JP6036132B2 - Substrate with water repellent film and article for transportation equipment - Google Patents

Substrate with water repellent film and article for transportation equipment Download PDF

Info

Publication number
JP6036132B2
JP6036132B2 JP2012222099A JP2012222099A JP6036132B2 JP 6036132 B2 JP6036132 B2 JP 6036132B2 JP 2012222099 A JP2012222099 A JP 2012222099A JP 2012222099 A JP2012222099 A JP 2012222099A JP 6036132 B2 JP6036132 B2 JP 6036132B2
Authority
JP
Japan
Prior art keywords
compound
water
substrate
group
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012222099A
Other languages
Japanese (ja)
Other versions
JP2014074118A (en
Inventor
洋介 竹田
洋介 竹田
星野 泰輝
泰輝 星野
広和 小平
広和 小平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2012222099A priority Critical patent/JP6036132B2/en
Publication of JP2014074118A publication Critical patent/JP2014074118A/en
Application granted granted Critical
Publication of JP6036132B2 publication Critical patent/JP6036132B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、撥水性と耐久性をともに有する撥水膜を具備する撥水膜付き基体、およびこの撥水膜付き基体からなる輸送機器用物品に関する。   The present invention relates to a substrate with a water-repellent film comprising a water-repellent film having both water repellency and durability, and an article for transport equipment comprising the substrate with a water-repellent film.

従来から、各種技術分野において、基体の表面に撥水性を付与することが強く求められている。撥水性には静的撥水性(水滴が付着しにくい性質)と動的撥水性(水滴が転がりやすい性質、滑水性)とがあり、用途により多少の違いがあるがその両方が求められることが多い。特に、自動車ガラス等の輸送機器用物品においては、静的撥水性および動的撥水性の双方に優れたものが求められている。   Conventionally, in various technical fields, it has been strongly required to impart water repellency to the surface of a substrate. There are two types of water repellency: static water repellency (a property that prevents water droplets from sticking) and dynamic water repellency (a property that allows water droplets to easily roll, water slidability). Many. In particular, articles for transportation equipment such as automobile glass are required to be excellent in both static water repellency and dynamic water repellency.

基体表面に撥水性を付与する方法としては、基体の表面に撥水性の被膜を形成することが一般的に行われており、優れた撥水性を有する被膜(以下、「撥水膜」という)を形成するための組成物に関する技術開発がなされている。   As a method for imparting water repellency to the surface of a substrate, a water-repellent coating is generally formed on the surface of the substrate, and a coating having excellent water repellency (hereinafter referred to as “water-repellent film”). Technological developments have been made on compositions for forming sucrose.

上記撥水膜形成用の組成物において、静的撥水性に加えて動的撥水性にも優れた撥水膜を形成するための組成物として、加水分解性基を有するジメチルシリコーン化合物を用いた組成物が知られている。このような組成物として、例えば、特許文献1には、一方の末端にフルオロアルキル基やアルキル基を有し他方の末端に加水分解性基を有する直鎖状のジメチルシリコーン化合物を含有する表面処理剤が記載されている。特許文献1に記載の表面処理剤により得られる機能層は、静的撥水性および動的撥水性ともに優れた機能層であるが、特許文献1ではさらに撥水性の耐久性を高めるために基体表面と該機能層との間に3官能または4官能の加水分解性シラン化合物を用いて形成される下地層を設けている。このような下地層を設けることで経時安定性等の耐久性の向上は図られているが、該下地層では耐湿性の点で十分ではなかった。   In the composition for forming a water repellent film, a dimethyl silicone compound having a hydrolyzable group was used as a composition for forming a water repellent film having excellent dynamic water repellency in addition to static water repellency. Compositions are known. As such a composition, for example, Patent Document 1 discloses a surface treatment containing a linear dimethyl silicone compound having a fluoroalkyl group or an alkyl group at one end and a hydrolyzable group at the other end. Agents are described. The functional layer obtained by the surface treating agent described in Patent Document 1 is a functional layer excellent in both static water repellency and dynamic water repellency. In Patent Document 1, in order to further improve the water repellency durability, A base layer formed using a trifunctional or tetrafunctional hydrolyzable silane compound is provided between the functional layer and the functional layer. By providing such a base layer, durability such as stability over time is improved, but the base layer is not sufficient in terms of moisture resistance.

一方、耐湿性の点では問題がなく、静的撥水性に優れる含フッ素アルキル基を有する加水分解性シラン化合物を用いた撥水膜が知られており、この撥水膜に動的撥水性を付与するための組成物が開発されるようになった。このような組成物として、特許文献2においては、含フッ素ポリエーテル基を有する加水分解性シラン化合物と含フッ素アルキル基を有する加水分解性シラン化合物を組合せた組成物が記載されている。しかしながら、この組成物を用いた撥水膜では、用途によっては、上記加水分解性基を有するジメチルシリコーン化合物を用いた撥水膜に比べて初期の動的撥水性の点で、また、含フッ素アルキル基を有する加水分解性シラン化合物を用いた撥水膜に比べて耐湿性の点で、必ずしも十分とは言い難かった。   On the other hand, there is no problem in terms of moisture resistance, and a water-repellent film using a hydrolyzable silane compound having a fluorine-containing alkyl group that is excellent in static water repellency is known. Compositions for application have been developed. As such a composition, Patent Document 2 describes a composition in which a hydrolyzable silane compound having a fluorinated polyether group and a hydrolyzable silane compound having a fluorinated alkyl group are combined. However, in the water-repellent film using this composition, depending on the application, in terms of the initial dynamic water repellency compared to the water-repellent film using the dimethyl silicone compound having a hydrolyzable group, Compared to a water-repellent film using a hydrolyzable silane compound having an alkyl group, it was not necessarily sufficient in terms of moisture resistance.

特開2002−97192号公報JP 2002-97192 A 国際公開第2011/016458号International Publication No. 2011-016458

本発明は、上記観点からなされたものであって、静的撥水性および動的撥水性の双方に優れるととともに、耐湿性等の耐久性にも優れた撥水膜を有する撥水膜付き基体および該撥水膜付き基体からなる輸送機器用物品の提供を目的とする。   The present invention has been made from the above viewpoint, and has a water repellent film substrate having a water repellent film excellent in both static water repellency and dynamic water repellency and excellent in durability such as moisture resistance. Another object of the present invention is to provide an article for transport equipment comprising the substrate with the water-repellent film.

本発明は、以下の構成を有する撥水膜付き基体および輸送機器用物品を提供する。
[1] 基体と、前記基体の少なくとも一部の表面に撥水膜とを有する撥水膜付き基体であって、
前記撥水膜は、基体側から順に、
下記式(1)で表される化合物および/またはその部分加水分解縮合物からなる(A)成分を含む下地層形成用組成物を用いて形成された下地層、および
下記式(2)で表される化合物および/またはその部分加水分解縮合物からなる(B)成分を含む撥水層形成用組成物を用いて形成された撥水層、
を有する撥水膜付き基体。
Si−(CH−SiX …(1)
(ただし、式(1)中、Xはそれぞれ独立して加水分解性基または水酸基を示し、mは1〜8の整数である。)
−(SiR O)−SiR −Y−Si(R3−n(X …(2)
(ただし、式(2)中、Rは炭素原子数10以下のアルキル基または−Y−Si(R3−n(X基を、Rはそれぞれ独立して炭素原子数3以下のアルキル基を、Yはそれぞれ独立して炭素原子数2〜4のアルキレン基を、Rはそれぞれ独立して1価の炭化水素基であり、Xはそれぞれ独立して加水分解性基を示す。kは10〜200の整数であり、nは1〜3の整数である。)
The present invention provides a substrate with a water-repellent film and an article for transport equipment having the following configuration.
[1] A substrate with a water-repellent film having a substrate and a water-repellent film on at least a part of the surface of the substrate,
The water repellent film is sequentially from the substrate side.
An underlayer formed by using an underlayer-forming composition containing a component (A) comprising a compound represented by the following formula (1) and / or a partially hydrolyzed condensate thereof, and represented by the following formula (2) A water repellent layer formed using a composition for forming a water repellent layer comprising the component (B) comprising the compound and / or a partially hydrolyzed condensate thereof,
A substrate with a water repellent film.
X 1 3 Si— (CH 2 ) m —SiX 1 3 (1)
(However, in the formula (1), X 1 each independently represents a hydrolyzable group or a hydroxyl group, m is an integer of 1 to 8.)
R 3 — (SiR 2 2 O) k —SiR 2 2 —Y 1 —Si (R 1 ) 3 -n (X 2 ) n (2)
(In the formula (2), R 3 represents an alkyl group having 10 or less carbon atoms or —Y 1 —Si (R 1 ) 3-n (X 2 ) n group, and R 2 each independently represents a carbon atom. An alkyl group having a number of 3 or less, Y 1 is independently an alkylene group having 2 to 4 carbon atoms, R 1 is independently a monovalent hydrocarbon group, and X 2 is independently hydrolyzed. Represents a decomposable group, k is an integer of 10 to 200, and n is an integer of 1 to 3.)

[2] 前記下地層形成用組成物は、前記(A)成分と、下記式(3)で表わされる化合物および/またはその部分加水分解縮合物からなる(C)成分とを含む、もしくは、前記(A)成分と前記(C)成分の部分加水分解共縮合物(ただし、前記(A)成分および/または前記(C)成分を含んでもよい)を含む、[1]に記載の撥水膜付き基体。
Si(X …(3)
(ただし、式(3)中、Xはそれぞれ独立して、ハロゲン原子、アルコキシ基またはイソシアネート基を示す。)
[2] The underlayer-forming composition includes the component (A) and the component (C) composed of a compound represented by the following formula (3) and / or a partial hydrolysis condensate thereof, or The water-repellent film according to [1], comprising a partially hydrolyzed cocondensate of the component (A) and the component (C) (however, the component (A) and / or the component (C) may be included). With base.
Si (X 3 ) 4 (3)
(However, in formula (3), X 3 each independently represents a halogen atom, an alkoxy group or an isocyanate group.)

[3] 前記下地層形成用組成物における、前記式(1)で表わされる化合物由来成分と前記式(3)で表わされる化合物由来成分との含有割合が、[前記式(1)で表わされる化合物由来成分:前記式(3)で表わされる化合物由来成分]で示される質量比として、0.1:0.9〜0.9:0.1である、[2]に記載の撥水膜付き基体。
[4] 前記下地層形成用組成物における、前記式(1)で表わされる化合物由来成分と前記式(3)で表わされる化合物由来成分との含有割合が、[前記式(1)で表わされる化合物由来成分:前記式(3)で表わされる化合物由来成分]で示される質量比として、0.1:0.9〜0.6:0.4である、[3]に記載の撥水膜付き基体。
[3] The content ratio of the compound-derived component represented by the formula (1) and the compound-derived component represented by the formula (3) in the composition for forming an underlayer is represented by the formula (1). Compound-derived component: The water-repellent film according to [2], wherein the mass ratio represented by the compound-derived component represented by the formula (3) is 0.1: 0.9 to 0.9: 0.1 With base.
[4] The content ratio of the compound-derived component represented by the formula (1) and the compound-derived component represented by the formula (3) in the composition for forming an underlayer is represented by the formula (1). Compound-derived component: The water-repellent film according to [3], which is 0.1: 0.9 to 0.6: 0.4 as a mass ratio represented by the compound-derived component represented by the formula (3) With base.

[5] 前記式(1)において、Xはアルコキシ基またはイソシアネート基であり、mは1〜3の整数である、[1]〜[4]のいずれかに記載の撥水膜付き基体。
[6] 前記式(2)において、Rはメチル基であり、Rは炭素原子数5以下の直鎖状のアルキル基であり、Xは塩素原子であり、kは10〜150の整数であり、nは3である、[1]〜[5]のいずれかに記載の撥水膜付き基体。
[7] 前記下地層形成用組成物は、全固形分が実質的に、前記式(1)で表わされる化合物由来成分のみからなる、または前記式(1)で表わされる化合物由来成分と前記式(3)で表わされる化合物由来成分のみからなる[1]〜[6]のいずれかに記載の撥水膜付き基体。
[8] 前記撥水層形成用組成物は、全固形分が実質的に前記(B)成分のみからなる[1]〜[7]のいずれかに記載の撥水膜付き基体。
[9] 基体の材質がガラスである、[1]〜[8]のいずれかに記載の撥水膜付き基体。
[10] 前記[1]〜[9]のいずれかに記載の撥水膜付き基体を備えた輸送機器用物品。
[5] The substrate with a water-repellent film according to any one of [1] to [4], wherein in the formula (1), X 1 is an alkoxy group or an isocyanate group, and m is an integer of 1 to 3.
[6] In the formula (2), R 2 is a methyl group, R 3 is a linear alkyl group having 5 or less carbon atoms, X 2 is a chlorine atom, and k is 10 to 150. The substrate with a water-repellent film according to any one of [1] to [5], which is an integer and n is 3.
[7] The composition for forming the underlayer has a total solid content substantially consisting of only the compound-derived component represented by the formula (1), or the compound-derived component represented by the formula (1) and the formula The substrate with a water-repellent film according to any one of [1] to [6], comprising only the component derived from the compound represented by (3).
[8] The substrate with a water-repellent film according to any one of [1] to [7], wherein the composition for forming a water-repellent layer is composed entirely of the component (B).
[9] The substrate with a water-repellent film according to any one of [1] to [8], wherein the substrate is made of glass.
[10] An article for transport equipment comprising the substrate with a water-repellent film according to any one of [1] to [9].

本発明によれば、静的撥水性および動的撥水性の双方に優れるととともに、耐湿性等の耐久性にも優れた撥水膜を有する撥水膜付き基体および該撥水膜付き基体からなる輸送機器用物品の提供ができる。   According to the present invention, a substrate with a water-repellent film having a water-repellent film that is excellent in both static water repellency and dynamic water repellency and excellent in durability such as moisture resistance, and the substrate with the water-repellent film. It is possible to provide an article for transportation equipment.

以下に本発明の実施の形態を説明する。なお、本発明は、下記説明に限定して解釈されるものではない。
本明細書における式(1)で表される化合物を、化合物(1)という。式(1a)で表される基を、基(1a)という。他の化合物、基も同様である。本明細書における「化合物(1)由来成分」は、化合物(1)の部分加水分解縮合物や化合物(1)と他の加水分解性シラン化合物の部分加水分解共縮合物における化合物(1)に由来する単位と未反応の化合物(1)を総称する用語として用いる。また、本明細書において全固形分とは、各層形成用組成物が含有する成分のうち、最終的に層構成成分となる成分をいい、有機溶剤等の層形成過程における加熱等により揮発する揮発性成分以外の全成分を示す。
Embodiments of the present invention will be described below. In addition, this invention is limited to the following description and is not interpreted.
The compound represented by Formula (1) in this specification is called compound (1). The group represented by the formula (1a) is referred to as group (1a). The same applies to other compounds and groups. The “component derived from compound (1)” in this specification refers to the partial hydrolysis condensate of compound (1) and the compound (1) in the partial hydrolysis cocondensate of compound (1) and other hydrolyzable silane compounds. It is used as a generic term for the derived unit and the unreacted compound (1). Moreover, in this specification, the total solid content means the component which finally becomes a layer constituent component among the components which each composition for layer formation contains, and is volatilization which volatilizes by the heating in layer formation processes, such as an organic solvent. All components other than sex components are shown.

[撥水膜付き基体]
本発明の撥水膜付き基体は、基体と、前記基体の少なくとも一部の表面に撥水膜とを有する撥水膜付き基体であって、前記撥水膜は基体側から順に、以下の(A)成分を含む下地層形成用組成物を用いて形成された下地層および、(B)成分を含む撥水層形成用組成物を用いて形成された撥水層を有する。
[Substrate with water-repellent film]
The substrate with a water-repellent film according to the present invention is a substrate with a water-repellent film having a substrate and a water-repellent film on at least a part of the surface of the substrate. It has a water-repellent layer formed using the foundation layer formed using the composition for base layer formation containing A) component, and the water-repellent layer formation composition containing (B) component.

(A)成分;下記式(1)で表される化合物および/またはその部分加水分解縮合物からなる。
Si−(CH−SiX …(1)
(ただし、式(1)中、Xはそれぞれ独立して加水分解性基または水酸基を示し、mは1〜8の整数である。)
Component (A): a compound represented by the following formula (1) and / or a partial hydrolysis condensate thereof.
X 1 3 Si— (CH 2 ) m —SiX 1 3 (1)
(However, in the formula (1), X 1 each independently represents a hydrolyzable group or a hydroxyl group, m is an integer of 1 to 8.)

(B)成分;下記式(2)で表される化合物および/またはその部分加水分解縮合物からなる。
−(SiR O)−SiR −Y−Si(R3−n(X …(2)
(ただし、式(2)中、Rは炭素原子数10以下のアルキル基または−Y−Si(R3−n(X基を、Rはそれぞれ独立して炭素原子数3以下のアルキル基を、Yはそれぞれ独立して炭素原子数2〜4のアルキレン基を、Rはそれぞれ独立して1価の炭化水素基であり、Xはそれぞれ独立して加水分解性基を示す。kは10〜200の整数であり、nは1〜3の整数である。)
Component (B): a compound represented by the following formula (2) and / or a partially hydrolyzed condensate thereof.
R 3 — (SiR 2 2 O) k —SiR 2 2 —Y 1 —Si (R 1 ) 3 -n (X 2 ) n (2)
(In the formula (2), R 3 represents an alkyl group having 10 or less carbon atoms or —Y 1 —Si (R 1 ) 3-n (X 2 ) n group, and R 2 each independently represents a carbon atom. An alkyl group having a number of 3 or less, Y 1 is independently an alkylene group having 2 to 4 carbon atoms, R 1 is independently a monovalent hydrocarbon group, and X 2 is independently hydrolyzed. Represents a decomposable group, k is an integer of 10 to 200, and n is an integer of 1 to 3.)

化合物(1)は、2価有機基を挟んで両末端に加水分解性シリル基またはシラノール基を有し、これを用いて形成される下地層は、化合物(1)由来の該有機基の作用により疎水性が発現され湿度の高い環境下におかれても撥水膜が基体から剥離することなく撥水性を維持することが可能と考えられる。また、化合物(2)は末端に加水分解性シリル基を有する直鎖状のシリコーン化合物であって、これを用いて形成される撥水層は、静的撥水性および動的撥水性の双方に優れるものである。
以下、本発明の撥水膜付き基体の構成要素を説明する。
The compound (1) has hydrolyzable silyl groups or silanol groups at both ends with a divalent organic group in between, and the underlayer formed using this has an action of the organic group derived from the compound (1). Thus, it is considered that the water-repellent film can be maintained without being peeled from the substrate even in an environment with high hydrophobicity and high humidity. Compound (2) is a linear silicone compound having a hydrolyzable silyl group at the end, and the water-repellent layer formed using this is both static and dynamic water-repellent. It is excellent.
Hereinafter, the components of the substrate with a water-repellent film of the present invention will be described.

(基体)
本発明の撥水膜付き基体に用いる基体は、一般に撥水性の付与が求められている材質からなる基体であれば特に限定されず、金属、プラスチック、ガラス、セラミック、またはその組み合わせ(複合材料、積層材料等)からなる基体が好ましく使用される。ガラスまたはプラスチック等の透明な基体が好ましく、特にガラスが好ましい。
(Substrate)
The substrate used for the substrate with a water-repellent film of the present invention is not particularly limited as long as it is a substrate made of a material that is generally required to impart water repellency. Metal, plastic, glass, ceramic, or a combination thereof (composite material, A substrate made of a laminated material or the like is preferably used. A transparent substrate such as glass or plastic is preferred, and glass is particularly preferred.

ガラスとしては、通常のソーダライムガラス、ホウ珪酸ガラス、無アルカリガラス、石英ガラス等が挙げられ、これらのうちでもソーダライムガラスが特に好ましい。また、プラスチックとしては、ポリメチルメタクリレートなどのアクリル系樹脂やポリフェニレンカーボネートなどの芳香族ポリカーボネート系樹脂、ポリエチレンテレフタレート(PET)などの芳香族ポリエステル系樹脂等が挙げられ、これらのうちでもポリエチレンテレフタレート(PET)が好ましい。   Examples of the glass include ordinary soda lime glass, borosilicate glass, non-alkali glass, and quartz glass. Among these, soda lime glass is particularly preferable. Examples of the plastic include acrylic resins such as polymethyl methacrylate, aromatic polycarbonate resins such as polyphenylene carbonate, and aromatic polyester resins such as polyethylene terephthalate (PET). Among these, polyethylene terephthalate (PET) ) Is preferred.

基体の形状は平板でもよく、全面または一部が曲率を有していてもよい。基体の厚さは撥水膜付き基体の用途により適宜選択できるが、一般的には1〜10mmであることが好ましい。   The shape of the substrate may be a flat plate, or the entire surface or a part thereof may have a curvature. The thickness of the substrate can be appropriately selected depending on the use of the substrate with a water-repellent film, but is generally preferably 1 to 10 mm.

基体がソーダライムガラスである場合は、Naイオンの溶出を防止する膜を設けることが耐久性の点で好ましい。基体がフロート法で製造されたガラスである場合は、表面錫量の少ないトップ面に撥水膜を設けることが耐久性の点で好ましい。   When the substrate is soda lime glass, it is preferable in terms of durability to provide a film that prevents elution of Na ions. In the case where the substrate is glass manufactured by a float process, it is preferable in terms of durability to provide a water-repellent film on the top surface with a small amount of surface tin.

