JP6035795B2 - Heat shield film manufacturing method, heat shield film, and internal combustion engine - Google Patents

Heat shield film manufacturing method, heat shield film, and internal combustion engine Download PDF

Info

Publication number
JP6035795B2
JP6035795B2 JP2012058411A JP2012058411A JP6035795B2 JP 6035795 B2 JP6035795 B2 JP 6035795B2 JP 2012058411 A JP2012058411 A JP 2012058411A JP 2012058411 A JP2012058411 A JP 2012058411A JP 6035795 B2 JP6035795 B2 JP 6035795B2
Authority
JP
Japan
Prior art keywords
microbubbles
thermal barrier
plated
barrier film
plating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012058411A
Other languages
Japanese (ja)
Other versions
JP2013189959A (en
Inventor
飯島 章
章 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2012058411A priority Critical patent/JP6035795B2/en
Priority to PCT/JP2013/056406 priority patent/WO2013137127A1/en
Publication of JP2013189959A publication Critical patent/JP2013189959A/en
Application granted granted Critical
Publication of JP6035795B2 publication Critical patent/JP6035795B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/1648Porous product
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1664Process features with additional means during the plating process
    • C23C18/1669Agitation, e.g. air introduction
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • C23C18/36Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents using hypophosphites
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/02Selecting particular materials for valve-members or valve-seats; Valve-members or valve-seats composed of two or more materials
    • F01L3/04Coated valve members or valve-seats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/12Cooling of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/14Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having thermal insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/16Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B77/00Component parts, details or accessories, not otherwise provided for
    • F02B77/02Surface coverings of combustion-gas-swept parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/10Pistons  having surface coverings
    • F02F3/12Pistons  having surface coverings on piston heads
    • F02F3/14Pistons  having surface coverings on piston heads within combustion chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10314Materials for intake systems
    • F02M35/10334Foams; Fabrics; Porous media; Laminates; Ceramics; Coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2301/00Using particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2303/00Manufacturing of components used in valve arrangements
    • F01L2303/01Tools for producing, mounting or adjusting, e.g. some part of the distribution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/01Absolute values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/02Surface coverings for thermal insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0603Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston at least part of the interior volume or the wall of the combustion space being made of material different from the surrounding piston part, e.g. combustion space formed within a ceramic part fixed to a metal piston head
    • F02B2023/0612Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston at least part of the interior volume or the wall of the combustion space being made of material different from the surrounding piston part, e.g. combustion space formed within a ceramic part fixed to a metal piston head the material having a high temperature and pressure resistance, e.g. ceramic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/14Direct injection into combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0696W-piston bowl, i.e. the combustion space having a central projection pointing towards the cylinder head and the surrounding wall being inclined towards the cylinder wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2251/00Material properties
    • F05C2251/04Thermal properties
    • F05C2251/048Heat transfer

Description

本発明は、熱伝達を低下する遮熱膜の製造方法、遮熱膜、及び内燃機関に関する。   The present invention relates to a method for manufacturing a thermal barrier film that reduces heat transfer, a thermal barrier film, and an internal combustion engine.

燃費の向上を図るためには、内燃機関の熱効率を向上させることが有効である。内燃機関の熱効率を向上するためには、燃焼中に発生した熱を逃がさない構造が必要となる。つまり、燃焼室の内壁を、熱伝導率の小さい、つまり断熱性、又は遮熱性の高い構造で形成することである。   In order to improve fuel efficiency, it is effective to improve the thermal efficiency of the internal combustion engine. In order to improve the thermal efficiency of the internal combustion engine, a structure that does not release the heat generated during combustion is required. That is, the inner wall of the combustion chamber is formed with a structure having a low thermal conductivity, that is, a heat insulating property or a high heat shielding property.

そこで、熱伝導率の低いセラミックを用いる所謂セラミックエンジンと呼ばれるものがある。例えば、ピストンの頂面部をセラミックで形成し、ピストン本体と空気の隙間を設けて取り付けるエンジンや、セラミックスをコーティングしたエンジンもしくは燃焼室そのものをセラミックスで構成するエンジンである。   Therefore, there is a so-called ceramic engine using a ceramic having low thermal conductivity. For example, an engine in which the top surface portion of a piston is made of ceramic and attached with a gap between the piston body and air, an engine coated with ceramics, or an engine in which the combustion chamber itself is made of ceramics.

しかし、セラミック部分の熱容量が大きく、吸気行程中も温度が高いため、充填効率が上がらずに却って燃費が悪化してしまうという問題がある。また、セラミック自体が高価で、加工が容易ではないため、コストが高いという問題もある。   However, since the heat capacity of the ceramic portion is large and the temperature is high even during the intake stroke, there is a problem that the fuel efficiency deteriorates instead of increasing the charging efficiency. In addition, since the ceramic itself is expensive and difficult to process, there is a problem that the cost is high.

そこで、遮熱層を内燃機関の燃焼室の内壁などに形成することで、燃焼室内の燃焼ガスからの熱伝達を低下させて熱効率を向上させる装置がある(例えば、特許文献1又は2参照)。これらの装置は、遮熱層内の空孔率を増加させることで、空気の熱伝導率が比較的小さいことを利用して、遮熱層の遮熱性、又は断熱性を向上するものである。   In view of this, there is an apparatus for improving the thermal efficiency by reducing the heat transfer from the combustion gas in the combustion chamber by forming a heat shield layer on the inner wall of the combustion chamber of the internal combustion engine (see, for example, Patent Document 1 or 2). . These devices increase the porosity in the thermal barrier layer and improve the thermal insulation or thermal insulation of the thermal barrier layer by utilizing the relatively low thermal conductivity of air. .

特許文献1に記載の装置では、遮熱膜を陽極酸化皮膜で形成し、その形成時に電解質および金属の種類、温度や電圧等の条件により膜内にポーラスと呼ばれる孔を発生させて、空孔率を増加させている。また、特許文献2に記載の装置では、断熱材に球状メソポーラスシリカ粒子を混入して空孔率を増加させている。   In the apparatus described in Patent Document 1, a heat shield film is formed of an anodic oxide film, and at the time of formation, pores called porous are generated in the film depending on conditions such as the type of electrolyte and metal, temperature, voltage, etc. The rate is increasing. In the device described in Patent Document 2, spherical mesoporous silica particles are mixed into the heat insulating material to increase the porosity.

