JP6034844B2 - Manufacturing method of heat conductive sheet - Google Patents

Manufacturing method of heat conductive sheet Download PDF

Info

Publication number
JP6034844B2
JP6034844B2 JP2014224965A JP2014224965A JP6034844B2 JP 6034844 B2 JP6034844 B2 JP 6034844B2 JP 2014224965 A JP2014224965 A JP 2014224965A JP 2014224965 A JP2014224965 A JP 2014224965A JP 6034844 B2 JP6034844 B2 JP 6034844B2
Authority
JP
Japan
Prior art keywords
conductive sheet
heat conductive
sheet
heat
silicone resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014224965A
Other languages
Japanese (ja)
Other versions
JP2015045019A (en
Inventor
博由紀 薄井
博由紀 薄井
荒巻 慶輔
慶輔 荒巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dexerials Corp filed Critical Dexerials Corp
Priority to JP2014224965A priority Critical patent/JP6034844B2/en
Publication of JP2015045019A publication Critical patent/JP2015045019A/en
Application granted granted Critical
Publication of JP6034844B2 publication Critical patent/JP6034844B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、発熱性電子部品等の放熱を促す熱伝導性シートの製造方法に関する。   The present invention relates to a method for manufacturing a heat conductive sheet that promotes heat dissipation from a heat-generating electronic component or the like.

近年の電子機器においては、高性能化、小型化及び軽量化に伴う半導体パッケージの高密度実装化、LSIの高集積化及び高速化などによって、各種の電子部品にて発生する熱を効果的に外部へ放散させる熱対策が非常に重要な課題になっている。そのため、電気機器の各種電子部品、例えばトランジスタやサイリスタなどの発熱性電子部品等に、熱伝導性の良好なシート材料(以下、「熱伝導性シート」という)を介してヒートシンク等の放熱部材を取り付けるという対策が一般的に採られている。   In recent electronic devices, heat generated in various electronic components has been effectively reduced by high-density mounting of semiconductor packages, high integration and high-speed of LSIs due to higher performance, smaller size and lighter weight. Measures to dissipate heat to the outside are a very important issue. Therefore, heat dissipation members such as heat sinks are attached to various electronic components of electrical equipment, such as heat-generating electronic components such as transistors and thyristors, through a sheet material having good thermal conductivity (hereinafter referred to as “thermal conductive sheet”). The measure of mounting is generally taken.

この種の熱伝導性シートは、一般に、発熱源となる発熱性電子部品等の被装着部位の凹凸に対して柔軟に追従させて、発熱性電子部品等に密着した状態で取り付けられる。そして、かかる熱伝導性シートは、発熱性電子部品等と放熱部材との接触熱抵抗を低減させ、発熱性電子部品等にて発生する熱を効率良く放熱部材に伝導させる機能を果たす。   In general, this type of heat conductive sheet is attached in a state of being in close contact with the heat generating electronic component or the like by flexibly following the unevenness of the mounted portion of the heat generating electronic component or the like serving as a heat generation source. Such a heat conductive sheet functions to reduce the contact thermal resistance between the heat-generating electronic component and the like and the heat radiating member, and efficiently conduct heat generated in the heat-generating electronic component and the like to the heat radiating member.

また、熱伝導性シートは、放熱部材を発熱性電子部品等に圧着させる際において、放熱部材と発熱性電子部品とを密着させるとともに、これらの変形や損傷を防ぐ保護材としての機能をも果たす。そのため、この熱伝導性シートにおいては、高い熱伝導性のみならず、柔軟性及び形状追従性に優れることが要求される。さらに、熱伝導性シートは、発熱性電子部品や電子機器筐体の小型化に応じて、薄型に形成されることが要求されている。このような要求に対して、高い熱伝導率を有する炭素繊維を熱伝導材として配合した熱伝導性シートも提案されている(特許文献1参照)。   The heat conductive sheet also serves as a protective material for preventing the deformation and damage of the heat radiating member and the heat generating electronic component when the heat radiating member is pressure-bonded to the heat generating electronic component. . Therefore, this heat conductive sheet is required not only to have high heat conductivity but also to be excellent in flexibility and shape followability. Furthermore, the heat conductive sheet is required to be formed thin in accordance with miniaturization of the heat generating electronic component and the electronic device casing. In response to such a demand, a heat conductive sheet in which carbon fiber having high heat conductivity is blended as a heat conductive material has also been proposed (see Patent Document 1).

この種の熱伝導性シートは、シリコーンゴムなどの高分子材料中に、炭素繊維や酸化アルミニウム等の熱伝導材料を配合したシート母材を形成し、所定の厚さにスライスすることにより製造される。ここで、熱伝導性シートは、シートのスライス厚さが個々の製品の熱伝導率に大きく影響することから、厚さを均一にスライスすることが重要となる。また、熱伝導性シートは、炭素繊維がシートの厚さ方向に配向されることで、高い熱伝導特性を発揮することから、スライス工程において炭素繊維がシートの厚さ方向に配向されている状態を保つことが重要となる。   This type of heat conductive sheet is manufactured by forming a sheet base material in which a heat conductive material such as carbon fiber or aluminum oxide is blended in a polymer material such as silicone rubber and slicing it to a predetermined thickness. The Here, in the heat conductive sheet, since the slice thickness of the sheet greatly affects the thermal conductivity of each product, it is important to slice the thickness uniformly. In addition, since the heat conductive sheet exhibits high heat conduction characteristics because the carbon fiber is oriented in the thickness direction of the sheet, the carbon fiber is oriented in the thickness direction of the sheet in the slicing step. It is important to keep

従来のシリコーン系ゴムブロックのスライス方法としては、切断刃の刃先角度や表面粗さを規定するとともに非回転のまま直線的に移動させる方法(特許文献2)や、切断刃とゴムブロックの相対的な移動方向及び刃先の角度を規定する方法(特許文献3)が提案されている。   As a conventional method for slicing a silicone rubber block, the cutting edge angle and surface roughness of the cutting blade are regulated and moved linearly without rotation (Patent Document 2), or the relative relationship between the cutting blade and the rubber block. A method (Patent Document 3) has been proposed that defines a specific moving direction and blade angle.

しかし、熱伝導性シートは、上述したように高い柔軟性、形状追従性が求められることから、従来のスライス方法ではシート母材が変形しやすく、薄く均一な厚さにスライスすることが困難であった。また、従来の熱伝導性シートは、スライスされた表面が切断刃との摩擦抵抗によって擦られることにより、炭素繊維の配向が乱れてしまい、熱伝導特性の低下を招いていた。   However, since the heat conductive sheet is required to have high flexibility and shape followability as described above, the sheet base material is easily deformed by the conventional slicing method, and it is difficult to slice into a thin and uniform thickness. there were. Further, in the conventional heat conductive sheet, the sliced surface is rubbed by the frictional resistance with the cutting blade, so that the orientation of the carbon fibers is disturbed and the heat conduction characteristics are deteriorated.

特開2002−46137号公報JP 2002-46137 A 特開平9−225890号公報JP-A-9-225890 特開2002−18782号公報JP 2002-18782 A

本発明は上述した課題を解決するためになされたものであり、その目的は、熱伝導特性、厚さの均一性、柔軟性及び形状追従性に優れた熱伝導性シートの製造方法を提供することにある。   The present invention has been made to solve the above-described problems, and its object is to provide a method for producing a heat conductive sheet excellent in heat conduction characteristics, thickness uniformity, flexibility, and shape followability. There is.

上述した課題を解決するために、本発明に係る熱伝導性シートの製造方法は、シリコーン樹脂と、酸化アルミニウム、窒化アルミニウム、酸化亜鉛のいずれか、又はこれらの2種以上の混合物である熱伝導性フィラと、炭素繊維とを含有する混合組成物を作成する工程と、上記混合組成物を柱状に形成するとともに、上記炭素繊維を該柱状の長手方向に配向させる工程と、上記柱状に形成された混合組成物を熱硬化させ、次いでスライス方向に超音波振動が付与されたカッターによって該柱状の長手方向と直交する方向にスライスする工程とを有し、上記シリコーン樹脂は、第1のシリコーン樹脂であるポリアルケニルアルキルシロキサンと、第2のシリコーン樹脂であるポリアルキル水素シロキサンとを白金触媒により硬化させて、熱伝導性シートの圧縮率が3%以上となるように上記第1のシリコーン樹脂上記第2のシリコーン樹脂とを55:45〜50:50の重量比で配合し、上記超音波振動は、発信周波数が20.5kHzで、振幅を50〜60μmとし、上記カッターのスライス速度が毎秒50mm以下であるIn order to solve the above-described problems, a method for producing a thermally conductive sheet according to the present invention includes a silicone resin and one of aluminum oxide, aluminum nitride, and zinc oxide, or a mixture of two or more of these. Forming a mixed composition containing a conductive filler and carbon fiber, forming the mixed composition into a columnar shape, orienting the carbon fiber in a longitudinal direction of the columnar shape, and forming the columnar shape. And then slicing the mixture composition in a direction perpendicular to the longitudinal direction of the column by a cutter provided with ultrasonic vibration in the slicing direction, and the silicone resin is a first silicone resin The polyalkenylalkylsiloxane, which is, and the polyalkylhydrogensiloxane, which is the second silicone resin, are cured with a platinum catalyst to conduct heat conduction. The like compressibility of the sheet is 3% or more the first silicone resin and the second a silicone resin 55: 45-50: blended with 50 weight ratio of the ultrasonic vibration, the oscillation frequency The amplitude is 50 to 60 μm at 20.5 kHz, and the slicing speed of the cutter is 50 mm or less per second .

本発明に係る熱伝導性シートの製造方法によれば、熱伝導特性及び圧縮性に優れた熱伝導性シートを、均一な厚さで製造することができる。   According to the manufacturing method of the heat conductive sheet which concerns on this invention, the heat conductive sheet excellent in the heat conductive characteristic and the compressibility can be manufactured by uniform thickness.

第1のシリコーン樹脂と第2のシリコーン樹脂との配合割合に応じた圧縮率を示す表である。It is a table | surface which shows the compression rate according to the compounding ratio of a 1st silicone resin and a 2nd silicone resin. 燃焼試験及びシート母材の押出しやすさの評価を示す表である。It is a table | surface which shows a combustion test and evaluation of the ease of extrusion of a sheet | seat base material. 熱伝導性シートにおける炭素繊維の配合量と熱抵抗との関係を示すグラフである。It is a graph which shows the relationship between the compounding quantity of the carbon fiber in a heat conductive sheet, and heat resistance. 熱伝導性シートを構成する材料の配合量を示す表である。It is a table | surface which shows the compounding quantity of the material which comprises a heat conductive sheet. シート母材をスライスすることにより熱伝導性シートを製造する工程を示す斜視図である。It is a perspective view which shows the process of manufacturing a heat conductive sheet by slicing a sheet | seat base material. スライス装置を示す外観図である。It is an external view which shows a slicing apparatus. 超音波振動の有無に応じたスライス方法と熱伝導性シートの熱抵抗値との関係を示すグラフである。It is a graph which shows the relationship between the slicing method according to the presence or absence of ultrasonic vibration, and the thermal resistance value of a heat conductive sheet. 超音波カッターのスライス速度と熱伝導性シートの厚さに応じた形状を示す図である。It is a figure which shows the shape according to the slice speed | rate of an ultrasonic cutter, and the thickness of a heat conductive sheet. シート母材のスライス速度と熱伝導性シートの厚みの相違に応じた熱伝導性シートの特性を示す表である。It is a table | surface which shows the characteristic of the heat conductive sheet according to the difference of the slice speed | rate of a sheet | seat base material, and the thickness of a heat conductive sheet. カッターに付与する超音波振動の振幅を変えてスライスした熱伝導性シートの各特性を示す表である。It is a table | surface which shows each characteristic of the heat conductive sheet sliced by changing the amplitude of the ultrasonic vibration provided to a cutter.

以下、本発明が適用された熱伝導性シート及び熱伝導性シートの製造方法について、図面を参照しながら詳細に説明する。   Hereinafter, a thermal conductive sheet to which the present invention is applied and a method for manufacturing the thermal conductive sheet will be described in detail with reference to the drawings.

<熱伝導性シート>
本発明が適用された熱伝導性シート1は、IC等の発熱性電子部品とヒートシンク等の放熱部品との間に配設され、発熱性電子部品の熱をヒートシンク側に伝達させるものである。この熱伝導性シート1を介在させることにより、ヒートシンクに効率よく熱を伝えることができる。
<Thermal conductive sheet>
The heat conductive sheet 1 to which the present invention is applied is disposed between a heat-generating electronic component such as an IC and a heat-dissipating component such as a heat sink, and transmits heat of the heat-generating electronic component to the heat sink side. By interposing this heat conductive sheet 1, heat can be efficiently transferred to the heat sink.

熱伝導性シート1は、シリコーン樹脂に熱伝導材料としてピッチ系の炭素繊維と熱伝導性フィラとして球状の酸化アルミニウム(以下、単にアルミナという)とが配合されたシート状物であり、炭素繊維がシートの厚さ方向に配向されることにより、該厚さ方向に熱を効率よく伝達する。この熱伝導性シート1は、シリコーン樹脂、炭素繊維及びアルミナを混合した混合組成物を、柱状に成形するとともに炭素繊維をその長手方向に配向させることによりシート母材2を形成し、このシート母材2を長手方向と直交する方向にシート状にスライスすることにより形成される。また、熱伝導性シート1は、炭素繊維が10〜25体積%、アルミナが40〜55体積%で配合されていることを特徴としている。   The heat conductive sheet 1 is a sheet-like material in which pitch-based carbon fibers as a heat conductive material and spherical aluminum oxide (hereinafter simply referred to as alumina) as a heat conductive filler are blended in a silicone resin. By being oriented in the thickness direction of the sheet, heat is efficiently transferred in the thickness direction. The heat conductive sheet 1 is formed by forming a mixed composition in which silicone resin, carbon fiber and alumina are mixed into a columnar shape and orienting the carbon fiber in the longitudinal direction thereof to form a sheet base material 2. It is formed by slicing the material 2 into a sheet shape in a direction orthogonal to the longitudinal direction. In addition, the heat conductive sheet 1 is characterized in that carbon fiber is blended at 10 to 25% by volume and alumina is blended at 40 to 55% by volume.

シリコーン樹脂は、柔軟性、形状追従性、耐熱性等に優れた物性を有するもので、第1のシリコーン樹脂と第2のシリコーン樹脂とが混合されて構成される。第1のシリコーン樹脂としては、ポリアルケニルアルキルシロキサンであり、第2のシリコーン樹脂は当該ポリアルケニルアルキルシロキサンの硬化剤として働くポリアルキル水素シロキサンである。   The silicone resin has physical properties excellent in flexibility, shape followability, heat resistance, and the like, and is configured by mixing a first silicone resin and a second silicone resin. The first silicone resin is a polyalkenylalkylsiloxane, and the second silicone resin is a polyalkylhydrogensiloxane that acts as a curing agent for the polyalkenylalkylsiloxane.

なお、商業的には、第1のシリコーン樹脂は、上記反応の触媒として働く白金触媒を混合した状態で入手することが可能である。また、商業的には、第2のシリコーン樹脂は、ポリアルキル水素シロキサンに加え、上記のポリアルケニルアルキルシロキサンや反応調整剤を混合した状態で入手することが可能である。   In addition, commercially, the 1st silicone resin can be obtained in the state which mixed the platinum catalyst which acts as a catalyst of the said reaction. In addition, commercially, the second silicone resin can be obtained in a state where the above-mentioned polyalkenylalkylsiloxane and reaction modifier are mixed in addition to the polyalkylhydrogensiloxane.

第1のシリコーン樹脂と第2のシリコーン樹脂が上記のように混合物である場合は、これら両樹脂を重量比により等量配合するだけで、相対的に第1のシリコーン樹脂の配合比率を高く、硬化剤としての第2のシリコーン樹脂の配合比率を下げることができる。   When the first silicone resin and the second silicone resin are a mixture as described above, the blending ratio of the first silicone resin is relatively high by simply blending these two resins in equal amounts by weight ratio, The blending ratio of the second silicone resin as the curing agent can be lowered.

その結果、熱伝導性シート1を過度に硬化させることがなく、これにより一定の圧縮率を発生させることができるようになる。熱伝導性シート1は、発熱性電子部品とヒートシンクとの間に介在されることから、これらを密着させるために厚さ方向に所定の圧縮率を備えることが必要となり、少なくとも3%以上の圧縮率、好ましくは6%以上、より好ましくは10%以上の圧縮率を備えることが好ましい。   As a result, the heat conductive sheet 1 is not excessively cured, and thereby a certain compression rate can be generated. Since the heat conductive sheet 1 is interposed between the heat-generating electronic component and the heat sink, it is necessary to have a predetermined compressibility in the thickness direction in order to bring them into close contact, and at least a compression of 3% or more is required. It is preferable to provide a compression ratio of preferably 6% or more, more preferably 10% or more.

そして、図1に示すように、熱伝導性シート1は、第1のシリコーン樹脂と第2のシリコーン樹脂との配合比を55:45〜50:50とする。これにより、熱伝導性シート1は、初期厚みが0.5mmと薄くスライスした場合にも3%以上(3.82%)の圧縮率を有する。さらに熱伝導性シート1は、52:48では初期厚み1.0mmで10.49%の圧縮率を有し、さらにまた55:45〜52:48の間では初期厚み1.0mmで13.21%と、いずれも10%以上の圧縮率を有する。   And as shown in FIG. 1, the heat conductive sheet 1 makes the compounding ratio of the 1st silicone resin and the 2nd silicone resin 55: 45-50: 50. Thereby, the heat conductive sheet 1 has a compression rate of 3% or more (3.82%) even when the initial thickness is sliced as thin as 0.5 mm. Further, the thermal conductive sheet 1 has a compression ratio of 10.49% at an initial thickness of 1.0 mm at 52:48, and 13.21 at an initial thickness of 1.0 mm between 55:45 and 52:48. %, Both have a compression rate of 10% or more.

このように、熱伝導性シート1は、厚さ方向に炭素繊維が配向されているにもかかわらず、厚さ方向へ3%以上の圧縮率を有するため、柔軟性、形状追従性に優れ、発熱性電子部品とヒートシンクとをより密着させ、効率よく放熱させることができる。   Thus, since the heat conductive sheet 1 has a compressibility of 3% or more in the thickness direction despite the orientation of the carbon fibers in the thickness direction, the heat conductive sheet 1 is excellent in flexibility and shape followability. The heat-generating electronic component and the heat sink can be more closely attached to dissipate heat efficiently.

ピッチ系の炭素繊維は、ピッチを主原料とし、溶融紡糸、不融化及び炭化などの各処理工程後に2000〜3000℃或いは3000℃を超える高温で熱処理して黒鉛化させたものである。原料ピッチは、光学的に無秩序で偏向を示さない等方性ピッチと、構成分子が液晶状に配列し、光学的異方性を示す異方性ピッチ(メソフェーズピッチ)に分けられるが、異方性ピッチから製造された炭素繊維は等方性ピッチから製造された炭素繊維より、機械特性に優れ、電気および熱の伝導性が高くなることから、このメソフェーズピッチ系の黒鉛化炭素繊維を用いることが好ましい。   Pitch-based carbon fiber is made from pitch as a main raw material and graphitized by heat treatment at a high temperature exceeding 2000 to 3000 ° C. or 3000 ° C. after each processing step such as melt spinning, infusibilization, and carbonization. The raw material pitch is divided into an isotropic pitch that is optically disordered and exhibits no deflection, and an anisotropic pitch (mesophase pitch) in which the constituent molecules are arranged in a liquid crystal form and exhibits optical anisotropy. Carbon fiber manufactured from an isotropic pitch has better mechanical properties and higher electrical and thermal conductivity than carbon fiber manufactured from an isotropic pitch. Use this mesophase pitch graphitized carbon fiber. Is preferred.

なお、アルミナは炭素繊維よりも小さく、かつ熱伝導性材料として十分に機能しうる粒径を有し、炭素繊維と相互に緊密に充填される。これにより熱伝導性シートは、十分な熱伝導の経路を得ることができる。アルミナとしてはDAW03(電気化学工業株式会社製)を用いることができる。   Alumina is smaller than carbon fiber and has a particle size that can sufficiently function as a heat conductive material, and is closely packed with carbon fiber. Thereby, the heat conductive sheet can obtain a sufficient heat conduction path. DAW03 (manufactured by Denki Kagaku Kogyo Co., Ltd.) can be used as the alumina.

<アルミナと炭素繊維との配合比>
熱伝導性シート1は、炭素繊維及びアルミナの配合割合に応じて、燃焼試験における評価、及び熱伝導性シート1が切り出されるシート母材2の製造時において第1、第2のシリコーン樹脂、炭素繊維、アルミナを混合した混合組成物をシリンジより角柱状に押し出す際の押出しやすさの評価が変化する。なお、シート母材2は、シリンジ内部に設けられたスリットを通過することにより炭素繊維が長手方向に配向され、スリットを通過した後、再度角柱状に成形される。
<Combination ratio of alumina and carbon fiber>
The thermal conductive sheet 1 is composed of the first and second silicone resins, carbon during the evaluation in the combustion test and the production of the sheet base material 2 from which the thermal conductive sheet 1 is cut according to the blending ratio of the carbon fiber and the alumina. Evaluation of the ease of extrusion when extruding a mixed composition in which fibers and alumina are mixed into a prismatic shape from a syringe changes. The sheet base material 2 is formed into a prismatic shape again after passing through a slit provided in the syringe so that carbon fibers are oriented in the longitudinal direction.

図2にアルミナ50gに対する炭素繊維の配合割合を変化させたときの、熱伝導性シート1の燃焼試験(UL94V)における評価、及びシート母材2を角柱状に押し出す際の押出しやすさの評価を示す。なお、熱伝導性シート1は、シリコーン樹脂として、第1のシリコーン樹脂(ポリアルケニルアルキルシロキサンと白金触媒との混合物)を5.4g、第2のシリコーン樹脂(ポリアルキル水素シロキサン、ポリアルケニルアルキルシロキサン及び反応調整剤の混合物)を5.4g配合している。   FIG. 2 shows the evaluation in the combustion test (UL94V) of the heat conductive sheet 1 when the blending ratio of the carbon fiber to 50 g of alumina is changed, and the evaluation of the ease of extrusion when the sheet base material 2 is extruded into a prismatic shape. Show. In addition, the heat conductive sheet 1 uses 5.4 g of a first silicone resin (mixture of polyalkenylalkylsiloxane and a platinum catalyst) as a silicone resin, and a second silicone resin (polyalkylhydrogensiloxane, polyalkenylalkylsiloxane). And 5.4 g of a mixture of reaction modifiers).

図2に示すように、アルミナ50gに対して炭素繊維を14g以上配合することにより、厚さ1mm及び2mmの熱伝導性シート1のいずれも、燃焼試験(UL94V)におけるV0相当の評価を得た。また、厚さ2mmの熱伝導性シート1によれば、アルミナ50gに対して炭素繊維を8g以上配合することにより燃焼試験(UL94V)におけるV0相当の評価を得た。このとき、熱伝導性シート1におけるアルミナ50gの体積比は45.8体積%であり、炭素繊維8gの体積比は13.3体積%である。   As shown in FIG. 2, by blending 14 g or more of carbon fiber with 50 g of alumina, both the 1 mm thick and 2 mm thick thermal conductive sheets 1 obtained an evaluation equivalent to V0 in the combustion test (UL94V). . Moreover, according to the heat conductive sheet 1 having a thickness of 2 mm, an evaluation corresponding to V0 in a combustion test (UL94V) was obtained by blending 8 g or more of carbon fiber with 50 g of alumina. At this time, the volume ratio of 50 g of alumina in the heat conductive sheet 1 is 45.8 vol%, and the volume ratio of 8 g of carbon fibers is 13.3 vol%.

また、熱伝導性シート1は、アルミナ50gに対して炭素繊維を8g、10g配合することにより、シート母材2の製造工程において押し出しやすさを良好に維持することができる。すなわち、シート母材2は、シリンジ内に設けられたスリットをスムーズに通過し、且つ角柱状を維持することができる。   Moreover, the heat conductive sheet 1 can maintain the ease of extruding favorably in the manufacturing process of the sheet base material 2 by blending 8 g and 10 g of carbon fiber to 50 g of alumina. That is, the sheet base material 2 can smoothly pass through the slit provided in the syringe and can maintain a prismatic shape.

同様に、熱伝導性シート1は、アルミナ50gに対して炭素繊維を12g、14g配合することによっても、シート母材2の製造工程において押し出しやすさを維持することができる。すなわち、シート母材2は、シリンジ内に設けられたスリットをスムーズに通過し、且つ角柱状を維持することができる。なお、このシート母材2の硬度は上記炭素繊維8g、10g配合したものよりも硬い。   Similarly, the heat conductive sheet 1 can maintain the ease of extrusion in the manufacturing process of the sheet base material 2 also by blending 12 g and 14 g of carbon fiber with 50 g of alumina. That is, the sheet base material 2 can smoothly pass through the slit provided in the syringe and can maintain a prismatic shape. In addition, the hardness of this sheet | seat base material 2 is harder than what mixed the said carbon fibers 8g and 10g.

また、熱伝導性シート1は、アルミナ50gに対して炭素繊維を16g配合することにより、シート母材2の製造工程において押出しやすさが若干損なわれた。すなわち、シート母材2が硬いため、シリンジ内に設けられたスリットを固定する治具から一部の母材が漏れ出すケースがあった。しかし、スリットを通過した母材は角柱状を維持することができる。このとき、熱伝導性シート1におけるアルミナ50gの体積比は40.4体積%であり、炭素繊維16gの体積比は、23.5体積%である。   Moreover, the heat conductive sheet 1 was slightly impaired in extrudability in the manufacturing process of the sheet base material 2 by blending 16 g of carbon fiber with 50 g of alumina. That is, since the sheet base material 2 is hard, there is a case where a part of the base material leaks from a jig for fixing the slit provided in the syringe. However, the base material that has passed through the slit can maintain a prismatic shape. At this time, the volume ratio of 50 g of alumina in the heat conductive sheet 1 is 40.4% by volume, and the volume ratio of 16 g of carbon fibers is 23.5% by volume.

さらに、熱伝導性シート1は、炭素繊維を17g配合した場合には、シート母材2の製造工程において押し出すことができなかった。すなわち、シート母材2が硬いため、シリンジ内に設けられたスリットを固定する治具から一部の母材が漏れ出すケースがあった。そして、スリットを通過した母材同士が結合せず角柱状を維持できなかった。   Furthermore, the heat conductive sheet 1 could not be extruded in the manufacturing process of the sheet base material 2 when 17 g of carbon fiber was blended. That is, since the sheet base material 2 is hard, there is a case where a part of the base material leaks from a jig for fixing the slit provided in the syringe. And the base materials which passed the slit were not couple | bonded, but prismatic shape was not able to be maintained.

以上より、アルミナ50gに対する炭素繊維の配合量は、特に、燃焼試験UL94VにおいてV0相当という高い難燃性が要求される場合には、シート厚さ1mmで14g、シート厚さ2mmで8g〜16gが好ましいことがわかる。   From the above, the blending amount of the carbon fiber with respect to 50 g of alumina is 14 g at a sheet thickness of 1 mm and 8 g to 16 g at a sheet thickness of 2 mm, particularly when high flame resistance equivalent to V0 is required in the combustion test UL94V. It turns out that it is preferable.

また、図3に示すように、炭素繊維の配合量と熱抵抗値とは相関がある。図3に示すように、炭素繊維の配合量を増やすほど熱抵抗(K/W)は下がるが、約10g以上で熱抵抗値は安定することがわかる。一方、炭素繊維を17g以上配合すると、上述したようにシート母材2の押出しが困難となることから、熱伝導性シート1は、炭素繊維の配合量を、10g以上、16g以下とすることが好ましい。ここで、厚さ1mmの熱伝導性シート1では、熱伝導性シート1の難燃性、及びシート母材2の押し出しやすさの観点から炭素繊維の配合量をアルミナ50gに対して14gとしたが、この配合量においては、図3に示すように、熱抵抗の値が低く安定している。   Moreover, as shown in FIG. 3, the compounding quantity of carbon fiber and a thermal resistance value have a correlation. As shown in FIG. 3, the thermal resistance (K / W) decreases as the blending amount of the carbon fiber increases, but it can be seen that the thermal resistance value becomes stable at about 10 g or more. On the other hand, when 17 g or more of carbon fiber is blended, it becomes difficult to extrude the sheet base material 2 as described above. Therefore, the heat conductive sheet 1 may have a blending amount of carbon fiber of 10 g or more and 16 g or less. preferable. Here, in the heat conductive sheet 1 having a thickness of 1 mm, the blending amount of the carbon fibers is set to 14 g with respect to 50 g of alumina from the viewpoint of flame retardancy of the heat conductive sheet 1 and ease of extrusion of the sheet base material 2. However, at this blending amount, as shown in FIG. 3, the value of thermal resistance is low and stable.

以上より、実施例として、図4に、最適な配合比率(重量比)によって製造された厚さ1mmの熱伝導性シート1の配合を示す。図4に示すように、第1のシリコーン樹脂としてポリアルケニルアルキルシロキサンと白金触媒との混合物を5.4g(7.219重量%)、第2のシリコーン樹脂としてポリアルキル水素シロキサン、ポリアルケニルアルキルシロキサン及び反応調整剤の混合物を5.4g(7.219重量%)、アルミナとして商品名DAW03を50g(66.8449重量%)、ピッチ系炭素繊維として商品名R−A301(帝人株式会社製)を14g(18.7166重量%)用いた。   From the above, as an example, FIG. 4 shows the blending of the thermally conductive sheet 1 having a thickness of 1 mm manufactured with the optimum blending ratio (weight ratio). As shown in FIG. 4, 5.4 g (7.219 wt%) of a mixture of polyalkenylalkylsiloxane and platinum catalyst as the first silicone resin, and polyalkylhydrogensiloxane and polyalkenylalkylsiloxane as the second silicone resin. 5.4 g (7.219 wt%) of the mixture of the reaction modifier and 50 g (66.8449 wt%) of the trade name DAW03 as alumina and trade name R-A301 (manufactured by Teijin Ltd.) as the pitch-based carbon fiber. 14 g (18.7166% by weight) was used.

<スライス装置>
次いで、図4に示す配合からなる熱伝導性シート1を得るためにシート母材2を個々の熱伝導性シート1にスライスするスライス装置10の構成について説明する。図5に示すように、スライス装置10は、シート母材2を超音波カッターによってスライスすることにより、炭素繊維の配向を保った状態で熱伝導性シート1を形成することができる。したがって、スライス装置10によれば、炭素繊維の配向が厚さ方向に維持された熱伝導特性が良好な熱伝導性シート1を得ることができる。
<Slicing device>
Next, the configuration of the slicing apparatus 10 that slices the sheet base material 2 into individual heat conductive sheets 1 in order to obtain the heat conductive sheet 1 having the composition shown in FIG. 4 will be described. As shown in FIG. 5, the slicing apparatus 10 can form the thermally conductive sheet 1 while maintaining the orientation of the carbon fibers by slicing the sheet base material 2 with an ultrasonic cutter. Therefore, according to the slicing device 10, it is possible to obtain the heat conductive sheet 1 having good heat conduction characteristics in which the orientation of the carbon fibers is maintained in the thickness direction.

ここで、シート母材2は、第1、第2のシリコーン樹脂、アルミナ及び炭素繊維をミキサーに投入、混合した後、ミキサーに設けられたシリンジより、所定寸法の角柱状に押し出されることにより形成される。このとき、シート母材2は、シリンジ内に設けられたスリットを通過することで炭素繊維が長手方向に配向される。シート母材2は、角柱状に押し出された後、型ごとオーブンに入れて熱硬化され、完成する。   Here, the sheet base material 2 is formed by first and second silicone resins, alumina, and carbon fibers being put into a mixer, mixed, and then extruded from a syringe provided in the mixer into a prismatic shape having a predetermined size. Is done. At this time, as for the sheet | seat base material 2, a carbon fiber is orientated to a longitudinal direction by passing the slit provided in the syringe. After the sheet base material 2 is extruded into a prism shape, it is put into an oven together with the mold and thermally cured to complete.

スライス装置10は、図6に示すように、角柱状のシート母材が載置されるワークテーブル11と、ワークテーブル11上のシート母材2を超音波振動を加えながらスライスする超音波カッター12とを備える。   As shown in FIG. 6, the slicing device 10 includes a work table 11 on which a prismatic sheet base material is placed, and an ultrasonic cutter 12 that slices the sheet base material 2 on the work table 11 while applying ultrasonic vibration. With.

ワークテーブル11は、金属製の移動台20上にシリコーンラバー21が配設されている。移動台20は、移動機構22によって所定の方向に移動可能とされ、シート母材2を超音波カッター12の下部へ、順次、送り操作する。シリコーンラバー21は、超音波カッター12の刃先を受けるに足りる厚さを有する。ワークテーブル11は、シリコーンラバー21上にシート母材2が載置されると、超音波カッター12のスライス操作に応じて移動台20が所定方向へ移動され、順次シート母材2を超音波カッター12の下部へ送る。   The work table 11 is provided with a silicone rubber 21 on a metal moving table 20. The moving table 20 can be moved in a predetermined direction by the moving mechanism 22 and sequentially feeds the sheet base material 2 to the lower part of the ultrasonic cutter 12. The silicone rubber 21 has a thickness sufficient to receive the cutting edge of the ultrasonic cutter 12. When the sheet base material 2 is placed on the silicone rubber 21, the work table 11 is moved in a predetermined direction in accordance with the slicing operation of the ultrasonic cutter 12, and the sheet base material 2 is sequentially removed from the ultrasonic cutter 12. Send to the bottom of 12.

超音波カッター12は、シート母材2をスライスするナイフ30と、ナイフ30に超音波振動を付与する超音波発振機構31と、ナイフ30を昇降操作する昇降機構32とを有する。ナイフ30はワークテーブル11に対して刃先が向けられ、昇降機構32によって昇降操作されることによりワークテーブル11上に載置されたシート母材2をスライスしていく。ナイフ30の寸法や材質は、シート母材2の大きさや組成等に応じて決定されるものであり、例えば幅40mm、厚さ1.5mm、刃先角度10°の鋼からなる。   The ultrasonic cutter 12 includes a knife 30 for slicing the sheet base material 2, an ultrasonic oscillation mechanism 31 that applies ultrasonic vibration to the knife 30, and a lifting mechanism 32 that moves the knife 30 up and down. The knife 30 has its cutting edge directed toward the work table 11 and is moved up and down by an elevating mechanism 32 to slice the sheet base material 2 placed on the work table 11. The size and material of the knife 30 are determined according to the size and composition of the sheet base material 2 and are made of steel having a width of 40 mm, a thickness of 1.5 mm, and a blade edge angle of 10 °, for example.

超音波発振機構31は、ナイフ30に対してシート母材2のスライス方向に超音波振動を付与するものであり、例えば、発信周波数が20.5kHzで、振幅を50μm、60μm、70μmの3段階に調整可能とされている。   The ultrasonic oscillation mechanism 31 applies ultrasonic vibration to the knife 30 in the slice direction of the sheet base material 2. For example, the ultrasonic oscillation mechanism 31 has a transmission frequency of 20.5 kHz and amplitudes of three stages of 50 μm, 60 μm, and 70 μm. It is possible to adjust to.

このようなスライス装置10は、超音波カッター12に超音波振動を付与しながらシート母材2をスライスしていくことにより、熱伝導性シート1の炭素繊維の配向を厚さ方向に保つことができる。   Such a slicing apparatus 10 can maintain the orientation of the carbon fibers of the thermally conductive sheet 1 in the thickness direction by slicing the sheet base material 2 while applying ultrasonic vibration to the ultrasonic cutter 12. it can.

図7に、超音波振動を付与せずにスライスした熱伝導性シートと、スライス装置10によって超音波振動を付与しながらスライスした熱伝導性シート1との、熱抵抗値(K/W)を示す。図7に示すように、超音波振動を付与せずにスライスした熱伝導性シートに比べて、スライス装置10によって超音波振動を付与しながらスライスした熱伝導性シート1は、熱抵抗(K/W)が低く抑えられていることがわかる。   FIG. 7 shows the thermal resistance values (K / W) of the thermally conductive sheet sliced without applying ultrasonic vibration and the thermally conductive sheet 1 sliced while applying ultrasonic vibration by the slicing apparatus 10. Show. As shown in FIG. 7, the thermal conductive sheet 1 sliced while applying ultrasonic vibration by the slicing apparatus 10 is compared with the thermal resistance (K /) as compared to the thermal conductive sheet sliced without applying ultrasonic vibration. It can be seen that W) is kept low.

これは、スライス装置10は、超音波カッター12にスライス方向への超音波振動を付与していることから、界面熱抵抗が低く、熱伝導性シート1の厚さ方向に配向されている炭素繊維がナイフ30によって横倒しされ難いことによる。一方、超音波振動を付与せずにスライスした熱伝導性シートでは、ナイフの摩擦抵抗によって熱伝導性材料である炭素繊維の配向が乱れ、切断面への露出が減少してしまい、そのため、熱抵抗が上昇してしまう。したがって、スライス装置10によれば、熱伝導特性に優れる熱伝導性シート1を得ることができる。   This is because the slicing apparatus 10 imparts ultrasonic vibration in the slicing direction to the ultrasonic cutter 12, and therefore, the carbon fiber having low interface thermal resistance and oriented in the thickness direction of the heat conductive sheet 1. This is because it is difficult to be laid down by the knife 30. On the other hand, in the thermally conductive sheet sliced without applying ultrasonic vibration, the orientation of the carbon fiber as the thermally conductive material is disturbed by the frictional resistance of the knife, and the exposure to the cut surface is reduced. Resistance will rise. Therefore, according to the slicing apparatus 10, the heat conductive sheet 1 excellent in heat conduction characteristics can be obtained.

<スライス速度とスライス厚みによる均一性>
次いで、スライス装置10によるシート母材2のスライス速度とスライスされる熱伝導性シート1の厚さとの関係について検討した。上述した実施例に示す配合割合で、一辺が20mmの角柱状のシート母材2を形成し、このシート母材2を0.05mm〜0.50mmまで0.05mm毎に厚さの異なる熱伝導性シート1を、超音波カッター12のスライス速度を毎秒5mm、10mm、50mm、100mmに変更してスライスすることにより形成し、各熱伝導性シート1の外観を観察した。なお、超音波カッター12に付与する超音波振動は、発信周波数を20.5kHzとし、振幅を60μmとした。
<Uniformity depending on slice speed and slice thickness>
Next, the relationship between the slicing speed of the sheet base material 2 by the slicing apparatus 10 and the thickness of the thermally conductive sheet 1 to be sliced was examined. The prism base sheet base material 2 having a side of 20 mm is formed at the blending ratio shown in the above-described embodiment, and the thickness of the sheet base material 2 is varied from 0.05 mm to 0.50 mm every 0.05 mm. The sheet 1 was formed by changing the slice speed of the ultrasonic cutter 12 to 5 mm, 10 mm, 50 mm, and 100 mm per second and slicing, and the appearance of each thermally conductive sheet 1 was observed. The ultrasonic vibration applied to the ultrasonic cutter 12 had a transmission frequency of 20.5 kHz and an amplitude of 60 μm.

観察結果を図8に示す。図8に示すように、0.15mm以下の厚さでは、スライス速度に拘わらず変形が生じた。一方、0.20mm以上の厚さでは、スライス速度を速めても熱伝導性シート1に変形は見られなかった。すなわち、スライス装置10によれば、上記図4に示す配合割合のシート母材2を、厚さ0.20mm以上の厚さで均一的にスライスすることができる。   The observation results are shown in FIG. As shown in FIG. 8, when the thickness was 0.15 mm or less, deformation occurred regardless of the slice speed. On the other hand, at a thickness of 0.20 mm or more, no deformation was observed in the heat conductive sheet 1 even when the slicing speed was increased. That is, according to the slicing apparatus 10, the sheet base material 2 having the blending ratio shown in FIG. 4 can be uniformly sliced with a thickness of 0.20 mm or more.

<スライス速度とスライス厚みによる熱伝導率・圧縮率>
次いで、スライス装置10によるシート母材2のスライス速度と熱伝導率及び厚さ方向への圧縮率との関係について検討した。上記スライス速度及びシート厚さの検討において変形が見られなかった厚さ0.20mm、0.25mm、0.30mm、0.50mmでスライス速度が毎秒5mm、10mm、50mm、100mmの各熱伝導性シート1につき、それぞれ熱伝導率及び圧縮率を測定した。測定結果を図9に示す。
<Thermal conductivity and compressibility depending on slice speed and slice thickness>
Next, the relationship between the slicing speed of the sheet base material 2 by the slicing apparatus 10, the thermal conductivity, and the compressibility in the thickness direction was examined. Thermal conductivity of thicknesses 0.20 mm, 0.25 mm, 0.30 mm, 0.50 mm that were not deformed in the examination of the slice speed and sheet thickness, and slice speeds of 5 mm, 10 mm, 50 mm, and 100 mm per second. The sheet 1 was measured for thermal conductivity and compression rate. The measurement results are shown in FIG.

図9に示すように、各熱伝導性シート1のうち、0.50mmのシート厚さのサンプルを除いた熱伝導性シート1は、超音波カッター12の速度が毎秒5mm、10mm、50mmのいずれの速度でスライスされた場合でも、良好な熱伝導特性を備えるとともに、10%以上の圧縮率を有し、柔軟性、形状追従性に優れる。また、超音波カッター12の速度が毎秒100mmでスライスされた場合でも、シート厚さが0.25mm及び0.20mmの熱伝導性シート1は、良好な熱伝導特性を備えるとともに、10%以上の圧縮率を有し、柔軟性、形状追従性に優れる。   As shown in FIG. 9, among the thermal conductive sheets 1, the thermal conductive sheet 1 excluding the sample having a sheet thickness of 0.50 mm has an ultrasonic cutter 12 speed of 5 mm, 10 mm, or 50 mm per second. Even when sliced at a speed of 1, it has good heat conduction characteristics and has a compression rate of 10% or more, and is excellent in flexibility and shape followability. Moreover, even when the speed of the ultrasonic cutter 12 is sliced at 100 mm per second, the thermally conductive sheet 1 having sheet thicknesses of 0.25 mm and 0.20 mm has good thermal conductivity characteristics and is 10% or more. It has a compression ratio and is excellent in flexibility and shape followability.

一方、シート厚さが0.30mmの熱伝導性シート1は、超音波カッター12の速度が毎秒100mmでスライスされた場合には、熱伝導特性に優れるものの、圧縮率が3.72%とやや落ちた。   On the other hand, the heat conductive sheet 1 having a sheet thickness of 0.30 mm is excellent in heat conduction characteristics when the speed of the ultrasonic cutter 12 is sliced at 100 mm per second, but has a compression rate of 3.72%. fell.

また、シート厚さが0.50mmの熱伝導性シート1は、超音波カッター12の速度が毎秒5mm、10mm、50mmのいずれの速度でスライスされた場合には、良好な熱伝導特性を備えるとともに、5%以上の圧縮率を有し良好な柔軟性、形状追従性を有する。一方、シート厚さが0.50mmの熱伝導性シート1は、超音波カッター12の速度が毎秒100mmでスライスされた場合には、良好な熱伝導特性を備えるものの、圧縮率が2.18%と3%より低く、柔軟性、形状追従性が落ちる。   In addition, the thermally conductive sheet 1 having a sheet thickness of 0.50 mm has good thermal conductivity characteristics when the speed of the ultrasonic cutter 12 is sliced at any of 5 mm, 10 mm, and 50 mm per second. It has a compression ratio of 5% or more, and has good flexibility and shape followability. On the other hand, the heat conductive sheet 1 having a sheet thickness of 0.50 mm has good heat conduction characteristics when the speed of the ultrasonic cutter 12 is sliced at 100 mm per second, but has a compression rate of 2.18%. And lower than 3%, the flexibility and shape followability are lowered.

<振幅と圧縮率>
なお、図10に超音波カッター12に付与する超音波振動の振幅を50μm、60μm、70μmの3段階に変えてスライスした熱伝導性シート1の各特性を示す。熱伝導性シート1は、図4に示す配合割合で形成し、測定荷重を1kgf/cmとした。図10に示すように、振幅を70μmとした場合には、熱伝導性シート1は、圧縮率が2.18%と、従来と同様3%より低く、柔軟性、形状追従性に劣る。一方、振幅を50μm、60μmとした場合には、熱伝導性シート1は、3%以上の圧縮率を有し、良好な柔軟性、形状追従性を備える。
<Amplitude and compression ratio>
FIG. 10 shows the characteristics of the thermally conductive sheet 1 sliced by changing the amplitude of ultrasonic vibration applied to the ultrasonic cutter 12 in three stages of 50 μm, 60 μm, and 70 μm. The heat conductive sheet 1 was formed at the blending ratio shown in FIG. 4, and the measurement load was 1 kgf / cm 2 . As shown in FIG. 10, when the amplitude is 70 μm, the heat conductive sheet 1 has a compression rate of 2.18%, which is lower than 3% as in the conventional case, and is inferior in flexibility and shape followability. On the other hand, when the amplitude is 50 μm and 60 μm, the heat conductive sheet 1 has a compression rate of 3% or more, and has good flexibility and shape following ability.

<その他>
なお、シート母材2は、角柱状に限定されず、円柱状など、熱伝導性シート1の形状に応じた各種断面形状を有する柱状に形成することができる。また、熱伝導性フィラとして球状アルミナを用いたが、本発明はこれ以外にも球状の窒化アルミニウム、酸化亜鉛、シリコーン粉、金属粉末のいずれか、あるいはこれらの混合物を用いることができる。
<Others>
In addition, the sheet | seat base material 2 is not limited to prismatic shape, It can form in the column shape which has various cross-sectional shapes according to the shape of the heat conductive sheet 1, such as a column shape. Further, although spherical alumina is used as the thermally conductive filler, in the present invention, any one of spherical aluminum nitride, zinc oxide, silicone powder, metal powder, or a mixture thereof can be used.

1 熱伝導性シート、2 シート母材、10 スライス装置、11 ワークテーブル、12 超音波カッター、20 移動台、21 シリコーンラバー、30 ナイフ、31 超音波発振機構、32 昇降機構 DESCRIPTION OF SYMBOLS 1 Thermal conductive sheet, 2 sheet | seat base material, 10 slicing apparatus, 11 Work table, 12 Ultrasonic cutter, 20 Moving stand, 21 Silicone rubber, 30 Knife, 31 Ultrasonic oscillation mechanism, 32 Lifting mechanism

Claims (5)

シリコーン樹脂と、酸化アルミニウム、窒化アルミニウム、酸化亜鉛のいずれか、又はこれらの2種以上の混合物である熱伝導性フィラと、炭素繊維とを含有する混合組成物を作成する工程と、
上記混合組成物を柱状に形成するとともに、上記炭素繊維を該柱状の長手方向に配向させる工程と、
上記柱状に形成された混合組成物を熱硬化させ、次いでスライス方向に超音波振動が付与されたカッターによって該柱状の長手方向と直交する方向にスライスする工程とを有し、
上記シリコーン樹脂は、第1のシリコーン樹脂であるポリアルケニルアルキルシロキサンと、第2のシリコーン樹脂であるポリアルキル水素シロキサンとを白金触媒により硬化させて、熱伝導性シートの圧縮率が3%以上となるように上記第1のシリコーン樹脂上記第2のシリコーン樹脂とを55:45〜50:50の重量比で配合し、
上記超音波振動は、発信周波数が20.5kHzで、振幅を50〜60μmとし、
上記カッターのスライス速度が毎秒50mm以下である熱伝導性シートの製造方法。
Creating a mixed composition containing a silicone resin, a thermally conductive filler that is one of aluminum oxide, aluminum nitride, zinc oxide, or a mixture of two or more thereof, and carbon fiber;
Forming the mixed composition into a columnar shape, and orienting the carbon fibers in the columnar longitudinal direction;
The step of thermosetting the above-mentioned mixed composition formed into a columnar shape, and then slicing in a direction perpendicular to the longitudinal direction of the columnar shape by a cutter provided with ultrasonic vibration in the slicing direction,
The silicone resin is obtained by curing polyalkenylalkylsiloxane as the first silicone resin and polyalkylhydrogensiloxane as the second silicone resin with a platinum catalyst, and the compressibility of the heat conductive sheet is 3% or more. The first silicone resin and the second silicone resin are blended at a weight ratio of 55:45 to 50:50,
The ultrasonic vibration has an oscillation frequency of 20.5 kHz and an amplitude of 50 to 60 μm.
The manufacturing method of the heat conductive sheet whose slicing speed of the said cutter is 50 mm or less per second .
上記熱伝導性シートの厚さを0.20mm以上にスライスする請求項記載の熱伝導性シートの製造方法。 Method for producing a thermally conductive sheet according to claim 1 wherein the slice thickness of the heat conductive sheet above 0.20 mm. 上記熱伝導性シートの厚さを0.30mm以下にスライスする請求項記載の熱伝導性シートの製造方法。 The manufacturing method of the heat conductive sheet of Claim 2 which slices the thickness of the said heat conductive sheet into 0.30 mm or less. 上記熱伝導性シートの厚さを0.25mm以下にスライスする請求項記載の熱伝導性シートの製造方法。 The manufacturing method of the heat conductive sheet of Claim 3 which slices the thickness of the said heat conductive sheet to 0.25 mm or less. 上記混合組成物をスライスすることにより、
上記熱伝導性フィラが、40〜55体積%の範囲で含有され、
上記炭素繊維が、10〜25体積%の範囲で含有されてなる熱伝導性シート
を形成する請求項1〜請求項のいずれか1項に記載の熱伝導性シートの製造方法。
By slicing the mixed composition,
The thermally conductive filler is contained in the range of 40 to 55% by volume,
The manufacturing method of the heat conductive sheet of any one of Claims 1-4 which forms the heat conductive sheet in which the said carbon fiber is contained in 10-25 volume%.
JP2014224965A 2014-11-05 2014-11-05 Manufacturing method of heat conductive sheet Active JP6034844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014224965A JP6034844B2 (en) 2014-11-05 2014-11-05 Manufacturing method of heat conductive sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014224965A JP6034844B2 (en) 2014-11-05 2014-11-05 Manufacturing method of heat conductive sheet

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010138334A Division JP5671266B2 (en) 2010-06-17 2010-06-17 Thermally conductive sheet

Publications (2)

Publication Number Publication Date
JP2015045019A JP2015045019A (en) 2015-03-12
JP6034844B2 true JP6034844B2 (en) 2016-11-30

Family

ID=52670762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014224965A Active JP6034844B2 (en) 2014-11-05 2014-11-05 Manufacturing method of heat conductive sheet

Country Status (1)

Country Link
JP (1) JP6034844B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6519029B2 (en) * 2017-02-28 2019-05-29 株式会社アドウェルズ Cutting device
JP7434712B2 (en) 2019-02-26 2024-02-21 日本ゼオン株式会社 Thermal conductive sheet and its manufacturing method
JP7342449B2 (en) * 2019-06-25 2023-09-12 日本ゼオン株式会社 Method of manufacturing thermally conductive sheet and thermally conductive sheet

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07205093A (en) * 1994-01-21 1995-08-08 Tokin Corp Cutting device of bar-like extrusion molded body
JPH11302545A (en) * 1998-02-18 1999-11-02 Nippon Mitsubishi Oil Corp Silicone rubber composite
JP2001294676A (en) * 2000-04-13 2001-10-23 Jsr Corp Heat-conductive sheet, method for producing heat- conductive sheet and radiating structure using heat- conductive sheet
JP2002046137A (en) * 2000-08-04 2002-02-12 Nippon Graphite Fiber Corp Method for manufacturing thermally conductive sheet
JP2002088171A (en) * 2000-09-13 2002-03-27 Polymatech Co Ltd Heat-conductive sheet and method for producing the same and heat radiation device
JP4079604B2 (en) * 2001-05-30 2008-04-23 株式会社ルネサステクノロジ Manufacturing method of semiconductor device
JP5001068B2 (en) * 2007-06-01 2012-08-15 三菱電機株式会社 Manufacturing method of heat dissipation member
JP2010058437A (en) * 2008-09-05 2010-03-18 Fujifilm Corp Method of manufacturing resin sheet

Also Published As

Publication number Publication date
JP2015045019A (en) 2015-03-12

Similar Documents

Publication Publication Date Title
JP5671266B2 (en) Thermally conductive sheet
KR101715988B1 (en) Thermally conductive sheet and process for producing same
TWI634201B (en) Thermal conductive sheet and device using the same, and manufacturing method of thermal conductive sheet
JP6219624B2 (en) Manufacturing method of thermal conductive sheet, manufacturing apparatus of thermal conductive sheet, cutting method of resin molded body
TWI617449B (en) Thermally conductive sheet and manufacturing method thereof
JP6178389B2 (en) Method for manufacturing thermal conductive sheet, thermal conductive sheet, and semiconductor device
JP6034562B2 (en) Thermally conductive sheet and method for producing the thermally conductive sheet
JP7096723B2 (en) Method for manufacturing a heat conductive sheet
JPH11302545A (en) Silicone rubber composite
KR20180050392A (en) HEAT CONDUCTIVE SHEET, METHOD FOR PRODUCING THERMAL CONDUCTIVE SHEET
CN114555714B (en) Heat conductive sheet and method for manufacturing the same
JP2014033193A (en) Thermally conductive sheet
JP6034844B2 (en) Manufacturing method of heat conductive sheet
WO2020067141A1 (en) Heat conductive sheet
CN112602189A (en) Method for manufacturing semiconductor device, thermally conductive sheet, and method for manufacturing thermally conductive sheet
JP2013131564A (en) Heat conductive sheet, semiconductor device using the heat conductive sheet, and method of manufacturing semiconductor device
JP2013131562A (en) Heat conductive sheet manufacturing method
JP7076871B1 (en) Thermal conductivity sheet
JPWO2019244890A1 (en) Thermal conductive sheet
TW202222556A (en) Heat conductive sheet and manufacturing method of the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161028

R150 Certificate of patent or registration of utility model

Ref document number: 6034844

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250