本発明の撥水膜付き基体において、撥水膜は上記基体の少なくとも一部の表面に形成される。基体表面の撥水膜が形成される領域は特に限定されず、用途に応じて必要とされる領域に形成すればよい。基体が板状である場合、通常、基体の両方の主面またはいずれか一方の主面の全面に形成される。   In the substrate with a water-repellent film of the present invention, the water-repellent film is formed on at least a part of the surface of the substrate. The region where the water-repellent film on the substrate surface is formed is not particularly limited, and may be formed in a region required according to the application. In the case where the substrate is plate-shaped, it is usually formed on both main surfaces of the substrate or one of the main surfaces.

(撥水膜)
撥水膜付き基体が有する撥水膜は、基体側から順に下地層および撥水層を有する。撥水膜は、下地層と撥水層の間にさらに中間層等を有してもよいが、下地層と撥水層のみで構成される撥水膜が好ましい。
(Water repellent film)
The water-repellent film included in the substrate with the water-repellent film has a base layer and a water-repellent layer in order from the substrate side. The water repellent film may further have an intermediate layer or the like between the base layer and the water repellent layer, but a water repellent film composed only of the base layer and the water repellent layer is preferred.

<下地層>
下地層は、下記式(1)で表される化合物および/またはその部分加水分解縮合物からなる(A)成分を含む下地層形成用組成物を用いて基体表面の所定領域に形成される。
Si−(CH−SiX …(1)
(ただし、式(1)中、Xはそれぞれ独立して加水分解性基または水酸基を示し、mは1〜8の整数である。)
<Underlayer>
The underlayer is formed in a predetermined region on the substrate surface using a composition for forming an underlayer containing a component (A) comprising a compound represented by the following formula (1) and / or a partial hydrolysis condensate thereof.
X 1 3 Si— (CH 2 ) m —SiX 1 3 (1)
(However, in the formula (1), X 1 each independently represents a hydrolyzable group or a hydroxyl group, m is an integer of 1 to 8.)

式(1)においてXは加水分解性基または水酸基である。加水分解性基とは、Si−X基の加水分解によって、Si−OHを形成し得る基である。
で示される加水分解性基としては、アルコキシ基、アシロキシ基、ケトオキシム基、アルケニルオキシ基、アミノ基、アミノキシ基、アミド基、イソシアネート基、ハロゲン原子等が挙げられる。化合物(1)の安定性と加水分解のし易さとのバランスの点から、Xとしては、アルコキシ基およびイソシアネート基が好ましい。アルコキシ基としては、炭素原子数1〜4のアルコキシ基が好ましく、メトキシ基またはエトキシ基がより好ましい。化合物(1)におけるXとしては、メトキシ基、エトキシ基、イソシアネート基が特に好ましい。これらは、製造上の目的、用途等に応じて適宜選択され用いられる。化合物(1)中に複数個存在するXは同じ基でも異なる基でもよく、同じ基であることが入手しやすさの点で好ましい。
In the formula (1), X 1 is a hydrolyzable group or a hydroxyl group. The hydrolyzable group is a group that can form Si—OH by hydrolysis of the Si—X 1 group.
Examples of the hydrolyzable group represented by X 1 include an alkoxy group, an acyloxy group, a ketoxime group, an alkenyloxy group, an amino group, an aminoxy group, an amide group, an isocyanate group, and a halogen atom. In view of the balance between the stability of the compound (1) and the ease of hydrolysis, X 1 is preferably an alkoxy group or an isocyanate group. As an alkoxy group, a C1-C4 alkoxy group is preferable, and a methoxy group or an ethoxy group is more preferable. X 1 in the compound (1) is particularly preferably a methoxy group, an ethoxy group, or an isocyanate group. These are appropriately selected and used according to the purpose of manufacture, application and the like. A plurality of X 1 present in the compound (1) may be the same group or different groups, and the same group is preferable from the viewpoint of availability.

式(1)において、mは加水分解性シリル基またはシラノール基に挟まれた、2価の炭化水素基の炭素原子数を示す。mは1〜8の整数であり、1〜3の整数が好ましい。2価の炭化水素基の炭素原子数が上記範囲にあることで、下地層は適度に疎水性を有し撥水膜の耐湿性を向上させることが可能となる。なお、mが9以上になると動的撥水性が悪化する点で問題である。   In the formula (1), m represents the number of carbon atoms of a divalent hydrocarbon group sandwiched between hydrolyzable silyl groups or silanol groups. m is an integer of 1 to 8, and an integer of 1 to 3 is preferable. When the number of carbon atoms of the divalent hydrocarbon group is in the above range, the underlayer has an appropriate hydrophobicity and can improve the moisture resistance of the water-repellent film. Note that when m is 9 or more, the dynamic water repellency deteriorates.

化合物(1)として、具体的には、(CHO)SiCHCHSi(OCH、(OCN)SiCHCHSi(NCO)、ClSiCHCHSiCl、(CHO)SiCHCHCHCHCHCHSi(OCH等が挙げられる。本発明において、化合物(1)は1種を単独で用いてもよく、2種以上を併用してもよい。 As the compound (1), specifically, (CH 3 O) 3 SiCH 2 CH 2 Si (OCH 3 ) 3 , (OCN) 3 SiCH 2 CH 2 Si (NCO) 3 , Cl 3 SiCH 2 CH 2 SiCl 3 , (CH 3 O) 3 SiCH 2 CH 2 CH 2 CH 2 CH 2 CH 2 Si (OCH 3 ) 3 and the like. In this invention, a compound (1) may be used individually by 1 type, and may use 2 or more types together.

下地層形成用組成物に含まれる(A)成分は、化合物(1)の部分加水分解縮合物であってもよい。化合物(1)のような加水分解性ケイ素化合物の部分加水分解縮合物とは、溶媒中で酸触媒やアルカリ触媒などの触媒と水の存在下に該化合物が有する加水分解性基の全部または一部が加水分解し、次いで脱水縮合することによって生成するオリゴマー(多量体)をいう。酸触媒としては、塩酸、硝酸、酢酸、硫酸、燐酸、スルホン酸、メタンスルホン酸、p−トルエンスルホン酸等を使用できる。アルカリ触媒としては、水酸化ナトリウム、水酸化カリウム、アンモニア等を使用できる。なお、これら触媒の水溶液を使用することにより、加水分解に必要な水を反応系に存在させることも可能である。   The component (A) contained in the underlayer forming composition may be a partial hydrolysis condensate of compound (1). The partially hydrolyzed condensate of a hydrolyzable silicon compound such as the compound (1) is all or one of the hydrolyzable groups possessed by the compound in the presence of a catalyst such as an acid catalyst or an alkali catalyst and water in a solvent. An oligomer (multimer) produced by hydrolysis of a part followed by dehydration condensation. As the acid catalyst, hydrochloric acid, nitric acid, acetic acid, sulfuric acid, phosphoric acid, sulfonic acid, methanesulfonic acid, p-toluenesulfonic acid and the like can be used. As the alkali catalyst, sodium hydroxide, potassium hydroxide, ammonia or the like can be used. In addition, it is also possible to make water required for a hydrolysis exist in a reaction system by using the aqueous solution of these catalysts.

部分加水分解縮合物の縮合度(多量化度)は、生成物が溶媒に溶解する程度である必要がある。(A)成分としては、化合物(1)であっても、化合物(1)の部分加水分解縮合物であってもよく、化合物(1)とその部分加水分解縮合物との混合物、例えば、未反応の化合物(1)が含まれる化合物(1)の部分加水分解縮合物であってもよい。   The degree of condensation (degree of multimerization) of the partially hydrolyzed condensate must be such that the product is dissolved in the solvent. The component (A) may be the compound (1) or a partial hydrolysis condensate of the compound (1), and a mixture of the compound (1) and the partial hydrolysis condensate, for example, It may be a partially hydrolyzed condensate of compound (1) containing compound (1) of the reaction.

一般式(1)で示される化合物やその部分加水分解縮合物としては市販品があり、本発明にはこのような市販品を用いることが可能である。   There are commercially available compounds as the compound represented by the general formula (1) and partial hydrolysis-condensation products thereof, and such commercially available products can be used in the present invention.

下地層形成用組成物は、上記(A)成分に加えて、下記式(3)で表わされる化合物および/またはその部分加水分解縮合物からなる(C)成分を含むことが好ましい。この場合、下地層形成用組成物は、(A)成分と(C)成分をそれぞれ単独で含有してもよく、これらの部分加水分解共縮合物を含有してもよい。下地層形成用組成物が、(A)成分と(C)成分の部分加水分解共縮合物を含む場合、これとは別に(A)成分および/または(C)成分を含んでもよい。   It is preferable that the composition for base layer formation contains (C) component which consists of a compound and / or its partial hydrolysis-condensation product represented by following formula (3) in addition to the said (A) component. In this case, the composition for forming the underlayer may contain the component (A) and the component (C) alone, or may contain these partial hydrolysis cocondensates. When the composition for base layer formation contains the partial hydrolysis cocondensate of (A) component and (C) component, you may contain (A) component and / or (C) component separately from this.

Si(X …(3)
(ただし、式(3)中、Xはそれぞれ独立して、ハロゲン原子、アルコキシ基またはイソシアネート基を示す。)
Si (X 3 ) 4 (3)
(However, in formula (3), X 3 each independently represents a halogen atom, an alkoxy group or an isocyanate group.)

上記式(3)中、Xは、塩素原子、炭素原子数1〜4のアルコキシ基またはイソシアネート基であることが好ましく、さらに4個のXが同一であることが好ましい。 In the above formula (3), X 3 is a chlorine atom, is preferably an alkoxy group or an isocyanate group having 1 to 4 carbon atoms, preferably further four X 4 are identical.

このような上記一般式(3)で示される化合物として、具体的には、Si(NCO)、Si(OCH、Si(OC等が好ましく用いられる。本発明において、化合物(3)は1種を単独で用いてもよく、2種以上を併用してもよい。なお、化合物(1)との組み合わせにおいて、化合物(3)は加水分解性基が化合物(1)の加水分解性基と同じ基または原子であることが好ましい。また、化合物(3)の部分加水分解縮合物は、化合物(1)の部分加水分解縮合物の製造において説明したのと同様の方法で得ることができる。また、(A)成分と(C)成分の部分加水分解共縮合物についても同様にして得ることができる。なお、一般式(3)で示される化合物やその部分加水分解縮合物としては市販品があり、本発明にはこのような市販品を用いることが可能である。 Specifically, Si (NCO) 4 , Si (OCH 3 ) 4 , Si (OC 2 H 5 ) 4 and the like are preferably used as the compound represented by the general formula (3). In this invention, a compound (3) may be used individually by 1 type, and may use 2 or more types together. In combination with the compound (1), the compound (3) preferably has a hydrolyzable group that is the same group or atom as the hydrolyzable group of the compound (1). Moreover, the partial hydrolysis-condensation product of a compound (3) can be obtained by the method similar to having demonstrated in manufacture of the partial hydrolysis-condensation product of a compound (1). Moreover, it can obtain similarly about the partial hydrolysis cocondensate of (A) component and (C) component. In addition, there exists a commercial item as a compound shown by General formula (3), or its partial hydrolysis-condensation product, It is possible to use such a commercial item for this invention.

下地層形成用組成物が(A)成分と(C)成分の両方を含む場合、これらの部分加水分解共縮合物を使用することが好ましく、化合物(1)と化合物(3)の部分加水分解共縮合物を使用することがより好ましい。部分加水分解共縮合物を用いることにより、下地層を両化合物に由来する単位が均一に分布した層として形成できると考えられる。   When the underlayer-forming composition contains both the component (A) and the component (C), it is preferable to use these partial hydrolysis cocondensates, and partial hydrolysis of the compounds (1) and (3). It is more preferable to use a cocondensate. By using a partially hydrolyzed cocondensate, it is considered that the underlayer can be formed as a layer in which units derived from both compounds are uniformly distributed.

下地層形成用組成物は、上記のようにして化合物(1)由来成分に加えて化合物(3)由来成分を含むことで、得られる撥水膜の微小な水滴に対する滑落性が向上する点で好ましい。下地層形成用組成物における、化合物(1)由来成分と化合物(3)由来成分との含有割合は、[化合物(1)由来成分:化合物(3)由来成分]で示される質量比として、0.1:0.9〜0.9:0.1の範囲にあることが好ましく、0.1:0.9〜0.6:0.4の範囲にあることがより好ましい。下地層形成用組成物が化合物(1)由来成分と化合物(3)由来成分とをこのような質量比で含有することにより、得られる撥水膜における耐湿性の向上と微小な水滴に対する滑落性の向上のいずれもが可能となる。   The composition for forming an undercoat layer contains the compound (3) -derived component in addition to the compound (1) -derived component as described above, so that the sliding property of the resulting water-repellent film with respect to minute water droplets is improved. preferable. The content ratio of the compound (1) -derived component and the compound (3) -derived component in the composition for forming an underlayer is 0 as a mass ratio represented by [compound (1) -derived component: compound (3) -derived component]. 0.1: 0.9 to 0.9: 0.1 is preferable, and 0.1: 0.9 to 0.6: 0.4 is more preferable. When the composition for forming the underlayer contains the compound (1) -derived component and the compound (3) -derived component in such a mass ratio, the moisture-repellent film in the resulting water-repellent film has improved moisture resistance and sliding properties against minute water droplets. It is possible to improve both.

なお、下地層形成用組成物における化合物(1)由来成分と化合物(3)由来成分との含有割合は、部分加水分解縮合物や部分加水分解共縮合物を用いた場合、それらを製造する際に用いた化合物(1)および化合物(3)の量から算出できる。   In addition, the content ratio of the component (1) -derived component and the compound (3) -derived component in the underlayer-forming composition is determined when a partially hydrolyzed condensate or a partially hydrolyzed cocondensate is used. It can be calculated from the amounts of the compound (1) and the compound (3) used in the above.

下地層形成用組成物は、本発明の効果を損なわない範囲で、目的に応じて、金属酸化物の超微粒子、染料または顔料等の着色用材料、防汚性材料、各種樹脂等の任意成分として機能性添加剤を含んでもよい。ただし、下地層形成用組成物への機能性添加剤の添加はその量によっては、得られる撥水膜の性能の低下を招くおそれがある。よって、下地層形成用組成物は、化合物(3)由来成分を含まない場合は、全固形成分が実質的に化合物(1)由来成分のみからなることが好ましく、化合物(3)由来成分を含む場合は、全固形成分が実質的に化合物(1)由来成分と化合物(3)由来成分のみからなることが好ましい。なお、本明細書において、全固形分が実質的に、ある成分のみからなるとは、全固形分中の該成分の含有割合が90質量%以上であることをいう。   The composition for forming the underlayer is an optional component such as a metal oxide ultrafine particle, a coloring material such as a dye or a pigment, an antifouling material, various resins, etc., as long as the effects of the present invention are not impaired. A functional additive may be included. However, depending on the amount of the functional additive added to the underlayer-forming composition, the performance of the resulting water-repellent film may be deteriorated. Therefore, when the composition for forming the underlayer does not contain the component derived from the compound (3), it is preferable that the total solid component consists essentially of the component derived from the compound (1), and includes the component derived from the compound (3). In the case, it is preferable that the total solid component consists essentially of the compound (1) -derived component and the compound (3) -derived component. In the present specification, that the total solid content is substantially composed of only a certain component means that the content ratio of the component in the total solid content is 90% by mass or more.

下地層形成用組成物は、通常、層構成成分となる固形分の他に、経済性、作業性、得られる下地層の厚さ制御のしやすさ等を考慮して、有機溶剤を含む。有機溶剤は、下地層形成用組成物が含有する固形分を溶解するものであれば特に制限されない。有機溶剤としては、アルコール類、エーテル類、ケトン類、芳香族炭化水素類、パラフィン系炭化水素類、酢酸エステル類等が好ましい。有機溶剤は1種に限定されず、極性、蒸発速度等の異なる2種以上の溶剤を混合して使用してもよい。   The composition for forming an underlayer usually contains an organic solvent in consideration of economic efficiency, workability, ease of control of the thickness of the obtained underlayer, and the like in addition to the solid content as a layer constituent component. The organic solvent is not particularly limited as long as it dissolves the solid content contained in the underlayer-forming composition. As the organic solvent, alcohols, ethers, ketones, aromatic hydrocarbons, paraffinic hydrocarbons, acetate esters and the like are preferable. The organic solvent is not limited to one kind, and two or more kinds of solvents having different polarities and evaporation rates may be mixed and used.

下地層形成用組成物は、部分加水分解縮合物や部分加水分解共縮合物を含有する場合、これらを製造するために使用した溶媒を含んでもよい。また、このような溶媒と下地層形成用組成物が含有する有機溶媒は同じものであってもよい。下地層形成用組成物は、さらに、部分加水分解縮合や部分加水分解共縮合で用いた触媒などの成分を含んでいてもよい。下地層形成用組成物の全固形分が実質的に化合物(1)由来成分のみからなる場合に、化合物(1)の部分加水分解縮合物を用いる際には、下地層形成用組成物は、化合物(1)の部分加水分解縮合物の製造で得られた部分加水分解縮合物の溶液そのものであることが好ましい。同様に、下地層形成用組成物の全固形分が実質的に化合物(1)由来成分と化合物(3)由来成分のみからなる場合に、(A)成分と(C)成分の部分加水分解縮合物を用いる際には、下地層形成用組成物は、(A)成分と(C)成分の部分加水分解共縮合物の製造で得られた部分加水分解共縮合物の溶液そのものであることが好ましい。   When the composition for base layer formation contains a partial hydrolysis-condensation product and a partial hydrolysis-condensation product, it may contain the solvent used in order to manufacture these. Moreover, the organic solvent which such a solvent and the composition for base layer formation contain may be the same. The underlayer-forming composition may further contain a component such as a catalyst used in partial hydrolysis condensation or partial hydrolysis cocondensation. When the total solid content of the composition for forming the underlayer is substantially composed only of the component derived from the compound (1), when using the partially hydrolyzed condensate of the compound (1), the composition for forming the underlayer is It is preferable that it is the solution of the partial hydrolysis-condensation product obtained by manufacture of the partial hydrolysis-condensation product of compound (1) itself. Similarly, when the total solid content of the composition for forming the underlayer is substantially composed only of the component derived from the compound (1) and the component derived from the compound (3), partial hydrolysis condensation of the component (A) and the component (C) When using the product, the composition for forming the underlayer is a solution of the partially hydrolyzed cocondensate obtained by the production of the partially hydrolyzed cocondensate of the components (A) and (C). preferable.

下地層形成用組成物における有機溶剤の割合は、化合物(1)由来成分と化合物(3)由来成分の合量質量の100質量部に対して、400〜100,000質量部が好ましい。有機溶剤の含有量が上記範囲であれば、下地層に処理ムラが発生するおそれもなく、経済性、作業性、処理層の厚さ制御のしやすさ等においても問題がない。下地層形成用組成物における有機溶剤の量は、さらに、化合物(1)由来成分と化合物(3)由来成分の合量質量の100質量部に対して、900〜3,500質量部がより好ましく、1,100〜2,000質量部が特に好ましい。   The proportion of the organic solvent in the composition for forming the underlayer is preferably 400 to 100,000 parts by mass with respect to 100 parts by mass of the total mass of the component derived from the compound (1) and the component derived from the compound (3). If the content of the organic solvent is within the above range, there is no risk of processing unevenness occurring in the underlayer, and there is no problem in economic efficiency, workability, ease of controlling the thickness of the processing layer, and the like. The amount of the organic solvent in the underlayer-forming composition is more preferably 900 to 3,500 parts by mass with respect to 100 parts by mass of the total mass of the compound (1) -derived component and the compound (3) -derived component. 1,100 to 2,000 parts by mass is particularly preferable.

さらに、下地層形成用組成物においては、部分加水分解縮合物や部分加水分解共縮合物を含まないものであっても、(A)成分の加水分解縮合反応、または(A)成分と(C)成分の加水分解共縮合反応を促進させるために、上記で部分加水分解縮合の反応において使用したのと同様の酸触媒等の触媒を配合しておくことも好ましい。部分加水分解縮合物や部分加水分解共縮合物を含む場合であっても、それらの製造に使用した触媒が組成物中に残存していない場合は、触媒を配合することが好ましい。触媒としては、酸触媒が好ましい。触媒の量としては、化合物(1)由来成分と化合物(3)由来成分の合計質量100質量部に対して、0.01〜5質量部が好ましい。なお、下地層形成用組成物において、触媒の量は固形分量に含めない。   Furthermore, in the composition for forming an underlayer, even if it does not contain a partial hydrolysis condensate or a partial hydrolysis cocondensate, the hydrolysis condensation reaction of component (A), or component (A) and (C In order to promote the hydrolysis co-condensation reaction of the component, it is also preferable to add a catalyst such as the same acid catalyst as used in the partial hydrolysis-condensation reaction described above. Even when a partially hydrolyzed condensate or a partially hydrolyzed cocondensate is included, when the catalyst used for the production thereof does not remain in the composition, it is preferable to add a catalyst. As the catalyst, an acid catalyst is preferable. As a quantity of a catalyst, 0.01-5 mass parts is preferable with respect to 100 mass parts of total mass of a component (1) origin component and a compound (3) origin component. In the underlayer forming composition, the amount of the catalyst is not included in the solid content.

下地層形成用組成物は、上記含有成分が加水分解縮合反応や加水分解共縮合反応するための水を含んでいてもよい。下地層形成用組成物における水の含有量は、化合物(1)由来成分と化合物(3)由来成分の合計質量100質量部に対して、1〜50質量部が好ましい。なお、下地層形成用組成物は水を含有しなくとも、以下の下地層を形成する過程において雰囲気中の水分を利用して含有成分の加水分解縮合反応や加水分解共縮合反応を行わせることができる。   The underlayer-forming composition may contain water for the above-mentioned components to undergo a hydrolysis condensation reaction or a hydrolysis cocondensation reaction. 1-50 mass parts is preferable with respect to 100 mass parts of total mass of the component (1) origin component and the compound (3) origin component of water in the composition for base layer formation. In addition, even if the composition for forming the underlayer does not contain water, in the process of forming the following underlayer, the moisture in the atmosphere is used to perform hydrolysis condensation reaction and hydrolysis cocondensation reaction of the contained components. Can do.

ここで、下地層形成用組成物が、(A)成分や(C)成分として、化合物(1)や化合物(3)の加水分解性基が塩素原子である化合物やこれらの部分加水分解縮合物、部分加水分解共縮合物等を含有する場合、これらは反応性が高いことから貯蔵安定性を考慮すると上記触媒および水を実質的に含有しないことが好ましい。実質的に含有しないとは、下地層形成用組成物の全量に対して含有量が0.3質量%以下であることをいう。   Here, the composition for forming the underlayer is a compound in which the hydrolyzable group of the compound (1) or the compound (3) is a chlorine atom, or a partially hydrolyzed condensate thereof, as the component (A) or the component (C). In the case of containing a partially hydrolyzed cocondensate or the like, since these have high reactivity, it is preferable that the catalyst and water are not substantially contained in consideration of storage stability. “Substantially not contained” means that the content is 0.3% by mass or less with respect to the total amount of the composition for forming an underlayer.

下地層形成用組成物を用いて下地層を形成する方法としては、オルガノシラン化合物系の表面処理剤における公知の方法を用いることが可能である。例えば、はけ塗り、流し塗り、回転塗布、浸漬塗布、スキージ塗布、スプレー塗布、手塗り等の方法で下地層形成用組成物を基体の表面に塗布し、大気中または窒素雰囲気中において、必要に応じて乾燥した後、硬化させることで、下地層を形成できる。硬化の条件は、用いる組成物の種類、濃度等により適宜制御されるが、好ましい条件として、温度:20〜50℃、湿度:50〜90%RHの条件が挙げられる。硬化のための時間は、用いる組成物の種類、濃度、硬化条件等によるが、概ね1〜72時間が好ましい。下地層の厚さは撥水膜に耐湿性、密着性、基体からのアルカリ等のバリア性を付与できる厚さであれば特に限定されない。経済性を考慮すると、50nm以下の厚さが好ましく、その下限は単分子層の厚さである。   As a method for forming the underlayer using the underlayer-forming composition, a known method for an organosilane compound-based surface treatment agent can be used. For example, the composition for forming the underlayer is applied to the surface of the substrate by methods such as brush coating, flow coating, spin coating, dip coating, squeegee coating, spray coating, and hand coating, and is necessary in the air or in a nitrogen atmosphere. The base layer can be formed by curing after drying according to the above. The curing conditions are appropriately controlled depending on the type and concentration of the composition to be used. Preferred conditions include a temperature of 20 to 50 ° C. and a humidity of 50 to 90% RH. The time for curing depends on the type, concentration, curing conditions and the like of the composition to be used, but is generally preferably 1 to 72 hours. The thickness of the underlayer is not particularly limited as long as it is a thickness that can impart moisture resistance, adhesion, and barrier properties such as alkali from the substrate to the water-repellent film. In consideration of economy, a thickness of 50 nm or less is preferable, and the lower limit is the thickness of the monomolecular layer.

(撥水層)
撥水層は、下記式(2)で表される化合物および/またはその部分加水分解縮合物からなる(B)成分を含む撥水層形成用組成物を用いて、上記基体上の下地層の表面に形成される。
−(SiR O)−SiR −Y−Si(R3−n(X …(2)
(ただし、式(2)中、Rは炭素原子数10以下のアルキル基または−Y−Si(R3−n(X基を、Rはそれぞれ独立して炭素原子数3以下のアルキル基を、Yはそれぞれ独立して炭素原子数2〜4のアルキレン基を、Rはそれぞれ独立して1価の炭化水素基であり、Xはそれぞれ独立して加水分解性基を示す。kは10〜200の整数であり、nは1〜3の整数である。)
(Water repellent layer)
The water-repellent layer is formed by using a water-repellent layer-forming composition containing a component (B) comprising a compound represented by the following formula (2) and / or a partially hydrolyzed condensate thereof. Formed on the surface.
R 3 — (SiR 2 2 O) k —SiR 2 2 —Y 1 —Si (R 1 ) 3 -n (X 2 ) n (2)
(In the formula (2), R 3 represents an alkyl group having 10 or less carbon atoms or —Y 1 —Si (R 1 ) 3-n (X 2 ) n group, and R 2 each independently represents a carbon atom. An alkyl group having a number of 3 or less, Y 1 is independently an alkylene group having 2 to 4 carbon atoms, R 1 is independently a monovalent hydrocarbon group, and X 2 is independently hydrolyzed. Represents a decomposable group, k is an integer of 10 to 200, and n is an integer of 1 to 3.)

化合物(2)は、片末端または両末端に、アルキレン基を介して加水分解性シリル基が結合した、直鎖状のポリオルガノシロキサンである。Rが炭素原子数10以下のアルキル基である場合、化合物(2)は、片末端に加水分解性シリル基を有する直鎖状のポリオルガノシロキサンであり、両末端に加水分解性シリル基を有する場合に比べて、微小な水滴に対する滑落性の点で優れている。この場合、Rは炭素原子数1〜5のアルキル基が好ましく、炭素原子数が1〜5の直鎖状アルキル基がより好ましい。 Compound (2) is a linear polyorganosiloxane in which a hydrolyzable silyl group is bonded to one end or both ends via an alkylene group. When R 3 is an alkyl group having 10 or less carbon atoms, the compound (2) is a linear polyorganosiloxane having a hydrolyzable silyl group at one end and hydrolyzable silyl groups at both ends. Compared with the case of having, it is excellent in the point of sliding-down with respect to a fine water droplet. In this case, R 3 is preferably an alkyl group having 1 to 5 carbon atoms, and more preferably a linear alkyl group having 1 to 5 carbon atoms.

式(2)において、SiR Oの繰り返し単位、およびそれに連結する−SiR −におけるRはそれぞれ独立して炭素原子数3以下のアルキル基であり、炭素原子数3以下の直鎖状のアルキル基が好ましく、メチル基がより好ましい。Rはそれぞれ異なってもよいが、同一であるのが好ましい。SiR Oの繰り返し数であるkは、10〜200の整数であり、10〜150が好ましく、15〜120がより好ましい。kの数が上記範囲にあれば、得られる撥水膜において静的撥水性および動的撥水性の両立が可能となる。なお、化合物(2)は、SiR Oの繰り返し単位の数が異なる混合物として用いられることが多い。化合物(2)がこのような混合物の場合、各繰り返し単位の数は平均値で示される。平均値で示す場合、繰り返し単位の数は必ずしも整数で示されるわけではないが、好ましい数値の範囲は上記同様である。 In formula (2), the repeating unit of SiR 2 2 O and R 2 in —SiR 2 2 — linked thereto are each independently an alkyl group having 3 or less carbon atoms, and a straight chain having 3 or less carbon atoms. The alkyl group is preferably a methyl group. R 2 may be different from each other, but is preferably the same. K which is the repeating number of SiR 2 2 O is an integer of 10 to 200, preferably 10 to 150, and more preferably 15 to 120. If the number of k is in the above range, it is possible to achieve both static water repellency and dynamic water repellency in the resulting water repellent film. The compound (2) is often used as a mixture in which the number of repeating units of SiR 2 2 O is different. When the compound (2) is such a mixture, the number of each repeating unit is shown as an average value. In the case of an average value, the number of repeating units is not necessarily an integer, but a preferable range of numerical values is the same as described above.

化合物(2)が末端に有する加水分解性シリル基(−Si(R3−n(X)のXは加水分解性基を示す。Rが、−Y−Si(R3−n(X基を示す場合、化合物(2)は両末端に加水分解性シリル基を有する直鎖状のポリオルガノシロキサンとなり、片末端に加水分解性シリル基を有する化合物に比べて耐湿性、耐薬品性に優れる点で好ましい。化合物(2)において、両末端の加水分解性シリル基は同一であっても異なってもよい。 X 2 in the hydrolyzable silyl group (—Si (R 1 ) 3 -n (X 2 ) n ) possessed by the terminal of the compound (2) represents a hydrolyzable group. When R 3 represents -Y 1 -Si (R 1 ) 3-n (X 2 ) n group, the compound (2) becomes a linear polyorganosiloxane having hydrolyzable silyl groups at both ends; This is preferable in terms of excellent moisture resistance and chemical resistance compared to a compound having a hydrolyzable silyl group at one end. In the compound (2), the hydrolyzable silyl groups at both ends may be the same or different.

としては、上記Xと同様の基または原子が挙げられる。化合物(2)の安定性と加水分解のし易さとのバランスの点から、アルコキシ基、イソシアネート基およびハロゲン原子が好ましい。ハロゲン原子としては、塩素原子が好ましい。アルコキシ基としては、炭素原子数1〜4のアルコキシ基が好ましく、メトキシ基またはエトキシ基がより好ましい。化合物(2)におけるXとしては、塩素原子、メトキシ基、エトキシ基が特に好ましい。これらは、製造上の目的、用途等に応じて適宜選択され用いられる。化合物(2)中にXが複数個存在する場合には、Xが同じ基でも異なる基でもよく、同じ基であることが入手しやすさの点で好ましい。 X 2 includes the same groups or atoms as those of X 1 above. From the viewpoint of the balance between the stability of the compound (2) and the ease of hydrolysis, an alkoxy group, an isocyanate group and a halogen atom are preferred. As the halogen atom, a chlorine atom is preferable. As an alkoxy group, a C1-C4 alkoxy group is preferable, and a methoxy group or an ethoxy group is more preferable. X 2 in the compound (2) is particularly preferably a chlorine atom, a methoxy group, or an ethoxy group. These are appropriately selected and used according to the purpose of manufacture, application and the like. Compound (2) X 2 is in the case where there are a plurality, may be X 2 are different even in the same group group, it is preferable in terms of ease availability of the same group.

nは、化合物(2)が有する加水分解性シリル基中の加水分解性基(X)の個数を示し、その数は1〜3の整数である。nが1以上であれば、得られる撥水層と下地層との密着性が良好となる。nは、得られる撥水層と下地層との密着性の点から、2または3が好ましく、3が特に好ましい。 n represents the number of hydrolyzable groups (X 2 ) in the hydrolyzable silyl group of the compound (2), and the number is an integer of 1 to 3. If n is 1 or more, the adhesiveness of the obtained water-repellent layer and a foundation layer will become favorable. n is preferably 2 or 3, and particularly preferably 3, from the viewpoint of adhesion between the obtained water-repellent layer and the underlying layer.

はそれぞれ独立して1価の炭化水素基である。1価の炭化水素基としては、アルキル基、シクロアルキル基、アルケニル基またはアリール基等が挙げられる。Rは1価の飽和炭化水素基が好ましい。1価の飽和炭化水素基の炭素原子数は1〜6が好ましく、1〜3がより好ましく、1〜2が特に好ましい。Rとしては、合成が簡便であることから、炭素原子数が1〜6のアルキル基が好ましく、原料の入手や取り扱いが容易である点から、炭素原子数が1〜3のアルキル基がより好ましく、炭素原子数が1〜2のアルキル基が特に好ましい。化合物(2)が有する加水分解性シリル基中のRの個数は3−n個である。加水分解性シリル基中にRが複数個存在する場合には、Rが同じ基でも異なる基でもよく、同じ基であることが入手しやすさの点で好ましい。 Each R 1 is independently a monovalent hydrocarbon group. Examples of the monovalent hydrocarbon group include an alkyl group, a cycloalkyl group, an alkenyl group, and an aryl group. R 1 is preferably a monovalent saturated hydrocarbon group. 1-6 are preferable, as for the carbon atom number of a monovalent saturated hydrocarbon group, 1-3 are more preferable, and 1-2 are especially preferable. R 1 is preferably an alkyl group having 1 to 6 carbon atoms because synthesis is simple, and an alkyl group having 1 to 3 carbon atoms is more preferable in terms of easy availability and handling of raw materials. An alkyl group having 1 to 2 carbon atoms is particularly preferable. The number of R 1 in the hydrolyzable silyl group possessed by the compound (2) is 3-n. When a plurality of R 1 are present in the hydrolyzable silyl group, R 1 may be the same group or different groups, and the same group is preferable from the viewpoint of availability.

式(2)において、(SiR O)−SiR −と加水分解性シリル基を連結する基であるYは、それぞれ独立して炭素原子数2〜4のアルキレン基を示す。Yとしては炭素原子数2または3のアルキレン基が好ましい。Yが炭素原子数2のアルキレン基の場合、本明細書では式(2)の分子式において−C−と示すが、これは−CHCH−と−CH(CH)−のような混合物であってもよい。これらは、製法上分離が困難な混合物であって、混合物として用いても本発明の効果に影響を与えないものである。同様にYが炭素原子数3のアルキレン基の場合、式(2)の分子式において−C−と示すが、これは−CHCHCH−と−CH(CH)CH−の混合物、あるいは−CHCHCH−と−CHCH(CH)−の混合物であってもよい。 In Formula (2), Y 1 which is a group linking (SiR 2 2 O) k —SiR 2 2 — and a hydrolyzable silyl group independently represents an alkylene group having 2 to 4 carbon atoms. Y 1 is preferably an alkylene group having 2 or 3 carbon atoms. When Y 1 is an alkylene group having 2 carbon atoms, in the present specification, it is represented as —C 2 H 4 — in the molecular formula of formula (2), which is represented by —CH 2 CH 2 — and —CH (CH 3 ) —. A mixture such as These are mixtures that are difficult to separate in the production process, and even if used as a mixture, the effects of the present invention are not affected. Similarly, when Y 1 is an alkylene group having 3 carbon atoms, it is represented as —C 3 H 6 — in the molecular formula of formula (2), which represents —CH 2 CH 2 CH 2 — and —CH (CH 3 ) CH. 2 - mixtures, or -CH 2 CH 2 CH 2 - and -CH 2 CH (CH 3) - may be a mixture of.

このように、Yは分岐状のアルキレン基と直鎖状のアルキレン基の混合物であってもよいが、全部が直鎖状のアルキレン基であることが最も好ましい。Yにおける分岐状のアルキレン基と直鎖状のアルキレン基の割合は全体を100としたときの直鎖状のアルキレン基の割合として50〜100が好ましく、75〜100がより好ましい。 As described above, Y 1 may be a mixture of a branched alkylene group and a linear alkylene group, but it is most preferable that all of them are linear alkylene groups. The ratio of the branched alkylene group and the linear alkylene group in Y 1 is preferably 50 to 100, more preferably 75 to 100, as the ratio of the linear alkylene group when the whole is 100.

化合物(2)として好ましくは、式(2)におけるRがメチル基であり、Rが炭素原子数5以下の直鎖状のアルキル基であり、Xが塩素原子であり、kが10〜150の整数であり、nが3である化合物である。 In the compound (2), R 2 in the formula (2) is preferably a methyl group, R 3 is a linear alkyl group having 5 or less carbon atoms, X 2 is a chlorine atom, and k is 10 A compound in which n is an integer of 150 and n is 3.

化合物(2)の具体例としては、下記の化合物が挙げられる。なお、各化合物中kは10〜150の整数である。
CH(Si(CHO)Si(CHSiCl
CH(Si(CHO)Si(CHSi(OCH
CH(Si(CHO)Si(CHSi(OC
(Si(CHO)Si(CHSiCl
(Si(CHO)Si(CHSi(OCH
(Si(CHO)Si(CHSi(OC
ClSiC(Si(CHO)Si(CHSiCl
(CHO)SiC(Si(CHO)Si(CHSi(OCH
(CO)SiC(Si(CHO)Si(CHSi(OC
本発明において、化合物(2)は1種を単独で用いてもよく、2種以上を併用してもよい。
Specific examples of the compound (2) include the following compounds. In each compound, k is an integer of 10 to 150.
CH 3 (Si (CH 3) 2 O) k Si (CH 3) 2 C 2 H 4 SiCl 3
CH 3 (Si (CH 3) 2 O) k Si (CH 3) 2 C 2 H 4 Si (OCH 3) 3
CH 3 (Si (CH 3) 2 O) k Si (CH 3) 2 C 2 H 4 Si (OC 2 H 5) 3
C 4 H 9 (Si (CH 3) 2 O) k Si (CH 3) 2 C 2 H 4 SiCl 3
C 4 H 9 (Si (CH 3) 2 O) k Si (CH 3) 2 C 2 H 4 Si (OCH 3) 3
C 4 H 9 (Si (CH 3) 2 O) k Si (CH 3) 2 C 2 H 4 Si (OC 2 H 5) 3
Cl 3 SiC 2 H 4 (Si (CH 3 ) 2 O) k Si (CH 3 ) 2 C 2 H 4 SiCl 3
(CH 3 O) 3 SiC 2 H 4 (Si (CH 3 ) 2 O) k Si (CH 3 ) 2 C 2 H 4 Si (OCH 3 ) 3
(C 2 H 5 O) 3 SiC 2 H 4 (Si (CH 3) 2 O) k Si (CH 3) 2 C 2 H 4 Si (OC 2 H 5) 3
In this invention, a compound (2) may be used individually by 1 type, and may use 2 or more types together.

化合物(2)は、公知の方法で製造可能である。
例えば、式(2)において、Rが炭素原子数10以下のアルキル基であり、片末端にYとして−C−を介して加水分解性シリル基(−Si(R3−n(X)を有する直鎖状のポリジメチルシロキサン(R(Si(CHO)Si(CHSi(R3−n(X)は、以下のようにして製造できる。
一方の末端にRを他方の末端に水素原子をそれぞれ有するポリジメチルシロキサン(R(Si(CHO)Si(CHH)に、ヒドロシリル化触媒の存在下、CH=CHSi(R3−n(Xを反応させる。
この反応で得られる化合物(2)は、Yが−CHCH−の化合物と、−CH(CH)−の化合物の混合物となる。また、上記反応において、CH=CH−をCH=CH−CH−とすることで、上記においてYが−C−の化合物(2)が得られる。
Compound (2) can be produced by a known method.
For example, in the formula (2), R 3 is an alkyl group having 10 or less carbon atoms, and a hydrolyzable silyl group (—Si (R 1 ) 3 via —C 2 H 4 — as Y 1 at one end. -n (X 2) n) linear polydimethylsiloxane having (R 3 (Si (CH 3 ) 2 O) k Si (CH 3) 2 C 2 H 4 Si (R 1) 3-n (X 2 ) n ) can be produced as follows.
In polydimethylsiloxane (R 3 (Si (CH 3 ) 2 O) k Si (CH 3 ) 2 H) having R 3 at one end and a hydrogen atom at the other end, in the presence of a hydrosilylation catalyst, CH 2 = CHSi (R 1 ) 3-n (X 2 ) n is reacted.
The compound (2) obtained by this reaction is a mixture of a compound in which Y 1 is —CH 2 CH 2 — and a compound in which —CH (CH 3 ) — is present. In the above reaction, CH 2 ═CH— is changed to CH 2 ═CH—CH 2 —, whereby the compound (2) in which Y 1 is —C 3 H 6 — is obtained.

式(2)が、両末端にYとして−C−を介して加水分解性シリル基(−Si(R3−n(X)を有する直鎖状のポリジメチルシロキサンである場合、両末端に水素原子をそれぞれ有するポリジメチルシロキサン(H(Si(CHO)Si(CHH)に、ヒドロシリル化触媒の存在下、CH=CHSi(R3−n(Xを反応させることで、(X(R3−nSiC(Si(CHO)Si(CHSi(R3−n(Xが得られる。この場合についても、化合物(2)はYが−CHCH−の化合物と、−CH(CH)−の化合物の混合物である。 Formula (2) is linear polydimethyl having a hydrolyzable silyl group (—Si (R 1 ) 3 -n (X 2 ) n ) as —Y 1 at both ends via —C 2 H 4 —. In the case of siloxane, polydimethylsiloxane (H (Si (CH 3 ) 2 O) k Si (CH 3 ) 2 H) having hydrogen atoms at both ends is added to CH 2 ═CHSi () in the presence of a hydrosilylation catalyst. R 1) 3-n (X 2) by reacting n, (X 2) n ( R 1) 3-n SiC 2 H 4 (Si (CH 3) 2 O) k Si (CH 3) 2 C 2 H 4 Si (R 1 ) 3-n (X 2 ) n is obtained. Also in this case, the compound (2) is a mixture of a compound in which Y 1 is —CH 2 CH 2 — and a compound in which —CH (CH 3 ) — is used.

なお、上記ヒドロシリル化反応に用いる原料として、末端にビニル基を有するポリジメチルシロキサンと、HSi(R3−n(Xを用いても、同様に化合物(2)が得られる。 Incidentally, as a material used for the hydrosilylation reaction, a polydimethylsiloxane having a vinyl group at the terminal, even with HSi (R 1) 3-n (X 2) n, likewise the compound (2) is obtained.

