through the objective lens to the measuring reflecting member along the other side, and the effective area of the objective lens is divided into two parts with respect to a predetermined surface including the optical axis of the objective lens. And a light receiving optical system for receiving the reflected light from the measuring reflection member via the objective lens along the second region of, and for collimating and observing the measuring reflection member via the objective lens. A collimation optical system and for guiding the reflected light from the measurement reflection member, which is arranged in the optical path between the objective lens and the collimation optical system, to the light receiving optical system and the collimation optical system, respectively. And a light wave distance measuring device equipped with In, in the first region, the inner light flux of the light-sending optical system that is adjacent to the second region and passes along a predetermined region that is at least adjacent to the optical axis of the objective lens reaches the measurement reflection member, Further, a light limiting unit is provided for limiting the light flux of the light-transmitting optical system so that an outer light flux of the light flux of the light-transmitting optical system other than a portion corresponding to the predetermined area does not reach the measurement reflection member. An optical wave distance measuring device is provided.

【0011】本発明の好ましい態様によれば、前記光分
割手段は、前記対物レンズの光軸を含む所定の面に対し
て斜設され前記測定用反射部材からの反射光を振幅分割
する光分割面を有し、前記光分割面は、前記第1領域内
の前記所定領域に対応する位置に形成された第1光分割
部と、前記第2領域に対応する位置に形成された第2光
分割部とを有し、前記光制限手段は、前記光分割面にお
いて、前記第1領域内の前記所定領域以外の前記所定面
から離れた領域に対応する位置に形成された光透過部
(または光反射部)であり、前記送光光学系は、前記第
1光分割部で反射(または透過)された光束を前記測定
用反射部材に送光し、前記受光光学系は、前記第2光分
割部で反射(または透過)された前記測定用反射部材か
らの光束を受光し、前記視準光学系は、前記第1光分割
部と前記第2光分割部と前記光透過部(または光反射
部)とを透過(または反射)した前記測定用反射部材か
らの反射光に基づいて視準する。
According to a preferred aspect of the present invention, the light splitting means is a light splitting device which is installed obliquely with respect to a predetermined surface including the optical axis of the objective lens and which amplitude-divides the reflected light from the measuring reflection member. A first light splitting portion formed in a position corresponding to the predetermined area in the first area, and a second light formed in a position corresponding to the second area. A light transmitting portion formed at a position corresponding to a region apart from the predetermined surface other than the predetermined region in the first region on the light splitting surface (or A light reflecting section), the light sending optical system sends the light flux reflected (or transmitted) by the first light splitting section to the measurement reflecting member, and the light receiving optical system uses the second light Receiving (or transmitting) the luminous flux from the measuring reflection member reflected by the dividing section, The collimation optical system is based on the reflected light from the measurement reflection member that transmits (or reflects) the first light splitting portion, the second light splitting portion, and the light transmitting portion (or light reflecting portion). Collimate.

【0012】また、本発明の別の好ましい態様によれ
ば、前記光分割手段は、前記対物レンズの光軸を含む所
定の面に対して斜設され前記測定用反射部材からの赤外
光と可視光とを分別するダイクロイック面を有し、前記
ダイクロイック面は、前記第1領域内の前記所定領域に
対応する位置に形成された第1の波長分別部と、前記第
2領域に対応する位置に形成された第2の波長分別部と
を有し、前記光制限手段は、前記ダイクロイック面にお
いて、前記第1領域内の前記所定領域以外の前記所定面
から離れた領域に対応する位置に形成された光透過部
(または光反射部)であり、前記送光光学系は、前記第
1の波長分別部で反射(または透過)された赤外光を前
記測定用反射部材に送光し、前記受光光学系は、前記第
2の波長分別部で反射(または透過)された前記測定用
反射部材からの赤外光を受光し、前記視準光学系は、前
記第1の波長分別部と前記第2の波長分別部と前記光透
過部(または光反射部)とを透過(または反射)した前
記測定用反射部材からの反射光に基づいて視準する。
Further, according to another preferable aspect of the present invention, the light splitting means is provided obliquely with respect to a predetermined surface including the optical axis of the objective lens and the infrared light from the measuring reflection member. A dichroic surface for separating visible light, the dichroic surface having a first wavelength separating portion formed at a position corresponding to the predetermined region in the first region and a position corresponding to the second region. And a second wavelength separating section formed on the dichroic surface, the light limiting section being formed at a position corresponding to an area apart from the predetermined surface other than the predetermined area in the first area on the dichroic surface. A light transmitting portion (or a light reflecting portion), wherein the light transmitting optical system transmits the infrared light reflected (or transmitted) by the first wavelength separating portion to the measurement reflecting member, The light receiving optical system reflects at the second wavelength separating unit. (Or transmitted) infrared light from the measuring reflection member, and the collimation optical system is configured such that the collimation optical system includes the first wavelength separation unit, the second wavelength separation unit, and the light transmission unit (or light reflection unit). Collation is performed based on the reflected light from the measurement reflection member that has transmitted (or reflected).