しかしながら、これらの方法は、特別な材料を用いる施工、又は複雑な施工が必要である上に、施工に時間がかかるため、安価に大量生産することができないという問題がある。また、特許文献1に記載の装置には、遮熱層を陽極酸化皮膜で形成することから、被皮膜物が導電性であることが必要という問題がある。一方、特許文献2に記載の装置には、遮熱層をピストンに使用する際に接着剤などで貼り付けることから、強度面上の問題がある。   However, these methods have a problem that they cannot be mass-produced at low cost because construction using special materials or complicated construction is necessary and construction takes time. Further, the apparatus described in Patent Document 1 has a problem that the object to be coated needs to be conductive because the thermal barrier layer is formed of an anodized film. On the other hand, the device described in Patent Document 2 has a problem in terms of strength because it is attached with an adhesive or the like when the heat shield layer is used for the piston.

特開2010−249008号公報JP 2010-249008 A 特開2011−052630号公報JP 2011-052630 A

本発明は、上記の問題を鑑みてなされたものであり、その目的は、膜厚を薄くしても、硬度が高く、且つ熱伝達性の低い遮熱膜を短時間に、且つ容易な方法で製造することができる遮熱膜の製造方法、遮熱膜、及び内燃機関を提供することである。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a thermal barrier film having a high hardness and a low heat transfer property in a short time and an easy method even when the film thickness is reduced. It is providing the manufacturing method of the thermal insulation film | membrane which can be manufactured by, a thermal insulation film | membrane, and an internal combustion engine.

上記の目的を解決するための本発明の遮熱膜の製造方法は、被メッキ物の表面に積層し た状態でその表面を覆う金属メッキ層を備えた遮熱膜の製造方法において、メッキ液の内部にマイクロバブルを分散し、前記被メッキ物を前記メッキ液でメッキして、前記被メッ キ物の表面にニッケルを主成分とした前記金属メッキ層を、前記マイクロバブルを内包 せて析出することを特徴とする方法である。In order to solve the above-mentioned object, a method for manufacturing a heat shield film according to the present invention is a method for manufacturing a heat shield film including a metal plating layer that covers a surface of an object to be plated in a state of being laminated on the surface of an object to be plated. inside dispersed microbubbles, said object to be plated is plated by the plating solution, the metal plating layer mainly composed of nickel on the surface of the object to be message key was prepared by encapsulating the microbubbles It is a method characterized by precipitation.

ここでいうマイクロバブルとは直径50μm以下の微細な気泡のことであり、通常の気泡に比べ液中での上昇速度が遅く、長い期間液中に滞在し続け、且つ、負に帯電し、マイクロバブル同士が反発し合い、気泡濃度が減ることがないという性質を持つものである。   The microbubble here is a fine bubble having a diameter of 50 μm or less, and its rising speed in the liquid is slower than that of a normal bubble, stays in the liquid for a long period of time, and is negatively charged. Bubbles repel each other and the bubble concentration does not decrease.

この方法によれば、このマイクロバブルを内包させることで、遮熱膜中の空孔率が増加するため、膜厚を薄くしても遮熱性を向上することができる。また、マイクロバブルはその性質上、メッキ液中に略均一に分散するので、容易に均一化することができる。   According to this method, since the microbubbles are included, the porosity in the heat shielding film increases, so that the heat shielding property can be improved even if the film thickness is reduced. In addition, the microbubbles are dispersed substantially uniformly in the plating solution due to their properties, and can be easily uniformized.

また、膜厚を薄く形成しても、金属メッキ層により硬度の高い、且つマイクロバブルを内包させることにより熱伝導性の低い遮熱膜を短時間に製造することができる。そして、メッキ液にマイクロバブルを分散するだけで製造することができ、安価に短時間に遮熱層を被メッキ物に形成することができるので、大量生産することができる。Moreover, even if the film thickness is reduced, a thermal barrier film having high hardness and low thermal conductivity can be produced in a short time by encapsulating microbubbles in the metal plating layer . And it can manufacture only by disperse | distributing microbubble to a plating liquid, and since a thermal-insulation layer can be formed in a to-be-plated object in a short time cheaply, it can mass-produce.

また、上記の遮熱膜の製造方法において、外部から導入した空気を、又は前記メッキ液を減圧して発生させた蒸気を、マイクロバブル化して、前記メッキ液の内部に、直径が1μmより大きく、且つ10μm以下の前記マイクロバブルを分散すると、容易にメッキ液中にマイクロバブルを分散することができる。 In the method for manufacturing a thermal barrier film, air introduced from the outside or vapor generated by reducing the pressure of the plating solution is microbubbled, and the diameter of the plating solution is larger than 1 μm. When the microbubbles of 10 μm or less are dispersed, the microbubbles can be easily dispersed in the plating solution.

このマイクロバブルは、マイクロバブル発生装置に導入した空気を、又はメッキ液を減圧した際に発生するメッキ液の蒸気を、気液せん断法、加圧減圧法、又は超音波法などによりマイクロバブル化したものである。直径が50μm以下のマイクロバブルは、メッキ液に均一に分散するので、容易にメッキ皮膜の空孔率を向上すると共に、空孔を略均一に分散することができる。   This microbubble is converted into microbubbles by using the gas-liquid shearing method, the pressure-reducing method, or the ultrasonic method, etc., when the air introduced into the microbubble generator or the plating solution vapor generated when the plating solution is decompressed is used. It is a thing. Since the microbubbles having a diameter of 50 μm or less are uniformly dispersed in the plating solution, it is possible to easily improve the porosity of the plating film and to disperse the holes substantially uniformly.

加えて、上記の遮熱膜の製造方法において、次亜燐酸水溶液の前記メッキ液に還元剤を含浸して、加熱し、前記還元剤の酸化によって放出される電子により、前記マイクロバブルを内包する前記金属メッキ層を前記被メッキ物に析出すると、所謂無電解ニッケルメッキにより遮熱膜を製造することができ、電解メッキとは異なり、通電を必要しないため、プラスチックやセラミックなどの不導体にも遮熱膜を形成することができる。In addition, in the method for manufacturing a thermal barrier film, the plating solution of hypophosphorous acid aqueous solution is impregnated with a reducing agent, heated, and encapsulated with the microbubbles by electrons released by oxidation of the reducing agent. When the metal plating layer is deposited on the object to be plated, a heat-shielding film can be produced by so-called electroless nickel plating, and unlike electroplating, it does not require energization. A thermal barrier film can be formed.