上記の方法では、いずれもYは分岐状のアルキレン基と直鎖状のアルキレン基の混合物として得られる。Xが塩素原子の場合については、これらの合成方法のうちでも、末端にビニル基を有するポリジメチルシロキサンとHSi(R3−n(Xを用いる合成方法が、Yが直鎖状のアルキレン基、例えば、YがCの場合には−CHCH−となる化合物の割合がより高くなることから、より好ましい。 In any of the above methods, Y 1 is obtained as a mixture of a branched alkylene group and a linear alkylene group. Case X 2 is a chlorine atom, among these synthetic methods, polydimethyl siloxane and HSi (R 1) 3-n (X 2) synthesis method using a n with a terminal vinyl group, Y 1 is When the linear alkylene group, for example, Y 1 is C 2 H 4 , the ratio of the compound that becomes —CH 2 CH 2 — becomes higher, which is more preferable.

撥水層形成用組成物中に含まれる(B)成分は、化合物(2)の部分加水分解縮合物であってもよい。ただし、部分加水分解縮合物の縮合度(多量化度)は、生成物が溶媒に溶解する程度である必要がある。(B)成分としては、化合物(2)であっても、化合物(2)の部分加水分解縮合物であってもよく、化合物(2)とその部分加水分解縮合物との混合物、例えば、未反応の化合物(2)が含まれる化合物(2)の部分加水分解縮合物であってもよい。   The component (B) contained in the composition for forming a water repellent layer may be a partially hydrolyzed condensate of compound (2). However, the degree of condensation (degree of multimerization) of the partially hydrolyzed condensate needs to be such that the product is dissolved in the solvent. Component (B) may be compound (2) or a partial hydrolysis condensate of compound (2), and a mixture of compound (2) and its partial hydrolysis condensate, for example, It may be a partially hydrolyzed condensate of compound (2) containing compound (2) of the reaction.

撥水層形成用組成物は、本発明の効果を損なわない範囲で、目的に応じて、金属酸化物の超微粒子、染料または顔料等の着色用材料、防汚性材料、各種樹脂等の任意成分として機能性添加剤を含んでもよい。ただし、撥水層形成用組成物への機能性添加剤の添加はその量によっては、得られる撥水膜の性能の低下を招くおそれがある。よって、撥水層形成用組成物は、全固形成分が実質的に(B)成分のみからなることが好ましい。   The composition for forming a water-repellent layer is an arbitrary material such as ultrafine particles of metal oxide, coloring materials such as dyes or pigments, antifouling materials, various resins, etc., as long as the effects of the present invention are not impaired. A functional additive may be included as a component. However, the addition of the functional additive to the water repellent layer-forming composition may cause a decrease in the performance of the resulting water repellent film depending on the amount thereof. Therefore, in the composition for forming a water repellent layer, it is preferable that the total solid component consists essentially of the component (B).

撥水層形成用組成物は、通常、層構成成分となる固形分の他に、経済性、作業性、得られる下地層の厚さ制御のしやすさ等を考慮して、有機溶剤を含む。有機溶剤は、撥水層形成用組成物が含有する固形分を溶解するものであれば特に制限されない。有機溶剤としては、下地層形成用組成物と同様の化合物が挙げられる。有機溶剤は1種に限定されず、極性、蒸発速度等の異なる2種以上の溶剤を混合して使用してもよい。   The composition for forming a water-repellent layer usually contains an organic solvent in consideration of economic efficiency, workability, ease of control of the thickness of the resulting underlayer, etc., in addition to the solid content as a layer constituent component. . The organic solvent is not particularly limited as long as it dissolves the solid content contained in the water repellent layer forming composition. As an organic solvent, the same compound as the composition for base layer formation is mentioned. The organic solvent is not limited to one kind, and two or more kinds of solvents having different polarities and evaporation rates may be mixed and used.

撥水層形成用組成物が部分加水分解縮合物を含有する場合、これを製造するために使用した溶媒を含んでもよい。また、このような溶媒と撥水層形成用組成物が含有する有機溶媒は同じものであってもよい。撥水層形成用組成物は、さらに、部分加水分解縮合で用いた触媒などの成分を含んでいてもよい。撥水層形成用組成物の全固形分が実質的に(B)成分のみからなる場合に、化合物(2)の部分加水分解縮合物を用いる際には、撥水層形成用組成物は、化合物(2)の部分加水分解縮合物の製造で得られた部分加水分解縮合物の溶液そのものであることが好ましい。撥水層形成用組成物における有機溶剤の割合は、下地層形成用組成物における有機溶剤の割合と同様とできる。   When the composition for water repellent layer formation contains the partial hydrolysis-condensation product, the solvent used in order to manufacture this may be included. Moreover, the organic solvent which such a solvent and the composition for water-repellent layer formation contain may be the same. The composition for forming a water repellent layer may further contain components such as a catalyst used in the partial hydrolysis condensation. When the total solid content of the composition for forming a water repellent layer consists essentially of the component (B), when using the partially hydrolyzed condensate of compound (2), the composition for forming the water repellent layer is: It is preferable that it is the solution of the partial hydrolysis-condensation product itself obtained by manufacture of the partial hydrolysis-condensation product of a compound (2). The proportion of the organic solvent in the water repellent layer forming composition can be the same as the proportion of the organic solvent in the underlayer forming composition.

さらに、撥水層形成用組成物においては、部分加水分解縮合物を含まないものであっても、(B)成分の加水分解縮合反応を促進させるために、上記で部分加水分解縮合の反応において使用したのと同様の酸触媒等の触媒を配合しておくことも好ましい。部分加水分解縮合物を含む場合であっても、それらの製造に使用した触媒が組成物中に残存していない場合は、触媒を配合することが好ましい。触媒としては、酸触媒が好ましい。触媒の量としては、(B)成分(化合物(2)由来成分)の100質量部に対して、0.01〜10質量部が好ましい。   Further, in the composition for forming a water repellent layer, even if it does not contain a partial hydrolysis-condensation product, in order to promote the hydrolysis-condensation reaction of the component (B), It is also preferable to blend a catalyst such as the same acid catalyst as that used. Even when the partial hydrolysis-condensation product is contained, when the catalyst used for the production thereof does not remain in the composition, it is preferable to blend the catalyst. As the catalyst, an acid catalyst is preferable. As a quantity of a catalyst, 0.01-10 mass parts is preferable with respect to 100 mass parts of (B) component (component (2) origin component).

撥水層形成用組成物は、上記含有成分が加水分解縮合反応するための水を含んでいてもよい。撥水層形成用組成物における水の含有量は、(B)成分(化合物(2)由来成分)の100質量部に対して、1〜50質量部が好ましい。なお、撥水層形成用組成物は水を含有しなくとも、以下の撥水層を形成する過程において雰囲気中の水分を利用して含有成分の加水分解縮合反応を行わせることができる。   The composition for forming a water repellent layer may contain water for the above-mentioned components to undergo hydrolysis condensation reaction. The water content in the composition for forming a water repellent layer is preferably 1 to 50 parts by mass with respect to 100 parts by mass of the component (B) (component derived from the compound (2)). In addition, even if the composition for water-repellent layer formation does not contain water, in the process of forming the following water-repellent layer, the hydrolysis condensation reaction of the contained components can be performed using moisture in the atmosphere.

ここで、撥水層形成用組成物が、(B)成分として、化合物(2)の加水分解性基が塩素原子である化合物(2)や部分加水分解縮合物等を含有する場合、これらは反応性が高いことから貯蔵安定性を考慮すると上記触媒および水を実質的に含有しないことが好ましい。実質的に含有しないとは、撥水層形成用組成物の全量に対して含有量が0.3質量%以下であることをいう。   Here, when the composition for forming a water repellent layer contains, as the component (B), a compound (2) in which the hydrolyzable group of the compound (2) is a chlorine atom, a partially hydrolyzed condensate, or the like, Considering storage stability because of high reactivity, it is preferable that the catalyst and water are not substantially contained. “Substantially not contained” means that the content is 0.3% by mass or less based on the total amount of the water repellent layer forming composition.

撥水層形成用組成物を用いて撥水層を形成する方法としては、オルガノシラン化合物系の表面処理剤における公知の方法を用いることが可能である。例えば、はけ塗り、流し塗り、回転塗布、浸漬塗布、スキージ塗布、スプレー塗布、手塗り等の方法で撥水層形成用組成物を基体上の下地層表面に塗布し、大気中または窒素雰囲気中において、必要に応じて乾燥した後、硬化させることで、撥水層を形成できる。硬化の条件は、用いる組成物の種類、濃度等により適宜制御されるが、好ましい条件として、温度:20〜50℃、湿度:50〜90%RHの条件が挙げられる。硬化のための時間は、用いる組成物の種類、濃度、硬化条件等によるが、概ね1〜72時間が好ましい。撥水層の厚さは撥水膜に静的撥水性および動的撥水性の双方に優れる性能を付与できる厚さであれば特に限定されない。経済性を考慮すると、50nm以下の厚さが好ましく、その下限は単分子層の厚さである。   As a method for forming the water repellent layer using the water repellent layer forming composition, a known method for an organosilane compound-based surface treatment agent can be used. For example, the water repellent layer forming composition is applied to the surface of the base layer on the substrate by a method such as brush coating, flow coating, spin coating, dip coating, squeegee coating, spray coating, hand coating, etc. In the inside, the water-repellent layer can be formed by drying and curing as necessary. The curing conditions are appropriately controlled depending on the type and concentration of the composition to be used. Preferred conditions include a temperature of 20 to 50 ° C. and a humidity of 50 to 90% RH. The time for curing depends on the type, concentration, curing conditions and the like of the composition to be used, but is generally preferably 1 to 72 hours. The thickness of the water repellent layer is not particularly limited as long as the water repellent film can provide a performance excellent in both static water repellency and dynamic water repellency. In consideration of economy, a thickness of 50 nm or less is preferable, and the lower limit is the thickness of the monomolecular layer.

なお、上記に説明した下地層形成用組成物の硬化は、撥水層形成用組成物の硬化と同時に行ってもよい。具体的には、下地層形成用組成物を基体表面の所定領域に塗布し、必要に応じて乾燥した後、この表面に撥水層形成用組成物を塗布し、必要に応じて乾燥した後、上記同様にして硬化処理を施すことで、下地層と撥水層を同時に硬化させて撥水膜を形成してもよい。   In addition, you may perform hardening of the composition for base layer formation demonstrated above simultaneously with hardening of the composition for water-repellent layer formation. Specifically, after applying the underlayer forming composition to a predetermined region of the substrate surface and drying as necessary, the water repellent layer forming composition is applied to the surface and dried as necessary. The base layer and the water repellent layer may be simultaneously cured to form a water repellent film by performing a curing process in the same manner as described above.

このようにして得られる本発明の撥水膜付き基体の撥水膜は、静的撥水性および動的撥水性の双方に優れるととともに、耐湿性等の耐久性にも優れるものである。   The thus obtained water-repellent film of the substrate with a water-repellent film of the present invention is excellent in both static water repellency and dynamic water repellency and also in durability such as moisture resistance.

[輸送機器用物品]
本発明の撥水膜付き基体は、これを具備する輸送機器用物品としての用途に好適に用いられる。輸送機器用物品とは、電車、自動車、船舶、航空機等におけるボディー、窓ガラス(フロントガラス、サイドガラス、リアガラス)、ミラー、バンパー等が好ましく挙げられる。
[Transportation Equipment Items]
The substrate with a water-repellent film of the present invention is suitably used for use as an article for transport equipment comprising the same. Preferred examples of the article for transportation equipment include bodies in trains, automobiles, ships, aircrafts, window glass (front glass, side glass, rear glass), mirrors, bumpers, and the like.

本発明の撥水膜付き基体またはこの基体を具備する輸送機器用物品は、その撥水膜表面が静的撥水性および動的撥水性の双方に優れるため、表面への水滴の付着が少なく、付着した水滴がすみやかに除去される。加えて輸送機器の運行に伴う風圧との相互作用により、付着した水滴は表面を急速に移動し、水滴として溜ることはない。このため、水分が誘発する悪影響を排除できる。また、上記撥水膜は、耐湿性等の耐久性にも優れるため、例えば、輸送機器用物品としての屋外での使用を含む各種使用条件下での長期使用においてもこの撥水性を維持することができる。   Since the water-repellent film surface is excellent in both static water repellency and dynamic water repellency, the substrate with a water-repellent film of the present invention or the article for transport equipment comprising the substrate has less adhesion of water droplets to the surface, Adhering water droplets are removed immediately. In addition, due to the interaction with the wind pressure associated with the operation of the transport equipment, the attached water droplets move rapidly on the surface and do not accumulate as water droplets. For this reason, the bad influence which a water induces can be excluded. In addition, since the water-repellent film is excellent in durability such as moisture resistance, the water-repellent film can be maintained even in long-term use under various use conditions including outdoor use as an article for transport equipment. Can do.

本発明の撥水膜付き基体またはこの基体を具備する輸送機器用物品は、特に、各種窓ガラス等の透視野部での用途において、水滴の飛散により視野の確保が非常に容易となり、車輌等の運行において安全性が向上できる。また、水滴が氷結するような環境下でも撥水膜表面には着氷しにくく、着氷したとしても付着力が小さいため自然落下し易い。さらに、水滴の付着がほとんどないため、清浄の作業回数を少なくでき、しかも清浄作業を容易に行うことができる。   The substrate with a water-repellent film of the present invention or an article for transport equipment comprising this substrate is very easy to secure a field of view by scattering of water droplets, particularly in applications in a transparent field portion such as various window glasses. Safety can be improved in operation. Further, even in an environment where water droplets freeze, the surface of the water-repellent film is difficult to be iced, and even when icing, it has a low adhesive force and is likely to fall naturally. Furthermore, since there is almost no adhesion of water droplets, the number of cleaning operations can be reduced, and the cleaning operation can be easily performed.

以下に、本発明の実施例を示すが、本発明はこれらの例によって限定されるものではない。なお、例1〜5、例7〜11、例13〜17、例19〜23、例25〜29、例31〜35、例37〜41、例43〜47、例49〜53、例55〜59、例61〜65、例67〜71、例73〜77が実施例であり、例6、12、18、24、30、36、42、48、54、60、66、72、78、79が比較例である。   Examples of the present invention are shown below, but the present invention is not limited to these examples. Examples 1-5, Examples 7-11, Examples 13-17, Examples 19-23, Examples 25-29, Examples 31-35, Examples 37-41, Examples 43-47, Examples 49-53, Examples 55- 59, Examples 61 to 65, Examples 67 to 71, and Examples 73 to 77 are examples. Examples 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 79 Is a comparative example.

撥水層形成用組成物に配合する化合物(2)として、下記化合物(21)〜化合物(30)を以下の合成例1〜10により合成して使用した。また、比較例に用いる撥水層形成用組成物に配合する下記含フッ素ポリエーテル基を有する加水分解性シラン化合物(F1)を合成例11により合成した。   As the compound (2) to be blended in the composition for forming a water repellent layer, the following compounds (21) to (30) were synthesized and used according to the following Synthesis Examples 1 to 10. Moreover, the hydrolyzable silane compound (F1) having the following fluorine-containing polyether group to be blended in the water repellent layer forming composition used in the comparative example was synthesized according to Synthesis Example 11.

化合物(21);CH(Si(CHO)19Si(CHSiCl
化合物(22);CH(Si(CHO)39Si(CHSiCl
化合物(23);CH(Si(CHO)58Si(CHSiCl
化合物(24);CH(Si(CHO)90Si(CHSiCl
化合物(25);ClSiC(Si(CHO)60Si(CHSiCl
化合物(26);CH(Si(CHO)58Si(CHSi(OCH
化合物(27);(CHO)SiC(Si(CHO)60Si(CHSi(OCH
化合物(28);C(Si(CHO)60Si(CHSiCl
化合物(29);CH(Si(CHO)60Si(CHSiCl
化合物(30);CH(Si(CHO)120Si(CHSiCl
化合物(F1);CFO(CFCFO)CFCONHCSi(OCH
(ただし、化合物(F1)において、aは7〜8であり、その平均値は7.3である。)
Compound (21); CH 3 (Si (CH 3) 2 O) 19 Si (CH 3) 2 C 2 H 4 SiCl 3
Compound (22); CH 3 (Si (CH 3) 2 O) 39 Si (CH 3) 2 C 2 H 4 SiCl 3
Compound (23); CH 3 (Si (CH 3) 2 O) 58 Si (CH 3) 2 C 2 H 4 SiCl 3
Compound (24); CH 3 (Si (CH 3) 2 O) 90 Si (CH 3) 2 C 2 H 4 SiCl 3
Compound (25); Cl 3 SiC 2 H 4 (Si (CH 3) 2 O) 60 Si (CH 3) 2 C 2 H 4 SiCl 3
Compound (26); CH 3 (Si (CH 3) 2 O) 58 Si (CH 3) 2 C 2 H 4 Si (OCH 3) 3
Compound (27); (CH 3 O) 3 SiC 2 H 4 (Si (CH 3 ) 2 O) 60 Si (CH 3 ) 2 C 2 H 4 Si (OCH 3 ) 3
Compound (28); C 4 H 9 (Si (CH 3) 2 O) 60 Si (CH 3) 2 C 2 H 4 SiCl 3
Compound (29); CH 3 (Si (CH 3) 2 O) 60 Si (CH 3) 2 C 2 H 4 SiCl 3
Compound (30); CH 3 (Si (CH 3) 2 O) 120 Si (CH 3) 2 C 2 H 4 SiCl 3
Compound (F1); CF 3 O (CF 2 CF 2 O) a CF 2 CONHC 3 H 6 Si (OCH 3 ) 3
(However, in compound (F1), a is 7-8, and the average value is 7.3.)

[合成例1]化合物(21)の合成例
(ハイドロジェンポリジメチルシロキサン(1−A)の製造)
撹拌機、滴下ロートを備えた反応器(内容積100mL、ガラス製)にトリメチルシラノール(1.50g)およびTHF(3.0g)を投入し、氷浴中で攪拌した。これにn−ブチルリチウムのヘキサン溶液(1.5mol/L)の11.1mLを滴下した。1時間攪拌後、ヘキサメチルシクロトリシロキサン(23.43g)をTHF(20g)に溶解した溶液をゆっくりと滴下した。滴下終了後、氷浴を外して12時間攪拌し、これにジメチルクロロシラン(2.40g)を滴下して、さらに12時間攪拌した。
[Synthesis Example 1] Synthesis Example of Compound (21) (Production of Hydrogen Polydimethylsiloxane (1-A))
Trimethylsilanol (1.50 g) and THF (3.0 g) were charged into a reactor equipped with a stirrer and a dropping funnel (internal volume 100 mL, glass), and stirred in an ice bath. To this was added dropwise 11.1 mL of a n-butyllithium hexane solution (1.5 mol / L). After stirring for 1 hour, a solution of hexamethylcyclotrisiloxane (23.43 g) dissolved in THF (20 g) was slowly added dropwise. After completion of the dropwise addition, the ice bath was removed and the mixture was stirred for 12 hours. Dimethylchlorosilane (2.40 g) was added dropwise thereto, and the mixture was further stirred for 12 hours.

得られた反応粗液に10質量%炭酸水素ナトリウム水溶液を加えて2層に分離させ、有機層を蒸留水で洗浄した。この有機層を硫酸マグネシウムで脱水し、揮発成分を50℃/10mmHgの条件下に除去し、下式(1−A)で表わされる化合物(1−A)の25.8gを得た。収率は99%であった。なお、繰り返し単位の数はH−NMRから求めた平均値であり、以下、実施例で示す繰り返し単位数についても全て同様である。
CH(Si(CHO)19Si(CHH …(1−A)
A 10% by mass aqueous sodium hydrogen carbonate solution was added to the resulting reaction crude liquid to separate it into two layers, and the organic layer was washed with distilled water. This organic layer was dehydrated with magnesium sulfate, and the volatile component was removed under the condition of 50 ° C./10 mmHg to obtain 25.8 g of the compound (1-A) represented by the following formula (1-A). The yield was 99%. The number of repeating units is an average value obtained from 1 H-NMR, and the same applies to the number of repeating units shown in the following examples.
CH 3 (Si (CH 3 ) 2 O) 19 Si (CH 3 ) 2 H (1-A)

得られた化合物(1−A)のH−NMR(300.4MHz、基準:C(=7.00ppm))の測定結果を以下に示す。なお、各測定値は、測定値に続く()内に示す基に由来する測定値を意味するが、この基に[]で囲まれた部分がある場合は、測定値は[]で囲まれた部分に由来する測定値を意味するものである。以下、実施例で示すNMRの測定結果については、全て同様である。
H−NMR(溶媒:C)δ(ppm):4.88(1H、m、H−Si)、0.0〜0.3(123H、m、CH−Si)。
The measurement result of 1 H-NMR (300.4 MHz, standard: C 6 D 6 (= 7.00 ppm)) of the obtained compound (1-A) is shown below. Each measured value means a measured value derived from the group shown in parentheses following the measured value. If there is a part surrounded by [] in this group, the measured value is surrounded by []. It means the measured value derived from the part. Hereinafter, the NMR measurement results shown in the examples are all the same.
1 H-NMR (solvent: C 6 D 6) δ ( ppm): 4.88 (1H, m, H-Si), 0.0~0.3 (123H, m, CH 3 -Si).

(化合物(21)の製造)
攪拌機、ジムロートを備えた反応器(内容積50mL)に、化合物(1−A)(15.0g)、ビニルトリクロロシラン(2.93g)、およびPt触媒(Ptの1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体の2質量%キシレン溶液)(0.019g)を投入して、室温にて24時間攪拌した。
得られた反応粗液から揮発成分を50℃/10mmHgの条件下に除去し、片末端がそれぞれ下式(1a)および下式(1b)で表わされる化合物の混合物であって、各化合物の比が[基(1a)の化合物:基(1b)の化合物]として55:45である、下式(21)で表わされる化合物(21)の16.5gを得た。収率は100%であった。
(Production of Compound (21))
In a reactor equipped with a stirrer and a Dimroth (internal volume 50 mL), compound (1-A) (15.0 g), vinyltrichlorosilane (2.93 g), and Pt catalyst (Pt 1,3-divinyl-1, (2,9% xylene solution of 1,3,3-tetramethyldisiloxane complex) (0.019 g) was added and stirred at room temperature for 24 hours.
Volatile components were removed from the obtained reaction crude liquid under conditions of 50 ° C./10 mmHg, and one end was a mixture of compounds represented by the following formulas (1a) and (1b), respectively, and the ratio of each compound 16.5 g of the compound (21) represented by the following formula (21), which is 55:45 as [the compound of the group (1a): the compound of the group (1b)]. The yield was 100%.

−Si(CHCHCHSiCl …(1a)
−Si(CHCH(CH)SiCl …(1b)
CH(Si(CHO)19Si(CHSiCl …(21)
-Si (CH 3) 2 CH 2 CH 2 SiCl 3 ... (1a)
-Si (CH 3) 2 CH ( CH 3) SiCl 3 ... (1b)
CH 3 (Si (CH 3) 2 O) 19 Si (CH 3) 2 C 2 H 4 SiCl 3 ... (21)

得られた化合物(21)のH−NMR(300.4MHz、基準:C(=7.00ppm))の測定結果を以下に示す。
H−NMR(溶媒:C)δ(ppm):1.06(1.1H、m、SiCH[CH]SiCl)、0.97(1.35H、d、SiCH([CH])SiCl)、0.55(1.1H、m、Si[CH]CHSiCl)、0.0〜0.3(123.5H、m、CH−SiおよびSi[CH](CH)SiCl)。
The measurement result of 1 H-NMR (300.4 MHz, standard: C 6 D 6 (= 7.00 ppm)) of the obtained compound (21) is shown below.
1 H-NMR (solvent: C 6 D 6 ) δ (ppm): 1.06 (1.1 H, m, SiCH 2 [CH 2 ] SiCl 3 ), 0.97 (1.35 H, d, SiCH ([[ CH 3]) SiCl 3), 0.55 (1.1H, m, Si [CH 2] CH 2 SiCl 3), 0.0~0.3 (123.5H, m, CH 3 -Si and Si [ CH] (CH 3) SiCl 3 ).

[合成例2]化合物(22)の合成例
(ハイドロジェンポリジメチルシロキサン(2−A)の製造)
撹拌機、滴下ロートを備えた反応器(内容積100mL、ガラス製)にトリメチルシラノール(0.75g)およびTHF(3.0g)を投入し、氷浴中で攪拌した。これにn−ブチルリチウムのヘキサン溶液(1.5mol/L)の5.5mLを滴下した。1時間攪拌後、ヘキサメチルシクロトリシロキサン(24.20g)をTHF(20g)に溶解した溶液をゆっくりと滴下した。滴下終了後、氷浴を外して12時間攪拌し、これにジメチルクロロシラン(1.20g)を滴下して、さらに12時間攪拌した。
[Synthesis Example 2] Synthesis Example of Compound (22) (Production of Hydrogen Polydimethylsiloxane (2-A))
Trimethylsilanol (0.75 g) and THF (3.0 g) were charged into a reactor equipped with a stirrer and a dropping funnel (internal volume 100 mL, glass), and stirred in an ice bath. To this, 5.5 mL of a hexane solution (1.5 mol / L) of n-butyllithium was added dropwise. After stirring for 1 hour, a solution of hexamethylcyclotrisiloxane (24.20 g) dissolved in THF (20 g) was slowly added dropwise. After completion of the dropwise addition, the ice bath was removed and the mixture was stirred for 12 hours. Dimethylchlorosilane (1.20 g) was added dropwise thereto, and the mixture was further stirred for 12 hours.

得られた反応粗液に10質量%炭酸水素ナトリウム水溶液を加えて2層に分離させ、有機層を蒸留水で洗浄した。この有機層を硫酸マグネシウムで脱水し、揮発成分を50℃/10mmHgの条件下に除去し、下式(2−A)で表わされる化合物(2−A)の25.0gを得た。収率は99%であった。
CH(Si(CHO)39Si(CHH …(2−A)
A 10% by mass aqueous sodium hydrogen carbonate solution was added to the resulting reaction crude liquid to separate it into two layers, and the organic layer was washed with distilled water. This organic layer was dehydrated with magnesium sulfate, and the volatile component was removed under the condition of 50 ° C./10 mmHg to obtain 25.0 g of the compound (2-A) represented by the following formula (2-A). The yield was 99%.
CH 3 (Si (CH 3) 2 O) 39 Si (CH 3) 2 H ... (2-A)

得られた化合物(2−A)のH−NMR(300.4MHz、基準:C(=7.00ppm))の測定結果を以下に示す。
H−NMR(溶媒:C)δ(ppm):4.88(1H、m、H−Si)、0.0〜0.3(243H、m、CH−Si)。
The measurement result of 1 H-NMR (300.4 MHz, standard: C 6 D 6 (= 7.00 ppm)) of the obtained compound (2-A) is shown below.
1 H-NMR (solvent: C 6 D 6) δ ( ppm): 4.88 (1H, m, H-Si), 0.0~0.3 (243H, m, CH 3 -Si).

(化合物(22)の製造)
攪拌機、ジムロートを備えた反応器(内容積50mL)に、化合物(2−A)(15.0g)、ビニルトリクロロシラン(1.64g)、およびPt触媒(Ptの1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体の2質量%キシレン溶液)(0.010g)を投入して、室温にて24時間攪拌した。
(Production of Compound (22))
In a reactor equipped with a stirrer and a Dimroth (internal volume 50 mL), compound (2-A) (15.0 g), vinyltrichlorosilane (1.64 g), and Pt catalyst (Pt 1,3-divinyl-1, (2 mass% xylene solution of 1,3,3-tetramethyldisiloxane complex) (0.010 g) was added and stirred at room temperature for 24 hours.

得られた反応粗液から揮発成分を50℃/10mmHgの条件下に除去し、片末端がそれぞれ基(1a)および基(1b)である化合物の混合物であって、各化合物の比が[基(1a)の化合物:基(1b)の化合物]として52:48である、下式(22)で表わされる化合物(22)の16.5gを得た。収率は100%であった。
CH(Si(CHO)39Si(CHSiCl …(22)
Volatile components were removed from the obtained reaction crude liquid under conditions of 50 ° C./10 mmHg, and one end was a mixture of compounds each having group (1a) and group (1b), and the ratio of each compound was [group 16.5 g of the compound (22) represented by the following formula (22), which is 52:48 as the compound (1a): the compound of the group (1b)]. The yield was 100%.
CH 3 (Si (CH 3) 2 O) 39 Si (CH 3) 2 C 2 H 4 SiCl 3 ... (22)

得られた化合物(22)のH−NMR(300.4MHz、基準:C(=7.00ppm))の測定結果を以下に示す。
H−NMR(溶媒:C)δ(ppm):1.06(1.04H、m、SiCH[CH]SiCl)、0.98(1.44H、d、SiCH([CH])SiCl)、0.55(1.04H、m、Si[CH]CHSiCl)、0.0〜0.3(243.5H、m、CH−SiおよびSi[CH](CH)SiCl)。
The measurement result of 1 H-NMR (300.4 MHz, standard: C 6 D 6 (= 7.00 ppm)) of the obtained compound (22) is shown below.
1 H-NMR (solvent: C 6 D 6 ) δ (ppm): 1.06 (1.04H, m, SiCH 2 [CH 2 ] SiCl 3 ), 0.98 (1.44H, d, SiCH ([[ CH 3]) SiCl 3), 0.55 (1.04H, m, Si [CH 2] CH 2 SiCl 3), 0.0~0.3 (243.5H, m, CH 3 -Si and Si [ CH] (CH 3) SiCl 3 ).

[合成例3]化合物(23)の合成例
(ハイドロジェンポリジメチルシロキサン(3−A)の製造)
撹拌機、滴下ロートを備えた反応器(内容積200mL、ガラス製)にトリメチルシラノール(1.00g)およびTHF(5.0g)を投入し、氷浴中で攪拌した。これにn−ブチルリチウムのヘキサン溶液(1.5mol/L)の7.0mLを滴下した。1時間攪拌後、ヘキサメチルシクロトリシロキサン(49.39g)をTHF(45g)に溶解した溶液をゆっくりと滴下した。滴下終了後、氷浴を外して12時間攪拌し、これにジメチルクロロシラン(1.15g)を滴下して、さらに12時間攪拌した。
[Synthesis Example 3] Synthesis Example of Compound (23) (Production of Hydrogen Polydimethylsiloxane (3-A))
Trimethylsilanol (1.00 g) and THF (5.0 g) were charged into a reactor equipped with a stirrer and a dropping funnel (internal volume 200 mL, made of glass), and stirred in an ice bath. 7.0 mL of a hexane solution (1.5 mol / L) of n-butyllithium was added dropwise thereto. After stirring for 1 hour, a solution of hexamethylcyclotrisiloxane (49.39 g) dissolved in THF (45 g) was slowly added dropwise. After completion of the dropping, the ice bath was removed and the mixture was stirred for 12 hours. Dimethylchlorosilane (1.15 g) was added dropwise thereto, and the mixture was further stirred for 12 hours.

得られた反応粗液に10質量%炭酸水素ナトリウム水溶液を加えて2層に分離させ、有機層を蒸留水で洗浄した。この有機層を硫酸マグネシウムで脱水し、揮発成分を50℃/10mmHgの条件下に除去し、下式(3−A)で表わされる化合物(3−A)の50.6gを得た。収率は99%であった。
CH(Si(CHO)58Si(CHH …(3−A)
A 10% by mass aqueous sodium hydrogen carbonate solution was added to the resulting reaction crude liquid to separate it into two layers, and the organic layer was washed with distilled water. This organic layer was dehydrated with magnesium sulfate, and the volatile component was removed under the condition of 50 ° C./10 mmHg to obtain 50.6 g of the compound (3-A) represented by the following formula (3-A). The yield was 99%.
CH 3 (Si (CH 3 ) 2 O) 58 Si (CH 3 ) 2 H (3-A)

得られた化合物(3−A)のH−NMR(300.4MHz、基準:C(=7.00ppm))の測定結果を以下に示す。
H−NMR(溶媒:C)δ(ppm):4.88(1H、m、H−Si)、0.0〜0.3(357H、m、CH−Si)。
The measurement result of 1 H-NMR (300.4 MHz, standard: C 6 D 6 (= 7.00 ppm)) of the obtained compound (3-A) is shown below.
1 H-NMR (solvent: C 6 D 6) δ ( ppm): 4.88 (1H, m, H-Si), 0.0~0.3 (357H, m, CH 3 -Si).

(化合物(23)の製造)
攪拌機、ジムロートを備えた反応器(内容積50mL)に、化合物(3−A)(20.0g)、ビニルトリクロロシラン(1.40g)、およびPt触媒(Ptの1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体の2質量%キシレン溶液)(0.021g)を投入して、室温にて24時間攪拌した。
(Production of Compound (23))
In a reactor equipped with a stirrer and a Dimroth (internal volume 50 mL), compound (3-A) (20.0 g), vinyltrichlorosilane (1.40 g), and Pt catalyst (Pt 1,3-divinyl-1, (2 mass% xylene solution of 1,3,3-tetramethyldisiloxane complex) (0.021 g) was added and stirred at room temperature for 24 hours.

得られた反応粗液から揮発成分を50℃/10mmHgの条件下に除去し、片末端がそれぞれ基(1a)および基(1b)である化合物の混合物であって、各化合物の比が[基(1a)の化合物:基(1b)の化合物]として60:40である、下式(23)で表わされる化合物(23)の20.5gを得た。収率は99%であった。
CH(Si(CHO)58Si(CHSiCl …(23)
Volatile components were removed from the obtained reaction crude liquid under conditions of 50 ° C./10 mmHg, and one end was a mixture of compounds each having group (1a) and group (1b), and the ratio of each compound was [group 20.5 g of the compound (23) represented by the following formula (23), which was 60:40 as the compound (1a): the compound of the group (1b)], was obtained. The yield was 99%.
CH 3 (Si (CH 3 ) 2 O) 58 Si (CH 3 ) 2 C 2 H 4 SiCl 3 (23)

得られた化合物(23)のH−NMR(300.4MHz、基準:C(=7.00ppm))の測定結果を以下に示す。
H−NMR(溶媒:C)δ(ppm):1.05(1.2H、m、SiCH[CH]SiCl)、0.98(1.2H、d、SiCH([CH])SiCl)、0.55(1.2H、m、Si[CH]CHSiCl)、0.0〜0.3(357H、m、CH−SiおよびSi[CH](CH)SiCl)。
The measurement result of 1 H-NMR (300.4 MHz, standard: C 6 D 6 (= 7.00 ppm)) of the obtained compound (23) is shown below.
1 H-NMR (solvent: C 6 D 6 ) δ (ppm): 1.05 (1.2 H, m, SiCH 2 [CH 2 ] SiCl 3 ), 0.98 (1.2 H, d, SiCH ([ CH 3]) SiCl 3), 0.55 (1.2H, m, Si [CH 2] CH 2 SiCl 3), 0.0~0.3 (357H, m, CH 3 -Si and Si [CH] (CH 3 ) SiCl 3 ).

[合成例4]化合物(24)の合成例
(ハイドロジェンポリジメチルシロキサン(4−A)の製造)
撹拌機、滴下ロートを備えた反応器(内容積200mL、ガラス製)にトリメチルシラノール(0.75g)およびTHF(5.0g)を投入し、氷浴中で攪拌した。これにn−ブチルリチウムのヘキサン溶液(1.5mol/L)の5.5mLを滴下した。1時間攪拌後、ヘキサメチルシクロトリシロキサン(55.50g)をTHF(50g)に溶解した溶液をゆっくりと滴下した。滴下終了後、氷浴を外して12時間攪拌し、これにジメチルクロロシラン(0.88g)を滴下して、さらに12時間攪拌した。
[Synthesis Example 4] Synthesis Example of Compound (24) (Production of Hydrogen Polydimethylsiloxane (4-A))
Trimethylsilanol (0.75 g) and THF (5.0 g) were charged into a reactor equipped with a stirrer and a dropping funnel (internal volume 200 mL, glass), and stirred in an ice bath. To this, 5.5 mL of a hexane solution (1.5 mol / L) of n-butyllithium was added dropwise. After stirring for 1 hour, a solution of hexamethylcyclotrisiloxane (55.50 g) dissolved in THF (50 g) was slowly added dropwise. After completion of the dropping, the ice bath was removed and the mixture was stirred for 12 hours. Dimethylchlorosilane (0.88 g) was added dropwise thereto, and the mixture was further stirred for 12 hours.

得られた反応粗液に10質量%炭酸水素ナトリウム水溶液を加えて2層に分離させ、有機層を蒸留水で洗浄した。この有機層を硫酸マグネシウムで脱水し、揮発成分を50℃/10mmHgの条件下に除去し、下式(4−A)で表わされる化合物(4−A)の55.8gを得た。収率は98%であった。
CH(Si(CHO)90Si(CHH …(4−A)
A 10% by mass aqueous sodium hydrogen carbonate solution was added to the resulting reaction crude liquid to separate it into two layers, and the organic layer was washed with distilled water. This organic layer was dehydrated with magnesium sulfate, and the volatile component was removed under the condition of 50 ° C./10 mmHg to obtain 55.8 g of the compound (4-A) represented by the following formula (4-A). The yield was 98%.
CH 3 (Si (CH 3 ) 2 O) 90 Si (CH 3 ) 2 H (4-A)

得られた化合物(4−A)のH−NMR(300.4MHz、基準:C(=7.00ppm))の測定結果を以下に示す。
H−NMR(溶媒:C)δ(ppm):4.88(1H、m、H−Si)、0.0〜0.3(549H、m、CH−Si)。
The measurement result of 1 H-NMR (300.4 MHz, standard: C 6 D 6 (= 7.00 ppm)) of the obtained compound (4-A) is shown below.
1 H-NMR (solvent: C 6 D 6) δ ( ppm): 4.88 (1H, m, H-Si), 0.0~0.3 (549H, m, CH 3 -Si).

(化合物(24)の製造)
攪拌機、ジムロートを備えた反応器(内容積50mL)に、化合物(4−A)(20.0g)、ビニルトリクロロシラン(0.95g)、およびPt触媒(Ptの1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体の2質量%キシレン溶液)(0.008g)を投入して、室温にて48時間攪拌した。
(Production of Compound (24))
In a reactor equipped with a stirrer and a Dimroth (internal volume 50 mL), compound (4-A) (20.0 g), vinyltrichlorosilane (0.95 g), and Pt catalyst (Pt 1,3-divinyl-1, (2,8% xylene solution of 1,3,3-tetramethyldisiloxane complex) (0.008 g) was added and stirred at room temperature for 48 hours.

得られた反応粗液から揮発成分を50℃/10mmHgの条件下に除去し、片末端がそれぞれ基(1a)および基(1b)である化合物の混合物であって、各化合物の比が[基(1a)の化合物:基(1b)の化合物]として60:40である、下式(24)で表わされる化合物(24)の20.3gを得た。収率は99%であった。
CH(Si(CHO)90Si(CHSiCl …(24)
Volatile components were removed from the obtained reaction crude liquid under conditions of 50 ° C./10 mmHg, and one end was a mixture of compounds each having group (1a) and group (1b), and the ratio of each compound was [group 20.3 g of the compound (24) represented by the following formula (24), which was 60:40 as the compound of (1a): the compound of group (1b)], was obtained. The yield was 99%.
CH 3 (Si (CH 3 ) 2 O) 90 Si (CH 3 ) 2 C 2 H 4 SiCl 3 (24)

得られた化合物(24)のH−NMR(300.4MHz、基準:C(=7.00ppm))の測定結果を以下に示す。
H−NMR(溶媒:C)δ(ppm):1.05(1.2H、m、SiCH[CH]SiCl)、0.98(1.2H、d、SiCH([CH])SiCl)、0.55(1.2H、m、Si[CH]CHSiCl)、0.0〜0.3(550H、m、CH−SiおよびSi[CH](CH)SiCl)。
The measurement result of 1 H-NMR (300.4 MHz, standard: C 6 D 6 (= 7.00 ppm)) of the obtained compound (24) is shown below.
1 H-NMR (solvent: C 6 D 6 ) δ (ppm): 1.05 (1.2 H, m, SiCH 2 [CH 2 ] SiCl 3 ), 0.98 (1.2 H, d, SiCH ([ CH 3]) SiCl 3), 0.55 (1.2H, m, Si [CH 2] CH 2 SiCl 3), 0.0~0.3 (550H, m, CH 3 -Si and Si [CH] (CH 3 ) SiCl 3 ).

[合成例5]化合物(25)の合成例
攪拌機、ジムロートを備えた反応器(内容積50mL)に、DMS−V21(商品名、Gelest社製、両末端ビニルポリジメチルシロキサン、(Si(CHO)単位の繰り返し数60)(20.0g)、トリクロロシラン(2.02g)、およびPt触媒(Ptの1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体の2質量%キシレン溶液)(0.021g)を投入して、室温にて24時間攪拌した。
[Synthesis Example 5] Synthesis Example of Compound (25) In a reactor equipped with a stirrer and a Dimroth (internal volume 50 mL), DMS-V21 (trade name, manufactured by Gelest, both end vinyl polydimethylsiloxane, (Si (CH 3 ) 2 O) unit repeat number 60) (20.0 g), trichlorosilane (2.02 g), and Pt catalyst (1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex of Pt) 2 mass% xylene solution) (0.021 g) was added and stirred at room temperature for 24 hours.

得られた反応粗液から揮発成分を50℃/10mmHgの条件下に除去し、両末端がそれぞれ基(1a)および基(1b)のいずれかである化合物の混合物であって、[基(1a):基(1b)]で示される各基の存在割合が90:10である、下式(25)で表わされる化合物(25)の10.1gを得た。収率は98%であった。
ClSiC(Si(CHO)60Si(CHSiCl …(25)
Volatile components were removed from the obtained reaction crude liquid under the conditions of 50 ° C./10 mmHg, and both ends were a mixture of compounds each having either group (1a) or group (1b), and [group (1a ): Group (1b)] was obtained in an amount of 90:10, and 10.1 g of compound (25) represented by the following formula (25) was obtained. The yield was 98%.
Cl 3 SiC 2 H 4 (Si (CH 3 ) 2 O) 60 Si (CH 3 ) 2 C 2 H 4 SiCl 3 (25)

得られた化合物(25)のH−NMR(300.4MHz、基準:C(=7.00ppm))の測定結果を以下に示す。
H−NMR(溶媒:C)δ(ppm):1.05(3.6H、m、SiCH[CH]SiCl)、0.98(0.6H、d、SiCH([CH])SiCl)、0.55(3.6H、m、Si[CH]CHSiCl)、0.0〜0.3(366H、m、CH−SiおよびSi[CH](CH)SiCl)。
The measurement result of 1 H-NMR (300.4 MHz, standard: C 6 D 6 (= 7.00 ppm)) of the obtained compound (25) is shown below.
1 H-NMR (solvent: C 6 D 6 ) δ (ppm): 1.05 (3.6 H, m, SiCH 2 [CH 2 ] SiCl 3 ), 0.98 (0.6 H, d, SiCH ([[ CH 3]) SiCl 3), 0.55 (3.6H, m, Si [CH 2] CH 2 SiCl 3), 0.0~0.3 (366H, m, CH 3 -Si and Si [CH] (CH 3 ) SiCl 3 ).

[合成例6]化合物(26)の合成例
攪拌機、ジムロートを備えた反応器(内容積50mL)に、化合物(3−A)(20.0g)、ビニルトリメトキシシラン(1.33g)、およびPt触媒(Ptの1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体の2質量%キシレン溶液)(0.086g)を投入して、油浴にて60℃に加熱して6時間攪拌した。
Synthesis Example 6 Synthesis Example of Compound (26) In a reactor equipped with a stirrer and a Dimroth (internal volume 50 mL), compound (3-A) (20.0 g), vinyltrimethoxysilane (1.33 g), and Pt catalyst (2 mass% xylene solution of 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex of Pt) (0.086 g) was added and heated to 60 ° C. in an oil bath. And stirred for 6 hours.

得られた反応粗液から揮発成分を50℃/10mmHgの条件下に除去し、片末端がそれぞれ下式(6a)および下式(6b)で表わされる化合物の混合物であって、各化合物の比が[基(6a)の化合物:基(6b)の化合物]として80:20である、下式(26)で表わされる化合物(26)の20.4gを得た。収率は99%であった。
−Si(CHCHCHSi(OCH …(6a)
−Si(CHCH(CH)Si(OCH …(6b)
CH(Si(CHO)58Si(CHSi(OCH …(26)
Volatile components were removed from the obtained reaction crude liquid under the conditions of 50 ° C./10 mmHg, and one end was a mixture of compounds represented by the following formulas (6a) and (6b), respectively, Was 20.4 g of the compound (26) represented by the following formula (26), in which [Compound of group (6a): Compound of group (6b)] was 80:20. The yield was 99%.
—Si (CH 3 ) 2 CH 2 CH 2 Si (OCH 3 ) 3 (6a)
-Si (CH 3) 2 CH ( CH 3) Si (OCH 3) 3 ... (6b)
CH 3 (Si (CH 3) 2 O) 58 Si (CH 3) 2 C 2 H 4 Si (OCH 3) 3 ... (26)

得られた化合物(26)のH−NMR(300.4MHz、基準:C(=7.00ppm))の測定結果を以下に示す。
H−NMR(溶媒:C)δ(ppm):3.35(9H、s、OCH)、1.17(0.6H、d、SiCH([CH])Si(OCH)、0.63(3.2H、m、Si[CHCH]Si(OCH)、0.0〜0.3(357H、m、CH−SiおよびSi[CH](CH)Si(OCH)。
The measurement result of 1 H-NMR (300.4 MHz, standard: C 6 D 6 (= 7.00 ppm)) of the obtained compound (26) is shown below.
1 H-NMR (solvent: C 6 D 6 ) δ (ppm): 3.35 (9H, s, OCH 3 ), 1.17 (0.6 H, d, SiCH ([CH 3 ]) Si (OCH 3 ) 3), 0.63 (3.2H, m, Si [CH 2 CH 2] Si (OCH 3) 3), 0.0~0.3 (357H, m, CH 3 -Si and Si [CH] (CH 3 ) Si (OCH 3 ) 3 ).

[合成例7]化合物(27)の合成例
攪拌機、ジムロートを備えた反応器(内容積50mL)に、DMS−V21(20.0g)、トリメトキシシラン(1.66g)、およびPt触媒(Ptの1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体の2質量%キシレン溶液)(0.026g)を投入して、油浴にて80℃に加熱して4時間攪拌した。
Synthesis Example 7 Synthesis Example of Compound (27) In a reactor equipped with a stirrer and a Dimroth (internal volume 50 mL), DMS-V21 (20.0 g), trimethoxysilane (1.66 g), and Pt catalyst (Pt (2-26% xylene solution of 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex) (0.026 g) was added, heated to 80 ° C. in an oil bath, and stirred for 4 hours. did.

得られた反応粗液から揮発成分を50℃/10mmHgの条件下に除去し、両末端がそれぞれ基(6a)および基(6b)のいずれかである化合物の混合物であって、[基(6a):基(6b)]で示される各基の存在割合が80:20である、下式(27)で表わされる化合物(27)の10.1gを得た。収率は98%であった。
(CHO)SiC(Si(CHO)60Si(CHSi(OCH …(27)
Volatile components were removed from the obtained reaction crude liquid under the conditions of 50 ° C./10 mmHg, and both ends were a mixture of compounds each having one of groups (6a) and (6b), [group (6a ): Group (6b)] was obtained in an amount of 80:20, and 10.1 g of compound (27) represented by the following formula (27) was obtained. The yield was 98%.
(CH 3 O) 3 SiC 2 H 4 (Si (CH 3 ) 2 O) 60 Si (CH 3 ) 2 C 2 H 4 Si (OCH 3 ) 3 (27)

得られた化合物(27)のH−NMR(300.4MHz、基準:C(=7.00ppm))の測定結果を以下に示す。
H−NMR(溶媒:C)δ(ppm):3.35(18H、s、OCH)、1.16(1.2H、d、SiCH([CH])Si(OCH)、0.64(6.4H、m、Si[CHCH]Si(OCH)、0.0〜0.3(366H、m、CH−SiおよびSi[CH](CH)Si(OCH)。
The measurement result of 1 H-NMR (300.4 MHz, standard: C 6 D 6 (= 7.00 ppm)) of the obtained compound (27) is shown below.
1 H-NMR (solvent: C 6 D 6 ) δ (ppm): 3.35 (18H, s, OCH 3 ), 1.16 (1.2 H, d, SiCH ([CH 3 ]) Si (OCH 3 ) 3), 0.64 (6.4H, m, Si [CH 2 CH 2] Si (OCH 3) 3), 0.0~0.3 (366H, m, CH 3 -Si and Si [CH] (CH 3 ) Si (OCH 3 ) 3 ).

[合成例8]化合物(28)の合成例
攪拌機、ジムロートを備えた反応器(内容積50mL)に、MCR−H21(商品名、Gelest社製、片末端ブチル−片末端ヒドリドポリジメチルシロキサン、(Si(CHO)単位の繰り返し数60)(10.0g)、ビニルトリクロロシラン(0.70g)、およびPt触媒(Ptの1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体の2質量%キシレン溶液)(0.010g)を投入して、室温にて24時間攪拌した。
[Synthesis Example 8] Synthesis Example of Compound (28) To a reactor equipped with a stirrer and a Dimroth (internal volume 50 mL), MCR-H21 (trade name, manufactured by Gelest, one-end butyl-one-end hydridopolydimethylsiloxane, Si (CH 3 ) 2 O) unit repeat number 60) (10.0 g), vinyltrichlorosilane (0.70 g), and Pt catalyst (Pt 1,3-divinyl-1,1,3,3-tetra A 2 mass% xylene solution of a methyldisiloxane complex) (0.010 g) was added, and the mixture was stirred at room temperature for 24 hours.

得られた反応粗液から揮発成分を50℃/10mmHgの条件下に除去し、片末端がそれぞれ基(1a)および基(1b)である化合物の混合物であって、各化合物の比が[基(1a)の化合物:基(1b)の化合物]として52:48である、下式(28)で表わされる化合物(28)の10.1gを得た。収率は98%であった。
CHCHCHCH(Si(CHO)60Si(CHSiCl …(28)
Volatile components were removed from the obtained reaction crude liquid under conditions of 50 ° C./10 mmHg, and one end was a mixture of compounds each having group (1a) and group (1b), and the ratio of each compound was [group 10.1 g of the compound (28) represented by the following formula (28), which was 52:48 as the compound (1a): the compound of the group (1b)]. The yield was 98%.
CH 3 CH 2 CH 2 CH 2 (Si (CH 3) 2 O) 60 Si (CH 3) 2 C 2 H 4 SiCl 3 ... (28)

得られた化合物(28)のH−NMR(300.4MHz、基準:C(=7.00ppm))の測定結果を以下に示す。
H−NMR(溶媒:C)δ(ppm):1.25(4H、m、CH[CHCH]CH)、1.05(1.04H、m、SiCH[CH]SiCl)、0.98(1.44H、d、SiCH([CH])SiCl)、0.80(3H、t、[CH]CH)、0.55(1.04H、m、Si[CH]CHSiCl)、0.48(2H、q、CHCH[CH]Si)、0.0〜0.3(363H、m、CH−SiおよびSi[CH](CH)SiCl)。
The measurement result of 1 H-NMR (300.4 MHz, standard: C 6 D 6 (= 7.00 ppm)) of the obtained compound (28) is shown below.
1 H-NMR (solvent: C 6 D 6 ) δ (ppm): 1.25 (4H, m, CH 3 [CH 2 CH 2 ] CH 2 ), 1.05 (1.04H, m, SiCH 2 [ CH 2] SiCl 3), 0.98 (1.44H, d, SiCH ([CH 3]) SiCl 3), 0.80 (3H, t, [CH 3] CH 2), 0.55 (1. 04H, m, Si [CH 2 ] CH 2 SiCl 3), 0.48 (2H, q, CH 2 CH 2 [CH 2] Si), 0.0~0.3 (363H, m, CH 3 -Si And Si [CH] (CH 3 ) SiCl 3 ).

[合成例9]化合物(29)の合成例
(ビニルポリジメチルシロキサン(1−B)の製造)
撹拌機、滴下ロートを備えた反応器(内容積100mL、ガラス製)にトリメチルシラノール(0.50g)を投入し、氷浴中で攪拌した。これにn−ブチルリチウムのヘキサン溶液(1.5mol/L)の3.7mLを滴下した。1時間攪拌後、ヘキサメチルシクロトリシロキサン(24.66g)をTHF(25g)に溶解した溶液をゆっくりと滴下した。滴下終了後、氷浴を外して5時間攪拌し、これにクロロジメチルビニルシラン(1.00g)を滴下して、さらに12時間攪拌した。
[Synthesis Example 9] Synthesis Example of Compound (29) (Production of Vinyl Polydimethylsiloxane (1-B))
Trimethylsilanol (0.50 g) was charged into a reactor equipped with a stirrer and a dropping funnel (internal volume: 100 mL, made of glass) and stirred in an ice bath. To this, 3.7 mL of a n-butyllithium hexane solution (1.5 mol / L) was added dropwise. After stirring for 1 hour, a solution of hexamethylcyclotrisiloxane (24.66 g) dissolved in THF (25 g) was slowly added dropwise. After completion of the dropwise addition, the ice bath was removed and the mixture was stirred for 5 hours. Chlorodimethylvinylsilane (1.00 g) was added dropwise thereto, and the mixture was further stirred for 12 hours.

得られた反応粗液に10質量%炭酸水素ナトリウム水溶液を加えて2層に分離させ、有機層を蒸留水で洗浄した。この有機層を硫酸マグネシウムで脱水し、揮発成分を50℃/10mmHgの条件下に除去し、下式(1−B)で表わされる化合物(1−B)の25.2gを得た。収率は98%であった。
CH(Si(CHO)60Si(CHCH=CH …(1−B)
得られた化合物(1−B)のH−NMR(300.4MHz、基準:C(=7.00ppm))の測定結果を以下に示す。
H−NMR(溶媒:C)δ(ppm):5.6〜6.1(3H、m、H−Si)、0.0〜0.3(369H、m、CH−Si)。
A 10% by mass aqueous sodium hydrogen carbonate solution was added to the resulting reaction crude liquid to separate it into two layers, and the organic layer was washed with distilled water. This organic layer was dehydrated with magnesium sulfate, and volatile components were removed under the condition of 50 ° C./10 mmHg to obtain 25.2 g of the compound (1-B) represented by the following formula (1-B). The yield was 98%.
CH 3 (Si (CH 3) 2 O) 60 Si (CH 3) 2 CH = CH 2 ... (1-B)
The measurement result of 1 H-NMR (300.4 MHz, standard: C 6 D 6 (= 7.00 ppm)) of the obtained compound (1-B) is shown below.
1 H-NMR (solvent: C 6 D 6 ) δ (ppm): 5.6 to 6.1 (3H, m, H—Si), 0.0 to 0.3 (369H, m, CH 3 —Si) ).

(化合物(29)の製造)
攪拌機、ジムロートを備えた反応器(内容積50mL)に、化合物(1−B)(20.0g)、トリクロロシラン(1.17g)、およびPt触媒(Ptの1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体の2質量%キシレン溶液)(0.015g)を投入して、室温にて24時間攪拌した。
得られた反応粗液から揮発成分を50℃/10mmHgの条件下に除去し、片末端がそれぞれ基(1a)および基(1b)である化合物の混合物であって、各化合物の比が[基(1a)の化合物:基(1b)の化合物]として94:6である、下式(29)で表わされる化合物(29)の20.2gを得た。収率は98%であった。
CH(Si(CHO)60Si(CHSiCl …(29)
(Production of Compound (29))
In a reactor equipped with a stirrer and a Dimroth (internal volume 50 mL), compound (1-B) (20.0 g), trichlorosilane (1.17 g), and Pt catalyst (1,3-divinyl-1,1 Pt) , 3,3-tetramethyldisiloxane complex in 2% by mass xylene) (0.015 g) was added and stirred at room temperature for 24 hours.
Volatile components were removed from the obtained reaction crude liquid under conditions of 50 ° C./10 mmHg, and one end was a mixture of compounds each having group (1a) and group (1b), and the ratio of each compound was [group 20.2 g of the compound (29) represented by the following formula (29), which is 94: 6 as the compound of (1a): the compound of group (1b)], was obtained. The yield was 98%.
CH 3 (Si (CH 3) 2 O) 60 Si (CH 3) 2 C 2 H 4 SiCl 3 ... (29)

得られた化合物(29)のH−NMR(300.4MHz、基準:C(=7.00ppm))の測定結果を以下に示す。
H−NMR(溶媒:C)δ(ppm):1.05(1.88H、m、SiCH[CH]SiCl)、0.98(0.18H、d、SiCH([CH])SiCl)、0.55(1.88H、m、Si[CH]CHSiCl)、0.0〜0.3(369H、m、CH−SiおよびSi[CH](CH)SiCl)。
The measurement result of 1 H-NMR (300.4 MHz, standard: C 6 D 6 (= 7.00 ppm)) of the obtained compound (29) is shown below.
1 H-NMR (solvent: C 6 D 6 ) δ (ppm): 1.05 (1.88H, m, SiCH 2 [CH 2 ] SiCl 3 ), 0.98 (0.18H, d, SiCH ([[ CH 3]) SiCl 3), 0.55 (1.88H, m, Si [CH 2] CH 2 SiCl 3), 0.0~0.3 (369H, m, CH 3 -Si and Si [CH] (CH 3 ) SiCl 3 ).

[合成例10]化合物(30)の合成例
(ビニルポリジメチルシロキサン(2−B)の製造)
撹拌機、滴下ロートを備えた反応器(内容積100mL、ガラス製)にトリメチルシラノール(0.25g)を投入し、氷浴中で攪拌した。これにn−ブチルリチウムのヘキサン溶液(1.5mol/L)の1.8mLを滴下した。1時間攪拌後、ヘキサメチルシクロトリシロキサン(24.66g)をTHF(25g)に溶解した溶液をゆっくりと滴下した。滴下終了後、氷浴を外して5時間攪拌し、これにクロロジメチルビニルシラン(0.50g)を滴下して、さらに12時間攪拌した。
得られた反応粗液に10質量%炭酸水素ナトリウム水溶液を加えて2層に分離させ、有機層を蒸留水で洗浄した。この有機層を硫酸マグネシウムで脱水し、揮発成分を50℃/10mmHgの条件下に除去し、下式(2−B)で表わされる化合物(2−B)の24.8gを得た。収率は99%であった。
CH(Si(CHO)120Si(CHCH=CH …(2−B)
[Synthesis Example 10] Synthesis Example of Compound (30) (Production of Vinyl Polydimethylsiloxane (2-B))
Trimethylsilanol (0.25 g) was charged into a reactor equipped with a stirrer and a dropping funnel (internal volume 100 mL, glass) and stirred in an ice bath. To this, 1.8 mL of a hexane solution (1.5 mol / L) of n-butyllithium was added dropwise. After stirring for 1 hour, a solution of hexamethylcyclotrisiloxane (24.66 g) dissolved in THF (25 g) was slowly added dropwise. After completion of the dropwise addition, the ice bath was removed and the mixture was stirred for 5 hours. Chlorodimethylvinylsilane (0.50 g) was added dropwise thereto, and the mixture was further stirred for 12 hours.
A 10% by mass aqueous sodium hydrogen carbonate solution was added to the resulting reaction crude liquid to separate it into two layers, and the organic layer was washed with distilled water. This organic layer was dehydrated with magnesium sulfate, and the volatile component was removed under the condition of 50 ° C./10 mmHg to obtain 24.8 g of the compound (2-B) represented by the following formula (2-B). The yield was 99%.
CH 3 (Si (CH 3) 2 O) 120 Si (CH 3) 2 CH = CH 2 ... (2-B)

得られた化合物(2−B)のH−NMR(300.4MHz、基準:C(=7.00ppm))の測定結果を以下に示す。
H−NMR(溶媒:C)δ(ppm):5.6〜6.1(3H、m、H−Si)、0.0〜0.3(729H、m、CH−Si)。
The measurement result of 1 H-NMR (300.4 MHz, standard: C 6 D 6 (= 7.00 ppm)) of the obtained compound (2-B) is shown below.
1 H-NMR (solvent: C 6 D 6 ) δ (ppm): 5.6 to 6.1 (3H, m, H—Si), 0.0 to 0.3 (729H, m, CH 3 —Si) ).

(化合物(30)の製造)
攪拌機、ジムロートを備えた反応器(内容積50mL)に、化合物(2−B)(20.0g)、トリクロロシラン(0.60g)、およびPt触媒(Ptの1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体の2質量%キシレン溶液)(0.009g)を投入して、室温にて24時間攪拌した。
得られた反応粗液から揮発成分を50℃/10mmHgの条件下に除去し、片末端がそれぞれ基(1a)および基(1b)である化合物の混合物であって、各化合物の比が[基(1a)の化合物:基(1b)の化合物]として93:7である、下式(30)で表わされる化合物(30)の20.1gを得た。収率は99%であった。
CH(Si(CHO)120Si(CHSiCl …(30)
(Production of Compound (30))
In a reactor equipped with a stirrer and a Dimroth (internal volume 50 mL), compound (2-B) (20.0 g), trichlorosilane (0.60 g), and Pt catalyst (Pt 1,3-divinyl-1,1 , 3,3-tetramethyldisiloxane complex (2 mass% xylene solution) (0.009 g) was added and stirred at room temperature for 24 hours.
Volatile components were removed from the obtained reaction crude liquid under conditions of 50 ° C./10 mmHg, and one end was a mixture of compounds each having group (1a) and group (1b), and the ratio of each compound was [group 20.1 g of the compound (30) represented by the following formula (30) which is 93: 7 as the compound (1a): the compound of the group (1b)] was obtained. The yield was 99%.
CH 3 (Si (CH 3) 2 O) 120 Si (CH 3) 2 C 2 H 4 SiCl 3 ... (30)

得られた化合物(30)のH−NMR(300.4MHz、基準:C(=7.00ppm))の測定結果を以下に示す。
H−NMR(溶媒:C)δ(ppm):1.05(1.86H、m、SiCH[CH]SiCl)、0.98(0.21H、d、SiCH([CH])SiCl)、0.55(1.86H、m、Si[CH]CHSiCl)、0.0〜0.3(729H、m、CH−SiおよびSi[CH](CH)SiCl)。
The measurement result of 1 H-NMR (300.4 MHz, standard: C 6 D 6 (= 7.00 ppm)) of the obtained compound (30) is shown below.
1 H-NMR (solvent: C 6 D 6 ) δ (ppm): 1.05 (1.86H, m, SiCH 2 [CH 2 ] SiCl 3 ), 0.98 (0.21H, d, SiCH ([[ CH 3]) SiCl 3), 0.55 (1.86H, m, Si [CH 2] CH 2 SiCl 3), 0.0~0.3 (729H, m, CH 3 -Si and Si [CH] (CH 3 ) SiCl 3 ).

[合成例11]化合物(F1)の合成例
以下の方法で比較例に用いる化合物(F1)を合成した。なお、合成例中の化合物、および基の略号は以下の意味で用いた。
R−225;ジクロロペンタフルオロプロパン
F6;−CF(CF)OCFCF(CF)OCFCFCF
R−113;CClFCClF
[Synthesis Example 11] Synthesis Example of Compound (F1) Compound (F1) used in Comparative Example was synthesized by the following method. The abbreviations of the compounds and groups in the synthesis examples were used as follows.
R-225; dichloropentafluoropropane R F6 ; —CF (CF 3 ) OCF 2 CF (CF 3 ) OCF 2 CF 2 CF 3
R-113; CCl 2 FCClF 2

フラスコ内に、CHO(CHCHO)CHCHOH(市販のポリオキシエチレングリコールモノメチルエーテル、a=7〜8、平均値:7.3)の25g、R−225の20g、NaFの1.2g、およびピリジンの1.6gを入れ、内温を10℃以下に保ちながら激しく撹拌し、窒素をバブリングさせた。フラスコ内に、FC(O)−RF6の46.6gを、内温を5℃以下に保ちながら3.0時間かけて滴下した。滴下終了後、50℃にて12時間撹拌し、室温にて24時間撹拌して、粗液を回収した。粗液を減圧濾過した後、回収液を真空乾燥機(50℃、5.0torr)で12時間乾燥し、粗液を得た。 In the flask, 25 g of CH 3 O (CH 2 CH 2 O) a CH 2 CH 2 OH (commercially available polyoxyethylene glycol monomethyl ether, a = 7-8, average value: 7.3), R-225 20 g, 1.2 g of NaF, and 1.6 g of pyridine were added and stirred vigorously while keeping the internal temperature at 10 ° C. or lower, and nitrogen was bubbled. Into the flask, 46.6 g of FC (O) —R F6 was added dropwise over 3.0 hours while keeping the internal temperature at 5 ° C. or lower. After completion of the dropwise addition, the mixture was stirred at 50 ° C. for 12 hours and then stirred at room temperature for 24 hours to recover the crude liquid. After the crude liquid was filtered under reduced pressure, the recovered liquid was dried with a vacuum dryer (50 ° C., 5.0 torr) for 12 hours to obtain a crude liquid.

粗液を100mLのR−225に溶解し、1000mLの飽和重曹水で3回水洗し、有機相を回収した。有機相に硫酸マグネシウムの1.0gを加え、12時間撹拌した後、加圧濾過して硫酸マグネシウムを除去し、回収液からエバポレータにてR−225を留去し、室温で液体である化合物(CHO(CHCHO)CHCHOC(O)−RF6(a=7〜8、平均値:7.3))の56.1gを得た。 The crude liquid was dissolved in 100 mL of R-225 and washed with 1000 mL of saturated aqueous sodium bicarbonate three times to recover the organic phase. After adding 1.0 g of magnesium sulfate to the organic phase and stirring for 12 hours, the magnesium sulfate is removed by filtration under pressure, and R-225 is distilled off from the recovered liquid with an evaporator. CH 3 O (CH 2 CH 2 O) a CH 2 CH 2 OC (O) -R F6 (a = 7~8, average: 7.3)) to give the 56.1g of.

3000mLのハステロイ製オートクレーブ内に、R−113の1560gを入れて撹拌し、25℃に保った。オートクレーブガス出口には、20℃に保持した冷却器、NaFペレット充填層、および−20℃に保持した冷却器を直列に設置した。また、−20℃に保持した冷却器から凝集した液をオートクレーブに戻すための液体返送ラインを設置した。オートクレーブ内に窒素ガスを1.0時間吹き込んだ後、窒素ガスで10%に希釈したフッ素ガス(以下、10%フッ素ガスと記す。)を、流速24.8L/時間で1時間吹き込んだ。   In a 3000 mL Hastelloy autoclave, 1560 g of R-113 was placed and stirred, and kept at 25 ° C. At the autoclave gas outlet, a cooler maintained at 20 ° C., a NaF pellet packed bed, and a cooler maintained at −20 ° C. were installed in series. Moreover, the liquid return line for returning the liquid aggregated from the cooler hold | maintained at -20 degreeC to an autoclave was installed. After nitrogen gas was blown into the autoclave for 1.0 hour, fluorine gas diluted to 10% with nitrogen gas (hereinafter referred to as 10% fluorine gas) was blown for 1 hour at a flow rate of 24.8 L / hour.

次に、オートクレーブ内に10%フッ素ガスを同じ流速で吹き込みながら、CHO(CHCHO)CHCHOC(O)−RF6の27.5gをR−113の1350gに溶解した溶液を30時間かけて注入した。次に、オートクレーブ内に10%フッ素ガスを同じ流速で吹き込みながら、R−113の12mLを注入した。この際、内温を40℃に変更した。続けて、ベンゼンを1質量%溶解したR−113溶液の6mLを注入した。さらに、フッ素ガスを1.0時間吹き込んだ後、窒素ガスを1.0時間吹き込んだ。反応終了後、溶媒を真空乾燥(60℃、6.0時間)にて留去し、室温で液体の化合物(CFO(CFCFO)CFCFOC(O)−RF6(a=7〜8、平均値:7.3))の45.4gを得た。 Next, while blowing 10% fluorine gas into the autoclave at the same flow rate, 27.5 g of CH 3 O (CH 2 CH 2 O) a CH 2 CH 2 OC (O) —R F6 was changed to 1350 g of R-113. The dissolved solution was poured over 30 hours. Next, 12 mL of R-113 was injected while blowing 10% fluorine gas into the autoclave at the same flow rate. At this time, the internal temperature was changed to 40 ° C. Subsequently, 6 mL of an R-113 solution in which 1% by mass of benzene was dissolved was injected. Further, after blowing fluorine gas for 1.0 hour, nitrogen gas was blown for 1.0 hour. After completion of the reaction, the solvent was distilled off by vacuum drying (60 ° C., 6.0 hours), and the compound (CF 3 O (CF 2 CF 2 O) a CF 2 CF 2 OC (O) —R liquid at room temperature was used. 45.4 g of F6 (a = 7 to 8, average value: 7.3) was obtained.

スターラーチップを投入した300mLのナスフラスコを十分に窒素置換した。ナスフラスコ内に、エタノールの40g、NaFの5.6g、およびR−225(50g)を入れた。ナスフラスコ内に、CFO(CFCFO)CFCFOC(O)−RF6の43.5gを滴下した後、室温にてバブリングを行いながら、激しく撹拌した。ナスフラスコ出口は窒素シールした。8時間後、冷却管に真空ポンプを設置して系内を減圧に保ち、過剰のエタノールおよび交換によって生じるCHCHOC(O)−RF6を留去した。24時間後、室温で液体の化合物(CFO(CFCFO)CFC(O)OCHCH(a=7〜8、平均値:7.3))の26.8gを得た。 A 300 mL eggplant flask charged with a stirrer chip was sufficiently purged with nitrogen. In an eggplant flask, 40 g of ethanol, 5.6 g of NaF, and R-225 (50 g) were placed. 43.5 g of CF 3 O (CF 2 CF 2 O) a CF 2 CF 2 OC (O) —R F6 was dropped into the eggplant flask, and then vigorously stirred while bubbling at room temperature. The eggplant flask outlet was sealed with nitrogen. After 8 hours, a vacuum pump was installed in the cooling pipe to keep the inside of the system under reduced pressure, and excess ethanol and CH 3 CH 2 OC (O) —R F6 produced by exchange were distilled off. After 24 hours, 26.8 g of a compound (CF 3 O (CF 2 CF 2 O) a CF 2 C (O) OCH 2 CH 3 (a = 7 to 8, average value: 7.3)) which is liquid at room temperature Got.

100mLの丸底フラスコ内に、CFO(CFCFO)CFC(O)OCHCHの33.1g、NHCHCHCHSi(OCHの3.7gを入れ、室温で2時間撹拌した。反応終了後、未反応のNHCHCHCHSi(OCHおよび副生したエタノールを減圧留去し、室温で液体の化合物(F1)の32.3gを得た。 100mL round bottom flask, CF 3 O (CF 2 CF 2 O) a CF 2 C (O) OCH 2 CH 3 of 33.1g, NH 2 CH 2 CH 2 CH 2 Si (OCH 3) 3 of 3 0.7 g was added and stirred at room temperature for 2 hours. After completion of the reaction, unreacted NH 2 CH 2 CH 2 CH 2 Si (OCH 3 ) 3 and by-produced ethanol were distilled off under reduced pressure to obtain 32.3 g of the compound (F1) which was liquid at room temperature.

[撥水膜形成用組成物の調製]
(撥水膜形成用組成物1〜5、撥水膜形成用組成物8〜10)
撹拌機、温度計がセットされたガラス容器で、上記で得られた化合物(21)が10質量%、酢酸ブチル(純正化学社製)が90質量%となる割合で両者を混合し、25℃にて5分間撹拌して、撥水膜形成用組成物1を得た。化合物(21)を化合物(22)、化合物(23)、化合物(24)、化合物(25)、化合物(28)、化合物(29)、化合物(30)に変えた以外は同様にして、撥水膜形成用組成物2、撥水膜形成用組成物3、撥水膜形成用組成物4、撥水膜形成用組成物5、撥水膜形成用組成物8、撥水膜形成用組成物9、および撥水膜形成用組成物10を得た。
[Preparation of composition for forming water-repellent film]
(Water repellent film forming compositions 1 to 5, water repellent film forming compositions 8 to 10)
In a glass container in which a stirrer and a thermometer were set, the compound (21) obtained above was mixed at a ratio of 10% by mass and butyl acetate (manufactured by Junsei Chemical Co., Ltd.) at 90% by mass. Was stirred for 5 minutes to obtain a composition 1 for forming a water-repellent film. Water repellency was similarly obtained except that the compound (21) was changed to the compound (22), the compound (23), the compound (24), the compound (25), the compound (28), the compound (29), and the compound (30). Film forming composition 2, Water repellent film forming composition 3, Water repellent film forming composition 4, Water repellent film forming composition 5, Water repellent film forming composition 8, Water repellent film forming composition 9 and a composition 10 for forming a water-repellent film were obtained.

(撥水膜形成用組成物6、7)
撹拌機、温度計がセットされたガラス容器で、上記で得られた化合物(26)が10質量%、イソプロピルアルコール(純正化学社製)が87質量%となる割合で両者を混合し、25℃にて1分間撹拌した後、10質量%硝酸水溶液を3質量%添加し25℃にて5分間撹拌して、撥水膜形成用組成物6を得た。なお、各成分の含有量(質量%)は撥水膜形成用組成物6の全量に対する質量%である。化合物(26)を化合物(27)に変えた以外は同様にして撥水膜形成用組成物7を得た。
(Water repellent film forming compositions 6, 7)
In a glass container in which a stirrer and a thermometer are set, the compound (26) obtained above is mixed at a ratio of 10% by mass and isopropyl alcohol (manufactured by Junsei Chemical Co., Ltd.) at 87% by mass. After stirring for 1 minute, 3% by weight of a 10% by weight aqueous nitric acid solution was added and stirred for 5 minutes at 25 ° C. to obtain a water repellent film-forming composition 6. In addition, content (mass%) of each component is the mass% with respect to the whole quantity of the composition 6 for water-repellent film formation. A water repellent film-forming composition 7 was obtained in the same manner except that the compound (26) was changed to the compound (27).

(撥水層形成用組成物11)
上記で得られた化合物(F1)を、含フッ素ポリエーテル基を有する加水分解性シラン化合物として用い、化合物(F1)と含フッ素アルキル基を有する加水分解性シラン化合物を組合せた撥水層形成用組成物11を以下のとおり製造した。
撹拌機、温度計がセットされたガラス容器に、イソプロピルアルコール(純正化学社製)を12.4質量%、ハイドロフルオロエーテル(AE3000、旭硝子社製)を3.10質量%、C13Si(OCH(シンクエスト社製)を0.74質量%、化合物(F1)を0.32質量%入れ、25℃にて30分間撹拌した。次いで、10%硝酸水溶液を0.10質量%添加し、25℃にて2時間撹拌して、撥水層形成用組成物11を得た。
(Water repellent layer forming composition 11)
The compound (F1) obtained above is used as a hydrolyzable silane compound having a fluorine-containing polyether group, and the water-repellent layer is formed by combining the compound (F1) and a hydrolyzable silane compound having a fluorine-containing alkyl group. Composition 11 was prepared as follows.
In a glass container in which a stirrer and a thermometer are set, 12.4% by mass of isopropyl alcohol (manufactured by Junsei Co., Ltd.), 3.10% by mass of hydrofluoroether (AE3000, manufactured by Asahi Glass Co., Ltd.), C 6 F 13 C 2 H 4 Si (OCH 3) 3 (manufactured by Shin Quest) 0.74 wt%, was placed the compound (F1) 0.32 wt%, and stirred for 30 minutes at 25 ° C.. Subsequently, 0.10 mass% of 10% nitric acid aqueous solution was added, and it stirred at 25 degreeC for 2 hours, and obtained the composition 11 for water-repellent layer formation.

[下地層形成用組成物の調製]
(下地層形成用組成物1〜6)
撹拌機、温度計がセットされたガラス容器で、イソプロピルアルコール(純正化学社製)8.77gに、表1に示す比率でテトラメトキシシラン;Si(OCH(関東化学社製、以下「TMOS」という。)とビストリメトキシシリルエタン(CHO)SiCHCHSi(OCH、関東化学社製、以下「BTME」という。)を合計0.39g添加し25℃にて3分間撹拌した後、0.463重量%硝酸水溶液を0.84g滴下し、25℃にて1時間撹拌することで下地層形成用組成物1〜6を得た。
[Preparation of composition for forming underlayer]
(Underlayer forming compositions 1-6)
In a glass container in which a stirrer and a thermometer are set, 8.77 g of isopropyl alcohol (manufactured by Junsei Chemical Co., Ltd.), tetramethoxysilane; Si (OCH 3 ) 4 (manufactured by Kanto Chemical Co., Inc., hereinafter “ TMOS ”) and bistrimethoxysilylethane (CH 3 O) 3 SiCH 2 CH 2 Si (OCH 3 ) 3 , manufactured by Kanto Chemical Co., Inc., hereinafter referred to as“ BTME ”. ) Was added at a total of 0.39 g and stirred at 25 ° C. for 3 minutes, and then 0.84 g of a 0.463 wt% aqueous nitric acid solution was added dropwise and stirred at 25 ° C. for 1 hour, thereby forming an underlayer-forming composition 1 6 was obtained.

(下地層形成用組成物7〜12)
撹拌機、温度計がセットされたガラス容器で、酢酸ブチル(純正化学社製)9.50gに、表1に示す比率でテトライソシアネートシラン;Si(NCO)(SI−400(商品名、マツモトファインケミカル社製))とビストリイソシアネートシリルエタン((OCN)SiCHCHSi(NCO)、マツモトファインケミカル社製、以下「BTIE」という。)を合計0.5g添加し25℃にて5分間撹拌して、下地層形成用組成物7〜12を得た。
(Underlayer forming compositions 7 to 12)
In a glass container in which a stirrer and a thermometer are set, tetraisocyanate silane; Si (NCO) 4 (SI-400 (trade name, Matsumoto) at a ratio shown in Table 1 to 9.50 g of butyl acetate (manufactured by Junsei Chemical Co., Ltd.) Fine Chemical Co., Ltd.)) and bistriisocyanate silylethane ((OCN) 3 SiCH 2 CH 2 Si (NCO) 3 , Matsumoto Fine Chemical Co., Ltd., hereinafter referred to as “BTIE”) were added in total and added at 25 ° C. for 5 minutes. By stirring, compositions 7 to 12 for forming an underlayer were obtained.

(下地層形成用組成物13)
撹拌機、温度計がセットされたガラス容器に、酢酸ブチル(純正化学社製)を9.70g、テトライソシアネートシラン;Si(NCO)(SI−400(商品名、マツモトファインケミカル社製)を0.30g入れ、25℃にて30分間撹拌して、下地層形成用組成物13を得た。
(Underlayer forming composition 13)
In a glass container in which a stirrer and a thermometer are set, 9.70 g of butyl acetate (manufactured by Junsei Chemical Co., Ltd.), tetraisocyanate silane; Si (NCO) 4 (SI-400 (trade name, manufactured by Matsumoto Fine Chemical Co., Ltd.) 0 30 g was added and stirred at 25 ° C. for 30 minutes to obtain an underlayer-forming composition 13.

Figure 0006036132
Figure 0006036132

[撥水膜付き基体の製造]
(例1〜例60)
基体として、酸化セリウムで表面を研磨洗浄し、乾燥した清浄なソーダライムガラス基板(水接触角5度、300mm×300mm×厚さ3mm)を用い、該ガラス基板の表面に、表2、表3に示すとおり上記で得られた下地層形成用液状組成物1〜6(表2、3においては下地層の欄に番号のみを示す。)のいずれかの0.5gをスキージコート法によって塗布し、25℃で1分間乾燥し下地層(未硬化)を形成した。次いで、形成した下地層(未硬化)の表面に、表2、表3に示すとおり上記で得られた撥水層形成用組成物1〜10(表2、3においては撥水層の欄に番号のみを示す。)のいずれかの0.5gをスキージコート法によって塗布し、50℃、60%RHに設定された恒温恒湿槽で48時間保持して撥水層を形成すると同時に下地層の硬化を行った後、撥水層の表面を2−プロパノールを染み込ませた紙ウェスで拭き上げることで、基体側から順に下地層/撥水層からなる撥水膜を有する例1〜例60の撥水膜付き基体を得た。
[Manufacture of substrate with water repellent film]
(Example 1 to Example 60)
As the substrate, a clean soda lime glass substrate (water contact angle 5 degrees, 300 mm × 300 mm × thickness 3 mm), which was polished and cleaned with cerium oxide, was used. As shown in Fig. 2, 0.5 g of any of the liquid compositions 1 to 6 for forming the underlayer obtained above (only the numbers are shown in the column of the underlayer in Tables 2 and 3) was applied by the squeegee coating method. And dried at 25 ° C. for 1 minute to form a base layer (uncured). Subsequently, on the surface of the formed underlayer (uncured), as shown in Tables 2 and 3, the water-repellent layer-forming compositions 1 to 10 obtained above (in Tables 2 and 3, in the column of the water-repellent layer) 0.5 g of any one of them is applied by a squeegee coating method, and kept in a constant temperature and humidity chamber set at 50 ° C. and 60% RH for 48 hours to form a water repellent layer and at the same time, a base layer After curing, the surface of the water repellent layer was wiped with a paper waste impregnated with 2-propanol, thereby having a water repellent film comprising a base layer / water repellent layer in order from the substrate side. A substrate with a water-repellent film was obtained.

(例61〜例78)
基体として、酸化セリウムで表面を研磨洗浄し、乾燥した清浄なソーダライムガラス基板(水接触角5度、300mm×300mm×厚さ3mm)を用い、該ガラス基板の表面に、表3に示すとおり上記で得られた下地層形成用液状組成物7〜12(表3においては下地層の欄に番号のみを示す。)のいずれかの0.5gをスキージコート法によって塗布し、25℃で1分間乾燥し下地層(未硬化)を形成した。次いで、形成した下地層(未硬化)の表面に、表3に示すとおり上記で得られた撥水層形成用組成物1〜3(表3においては撥水層の欄に番号のみを示す。)のいずれかの0.5gをスキージコート法によって塗布し、50℃、60%RHに設定された恒温恒湿槽で48時間保持して撥水層を形成すると同時に下地層の硬化を行った後、撥水層の表面を2−プロパノールを染み込ませた紙ウェスで拭き上げることで、基体側から順に下地層/撥水層からなる撥水膜を有する例61〜例78の撥水膜付き基体を得た。
(Example 61 to Example 78)
As the substrate, a clean soda lime glass substrate (water contact angle 5 degrees, 300 mm × 300 mm × thickness 3 mm), which was polished and cleaned with cerium oxide, was used, and the surface of the glass substrate was as shown in Table 3. 0.5 g of any of the underlayer-forming liquid compositions 7 to 12 obtained above (in Table 3, only the numbers are shown in the underlayer column) is applied by squeegee coating, and 1 at 25 ° C. Dried for a minute to form a base layer (uncured). Then, on the surface of the formed underlayer (uncured), as shown in Table 3, the water-repellent layer-forming compositions 1 to 3 obtained above (in Table 3, only the numbers are shown in the column of the water-repellent layer). ) Was applied by a squeegee coating method and kept in a constant temperature and humidity chamber set at 50 ° C. and 60% RH for 48 hours to form a water repellent layer and at the same time, the underlayer was cured. Thereafter, the surface of the water-repellent layer was wiped with a paper cloth soaked with 2-propanol, so that the water-repellent film of Examples 61 to 78 having the water-repellent film composed of the base layer / water-repellent layer in order from the substrate side was attached. A substrate was obtained.

(例79)
基体として、酸化セリウムで表面を研磨洗浄し、乾燥した清浄なソーダライムガラス基板(水接触角5度、300mm×300mm×厚さ3mm)を用い、該ガラス基板の表面に、上記で得られた下地層形成用液状組成物13の2gをスキージコート法によって塗布し25℃で1分間保持し下地層(未硬化)を形成した。次いで、形成した下地層(未硬化)の表面に上記で得られた撥水層形成用組成物11の2gをスキージコート法によって塗布し、50℃、60%RHに設定された恒温恒湿槽で48時間保持して撥水層を形成すると同時に下地層の硬化を行った後、撥水層の表面を2−プロパノールを染み込ませた紙ウェスで拭き上げることで、基体側から順に下地層/撥水層からなる撥水膜を有する例79の撥水膜付き基体を得た。
(Example 79)
As the substrate, a clean soda lime glass substrate (water contact angle 5 degrees, 300 mm × 300 mm × thickness 3 mm), which was polished and cleaned with cerium oxide, was obtained on the surface of the glass substrate as described above. 2 g of the underlayer-forming liquid composition 13 was applied by a squeegee coating method and held at 25 ° C. for 1 minute to form an underlayer (uncured). Next, 2 g of the water repellent layer-forming composition 11 obtained above was applied to the surface of the formed underlayer (uncured) by the squeegee coating method, and a constant temperature and humidity chamber set to 50 ° C. and 60% RH. For 48 hours to form a water-repellent layer and at the same time cure the base layer, and then wipe the surface of the water-repellent layer with a paper cloth soaked with 2-propanol in order from the base side / A substrate with a water repellent film of Example 79 having a water repellent film comprising a water repellent layer was obtained.

[評価]
上記の例1〜例79で得られた撥水膜付き基体の評価を、以下のように行った。なお、各測定の前には、エタノールを含ませた紙ウェスで膜表面の汚れの除去を行った。
<初期撥水性>
撥水性は、静的撥水性については以下の方法で測定した水接触角(CA)で、動的撥水性(滑水性)については以下の方法で測定した水転落角(SA)で評価した。まず、以下の耐湿性試験を行う前に初期値を測定した。なお、初期の水接触角(CA)が100度以上であり、水転落角(SA)が8度以下であれば、実使用に十分耐える撥水性を有するといえる。
[Evaluation]
Evaluation of the substrate with a water-repellent film obtained in Examples 1 to 79 was performed as follows. In addition, before each measurement, the dirt on the film surface was removed with a paper waste containing ethanol.
<Initial water repellency>
The water repellency was evaluated by the water contact angle (CA) measured by the following method for static water repellency, and the water falling angle (SA) measured by the following method for dynamic water repellency (water slidability). First, the initial value was measured before the following moisture resistance test. In addition, if the initial water contact angle (CA) is 100 degrees or more and the water falling angle (SA) is 8 degrees or less, it can be said that the water repellency sufficiently withstands actual use.

(水接触角(CA))
撥水膜付き基体の撥水膜表面に置いた、直径1mmの水滴の接触角をDM−701(協和界面科学社製)を用いて測定した。撥水膜表面における異なる5ヶ所で測定を行い、その平均値を算出した。
(Water contact angle (CA))
The contact angle of a water droplet having a diameter of 1 mm placed on the surface of the water-repellent film substrate was measured using DM-701 (manufactured by Kyowa Interface Science Co., Ltd.). Measurement was performed at five different locations on the surface of the water-repellent film, and the average value was calculated.

(水転落角(SA))
水平に保持した撥水膜付き基体の撥水膜表面に50μLの水滴を滴下した後、基体を徐々に傾け、水滴が転落しはじめた時の撥水膜付き基体と水平面との角度(転落角)をSA−11(協和界面科学社製)を用いて測定した。撥水膜表面における異なる5ヶ所で測定を行い、その平均値を算出した。転落角が小さいほど動的撥水性(滑水性)に優れる。
(Water drop angle (SA))
After dropping 50 μL of water droplets on the surface of the water repellent film substrate held horizontally, the substrate is gradually tilted, and the angle between the water repellent film-coated substrate and the horizontal plane when the water droplet starts to fall (the falling angle) ) Was measured using SA-11 (manufactured by Kyowa Interface Science Co., Ltd.). Measurement was performed at five different locations on the surface of the water-repellent film, and the average value was calculated. The smaller the sliding angle, the better the dynamic water repellency (slidability).

<耐湿性試験>
例1〜例79で得られた撥水膜付き基体を、50℃、95%RHの環境下500時間暴露する耐湿性試験を行った後、上記同様の方法により水接触角(CA)、水転落角(SA)を測定した。なお、耐湿性試験後における水接触角(CA)が90度以上かつ、水転落角(SA)が10度以下であれば、実使用に十分な撥水性、滑水性の耐湿性を有するといえる。
上記で測定した初期撥水性と耐湿性試験後の撥水性の結果を表2(例1〜例42)、表3(例43〜例79)に示す。
<Moisture resistance test>
The substrate with water repellent film obtained in Examples 1 to 79 was subjected to a moisture resistance test in which the substrate was exposed for 500 hours in an environment of 50 ° C. and 95% RH, and then the water contact angle (CA), water The sliding angle (SA) was measured. In addition, if the water contact angle (CA) after a moisture resistance test is 90 degrees or more and the water falling angle (SA) is 10 degrees or less, it can be said that it has sufficient water repellency and water slidability moisture resistance for actual use. .
The results of the initial water repellency measured above and the water repellency after the moisture resistance test are shown in Table 2 (Example 1 to Example 42) and Table 3 (Example 43 to Example 79).

<屋外暴露試験>
例1〜例79で得られた撥水膜付き基体を、JIS Z2381に準拠して屋外暴露試験を行った。すなわち、撥水膜付き基体を、撥水膜表面が水平に対して30度の角度で南向きになるよう屋外に設置し、試験開始から3ヶ月が経過した後、上記方法により水接触角および水転落角を測定した。なお、屋外暴露試験後における水接触角(CA)が90度以上かつ、水転落角(SA)が10度以下であれば、実使用に十分な撥水性、滑水性の耐湿性を有するといえる。結果を表2(例1〜例42)、表3(例43〜例79)に示す。
<Outdoor exposure test>
The substrate with water-repellent film obtained in Examples 1 to 79 was subjected to an outdoor exposure test according to JIS Z2381. That is, the substrate with a water-repellent film was placed outdoors so that the surface of the water-repellent film faced south at an angle of 30 degrees with respect to the horizontal, and after three months had passed since the start of the test, The water falling angle was measured. In addition, if the water contact angle (CA) after an outdoor exposure test is 90 degrees or more and the water falling angle (SA) is 10 degrees or less, it can be said that it has sufficient water repellency and water slidability and moisture resistance for actual use. . The results are shown in Table 2 (Examples 1 to 42) and Table 3 (Examples 43 to 79).

<小水滴の滑落性>
以下の方法で例1〜例79で得られた撥水膜付き基体の撥水膜表面における小水滴の滑落性を評価した。小水滴の滑落性は、特に輸送機器用物品の用途において有することが好ましいとされる物性である。
(小水滴滑落性1)
水平から70度に傾けた撥水膜付き基体の撥水膜上に6μLの水滴を置き、50mm移動する際の時間をはかり滑落速度を算出して小水滴滑落性1の評価として表2(例1〜例42)、表3(例43〜例79)に示した。なお、例79の評価「×」は、全く移動しなかったことを示す。小水滴滑落性1の評価において小水滴が滑落すれば滑落性に優れるといえる。さらに、滑落速度が1mm/秒以上であれば小水滴の滑落性に非常に優れるといえる。
<Slidability of small water drops>
The sliding property of small water droplets on the surface of the water-repellent film of the substrate with the water-repellent film obtained in Examples 1 to 79 was evaluated by the following method. The sliding property of small water droplets is a physical property that is preferably possessed particularly in applications for articles for transportation equipment.
(Small water slidability 1)
As shown in Table 2 (Example), a 6 μL water droplet is placed on the water repellent film of the substrate with a water repellent film inclined at 70 degrees from the horizontal, and the sliding speed is calculated by measuring the time required to move 50 mm and the sliding speed is calculated. 1 to Example 42) and Table 3 (Examples 43 to 79). Note that the evaluation “x” in Example 79 indicates that no movement occurred. In the evaluation of small water droplet sliding property 1, it can be said that if a small water droplet slides, the sliding property is excellent. Furthermore, if the sliding speed is 1 mm / second or more, it can be said that the sliding characteristics of small water droplets are very excellent.

(小水滴滑落性2)
水平から70度に傾けた撥水膜付き基体の撥水膜上に2μLの水滴を置いた際に、5分間で水滴が50mm以上滑落するかどうかを目視で確認し小水滴滑落性2の評価とした。小水滴滑落性2の評価において、水滴が50mm以上滑落する場合を「○」、水滴が50mm以上滑落しない場合を「×」として表2(例1〜例42)、表3(例43〜例79)に示した。小水滴滑落性2の評価において「○」であれば、小水滴の滑落性が非常に優れるといえる。
(Small water slidability 2)
Evaluation of small water drop sliding property 2 by visually checking whether or not the water droplet slides 50 mm or more in 5 minutes when a water droplet of 2 μL is placed on the water repellent film of the substrate with the water repellent film inclined at 70 degrees from the horizontal. It was. In the evaluation of small water droplet sliding property 2, Table 2 (Example 1 to Example 42) and Table 3 (Example 43 to Example) are shown as “O” when the water droplet slides 50 mm or more and “X” when the water droplet does not slide 50 mm or more. 79). If the evaluation of small water drop sliding property 2 is “◯”, it can be said that the small water droplet sliding property is very excellent.

Figure 0006036132
Figure 0006036132

Figure 0006036132
Figure 0006036132

表2、表3からわかるように、化合物(1)由来成分を含まない下地層形成用組成物を用いて形成された下地層上に、化合物(2)由来成分((B)成分)を含む撥水層形成用組成物を用いて形成された撥水層を有する比較例(例6、12、18、24、30、36、42、48、54、60、66、72、78)の撥水膜付き基体が、初期撥水性には優れるものの耐湿性が十分でないのに比べ、実施例の撥水膜付き基体は、初期撥水性に優れ、耐湿試験後も撥水性を十分に維持できることがわかる。
また、含フッ素ポリエーテル基を有する加水分解性シラン化合物と含フッ素アルキル基を有する加水分解性シラン化合物を組合せた撥水層形成用組成物を用いた例79では、耐湿性には優れるものの、初期の時点で動的撥水性が十分とは言えない。
As can be seen from Table 2 and Table 3, the compound (2) -derived component (component (B)) is contained on the foundation layer formed using the composition for forming the foundation layer not containing the compound (1) -derived component. Comparative Examples (Examples 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78) having a water repellent layer formed using the water repellent layer forming composition While the substrate with a water film is excellent in initial water repellency, the substrate with the water repellent film in the examples is excellent in initial water repellency and can sufficiently maintain the water repellency after the moisture resistance test. Recognize.
Further, in Example 79 using the composition for forming a water repellent layer in which a hydrolyzable silane compound having a fluorine-containing polyether group and a hydrolyzable silane compound having a fluorine-containing alkyl group were combined, although excellent in moisture resistance, It cannot be said that dynamic water repellency is sufficient at the initial stage.

本発明の撥水膜付き基体は、静的撥水性および動的撥水性の双方に優れるととともに、耐湿性等の耐久性にも優れるものであって、電車、自動車、船舶、航空機等の輸送機器におけるボディー、窓ガラス(フロントガラス、サイドガラス、リアガラス)、ミラー、バンパー等の物品としての用途に好適に用いられる。   The substrate with a water-repellent film of the present invention is excellent in both static water repellency and dynamic water repellency, and is excellent in durability such as moisture resistance, and is used for transportation of trains, automobiles, ships, airplanes, etc. It is suitably used for applications such as body, window glass (front glass, side glass, rear glass), mirror, bumper, etc. in equipment.

Claims (10)

基体と、前記基体の少なくとも一部の表面に撥水膜とを有する撥水膜付き基体であって、
前記撥水膜は、基体側から順に、
下記式(1)で表される化合物および/またはその部分加水分解縮合物からなる(A)成分を含む下地層形成用組成物を用いて形成された下地層、および
下記式(2)で表される化合物および/またはその部分加水分解縮合物からなる(B)成分を含む撥水層形成用組成物を用いて形成された撥水層、
を有する撥水膜付き基体。
Si−(CH−SiX …(1)
(ただし、式(1)中、Xはそれぞれ独立して加水分解性基または水酸基を示し、mは1〜8の整数である。)
−(SiR O)−SiR −Y−Si(R3−n(X …(2)
(ただし、式(2)中、Rは炭素原子数10以下のアルキル基または−Y−Si(R3−n(X基を、Rはそれぞれ独立して炭素原子数3以下のアルキル基を、Yはそれぞれ独立して炭素原子数2〜4のアルキレン基を、Rはそれぞれ独立して1価の炭化水素基であり、Xはそれぞれ独立して加水分解性基を示す。kは10〜200の整数であり、nは1〜3の整数である。)
A substrate with a water-repellent film having a substrate and a water-repellent film on at least a part of the surface of the substrate;
The water repellent film is sequentially from the substrate side.
An underlayer formed by using an underlayer-forming composition containing a component (A) comprising a compound represented by the following formula (1) and / or a partially hydrolyzed condensate thereof, and represented by the following formula (2) A water repellent layer formed using a composition for forming a water repellent layer comprising the component (B) comprising the compound and / or a partially hydrolyzed condensate thereof,
A substrate with a water repellent film.
X 1 3 Si— (CH 2 ) m —SiX 1 3 (1)
(However, in the formula (1), X 1 each independently represents a hydrolyzable group or a hydroxyl group, m is an integer of 1 to 8.)
R 3 — (SiR 2 2 O) k —SiR 2 2 —Y 1 —Si (R 1 ) 3 -n (X 2 ) n (2)
(In the formula (2), R 3 represents an alkyl group having 10 or less carbon atoms or —Y 1 —Si (R 1 ) 3-n (X 2 ) n group, and R 2 each independently represents a carbon atom. An alkyl group having a number of 3 or less, Y 1 is independently an alkylene group having 2 to 4 carbon atoms, R 1 is independently a monovalent hydrocarbon group, and X 2 is independently hydrolyzed. Represents a decomposable group, k is an integer of 10 to 200, and n is an integer of 1 to 3.)
前記下地層形成用組成物は、前記(A)成分と、下記式(3)で表わされる化合物および/またはその部分加水分解縮合物からなる(C)成分とを含む、もしくは、前記(A)成分と前記(C)成分の部分加水分解共縮合物(ただし、前記(A)成分および/または前記(C)成分を含んでもよい)を含む、請求項1に記載の撥水膜付き基体。
Si(X …(3)
(ただし、式(3)中、Xはそれぞれ独立して、ハロゲン原子、アルコキシ基またはイソシアネート基を示す。)
The underlayer-forming composition includes the component (A) and the component (C) composed of a compound represented by the following formula (3) and / or a partial hydrolysis condensate thereof, or the component (A) The substrate with a water-repellent film according to claim 1, comprising a partial hydrolysis cocondensate of a component and the component (C) (however, the component (A) and / or the component (C) may be included).
Si (X 3 ) 4 (3)
(However, in formula (3), X 3 each independently represents a halogen atom, an alkoxy group or an isocyanate group.)
前記下地層形成用組成物における、前記式(1)で表わされる化合物由来成分と前記式(3)で表わされる化合物由来成分との含有割合が、[前記式(1)で表わされる化合物由来成分:前記式(3)で表わされる化合物由来成分]で示される質量比として、0.1:0.9〜0.9:0.1である、請求項2に記載の撥水膜付き基体。   The content ratio of the compound-derived component represented by the formula (1) and the compound-derived component represented by the formula (3) in the composition for forming an underlayer is [the compound-derived component represented by the formula (1) The substrate with a water-repellent film according to claim 2, wherein the mass ratio represented by: the compound-derived component represented by the formula (3)] is 0.1: 0.9 to 0.9: 0.1. 前記下地層形成用組成物における、前記式(1)で表わされる化合物由来成分と前記式(3)で表わされる化合物由来成分との含有割合が、[前記式(1)で表わされる化合物由来成分:前記式(3)で表わされる化合物由来成分]で示される質量比として、0.1:0.9〜0.6:0.4である、請求項3に記載の撥水膜付き基体。   The content ratio of the compound-derived component represented by the formula (1) and the compound-derived component represented by the formula (3) in the composition for forming an underlayer is [the compound-derived component represented by the formula (1) The substrate with a water repellent film according to claim 3, wherein the mass ratio represented by: the compound-derived component represented by the formula (3)] is 0.1: 0.9 to 0.6: 0.4. 前記式(1)において、Xはアルコキシ基またはイソシアネート基であり、mは1〜3の整数である、請求項1〜4のいずれか1項に記載の撥水膜付き基体。 In the formula (1), X 1 is an alkoxy group or an isocyanate group, m is an integer of 1 to 3, the water-repellent film-coated substrate of any one of claims 1-4. 前記式(2)において、Rはメチル基であり、Rは炭素原子数5以下の直鎖状のアルキル基であり、Xは塩素原子であり、kは10〜150の整数であり、nは3である、請求項1〜5のいずれか1項に記載の撥水膜付き基体。 In the formula (2), R 2 is a methyl group, R 3 is a linear alkyl group having 5 or less carbon atoms, X 2 is a chlorine atom, and k is an integer of 10 to 150. , N is 3, The substrate with a water-repellent film according to claim 1. 前記下地層形成用組成物は、全固形分が実質的に、前記式(1)で表わされる化合物由来成分のみからなる、または前記式(1)で表わされる化合物由来成分と前記式(3)で表わされる化合物由来成分のみからなる請求項1〜6のいずれか1項に記載の撥水膜付き基体。   The composition for forming an undercoat layer has a total solid content substantially consisting of only the compound-derived component represented by the formula (1), or the compound-derived component represented by the formula (1) and the formula (3). The substrate with a water-repellent film according to any one of claims 1 to 6, comprising only a compound-derived component represented by formula (1). 前記撥水層形成用組成物は、全固形分が実質的に前記(B)成分のみからなる請求項1〜7のいずれか1項に記載の撥水膜付き基体。   The substrate with a water-repellent film according to claim 1, wherein the composition for forming a water-repellent layer has a total solid content substantially consisting only of the component (B). 基体の材質がガラスである、請求項1〜8のいずれか1項に記載の撥水膜付き基体。   The substrate with a water-repellent film according to claim 1, wherein the substrate is made of glass. 請求項1〜9のいずれか1項に記載の撥水膜付き基体を備えた輸送機器用物品。   An article for transport equipment comprising the substrate with a water-repellent film according to any one of claims 1 to 9.
JP2012222099A 2012-10-04 2012-10-04 Substrate with water repellent film and article for transportation equipment Active JP6036132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012222099A JP6036132B2 (en) 2012-10-04 2012-10-04 Substrate with water repellent film and article for transportation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012222099A JP6036132B2 (en) 2012-10-04 2012-10-04 Substrate with water repellent film and article for transportation equipment

Publications (2)

Publication Number Publication Date
JP2014074118A JP2014074118A (en) 2014-04-24
JP6036132B2 true JP6036132B2 (en) 2016-11-30

Family

ID=50748505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012222099A Active JP6036132B2 (en) 2012-10-04 2012-10-04 Substrate with water repellent film and article for transportation equipment

Country Status (1)

Country Link
JP (1) JP6036132B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015145463A (en) * 2014-02-03 2015-08-13 旭硝子株式会社 Substrate with water repellent film, composition for forming water repellent layer and article for transportation equipment
US11180645B2 (en) 2015-05-08 2021-11-23 Dow Global Technologies Llc Process for foaming polyolefin compositions using an azodicarbonamide/citrate mixture as a nucleating agent

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190085171A1 (en) * 2016-02-24 2019-03-21 Agency For Science, Technology And Research Durable hydrophobic coating composition
WO2024024461A1 (en) * 2022-07-26 2024-02-01 Agc株式会社 Water-repellent structure and composition for forming water-repellent layer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3210045B2 (en) * 1991-11-20 2001-09-17 旭硝子株式会社 Surface treated substrate
JP2000144056A (en) * 1998-11-10 2000-05-26 Ikuo Narisawa Surface-treated substrate excellent in water droplet slip characteristics and its production
JP2001172573A (en) * 1999-12-17 2001-06-26 Nippon Sheet Glass Co Ltd Oxide film-coated article and its preparation process
JP2002097192A (en) * 2000-09-19 2002-04-02 Asahi Glass Co Ltd Compound for surface treatment agent, surface treatment agent, functional glass and method for producing the same
JP2007106011A (en) * 2005-10-14 2007-04-26 Hiroshima Univ Contacting member with body to be printed, member for printing equipment and manufacturing method of contacting member with body to be printed

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015145463A (en) * 2014-02-03 2015-08-13 旭硝子株式会社 Substrate with water repellent film, composition for forming water repellent layer and article for transportation equipment
US11180645B2 (en) 2015-05-08 2021-11-23 Dow Global Technologies Llc Process for foaming polyolefin compositions using an azodicarbonamide/citrate mixture as a nucleating agent

Also Published As

Publication number Publication date
JP2014074118A (en) 2014-04-24

Similar Documents

Publication Publication Date Title
JP5741435B2 (en) Water-repellent film forming composition, water-repellent film-coated substrate, method for producing the same, and transportation equipment article
KR102441819B1 (en) Water/oil-repellent treatment agent having heat resistance, method of preparation, and treated article
CN103773202B (en) Article after coating agent composition, the surface conditioning agent comprising said composition and utilization surface treatment agent processing
JP5999096B2 (en) Method for manufacturing substrate with coating
JP2014105235A (en) Perfluoropolyether modified polysilazane and its manufacturing method, surface treatment agent and article treated by the same
KR20190025813A (en) Organosilicon compound and surface treatment composition
KR20200120677A (en) Organosiloxane compound and surface treatment agent
JP7392667B2 (en) Fluorine-containing ether composition, coating liquid, article and method for producing the same
CN104245865A (en) Oleophobic coatings
JP2014234506A (en) New compound, composition for forming water repellent film and substrate with water repellent film and article for transportation equipment
JP6036132B2 (en) Substrate with water repellent film and article for transportation equipment
TWI777007B (en) Coating composition, surface treatment agent containing the composition, and articles surface-treated with the surface treatment agent
JP6011364B2 (en) Substrate with water repellent film and article for transportation equipment
KR20200074113A (en) Organosilane compounds containing lipophilic groups, surface treatment agents and articles
JP2014024288A (en) Substrate with water-repellent film
WO2017104249A1 (en) Silane modified with polymer containing fluoropolyether group, surface-treating agent, and article
WO2018155325A1 (en) Composition
JP2015145463A (en) Substrate with water repellent film, composition for forming water repellent layer and article for transportation equipment
KR102338219B1 (en) composition
JP2002121286A (en) Fluorine-containing organosilicon compound, water- repelling composition containing the same, and surface- treated base and method for producing the same
TW201930499A (en) Surface treating agent composition
JP6758725B1 (en) Fluorine-containing silane compound, surface treatment agent, and articles using the surface treatment agent
JP2014156061A (en) Substrate having base layer and water-repellent film and article transportation device including the substrate having base layer and water-repellent film
JP2013129695A (en) Water-repellent film forming composition, substrate with water-repellent film, and article for transportation device
JPWO2019035288A1 (en) Method for producing fluorine-containing ether compound and method for producing article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150813

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161017

R150 Certificate of patent or registration of utility model

Ref document number: 6036132

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250