JP6036141B2 - Sound processor - Google Patents

Sound processor Download PDF

Info

Publication number
JP6036141B2
JP6036141B2 JP2012226031A JP2012226031A JP6036141B2 JP 6036141 B2 JP6036141 B2 JP 6036141B2 JP 2012226031 A JP2012226031 A JP 2012226031A JP 2012226031 A JP2012226031 A JP 2012226031A JP 6036141 B2 JP6036141 B2 JP 6036141B2
Authority
JP
Japan
Prior art keywords
reverberation
component
suppression
unit
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012226031A
Other languages
Japanese (ja)
Other versions
JP2014077916A (en
Inventor
近藤 多伸
多伸 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP2012226031A priority Critical patent/JP6036141B2/en
Publication of JP2014077916A publication Critical patent/JP2014077916A/en
Application granted granted Critical
Publication of JP6036141B2 publication Critical patent/JP6036141B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、音響信号の残響成分を抑圧する技術に関する。   The present invention relates to a technique for suppressing a reverberation component of an acoustic signal.

音響信号に含まれる残響成分を抑圧する技術が従来から提案されている。例えば特許文献1には、音響信号に含まれる残響成分を推定する予測フィルタ係数の確率モデルを利用することで残響成分の予測フィルタ係数を推定し、推定後の予測フィルタを利用して残響成分を抑圧する技術が開示されている。また、非特許文献1には、発音源から収音点までの伝達関数の逆フィルタを推定し、推定後の逆フィルタを音響信号に適用することで残響成分を抑圧する技術が開示されている。   Techniques for suppressing reverberation components included in acoustic signals have been conventionally proposed. For example, in Patent Document 1, a prediction filter coefficient of a reverberation component is estimated by using a probability model of a prediction filter coefficient that estimates a reverberation component included in an acoustic signal, and a reverberation component is calculated using a prediction filter after estimation. Techniques for suppressing are disclosed. Non-Patent Document 1 discloses a technique for suppressing a reverberation component by estimating an inverse filter of a transfer function from a sound source to a sound collection point and applying the estimated inverse filter to an acoustic signal. .

特開2009−212599号公報JP 2009-212599 A

K. Furuya, et al."Robust speech dereverberation using multichannel blind deconvolution with spectral subtraction",IEEE Transantions on Audio, Speech, and Language Processing, vol. 15, no. 5, p.1579-1591, 2007K. Furuya, et al. "Robust speech dereverberation using multichannel blind deconvolution with spectral subtraction", IEEE Transantions on Audio, Speech, and Language Processing, vol. 15, no. 5, p.1579-1591, 2007

しかし、特許文献1や非特許文献1の技術のもとでは、残響成分の抑圧強度を増加させた場合に、残響抑圧後の音質が低下するという問題が発生し得る。以上の事情を考慮して、本発明は、残響抑圧に起因した音質の低下を抑制することを目的とする。   However, under the techniques of Patent Document 1 and Non-Patent Document 1, when the suppression strength of the reverberation component is increased, there may be a problem that the sound quality after the reverberation suppression is deteriorated. In view of the above circumstances, an object of the present invention is to suppress deterioration in sound quality due to reverberation suppression.

以上の課題を解決するために、本発明の音響処理装置は、音響信号を調波成分と非調波成分とに分離する調波分離手段と、調波成分の残響成分を抑圧する第1残響抑圧手段と、第1残響抑圧手段による残響成分の抑圧強度とは相違する抑圧強度で非調波成分の残響成分を抑圧する第2残響抑圧手段とを具備する。以上の構成では、音響信号が調波成分と非調波成分とについて相異なる抑圧強度で残響成分が抑圧される。したがって、音響信号を調波成分と非調波成分とに分離せずに残響成分を抑圧する場合と比較して、残響抑圧に起因した音質の低下を抑制しながら有効な残響抑圧効果を実現することが可能である。例えば、残響抑圧に起因した音質の低下が調波成分と比較して非調波成分にて顕在化し易いという傾向を前提とした場合、第1残響抑圧手段による残響成分の抑圧強度が、第2残響抑圧手段による残響成分の抑圧強度を上回る構成が好適である。また、第2残響抑圧手段による残響成分の抑圧強度が第1残響抑圧手段による残響成分の抑圧強度を上回る構成を採用することで、例えば、特徴的な音響効果(エフェクト)を音響信号に付与することが可能である。   In order to solve the above problems, an acoustic processing device according to the present invention includes a harmonic separation unit that separates an acoustic signal into a harmonic component and a non-harmonic component, and a first reverberation component that suppresses the reverberation component of the harmonic component. Suppression means, and second reverberation suppression means for suppressing the reverberation component of the non-harmonic component with a suppression intensity different from the suppression intensity of the reverberation component by the first reverberation suppression means. With the above configuration, the reverberation component of the acoustic signal is suppressed with different suppression strengths for the harmonic component and the non-harmonic component. Therefore, compared with the case where the reverberation component is suppressed without separating the acoustic signal into the harmonic component and the non-harmonic component, an effective reverberation suppression effect is realized while suppressing deterioration in sound quality due to the reverberation suppression. It is possible. For example, when it is assumed that a decrease in sound quality due to reverberation suppression tends to be manifested by non-harmonic components as compared to harmonic components, the suppression strength of the reverberation components by the first reverberation suppression unit is the second. A configuration that exceeds the suppression strength of the reverberation component by the reverberation suppression means is preferable. Further, by adopting a configuration in which the suppression strength of the reverberation component by the second reverberation suppression unit exceeds the suppression strength of the reverberation component by the first reverberation suppression unit, for example, a characteristic acoustic effect (effect) is given to the acoustic signal. It is possible.

本発明の好適な態様に係る音響処理装置は、第1残響抑圧手段による処理後の調波成分と第2残響抑圧手段による処理後の非調波成分とを合成する合成処理手段を具備する。以上の構成によれば、調波成分の残響成分と非調波成分の残響成分との双方を抑圧した音響信号を生成することが可能である。   The acoustic processing apparatus according to a preferred aspect of the present invention includes a synthesis processing unit that synthesizes a harmonic component after processing by the first dereverberation unit and a non-harmonic component after processing by the second dereverberation suppression unit. According to the above configuration, it is possible to generate an acoustic signal in which both the reverberation component of the harmonic component and the reverberation component of the non-harmonic component are suppressed.

本発明の好適な態様において、第1残響抑圧手段は、第1移動平均係数(例えば平均個数NH1または平滑化係数αH1)を適用した調波成分の強度の移動平均で第1平均強度(例えば平均強度QH1(k,m))を算定する第1強度平均手段(例えば強度平均部42)と、調波成分の残響成分を抑圧するための第1調整値(例えば調整値GH(k,m))を第1平均強度に応じて算定する第1調整値算定手段(例えば調整値算定部44)と、第1調整値算定手段が算定した第1調整値を調波成分に作用させる第1抑圧処理手段(例えば抑圧処理部46)とを含み、第2残響抑圧手段は、第1移動平均係数とは相違する第2移動平均係数(例えば平均個数HP1または平滑化係数αP1)を適用した非調波成分の強度の移動平均で第2平均強度(例えば平均強度QP1(k,m))を算定する第2強度平均手段(例えば強度平均部52)と、非調波成分の残響成分を抑圧するための第2調整値(例えば調整値GP(k,m))を第2平均強度に応じて算定する第2調整値算定手段(例えば調整値算定部54)と、第2調整値算定手段が算定した第2調整値を非調波成分に作用させる第2抑圧処理手段(例えば抑圧処理部56)とを含む。以上の構成では、第1強度平均手段による移動平均に適用される第1移動平均係数と第2強度平均手段による移動平均に適用される第2移動平均係数とを個別に選定することで、第1残響抑圧手段による残響成分の抑圧強度と第2残響抑圧手段による残響成分の抑圧強度とを簡便に相違させることが可能である。なお、例えば調波成分や非調波成分の強度の単純移動平均を算定する構成では、移動平均の対象となる強度の個数(時間長)が第1移動平均係数および第2移動平均係数として好適であり、調波成分や非調波成分の強度の指数移動平均を算定する構成では、平滑化係数が第1移動平均係数および第2移動平均係数として好適である。ただし、第1残響抑圧手段や第2残響抑圧手段が残響成分を抑圧する構成や方法は以上の例示に限定されず、公知の残響抑圧技術が任意に採用され得る。   In a preferred aspect of the present invention, the first dereverberation suppression means is a moving average of the harmonic component intensities to which the first moving average coefficient (for example, the average number NH1 or the smoothing coefficient αH1) is applied. First intensity averaging means (for example, intensity averaging unit 42) for calculating intensity QH1 (k, m)) and a first adjustment value (for example, adjustment value GH (k, m) for suppressing the reverberation component of the harmonic component. ) In accordance with the first average intensity, and first suppression for causing the first adjustment value calculated by the first adjustment value calculation means to act on the harmonic component. Processing means (for example, suppression processing unit 46), and the second dereverberation suppressing means applies a second moving average coefficient (for example, average number HP1 or smoothing coefficient αP1) different from the first moving average coefficient. The second average intensity (for example, average intensity QP1 (k, m)) is a moving average of the wave component intensity. The second intensity averaging means (for example, the intensity averaging unit 52) to be determined and the second adjustment value (for example, the adjustment value GP (k, m)) for suppressing the reverberation component of the inharmonic component according to the second average intensity Second adjustment value calculation means (for example, adjustment value calculation section 54) to be calculated, and second suppression processing means (for example, suppression processing section) that causes the second adjustment value calculated by the second adjustment value calculation means to act on the subharmonic component. 56). In the above configuration, the first moving average coefficient applied to the moving average by the first intensity averaging means and the second moving average coefficient applied to the moving average by the second intensity averaging means are individually selected, The suppression strength of the reverberation component by the first reverberation suppression unit and the suppression strength of the reverberation component by the second reverberation suppression unit can be easily made different from each other. For example, in the configuration for calculating the simple moving average of the intensities of the harmonic component and the inharmonic component, the number (time length) of the intensities targeted for the moving average is suitable as the first moving average coefficient and the second moving average coefficient. In the configuration for calculating the exponential moving average of the intensity of the harmonic component and the non-harmonic component, the smoothing coefficient is suitable as the first moving average coefficient and the second moving average coefficient. However, the configuration and method in which the first dereverberation suppression unit and the second dereverberation suppression unit suppress the reverberation component are not limited to the above examples, and a known dereverberation technique can be arbitrarily adopted.

本発明の好適な態様において、第2調整値算定手段は、非調波成分のうち後期残響区間内での残響成分の抑圧強度が後期残響区間外での残響成分の抑圧強度を上回るように、音響信号の単位期間毎に調整値を算定する。以上の構成では、後期残響区間内にて残響成分の抑圧強度を上昇させることで後期残響区間内の音量の変動が抑制される。したがって、残響抑圧後の音質の低下を抑制できるという利点がある。なお、以上の態様の具体例は、例えば第3実施形態として後述される。   In a preferred aspect of the present invention, the second adjustment value calculation means is configured so that the suppression strength of the reverberation component in the late reverberation section of the non-harmonic component exceeds the suppression strength of the reverberation component outside the late reverberation section. An adjustment value is calculated for each unit period of the acoustic signal. In the above configuration, the fluctuation in volume in the later reverberation section is suppressed by increasing the suppression strength of the reverberation component in the later reverberation section. Therefore, there is an advantage that deterioration of sound quality after reverberation suppression can be suppressed. In addition, the specific example of the above aspect is later mentioned, for example as 3rd Embodiment.