また、上記の問題を解決するための遮熱膜は、被メッキ物の表面に積層した状態でその 表面を覆う金属メッキ層を備えた遮熱膜において、前記金属メッキ層がマイクロバブルを内包することを特徴とする。この構成によれば、金属メッキ層中に略均一に分散したマイクロバブルが、皮膜内部の空孔率を向上することができるので、熱伝導性を低下することができる。また、金属メッキ層であるため、遮熱膜の硬度を高くすることができる。Further, Saeginetsumaku to solve the above problem, in Saeginetsumaku having a metal plating layer covering the surface with a laminated state on the surface of the object to be plated, the metal plating layer containing the microbubbles It is characterized by that. According to this configuration, since the microbubbles dispersed substantially uniformly in the metal plating layer can improve the porosity inside the coating, the thermal conductivity can be lowered. Moreover, since it is a metal plating layer , the hardness of a thermal barrier film can be made high.

加えて、上記の遮熱膜において、層厚が100μm以下の前記金属メッキ層が、直径が1μmより大きく、且つ10μm以下の前記マイクロバブルを内包していると、遮熱膜の熱容量を低減すると共に、遮熱性を向上することができる。また、メッキ液にマイクロバブルを分散し、被メッキ物に金属メッキ層を析出して製造することができるので、膜厚が薄い且つ遮熱性の高い遮熱膜を短時間で、容易の製造することができる。In addition, in the above heat-shielding film, when the metal plating layer having a thickness of 100 μm or less contains the microbubbles having a diameter larger than 1 μm and 10 μm or less, the heat capacity of the heat-shielding film is reduced. At the same time, the heat shielding property can be improved. In addition, since the microbubbles can be dispersed in the plating solution and the metal plating layer can be deposited on the object to be plated, it is possible to easily manufacture a heat-shielding film having a thin film thickness and a high heat-shielding property in a short time. be able to.

マイクロバブルの直径は、マイクロバブルの特性が表れる50μm以下で、1μmより大きく、好ましくは気泡個数が数百個/mLとなる30μm以下の所謂低濃度型のマイク
ロバブルがよく、より好ましくは気泡個数が数千個/mLとなる10μm以下の所謂高濃度型のマイクロバブルがよい。
The diameter of the microbubbles is 50 μm or less where the characteristics of the microbubbles are expressed and is larger than 1 μm, preferably 30 μm or less so that the number of bubbles is several hundred / mL. A so-called high-concentration type microbubble having a thickness of 10 μm or less, which is several thousand / mL, is preferable.

加えて、上記の問題を解決するための内燃機関は、燃焼室の内壁を含むピストン頂面部の少なくとも一部に、上記に記載の遮熱膜を備えて構成される。この構成によれば、燃焼室内で発生した熱をピストン本体に伝達することを防ぐことができるので、冷却損失を減らすことができる。これにより、燃費を向上することができる。   In addition, an internal combustion engine for solving the above-described problem is configured to include the above-described heat shield film on at least a part of the piston top surface portion including the inner wall of the combustion chamber. According to this configuration, it is possible to prevent the heat generated in the combustion chamber from being transmitted to the piston body, so that the cooling loss can be reduced. Thereby, fuel consumption can be improved.

一方、上記の問題を解決するための内燃機関は、前記燃焼室の周囲の、シリンダヘッドの下面、排気バルブの下面、吸気バルブの下面、及びシリンダボアの内面の少なくとも一つに、前記遮熱膜を備えて構成される。この構成によれば、前述と同様に、燃焼室内で発生する熱を外部に伝達することを防ぐことができる。また、遮熱膜が金属メッキ層であるため、表面が細かく、また硬度も高いため、シリンダボアの内面などの摺動面にも適用することができる。On the other hand, an internal combustion engine for solving the above problem is characterized in that the thermal barrier film is provided on at least one of the lower surface of the cylinder head, the lower surface of the exhaust valve, the lower surface of the intake valve, and the inner surface of the cylinder bore around the combustion chamber. It is configured with. According to this configuration, it is possible to prevent the heat generated in the combustion chamber from being transmitted to the outside, as described above. In addition, since the heat shielding film is a metal plating layer , the surface is fine and the hardness is high, so that the heat shielding film can be applied to sliding surfaces such as the inner surface of the cylinder bore.

さらに、上記の問題を解決するための内燃機関は、エキゾーストマニホールド、排気管、インレットマニホールド、及び吸気管の少なくとも一つに、前記遮熱膜を備えて構成される。この構成によれば、吸入空気が加熱されることを防ぎ、また排ガスが冷却されることを防ぐことができる。   Furthermore, an internal combustion engine for solving the above problem is configured to include the heat shield film on at least one of an exhaust manifold, an exhaust pipe, an inlet manifold, and an intake pipe. According to this configuration, the intake air can be prevented from being heated, and the exhaust gas can be prevented from being cooled.

本発明によれば、膜厚を薄くしても、硬度が高く、且つ熱伝達性の低い遮熱膜を短時間に、且つ容易な方法で製造することができる。また、マイクロバブルを内包させることで、遮熱膜内に均一な空孔を容易に分散でき、且つ膜厚を薄く形成することができる。   According to the present invention, even if the film thickness is reduced, a thermal barrier film having high hardness and low heat transfer can be manufactured in a short time and with an easy method. In addition, by incorporating microbubbles, uniform pores can be easily dispersed in the thermal barrier film and the film thickness can be reduced.

本発明に係る実施の形態の遮熱膜を示した断面図である。It is sectional drawing which showed the thermal barrier film of embodiment which concerns on this invention. 本発明に係る第1の実施の形態の遮熱膜を製造する装置を示した構成図である。It is the block diagram which showed the apparatus which manufactures the thermal barrier film of 1st Embodiment which concerns on this invention. 本発明に係る第2の実施の形態の遮熱膜を製造する装置を示した構成図である。It is the block diagram which showed the apparatus which manufactures the thermal barrier film of 2nd Embodiment which concerns on this invention. 本発明に係る実施の形態の内燃機関を示した断面図である。1 is a cross-sectional view showing an internal combustion engine according to an embodiment of the present invention.