【0013】[0013]

【発明の実施の形態】本発明の光波測距装置では、測定
用反射部材に対して対物レンズの光軸に関して一方の領
域に沿って光を送光し、光軸に関して他方の領域に沿っ
て対物レンズを介した反射部材からの反射光を受光す
る。そして、光軸に関して他方の領域に隣接した所定領
域だけに沿って光が反射部材に達するように、送光光束
の一部を制限する。具体的は、たとえばダイクロイック
膜で反射した赤外光を反射部材に対して送光するような
場合、ダイクロイック膜に隣接して光透過部を形成す
る。そして、この光透過部を介して送光光束の一部を逃
がし、光軸に関して他方の領域に隣接した所定領域だけ
に沿って光が反射部材に届くようにする。
BEST MODE FOR CARRYING OUT THE INVENTION In the light wave distance measuring apparatus of the present invention, light is sent to the reflecting member for measurement along one region with respect to the optical axis of the objective lens, and along the other region with respect to the optical axis. The reflected light from the reflecting member via the objective lens is received. Then, a part of the transmitted light flux is limited so that the light reaches the reflecting member only along a predetermined region adjacent to the other region with respect to the optical axis. Specifically, for example, when the infrared light reflected by the dichroic film is sent to the reflecting member, the light transmitting portion is formed adjacent to the dichroic film. Then, a part of the transmitted light flux is allowed to escape through the light transmitting portion so that the light reaches the reflecting member only along a predetermined region adjacent to the other region with respect to the optical axis.

【0014】こうして、測定用反射部材としてレフシー
トを使用する場合、ダイクロイック膜および対物レンズ
を介した発光器からの送信光は、光軸に関して一方の領
域に沿ってレフシートの中央部反射体だけに入射する。
送信光はレフシートの中央部反射体で反射されて受信光
となり、光軸に関して他方の領域に沿って対物レンズお
よびダイクロイック膜を介して受光器に達する。換言す
れば、レフシート中央部反射体に入射した送信光は、発
光器に再び戻ることなく、すべて受光器に導かれる。そ
の結果、本発明では、多重反射光の発生を抑えることが
できる。
Thus, when the reflection sheet is used as the reflection member for measurement, the light transmitted from the light emitter through the dichroic film and the objective lens is incident only on the central reflector of the reflection sheet along one region with respect to the optical axis. To do.
The transmitted light is reflected by the central reflector of the reflex sheet to become received light, and reaches the light receiver along the other region with respect to the optical axis via the objective lens and the dichroic film. In other words, the transmitted light that has entered the reflector of the central portion of the ref sheet is guided to the light receiver without returning to the light emitter again. As a result, in the present invention, generation of multiple reflected light can be suppressed.

【0015】本発明の実施例を、添付図面に基づいて説
明する。図1は、本発明の第1実施例にかかる光波測距
装置の構成を概略的に示す図である。なお、図1(b)
は、図1(a)のダイクロイック膜DMを膜の法線方向
に沿って見た図である。図1の装置において、発光器5
は、発振器8からの変調信号に基づいて強度変調された
送信光として、たとえば赤外光を射出する。発光器5か
らの赤外光は、ダイクロイックプリズム2の面2aを透
過した後、ダイクロイックプリズム2の面2bおよび2
cをそれぞれ全反射して、ダイクロイックプリズム2の
ダイクロイック膜DMが形成された膜面に入射する。
Embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a diagram schematically showing the configuration of a lightwave distance measuring apparatus according to a first embodiment of the present invention. FIG. 1 (b)
[Fig. 1] is a view of the dichroic film DM of Fig. 1 (a) as seen along the normal line direction of the film. In the device of FIG. 1, the light emitter 5
Emits infrared light, for example, as transmission light whose intensity is modulated based on the modulation signal from the oscillator 8. The infrared light from the light emitter 5 passes through the surface 2a of the dichroic prism 2 and then the surfaces 2b and 2 of the dichroic prism 2.
Each of c is totally reflected and is incident on the film surface of the dichroic prism 2 on which the dichroic film DM is formed.

【0016】図1(b)に示すように、ダイクロイック
プリズム2のダイクロイック膜DMが形成された膜面
は、3つの領域Pj、PsおよびPtからなっている。
図中斜線部で示す領域PjおよびPsは、赤外光を反射
し且つ可視光を透過させる特性を有する。一方、領域P
tにはダイクロイック膜DMが形成されておらず、赤外
光および可視光をともに透過させる光透過領域となって
いる。なお、領域Pjと領域Psとの境界線KL1は、
図1(a)中において対物レンズ1の光軸AXを含んだ
紙面に垂直な仮想線である。また、領域Psと領域Pt
との境界線KL2は、図1(b)中において領域Pjと
領域Psとの境界線KL1から所定距離dだけ間隔を隔
てた線である。
As shown in FIG. 1B, the film surface of the dichroic prism 2 on which the dichroic film DM is formed is composed of three regions Pj, Ps and Pt.
Regions Pj and Ps indicated by hatched portions in the drawing have a characteristic of reflecting infrared light and transmitting visible light. On the other hand, the area P
The dichroic film DM is not formed at t, which is a light transmission region that transmits both infrared light and visible light. The boundary line KL1 between the region Pj and the region Ps is
It is an imaginary line that is perpendicular to the paper surface including the optical axis AX of the objective lens 1 in FIG. In addition, the region Ps and the region Pt
The boundary line KL2 with the line is a line spaced from the boundary line KL1 between the region Pj and the region Ps by a predetermined distance d in FIG.

【0017】ダイクロイックプリズム2のダイクロイッ
ク膜DMの領域Psで反射された送信光は、ダイクロイ
ックプリズム2の面2cを射出した後、対物レンズ1に
入射する。対物レンズ1を介して平行光となった送信光
は、対物レンズ1の光軸AXの下側領域に沿って測定点
に設置されたレフシート10に入射する。このように、
発光器5、ダイクロイックプリズム2および対物レンズ
1は、対物レンズ1の光軸AXに関して一方の領域に沿
った平行光を測定用反射部材であるレフシート10に送
光するための送光光学系を構成している。
The transmitted light reflected by the region Ps of the dichroic film DM of the dichroic prism 2 exits the surface 2c of the dichroic prism 2 and then enters the objective lens 1. The transmitted light that has become parallel light through the objective lens 1 is incident on the ref sheet 10 installed at the measurement point along the lower region of the optical axis AX of the objective lens 1. in this way,
The light emitter 5, the dichroic prism 2, and the objective lens 1 constitute a light-transmitting optical system for transmitting parallel light along one region with respect to the optical axis AX of the objective lens 1 to the reflection sheet 10 which is a reflection member for measurement. doing.

【0018】レフシート10で反射された受信光は、光
軸AXの上側領域に沿って対物レンズ1に入射する。対
物レンズ1を介した受信光は、ダイクロイック膜DMの
領域Pjで反射された後、ダイクロイックプリズム2の
面2bを透過して、受光器6上に集光する。このよう
に、対物レンズ1、ダイクロイックプリズム2および受
光器6は、測定用反射部材であるレフシート10からの
受信光を対物レンズ1の光軸AXに関して他方の領域に
沿って受光するための受光光学系を構成している。な
お、ダイクロイックプリズム2の面2bは、受光器5か
らの送信光を反射させ、ダイクロイック膜DMの領域P
jで反射された受信光を透過させる、いわゆる送受信光
を分別する機能を有している。
The received light reflected by the reflector sheet 10 is incident on the objective lens 1 along the upper region of the optical axis AX. The light received through the objective lens 1 is reflected by the region Pj of the dichroic film DM, then passes through the surface 2b of the dichroic prism 2, and is condensed on the light receiver 6. As described above, the objective lens 1, the dichroic prism 2, and the photodetector 6 are light receiving optics for receiving the received light from the reflection sheet 10 that is the measurement reflection member along the other region with respect to the optical axis AX of the objective lens 1. It constitutes the system. The surface 2b of the dichroic prism 2 reflects the transmitted light from the photodetector 5, and the area P of the dichroic film DM.
It has a function of transmitting the received light reflected by j and separating the so-called transmitted / received light.

【0019】一方、たとえば太陽光線に対するレフシー
ト10全体からの反射光は、対物レンズ1を介した後、
ダイクロイックプリズム2のダイクロイック膜面に入射
する。そして、ダイクロイック膜面の領域PjおよびP
sを透過した可視光および光透過領域Ptを透過した光
は、焦点板3上にレフシート10の像を形成する。焦点
板3上に形成されたレフシート10の像は、接眼レンズ
4を介して拡大観察される。このように、対物レンズ
1、ダイクロイックプリズム2、焦点板3および接眼レ
ンズ4は、測定用反射部材であるレフシート10を視準
するための視準光学系を構成している。
On the other hand, for example, the reflected light from the entire reflex sheet 10 with respect to the sun rays, after passing through the objective lens 1,
It enters the dichroic film surface of the dichroic prism 2. Then, the regions Pj and P of the dichroic film surface
The visible light transmitted through s and the light transmitted through the light transmission region Pt form an image of the reflection sheet 10 on the focusing screen 3. The image of the reflex sheet 10 formed on the focusing screen 3 is magnified and observed through the eyepiece lens 4. In this way, the objective lens 1, the dichroic prism 2, the focusing plate 3, and the eyepiece lens 4 constitute a collimating optical system for collimating the ref sheet 10 which is a measuring reflection member.

【0020】測距動作においては、まず視準光学系を介
してレフシート10を視準した状態で、送光光学系を介
して送信光を送光し、受光光学系を介して受信光を受光
する。受光光学系の受光器6で光電変換された出力信号
は、位相検出回路9に入力される。位相検出回路9で
は、受光器6からの出力信号と発振器8からの変調信号
との間で位相比較を行う。受光器6からの出力信号の位
相は測定点までの往復距離に比例するので、この位相比
較結果に基づいて測定点までの距離を求めることができ
る。
In the distance measuring operation, first, in a state where the ref sheet 10 is collimated through the collimating optical system, the transmitting light is transmitted through the light transmitting optical system and the received light is received through the light receiving optical system. To do. The output signal photoelectrically converted by the light receiver 6 of the light receiving optical system is input to the phase detection circuit 9. The phase detection circuit 9 performs phase comparison between the output signal from the light receiver 6 and the modulation signal from the oscillator 8. Since the phase of the output signal from the light receiver 6 is proportional to the round-trip distance to the measurement point, the distance to the measurement point can be obtained based on the phase comparison result.

【0021】第1実施例では、ダイクロイックプリズム
2のダイクロイック膜面に入射した送光器5からの赤外
光のうち、領域Psに入射した赤外光だけがレフシート
10に向かって反射され、光透過領域Ptに入射した赤
外光はレフシート10に導かれることはない。上述した
ように、領域Psは、送光光路と受光光路との境界線で
ある境界線KL1に隣接して形成された所定幅dのダイ
クロイック膜からなる。したがって、領域Psで反射さ
れた送信光は、対物レンズ1を介した後、レフシート1
0の複数の微小反射体のうち光軸AXを含んで紙面に垂
直な方向に延びた中央部反射体10aだけに光軸AXの
下側領域に沿って入射する。
In the first embodiment, of the infrared light from the light transmitter 5 incident on the dichroic film surface of the dichroic prism 2, only the infrared light incident on the region Ps is reflected toward the reflector sheet 10 and the light is reflected. The infrared light incident on the transmission region Pt is not guided to the ref sheet 10. As described above, the region Ps is formed of the dichroic film having the predetermined width d formed adjacent to the boundary line KL1 which is the boundary line between the light transmitting optical path and the light receiving optical path. Therefore, the transmission light reflected by the area Ps passes through the objective lens 1 and then the reflection sheet 1
Of the plurality of zero minute reflectors, only the central reflector 10a extending in the direction perpendicular to the paper including the optical axis AX is incident along the lower region of the optical axis AX.

【0022】光軸AXの下側領域に沿って中央反射体1
0aに入射した送信光は、光軸AXの上側領域に沿って
対物レンズ1に入射する。換言すれば、光軸AXの下側
領域に沿って中央反射体10aに入射した送信光は、発
光器5に再び戻ることなく、すべて受光器6に導かれ
る。こうして、第1実施例では、多重反射光の発生を抑
えることができ、高精度な測距が可能である。
The central reflector 1 is arranged along the lower region of the optical axis AX.
The transmitted light that has entered 0a enters the objective lens 1 along the upper region of the optical axis AX. In other words, the transmitted light that has entered the central reflector 10a along the lower region of the optical axis AX is guided to the light receiver 6 without returning to the light emitter 5. In this way, in the first embodiment, the generation of multiple reflected light can be suppressed, and highly accurate distance measurement is possible.

【0023】図2は、本発明の第2実施例にかかる光波
測距装置の構成を概略的に示す図である。なお、図2
(b)は、図2(a)のダイクロイック膜DMを膜の法
線方向に沿って見た図である。前述したように、第1実
施例では、視準光学系がダイクロイック膜DMを透過し
た可視光に基づいて視準を行っている。しかしながら、
たとえばトンネル内のように太陽光線の十分届かない地
点で測距を行う場合、第1実施例の装置では視準動作に
必要なレフシート10の像を形成することができない。
そこで、第2実施例では、第1実施例の接眼レンズ4を
介した目視観察による視準方式に代えて、たとえばCC
Dからなる撮像系11を用いた視準方式を採用してい
る。
FIG. 2 is a diagram schematically showing the configuration of a lightwave distance measuring apparatus according to the second embodiment of the present invention. Note that FIG.
FIG. 2B is a view of the dichroic film DM of FIG. 2A viewed along the normal direction of the film. As described above, in the first embodiment, the collimation optical system performs collimation based on visible light that has passed through the dichroic film DM. However,
For example, in the case where distance measurement is performed at a point where sunlight does not reach sufficiently, such as in a tunnel, the apparatus of the first embodiment cannot form the image of the ref sheet 10 necessary for the collimation operation.
Therefore, in the second embodiment, instead of the collimation method by visual observation through the eyepiece lens 4 of the first embodiment, for example, CC
The collimation method using the image pickup system 11 composed of D is adopted.

【0024】すなわち、第2実施例の光波測距装置で
は、視準光学系に撮像系11が用いられ、これに伴って
ダイクロイック膜DMの形成領域が変化している点だけ
が第1実施例と相違している。したがって、図2におい
て、発振器8および位相検出回路9の図示を省略すると
ともに、図1の構成要素と基本的に同じ機能を有する要
素には同じ参照符号を付している。以下、第1実施例と
の相違点に着目して第2実施例を説明する。
That is, in the light wave distance measuring apparatus of the second embodiment, the image pickup system 11 is used as the collimating optical system, and the formation area of the dichroic film DM is changed accordingly. Is different from Therefore, in FIG. 2, illustration of the oscillator 8 and the phase detection circuit 9 is omitted, and elements having basically the same functions as those of the constituent elements of FIG. 1 are designated by the same reference numerals. Hereinafter, the second embodiment will be described focusing on the differences from the first embodiment.

【0025】図2の装置において、発光器5からの赤外
光は、ダイクロイックプリズム2のダイクロイック膜面
に入射する。図2(b)に示すように、ダイクロイック
プリズム2のダイクロイック膜DMが形成された膜面
は、4つの領域Pj、Ps、PtおよびPt′からなっ
ている。図中斜線部で示す領域PjおよびPsには、赤
外光を反射する特性を有するダイクロイック膜DMが形
成されている。一方、領域PtおよびPt′にはダイク
ロイック膜DMが形成されておらず、赤外光を透過させ
る光透過領域となっている。
In the device of FIG. 2, infrared light from the light emitter 5 is incident on the dichroic film surface of the dichroic prism 2. As shown in FIG. 2B, the film surface of the dichroic prism 2 on which the dichroic film DM is formed is composed of four regions Pj, Ps, Pt and Pt ′. A dichroic film DM having a characteristic of reflecting infrared light is formed in regions Pj and Ps indicated by hatched portions in the figure. On the other hand, the dichroic film DM is not formed in the regions Pt and Pt ′, which is a light transmission region that transmits infrared light.

【0026】なお、領域Pjと領域Psとの境界線KL
1は、図2(a)中において対物レンズ1の光軸AXを
含んで紙面に垂直な仮想線である。また、領域Psと領
域Ptとの境界線KL2および領域Pjと領域Pt′と
の境界線KL3は、図2(b)中において領域Pjと領
域Psとの境界線KL1からそれぞれ所定距離dだけ間
隔を隔てた線である。
The boundary line KL between the area Pj and the area Ps
In FIG. 2A, reference numeral 1 is a virtual line that includes the optical axis AX of the objective lens 1 and is perpendicular to the paper surface. Further, the boundary line KL2 between the region Ps and the region Pt and the boundary line KL3 between the region Pj and the region Pt ′ are respectively separated from the boundary line KL1 between the region Pj and the region Ps by a predetermined distance d in FIG. 2B. Is a line that separates.

【0027】ダイクロイックプリズム2のダイクロイッ
ク膜DMの領域Psで反射された送信光は、対物レンズ
1を介した後、光軸AXの下側領域に沿って中央反射体
10aに入射する。中央反射体10aで反射された受信
光は、光軸AXの上側領域に沿って対物レンズ1を介し
た後、ダイクロイック膜DMの領域Pjで反射され受光
器6上に集光する。
The transmitted light reflected by the region Ps of the dichroic film DM of the dichroic prism 2 passes through the objective lens 1 and then enters the central reflector 10a along the lower region of the optical axis AX. The received light reflected by the central reflector 10a passes through the objective lens 1 along the upper region of the optical axis AX, is then reflected by the region Pj of the dichroic film DM, and is condensed on the light receiver 6.

【0028】なお、第1実施例の構成においてCCD1
1を採用しても、レフシート10全体からの放射赤外光
のうち90%以上の光がCCD11に達することなく、
ダイクロイック膜DMによって反射されてしまう。その
結果、太陽光線が十分届かないようなトンネル内におい
て、反射部材であるレフシート10の視準がひいては測
距が不可能になる。第2実施例では、レフシート10全
体からの放射赤外光が、対物レンズ1を介した後、ダイ
クロイックプリズム2のダイクロイック膜面に入射す
る。そして、ダイクロイック膜面の光透過領域Ptおよ
びPt′を透過した赤外光は、CCD11からなる撮像
系の受光面にレフシート10の像を形成する。
In the structure of the first embodiment, the CCD 1
Even if 1 is adopted, 90% or more of infrared light emitted from the entire ref sheet 10 does not reach the CCD 11,
It is reflected by the dichroic film DM. As a result, the collimation of the reflector sheet 10, which is a reflecting member, and thus the distance measurement cannot be performed in a tunnel where sunlight does not reach sufficiently. In the second embodiment, the infrared light emitted from the entire reflex sheet 10 passes through the objective lens 1 and then enters the dichroic film surface of the dichroic prism 2. Then, the infrared light transmitted through the light transmitting regions Pt and Pt ′ on the surface of the dichroic film forms an image of the reflector sheet 10 on the light receiving surface of the image pickup system including the CCD 11.

【0029】このように、第2実施例においても、光軸
AXの下側領域に沿って中央反射体10aに入射した送
信光は、発光器5に再び戻ることなく、すべて受光器6
に導かれる。その結果、多重反射光の発生を抑えること
ができ、高精度な測距が可能である。また、第2実施例
では、レフシート10全体からの赤外光に基づいてレフ
シート10の像を形成することができるので、トンネル
内においても高精度な視準ひいては高精度な測距が可能
である。
As described above, also in the second embodiment, all of the transmitted light that has entered the central reflector 10a along the lower region of the optical axis AX does not return to the light emitter 5 and is received by the light receiver 6 as well.
It is led to. As a result, generation of multiple reflected light can be suppressed, and highly accurate distance measurement is possible. Further, in the second embodiment, since the image of the ref sheet 10 can be formed based on the infrared light from the entire ref sheet 10, it is possible to perform highly accurate collimation and thus highly accurate distance measurement even in the tunnel. .

【0030】なお、上述の各実施例では、送信光として
赤外光を使用する例を示している。しかしながら、送信
光として可視光を使用し、ダイクロイックプリズムに代
えてハーフプリズムのような光分割手段を用いることが
できる。また、上述の各実施例では、ダイクロイック膜
で反射した光をレフシートおよび受光器に導いている。
しかしながら、ダイクロイック膜を透過した光をレフシ
ートおよび受光器に導くようにしてもよい。この場合、
送信光の一部をレフシートに対して制限するための光制
限手段として、各実施例の光透過部に代えて光反射部を
設ける必要がある。
In each of the above-mentioned embodiments, an example in which infrared light is used as the transmission light is shown. However, visible light may be used as the transmitted light, and a light splitting means such as a half prism may be used instead of the dichroic prism. Further, in each of the above-described embodiments, the light reflected by the dichroic film is guided to the reflector sheet and the light receiver.
However, the light transmitted through the dichroic film may be guided to the reflector sheet and the light receiver. in this case,
As a light restricting means for restricting a part of the transmitted light with respect to the ref sheet, it is necessary to provide a light reflecting portion in place of the light transmitting portion of each embodiment.

【0031】[0031]

【効果】以上説明したように、本発明では、測定用反射
部材としてレフシートを使用する場合、発光器からの送
信光は光軸に関して一方の領域に沿ってレフシートの中
央部反射体に入射し、光軸に関して他方の領域に沿って
受光器に達する。すなわち、レフシートの中央部反射体
に入射した送信光は、発光器に再び戻ることなく受光器
に導かれるので、多重反射光の発生を抑えることができ
高精度な測距が可能となる。
As described above, in the present invention, when a reflection sheet is used as the measurement reflection member, the transmitted light from the light emitter is incident on the central reflector of the reflection sheet along one region with respect to the optical axis, The light receiver is reached along the other region with respect to the optical axis. That is, since the transmitted light that has entered the reflector of the central portion of the reflector sheet is guided to the light receiver without returning to the light emitter again, the generation of multiple reflected light can be suppressed and highly accurate distance measurement can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例にかかる光波測距装置の構
成を概略的に示す図である。なお、図1(b)は、図1
(a)のダイクロイック膜DMを膜の法線方向に沿って
見た図である。
FIG. 1 is a diagram schematically showing a configuration of a lightwave distance measuring apparatus according to a first embodiment of the present invention. FIG. 1 (b) is the same as FIG.
It is the figure which looked at the dichroic film DM of (a) along the normal line direction of a film.

【図2】本発明の第2実施例にかかる光波測距装置の構
成を概略的に示す図である。なお、図2(b)は、図2
(a)のダイクロイック膜DMを膜の法線方向に沿って
見た図である。
FIG. 2 is a diagram schematically showing a configuration of a lightwave distance measuring device according to a second embodiment of the present invention. Note that FIG.
It is the figure which looked at the dichroic film DM of (a) along the normal line direction of a film.

【図3】従来の光波測距装置の構成を概略的に示す図で
ある。なお、図3(b)は、図3(a)のダイクロイッ
ク膜DMを膜の法線方向に沿って見た図である。
FIG. 3 is a diagram schematically showing a configuration of a conventional lightwave distance measuring device. Note that FIG. 3B is a view of the dichroic film DM of FIG. 3A viewed along the normal line direction of the film.

【図4】図3の装置における光路図である。4 is an optical path diagram in the apparatus of FIG.

【図5】図3の光波測距装置においてコーナーキューブ
7に代えてレフシート10を測定点に設置した場合の光
路図である。
5 is an optical path diagram when a ref sheet 10 is installed at a measurement point in place of the corner cube 7 in the optical distance measuring device of FIG.

【符号の説明】[Explanation of symbols]

1 対物レンズ 2 ダイクロイックプリズム 3 焦点板 4 接眼レンズ 5 発光器 6 受光器 7 コーナーキューブ 8 発振器 9 位相検出回路 10 レフシート 10a 中央反射体 DM ダイクロイック膜 1 Objective Lens 2 Dichroic Prism 3 Focus Plate 4 Eyepiece 5 Light Emitter 6 Light Receiver 7 Corner Cube 8 Oscillator 9 Phase Detection Circuit 10 Ref Sheet 10a Central Reflector DM Dichroic Film

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 対物レンズの光軸を含む所定の面に関し
て前記対物レンズの有効領域が2分される一方の第1領
域に沿って前記対物レンズを介した光を測定用反射部材
に送光するための送光光学系と、前記対物レンズの光軸
を含む所定の面に関して前記対物レンズの有効領域が2
分される他方の第2領域に沿って前記対物レンズを介し
た前記測定用反射部材からの反射光を受光するための受
光光学系と、前記対物レンズを介して前記測定用反射部
材を視準観察するための視準光学系と、前記対物レンズ
と前記視準光学系との間の光路中に配置され且つ前記測
定用反射部材からの反射光を前記受光光学系と前記視準
光学系とにそれぞれ導くための光分割手段とを備えた光
波測距装置において、 前記第1領域内において前記第2領域に隣接するととも
に前記対物レンズの光軸に少なくとも隣接する所定領域
に沿って通過する前記送光光学系の内側光束が前記測定
用反射部材に達し、且つ前記送光光学系の光束のうち前
記所定領域に対応する部分以外の外側光束が前記測定用
反射部材に達しないように、前記送光光学系の光束を制
限するための光制限手段を備えていることを特徴とする
光波測距装置。
1. The light transmitted through the objective lens to a measuring reflection member along a first area on one side where the effective area of the objective lens is divided into two parts with respect to a predetermined surface including the optical axis of the objective lens. And a predetermined plane including the optical axis of the objective lens, the effective area of the objective lens is 2
A light receiving optical system for receiving reflected light from the measuring reflection member via the objective lens along the other divided second region, and collimating the measuring reflection member via the objective lens. A collimating optical system for observing, arranged in an optical path between the objective lens and the collimating optical system, and reflecting light from the measuring reflecting member with the light receiving optical system and the collimating optical system. And a light splitting device for guiding each of the light splitting means to guide the light beam to the second region in the first region and passing along a predetermined region at least adjacent to the optical axis of the objective lens. The inner light flux of the light transmission optical system reaches the measurement reflection member, and the outer light flux of the light flux of the light transmission optical system other than a portion corresponding to the predetermined region does not reach the measurement reflection member. Luminous flux of light transmission optical system An optical distance measuring device, characterized in that it is provided with a light limiting means for limiting.
【請求項2】 前記光分割手段は、前記対物レンズの光
軸を含む所定の面に対して斜設され前記測定用反射部材
からの反射光を振幅分割する光分割面を有し、 前記光分割面は、前記第1領域内の前記所定領域に対応
する位置に形成された第1光分割部と、前記第2領域に
対応する位置に形成された第2光分割部とを有し、 前記光制限手段は、前記光分割面において、前記第1領
域内の前記所定領域以外の前記所定面から離れた領域に
対応する位置に形成された光透過部であり、 前記送光光学系は、前記第1光分割部で反射された光束
を前記測定用反射部材に送光し、 前記受光光学系は、前記第2光分割部で反射された前記
測定用反射部材からの光束を受光し、 前記視準光学系は、前記第1光分割部と前記第2光分割
部と前記光透過部とを透過した前記測定用反射部材から
の反射光に基づいて視準することを特徴とする請求項1
に記載の光波測距装置。
2. The light splitting means has a light splitting surface which is obliquely provided with respect to a predetermined surface including the optical axis of the objective lens and which splits the reflected light from the measuring reflection member in amplitude. The split surface has a first light splitting portion formed at a position corresponding to the predetermined region in the first region, and a second light splitting portion formed at a position corresponding to the second region, The light restricting means is a light transmitting portion formed on the light dividing surface at a position corresponding to an area apart from the predetermined surface other than the predetermined area in the first area, and the light transmitting optical system is , The light flux reflected by the first light splitting portion is sent to the measurement reflecting member, and the light receiving optical system receives the light flux from the measurement reflecting member reflected by the second light splitting portion. The collimating optical system transmits the first light splitting portion, the second light splitting portion, and the light transmitting portion. Claim 1, wherein the collimating based on the reflected light from the measuring reflector member having
The lightwave distance measuring device described in.
【請求項3】 前記光分割手段は、前記対物レンズの光
軸を含む所定の面に対して斜設され前記測定用反射部材
からの反射光を振幅分割する光分割面を有し、 前記光分割面は、前記第1領域内の前記所定領域に対応
する位置に形成された第1光分割部と、前記第2領域に
対応する位置に形成された第2光分割部とを有し、 前記光制限手段は、前記光分割面において、前記第1領
域内の前記所定領域以外の前記所定面から離れた領域に
対応する位置に形成された光反射部であり、 前記送光光学系は、前記第1光分割部を透過した光束を
前記測定用反射部材に送光し、 前記受光光学系は、前記第2光分割部を透過した前記測
定用反射部材からの光束を受光し、 前記視準光学系は、前記第1光分割部と前記第2光分割
部と前記反射過部とで反射された前記測定用反射部材か
らの反射光に基づいて視準することを特徴とする請求項
1に記載の光波測距装置。
3. The light splitting means has a light splitting surface which is obliquely provided with respect to a predetermined surface including the optical axis of the objective lens and which splits the reflected light from the measurement reflecting member in amplitude. The split surface has a first light splitting portion formed at a position corresponding to the predetermined region in the first region, and a second light splitting portion formed at a position corresponding to the second region, The light restricting means is a light reflecting portion formed at a position on the light dividing surface corresponding to a region apart from the predetermined surface other than the predetermined region in the first region, and the light transmitting optical system is A light flux transmitted through the first light splitting portion is sent to the measurement reflection member, and the light receiving optical system receives a light flux from the measurement reflection member transmitted through the second light splitting portion, The collimation optical system is reflected by the first light splitting portion, the second light splitting portion, and the reflection excess portion. Light wave distance measuring apparatus according to claim 1, wherein the collimating based on the reflected light from the measuring reflector member.
【請求項4】 前記光分割手段は、前記対物レンズの光
軸を含む所定の面に対して斜設され前記測定用反射部材
からの赤外光と可視光とを分別するダイクロイック面を
有し、 前記ダイクロイック面は、前記第1領域内の前記所定領
域に対応する位置に形成された第1の波長分別部と、前
記第2領域に対応する位置に形成された第2の波長分別
部とを有し、 前記光制限手段は、前記ダイクロイック面において、前
記第1領域内の前記所定領域以外の前記所定面から離れ
た領域に対応する位置に形成された光透過部であり、 前記送光光学系は、前記第1の波長分別部で反射された
赤外光を前記測定用反射部材に送光し、 前記受光光学系は、前記第2の波長分別部で反射された
前記測定用反射部材からの赤外光を受光し、 前記視準光学系は、前記第1の波長分別部と前記第2の
波長分別部と前記光透過部とを透過した前記測定用反射
部材からの反射光に基づいて視準することを特徴とする
請求項1に記載の光波測距装置。
4. The light splitting means has a dichroic surface which is obliquely provided with respect to a predetermined surface including the optical axis of the objective lens and which separates infrared light and visible light from the measuring reflection member. The dichroic surface has a first wavelength separating section formed at a position corresponding to the predetermined area in the first area, and a second wavelength separating section formed at a position corresponding to the second area. Wherein the light restricting means is a light transmitting portion formed on the dichroic surface at a position corresponding to an area apart from the predetermined surface other than the predetermined area in the first area, The optical system sends the infrared light reflected by the first wavelength classification section to the measurement reflection member, and the light receiving optical system reflects the measurement reflection reflected by the second wavelength classification section. Receiving infrared light from a member, the collimation optical system, The optical wave measurement according to claim 1, wherein collimation is performed based on reflected light from the measurement reflection member that has passed through the first wavelength separation unit, the second wavelength separation unit, and the light transmission unit. Distance device.
【請求項5】 前記ダイクロイック面は、前記第2領域
内の前記所定面から離れた領域に対応する位置に形成さ
れた第2の光透過部を有し、 前記視準光学系は、前記第1の波長分別部と前記第2の
波長分別部と前記光透過部と前記第2の光透過部とを透
過した前記測定用反射部材からの赤外光に基づいて視準
することを特徴とする請求項4に記載の光波測距装置。
5. The dichroic surface has a second light transmitting portion formed at a position corresponding to an area in the second area, which is distant from the predetermined surface, and the collimation optical system includes the second light transmitting portion. Collimating based on infrared light from the reflection member for measurement that has passed through the first wavelength separation unit, the second wavelength separation unit, the light transmission unit, and the second light transmission unit. The lightwave distance measuring device according to claim 4.
【請求項6】 前記光分割手段は、前記対物レンズの光
軸を含む所定の面に対して斜設され前記測定用反射部材
からの赤外光と可視光とを分別するダイクロイック面を
有し、 前記ダイクロイック面は、前記第1領域内の前記所定領
域に対応する位置に形成された第1の波長分別部と、前
記第2領域に対応する位置に形成された第2の波長分別
部とを有し、 前記光制限手段は、前記ダイクロイック面において、前
記第1領域内の前記所定領域以外の前記所定面から離れ
た領域に対応する位置に形成された光反射部であり、 前記送光光学系は、前記第1の波長分別部を透過した赤
外光を前記測定用反射部材に送光し、 前記受光光学系は、前記第2の波長分別部を透過した前
記測定用反射部材からの赤外光を受光し、 前記視準光学系は、前記第1の波長分別部と前記第2の
波長分別部と前記光反射部とで反射された前記測定用反
射部材からの反射光に基づいて視準することを特徴とす
る請求項1に記載の光波測距装置。
6. The light splitting means has a dichroic surface which is installed obliquely with respect to a predetermined surface including the optical axis of the objective lens and which separates infrared light and visible light from the measuring reflection member. The dichroic surface has a first wavelength separating section formed at a position corresponding to the predetermined area in the first area, and a second wavelength separating section formed at a position corresponding to the second area. The light limiting means is a light reflecting portion formed at a position corresponding to a region apart from the predetermined surface other than the predetermined region in the first region on the dichroic surface, The optical system sends infrared light that has passed through the first wavelength separation section to the measurement reflection member, and the light-receiving optical system transmits from the measurement reflection member that has passed through the second wavelength separation section. The infrared light of the first collimation optical system, The optical distance measurement according to claim 1, wherein collimation is performed based on the reflected light from the measurement reflection member reflected by the wavelength separation unit, the second wavelength separation unit, and the light reflection unit. apparatus.
【請求項7】 前記ダイクロイック面は、前記第2領域
内の前記所定面から離れた領域に対応する位置に形成さ
れた第2の光反射部を有し、 前記視準光学系は、前記第1の波長分別部と前記第2の
波長分別部と前記光透過部と前記第2の光透過部とで反
射された前記測定用反射部材からの赤外光に基づいて視
準することを特徴とする請求項6に記載の光波測距装
置。
7. The dichroic surface has a second light reflecting portion formed at a position corresponding to an area in the second area, which is distant from the predetermined surface, and the collimating optical system includes the second light reflecting portion. Collimating based on the infrared light from the measurement reflection member reflected by the first wavelength separation unit, the second wavelength separation unit, the light transmission unit, and the second light transmission unit. The optical distance measuring device according to claim 6.
JP7333982A 1995-11-29 1995-11-29 Light wave distance measuring apparatus Pending JPH09152483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7333982A JPH09152483A (en) 1995-11-29 1995-11-29 Light wave distance measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7333982A JPH09152483A (en) 1995-11-29 1995-11-29 Light wave distance measuring apparatus

Publications (1)

Publication Number Publication Date
JPH09152483A true JPH09152483A (en) 1997-06-10

Family

ID=18272174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7333982A Pending JPH09152483A (en) 1995-11-29 1995-11-29 Light wave distance measuring apparatus

Country Status (1)

Country Link
JP (1) JPH09152483A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009063339A (en) * 2007-09-05 2009-03-26 Hokuyo Automatic Co Scanning type range finder
US8305561B2 (en) 2010-03-25 2012-11-06 Hokuyo Automatic Co., Ltd. Scanning-type distance measuring apparatus
WO2019138961A1 (en) 2018-01-09 2019-07-18 Canon Kabushiki Kaisha Detecting apparatus and on-board system including the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009063339A (en) * 2007-09-05 2009-03-26 Hokuyo Automatic Co Scanning type range finder
US8305561B2 (en) 2010-03-25 2012-11-06 Hokuyo Automatic Co., Ltd. Scanning-type distance measuring apparatus
WO2019138961A1 (en) 2018-01-09 2019-07-18 Canon Kabushiki Kaisha Detecting apparatus and on-board system including the same
CN111566436A (en) * 2018-01-09 2020-08-21 佳能株式会社 Detection device and on-vehicle system including detection device
EP3737909A4 (en) * 2018-01-09 2021-10-13 Canon Kabushiki Kaisha Detecting apparatus and on-board system including the same
US11598873B2 (en) 2018-01-09 2023-03-07 Canon Kabushiki Kaisha Optical apparatus for scanning an object with illumination light flux to detect reflected light flux from the object, and on-board system and mobile apparatus including the same

Similar Documents

Publication Publication Date Title
KR101680762B1 (en) Beam splitter for 3D camera and 3D image acquisition apparatus employing the same
US5886777A (en) Electronic distance measuring device
JP3151595B2 (en) Coaxial lightwave distance meter
RU99122593A (en) SENSOR UNIT FOR SURFACE SURFACE CONTROL AND METHOD FOR IMPLEMENTING THIS CONTROL
US5760905A (en) Distance measuring apparatus
JP4936818B2 (en) Surveyor with light splitting by dichroic prism
JP2000234930A (en) Reflective prism device
JP6737296B2 (en) Object detection device
JP2000111340A (en) Light communication device of surveying machine
KR101806753B1 (en) Modular optics for scanning engine
JP2000329517A (en) Distance-measuring apparatus
CN116819550A (en) System integrating ranging and imaging functions and laser emission subsystem
JPH09152483A (en) Light wave distance measuring apparatus
JP2780300B2 (en) Photodetector
JP3252401B2 (en) Distance measuring device
JP6867736B2 (en) Light wave distance measuring device
KR102072623B1 (en) Optical beam forming unit, distance measuring device and laser illuminator
JP2936825B2 (en) Distance measuring device
JPH07168122A (en) Light projecting optical system and light receiving optical system
JPH07146115A (en) Optical sensor
JPH0769413B2 (en) Lightwave rangefinder
JP2757541B2 (en) Focus detection device and observation device having the same
JP2001317939A (en) Surveying machine with light wave range finder
JPH0996720A (en) Optical device
JPH09152333A (en) Focus adjusting type distance measuring device