以上の各態様に係る音響処理装置は、音響信号の処理に専用されるDSP(Digital Signal Processor)等のハードウェア(電子回路)によって実現されるほか、CPU(Central Processing Unit)などの汎用の演算処理装置とプログラムとの協働によっても実現される。本発明に係るプログラムは、音響信号を調波成分と非調波成分とに分離する調波分離処理と、調波成分の残響成分を抑圧する第1残響抑圧処理と、第1残響抑圧処理による残響成分の抑圧強度とは相違する抑圧強度で非調波成分の残響成分を抑圧する第2残響抑圧処理とをコンピュータに実行させる。以上のプログラムによれば、本発明に係る音響処理装置と同様の作用および効果が実現される。   The acoustic processing device according to each of the above aspects is realized by hardware (electronic circuit) such as a DSP (Digital Signal Processor) dedicated to processing of an acoustic signal, or a general-purpose calculation such as a CPU (Central Processing Unit). This is also realized by cooperation between the processing device and the program. The program according to the present invention includes a harmonic separation process that separates an acoustic signal into a harmonic component and a non-harmonic component, a first dereverberation process that suppresses a reverberation component of the harmonic component, and a first dereverberation process. A computer executes a second reverberation suppression process for suppressing a reverberation component of a non-harmonic component with a suppression strength different from the suppression strength of the reverberation component. According to the above program, the same operation and effect as the sound processing apparatus according to the present invention are realized.

なお、本発明のプログラムは、コンピュータが読取可能な記録媒体に格納された形態で提供されてコンピュータにインストールされる。記録媒体は、例えば非一過性(non-transitory)の記録媒体であり、CD-ROM等の光学式記録媒体(光ディスク)が好例であるが、半導体記録媒体や磁気記録媒体等の公知の任意の形式の記録媒体を包含し得る。また、例えば、本発明のプログラムは、通信網を介した配信の形態で提供されてコンピュータにインストールされ得る。   The program of the present invention is provided in a form stored in a computer-readable recording medium and installed in the computer. The recording medium is, for example, a non-transitory recording medium, and an optical recording medium (optical disk) such as a CD-ROM is a good example, but a known arbitrary one such as a semiconductor recording medium or a magnetic recording medium This type of recording medium can be included. For example, the program of the present invention can be provided in the form of distribution via a communication network and installed in a computer.

本発明の第1実施形態に係る音響処理装置のブロック図である。1 is a block diagram of a sound processing apparatus according to a first embodiment of the present invention. 音響信号の平均強度と調整値との関係の説明図である。It is explanatory drawing of the relationship between the average intensity | strength of an acoustic signal, and an adjustment value. 第1残響抑圧部および第2残響抑圧部のブロック図である。It is a block diagram of a 1st dereverberation part and a 2nd dereverberation part. 第3実施形態における第2残響抑圧部の調整値算定部が実行する動作のフローチャートである。It is a flowchart of the operation | movement which the adjustment value calculation part of the 2nd dereverberation part in 3rd Embodiment performs.

<第1実施形態>
図1は、本発明の第1実施形態に係る音響処理装置100のブロック図である。図1に示すように、音響処理装置100には信号供給装置12と放音装置14とが接続される。信号供給装置12は、音響信号SXを音響処理装置100に供給する。
<First Embodiment>
FIG. 1 is a block diagram of a sound processing apparatus 100 according to the first embodiment of the present invention. As shown in FIG. 1, a signal supply device 12 and a sound emitting device 14 are connected to the sound processing device 100. The signal supply device 12 supplies the acoustic signal SX to the acoustic processing device 100.

音響信号SXは、調波成分と非調波成分とを混合した音響の時間波形を示す数値系列である。調波成分は、弦楽器または管楽器等の楽器の演奏音や人間の発声音等の調波性の音響成分を意味し、非調波成分は、打楽器の演奏音や各種の雑音(例えば空調設備の動作音や人混み内の雑踏音等の環境音)等の非調波性の音響成分を意味する。音響信号SXが示す音響には、音響空間内での反射や散乱に由来する残響成分が付加されている。具体的には、収録音や合成音等の既存の音響に対して事後的に残響効果を付与した音響信号SXや、残響効果がある音響空間内で実際に収録された音響の音響信号SXが信号供給装置12から音響処理装置100に供給される。例えば、周囲の音響を収音して音響信号SXを生成する収音装置や、可搬型または内蔵型の記録媒体から音響信号SXを取得して音響処理装置100に供給する再生装置や、通信網から音響信号SXを受信して音響処理装置100に供給する通信装置が信号供給装置12として採用され得る。   The acoustic signal SX is a numerical series indicating an acoustic time waveform obtained by mixing harmonic components and non-harmonic components. The harmonic component means a harmonic acoustic component such as a performance sound of a musical instrument such as a stringed instrument or a wind instrument or a human vocal sound, and a non-harmonic component means a performance sound of a percussion instrument or various noises (for example, air conditioning equipment). Non-harmonic acoustic components such as operating sounds and environmental sounds such as crowded sounds in crowds. A reverberation component derived from reflection or scattering in the acoustic space is added to the sound indicated by the acoustic signal SX. Specifically, there is an acoustic signal SX obtained by adding a reverberation effect to an existing sound such as a recorded sound or a synthesized sound, or an acoustic signal SX of an acoustic actually recorded in an acoustic space having a reverberation effect. The signal is supplied from the signal supply device 12 to the sound processing device 100. For example, a sound collection device that collects ambient sound to generate an acoustic signal SX, a playback device that acquires the acoustic signal SX from a portable or built-in recording medium and supplies the acoustic signal SX to the acoustic processing device 100, or a communication network A communication device that receives the sound signal SX from the sound signal and supplies the sound signal SX to the sound processing device 100 may be employed as the signal supply device 12.

音響処理装置100は、信号供給装置12が供給する音響信号SXの残響成分(後期残響成分)を抑圧した時間領域の音響信号(すなわち、音響信号SXの直接音成分や初期反射成分を強調した音響信号)SYを生成する信号処理装置(残響抑圧装置)である。放音装置14(例えばスピーカやヘッドホン)は、音響処理装置100が生成した音響信号SYに応じた音波を放射する。なお、音響信号SYをデジタルからアナログに変換するD/A変換器や音響信号SYを増幅する増幅器の図示は便宜的に省略した。   The sound processing device 100 is a time domain sound signal in which the reverberation component (late reverberation component) of the sound signal SX supplied by the signal supply device 12 is suppressed (that is, sound in which the direct sound component and the initial reflection component of the sound signal SX are emphasized). Signal) SY is a signal processing device (reverberation suppression device). The sound emitting device 14 (for example, a speaker or headphones) emits a sound wave according to the acoustic signal SY generated by the acoustic processing device 100. The illustration of a D / A converter that converts the acoustic signal SY from digital to analog and an amplifier that amplifies the acoustic signal SY are omitted for the sake of convenience.

図1に示すように、音響処理装置100は、演算処理装置22と記憶装置24とを具備するコンピュータシステムで実現される。記憶装置24は、演算処理装置22が実行するプログラムや演算処理装置22が使用する各種のデータを記憶する。半導体記録媒体や磁気記録媒体等の公知の記録媒体や複数種の記録媒体の組合せが記憶装置24として任意に採用され得る。音響信号SYを記憶装置24に記憶した構成(したがって信号供給装置12は省略され得る)も好適である。   As shown in FIG. 1, the sound processing device 100 is realized by a computer system including an arithmetic processing device 22 and a storage device 24. The storage device 24 stores a program executed by the arithmetic processing device 22 and various data used by the arithmetic processing device 22. A known recording medium such as a semiconductor recording medium or a magnetic recording medium or a combination of a plurality of types of recording media can be arbitrarily employed as the storage device 24. A configuration in which the acoustic signal SY is stored in the storage device 24 (therefore, the signal supply device 12 can be omitted) is also suitable.

演算処理装置22は、記憶装置24に記憶されたプログラムを実行することで、音響信号SXから音響信号SYを生成するための複数の機能(周波数分析部32,調波分離部34,第1残響抑圧部40,第2残響抑圧部50,合成処理部62,波形生成部64)を実現する。なお、演算処理装置22の各機能を複数の装置に分散した構成や、演算処理装置22の一部の機能を専用の信号処理回路が分担する構成も採用され得る。   The arithmetic processing device 22 executes a program stored in the storage device 24, thereby generating a plurality of functions (frequency analysis unit 32, harmonic separation unit 34, first reverberation unit 34) for generating the acoustic signal SY from the acoustic signal SX. The suppression unit 40, the second dereverberation suppression unit 50, the synthesis processing unit 62, and the waveform generation unit 64) are realized. A configuration in which each function of the arithmetic processing device 22 is distributed to a plurality of devices, or a configuration in which a dedicated signal processing circuit shares a part of the functions of the arithmetic processing device 22 may be employed.

周波数分析部32は、音響信号SXのスペクトル(複素スペクトル)X(k,m)を時間軸上の単位期間(フレーム)毎に順次に生成する。記号kは、周波数軸上の任意の1個の周波数(周波数帯域)を指示する変数であり、記号mは、時間軸上の任意の1個の単位期間を指示する変数である。スペクトルX(k,m)の生成には、例えば短時間フーリエ変換等の公知の周波数分析が任意に採用され得る。なお、通過帯域が相違する複数の帯域通過フィルタで構成されるフィルタバンクを周波数分析部32として利用することも可能である。   The frequency analysis unit 32 sequentially generates a spectrum (complex spectrum) X (k, m) of the acoustic signal SX for each unit period (frame) on the time axis. The symbol k is a variable that indicates an arbitrary frequency (frequency band) on the frequency axis, and the symbol m is a variable that indicates an arbitrary unit period on the time axis. For generation of the spectrum X (k, m), for example, a known frequency analysis such as a short-time Fourier transform can be arbitrarily employed. Note that a filter bank including a plurality of bandpass filters having different passbands can be used as the frequency analysis unit 32.

調波分離部34は、音響信号SXを調波成分と非調波成分とに分離する。具体的には、調波分離部34は、音響信号SXのスペクトルX(k,m)から調波成分のスペクトルXH(k,m)と非調波成分のスペクトルXP(k,m)とを単位期間毎に順次に生成する。例えば、調波分離部34は、音響信号SXのスペクトルX(k,m)の対数の離散フーリエ変換で音響信号SXのケプストラムを単位期間毎に算定し、各単位期間のケプストラムを、音響信号SXの振幅スペクトル|X(k,m)|の概略的な構造に対応する低次域と、振幅スペクトル|X(k,m)|の微細な周期構造(すなわち、基音成分と複数の倍音成分とが周波数軸上に等間隔に配列された調波構造)に対応する高次域とに区分することで調波成分のスペクトルXH(k,m)と非調波成分のスペクトルXP(k,m)とを算定する。なお、調波成分と非調波成分との分離には公知の技術が任意に採用される。例えば、音響信号SXの調波成分は時間軸方向に連続するのに対して非調波成分は周波数軸方向に連続するという時間-周波数領域での異方性を利用することで調波成分と非調波成分とを分離するHPSS(Harmonic and Percussive Sound Separation)技術も適用され得る。なお、スペクトルXH(k,m)およびスペクトルXP(k,m)の表記のように、調波成分(Harmonic)に関連する要素には添字Hを付加し、非調波成分(Percussive)に関連する要素には添字Pを付加する。   The harmonic separation unit 34 separates the acoustic signal SX into a harmonic component and a non-harmonic component. Specifically, the harmonic separation unit 34 generates a harmonic component spectrum XH (k, m) and a non-harmonic component spectrum XP (k, m) from the spectrum X (k, m) of the acoustic signal SX. Generated sequentially for each unit period. For example, the harmonic separation unit 34 calculates the cepstrum of the acoustic signal SX for each unit period by logarithmic discrete Fourier transform of the spectrum X (k, m) of the acoustic signal SX, and the cepstrum of each unit period is calculated as the acoustic signal SX. Low-order region corresponding to the general structure of the amplitude spectrum | X (k, m) |, and a fine periodic structure of the amplitude spectrum | X (k, m) | (ie, fundamental component and multiple harmonic components) Is divided into higher-order regions corresponding to harmonic structures arranged at equal intervals on the frequency axis), so that the harmonic component spectrum XH (k, m) and the non-harmonic component spectrum XP (k, m ). In addition, a well-known technique is arbitrarily employ | adopted for isolation | separation of a harmonic component and a non-harmonic component. For example, the harmonic component of the acoustic signal SX is continuous in the time axis direction while the non-harmonic component is continuous in the frequency axis direction. An HPSS (Harmonic and Percussive Sound Separation) technique for separating non-harmonic components can also be applied. As shown in the spectrum XH (k, m) and spectrum XP (k, m), subscript H is added to elements related to harmonic components (Harmonic) and related to non-harmonic components (Percussive). A subscript P is added to the element to be processed.