以下、本発明に係る実施の形態の遮熱膜の製造方法、遮熱膜、及び内燃機関について、図面を参照しながら説明する。なお、図面に関しては、構成が分かり易いように寸法を変化させており、各部材、各部品の板厚や幅や長さなどの比率も必ずしも実際に製造するものの比率とは一致させていない。特に、膜厚に関しては、50μm〜100μmと非常に薄いものであるが、図面では厚く記載している。   Hereinafter, a method for manufacturing a heat shield film, a heat shield film, and an internal combustion engine according to an embodiment of the present invention will be described with reference to the drawings. Note that the dimensions of the drawings are changed so that the configuration can be easily understood, and the ratios of the thicknesses, widths, lengths, and the like of the respective members and parts do not necessarily match the ratios of actually manufactured parts. In particular, the film thickness is very thin, 50 μm to 100 μm, but is shown thick in the drawing.

まず、本発明に係る実施の形態の遮熱膜について、図1を参照しながら説明する。遮熱膜10は、マイクロバブル11を内包する金属メッキ層12で形成され、被メッキ物1に析出し、燃焼部2からの熱を遮熱するものである。First, a thermal barrier film according to an embodiment of the present invention will be described with reference to FIG. The thermal barrier film 10 is formed of a metal plating layer 12 containing the microbubbles 11, deposits on the object to be plated 1, and shields heat from the combustion part 2.

この遮熱膜10は非常に薄い膜であり、膜厚hは600μm以下の厚さが好ましく、50μm〜100μmの厚さがより好ましい。膜厚hを薄くすると、例えば、燃焼室の内壁に成膜する場合に、熱容量を低減することができる。遮熱膜10を遮熱効果が低下しない程度、且つ熱容量が増加しない程度の厚さに形成することで、熱容量の増加による体積効率の低下を防ぎ、熱エネルギーが溜まることで発生する、燃焼室内の温度が上がり次行程で空気が入らなくなるという問題を解決することができる。   The heat shield film 10 is a very thin film, and the film thickness h is preferably 600 μm or less, more preferably 50 μm to 100 μm. When the film thickness h is reduced, for example, when the film is formed on the inner wall of the combustion chamber, the heat capacity can be reduced. By forming the thermal barrier film 10 to such a thickness that the thermal barrier effect does not decrease and the thermal capacity does not increase, a decrease in volumetric efficiency due to an increase in the thermal capacity is prevented, and heat energy is accumulated to generate in the combustion chamber It is possible to solve the problem that the temperature rises and air does not enter in the next stroke.

マイクロバブル11は、微細な気泡のことであり、その直径rが50μm以下、1μm
より大きい気泡のことである(直径rが1μm以下の気泡をナノバブルという)。気泡の直径rが50μm以下になると、以下のような性質を持つ。
The microbubble 11 is a fine bubble, and its diameter r is 50 μm or less, 1 μm.
It is a larger bubble (a bubble having a diameter r of 1 μm or less is called a nanobubble). When the bubble diameter r is 50 μm or less, the following properties are obtained.

マイクロバブル11は、気泡体積が微細であるため、液中を上昇する速度が遅く、通常の気泡と比較して長い間、液中に滞在するという性質を持つ。例えば、直径rが10μmの気泡は一分間に3mm程度の上昇しかしない。   Since the microbubbles 11 have a fine bubble volume, the speed of rising in the liquid is slow, and the microbubbles 11 have a property of staying in the liquid for a long time compared to normal bubbles. For example, a bubble having a diameter r of 10 μm only rises by about 3 mm per minute.

また、マイクロバブル11は、コロイドとしての側面があり、負に帯電している。このため、マイクロバブル11同士は液中で反発し合う。この性質のため、マイクロバブル11同士の結合が無く、気泡濃度が減ることがない。加えて、この性質のため、マイクロバブル11は、液中に均一に拡散するという性質も持つ。   Moreover, the microbubble 11 has a side surface as a colloid and is negatively charged. For this reason, the microbubbles 11 repel each other in the liquid. Because of this property, there is no coupling between the microbubbles 11 and the bubble concentration does not decrease. In addition, due to this property, the microbubbles 11 also have a property of diffusing uniformly in the liquid.

上記の遮熱膜10は、金属メッキ層12内に、50μm以下のマイクロバブル11を、好ましくは30μm以下の所謂低濃度型マイクロバブル11を、より好ましくは10μm以下の所謂高濃度型マイクロバブル11を内包する。より小さいマイクロバブル11の方が、液中での上昇速度が遅くなるため、好ましい。The thermal barrier film 10 includes microbubbles 11 of 50 μm or less, preferably so-called low-concentration microbubbles 11 of 30 μm or less, more preferably so-called high-concentration microbubbles 11 of 10 μm or less in the metal plating layer 12. Contain. The smaller microbubbles 11 are preferable because the rising speed in the liquid is slow.

この遮熱膜10は、金属メッキ層12がマイクロバブル11を内包するので、金属メッ キ層12内の空孔率を高めて、燃焼部2からの熱伝導性を低下させることができる。これにより、膜厚hを薄く形成しても、マイクロバブル11を内包させることで、熱伝達性を低下して、遮熱することができる。また、マイクロバブル11は、その性質上、液中に均一に拡散するため、容易に遮熱膜10内に均一に分散させることができる。The Saeginetsumaku 10, since the metal plating layer 12 containing the microbubbles 11, to increase the porosity of the metal plating key layer 12, it is possible to reduce the thermal conductivity from the combustion section 2. Thereby, even if it forms the film thickness h thin, heat-conductivity can be reduced and heat insulation can be carried out by including the microbubble 11. In addition, since the microbubbles 11 are uniformly diffused in the liquid due to their properties, the microbubbles 11 can be easily dispersed uniformly in the thermal barrier film 10.

次に、本発明に係る実施の形態の遮熱膜の製造方法について、図2及び図3を参照しながら説明する。上記の遮熱膜10の製造方法は、被メッキ物1を、マイクロバブル11を発生させたメッキ液12aに漬けて、金属メッキ層12を被メッキ物1に析出する方法である。Next, the manufacturing method of the thermal barrier film according to the embodiment of the present invention will be described with reference to FIGS. The method for manufacturing the thermal barrier film 10 is a method in which the object to be plated 1 is immersed in a plating solution 12a in which microbubbles 11 are generated, and the metal plating layer 12 is deposited on the object 1 to be plated.

まず、図2に示すように、本発明に係る第1の実施の形態の遮熱膜の製造方法で用いる製造装置20は、メッキ析出装置21とマイクロバブル発生装置22を備え、メッキ析出装置21に加温メッキ槽23、加温装置24、及び攪拌装置25を、マイクロバブル発生装置22に、メッキ液吸入管26、空気吸入管27、及びメッキ液排出管28をそれぞれ備える。   First, as shown in FIG. 2, a manufacturing apparatus 20 used in the method for manufacturing a thermal barrier film according to the first embodiment of the present invention includes a plating deposition apparatus 21 and a microbubble generator 22. Are provided with a heating plating bath 23, a heating device 24, and a stirring device 25, and a microbubble generator 22 with a plating solution suction pipe 26, an air suction tube 27, and a plating solution discharge pipe 28, respectively.

次に、上記の製造装置20を用いて、無電解ニッケルメッキにより、被メッキ物1に遮熱膜10を析出する方法について説明する。なお、この実施の形態では、メッキ液12aに次亜燐酸水溶液を用いて、その次亜燐酸水溶液に、鉄、ニッケル、コバルト、パラジウムなどの鉄族元素や白金族元素の金属などの還元剤13を含浸して、加熱して金属メッキ 12としてニッケル皮膜を析出する無電解ニッケルメッキを用いる。そのため、以下ではメッキ液12aを次亜燐酸水溶液12aとし、金属メッキ層12をニッケル皮膜12とする。Next, a method for depositing the thermal barrier film 10 on the object to be plated 1 by electroless nickel plating using the manufacturing apparatus 20 will be described. In this embodiment, a hypophosphorous acid aqueous solution is used for the plating solution 12a, and a reducing agent 13 such as an iron group element such as iron, nickel, cobalt, palladium, or a metal of a platinum group element is added to the hypophosphorous acid aqueous solution. Electroless nickel plating that impregnates and heats to deposit a nickel film as the metal plating layer 12 is used. Therefore, hereinafter, the plating solution 12 a is a hypophosphorous acid aqueous solution 12 a and the metal plating layer 12 is a nickel film 12.

まず、加温メッキ槽23に注入した次亜燐酸水溶液12aを、メッキ液吸入管26からマイクロバブル発生装置22に吸入する。次に、マイクロバブル発生装置22内で次亜燐酸水溶液12aに、空気吸入管27から導入した空気を、周知の技術の気液せん断法によりマイクロバブル化し、次亜燐酸水溶液12a内にマイクロバブル11を分散する。次に、このマイクロバブル11を内包した次亜燐酸水溶液12aをメッキ液排出管28から加温メッキ槽23へ戻す。   First, the hypophosphorous acid aqueous solution 12 a injected into the heating plating tank 23 is sucked into the microbubble generator 22 from the plating solution suction pipe 26. Next, the air introduced from the air suction pipe 27 into the hypophosphorous acid aqueous solution 12a in the microbubble generator 22 is converted into microbubbles by a gas-liquid shearing method of a well-known technique, and the microbubbles 11 are placed in the hypophosphorous acid aqueous solution 12a. To distribute. Next, the hypophosphorous acid aqueous solution 12 a containing the microbubbles 11 is returned from the plating solution discharge pipe 28 to the heating plating tank 23.

加温メッキ槽23内の次亜燐酸水溶液12aに十分にマイクロバブル11が分散した状
態になると、次に、還元剤13を含浸し、加温装置24により次亜燐酸水溶液12aを加熱する。次に、加温メッキ槽23の次亜燐酸水溶液12aに被メッキ物1を浸すと、還元剤13の酸化によって放出される電子により、被メッキ物1にマイクロバブル11を内包したニッケル皮膜12を析出して、この製造方法は完了する。
When the microbubbles 11 are sufficiently dispersed in the hypophosphorous acid aqueous solution 12 a in the heating plating bath 23, the reducing agent 13 is then impregnated and the hypophosphorous acid aqueous solution 12 a is heated by the heating device 24. Next, when the object to be plated 1 is immersed in the hypophosphorous acid aqueous solution 12a of the heating plating tank 23, the nickel film 12 in which the microbubbles 11 are included in the object 1 to be plated is generated by the electrons released by the oxidation of the reducing agent 13. Precipitation is complete.

マイクロバブル11を内包することで、ニッケル皮膜12の表面に凹凸があるようであれば、マイクロバブル11を分散しない次亜燐酸水溶液12aに浸し、表面のみをメッキしてもよい。これにより、表面の凹凸を埋め、表面を滑らかにすることができる。   If the surface of the nickel film 12 has irregularities by including the microbubbles 11, the microbubbles 11 may be immersed in a hypophosphorous acid aqueous solution 12a that does not disperse, and only the surface may be plated. Thereby, the unevenness | corrugation of the surface can be filled and the surface can be made smooth.

上記の製造方法は、電解メッキや無電解メッキの液中に、微粒子を懸濁させながらメッキすると、金属メッキ層中にこれらの微粒子が含有された複合金属メッキ層を形成する、所謂ナノ粒子複合メッキを応用したものであり、微粒子の代わりにマイクロバブル11を用いた方法である。The above method of production, in the liquid of the electrolytic plating or electroless plating, when a plating while suspended particulates, these particulates to form a composite metal plating layer which is contained in the metal plating layer, the so-called nanoparticle composite This is an application of plating, in which microbubbles 11 are used instead of fine particles.

上記の方法によれば、短時間にマイクロバブ11を内包した薄い膜厚の遮熱膜10を、無電解ニッケルメッキにより被メッキ物1に析出することができる。これにより、自動車用エンジンなどの大量生産品に容易に適用することができる。   According to the above method, the thin thermal barrier film 10 including the microbabs 11 can be deposited on the workpiece 1 by electroless nickel plating in a short time. Thereby, it can be easily applied to mass-produced products such as automobile engines.

また、マイクロバブル11がその性質上、次亜燐酸水溶液12aの内部に略均一に分散するので、容易に遮熱膜10の内部の空孔を略均一に分散することができる。加えて、無電解メッキで製造することができるので、伝導性のないもの、例えばプラスチックやセラミックなどにも遮熱膜10を析出することができる。   In addition, since the microbubbles 11 are dispersed substantially uniformly in the hypophosphorous acid aqueous solution 12a due to the nature thereof, the vacancies inside the thermal barrier film 10 can be easily dispersed substantially uniformly. In addition, since it can be produced by electroless plating, the thermal barrier film 10 can be deposited on non-conductive materials such as plastic and ceramic.

次に、本発明に係る第2の実施の形態の遮熱膜の製造方法について、図3を参照しながら説明する。この製造装置30は、第1の実施の形態の製造装置20のマイクロバブル発生装置22に換えて、空気吸入管を備えず、空気を吸入しないマイクロバブル発生装置31を備える。   Next, a method for manufacturing a thermal barrier film according to a second embodiment of the present invention will be described with reference to FIG. The manufacturing apparatus 30 includes a microbubble generator 31 that does not include an air suction pipe and does not suck air, instead of the microbubble generator 22 of the manufacturing apparatus 20 according to the first embodiment.

第2の実施の形態の製造方法は、加温メッキ槽23から次亜燐酸水溶液12aをメッキ液吸入管32からマイクロバブル発生装置31に吸入する。次に、マイクロバブル発生装置31の内部で次亜燐酸水溶液12aを減圧し、それに伴い発生する次亜燐酸水溶液12aの蒸気(図示しない)を周知の技術の気液せん断法、加圧減圧法、又は超音波によりマイクロバブル化し、次亜燐酸水溶液12a内にマイクロバブル11を分散する。   In the manufacturing method of the second embodiment, the hypophosphorous acid aqueous solution 12 a is sucked from the heating plating tank 23 into the microbubble generator 31 through the plating solution suction pipe 32. Next, the hypophosphorous acid aqueous solution 12a is depressurized inside the microbubble generator 31, and the vapor (not shown) of the hypophosphorous acid aqueous solution 12a generated therewith is known to be a gas-liquid shearing method, a pressurized depressurizing method, Alternatively, microbubbles are formed by ultrasonic waves, and the microbubbles 11 are dispersed in the hypophosphorous acid aqueous solution 12a.

次に、このマイクロバブル11を内包した次亜燐酸水溶液12aをメッキ液排出管33から加温メッキ槽23へ戻す。次に、前述と同様に、マイクロバブル11を内包した薄い膜厚のニッケル皮膜12を、無電解ニッケルメッキにより被メッキ物1に析出する。この方法によれば、前述と同様に、短時間にマイクロバブル11を内包した遮熱膜10を形成することができる。   Next, the hypophosphorous acid aqueous solution 12 a containing the microbubbles 11 is returned from the plating solution discharge pipe 33 to the heating plating tank 23. Next, similarly to the above, a thin nickel film 12 containing microbubbles 11 is deposited on the object to be plated 1 by electroless nickel plating. According to this method, the thermal barrier film 10 including the microbubbles 11 can be formed in a short time as described above.

なお、上記の製造方法は一例であり、本発明は無電解ニッケルメッキに限定せず、例えば、遮熱膜10を析出する被メッキ物1を伝導性のあるものに限定すれば、電解メッキの製造方法を用いてもよい。   Note that the above manufacturing method is an example, and the present invention is not limited to electroless nickel plating. For example, if the object to be plated 1 on which the thermal barrier film 10 is deposited is limited to a conductive one, electrolytic plating may be performed. A manufacturing method may be used.

また、マイクロバブル発生装置22として、外部から空気を導入して、気液を攪拌する方法、又は気液二相流旋回法などの気液せん断法によりマイクロバブル11を発生する装置を用いたが、例えば、超音波によりマイクロバブル11を発生する装置を用いてもよい。   Further, as the microbubble generator 22, a device that generates microbubbles 11 by a method of introducing air from the outside and stirring the gas and liquid, or a gas-liquid shearing method such as a gas-liquid two-phase flow swirl method is used. For example, an apparatus that generates the microbubbles 11 using ultrasonic waves may be used.

さらに、上記のマイクロバブル発生装置22又は31を用いずに、容器内(密閉した加
温メッキ槽でもよい)のメッキ液12aを加圧して、空気などの気体を溶解し、過飽和になったメッキ液12aを減圧して、メッキ液12a内にマイクロバブル11を発生させる方法もある。
Furthermore, without using the microbubble generator 22 or 31 described above, the plating solution 12a in the container (which may be a sealed heating plating tank) is pressurized to dissolve gas such as air and become supersaturated plating. There is also a method in which the microbubbles 11 are generated in the plating solution 12a by reducing the pressure of the solution 12a.

次に、本発明に係る実施の形態の内燃機関について、図4を参照しながら説明する。ここでは、図1に示した被メッキ物1をエンジン40、また、燃焼部2を燃焼室44aとする。図4に示すように、エンジン40は、シリンダブロック41とシリンダヘッド42とを備え、シリンダボア43、ピストン44、インジェクタ45、排気路46、排気バルブ47、吸気路48、及び吸気バルブ49を備える。 Next, an internal combustion engine according to an embodiment of the present invention will be described with reference to FIG. Here, it is assumed that the object 1 to be plated shown in FIG. 1 is an engine 40, and the combustion section 2 is a combustion chamber 44a. As shown in FIG. 4, the engine 40 includes a cylinder block 41 and the cylinder head 42 comprises a cylinder bore 43, the piston 44, the injector 45, the exhaust passage 46, exhaust valves 47, intake passage 48 and the intake valve 49, .

このエンジン40は、上記に記載の遮熱膜10を、ピストン44の上面に形成された燃焼室44aの内壁を含む、ピストン頂面部44bに備える。この構成によれば、燃焼室44aで発生した熱をピストン本体44cに伝達することがないので、冷却損失を減らして、燃費を向上することができる。   The engine 40 includes the above-described heat shield film 10 on a piston top surface portion 44 b including an inner wall of a combustion chamber 44 a formed on the upper surface of the piston 44. According to this configuration, heat generated in the combustion chamber 44a is not transmitted to the piston main body 44c, so that cooling loss can be reduced and fuel efficiency can be improved.

また、例えば、ピストン44を、それぞれ別体の燃焼室44aを有する上部構造体と、コンロッドシャフトと接合される下部構造体とを接合して形成したものを用いる場合は、上部構造体の全表面に遮熱膜10を設けると、より冷却損失を減らすことができる。   For example, when the piston 44 is formed by joining an upper structure having a separate combustion chamber 44a and a lower structure joined to the connecting rod shaft, the entire surface of the upper structure is used. If the thermal barrier film 10 is provided on the cooling loss, the cooling loss can be further reduced.

加えて、燃焼室44aからの冷却損失を減らすために、遮熱膜10を、燃焼室44aの周囲に配置する。詳しくは、シリンダヘッド42の下面、シリンダボア43の内壁面、排
気バルブ47の下面、及び吸気バルブ49の下面に備える。
In addition, in order to reduce the cooling loss from the combustion chamber 44a, the thermal barrier film 10 is disposed around the combustion chamber 44a. For more information, it comprises a lower surface of the cylinder head 42, the inner wall surface of the cylinder bore 43, the lower surface of the exhaust valve 47, and the lower surface of the intake valves 49.

この構成によれば、燃焼室44a内で発生する熱が、燃焼室44aの外部に伝わることを抑制することができるので、冷却損失を減らして、燃費を向上することができる。また、遮熱膜10はエンジン40の構成部材にメッキにより容易に析出することができ、短時間で大量に製造することができる。   According to this configuration, since heat generated in the combustion chamber 44a can be prevented from being transmitted to the outside of the combustion chamber 44a, cooling loss can be reduced and fuel efficiency can be improved. Further, the thermal barrier film 10 can be easily deposited on the constituent members of the engine 40 by plating, and can be manufactured in a large amount in a short time.

さらに、遮熱膜10は、メッキ皮膜12で形成されるため、表面を細かく、且つ硬度を高くすることができる。これにより、シリンダボア43の内壁面などの摺動面にも適用することができる。この実施の形態では、遮熱膜10を上記のように設けたが、燃焼室44aの周囲の構成部材の少なくとも一つに設けてもよい。   Furthermore, since the thermal barrier film 10 is formed of the plating film 12, the surface can be made fine and the hardness can be increased. Thereby, the present invention can also be applied to sliding surfaces such as the inner wall surface of the cylinder bore 43. In this embodiment, the thermal barrier film 10 is provided as described above, but may be provided on at least one of the constituent members around the combustion chamber 44a.

その上、遮熱膜10を、排気路46のエキゾーストマニホールド46a及び排気管46bと、吸気路48のインテークマニホールド48a及び吸気管48bのそれぞれの内壁に設けると、吸入空気を加熱することなくエンジン40へ供給し、排ガスの温度を高温のままDPF(ディーゼル微粒子捕集フィルタ)などの排ガスの後処理装置へ供給することができる。   In addition, if the heat shield film 10 is provided on the inner walls of the exhaust manifold 46a and the exhaust pipe 46b of the exhaust passage 46 and the intake manifold 48a and the intake pipe 48b of the intake passage 48, the engine 40 is not heated without heating the intake air. The exhaust gas can be supplied to an aftertreatment device such as DPF (diesel particulate collection filter) with the exhaust gas temperature kept at a high temperature.

また、本発明の遮熱膜10は、膜厚の薄い、且つ遮熱効果の高い金属メッキ層であり、エンジン40に限定せず、様々な装置に適用することができる。例えば、タービンや建築材などにも適用することができる。The thermal barrier film 10 of the present invention is a metal plating layer having a thin film thickness and a high thermal barrier effect, and is not limited to the engine 40 and can be applied to various devices. For example, the present invention can be applied to turbines and building materials.

本発明の遮熱膜の製造方法は、膜厚を薄くしても、熱伝達性を低下して、遮熱することができる遮熱膜を短時間に、且つ容易な行程で製造することができるので、特に、大量生産される車両に利用することができる。   The method for producing a thermal barrier film of the present invention can produce a thermal barrier film capable of reducing heat transfer and shielding heat even in a thin film in a short time and with an easy process. In particular, it can be used for vehicles that are mass-produced.

1 被メッキ物
2 燃焼部
10 遮熱膜
11 マイクロバブル
12 金属メッキ層(ニッケル皮膜)
12a メッキ液
13 還元剤
20、30 製造装置
21 メッキ析出装置
22、31 マイクロバブル発生装置
40 エンジン(内燃機関)


DESCRIPTION OF SYMBOLS 1 To-be-plated object 2 Combustion part 10 Thermal barrier film 11 Micro bubble 12 Metal plating layer (nickel film)
12a Plating solution 13 Reducing agent 20, 30 Manufacturing device 21 Plating deposition device 22, 31 Microbubble generator 40 Engine (internal combustion engine)


Claims (8)

被メッキ物の表面に積層した状態でその表面を覆う金属メッキ層を備えた遮熱膜の製造方法において、
メッキ液の内部にマイクロバブルを分散し、前記被メッキ物を前記メッキ液でメッキして、前記被メッキ物の表面にニッケルを主成分とした前記金属メッキ層を、前記マイクロバブルを内包させて析出することを特徴とする遮熱膜の製造方法。
In the manufacturing method of the thermal barrier film provided with the metal plating layer covering the surface in a state of being laminated on the surface of the object to be plated,
Microbubbles are dispersed inside the plating solution, the object to be plated is plated with the plating solution, and the metal plating layer mainly composed of nickel is encapsulated on the surface of the object to be plated. A method for producing a thermal barrier film, characterized by being deposited.
外部から導入した空気を、又は前記メッキ液を減圧して発生させた蒸気を、マイクロバブル化して、前記メッキ液の内部に、直径が1μmより大きく、且つ10μm以下の前記マイクロバブルを分散することを特徴とする請求項1に記載の遮熱膜の製造方法。  Air introduced from the outside or vapor generated by reducing the pressure of the plating solution is made into microbubbles, and the microbubbles having a diameter larger than 1 μm and not larger than 10 μm are dispersed inside the plating solution. The method for producing a thermal barrier film according to claim 1. 次亜燐酸水溶液の前記メッキ液に還元剤を含浸して、加熱し、前記還元剤の酸化によって放出される電子により、前記マイクロバブルを内包する前記金属メッキ層を前記被メッキ物に析出することを特徴とする請求項1又は2に記載の遮熱膜の製造方法。The plating solution of hypophosphorous acid aqueous solution is impregnated with a reducing agent, heated, and the metal plating layer containing the microbubbles is deposited on the object to be plated by electrons released by oxidation of the reducing agent. The manufacturing method of the thermal-insulation film | membrane of Claim 1 or 2 characterized by these. 被メッキ物の表面に積層した状態でその表面を覆う金属メッキ層を備えた遮熱膜において、前記金属メッキ層がマイクロバブルを内包することを特徴とする遮熱膜。A heat- shielding film comprising a metal plating layer covering a surface of the object to be plated in a state of being laminated , wherein the metal plating layer encloses microbubbles. 厚さが100μm以下の前記金属メッキ層が、直径が1μmより大きく、且つ10μm以下の前記マイクロバブルを内包していることを特徴とする請求項4に記載の遮熱膜。The thermal barrier film according to claim 4, wherein the metal plating layer having a thickness of 100 μm or less includes the microbubbles having a diameter larger than 1 μm and 10 μm or smaller. 燃焼室の内壁を含むピストン頂面部の少なくとも一部に、請求項4又は5に記載の遮熱膜を備えることを特徴とする内燃機関。  An internal combustion engine comprising the heat shield film according to claim 4 or 5 on at least a part of a piston top surface portion including an inner wall of the combustion chamber. 燃焼室の周囲の、シリンダヘッドの下面、排気バルブの下面、吸気バルブの下面、及びシリンダボアの内面の少なくとも一つに、請求項4又は5に記載の遮熱膜を備えることを特徴とする内燃機関。  An internal combustion engine comprising the thermal barrier film according to claim 4 or 5 on at least one of the lower surface of the cylinder head, the lower surface of the exhaust valve, the lower surface of the intake valve, and the inner surface of the cylinder bore around the combustion chamber. organ. エキゾーストマニホールド、排気管、インレットマニホールド、及び吸気管の少なくとも一つに、請求項4又は5に記載の遮熱膜を備えることを特徴とする内燃機関。  An internal combustion engine comprising the heat shield film according to claim 4 or 5 in at least one of an exhaust manifold, an exhaust pipe, an inlet manifold, and an intake pipe.
JP2012058411A 2012-03-15 2012-03-15 Heat shield film manufacturing method, heat shield film, and internal combustion engine Expired - Fee Related JP6035795B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012058411A JP6035795B2 (en) 2012-03-15 2012-03-15 Heat shield film manufacturing method, heat shield film, and internal combustion engine
PCT/JP2013/056406 WO2013137127A1 (en) 2012-03-15 2013-03-08 Process for producing heat-shielding film, heat-shielding film, and internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012058411A JP6035795B2 (en) 2012-03-15 2012-03-15 Heat shield film manufacturing method, heat shield film, and internal combustion engine

Publications (2)

Publication Number Publication Date
JP2013189959A JP2013189959A (en) 2013-09-26
JP6035795B2 true JP6035795B2 (en) 2016-11-30

Family

ID=49161037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012058411A Expired - Fee Related JP6035795B2 (en) 2012-03-15 2012-03-15 Heat shield film manufacturing method, heat shield film, and internal combustion engine

Country Status (2)

Country Link
JP (1) JP6035795B2 (en)
WO (1) WO2013137127A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6029537B2 (en) * 2013-05-14 2016-11-24 株式会社ハイビック平田 Surface treatment apparatus and treatment method for workpiece
JP6859942B2 (en) * 2017-12-19 2021-04-14 トヨタ自動車株式会社 Internal combustion engine
CN109139312A (en) * 2018-10-08 2019-01-04 台州市黄岩杉盛复合材料科技有限公司 A kind of diesel engine inlet manifold

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59226199A (en) * 1983-06-03 1984-12-19 Suzuki Motor Co Ltd Heat-insulating dispersion-plated film
JP2639124B2 (en) * 1989-09-07 1997-08-06 三菱マテリアル株式会社 Long heat transfer tube manufacturing equipment
JP2981184B2 (en) * 1997-02-21 1999-11-22 トーカロ株式会社 Boiler heat transfer tube and method for producing boiler heat transfer tube with excellent effect of suppressing deposit adhesion on inner surface of tube
JP2008106290A (en) * 2006-10-23 2008-05-08 Ricoh Co Ltd Electrical contact member
JP5176618B2 (en) * 2008-03-17 2013-04-03 株式会社村田製作所 Imprint mold and imprint method using the same
JP5457640B2 (en) * 2008-03-31 2014-04-02 株式会社豊田中央研究所 Internal combustion engine
JP5082987B2 (en) * 2008-03-31 2012-11-28 株式会社豊田中央研究所 Internal combustion engine
JP5315880B2 (en) * 2008-09-17 2013-10-16 株式会社豊田中央研究所 Method for forming thin film and method for manufacturing internal combustion engine

Also Published As

Publication number Publication date
JP2013189959A (en) 2013-09-26
WO2013137127A1 (en) 2013-09-19

Similar Documents

Publication Publication Date Title
US20170234216A1 (en) Composite thermal barrier coating
US9383119B2 (en) Heater
JP6035795B2 (en) Heat shield film manufacturing method, heat shield film, and internal combustion engine
Yi et al. Synthesis of discrete alkyl‐silica hybrid nanowires and their assembly into nanostructured superhydrophobic membranes
JP6321934B2 (en) Method for manufacturing a heat insulating layer on a member surface facing an engine combustion chamber
JP4458496B2 (en) In-cylinder injection internal combustion engine, piston for in-cylinder injection internal combustion engine, method for manufacturing piston for in-cylinder injection internal combustion engine
CN102500245B (en) Preparation method of metal-base ceramic composite filter membrane
JP2013060620A (en) Internal combustion engine and method for manufacturing the same
JP2011052630A (en) Internal combustion engine
CN109957800B (en) Thermal barrier coating with temperature following layer
US20180038308A1 (en) Internal combustion engine and method for coating internal combustion engine components
JP2013194561A (en) Compression self ignition engine
US20210046421A1 (en) Gaseous emissions treatment components and extrusion methods for their manufacture
JP2013189960A (en) Method for producing heat-shielding film, heat-shielding film, and internal combustion engine
JP6814406B2 (en) Surface structure of aluminum member and its manufacturing method
JPS60184950A (en) Internal-combustion engine having wall face of combustion chamber applied with heat insulating material
CN105965020A (en) Preparation method for composite metal porous plate
US20190107045A1 (en) Multi-layer thermal barrier
Fan et al. Simple preparation of a durable and low-cost load-bearing three-dimensional porous material for emulsion separation
JP6422979B2 (en) Method and apparatus for increasing the gaseous content of hydrocarbon fuels
CN206480611U (en) A kind of IGBT heat-radiating substrates
CN212535867U (en) Cavitation-resistant cylinder sleeve with titanium nickel-tungsten carbide coating
CN110343977B (en) Preparation method of continuous carbon fiber reinforced aluminum matrix composite
CN114933488B (en) Porous medium model and preparation method thereof, oil displacement experimental method and experimental system
CN210194021U (en) Permanent electroplating fine device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161017

R150 Certificate of patent or registration of utility model

Ref document number: 6035795

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees