JP6035645B2 - Method for producing magnesium alloy material - Google Patents

Method for producing magnesium alloy material Download PDF

Info

Publication number
JP6035645B2
JP6035645B2 JP2012034450A JP2012034450A JP6035645B2 JP 6035645 B2 JP6035645 B2 JP 6035645B2 JP 2012034450 A JP2012034450 A JP 2012034450A JP 2012034450 A JP2012034450 A JP 2012034450A JP 6035645 B2 JP6035645 B2 JP 6035645B2
Authority
JP
Japan
Prior art keywords
rolling
phase
magnesium alloy
heat treatment
long
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012034450A
Other languages
Japanese (ja)
Other versions
JP2013170292A (en
Inventor
河村 能人
能人 河村
雅史 野田
雅史 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KUMAMOTO INDUSTRIAL SUPPORT FOUNDATION
Kumamoto University NUC
Original Assignee
KUMAMOTO INDUSTRIAL SUPPORT FOUNDATION
Kumamoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KUMAMOTO INDUSTRIAL SUPPORT FOUNDATION, Kumamoto University NUC filed Critical KUMAMOTO INDUSTRIAL SUPPORT FOUNDATION
Priority to JP2012034450A priority Critical patent/JP6035645B2/en
Publication of JP2013170292A publication Critical patent/JP2013170292A/en
Application granted granted Critical
Publication of JP6035645B2 publication Critical patent/JP6035645B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Metal Rolling (AREA)

Description

本発明は、圧延工程を有するマグネシウム合金材の製造方法に関する。   The present invention relates to a method for producing a magnesium alloy material having a rolling process.

マグネシウム合金は実用金属材料の中で最も軽量であると同時に、比強度や切削性および減衰能に優れていることが知られており、環境調和型軽量材料として期待されている。一方で、マグネシウム合金の結晶構造は最密六方格子であることに起因して、塑性加工は熱間で行われ、鋳造材やダイカスト材としての利用が多くを占める。   Magnesium alloys are known to be the lightest material among practical metal materials, and at the same time, are excellent in specific strength, machinability and damping ability, and are expected as environment-friendly lightweight materials. On the other hand, due to the fact that the crystal structure of the magnesium alloy is a close-packed hexagonal lattice, the plastic working is performed hot, and the use as casting material and die casting material occupies much.

最近ではマグネシウム合金に種々の元素を微小添加することで、高強度化と加工性の双方を解決できる合金開発が進められ、中でも長周期積層構造(Long Period Stacking Order)相(以下、「LPSO相」ともいう。)を有するマグネシウム合金が注目されている(例えば特許文献1参照)。   Recently, the development of alloys that can solve both high strength and workability by adding various elements to a magnesium alloy in minute amounts has been promoted, and in particular, the Long Period Stacking Order phase (hereinafter referred to as the “LPSO phase”). ”Is also drawing attention (for example, see Patent Document 1).

特許3905115号公報Japanese Patent No. 3905115

本発明の一態様は、高強度・高延性を有しつつ加工材の段階で強度の異方性を低減することを課題とする。また、本発明の一態様は、圧延加工前に熱処理を加えることで異方性を低減することを課題とする。   An object of one embodiment of the present invention is to reduce anisotropy of strength at the stage of a processed material while having high strength and high ductility. Another object of one embodiment of the present invention is to reduce anisotropy by performing heat treatment before rolling.

本発明の一態様は、マグネシウム合金材に押出加工を行う押出工程と、前記押出工程によって作製された押出材に熱間圧延を行う圧延工程と、を有し、前記押出材は、長周期積層構造相を有し、前記圧延工程は、前記押出材の押出方向と略垂直方向に圧延加工されることを特徴とするマグネシウム合金材の製造方法である。   One aspect of the present invention includes an extrusion process for performing extrusion processing on a magnesium alloy material, and a rolling process for performing hot rolling on the extruded material produced by the extrusion process. A method for producing a magnesium alloy material having a structural phase, wherein the rolling step is rolled in a direction substantially perpendicular to an extrusion direction of the extruded material.

また、本発明の一態様において、前記長周期積層構造相は、前記押出加工の押出方向と略平行に形成されているとよい。   In one embodiment of the present invention, the long-period laminated structure phase may be formed substantially parallel to the extrusion direction of the extrusion process.

本発明の一態様は、長周期積層構造相を有するマグネシウム合金材に温間圧延または熱間圧延を行う圧延工程を有し、前記圧延工程は、前記長周期積層構造相に対して略垂直方向に圧延加工されることを特徴とするマグネシウム合金材の製造方法である。   One aspect of the present invention includes a rolling step of performing warm rolling or hot rolling on a magnesium alloy material having a long-period laminated structure phase, and the rolling step is substantially perpendicular to the long-period laminated structure phase. It is the manufacturing method of the magnesium alloy material characterized by being rolled.

また、本発明の一態様において、前記圧延工程によって作製された圧延材は、湾曲または屈曲した長周期積層構造相、結晶方位差を有する長周期積層構造相、及び、結晶粒界を有し連続的に湾曲または屈曲した長周期積層構造相の少なくとも一つを有するとよい。   In one embodiment of the present invention, the rolled material produced by the rolling step has a curved or bent long-period laminate structure phase, a long-period laminate structure phase having a crystal orientation difference, and a continuous grain boundary. It is preferable to have at least one of a long-period laminated structure phase that is curved or bent.

また、本発明の一態様において、前記圧延工程によって作製された圧延材は、α−Mg相を有し、前記α−Mg相は高傾角結晶粒界及び低傾角結晶粒界を有しており、前記高傾角結晶粒界の量をXとし、前記低傾角結晶粒界の量をYとした場合に下記式(1)を満たすとよい。
(1)0.7≦X/(X+Y)
In one embodiment of the present invention, the rolled material produced by the rolling step has an α-Mg phase, and the α-Mg phase has a high-angle crystal grain boundary and a low-angle crystal grain boundary. When the amount of the high-angle crystal grain boundary is X and the amount of the low-angle crystal grain boundary is Y, the following formula (1) may be satisfied.
(1) 0.7 ≦ X / (X + Y)

また、本発明の一態様において、前記圧延工程の後に、前記圧延工程によって作製された圧延材に573K以下の温度で熱処理を行う熱処理工程をさらに具備し、前記熱処理工程によって作製された熱処理材は、湾曲または屈曲した長周期積層構造相、結晶方位差を有する長周期積層構造相、及び、結晶粒界を有し連続的に湾曲または屈曲した長周期積層構造相の少なくとも一つを有するとよい。   Further, in one embodiment of the present invention, after the rolling step, the rolling material produced by the rolling step further includes a heat treatment step of performing a heat treatment at a temperature of 573 K or less, and the heat treatment material produced by the heat treatment step includes: A long-period laminated structure phase having a curved or bent shape, a long-period laminated structure phase having a crystal orientation difference, and a long-period laminated structure phase having a crystal grain boundary and continuously curved or bent. .

また、本発明の一態様において、前記押出工程と前記圧延工程の間に、前記押出材に熱処理を行う工程をさらに具備するとよい。これにより、異方性を低減することができる。   Moreover, 1 aspect of this invention WHEREIN: It is good to further comprise the process of heat-processing the said extrusion material between the said extrusion process and the said rolling process. Thereby, anisotropy can be reduced.

本発明の一態様を適用することで、高強度・高延性を有しつつ加工材の段階で強度の異方性を低減することができる。
また、本発明の一態様によれば、圧延加工前に熱処理を加えることで異方性を低減することができる。
By applying one embodiment of the present invention, strength anisotropy can be reduced at the stage of a processed material while having high strength and high ductility.
According to one embodiment of the present invention, anisotropy can be reduced by performing heat treatment before rolling.

本発明の一態様に係るマグネシウム合金材の製造方法を説明するための模式図である。It is a schematic diagram for demonstrating the manufacturing method of the magnesium alloy material which concerns on 1 aspect of this invention. 本発明の一態様に係るマグネシウム合金材の製造方法を説明するための模式図である。It is a schematic diagram for demonstrating the manufacturing method of the magnesium alloy material which concerns on 1 aspect of this invention. (a)は押出材(熱処理なし)の結晶組織を示す写真であり、(b)は熱処理後の押出材の結晶組織を示す写真である。(A) is a photograph showing the crystal structure of the extruded material (without heat treatment), and (b) is a photograph showing the crystal structure of the extruded material after heat treatment. 圧延材(熱処理なし)の引張試験の結果を示す図である。It is a figure which shows the result of the tension test of a rolling material (without heat processing). 圧延材の引張試験の結果である降伏強度YS、引張強さUTS、伸びElそれぞれと熱処理温度との関係を示す図である。It is a figure which shows the relationship between each of the yield strength YS which is the result of the tensile test of a rolling material, tensile strength UTS, and elongation El, and heat processing temperature. (a)〜(c)は、圧延材(熱処理なし)の光学顕微鏡写真、IPFマップ、EBSDによる粒界マップを示す図である。(A)-(c) is a figure which shows the grain-boundary map by the optical micrograph of a rolling material (without heat processing), an IPF map, and EBSD. 圧延材(熱処理なし)のTEM写真である。It is a TEM photograph of a rolled material (without heat treatment). (a)は573K、3.6ksの熱処理を行った圧延材の組織写真、(b)は623K、3.6ksの熱処理を行った圧延材の組織写真、(c)は673K、3.6ksの熱処理を行った圧延材の組織写真、(d)は773K、3.6ksの熱処理を行った圧延材の組織写真である。(A) is a structure photograph of a rolled material that has been heat treated at 573 K, 3.6 ks, (b) is a structure photograph of a rolled material that has been heat treated at 623 K, 3.6 ks, and (c) is a structure image of 673 K, 3.6 ks. The structure photograph of the rolling material which heat-processed, (d) is a structure photograph of the rolling material which heat-processed 773K and 3.6 ks. (a)は押出材(熱処理無し)の結晶組織であり、(b)は熱処理後の押出材の結晶組織である。(A) is the crystal structure of the extruded material (no heat treatment), and (b) is the crystal structure of the extruded material after the heat treatment. 熱処理無しの圧延材と熱処理後の圧延材の公称応力−ひずみ曲線を示す図である。It is a figure which shows the nominal stress-strain curve of the rolling material without heat processing, and the rolling material after heat processing. 圧延材の縦断面の光顕組織結果と結晶方位解析結果を示す図である。It is a figure which shows the optical microscope structure result and crystal orientation analysis result of the longitudinal cross-section of a rolling material. (a)は圧延材に573Kの熱処理を行った後の光顕組織、(b)は圧延材に623Kの熱処理を行った後の光顕組織、(c)は圧延材に673Kの熱処理を行った後の光顕組織である。(A) Light microstructure after heat treatment of 573K on the rolled material, (b) Light microscope structure after heat treatment of 623K on the rolled material, and (c) after heat treatment of 673K on the rolled material. It is a light microscopic organization.

以下では、本発明の実施の形態について図面を用いて詳細に説明する。ただし、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは、当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following description, and it will be easily understood by those skilled in the art that modes and details can be variously changed without departing from the spirit and scope of the present invention. Therefore, the present invention should not be construed as being limited to the description of the embodiments below.

(実施の形態1)
図1は、本発明の一態様に係るマグネシウム合金材の製造方法を説明するための模式図である。
(Embodiment 1)
FIG. 1 is a schematic view for explaining a method for producing a magnesium alloy material according to one embodiment of the present invention.

まず、α-Mg相及び長周期積層構造相を有するマグネシウム合金からなる鋳造材を用意する。このマグネシウム合金の組成は長周期積層構造相が生成するものであればよく、例えば以下のものが挙げられる。   First, a casting material made of a magnesium alloy having an α-Mg phase and a long-period laminated structure phase is prepared. The composition of this magnesium alloy should just be what a long period laminated structure phase produces | generates, for example, the following are mentioned.

第1のマグネシウム合金は、Znをa原子%含有し、Yをb原子%含有し、残部がMgからなり、aとbは下記式(1)〜(3)を満たす。
(1)0.5≦a≦5.0
(2)1.0≦b≦5.0
(3)0.5a≦b
The first magnesium alloy contains a atom% of Zn, b atom% of Y, the balance is Mg, and a and b satisfy the following formulas (1) to (3).
(1) 0.5 ≦ a ≦ 5.0
(2) 1.0 ≦ b ≦ 5.0
(3) 0.5a ≦ b

第2のマグネシウム合金は、Znをa原子%含有し、Dy、Ho及びErからなる群から選択される少なくとも1種の元素を合計でb原子%含有し、残部がMgからなり、aとbは下記式(1)〜(3)を満たす。
(1)0.2≦a≦5.0
(2)0.2≦b≦5.0
(3)0.5a−0.5≦b
The second magnesium alloy contains a atom% of Zn, contains a total of at least one element selected from the group consisting of Dy, Ho, and Er, and contains b atom% in total, with the balance being Mg, and a and b Satisfies the following formulas (1) to (3).
(1) 0.2 ≦ a ≦ 5.0
(2) 0.2 ≦ b ≦ 5.0
(3) 0.5a-0.5 ≦ b

第3のマグネシウム合金は、Znをa原子%含有し、Dy、Ho及びErからなる群から選択される少なくとも1種の元素を合計でb原子%含有し、残部がMgからなり、aとbは下記式(1)〜(3)を満たす。
(1)0.2≦a≦3.0
(2)0.2≦b≦5.0
(3)2a−3≦b
The third magnesium alloy contains Zn by a atom%, contains at least one element selected from the group consisting of Dy, Ho, and Er in total, and contains b atom%, with the balance being Mg, and a and b Satisfies the following formulas (1) to (3).
(1) 0.2 ≦ a ≦ 3.0
(2) 0.2 ≦ b ≦ 5.0
(3) 2a-3 ≦ b

第4のマグネシウム合金は、Znをa原子%含有し、Gd、Tb、Tm及びLuからなる群から選択される少なくとも1種の元素を合計でb原子%含有し、残部がMgからなり、aとbは下記式(1)〜(3)を満たす。
(1)0.1≦a≦5.0
(2)0.25≦b≦5.0
(3)0.5a−0.5≦b
The fourth magnesium alloy contains Zn at a atom%, contains at least one element selected from the group consisting of Gd, Tb, Tm and Lu in total b atom%, with the balance being Mg, And b satisfy the following formulas (1) to (3).
(1) 0.1 ≦ a ≦ 5.0
(2) 0.25 ≦ b ≦ 5.0
(3) 0.5a-0.5 ≦ b

第5のマグネシウム合金は、Znをa原子%含有し、Gd、Tb、Tm及びLuからなる群から選択される少なくとも1種の元素を合計でb原子%含有し、残部がMgからなり、aとbは下記式(1)〜(3)を満たす。
(1)0.1≦a≦3.0
(2)0.25≦b≦5.0
(3)2a−3≦b
The fifth magnesium alloy contains Zn by a atom%, contains at least one element selected from the group consisting of Gd, Tb, Tm and Lu in total b atom%, with the balance being Mg, And b satisfy the following formulas (1) to (3).
(1) 0.1 ≦ a ≦ 3.0
(2) 0.25 ≦ b ≦ 5.0
(3) 2a-3 ≦ b

第6のマグネシウム合金は、Cu、Ni及びCoの少なくとも1種の金属を合計でa原子%含有し、Y、Dy、Er、Ho、Gd、Tb及びTmからなる群から選択される1又は2以上の元素を合計でb原子%含有し、残部がMgからなり、aとbは下記式(1)〜(3)を満たす。また、より好ましくは、aとbが下記式(1')〜(3')を満たす。
(1)0.2≦a≦10
(2)0.2≦b≦10
(3)2/3a−2/3<b
(1')0.2≦a≦5
(2')0.2≦b≦5
(3')2/3a−1/6<b
The sixth magnesium alloy contains at least one metal of Cu, Ni, and Co in total a atom%, and is selected from the group consisting of Y, Dy, Er, Ho, Gd, Tb, and Tm. The total amount of the above elements is b atom%, the balance is Mg, and a and b satisfy the following formulas (1) to (3). More preferably, a and b satisfy the following formulas (1 ′) to (3 ′).
(1) 0.2 ≦ a ≦ 10
(2) 0.2 ≦ b ≦ 10
(3) 2 / 3a-2 / 3 <b
(1 ′) 0.2 ≦ a ≦ 5
(2 ′) 0.2 ≦ b ≦ 5
(3 ') 2 / 3a-1 / 6 <b

なお、上記の第1〜第6のマグネシウム合金それぞれに長周期積層構造相が生成する範囲内で他の元素を含有させることも可能である。   In addition, it is also possible to contain another element in the said 1st-6th magnesium alloy in the range which a long period laminated structure phase produces | generates.

次に、上記の鋳造材に温間押出加工または熱間押出加工を行うことにより、図1に示すように、LPSO相の長手方向を押出方向と略平行に揃えた押出材を作製する。ここでいう略平行とは、LPSO相の70体積%以上が押出方向に対して±20°以下の角度を有する方向を意味する。また、熱間押出加工とは、材料の再結晶温度以上の温度で行う押出加工をいい、温間押出加工とは、熱間押出加工の温度より低い温度で行う押出加工をいう。   Next, by performing a warm extrusion process or a hot extrusion process on the cast material, as shown in FIG. 1, an extruded material in which the longitudinal direction of the LPSO phase is aligned substantially parallel to the extrusion direction is produced. Here, “substantially parallel” means a direction in which 70% by volume or more of the LPSO phase has an angle of ± 20 ° or less with respect to the extrusion direction. Moreover, hot extrusion refers to extrusion performed at a temperature equal to or higher than the recrystallization temperature of the material, and warm extrusion refers to extrusion performed at a temperature lower than the temperature of hot extrusion.

次に、上記の押出材を切断し、押出材の押出方向と略垂直方向に熱間圧延加工を行うことにより、図1に示すように、LPSO相を大きく湾曲または屈曲させた圧延材を作製する。ここでいう略垂直方向とは、押出方向に対して±20°以下の角度を有する方向を意味する。
また、本実施の形態では、押出材に熱間圧延加工を行っているが、押出材に温間圧延加工を行ってもよい。熱間圧延加工とは、材料の再結晶温度以上の温度で行う圧延加工をいい、温間圧延加工とは、熱間圧延加工の温度より低い温度で行う圧延加工をいう。
Next, the extruded material is cut and hot rolled in a direction substantially perpendicular to the extrusion direction of the extruded material, thereby producing a rolled material in which the LPSO phase is greatly curved or bent as shown in FIG. To do. Here, the substantially vertical direction means a direction having an angle of ± 20 ° or less with respect to the extrusion direction.
Moreover, in this Embodiment, although the hot rolling process is performed to the extruded material, you may perform a warm rolling process to an extruded material. The hot rolling process refers to a rolling process performed at a temperature equal to or higher than the recrystallization temperature of the material, and the warm rolling process refers to a rolling process performed at a temperature lower than the temperature of the hot rolling process.

なお、押出材の押出方向と略垂直方向に圧延加工を行うことは、LPSO相に対して略垂直方向に圧延加工を行うことでもある。ここでいうLPSO相に対して略垂直方向とは、70体積%以上のLPSO相に対して圧延方向と70°〜110°の角度を有する方向を意味する。   Note that performing the rolling process in a direction substantially perpendicular to the extrusion direction of the extruded material is also performing the rolling process in a direction substantially perpendicular to the LPSO phase. The term “substantially perpendicular to the LPSO phase” as used herein means a direction having an angle of 70 ° to 110 ° with the rolling direction with respect to the LPSO phase of 70% by volume or more.

本実施の形態によれば、LPSO相に対して略垂直方向に圧延加工を行うことにより、圧延材の強度の異方性を押出材に比べて低減することができる。例えば押出材の強度の異方性が30〜35%である場合は、圧延材の強度の異方性を押出材のそれに比べて半分以下(例えば10%程度)に低減することができる。   According to the present embodiment, by performing the rolling process in a direction substantially perpendicular to the LPSO phase, the strength anisotropy of the rolled material can be reduced as compared with the extruded material. For example, when the anisotropy of the strength of the extruded material is 30 to 35%, the anisotropy of the strength of the rolled material can be reduced to half or less (for example, about 10%) compared to that of the extruded material.

機械的特性の観点からは作製圧延材の圧延方向を0°と定義したとき,45°および90°方向を引張試験片の長手方向に切り出しても、0°方向の耐力・引張強さ・伸びともに10%程度以内に収まっており、等方材とはいかないまでも材料強度に等方性が見られた。組織の観点からは、Mg合金は加工後に特定配向へ向き易いが、ランダムな組織を形成できると同時に、LPSO相が一方向を向くことを、キンク帯の導入やLPSO相の湾曲・屈曲およびLPSO相内に粒界を導入した結果、組織的にも異方性が防げたと考えられる。
なお、キンク帯の導入とは、LPSO型Mg合金に塑性変形を加えることでLPSO相内に導入される屈曲・湾曲した部分である。
From the viewpoint of mechanical properties, when the rolling direction of the produced rolled material is defined as 0 °, even if the 45 ° and 90 ° directions are cut out in the longitudinal direction of the tensile test piece, the proof stress, tensile strength, and elongation in the 0 ° direction Both were within about 10%, and the material strength was isotropic even if it was not an isotropic material. From the structural point of view, Mg alloys are easily oriented to a specific orientation after processing, but at the same time a random structure can be formed, and at the same time that the LPSO phase is oriented in one direction, the introduction of kink bands, bending / bending of the LPSO phase, and LPSO As a result of introducing grain boundaries in the phase, it is considered that anisotropy was prevented from the structural viewpoint.
The introduction of the kink band is a bent / curved portion introduced into the LPSO phase by applying plastic deformation to the LPSO type Mg alloy.

また、本実施の形態によるマグネシウム合金材の製造方法は、強度の異方性を低減できる方法であるため、同等の機械的特性を持つマグネシウム合金材を押出加工によって作製する場合に比べて加工前の予熱温度をより低くすることができ、ひいては、プロセスコストの低減に寄与することが期待できる。例えば、673K程度の予熱温度で押出加工を行うのに対して、本方法による圧延加工では予熱温度を643K程度とすることができる。   In addition, the manufacturing method of the magnesium alloy material according to the present embodiment is a method capable of reducing the strength anisotropy, and therefore, before processing, compared to a case where a magnesium alloy material having equivalent mechanical characteristics is manufactured by extrusion processing. Thus, it can be expected that the preheating temperature can be lowered, and as a result, the process cost can be reduced. For example, while the extrusion process is performed at a preheating temperature of about 673K, the preheating temperature can be set to about 643K in the rolling process according to the present method.

また、圧延工程によって作製された圧延材のα−Mg相は高傾角結晶粒界及び低傾角結晶粒界を有しており、高傾角結晶粒界の量をXとし、低傾角結晶粒界の量をYとした場合に下記式(1)を満たす。
(1)0.7≦X/(X+Y)
The α-Mg phase of the rolled material produced by the rolling process has a high-angle crystal grain boundary and a low-angle crystal grain boundary. The amount of the high-angle crystal grain boundary is X, and the low-angle crystal grain boundary When the amount is Y, the following formula (1) is satisfied.
(1) 0.7 ≦ X / (X + Y)

このように70%以上の高傾角結晶粒界を有し、30%以下の低傾角結晶粒界を有することにより、圧延材の強度の異方性を低減できると考えられる。ちなみに、従来のLPSO相型マグネシウム合金の圧延材のα-Mg相では、高傾角結晶粒界が20%程度で低傾角結晶粒界が80%程度である。   Thus, it is thought that the anisotropy of the strength of the rolled material can be reduced by having a high-angle crystal grain boundary of 70% or more and a low-angle crystal grain boundary of 30% or less. Incidentally, in the α-Mg phase of the rolled material of the conventional LPSO phase type magnesium alloy, the high-angle crystal grain boundary is about 20% and the low-angle crystal grain boundary is about 80%.

なお、低傾角結晶粒界とは、1つの粒界を挟んだ隣接間結晶粒の方位差が15°未満(又は5°〜15°)のものをいい、高傾角結晶粒界とは、1つの粒界を挟んだ隣接間結晶粒の方位差が15°以上のものをいう。   In addition, the low-angle crystal grain boundary means that the orientation difference between adjacent crystal grains sandwiching one grain boundary is less than 15 ° (or 5 ° to 15 °), and the high-angle crystal grain boundary is 1 An orientation difference between adjacent grains sandwiching one grain boundary is 15 ° or more.

また、LPSO相に対して略垂直方向に圧延加工を行うこと、又は、70%以上の高傾角結晶粒界を有し、30%以下の低傾角結晶粒界を有することにより、圧延材の結晶粒径が5μm程度であっても高強度化を達成できる。   In addition, by rolling in a direction substantially perpendicular to the LPSO phase, or having a high-angle crystal grain boundary of 70% or more and a low-angle crystal grain boundary of 30% or less, High strength can be achieved even when the particle size is about 5 μm.

また、上記の圧延工程の後に、圧延材に573K以下の温度で熱処理を行っても、その熱処理材のLPSO相の湾曲または屈曲は消滅しないので、高強度を保持したままである。   Further, even if the rolled material is heat-treated at a temperature of 573 K or lower after the rolling step, the bending or bending of the LPSO phase of the heat-treated material does not disappear, so that the high strength is maintained.

(実施の形態2)
図2は、本発明の一態様に係るマグネシウム合金材の製造方法を説明するための模式図である。
(Embodiment 2)
FIG. 2 is a schematic diagram for explaining a method for manufacturing a magnesium alloy material according to one embodiment of the present invention.

図2に示すマグネシウム合金材の製造方法は、圧延工程前の押出材に熱処理を行う工程を有する点を除いて、図1に示すマグネシウム合金材の製造方法と同様である。   The manufacturing method of the magnesium alloy material shown in FIG. 2 is the same as the manufacturing method of the magnesium alloy material shown in FIG. 1 except that it includes a step of performing a heat treatment on the extruded material before the rolling step.

本実施の形態においても実施の形態1と同様の効果を得ることができる。   Also in the present embodiment, the same effect as in the first embodiment can be obtained.

Znを2原子%、Yを2原子%含有し、残部がMgと不可避的不純物からなるMg96Zn合金を真空溶解炉に投入して溶解を行った。次に、加熱溶解した材料を金型に入れて鋳造し、φ29mm×L60mmのインゴット(鋳造材)を作製した。次に、インゴットに、押出温度350℃において押出比10、押出速度2.5mm/秒として押出加工を行った。次に、増加した伸びから生じる異方性を減少させるために、この押出材に673Kの温度で3.6ksの熱処理を行った後に、その押出材を水で冷却した。α-Mg相は静的再結晶と粒成長を示した。LPSO相内のキンク帯は熱処理によって回復した。 An Mg 96 Zn 2 Y 2 alloy containing 2 atomic% Zn and 2 atomic% Y and the balance being Mg and inevitable impurities was put into a vacuum melting furnace for melting. Next, the heat-dissolved material was placed in a mold and cast to prepare an ingot (cast material) of φ29 mm × L60 mm. Next, the ingot was extruded at an extrusion temperature of 350 ° C. with an extrusion ratio of 10 and an extrusion speed of 2.5 mm / second. Next, in order to reduce the anisotropy resulting from the increased elongation, the extruded material was heat treated at a temperature of 673 K for 3.6 ks, and then the extruded material was cooled with water. The α-Mg phase showed static recrystallization and grain growth. The kink band in the LPSO phase was recovered by heat treatment.

ここで、押出材と熱処理材のSEM写真を撮像し、その写真を図3(a),(b)に示す。図3(a)は押出材(熱処理なし)の結晶組織を示し、図3(b)は熱処理後の押出材の結晶組織を示す。図3(a),(b)に示す合金はLPSO相、α-Mg相及びMgZn化合物を含み、LPSO相は明るい部分である。熱処理された押出材のLPSO相は、熱処理なしの押出材のLPSO相に比べてより微細に分散されている。熱処理を行うことでLPSO相がblock状からplate状に変化していることが分かる。また、LPSO相の長手方向は押出方向と略平行方向に形成されており、押出方向と平行ではないLPSO相は微細に分散されている。 Here, SEM photographs of the extruded material and the heat-treated material are taken, and the photographs are shown in FIGS. 3 (a) and 3 (b). FIG. 3A shows the crystal structure of the extruded material (without heat treatment), and FIG. 3B shows the crystal structure of the extruded material after heat treatment. The alloy shown in FIGS. 3A and 3B includes an LPSO phase, an α-Mg phase, and an Mg 3 Zn 3 Y 2 compound, and the LPSO phase is a bright portion. The LPSO phase of the heat treated extrudate is more finely dispersed than the LPSO phase of the extrudate without heat treatment. It can be seen that the LPSO phase is changed from the block shape to the plate shape by performing the heat treatment. Further, the longitudinal direction of the LPSO phase is formed in a direction substantially parallel to the extrusion direction, and the LPSO phase not parallel to the extrusion direction is finely dispersed.

次に、この熱処理材から切削加工により5mm(板厚)×20mm(幅)×50mm(長さ)の圧延用板材を切り出した。次に、この圧延用板材を673Kの温度で0.6ksの時間加熱した後に圧延加工を行い、加工後は直ちに水冷した。圧延方向は押出方向と垂直方向とし、圧延加工はロール温度を493K、ロール周速を0.17m/sとし、4passの圧延加工で板厚1mmの板材を作製した。   Next, a 5 mm (plate thickness) × 20 mm (width) × 50 mm (length) rolling plate material was cut out from the heat treated material by cutting. Next, this rolling plate was heated at a temperature of 673 K for a time of 0.6 ks, and then subjected to rolling, and immediately after the processing, it was cooled with water. The rolling direction was a direction perpendicular to the extrusion direction, the rolling process was performed at a roll temperature of 493 K, the roll peripheral speed was 0.17 m / s, and a plate material having a thickness of 1 mm was produced by a 4 pass rolling process.

次に、圧延材を切削することで、寸法12mm(長さ)×2.5mm(幅)×1mm(厚さ)を有する引張試験片を作製した。その試験片を473〜773Kの温度で3.6ksの熱処理を行った後に水で冷却した。その後、初期ひずみ速度5×10−4/sにて室温引張試験を行った。そして、熱処理無しの圧延材及び熱処理後の圧延材の組織を、光顕(optical microscopy)、SEM(scanning electron microscopy)、TEM(transmission electron microscopy)によって観察し、結晶方位解析をEBSD(electron back-scattered diffraction)によって行った。EPSDは、0.3μmの測定ステップで、200×200μmの領域において実行した。組織観察は引張試験片の縦断面で行った。縦断面とは、引張試験片の長さ方向と平行で且つ厚さ方向と平行な断面をいう。 Next, a tensile test piece having dimensions of 12 mm (length) × 2.5 mm (width) × 1 mm (thickness) was produced by cutting the rolled material. The test piece was subjected to a heat treatment of 3.6 ks at a temperature of 473 to 773K and then cooled with water. Thereafter, a room temperature tensile test was performed at an initial strain rate of 5 × 10 −4 / s. And the structure of the rolled material without heat treatment and the rolled material after heat treatment is observed by optical microscopy, SEM (scanning electron microscopy), TEM (transmission electron microscopy), and crystal orientation analysis is performed by EBSD (electron back-scattered). diffraction). The EPSD was performed in a 200 × 200 μm region with a 0.3 μm measurement step. The structure was observed on the longitudinal section of the tensile test piece. A longitudinal section refers to a section parallel to the length direction of the tensile test piece and parallel to the thickness direction.

図4は、圧延材(熱処理なし)の引張試験の結果を示す図である。図4は、引張特性の異方性を示している。引張試験の方向0°は引張方向と圧延加工の圧延方向が平行を意味しており、引張試験の方向45°は引張方向が圧延加工の圧延方向に対して45°であることを意味しており、引張試験の方向90°は引張方向が圧延加工の圧延方向に対して90°であることを意味している。図4において、YSは降伏強度であり、UTSは引張強さであり、Elは伸びである。   FIG. 4 is a diagram showing the results of a tensile test of a rolled material (without heat treatment). FIG. 4 shows the anisotropy of the tensile properties. A tensile test direction of 0 ° means that the tensile direction and the rolling direction of the rolling process are parallel, and a tensile test direction of 45 ° means that the tensile direction is 45 ° with respect to the rolling direction of the rolling process. The direction of 90 ° in the tensile test means that the tensile direction is 90 ° with respect to the rolling direction of the rolling process. In FIG. 4, YS is the yield strength, UTS is the tensile strength, and El is the elongation.

図4に示すように、圧延材は、降伏強度YSの異方性が最大値約14%あり、押出材の異方性に比べると半分以下である。ちなみに、押出材では、0°と90°の方向で強度の値が30%程度異なる。また、引張強度UTSは、引張試験の方向に依存することなく、ほとんど一定である。また、伸びElは、引張試験の方向45°で最大値を示した。引張強度を制御する重要な要素は、塑性変形前のLPSO相の微細な分散であると考えられる。これは熱処理によって達成される。また、強度の異方性の減少は、熱処理と圧延加工によってα−Mg相の粒界にLPSO相が分散したことに起因すると考えられる。   As shown in FIG. 4, the rolled material has a maximum anisotropy of yield strength YS of about 14%, which is less than half of the anisotropy of the extruded material. Incidentally, in the extruded material, the strength value differs by about 30% between 0 ° and 90 °. Further, the tensile strength UTS is almost constant without depending on the direction of the tensile test. Further, the elongation El showed a maximum value in the direction of the tensile test at 45 °. An important factor for controlling the tensile strength is considered to be fine dispersion of the LPSO phase before plastic deformation. This is achieved by heat treatment. The decrease in strength anisotropy is considered to be caused by the dispersion of the LPSO phase at the grain boundaries of the α-Mg phase by heat treatment and rolling.

図5は、圧延材の引張試験の結果である降伏強度YS、引張強さUTS、伸びElそれぞれと熱処理温度との関係を示す図である。引張試験の方向は0°である。   FIG. 5 is a diagram showing the relationship between the yield strength YS, the tensile strength UTS, the elongation El, and the heat treatment temperature, which are the results of the tensile test of the rolled material. The direction of the tensile test is 0 °.

図6(a)〜(c)は、圧延材(熱処理なし)の光学顕微鏡写真、IPF(inverse pole figure)マップ、EBSDによる粒界マップを示す図である。図6(b),(c)に示す暗い領域はLPSO相に相当する。   FIGS. 6A to 6C are diagrams showing an optical micrograph, an IPF (inverse pole figure) map, and a grain boundary map by EBSD of a rolled material (without heat treatment). The dark regions shown in FIGS. 6B and 6C correspond to the LPSO phase.

図6(a)に示すように、圧延加工を行うことで、光顕組織でも分かるほどLPSO相を大きく湾曲させる(大きな曲率を有する)ことができる。なお、圧延加工は板厚が減少し、長さが増加するが、幅方向への変形は殆どない。圧延加工で作用する力はせん断力である。また、LPSO相内にキンク帯が形成されている。   As shown in FIG. 6A, by performing the rolling process, the LPSO phase can be greatly curved (having a large curvature) as can be seen from the light microscopic structure. In the rolling process, the plate thickness decreases and the length increases, but there is almost no deformation in the width direction. The force acting in the rolling process is a shearing force. A kink band is formed in the LPSO phase.

図6(c)に示すように、α−Mg相における高傾角結晶粒界と低傾角結晶粒界の割合は80.7%と19.3%である。   As shown in FIG. 6C, the ratios of the high-angle crystal grain boundary and the low-angle crystal grain boundary in the α-Mg phase are 80.7% and 19.3%.

図7は、圧延材(熱処理なし)のTEM写真であり、低倍率でも高倍率でもLPSO内が屈曲又は湾曲およびそれ以上の結晶傾角を有していることを示している。LPSO相内に導入されたキンク帯の連続変形は、硬い相であるLPSO相が圧延加工で大きく変形したことを示している。連続的なキンク変形を持つLPSO相は、圧延加工の後に形成され、大きな湾曲を示している。キンク帯は、多くの観察領域で角度(結晶方位差)を有しており、キンク帯が結晶粒界に変化したと考えられる。   FIG. 7 is a TEM photograph of a rolled material (without heat treatment), which shows that the LPSO has a bent or curved shape and a crystal tilt angle higher than that at low and high magnifications. The continuous deformation of the kink band introduced into the LPSO phase indicates that the LPSO phase, which is a hard phase, is greatly deformed by rolling. The LPSO phase with continuous kink deformation is formed after rolling and exhibits a large curvature. The kink band has an angle (crystal orientation difference) in many observation regions, and it is considered that the kink band changed to a grain boundary.

LPSO相の連続的な湾曲又は屈曲又は折れ曲がりは連続的に長距離にわたっており、曲率は70°程度である。すなわち、LPSO相が大きな延性(変形能力)を有していることが分かる。また、LPSO相内部は段階状に変化しており、一つの方向に流れるのではなく多方向にLPSO相が向いていることにより、LPSO相の変形能が高くなったと考えられる。ただし、LPSO相とα-Mg相の界面に空隙や剥離は認められない。   The continuous bending or bending or bending of the LPSO phase continuously extends over a long distance, and the curvature is about 70 °. That is, it can be seen that the LPSO phase has a large ductility (deformability). In addition, the LPSO phase changes in a stepwise manner, and it is thought that the deformability of the LPSO phase is enhanced by the fact that the LPSO phase faces in multiple directions instead of flowing in one direction. However, no voids or separation is observed at the interface between the LPSO phase and the α-Mg phase.

図8(a)は、573Kの温度で3.6ksの熱処理を行った圧延材を光学顕微鏡によって撮像した組織写真であり、図8(b)は、623Kの温度で3.6ksの熱処理を行った圧延材を光学顕微鏡によって撮像した組織写真であり、図8(c)は、673Kの温度で3.6ksの熱処理を行った圧延材を光学顕微鏡によって撮像した組織写真であり、図8(d)は、773Kの温度で3.6ksの熱処理を行った圧延材を光学顕微鏡によって撮像した組織写真である。   FIG. 8A is a structural photograph obtained by imaging a rolled material that has been heat treated for 3.6 ks at a temperature of 573 K with an optical microscope, and FIG. 8B is a heat image for 3.6 ks that is heated at a temperature of 623 K. FIG. 8C is a structural photograph of a rolled material that has been subjected to a heat treatment of 3.6 ks at a temperature of 673 K using an optical microscope. FIG. ) Is a structure photograph of a rolled material that has been heat treated for 3.6 ks at a temperature of 773 K, taken with an optical microscope.

図8(a)〜(c)において暗い領域はLPSO相に相当し、明るい領域はα-Mg相に相当する。熱処理温度が上昇したので、α-Mg相の粒は成長したが、623Kの熱処理温度まで、LPSO相とα-Mg相は熱処理前のそれらと比較してほとんど違いを示さなかった。熱処理温度が上昇したので、α-Mg相の粒はより大きくなったが、これは非常にゆっくり起こった。その理由は、粒成長がLPSO相によって制御されたからである。   8A to 8C, the dark region corresponds to the LPSO phase, and the bright region corresponds to the α-Mg phase. As the heat treatment temperature increased, α-Mg phase grains grew, but until the heat treatment temperature of 623 K, the LPSO phase and α-Mg phase showed little difference compared to those before heat treatment. As the heat treatment temperature increased, the α-Mg phase grains became larger, but this occurred very slowly. The reason is that grain growth is controlled by the LPSO phase.

図8は、機械的特性のわずかな変化と573Kの熱処理に関する圧延材の微細組織がどのように生じたかについて示している。図5に示す引張試験結果では、623Kの熱処理によって降伏強度及び引張強さが著しく減少した。図3と図6から、この合金のα-Mg相の静的再結晶温度が623K以上であることが分かる。合金が673Kを超えた温度で熱処理されたとき、降伏強度及び引張強さはおよそ200MPaと330MPaに落ちたが、伸びは20%以上まで改善された。   FIG. 8 shows how the microstructure of the rolled material with respect to the slight change in mechanical properties and the heat treatment of 573K occurred. In the tensile test results shown in FIG. 5, the yield strength and the tensile strength were significantly reduced by the heat treatment at 623K. 3 and 6 that the static recrystallization temperature of the α-Mg phase of this alloy is 623 K or higher. When the alloy was heat treated at temperatures above 673 K, the yield strength and tensile strength dropped to approximately 200 MPa and 330 MPa, but the elongation was improved to over 20%.

図8(c)に示すように、673Kの温度で3.6ksの熱処理を行った圧延材におけるLPSO相が明確に変形していることが分かる。激しく湾曲又は屈曲したLPSO相が熱処理しても変化しないため、LPSO相とLPSO相の間に挟まれたα-Mg相は結晶粒成長が抑止される。この傾向は押出材より強い。また、673Kの温度で熱処理された圧延材の異方性は押出材のそれと比較して低い。   As shown in FIG. 8 (c), it can be seen that the LPSO phase in the rolled material subjected to the heat treatment of 3.6 ks at the temperature of 673 K is clearly deformed. Since the intensely curved or bent LPSO phase does not change even when heat-treated, the α-Mg phase sandwiched between the LPSO phase and the LPSO phase is inhibited from crystal grain growth. This tendency is stronger than the extruded material. Moreover, the anisotropy of the rolled material heat-treated at a temperature of 673 K is lower than that of the extruded material.

Znを2原子%、Yを2原子%含有し、残部がMgと不可避的不純物からなるMg96Zn合金を真空溶解炉に投入して溶解を行った。次に、加熱溶解した材料を金型に入れて鋳造し、φ29mm×L60mmのインゴット(鋳造材)を作製した。次に、インゴットに、押出温度350℃において押出比10、押出速度2.5mm/秒として押出加工を行った。次に、この押出材に773Kの温度で3.6ksの熱処理を行った。 An Mg 96 Zn 2 Y 2 alloy containing 2 atomic% Zn and 2 atomic% Y and the balance being Mg and inevitable impurities was put into a vacuum melting furnace for melting. Next, the heat-dissolved material was placed in a mold and cast to prepare an ingot (cast material) of φ29 mm × L60 mm. Next, the ingot was extruded at an extrusion temperature of 350 ° C. with an extrusion ratio of 10 and an extrusion speed of 2.5 mm / second. Next, the extruded material was subjected to a heat treatment of 3.6 ks at a temperature of 773K.

ここで、押出材と熱処理材のSEM写真を撮像し、その写真を図9(a),(b)に示す。図9(a)は押出材(熱処理無し)の結晶組織を示し、図9(b)は熱処理後の押出材の結晶組織を示す。押出材を熱処理により高延性化させることで0.2%耐力は200MPa程度まで低下してしまうが、伸びは20%に達する。熱処理を行うことでLPSO相がblock状(図9(a)参照)からplate状(図9(b)参照)に変化していることが分かる。   Here, SEM photographs of the extruded material and the heat-treated material are taken, and the photographs are shown in FIGS. 9 (a) and 9 (b). FIG. 9A shows the crystal structure of the extruded material (no heat treatment), and FIG. 9B shows the crystal structure of the extruded material after the heat treatment. By making the extruded material highly ductile by heat treatment, the 0.2% yield strength is reduced to about 200 MPa, but the elongation reaches 20%. It can be seen that the LPSO phase is changed from a block shape (see FIG. 9A) to a plate shape (see FIG. 9B) by performing the heat treatment.

次に、この熱処理材から切削加工により板厚5mmの圧延用板材を切り出した。次に、この圧延用板材を673Kの温度で0.6ksの時間加熱した後に圧延加工を行い、加工後は直ちに水冷した。圧延加工はロール温度を493K、ロール周速を0.17m/sとし、4passの圧延加工で板厚1mmの板材を作製した。   Next, a plate material for rolling having a thickness of 5 mm was cut out from the heat treated material by cutting. Next, this rolling plate was heated at a temperature of 673 K for a time of 0.6 ks, and then subjected to rolling, and immediately after the processing, it was cooled with water. The rolling process was performed at a roll temperature of 493 K, a roll peripheral speed of 0.17 m / s, and a plate material having a plate thickness of 1 mm was produced by a 4 pass rolling process.

次に、板材を切削することで、平行部寸法12mm(長さ)×2.5mm(幅)×1mm(厚さ)を有する板状引張試験片を作製し、その試験片を473〜773Kの温度で3.6ksの熱処理後、初期ひずみ速度5×10−4/sにて室温引張試験及び組織観察を行った。引張試験の引張方向と圧延加工の圧延方向は平行であり、組織観察は板状引張試験片の縦断面で行った。また、組織観察は光顕およびSEMを用い、結晶方位解析はEBSDにより実施した。 Next, by cutting the plate material, a plate-like tensile test piece having a parallel part size of 12 mm (length) × 2.5 mm (width) × 1 mm (thickness) was produced, and the test piece was measured at 473 to 773K. After heat treatment at a temperature of 3.6 ks, a room temperature tensile test and a structure observation were performed at an initial strain rate of 5 × 10 −4 / s. The tensile direction of the tensile test and the rolling direction of the rolling process were parallel, and the structure observation was performed on the longitudinal section of the plate-like tensile test piece. In addition, the structure observation was performed using a light microscope and SEM, and the crystal orientation analysis was performed by EBSD.

図10は、熱処理無しの圧延材と熱処理後の圧延材の公称応力−ひずみ曲線を示す図である。熱処理無しの圧延材の0.2%耐力は350MPaで伸びは4%を示し、熱処理温度573Kまでは0.2%耐力および引張強さ共に顕著な低下を示さないことが分かった。後述する光顕組織からも分かるが、圧延加工を行うことでもLPSO相内にキンク帯を導入できたため、強度が飛躍的に向上したと考えられる。一方で、熱処理温度が623Kに達すると強度は低下し、伸びが向上することから、α-Mg相の静的再結晶が生じることが分かり、加工前のLPSO相の形状に依存することなく、強度向上と延性向上の発現機構は押出材と同一であることが分かった。   FIG. 10 is a diagram showing nominal stress-strain curves of a rolled material without heat treatment and a rolled material after heat treatment. It was found that the 0.2% yield strength of the rolled material without heat treatment was 350 MPa and the elongation was 4%, and that the 0.2% yield strength and the tensile strength were not significantly reduced up to the heat treatment temperature of 573K. As can be seen from the light microscopic structure described later, it is considered that the kink band was introduced into the LPSO phase even by rolling, and the strength was dramatically improved. On the other hand, when the heat treatment temperature reaches 623K, the strength decreases and the elongation improves, so that it can be seen that static recrystallization of the α-Mg phase occurs, without depending on the shape of the LPSO phase before processing, It was found that the mechanism of strength improvement and ductility improvement was the same as that of the extruded material.

図11に圧延材の縦断面の光顕組織結果と結晶方位解析結果を示す。圧延方向に対してLPSO相は大きな曲率を有し非常に大きな変形をしていることが伺え、LPSO相内部にはキンク帯の形成が認められる。α-Mg相に対して硬質相であるLPSO相が曲率を増加させながら塑性変形したにも拘わらず、LPSO相とα-Mg相の界面に剥離現象は認められなかった。LPSO相内部には強化機構であるキンク帯が導入され、LPSO相に挟まれたα-Mg相は、圧延加工によって微細組織に変化し、強度向上が達成できたと考えられる。図11に示すEBSD解析から、圧延材中のα-Mg相における高傾角結晶粒界と低傾角結晶粒界の割合はそれぞれ80.7%と19.3%を示し、平均結晶粒径は5μmであった。   FIG. 11 shows the optical microstructure results and crystal orientation analysis results of the longitudinal section of the rolled material. It can be seen that the LPSO phase has a large curvature with respect to the rolling direction and is very deformed, and formation of a kink band is recognized inside the LPSO phase. Although the LPSO phase, which is a hard phase with respect to the α-Mg phase, was plastically deformed while increasing the curvature, no delamination phenomenon was observed at the interface between the LPSO phase and the α-Mg phase. It is considered that a kink band, which is a strengthening mechanism, was introduced inside the LPSO phase, and the α-Mg phase sandwiched between the LPSO phases was changed to a fine structure by rolling and the strength was improved. From the EBSD analysis shown in FIG. 11, the ratios of the high-angle and low-angle grain boundaries in the α-Mg phase in the rolled material are 80.7% and 19.3%, respectively, and the average grain size is 5 μm. Met.

図12(a)は、圧延材に573Kの熱処理を行った後の光顕組織を示し、図12(b)は、圧延材に623Kの熱処理を行った後の光顕組織を示し、図12(c)は、圧延材に673Kの熱処理を行った後の光顕組織を示す。   FIG. 12 (a) shows the light microstructure after the heat treatment of 573K on the rolled material, FIG. 12 (b) shows the light microscope structure after the heat treatment of 623K on the rolled material, and FIG. ) Shows the light microscopic structure after the heat treatment of 673K on the rolled material.

図10及び図12より熱処理無しの圧延材と573Kの温度で3.6ksの熱処理後の圧延材の光顕組織に変化は認められず、熱処理温度が高温になっても組織と機械的特性は安定していた。一方で熱処理温度の上昇に伴い、押出材同様に圧延材でもα-Mg相の結晶粒成長は生じるが、673Kの熱処理後の圧延材ではキンク帯が残存していることが光顕組織においても認められ、α-Mg相の結晶粒成長を抑止していた。   10 and 12, no change was observed in the light microstructure of the rolled material without heat treatment and the rolled material after heat treatment of 3.6 ks at a temperature of 573 K, and the structure and mechanical properties are stable even when the heat treatment temperature is increased. Was. On the other hand, as the heat treatment temperature rises, α-Mg phase grain growth occurs in the rolled material as well as the extruded material, but it is also observed in the light microscopic structure that the kink band remains in the rolled material after the heat treatment of 673K. Therefore, the growth of crystal grains in the α-Mg phase was suppressed.

本実施例によれば、圧延加工によってLPSO相内にキンク帯を導入することができ、圧延加工回数の増加に伴いLPSO相の変形曲率は大きくなり、キンク帯の形成がLPSO相の変形を助長していることが分かった。また、圧延加工前組織の段階でLPSO相をα-Mg相内に微細分散させることで、圧延加工でも容易に薄板材の作製ができることが分かり、低加工回数で高強度を達成した。   According to the present embodiment, the kink band can be introduced into the LPSO phase by rolling, the deformation curvature of the LPSO phase increases with the number of rolling processes, and the formation of the kink band promotes the deformation of the LPSO phase. I found out that In addition, it was found that by thinly dispersing the LPSO phase in the α-Mg phase at the stage of the structure before rolling, a thin plate material can be easily produced even by rolling, and high strength was achieved with a low number of times of processing.

Claims (6)

長周期積層構造相を有するマグネシウム合金材に押出加工を行う押出工程と、
前記押出工程によって作製された押出材に熱間圧延を行う圧延工程と、
を有し
記圧延工程は、前記押出材の押出方向と略垂直方向に圧延加工される工程であり、
前記圧延工程によって作製された圧延材は、前記圧延材の引張試験の引張方向が0°と90°で降伏強度の値の相違が14%以下であり、
前記0°は、前記引張方向が前記圧延材の圧延方向と平行であり、
前記90°は、前記引張方向が前記圧延方向に対して90°であることを特徴とするマグネシウム合金材の製造方法。
An extrusion process for extruding a magnesium alloy material having a long-period laminated structure phase ;
A rolling process for hot rolling the extruded material produced by the extrusion process;
Have,
Before SL rolling step is a step that is rolled in the extrusion direction substantially perpendicular direction of the extruded material,
The rolled material produced by the rolling process has a tensile strength of 0 ° and 90 ° in the tensile test of the rolled material, and the difference in yield strength is 14% or less,
The 0 ° is such that the tensile direction is parallel to the rolling direction of the rolled material,
The method for producing a magnesium alloy material, wherein the 90 ° is 90 ° with respect to the rolling direction .
請求項1において、
前記長周期積層構造相は、前記押出加工の押出方向と略平行に形成されていることを特徴とするマグネシウム合金材の製造方法。
In claim 1,
The method for producing a magnesium alloy material, wherein the long-period laminated structure phase is formed substantially parallel to an extrusion direction of the extrusion process.
長周期積層構造相を有するマグネシウム合金材に温間圧延または熱間圧延を行う圧延工程を有し、
前記圧延工程は、前記長周期積層構造相に対して略垂直方向に圧延加工される工程であり、
前記圧延工程によって作製された圧延材は、前記圧延材の引張試験の引張方向が0°と90°で降伏強度の値の相違が14%以下であり、
前記0°は、前記引張方向が前記圧延材の圧延方向と平行であり、
前記90°は、前記引張方向が前記圧延方向に対して90°であることを特徴とするマグネシウム合金材の製造方法。
It has a rolling process for performing warm rolling or hot rolling on a magnesium alloy material having a long-period laminated structure phase,
The rolling step is a step of rolling in a direction substantially perpendicular to the long-period laminated structure phase ,
The rolled material produced by the rolling process has a tensile strength of 0 ° and 90 ° in the tensile test of the rolled material, and the difference in yield strength is 14% or less,
The 0 ° is such that the tensile direction is parallel to the rolling direction of the rolled material,
The method for producing a magnesium alloy material, wherein the 90 ° is 90 ° with respect to the rolling direction .
請求項1乃至のいずれか一項において、
前記圧延工程によって作製された圧延材は、α−Mg相を有し、
前記α−Mg相は高傾角結晶粒界及び低傾角結晶粒界を有しており、
前記高傾角結晶粒界の量をXとし、前記低傾角結晶粒界の量をYとした場合に下記式(1)を満たすことを特徴とするマグネシウム合金材の製造方法。
(1)0. 7≦X/(X+Y)
In any one of Claims 1 thru | or 3 ,
The rolled material produced by the rolling step has an α-Mg phase,
The α-Mg phase has a high-angle crystal grain boundary and a low-angle crystal grain boundary,
A method for producing a magnesium alloy material, wherein X is the amount of the high-angle crystal grain boundary, and Y is the amount of the low-angle crystal grain boundary.
(1) 0. 7 ≦ X / (X + Y)
請求項1乃至のいずれか一項において、
前記圧延工程の後に、前記圧延工程によって作製された圧延材に573K以下の温度で熱処理を行う熱処理工程をさらに具備し、
前記熱処理工程によって作製された熱処理材は、湾曲または屈曲した長周期積層構造相、結晶方位差を有する長周期積層構造相、及び、結晶粒界を有し連続的に湾曲または屈曲した長周期積層構造相の少なくとも一つを有することを特徴とするマグネシウム合金材の製造方法。
In any one of Claims 1 thru | or 4 ,
After the rolling step, further comprising a heat treatment step of heat treating the rolled material produced by the rolling step at a temperature of 573 K or less,
The heat treatment material produced by the heat treatment step includes a long-period laminated structure phase having a curved or bent shape, a long-period laminated structure phase having a crystal orientation difference, and a long-period laminated film having a crystal grain boundary and continuously curved or bent. A method for producing a magnesium alloy material, comprising at least one of structural phases.
請求項1または2において、
前記押出工程と前記圧延工程の間に、前記押出材に熱処理を行うことで、前記長周期積層構造相をblock状からplate状に変化させる工程をさらに具備することを特徴とするマグネシウム合金材の製造方法。
In claim 1 or 2,
The magnesium alloy material further comprising a step of changing the long-period laminated structure phase from a block shape to a plate shape by performing a heat treatment on the extruded material between the extrusion step and the rolling step. Production method.
JP2012034450A 2012-02-20 2012-02-20 Method for producing magnesium alloy material Active JP6035645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012034450A JP6035645B2 (en) 2012-02-20 2012-02-20 Method for producing magnesium alloy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012034450A JP6035645B2 (en) 2012-02-20 2012-02-20 Method for producing magnesium alloy material

Publications (2)

Publication Number Publication Date
JP2013170292A JP2013170292A (en) 2013-09-02
JP6035645B2 true JP6035645B2 (en) 2016-11-30

Family

ID=49264432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012034450A Active JP6035645B2 (en) 2012-02-20 2012-02-20 Method for producing magnesium alloy material

Country Status (1)

Country Link
JP (1) JP6035645B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115418584B (en) * 2022-08-26 2023-04-28 昆明理工大学 Method for improving thermal stability of two-dimensional nano magnesium alloy material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002348646A (en) * 2001-05-25 2002-12-04 Nippon Crose Rolling Corp Long size coil of wrought magnesium alloy and manufacturing method therefor
JP4150219B2 (en) * 2002-06-27 2008-09-17 松下電器産業株式会社 Plastic processing method of massive magnesium alloy material
ES2458559T3 (en) * 2003-11-26 2014-05-06 Yoshihito Kawamura Magnesium alloy of high strength and high hardness, and method for its production
JP5660525B2 (en) * 2010-03-05 2015-01-28 独立行政法人産業技術総合研究所 General-purpose magnesium alloy sheet that exhibits formability similar to that of aluminum alloy and method for producing the same
JP5565617B2 (en) * 2010-03-31 2014-08-06 国立大学法人 熊本大学 Method for producing magnesium alloy material and magnesium alloy material
JP5581505B2 (en) * 2010-03-31 2014-09-03 国立大学法人 熊本大学 Magnesium alloy sheet

Also Published As

Publication number Publication date
JP2013170292A (en) 2013-09-02

Similar Documents

Publication Publication Date Title
US10077492B2 (en) Ultrafine-grained profile of twin-crystal wrought magnesium alloys, preparation process and use of the same
JP4189687B2 (en) Magnesium alloy material
JP5557121B2 (en) Magnesium alloy
JP3592310B2 (en) Magnesium-based alloy wire and method of manufacturing the same
EP3395458B1 (en) Magnesium alloy sheet and method for manufacturing same
US10260130B2 (en) Magnesium alloy sheet material
KR101785121B1 (en) Magnesium alloy sheet
JP6860235B2 (en) Magnesium-based alloy wrought material and its manufacturing method
US9754703B2 (en) Copper alloy wire rod and method for manufacturing the same
JP7274585B2 (en) Magnesium alloy plate and manufacturing method thereof
JP4803357B2 (en) Heat-resistant magnesium alloy produced by hot working and method for producing the same
KR101532646B1 (en) Preparing method of Manesium alloy sheet using symmetric and assymetric rolling and the magnesium alloy sheet thereby
KR101700419B1 (en) Method for preparing high-strength magnesium alloy extruded material using low temperature and slow speed extrusion process and magnesium alloy extruded material manufactured thereby
JP6425919B2 (en) Magnesium alloy wire and method of manufacturing the same
JP2021508002A (en) Magnesium alloy plate material and its manufacturing method
JP6099257B2 (en) Magnesium-based alloy thin plate and foil material and method for producing them
JP6035645B2 (en) Method for producing magnesium alloy material
JP7370167B2 (en) Magnesium alloy wire and its manufacturing method
JP7370166B2 (en) Magnesium alloy wire and its manufacturing method
Kaibyshev et al. Strategy for achieving high strength in Al-Mg-Sc alloys by intense plastic straining
JP2012077320A (en) Magnesium alloy sheet material for bending and method for producing the same, and magnesium alloy pipe and method for producing the same
JP2004124154A (en) Rolled wire rod of magnesium based alloy, and production method therefor
CN110785506A (en) Magnesium alloy sheet material and method for producing same
WO2010044320A1 (en) Magnesium alloy and process for production thereof
JP2023088899A (en) Method for producing magnesium alloy and magnesium alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161014

R150 Certificate of patent or registration of utility model

Ref document number: 6035645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250