図1の第1残響抑圧部40は、調波分離部34による分離後の調波成分の残響成分を抑圧する。具体的には、第1残響抑圧部40は、調波成分のスペクトルXH(k,m)から残響成分を抑圧した音響成分のスペクトルYH(k,m)を単位期間毎に順次に生成する。他方、第2残響抑圧部50は、調波分離部34による分離後の非調波成分の残響成分を抑圧する。具体的には、第2残響抑圧部50は、非調波成分のスペクトルXP(k,m)から残響成分を抑圧した音響成分のスペクトルYP(k,m)を単位期間毎に順次に生成する。なお、第1残響抑圧部40および第2残響抑圧部50の具体的な構成および動作については後述する。   The first reverberation suppression unit 40 in FIG. 1 suppresses the reverberation component of the harmonic component after separation by the harmonic separation unit 34. Specifically, the first reverberation suppressing unit 40 sequentially generates a spectrum YH (k, m) of an acoustic component in which a reverberation component is suppressed from a harmonic component spectrum XH (k, m) for each unit period. On the other hand, the second reverberation suppression unit 50 suppresses the reverberation component of the non-harmonic component after separation by the harmonic separation unit 34. Specifically, the second reverberation suppressing unit 50 sequentially generates the spectrum YP (k, m) of the acoustic component in which the reverberation component is suppressed from the spectrum XP (k, m) of the non-harmonic component for each unit period. . Note that specific configurations and operations of the first dereverberation suppressing unit 40 and the second dereverberation suppressing unit 50 will be described later.

図1の合成処理部62は、第1残響抑圧部40による処理後の調波成分と第2残響抑圧部50による処理後の非調波成分とを合成する。具体的には、合成処理部62は、第1残響抑圧部40による残響抑圧後の調波成分のスペクトルYH(k,m)と第2残響抑圧部50による残響抑圧後の非調波成分のスペクトルYP(k,m)とを加算(または加重和)することで音響信号SYのスペクトルY(k,m)を生成する(Y(k,m)=YH(k,m)+YP(k,m))。   1 synthesizes the harmonic component after processing by the first dereverberation suppression unit 40 and the non-harmonic component after processing by the second dereverberation suppression unit 50. Specifically, the synthesis processing unit 62 generates the spectrum YH (k, m) of the harmonic component after dereverberation by the first dereverberation unit 40 and the non-harmonic component after dereverberation by the second dereverberation unit 50. The spectrum Y (k, m) of the acoustic signal SY is generated by adding (or weighted sum) with the spectrum YP (k, m) (Y (k, m) = YH (k, m) + YP (k, m)).

波形生成部64は、合成処理部62が単位期間毎に生成するスペクトルY(k,m)から時間領域の音響信号SYを生成する。すなわち、波形生成部64は、各単位期間のスペクトルY(k,m)を例えば短時間フーリエ逆変換で時間領域の信号に変換するとともに相前後する各単位期間について相互に連結することで音響信号SYを生成する。以上の説明から理解される通り、音響信号SYでは、音響信号SXの残響成分(調波成分の残響成分と非調波成分の残響成分)が抑圧される。波形生成部64が生成した音響信号SYが放音装置14に供給されて音波として放射される。   The waveform generation unit 64 generates a time domain acoustic signal SY from the spectrum Y (k, m) generated by the synthesis processing unit 62 for each unit period. That is, the waveform generation unit 64 converts the spectrum Y (k, m) of each unit period into, for example, a time domain signal by short-time Fourier inverse transform, and interconnects the unit periods that are adjacent to each other. Generate SY. As understood from the above description, in the acoustic signal SY, the reverberation component (the reverberation component of the harmonic component and the reverberation component of the non-harmonic component) of the acoustic signal SX is suppressed. The acoustic signal SY generated by the waveform generator 64 is supplied to the sound emitting device 14 and is emitted as a sound wave.

<残響抑圧の具体例>
第1残響抑圧部40による調波成分の残響抑圧と第2残響抑圧部50による非調波成分の残響抑圧との説明に先立ち、音響信号SXのスペクトルX(k,m)から残響成分を抑圧する処理について説明する。
<Specific examples of reverberation suppression>
Prior to explaining the reverberation suppression of the harmonic component by the first reverberation suppression unit 40 and the reverberation suppression of the non-harmonic component by the second reverberation suppression unit 50, the reverberation component is suppressed from the spectrum X (k, m) of the acoustic signal SX. Processing to be performed will be described.

音響信号SXの単位期間毎のパワー|X(k,m)|2の平均強度Q1(k,m)および平均強度Q2(k,m)に着目する。平均強度Q1(k,m)は、以下の数式(1A)で定義されるように、相前後するN1個(N1は2以上の自然数)の単位期間にわたるパワー|X(k,m)|2の移動平均(単純移動平均)である。他方、平均強度Q2(k,m)は、以下の数式(1B)で定義されるように、相前後するN2個(N2は自然数)の単位期間にわたるパワー|X(k,m)|2の移動平均である。平均強度Q1(k,m)の算定に加味される単位期間の個数N1は、平均強度Q2(k,m)の算定に加味される単位期間の個数N2を上回る(N1>N2)。

Figure 0006036141
Attention is paid to the average intensity Q1 (k, m) and average intensity Q2 (k, m) of the power | X (k, m) | 2 per unit period of the acoustic signal SX. The average intensity Q1 (k, m) is defined by the following formula (1A), and the power over the unit period of N1 pieces (N1 is a natural number of 2 or more) | X (k, m) | 2 The moving average (simple moving average). On the other hand, the average intensity Q2 (k, m) is defined by the following formula (1B) of the power | X (k, m) | 2 over N2 (N2 is a natural number) unit periods. It is a moving average. The number N1 of unit periods added to the calculation of the average intensity Q1 (k, m) exceeds the number N2 of unit periods added to the calculation of the average intensity Q2 (k, m) (N1> N2).
Figure 0006036141

図2の部分(B)は、任意の周波数における平均強度Q1(k,m)および平均強度Q2(k,m)の時間変化を描画したグラフである。図2の部分(A)のようにパワー|X(k,m)|2(パワー密度)が時間的に指数減衰する室内インパルス応答を音響信号SXと仮定した場合の平均強度Q1(k,m)および平均強度Q2(k,m)が図2の部分(B)には図示されている。 Part (B) of FIG. 2 is a graph depicting changes over time of the average intensity Q1 (k, m) and the average intensity Q2 (k, m) at an arbitrary frequency. As shown in part (A) of FIG. 2, the average intensity Q1 (k, m) assuming that the acoustic signal SX is a room impulse response in which the power | X (k, m) | 2 (power density) exponentially decays in time. ) And average intensity Q2 (k, m) are shown in part (B) of FIG.

図2の部分(B)から把握される通り、平均強度Q1(k,m)および平均強度Q2(k,m)は、音響信号SXのパワー|X(k,m)|2に追従して経時的に変化する。ただし、平均強度Q1(k,m)の算定に適用される平均個数N1は平均強度Q2(k,m)の算定に適用される平均個数N2を上回るから、平均強度Q1(k,m)は、平均強度Q2(k,m)と比較して低い追従性(変化率)で音響信号SXのパワー|X(k,m)|2の時間変化に追従する。具体的には、図2の部分(B)に示すように、室内インパルス応答の開始の時点t0の直後の区間では、平均強度Q2(k,m)が平均強度Q1(k,m)を上回る変化率で増加する。そして、平均強度Q1(k,m)および平均強度Q2(k,m)は、時間軸上の相異なる時点でピークに到達し、平均強度Q2(k,m)は平均強度Q1(k,m)を上回る変化率で減少する。 As can be seen from part (B) of FIG. 2, the average intensity Q1 (k, m) and average intensity Q2 (k, m) follow the power | X (k, m) | 2 of the acoustic signal SX. Changes over time. However, since the average number N1 applied to the calculation of the average intensity Q1 (k, m) exceeds the average number N2 applied to the calculation of the average intensity Q2 (k, m), the average intensity Q1 (k, m) is In addition, it follows the time change of the power | X (k, m) | 2 of the acoustic signal SX with lower followability (change rate) than the average intensity Q2 (k, m). Specifically, as shown in part (B) of FIG. 2, the average intensity Q2 (k, m) exceeds the average intensity Q1 (k, m) in the section immediately after the time t0 of the start of the indoor impulse response. Increase with rate of change. The average intensity Q1 (k, m) and the average intensity Q2 (k, m) reach peaks at different points on the time axis, and the average intensity Q2 (k, m) is the average intensity Q1 (k, m). ) Decrease at a rate of change exceeding.

以上のように平均強度Q1(k,m)と平均強度Q2(k,m)とは相異なる変化率で変化するから、平均強度Q1(k,m)と平均強度Q2(k,m)との大小は時間軸上の特定の時点txで反転する。時点t0から時点txまでの区間(平均強度Q2(k,m)が平均強度Q1(k,m)を上回る区間)SAは、室内インパルス応答の直接音成分および初期反射成分が存在する区間に相当し、時点tx以降の区間(平均強度Q1(k,m)が平均強度Q2(k,m)を上回る区間)SBは、室内インパルス応答の後期残響成分が存在する区間に相当する。   As described above, since the average intensity Q1 (k, m) and the average intensity Q2 (k, m) change at different rates, the average intensity Q1 (k, m) and the average intensity Q2 (k, m) Is reversed at a specific time point tx on the time axis. The section from the time t0 to the time tx (the section where the average intensity Q2 (k, m) exceeds the average intensity Q1 (k, m)) SA corresponds to the section where the direct sound component and the initial reflection component of the room impulse response exist The section after the time point tx (the section where the average intensity Q1 (k, m) exceeds the average intensity Q2 (k, m)) SB corresponds to the section where the late reverberation component of the indoor impulse response exists.

平均強度Q1(k,m)に対する平均強度Q2(k,m)の比(以下「強度比」という)R(k,m)(R(k,m)=Q2(k,m)/Q1(k,m))に応じて以下の数式(2)で算定される調整値G(k,m)を想定する。所定値Gmaxは例えば1に設定され、所定値Gminは所定値Gmaxを下回る数値(例えば0以上かつ1未満の数値)に設定される。

Figure 0006036141
Ratio of average intensity Q2 (k, m) to average intensity Q1 (k, m) (hereinafter referred to as “intensity ratio”) R (k, m) (R (k, m) = Q2 (k, m) / Q1 ( Assume an adjustment value G (k, m) calculated by the following equation (2) according to k, m)). The predetermined value Gmax is set to 1, for example, and the predetermined value Gmin is set to a numerical value lower than the predetermined value Gmax (for example, a numerical value not less than 0 and less than 1).
Figure 0006036141

平均強度Q1(k,m)および平均強度Q2(k,m)が図2の部分(B)のように変化する場合の調整値G(k,m)の変化が図2の部分(C)に図示されている。図2の部分(C)から理解される通り、平均強度Q2(k,m)が平均強度Q1(k,m)を上回る区間SAでは強度比R(k,m)が所定値Gmaxを上回るから、調整値G(k,m)は所定値Gmaxに維持される。また、平均強度Q2(k,m)が平均強度Q1(k,m)を下回る区間SBのうち強度比R(k,m)が所定値Gminを上回る区間SB1では、調整値G(k,m)は強度比R(k,m)に設定されて経時的に減少する。そして、区間SBのうち強度比R(k,m)が所定値Gminを下回る区間SB2では、調整値G(k,m)は所定値Gminに維持される。すなわち、調整値G(k,m)は、直接音成分および初期反射成分が存在する区間SAでは所定値(最大値)Gmaxに設定され、後期残響成分が存在する区間SBでは所定値(最小値)Gminまで経時的に減少する。したがって、音響信号SXのスペクトルX(k,m)に調整値G(k,m)を作用させる(典型的には乗算する)ことで、音響信号SXの残響成分を抑圧(直接音成分や初期反射成分を強調)することが可能である。第1実施形態の第1残響抑圧部40および第2残響抑圧部50は、以上の原理を利用して残響成分を抑圧する。   The change in the adjustment value G (k, m) when the average intensity Q1 (k, m) and the average intensity Q2 (k, m) change as shown in the part (B) of FIG. 2 is the part (C) of FIG. Is shown in FIG. As understood from part (C) of FIG. 2, the intensity ratio R (k, m) exceeds the predetermined value Gmax in the section SA where the average intensity Q2 (k, m) exceeds the average intensity Q1 (k, m). The adjustment value G (k, m) is maintained at the predetermined value Gmax. In the section SB where the intensity ratio R (k, m) exceeds the predetermined value Gmin in the section SB where the average intensity Q2 (k, m) is lower than the average intensity Q1 (k, m), the adjustment value G (k, m ) Is set to the intensity ratio R (k, m) and decreases with time. In the section SB2 in which the intensity ratio R (k, m) is lower than the predetermined value Gmin in the section SB, the adjustment value G (k, m) is maintained at the predetermined value Gmin. That is, the adjustment value G (k, m) is set to a predetermined value (maximum value) Gmax in the section SA where the direct sound component and the initial reflection component exist, and is set to a predetermined value (minimum value) in the section SB where the late reverberation component exists. ) Decreases with time to Gmin. Therefore, by applying (typically multiplying) the adjustment value G (k, m) to the spectrum X (k, m) of the acoustic signal SX, the reverberation component of the acoustic signal SX is suppressed (direct sound component or initial value). It is possible to emphasize the reflection component. The first dereverberation suppression unit 40 and the second dereverberation suppression unit 50 of the first embodiment suppress the reverberation component using the above principle.

以上に説明した通り、残響抑圧用の調整値G(k,m)は、平均強度Q1(k,m)と平均強度Q2(k,m)との相対比に応じて算定されるから、平均強度Q1(k,m)と平均強度Q2(k,m)との相違が拡大するほど調整値G(k,m)の作用による残響成分の抑圧強度(抑圧効果の程度)は増加する。すなわち、平均強度Q1(k,m)の平均個数N1と平均強度Q2(k,m)の平均個数N2との相違が大きいほど残響成分の抑圧強度は増加するという傾向がある。   As described above, the adjustment value G (k, m) for reverberation suppression is calculated according to the relative ratio between the average intensity Q1 (k, m) and the average intensity Q2 (k, m). As the difference between the intensity Q1 (k, m) and the average intensity Q2 (k, m) increases, the suppression intensity (degree of suppression effect) of the reverberation component due to the action of the adjustment value G (k, m) increases. That is, the reverberation component suppression strength tends to increase as the difference between the average number N1 of the average intensities Q1 (k, m) and the average number N2 of the average intensities Q2 (k, m) increases.

図3は、第1残響抑圧部40および第2残響抑圧部50の具体的な構成を例示するブロック図である。図3に示すように、第1残響抑圧部40は、強度平均部42と調整値算定部44と抑圧処理部46とを含んで構成される。強度平均部42は、音響信号SXの調波成分のパワー|XH(k,m)|2の移動平均で平均強度QH1(k,m)と平均強度QH2(k,m)とを算定する。平均強度QH1(k,m)は、以下の数式(3A)で表現される通り、NH1個(NH1は2以上の自然数)の単位期間にわたるパワー|XH(k,m)|2の移動平均(単純移動平均)であり、平均強度QH2(k,m)は、以下の数式(3B)で表現される通り、NH2個(NH2は自然数)の単位期間にわたるパワー|XH(k,m)|2の移動平均である。

Figure 0006036141
FIG. 3 is a block diagram illustrating a specific configuration of the first dereverberation suppressing unit 40 and the second dereverberation suppressing unit 50. As shown in FIG. 3, the first dereverberation suppression unit 40 includes an intensity averaging unit 42, an adjustment value calculation unit 44, and a suppression processing unit 46. The intensity average unit 42 calculates an average intensity QH1 (k, m) and an average intensity QH2 (k, m) as a moving average of the power | XH (k, m) | 2 of the harmonic component of the acoustic signal SX. The average intensity QH1 (k, m) is a moving average of power | XH (k, m) | 2 over a unit period of NH1 (NH1 is a natural number of 2 or more) as expressed by the following formula (3A): Simple moving average), and the average intensity QH2 (k, m) is represented by the following formula (3B), and the power over a unit period of NH2 (where NH2 is a natural number) | XH (k, m) | 2 Is a moving average.
Figure 0006036141

数式(3A)の平均個数NH1は、数式(3B)の平均個数NH2を上回る(NH1>NH2)。すなわち、平均強度QH1(k,m)は、平均強度QH2(k,m)と比較して長時間にわたる移動平均である。したがって、平均強度QH1(k,m)におけるパワー|XH(k,m)|2の平滑化の時定数τH1は、平均強度QH2(k,m)におけるパワー|XH(k,m)|2の平滑化の時定数τH2を上回る(τH1>τH2)。すなわち、図2の部分(B)を参照して説明した平均強度Q1(k,m)と平均強度Q2(k,m)との関係と同様に、平均強度QH1(k,m)は、平均強度QH2(k,m)と比較して低い追従性で調波成分のパワー|XH(k,m)|2に追従する。 The average number NH1 of the formula (3A) exceeds the average number NH2 of the formula (3B) (NH1> NH2). That is, the average intensity QH1 (k, m) is a moving average over a long time compared to the average intensity QH2 (k, m). Therefore, the average intensity QH1 (k, m) power at | XH (k, m) | 2 of the constant τH1 time smoothing the average intensity QH2 (k, m) power at | XH (k, m) | 2 of The smoothing time constant τH2 is exceeded (τH1> τH2). That is, like the relationship between the average intensity Q1 (k, m) and the average intensity Q2 (k, m) described with reference to part (B) of FIG. 2, the average intensity QH1 (k, m) It follows the power | XH (k, m) | 2 of the harmonic component with lower followability than the intensity QH2 (k, m).

図3の調整値算定部44は、強度平均部42が算定した調波成分の平均強度QH1(k,m)および平均強度QH2(k,m)に応じた調整値GH(k,m)を各周波数について単位期間毎に順次に算定する。具体的には、以下の数式(4)で表現される通り、平均強度QH1(k,m)に対する平均強度QH2(k,m)の強度比RH(k,m)(RH(k,m)=QH2(k,m)/QH1(k,m))が所定値Gmaxと所定値Gminとの間の数値である場合(Gmin<RH(k,m)<Gmax)、調整値算定部44は、調整値GH(k,m)を強度比RH(k,m)に設定する。また、調整値算定部44は、強度比RH(k,m)が所定値Gmaxを上回る場合には調整値GH(k,m)を所定値Gmaxに設定し、強度比RH(k,m)が所定値Gminを下回る場合には調整値GH(k,m)を所定値Gminに設定する。

Figure 0006036141
The adjustment value calculation unit 44 in FIG. 3 calculates the adjustment value GH (k, m) according to the average intensity QH1 (k, m) and average intensity QH2 (k, m) of the harmonic component calculated by the intensity average unit 42. Each frequency is calculated sequentially for each unit period. Specifically, as expressed by the following formula (4), the intensity ratio RH (k, m) (RH (k, m) of the average intensity QH2 (k, m) to the average intensity QH1 (k, m) = QH2 (k, m) / QH1 (k, m)) is a numerical value between the predetermined value Gmax and the predetermined value Gmin (Gmin <RH (k, m) <Gmax), the adjustment value calculation unit 44 The adjustment value GH (k, m) is set to the intensity ratio RH (k, m). The adjustment value calculation unit 44 sets the adjustment value GH (k, m) to the predetermined value Gmax when the intensity ratio RH (k, m) exceeds the predetermined value Gmax, and the intensity ratio RH (k, m). Is less than the predetermined value Gmin, the adjustment value GH (k, m) is set to the predetermined value Gmin.
Figure 0006036141

図2の部分(C)を参照した前述の説明から理解される通り、調整値算定部44が算定する調整値GH(k,m)は、音響信号SXの調波成分の残響成分を抑圧する係数(スペクトルゲイン)として利用され得る。図3の抑圧処理部46は、調整値算定部44が算定した調整値GH(k,m)を音響信号SXの調波成分に作用させることで調波成分の残響成分を抑圧する。残響成分の抑圧は、各周波数について単位期間毎に順次に実行される。具体的には、抑圧処理部46は、音響信号SXの調波成分のスペクトルXH(k,m)に対し、当該スペクトルX(k,m)と共通の単位期間および周波数に対応する調整値GH(k,m)を乗算することで、残響抑圧後の調波成分のスペクトルYH(k,m)を算定する(YH(k,m)=GH(k,m)・XH(k,m))。   As understood from the above description with reference to part (C) of FIG. 2, the adjustment value GH (k, m) calculated by the adjustment value calculation unit 44 suppresses the reverberation component of the harmonic component of the acoustic signal SX. It can be used as a coefficient (spectral gain). 3 suppresses the reverberation component of the harmonic component by applying the adjustment value GH (k, m) calculated by the adjustment value calculation unit 44 to the harmonic component of the acoustic signal SX. The reverberation component suppression is sequentially performed for each frequency for each unit period. Specifically, the suppression processing unit 46 adjusts the adjustment value GH corresponding to the unit period and frequency common to the spectrum X (k, m) for the harmonic component spectrum XH (k, m) of the acoustic signal SX. The spectrum YH (k, m) of the harmonic component after reverberation suppression is calculated by multiplying (k, m) (YH (k, m) = GH (k, m) · XH (k, m) ).

以上の説明から理解されるように、平均強度QH1(k,m)の算定に適用される数式(3A)の平均個数NH1と平均強度QH2(k,m)の算定に適用される数式(3B)の平均個数NH2との相違(例えば差分(NH1−NH2))が大きいほど、平均強度QH1(k,m)と平均強度QH2(k,m)との相違(調波成分のパワー|XH(k,m)|2に対する追従度の相違)が増加し、結果的に残響成分の抑圧強度が増加するという傾向がある。 As understood from the above description, the formula (3B) applied to the calculation of the average number NH1 and the average intensity QH2 (k, m) of the formula (3A) applied to the calculation of the average intensity QH1 (k, m). ) Of the average intensity QH1 (k, m) and the average intensity QH2 (k, m) (the harmonic component power | XH () k, m) | 2 ) increases, and as a result, the reverberation component suppression strength tends to increase.

他方、第2残響抑圧部50は、図3に示すように、強度平均部52と調整値算定部54と抑圧処理部56とを含んで構成される。強度平均部52は、強度平均部42と同様に、音響信号SXの非調波成分のパワー|XP(k,m)|2の移動平均で平均強度QP1(k,m)と平均強度QP2(k,m)とを算定する。平均強度QP1(k,m)は、以下の数式(5A)で表現される通り、NP1個(NP1は2以上の自然数)の単位期間にわたるパワー|XP(k,m)|2の移動平均であり、平均強度QP2(k,m)は、以下の数式(5B)で表現される通り、NP2個(NP2は自然数)の単位期間にわたるパワー|XP(k,m)|2の移動平均である。

Figure 0006036141
On the other hand, as shown in FIG. 3, the second dereverberation suppression unit 50 includes an intensity averaging unit 52, an adjustment value calculation unit 54, and a suppression processing unit 56. Similar to the intensity average unit 42, the intensity average unit 52 is a moving average of the power | XP (k, m) | 2 of the non-harmonic component of the acoustic signal SX, and the average intensity QP1 (k, m) and average intensity QP2 ( k, m). The average intensity QP1 (k, m) is a moving average of power | XP (k, m) | 2 over a unit period of NP1 (NP1 is a natural number of 2 or more) as expressed by the following formula (5A). The average intensity QP2 (k, m) is a moving average of power | XP (k, m) | 2 over NP2 (NP2 is a natural number) unit periods, as expressed by the following formula (5B). .
Figure 0006036141

数式(5A)の平均個数NP1は、数式(5B)の平均個数NP2を上回る(NP1>NP2)。すなわち、平均強度QP1(k,m)は、平均強度QP2(k,m)と比較して長時間にわたる移動平均である。したがって、平均強度QP1(k,m)におけるパワー|XP(k,m)|2の平滑化の時定数τP1は、平均強度QP2(k,m)におけるパワー|XP(k,m)|2の平滑化の時定数τP2を上回る(τP1>τP2)。すなわち、平均強度QP1(k,m)は、平均強度QP2(k,m)と比較して低い追従性で非調波成分のパワー|XP(k,m)|2に追従する。 The average number NP1 of the formula (5A) exceeds the average number NP2 of the formula (5B) (NP1> NP2). That is, the average intensity QP1 (k, m) is a moving average over a long time compared to the average intensity QP2 (k, m). Therefore, the average intensity QP1 (k, m) power at | XP (k, m) | When second smoothing constant τP1 the average intensity QP2 (k, m) power at | XP (k, m) | 2 of It exceeds the smoothing time constant τP2 (τP1> τP2). That is, the average intensity QP1 (k, m) follows the power | XP (k, m) | 2 of the non-harmonic component with lower followability than the average intensity QP2 (k, m).

図3の調整値算定部54は、以下の数式(6)で表現される通り、調整値算定部44と同様に、強度平均部52が算定した非調波成分の平均強度QP1(k,m)および平均強度QP2(k,m)に応じた調整値GP(k,m)を各周波数について単位期間毎に順次に算定する。具体的には、平均強度QP1(k,m)に対する平均強度QP2(k,m)の強度比RP(k,m)(RP(k,m)=QP2(k,m)/QP1(k,m))に応じて以下の数式(6)の演算で調整値GP(k,m)が算定される。調整値GP(k,m)は、音響信号SXの非調波成分の残響成分を抑圧する係数(スペクトルゲイン)として利用され得る。

Figure 0006036141
The adjustment value calculation unit 54 in FIG. 3 represents the average intensity QP1 (k, m) of the non-harmonic component calculated by the intensity average unit 52, as expressed by the following formula (6), as with the adjustment value calculation unit 44. ) And the adjustment value GP (k, m) corresponding to the average intensity QP2 (k, m) are sequentially calculated for each frequency for each unit period. Specifically, the intensity ratio RP (k, m) (RP (k, m) = QP2 (k, m) / QP1 (k, m) of the average intensity QP2 (k, m) to the average intensity QP1 (k, m) According to m)), the adjustment value GP (k, m) is calculated by the following equation (6). The adjustment value GP (k, m) can be used as a coefficient (spectrum gain) for suppressing the reverberation component of the non-harmonic component of the acoustic signal SX.
Figure 0006036141

抑圧処理部56は、調整値算定部54が算定した調整値GP(k,m)を音響信号SXの非調波成分に作用させることで非調波成分の残響成分を抑圧する。具体的には、抑圧処理部56は、音響信号SXの非調波成分のスペクトルXP(k,m)に調整値GP(k,m)を乗算することで、残響抑圧後の非調波成分のスペクトルYP(k,m)を算定する(YP(k,m)=GP(k,m)・XP(k,m))。   The suppression processing unit 56 suppresses the reverberation component of the non-harmonic component by applying the adjustment value GP (k, m) calculated by the adjustment value calculation unit 54 to the non-harmonic component of the acoustic signal SX. Specifically, the suppression processing unit 56 multiplies the spectrum XP (k, m) of the non-harmonic component of the acoustic signal SX by the adjustment value GP (k, m), so that the non-harmonic component after dereverberation is suppressed. The spectrum YP (k, m) is calculated (YP (k, m) = GP (k, m) · XP (k, m)).

以上の説明から理解されるように、数式(5A)の平均個数NP1と数式(5B)の平均個数NP2との相違(例えば差分(NP1−NP2))が大きいほど、平均強度QP1(k,m)と平均強度QP2(k,m)との相違(音響信号SXの非調波成分のパワー|XP(k,m)|2に対する追従度の相違)が増加し、結果的に残響成分の抑圧強度が増加するという傾向がある。 As understood from the above description, the larger the difference (for example, the difference (NP1−NP2)) between the average number NP1 of the equation (5A) and the average number NP2 of the equation (5B), the average intensity QP1 (k, m ) And the average intensity QP2 (k, m) (the power of the non-harmonic component of the acoustic signal SX | difference in the tracking degree with respect to XP (k, m) | 2 ) increases, resulting in suppression of the reverberation component There is a tendency for strength to increase.

ところで、残響成分は、音響空間内で多方向から受音点に到来する多数の反射音や散乱音が加算されたランダム性の高い音響成分であり、初期反射成分は、受音点に対する空間的な方向性が明確で残響成分と比較してランダム性が低いという傾向がある。他方、非調波成分は、音響特性が時間的に不規則に変動する過渡的な音響成分でありランダム性が高く、調波成分は、音響特性が時間的に持続される音響成分でありランダム性が低いという傾向がある。すなわち、残響成分と非調波成分とはランダム性が高いという音響特性の傾向が共通し、初期反射成分と調波成分とはランダム性が低いという音響特性の傾向が共通する。以上に説明した音響特性の共通性に起因して、調波分離部34による分離処理では、音響信号SXの残響成分は非調波成分に選別される可能性が高く、音響信号SXの初期反射成分は調波成分に選別される可能性が高いという概略的な傾向がある。   By the way, the reverberation component is a highly random acoustic component in which a large number of reflected sounds and scattered sounds arriving at the receiving point from multiple directions in the acoustic space are added, and the initial reflection component is a spatial component with respect to the receiving point. There is a tendency that the directivity is clear and the randomness is low compared to the reverberation component. On the other hand, the non-harmonic component is a transient acoustic component whose acoustic characteristics fluctuate irregularly in time and is highly random. The harmonic component is an acoustic component in which the acoustic characteristics are temporally sustained and is random. There is a tendency to be low. That is, the reverberation component and the inharmonic component have a common tendency in acoustic characteristics that the randomness is high, and the initial reflection component and the harmonic component have a tendency in acoustic characteristics that the randomness is low. Due to the commonality of the acoustic characteristics described above, in the separation processing by the harmonic separation unit 34, the reverberation component of the acoustic signal SX is highly likely to be selected as a non-harmonic component, and the initial reflection of the acoustic signal SX is performed. There is a general tendency that components are likely to be sorted into harmonic components.

また、打楽器音等の非調波成分は前述の通り過渡的であるから、発音の直後(アタック部分)以外の区間のエネルギーは一般的に調波成分と比較して低い。したがって、非調波成分に対する残響成分の抑圧強度が高過ぎると、残響抑圧後の音質の低下(例えばミュージカルノイズの発生)が顕在化し易いという傾向がある。他方、調波成分は前述の通り初期反射成分が豊富であり非調波成分と比較してエネルギーが高いから、残響成分の抑圧強度を高目に設定しても残響抑圧後の音質の低下が非調波成分と比較して顕在化し難いという傾向がある。以上の傾向を考慮して、第1実施形態では、調波成分に対する残響成分の抑圧強度が非調波成分に対する残響成分の抑圧強度を上回るように、第1残響抑圧部40および第2残響抑圧部50の各々が相異なる抑圧強度で残響成分の抑圧を実行する。   In addition, since non-harmonic components such as percussion instrument sounds are transient as described above, energy in a section other than immediately after sounding (the attack portion) is generally lower than harmonic components. Therefore, if the suppression strength of the reverberation component with respect to the non-harmonic component is too high, a decrease in sound quality after the reverberation suppression (for example, generation of musical noise) tends to be obvious. On the other hand, as described above, the harmonic component is rich in early reflection components and has higher energy than the non-harmonic component, so even if the suppression strength of the reverberation component is set high, the sound quality after reverberation suppression is reduced. There is a tendency that it is difficult to be manifested in comparison with non-harmonic components. In consideration of the above tendency, in the first embodiment, the first reverberation suppressing unit 40 and the second reverberation suppression are performed so that the suppression strength of the reverberation component with respect to the harmonic component exceeds the suppression strength of the reverberation component with respect to the non-harmonic component. Each of the units 50 executes reverberation component suppression with different suppression intensities.

具体的には、調波成分に対応する平均強度QH1(k,m)の平均個数NH1と平均強度QH2(k,m)の平均個数NH2との相違(例えば差分(NH1−NH2))が、非調波成分に対応する平均強度QP1(k,m)の平均個数NP1と平均強度QP2(k,m)の平均個数NP2との相違(差分(NP1−NP2))を上回るように、各平均個数(NH1,NH2,NP1,NP2)が選定される。例えば、平均個数NH2と平均個数NP2とを相等しい数値に設定した場合を想定すると、平均個数NH1は平均個数NP1を上回る数値に設定される。   Specifically, the difference between the average number NH1 of the average intensity QH1 (k, m) corresponding to the harmonic component and the average number NH2 of the average intensity QH2 (k, m) (for example, the difference (NH1−NH2)) is Each average so as to exceed the difference (difference (NP1-NP2)) between the average number NP1 of the average intensity QP1 (k, m) corresponding to the non-harmonic component and the average number NP2 of the average intensity QP2 (k, m) The number (NH1, NH2, NP1, NP2) is selected. For example, assuming that the average number NH2 and the average number NP2 are set to the same numerical value, the average number NH1 is set to a value higher than the average number NP1.

以上に説明した通り、第1実施形態では、音響信号SXが調波成分と非調波成分とに分離され、調波成分と非調波成分とについて相異なる抑圧強度で残響成分が抑圧される。具体的には、調波成分に対する抑圧強度が非調波成分に対する抑圧強度を上回る。したがって、音響信号SXを調波成分と非調波成分とに分離せずに残響成分を抑圧する場合と比較して、残響抑圧に起因した音質の低下を抑制しながら有効な残響抑圧効果を実現することが可能である。   As described above, in the first embodiment, the acoustic signal SX is separated into the harmonic component and the non-harmonic component, and the reverberation component is suppressed with different suppression intensities for the harmonic component and the non-harmonic component. . Specifically, the suppression strength for the harmonic component exceeds the suppression strength for the non-harmonic component. Therefore, compared with the case where the reverberation component is suppressed without separating the acoustic signal SX into the harmonic component and the non-harmonic component, an effective reverberation suppression effect is realized while suppressing deterioration in sound quality due to the reverberation suppression. Is possible.

また、第1実施形態では、音響信号SXの調波成分の時間変化に追従する平均強度QH1(k,m)と平均強度QH2(k,m)との強度比RH(k,m)に応じて調整値GH(k,m)が算定され、非調波成分の時間変化に追従する平均強度QP1(k,m)と平均強度QP2(k,m)との強度比RP(k,m)に応じて調整値GP(k,m)が算定される。したがって、残響成分の予測フィルタ係数を推定する特許文献1の技術や伝達関数を推定して逆フィルタを生成する非特許文献1の技術と比較して簡便な処理で音響信号SXの残響成分を抑圧できるという利点がある。   In the first embodiment, according to the intensity ratio RH (k, m) between the average intensity QH1 (k, m) and the average intensity QH2 (k, m) following the time change of the harmonic component of the acoustic signal SX. The adjustment value GH (k, m) is calculated and the intensity ratio RP (k, m) between the average intensity QP1 (k, m) and the average intensity QP2 (k, m) following the time change of the non-harmonic component The adjustment value GP (k, m) is calculated accordingly. Therefore, the reverberation component of the acoustic signal SX is suppressed by a simple process compared with the technique of Patent Document 1 that estimates the prediction filter coefficient of the reverberation component and the technique of Non-Patent Document 1 that estimates the transfer function and generates the inverse filter. There is an advantage that you can.

<第2実施形態>
本発明の第2実施形態を以下に説明する。なお、以下に例示する各形態において作用や機能が第1実施形態と同様である要素については、第1実施形態の説明で参照した符号を流用して各々の詳細な説明を適宜に省略する。
Second Embodiment
A second embodiment of the present invention will be described below. In addition, about the element which an effect | action and function are the same as that of 1st Embodiment in each form illustrated below, the reference | standard referred by description of 1st Embodiment is diverted and each detailed description is abbreviate | omitted suitably.

第2実施形態における第1残響抑圧部40の強度平均部42は、以下の数式(7A)および数式(7B)で表現される通り、調波成分のパワー|XH(k,m)|2の指数移動平均で平均強度QH1(k,m)および平均強度QH2(k,m)を算定する。

Figure 0006036141
The intensity average unit 42 of the first dereverberation suppressing unit 40 in the second embodiment has the harmonic component power | XH (k, m) | 2 as expressed by the following equations (7A) and (7B). The average strength QH1 (k, m) and average strength QH2 (k, m) are calculated by the exponential moving average.
Figure 0006036141

数式(7A)の平滑化係数(忘却係数)αH1は、数式(7B)の平滑化係数αH2を下回る(0≦αH1<αH2≦1)。したがって、第1実施形態と同様に、平均強度QH1(k,m)は、平均強度QH2(k,m)と比較して低い追従性で調波成分のパワー|XH(k,m)|2に追従する(τH1>τH2)。 The smoothing coefficient (forgetting coefficient) αH1 in Expression (7A) is lower than the smoothing coefficient αH2 in Expression (7B) (0 ≦ αH1 <αH2 ≦ 1). Therefore, like the first embodiment, the average intensity QH1 (k, m) is the mean intensity QH2 (k, m) and compared to low followability in the harmonic component power | XH (k, m) | 2 (ΤH1> τH2).

第1実施形態と同様に、調整値算定部44は、強度平均部42が算定した平均強度QH1(k,m)および平均強度QH2(k,m)に応じた調整値GH(k,m)を前掲の数式(4)で算定し、抑圧処理部46は、調整値算定部44が算定した調整値GH(k,m)を音響信号SXの調波成分(スペクトルXH(k,m))に作用させる。したがって、数式(7A)の平滑化係数αH1と数式(7B)の平滑化係数αH2との相違(調波成分のパワー|XH(k,m)|2に対する平均強度QH1(k,m)および平均強度QH2(k,m)の追従度の相違)が大きいほど残響成分の抑圧強度が増加するという傾向がある。 As in the first embodiment, the adjustment value calculation unit 44 adjusts the adjustment value GH (k, m) according to the average intensity QH1 (k, m) and the average intensity QH2 (k, m) calculated by the intensity average unit 42. And the suppression processing unit 46 uses the adjustment value GH (k, m) calculated by the adjustment value calculation unit 44 as the harmonic component (spectrum XH (k, m)) of the acoustic signal SX. To act on. Thus, equation (7A) of the power difference (harmonic component of the smoothing coefficient αH1 smoothing coefficient equation (7B) αH2 | XH (k , m) | average intensity for 2 QH1 (k, m) and average There is a tendency that the suppression intensity of the reverberation component increases as the intensity QH2 (k, m) differs in the degree of follow-up.

第2残響抑圧部50の強度平均部52は、以下の数式(8A)および数式(8B)で表現される通り、第1残響抑圧部40の強度平均部42と同様に、非調波成分のパワー|XP(k,m)|2の指数移動平均で平均強度QP1(k,m)および平均強度QP2(k,m)を算定する。

Figure 0006036141
The intensity averaging unit 52 of the second dereverberation suppression unit 50 is similar to the intensity averaging unit 42 of the first dereverberation suppression unit 40, as expressed by the following equations (8A) and (8B). The average intensity QP1 (k, m) and average intensity QP2 (k, m) are calculated by the exponential moving average of power | XP (k, m) | 2 .
Figure 0006036141

数式(8A)の平滑化係数αP1は、数式(8B)の平滑化係数αP2を下回る(0≦αP1<αP2≦1)。したがって、第1実施形態と同様に、平均強度QP1(k,m)は、平均強度QP2(k,m)と比較して低い追従性で非調波成分のパワー|XP(k,m)|2に追従する(τP1>τP2)。 The smoothing coefficient αP1 in Expression (8A) is lower than the smoothing coefficient αP2 in Expression (8B) (0 ≦ αP1 <αP2 ≦ 1). Accordingly, as in the first embodiment, the average intensity QP1 (k, m) is lower in tracking ability than the average intensity QP2 (k, m), and the power | XP (k, m) | Follow 2 (τP1> τP2).

第1実施形態と同様に、調整値算定部54は、平均強度QP1(k,m)および平均強度QP2(k,m)に応じた調整値GP(k,m)を前掲の数式(6)で算定し、抑圧処理部56は、調整値GP(k,m)を音響信号SXの非調波成分(スペクトルXP(k,m))に作用させる。したがって、数式(8A)の平滑化係数αP1と数式(8B)の平滑化係数αP2との相違が大きいほど残響成分の抑圧強度が増加するという傾向がある。   Similar to the first embodiment, the adjustment value calculation unit 54 calculates the adjustment value GP (k, m) corresponding to the average intensity QP1 (k, m) and the average intensity QP2 (k, m) using the formula (6). The suppression processing unit 56 causes the adjustment value GP (k, m) to act on the non-harmonic component (spectrum XP (k, m)) of the acoustic signal SX. Therefore, the reverberation component suppression strength tends to increase as the difference between the smoothing coefficient αP1 in Expression (8A) and the smoothing coefficient αP2 in Expression (8B) increases.

第2実施形態においても第1実施形態と同様に、調波成分に対する残響成分の抑圧強度が非調波成分に対する残響成分の抑圧強度を上回るように、第1残響抑圧部40および第2残響抑圧部50の各々が相異なる抑圧強度で残響成分の抑圧を実行する。具体的には、調波成分に対応する平均強度QH1(k,m)の平滑化係数αH1と平均強度QH2(k,m)の平滑化係数αH2との相違(例えば差分(αH2−αH1))が、非調波成分に対応する平均強度QP1(k,m)の平滑化係数αP1と平均強度QP2(k,m)の平滑化係数αP2との相違(例えば差分(αP2−αP1))を上回るように、各平滑化係数(αH1,αH2,αP1,αP2)が選定される。例えば、平滑化係数αH2と平滑化係数αP2とを相等しい数値に設定した場合を想定すると、平滑化係数αH1は平滑化係数αP1を下回る数値に設定される。したがって、第2実施形態においても第1実施形態と同様の効果が実現される。   Also in the second embodiment, similarly to the first embodiment, the first dereverberation suppression unit 40 and the second dereverberation suppression are performed so that the suppression strength of the reverberation component with respect to the harmonic component exceeds the suppression strength of the reverberation component with respect to the non-harmonic component. Each of the units 50 executes reverberation component suppression with different suppression intensities. Specifically, the difference between the smoothing coefficient αH1 of the average intensity QH1 (k, m) corresponding to the harmonic component and the smoothing coefficient αH2 of the average intensity QH2 (k, m) (eg, difference (αH2−αH1)) Exceeds the difference (for example, difference (αP2−αP1)) between the smoothing coefficient αP1 of the average intensity QP1 (k, m) corresponding to the non-harmonic component and the smoothing coefficient αP2 of the average intensity QP2 (k, m) Thus, each smoothing coefficient (αH1, αH2, αP1, αP2) is selected. For example, assuming that the smoothing coefficient αH2 and the smoothing coefficient αP2 are set to the same numerical value, the smoothing coefficient αH1 is set to a numerical value lower than the smoothing coefficient αP1. Therefore, the same effects as those of the first embodiment are realized in the second embodiment.

以上の説明から理解される通り、第1実施形態の平均個数(NH1,NH2,NP1,NP2)と第2実施形態の平滑化係数(αH1,αH2,αP1,αP2)とは、音響信号SXのパワー(|XH(k,m)|2,|XP(k,m)|2)の移動平均に適用される移動平均係数として包括される。したがって、第1残響抑圧部40の強度平均部42は、第1移動平均係数(NH1,NH2,αH1,αH2)を適用した調波成分のパワー|XH(k,m)|2の移動平均で平均強度(QH1(k,m),QH2(k,m))を算定する要素として包括され、第2残響抑圧部50の強度平均部52は、第2移動平均係数(NP1,NP2,αP1,αP2)を適用した非調波成分のパワー|XP(k,m)|2の移動平均で平均強度(QP1(k,m),QP2(k,m))を算定する要素として包括される。 As understood from the above description, the average number (NH1, NH2, NP1, NP2) of the first embodiment and the smoothing coefficients (αH1, αH2, αP1, αP2) of the second embodiment are the values of the acoustic signal SX. It is included as a moving average coefficient applied to a moving average of power (| XH (k, m) | 2 , | XP (k, m) | 2 ). Therefore, the intensity average unit 42 of the first dereverberation unit 40 is a moving average of the harmonic component power | XH (k, m) | 2 to which the first moving average coefficients (NH1, NH2, αH1, and αH2) are applied. It is included as an element for calculating the average intensity (QH1 (k, m), QH2 (k, m)), and the intensity average unit 52 of the second dereverberation unit 50 includes second moving average coefficients (NP1, NP2, αP1,. This is included as an element for calculating the average intensity (QP1 (k, m), QP2 (k, m)) by the moving average of the power | XP (k, m) | 2 of the inharmonic component to which αP2) is applied.

<第3実施形態>
音響信号SXの残響時間が長い場合、後期残響区間では、平均強度Q1(k,m)(QH1(k,m),QP1(k,m))が平均強度Q2(k,m)(QH2(k,m),QP2(k,m))に対して変動することで強度比R(k,m)(RH(k,m),RP(k,m))が不安定となり、結果的に音響信号SYの音質が低下する(例えば音量が短周期で揺動する)可能性がある。以上の傾向は、音響信号SXの非調波成分において格別に顕在化し易い。そこで、第3実施形態では、非調波成分の後期残響区間にて音量の変動を抑制する。
<Third Embodiment>
When the reverberation time of the acoustic signal SX is long, the average intensity Q1 (k, m) (QH1 (k, m), QP1 (k, m)) is the average intensity Q2 (k, m) (QH2 (QH ( k, m), QP2 (k, m)), the intensity ratio R (k, m) (RH (k, m), RP (k, m)) becomes unstable, and as a result There is a possibility that the sound quality of the acoustic signal SY deteriorates (for example, the sound volume fluctuates in a short cycle). The above tendency is easily manifested in the non-harmonic component of the acoustic signal SX. Therefore, in the third embodiment, fluctuations in volume are suppressed in the later reverberation section of the non-harmonic component.

第3実施形態における第2残響抑圧部50の調整値算定部54は、各単位期間の調整値GP(k,m)を、非調波成分の後期残響区間内の単位期間と後期残響区間外の単位区間とで区別して算定することで後期残響区間内の音響信号SYの音量の変動を抑制する。具体的には、調整値算定部54は、後期残響区間内の各単位期間の調整値GP(k,m)が、後期残響区間外の各単位期間の調整値GP(k,m)を下回る(すなわち、後期残響区間内の残響成分の抑圧強度が後期残響区間外の残響成分の抑圧強度を上回る)ように調整値GP(k,m)を算定する。図4は、第3実施形態の調整値算定部54が実行する処理のフローチャートである。   The adjustment value calculation unit 54 of the second reverberation suppression unit 50 in the third embodiment uses the adjustment value GP (k, m) of each unit period as a unit period in the later reverberation section of the non-harmonic component and outside the latter reverberation section. Thus, the fluctuation in the volume of the acoustic signal SY in the later reverberation section is suppressed by calculating separately from the unit section. Specifically, the adjustment value calculation unit 54 determines that the adjustment value GP (k, m) of each unit period in the later reverberation section is lower than the adjustment value GP (k, m) of each unit period outside the later reverberation section. The adjustment value GP (k, m) is calculated so that the suppression strength of the reverberation component in the later reverberation section is higher than the suppression strength of the reverberation component outside the later reverberation section. FIG. 4 is a flowchart of processing executed by the adjustment value calculation unit 54 of the third embodiment.

図4に示すように、調整値算定部54は、数式(6)の演算で調整値GP(k,m)を単位期間毎に算定し(ST1)、各単位期間が後期残響区間に該当するか否かを判定する(ST2)。例えば、平均強度QP2(k,m)が後期残響区間内で小さい数値に低下するという傾向を考慮して、調整値算定部54は、各単位期間の平均強度QP2(k,m)と所定の閾値QTHとを比較することで各単位期間が後期残響区間に該当するか否かを判定する。すなわち、平均強度QP2(k,m)が閾値QTHを上回る単位期間は後期残響区間内の単位期間と判定され、平均強度QP2(k,m)が閾値QTHを下回る単位期間は後期残響区間外の単位期間と判定される。なお、後期残響区間の内外を判定する方法は以上の例示に限定されない。   As shown in FIG. 4, the adjustment value calculation unit 54 calculates the adjustment value GP (k, m) for each unit period by the calculation of Equation (6) (ST1), and each unit period corresponds to the late reverberation section. Whether or not (ST2). For example, in consideration of the tendency that the average intensity QP2 (k, m) decreases to a smaller value in the late reverberation interval, the adjustment value calculation unit 54 calculates the average intensity QP2 (k, m) for each unit period and a predetermined value. It is determined whether each unit period corresponds to a late reverberation section by comparing with the threshold value QTH. That is, a unit period in which the average intensity QP2 (k, m) exceeds the threshold value QTH is determined as a unit period in the later reverberation section, and a unit period in which the average intensity QP2 (k, m) is lower than the threshold value QTH is outside the later reverberation section. It is determined as a unit period. In addition, the method of determining the inside / outside of a late reverberation section is not limited to the above illustration.

調整値算定部54は、ステップST1で算定した調整値GP(k,m)をステップST2の判定結果に応じて補正する(ST3)。具体的には、調整値算定部54は、後期残響区間外の各単位期間の調整値GP(k,m)を数式(6)での算定値に確定する。他方、調整値算定部54は、後期残響区間内の単位期間の調整値GP(k,m)を数式(6)での算定値から低下させる。例えば、調整値算定部54は、所定の係数γ(0<γ<1)を数式(6)での算定値に乗算することで調整値GP(k,m)を確定する。以上の説明から理解されるように、音響信号SYのうち非調波成分の後期残響区間に相当する区間では音量が低下する。したがって、音響信号SYの音質の低下(例えば音量の揺動)を抑制することが可能である。   The adjustment value calculation unit 54 corrects the adjustment value GP (k, m) calculated in step ST1 according to the determination result in step ST2 (ST3). Specifically, the adjustment value calculation unit 54 determines the adjustment value GP (k, m) for each unit period outside the late reverberation section as the calculated value in Expression (6). On the other hand, the adjustment value calculation unit 54 lowers the adjustment value GP (k, m) of the unit period in the late reverberation section from the calculation value in Expression (6). For example, the adjustment value calculation unit 54 determines the adjustment value GP (k, m) by multiplying a predetermined coefficient γ (0 <γ <1) by the calculated value in Expression (6). As can be understood from the above description, the volume of the acoustic signal SY decreases in the section corresponding to the late reverberation section of the non-harmonic component. Therefore, it is possible to suppress the deterioration of the sound quality of the acoustic signal SY (for example, the fluctuation of the volume).

なお、以上の説明では、調整値算定部54が算定する調整値GP(k,m)を非調波成分の後期残響区間の内外で区別する場合を例示したが、調整値算定部44が調波成分について算定する調整値GH(k,m)についても同様の構成を採用することが可能である。すなわち、調整値算定部44は、後期残響区間内の各単位期間の調整値GH(k,m)が、後期残響区間外の各単位期間の調整値GH(k,m)を下回るように調整値GH(k,m)を算定する。   In the above description, the adjustment value GP (k, m) calculated by the adjustment value calculation unit 54 is illustrated as being distinguished inside and outside the latter reverberation section of the non-harmonic component. A similar configuration can be adopted for the adjustment value GH (k, m) calculated for the wave component. That is, the adjustment value calculation unit 44 adjusts the adjustment value GH (k, m) for each unit period in the later reverberation section to be lower than the adjustment value GH (k, m) for each unit period outside the later reverberation section. The value GH (k, m) is calculated.

<変形例>
前述の各形態は多様に変形され得る。具体的な変形の態様を以下に例示する。以下の例示から任意に選択された2以上の態様は適宜に併合され得る。
<Modification>
Each of the above-described embodiments can be variously modified. Specific modifications are exemplified below. Two or more aspects arbitrarily selected from the following examples can be appropriately combined.

(1)前述の各形態における平均強度QH2(k,m)を調波成分のパワー|XH(k,m)|2に置換した構成(すなわち、数式(3B)の平均個数NH2や数式(7B)の平滑化係数αH2を1に設定した構成)も採用され得る。同様に、平均強度QP2(k,m)を非調波成分のパワー|XP(k,m)|2に置換した構成(数式(5B)の平均個数NP2や数式(8B)の平滑化係数αP2を1に設定した構成)も採用され得る。また、平均強度QH1(k,m)(および平均強度QH2(k,m))に応じた調整値GH(k,m)を算定する方法や、平均強度QP1(k,m)(および平均強度QP2(k,m))に応じた調整値GP(k,m)を算定する方法は任意である。例えば、平均強度QH1(k,m)を変数とする所定の演算で調整値GH(k,m)を算定する構成や、平均強度QP1(k,m)を変数とする所定の演算で調整値GP(k,m)を算定する構成も採用され得る。 (1) A configuration in which the average intensity QH2 (k, m) in each of the above-described embodiments is replaced with the harmonic component power | XH (k, m) | 2 (that is, the average number NH2 of Equation (3B) or Equation (7B ) In which the smoothing coefficient αH2 is set to 1). Similarly, the configuration in which the average intensity QP2 (k, m) is replaced with the power of the inharmonic component | XP (k, m) | 2 (the average number NP2 of the equation (5B) and the smoothing coefficient αP2 of the equation (8B)) Can be adopted. In addition, the method of calculating the adjustment value GH (k, m) according to the average intensity QH1 (k, m) (and the average intensity QH2 (k, m)), the average intensity QP1 (k, m) (and the average intensity The method of calculating the adjustment value GP (k, m) according to QP2 (k, m)) is arbitrary. For example, the adjustment value GH (k, m) is calculated by a predetermined calculation using the average intensity QH1 (k, m) as a variable, or the adjustment value is calculated by a predetermined calculation using the average intensity QP1 (k, m) as a variable. A configuration for calculating GP (k, m) may also be employed.

以上の説明から理解されるように、第1残響抑圧部40の強度平均部42は、第1移動平均係数(平均個数NH1や平滑化係数αH1)を適用した調波成分のパワー|XH(k,m)|2の移動平均で平均強度QH1(k,m)を算定する要素として包括され、調整値算定部44は、調波成分の残響抑圧用の調整値GH(k,m)を平均強度QH1(k,m)に応じて算定する要素として包括される。同様に、第2残響抑圧部50の強度平均部52は、第2移動平均係数(平均個数NP1や平滑化係数αP1)を適用した非調波成分のパワー|XP(k,m)|2の移動平均で平均強度QP1(k,m)を算定する要素として包括され、調整値算定部54は、非調波成分の残響抑圧用の調整値GP(k,m)を平均強度QP1(k,m)に応じて算定する要素として包括される。 As understood from the above description, the intensity averaging unit 42 of the first dereverberation suppressing unit 40 uses the power of the harmonic component | XH (k to which the first moving average coefficient (average number NH1 or smoothing coefficient αH1) is applied. m) | 2 is included as an element for calculating the average intensity QH1 (k, m) with a moving average of 2 , and the adjustment value calculation unit 44 averages the adjustment value GH (k, m) for suppressing the reverberation of the harmonic component. It is included as an element to be calculated according to the strength QH1 (k, m). Similarly, the intensity average unit 52 of the second dereverberation suppression unit 50 has the power | XP (k, m) | 2 of the non-harmonic component to which the second moving average coefficient (average number NP1 and smoothing coefficient αP1) is applied. It is included as an element for calculating the average intensity QP1 (k, m) by the moving average, and the adjustment value calculation unit 54 uses the adjustment value GP (k, m) for reverberation suppression of the non-harmonic component as the average intensity QP1 (k, m, It is included as an element to be calculated according to m).

(2)第1残響抑圧部40の強度平均部42による移動平均の対象は調波成分のパワー|XH(k,m)|2に限定されない。例えば、調波成分の振幅|XH(k,m)|や振幅の4乗|XH(k,m)|4の移動平均で平均強度QH1(k,m)や平均強度QH2(k,m)を算定することも可能である。すなわち、強度平均部42は、音響信号SXの調波成分の強度(|XH(k,m)|,|XH(k,m)|2,|XH(k,m)|4)を移動平均する要素として包括される。同様に、第2残響抑圧部50の強度平均部52は、音響信号SXの非調波成分の強度(|XP(k,m)|,|XP(k,m)|2,|XP(k,m)|4)を移動平均する要素として包括される。また、前述の各形態では、調整値GH(k,m)を調波成分のスペクトルXH(k,m)に作用させたが、抑圧処理部46が調波成分のパワー|XH(k,m)|2に調整値GH(k,m)を作用させる構成も採用され得る。同様に、非調波成分のパワー|XP(k,m)|2に調整値GP(k,m)を作用させることも可能である。 (2) The object of the moving average by the intensity averaging unit 42 of the first dereverberation unit 40 is not limited to the harmonic component power | XH (k, m) | 2 . For example, the amplitude of the harmonic component | XH (k, m) | 4 squared or amplitude | XH (k, m) | 4 mean intensity in the moving average of QH1 (k, m) and average intensity QH2 (k, m) Can also be calculated. That is, the intensity averaging unit 42 calculates the moving average of the harmonic component intensities (| XH (k, m) |, | XH (k, m) | 2 , | XH (k, m) | 4 ) of the acoustic signal SX. It is included as an element. Similarly, the intensity averaging unit 52 of the second dereverberation suppressing unit 50 uses the intensities (| XP (k, m) |, | XP (k, m) | 2 , | XP (k m) | 4 ) is included as a moving average element. In each of the above-described embodiments, the adjustment value GH (k, m) is applied to the harmonic component spectrum XH (k, m), but the suppression processing unit 46 uses the harmonic component power | XH (k, m). ) | 2 may be adopted in which the adjustment value GH (k, m) is applied. Similarly, the adjustment value GP (k, m) can be applied to the power | XP (k, m) | 2 of the non-harmonic component.

(3)第1残響抑圧部40および第2残響抑圧部50が残響成分を抑圧する構成や方法は任意であり、前述の例示には限定されない。また、第1残響抑圧部40と第2残響抑圧部50とで残響成分の抑圧方法を相違させた構成も採用され得る。例えば、第1残響抑圧部40は、第1実施形態および第2実施形態の一方に例示した方法で調波成分の残響成分を抑圧し、第2残響抑圧部50は、第1実施形態および第2実施形態の他方に例示した方法で非調波成分の残響成分を抑圧することが可能である。また、第1残響抑圧部40の強度平均部42が調波成分の振幅およびパワーの一方の移動平均を算定し、第2残響抑圧部50の強度平均部52が非調波成分の振幅およびパワーの他方の移動平均を算定する構成も採用され得る。 (3) The configuration and method in which the first dereverberation suppression unit 40 and the second dereverberation suppression unit 50 suppress the reverberation component are arbitrary, and are not limited to the above-described examples. Also, a configuration in which the reverberation component suppression method is different between the first dereverberation suppressing unit 40 and the second dereverberation suppressing unit 50 may be employed. For example, the first dereverberation suppression unit 40 suppresses the reverberation component of the harmonic component by the method exemplified in one of the first and second embodiments, and the second dereverberation suppression unit 50 includes the first and second embodiments. It is possible to suppress the reverberation component of the non-harmonic component by the method exemplified in the other of the two embodiments. Further, the intensity average unit 42 of the first reverberation suppression unit 40 calculates one moving average of the amplitude and power of the harmonic component, and the intensity average unit 52 of the second reverberation suppression unit 50 calculates the amplitude and power of the non-harmonic component. A configuration for calculating the other moving average of the above may also be adopted.

(4)前掲の数式(4)や数式(6)の演算に適用される所定値Gmaxまたは所定値Gminを、調波成分の調整値GH(k,m)の算定(数式(4))と非調波成分の調整値GP(k,m)の算定(数式(6))とで個別に設定することも可能である。すなわち、数式(4)の所定値Gmaxおよび所定値Gminと数式(6)の所定値Gmaxおよび所定値Gminとは相異なる数値に設定され得る。また、所定値Gmaxおよび所定値Gminを、調波成分および非調波成分の各々について個別に、利用者からの指示に応じて可変に設定する構成も好適である。 (4) Calculation of the adjustment value GH (k, m) of the harmonic component (formula (4)) using the predetermined value Gmax or the predetermined value Gmin applied to the calculations of the mathematical formulas (4) and (6). It is also possible to individually set the adjustment value GP (k, m) (formula (6)) of the inharmonic component. That is, the predetermined value Gmax and the predetermined value Gmin in the equation (4) and the predetermined value Gmax and the predetermined value Gmin in the equation (6) can be set to different numerical values. In addition, a configuration in which the predetermined value Gmax and the predetermined value Gmin are variably set individually for each of the harmonic component and the non-harmonic component in accordance with an instruction from the user is also preferable.

(5)音響空間内での反射や散乱に起因した狭義の残響成分に加えて、例えば楽器の演奏音等の響き成分(共鳴成分)も残響成分に含意され得る。具体的には、ピアノ等の鍵盤楽器の響板による共鳴成分やバイオリン等の弦楽器の共鳴成分(胴鳴り,箱鳴り)の調整にも、前述の各形態と同様に本発明を適用することが可能である。すなわち、本発明の残響成分は、経時的に減衰する成分(減衰成分)を意味する。 (5) In addition to a reverberant component in a narrow sense caused by reflection or scattering in an acoustic space, a reverberant component (resonance component) such as a musical performance of a musical instrument can be implied by the reverberant component. Specifically, the present invention can also be applied to the adjustment of the resonance component (bottle sound, box sound) of a stringed instrument such as a violin or the like by the sound board of a keyboard instrument such as a piano as in the above-described embodiments. Is possible. That is, the reverberation component of the present invention means a component that attenuates with time (attenuation component).

(6)携帯電話機等の端末装置と通信するサーバ装置で音響処理装置100を実現することも可能である。例えば、音響処理装置100は、端末装置から受信した音響信号SXから音響信号SYを生成して端末装置に送信する。なお、音響信号SXのスペクトルX(k,m)を音響処理装置100が端末装置から受信する構成では周波数分析部32が省略され、残響抑圧後の音響信号SYのスペクトルY(k,m)を音響処理装置100から端末装置に送信する構成では波形生成部64が省略される。また、残響抑圧後の調波成分のスペクトルYH(k,m)と非調波成分のスペクトルYP(k,m)とを端末装置に送信し、端末装置がスペクトルYH(k,m)とスペクトルYP(k,m)とを合成する構成(音響処理装置100から合成処理部62および波形生成部64を省略して端末装置に搭載した構成)も採用され得る。 (6) The sound processing apparatus 100 can be realized by a server device that communicates with a terminal device such as a mobile phone. For example, the acoustic processing device 100 generates an acoustic signal SY from the acoustic signal SX received from the terminal device and transmits the acoustic signal SY to the terminal device. In the configuration in which the sound processing device 100 receives the spectrum X (k, m) of the acoustic signal SX from the terminal device, the frequency analysis unit 32 is omitted, and the spectrum Y (k, m) of the acoustic signal SY after reverberation suppression is obtained. In the configuration in which the sound processing device 100 transmits to the terminal device, the waveform generation unit 64 is omitted. Also, the spectrum YH (k, m) of the harmonic component after reverberation suppression and the spectrum YP (k, m) of the non-harmonic component are transmitted to the terminal device, and the terminal device transmits the spectrum YH (k, m) and the spectrum. A configuration that synthesizes YP (k, m) (a configuration in which the synthesis processing unit 62 and the waveform generation unit 64 are omitted from the sound processing device 100 and mounted on the terminal device) may be employed.

100……音響処理装置、12……信号供給装置、14……放音装置、22……演算処理装置、24……記憶装置、32……周波数分析部、34……調波分離部、40……第1残響抑圧部、42……強度平均部、44……調整値算定部、46……抑圧処理部、50……第2残響抑圧部、52……強度平均部、54……調整値算定部、56……抑圧処理部、62……合成処理部、64……波形生成部。 DESCRIPTION OF SYMBOLS 100 ... Acoustic processing device, 12 ... Signal supply device, 14 ... Sound emission device, 22 ... Arithmetic processing device, 24 ... Memory | storage device, 32 ... Frequency analysis part, 34 ... Harmonic separation part, 40 …… First dereverberation unit, 42 …… Intensity average unit, 44 …… Adjustment value calculation unit, 46 …… Suppression processing unit, 50 …… Second dereverberation unit, 52 …… Intensity average unit, 54 …… Adjustment Value calculation unit 56... Suppression processing unit 62... Synthesis processing unit 64.

Claims (4)

音響信号を調波成分と非調波成分とに分離する調波分離手段と、
前記調波成分の残響成分を抑圧する第1残響抑圧手段と、
前記第1残響抑圧手段による残響成分の抑圧強度とは相違する抑圧強度で前記非調波成分の残響成分を抑圧する第2残響抑圧手段と
を具備する音響処理装置。
Harmonic separation means for separating the acoustic signal into harmonic components and non-harmonic components;
First reverberation suppressing means for suppressing a reverberation component of the harmonic component;
And a second reverberation suppression unit that suppresses the reverberation component of the non-harmonic component with a suppression strength different from the suppression strength of the reverberation component by the first reverberation suppression unit.
前記第1残響抑圧手段による残響成分の抑圧強度は、前記第2残響抑圧手段による残響成分の抑圧強度を上回る
請求項1の音響処理装置。
The acoustic processing apparatus according to claim 1, wherein the suppression strength of the reverberation component by the first reverberation suppression unit exceeds the suppression strength of the reverberation component by the second reverberation suppression unit.
前記第1残響抑圧手段による処理後の調波成分と前記第2残響抑圧手段による処理後の非調波成分とを合成する合成処理手段
を具備する請求項1または請求項2の音響処理装置。
The acoustic processing device according to claim 1, further comprising: a synthesis processing unit configured to synthesize a harmonic component after processing by the first reverberation suppression unit and a non-harmonic component after processing by the second reverberation suppression unit.
前記第1残響抑圧手段は、
第1移動平均係数を適用した前記調波成分の強度の移動平均で第1平均強度を算定する第1強度平均手段と、
前記調波成分の残響成分を抑圧するための第1調整値を前記第1平均強度に応じて算定する第1調整値算定手段と、
前記第1調整値算定手段が算定した第1調整値を前記調波成分に作用させる第1抑圧処理手段とを含み、
前記第2残響抑圧手段は、
前記第1移動平均係数とは相違する第2移動平均係数を適用した前記非調波成分の強度の移動平均で第2平均強度を算定する第2強度平均手段と、
前記非調波成分の残響成分を抑圧するための第2調整値を前記第2平均強度に応じて算定する第2調整値算定手段と、
前記第2調整値算定手段が算定した第2調整値を前記非調波成分に作用させる第2抑圧処理手段とを含む
請求項1から請求項3の何れかの音響処理装置。
The first dereverberation suppression means includes
First intensity averaging means for calculating a first average intensity by a moving average of the intensities of the harmonic components to which a first moving average coefficient is applied;
First adjustment value calculation means for calculating a first adjustment value for suppressing a reverberation component of the harmonic component according to the first average intensity;
First suppression processing means for causing the first adjustment value calculated by the first adjustment value calculation means to act on the harmonic component;
The second dereverberation suppression means includes
A second intensity averaging means for calculating a second average intensity by a moving average of the intensity of the non-harmonic component to which a second moving average coefficient different from the first moving average coefficient is applied;
Second adjustment value calculation means for calculating a second adjustment value for suppressing the reverberation component of the non-harmonic component according to the second average intensity;
The acoustic processing apparatus according to claim 1, further comprising: second suppression processing means that causes the second adjustment value calculated by the second adjustment value calculation means to act on the non-harmonic component.
JP2012226031A 2012-10-11 2012-10-11 Sound processor Expired - Fee Related JP6036141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012226031A JP6036141B2 (en) 2012-10-11 2012-10-11 Sound processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012226031A JP6036141B2 (en) 2012-10-11 2012-10-11 Sound processor

Publications (2)

Publication Number Publication Date
JP2014077916A JP2014077916A (en) 2014-05-01
JP6036141B2 true JP6036141B2 (en) 2016-11-30

Family

ID=50783255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012226031A Expired - Fee Related JP6036141B2 (en) 2012-10-11 2012-10-11 Sound processor

Country Status (1)

Country Link
JP (1) JP6036141B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112022002371T5 (en) * 2021-04-30 2024-04-04 Sony Group Corporation DATA PROCESSING DEVICE, DATA PROCESSING METHOD, DATA PROCESSING SYSTEM AND PROGRAM

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1280138A1 (en) * 2001-07-24 2003-01-29 Empire Interactive Europe Ltd. Method for audio signals analysis
JP4098647B2 (en) * 2003-03-06 2008-06-11 日本電信電話株式会社 Acoustic signal dereverberation method and apparatus, acoustic signal dereverberation program, and recording medium recording the program
US7231234B2 (en) * 2003-11-21 2007-06-12 Octasic Inc. Method and apparatus for reducing echo in a communication system
US8488776B2 (en) * 2007-10-19 2013-07-16 Nec Corporation Echo suppressing method and apparatus
CN102084667B (en) * 2008-03-03 2014-01-29 日本电信电话株式会社 Dereverberation apparatus, dereverberation method, dereverberation program, and recording medium
JP5466581B2 (en) * 2010-06-04 2014-04-09 日本電信電話株式会社 Echo canceling method, echo canceling apparatus, and echo canceling program
JP6019969B2 (en) * 2011-11-22 2016-11-02 ヤマハ株式会社 Sound processor

Also Published As

Publication number Publication date
JP2014077916A (en) 2014-05-01

Similar Documents

Publication Publication Date Title
JP5641186B2 (en) Noise suppression device and program
KR102132500B1 (en) Harmonicity-based single-channel speech quality estimation
JP5018193B2 (en) Noise suppression device and program
JP6019969B2 (en) Sound processor
JP4456504B2 (en) Speech noise discrimination method and device, noise reduction method and device, speech noise discrimination program, noise reduction program
JP5187666B2 (en) Noise suppression device and program
JP5034735B2 (en) Sound processing apparatus and program
JP2009020471A (en) Sound processor and program
JP6036141B2 (en) Sound processor
JP5609157B2 (en) Coefficient setting device and noise suppression device
JP4533126B2 (en) Proximity sound separation / collection method, proximity sound separation / collection device, proximity sound separation / collection program, recording medium
JP5239359B2 (en) Howling suppression device
JP5152800B2 (en) Noise suppression evaluation apparatus and program
JP6171558B2 (en) Sound processor
JP2015169901A (en) Acoustic processing device
JP5772723B2 (en) Acoustic processing apparatus and separation mask generating apparatus
JP6299279B2 (en) Sound processing apparatus and sound processing method
JP2013182161A (en) Acoustic processing device and program
JP5463924B2 (en) Sound processor
JP6191238B2 (en) Sound processing apparatus and sound processing method
JP5321171B2 (en) Sound processing apparatus and program
JP2014052585A (en) Sound processing device
JP2015004959A (en) Acoustic processor
JP2010217551A (en) Sound processing device and program
JP5454157B2 (en) Sound processor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150410

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161017

R151 Written notification of patent or utility model registration

Ref document number: 6036141

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees