JP6029310B2 - Thermosetting resin composition for semiconductor bonding and semiconductor device - Google Patents

Thermosetting resin composition for semiconductor bonding and semiconductor device Download PDF

Info

Publication number
JP6029310B2
JP6029310B2 JP2012093737A JP2012093737A JP6029310B2 JP 6029310 B2 JP6029310 B2 JP 6029310B2 JP 2012093737 A JP2012093737 A JP 2012093737A JP 2012093737 A JP2012093737 A JP 2012093737A JP 6029310 B2 JP6029310 B2 JP 6029310B2
Authority
JP
Japan
Prior art keywords
component
resin composition
semiconductor
group
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012093737A
Other languages
Japanese (ja)
Other versions
JP2013221089A (en
Inventor
藤原 正和
正和 藤原
由宇 佐竹
由宇 佐竹
勇哉 似内
勇哉 似内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2012093737A priority Critical patent/JP6029310B2/en
Publication of JP2013221089A publication Critical patent/JP2013221089A/en
Application granted granted Critical
Publication of JP6029310B2 publication Critical patent/JP6029310B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Description

本発明は、半導体接着用熱硬化型樹脂組成物、およびこれを用いた半導体装置に関する。   The present invention relates to a thermosetting resin composition for semiconductor bonding and a semiconductor device using the same.

半導体装置において、金属薄板(リードフレーム)上の所定部分にLED、IC、LSI等の半導体素子(以下、半導体チップとも称する)を固定する工程は、半導体装置の信頼性に影響を与える重要な工程の一つである。従来から、この接続方法として、有機材料に充填剤を分散させたペースト状の樹脂組成物を接着剤として使用する方法が知られている。   In a semiconductor device, a process of fixing a semiconductor element (hereinafter also referred to as a semiconductor chip) such as an LED, IC, LSI or the like to a predetermined portion on a thin metal plate (lead frame) is an important process that affects the reliability of the semiconductor device. one of. Conventionally, as this connection method, a method of using a paste-like resin composition in which a filler is dispersed in an organic material as an adhesive is known.

この接合技術に用いる樹脂組成物においては、半導体素子とリードフレームの密着性に優れること、半導体素子とリードフレームの線膨張率の差を緩和するため低弾性率であること等が要求される。低弾性の樹脂組成物を使用することは、半導体装置の耐半田クラック特性を向上させる上で特に重要な特性である。   The resin composition used in this bonding technique is required to have excellent adhesion between the semiconductor element and the lead frame, and to have a low elastic modulus to alleviate the difference in linear expansion coefficient between the semiconductor element and the lead frame. The use of a low-elasticity resin composition is a particularly important characteristic for improving the solder crack resistance characteristics of a semiconductor device.

低弾性率のペースト状組成物としては、例えば、低応力の変性アクリレートやゴム等を使用したものが知られている(例えば、特許文献1等)。しかしながら、これらの組成物は、低応力化と同時に密着性も低下するという問題があった。このため、低応力と高密着を両立させた樹脂組成物が求められている。   As a low elasticity paste-like composition, for example, one using a low-stress modified acrylate, rubber or the like is known (for example, Patent Document 1). However, these compositions have a problem that the adhesiveness is lowered at the same time as the stress reduction. For this reason, the resin composition which made low stress and high adhesion compatible is calculated | required.

特開2007−131751号公報JP 2007-131751 A

本発明は上記要求に応えるべくなされたもので、低弾性率で、かつ高密着性の半導体接着用熱硬化型樹脂組成物、およびそのような半導体接着用熱硬化型樹脂組成物を用いた耐半田クラック性に優れた半導体装置を提供することを目的としている。   The present invention has been made to meet the above requirements, and has a low elastic modulus and high adhesion thermosetting resin composition for semiconductor bonding, and resistance to heat using such a thermosetting resin composition for semiconductor bonding. It aims at providing the semiconductor device excellent in solder crack property.

本発明の半導体接着用熱硬化型樹脂組成物は、(A)数平均分子量500以上30000以下で、かつ分子骨格中に二重結合を有する炭化水素化合物またはその誘導体、(B)エチレン性不飽和基を有する重合性モノマー、(C)ラジカル重合触媒、(D)下記一般式(1)で示されるチアジアゾリルジスルフィド化合物

Figure 0006029310
(式中、RおよびRはそれぞれ炭素数1〜20の2価の有機残基を表し、XおよびXはそれぞれラジカル重合性不飽和結合を有する1価の有機基を表し、YおよびYはそれぞれ硫黄原子、窒素原子又はNH基を表し、nは1〜3の整数、mは前記Yが硫黄原子またはNH基であるときは1を、窒素原子であるときは2を表し、oは前記Yが硫黄原子またはNH基であるときは1を、窒素原子であるときは2を表す。)および(E)充填剤を含有することを特徴としている。 The thermosetting resin composition for semiconductor adhesion of the present invention comprises (A) a hydrocarbon compound having a number average molecular weight of 500 or more and 30000 or less and having a double bond in the molecular skeleton, or a derivative thereof; Group-containing polymerizable monomer, (C) radical polymerization catalyst, (D) thiadiazolyl disulfide compound represented by the following general formula (1)
Figure 0006029310
(Wherein R 1 and R 2 each represent a divalent organic residue having 1 to 20 carbon atoms, X 1 and X 2 each represent a monovalent organic group having a radical polymerizable unsaturated bond, Y 1 and Y 2 each represent a sulfur atom, a nitrogen atom or an NH group, n is an integer of 1 to 3, m is 1 when the Y 1 is a sulfur atom or an NH group, and 2 is a nitrogen atom. O represents 1 when Y 2 is a sulfur atom or an NH group, and 2 when Y 2 is a nitrogen atom.) And (E) It contains a filler.

また、本発明の他の一態様に係る半導体装置は、上記半導体接着用熱硬化型樹脂組成物により、半導体素子が半導体素子支持部材上に接着されてなることを特徴としている。   A semiconductor device according to another embodiment of the present invention is characterized in that a semiconductor element is bonded onto a semiconductor element support member by the thermosetting resin composition for semiconductor bonding.

本発明の一態様によれば、低弾性率で、かつ高密着性の半導体接着用熱硬化型樹脂組成物を得ることができる。また、本発明の他の一態様によれば、耐半田クラック性に優れた半導体装置を得ることができる。   According to one embodiment of the present invention, a thermosetting resin composition for semiconductor adhesion having a low elastic modulus and high adhesion can be obtained. According to another embodiment of the present invention, a semiconductor device having excellent solder crack resistance can be obtained.

本発明の一実施形態の半導体装置を示す断面図である。It is sectional drawing which shows the semiconductor device of one Embodiment of this invention.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の半導体接着用熱硬化型樹脂組成物に使用される(A)成分は、分子骨格中に二重結合を有する炭化水素化合物またはその誘導体であり、例えば、ブチルゴム(BR)、イソプレンゴム(IR)、ポリブタジエン等のジエン系ゴム、あるいはその水素添加型等の誘導体が挙げられるが、これらに限定されるものではない。本発明においては、可とう性を付与するために、(A)成分である炭化水素化合物またはその誘導体は、数平均分子量が500以上30000以下であり、好ましくは500以上20000以下であり、より好ましくは500以上15000以下である。数平均分子量が500未満では、可とう性が低下し、また耐熱性も低下する。一方、30000を超えると、組成物調製時の作業性や使用時の塗布作業性が不良となる傾向にある。(A)成分としては、特に、室温で液状であり、かつ1分子内に少なくとも1つのアクリル基もしくはメタクリル基を有するものが好ましい。(A)成分は1種を単独で使用してもよく、2種以上を混合して使用してもよい。   The component (A) used in the thermosetting resin composition for semiconductor adhesion of the present invention is a hydrocarbon compound having a double bond in the molecular skeleton or a derivative thereof such as butyl rubber (BR), isoprene rubber ( IR), diene rubbers such as polybutadiene, or hydrogenated derivatives thereof, but are not limited thereto. In the present invention, in order to impart flexibility, the hydrocarbon compound or derivative thereof as component (A) has a number average molecular weight of 500 or more and 30000 or less, preferably 500 or more and 20000 or less, more preferably Is 500 or more and 15000 or less. When the number average molecular weight is less than 500, the flexibility is lowered and the heat resistance is also lowered. On the other hand, when it exceeds 30000, the workability during preparation of the composition and the coating workability during use tend to be poor. As the component (A), those which are liquid at room temperature and have at least one acrylic group or methacryl group in one molecule are particularly preferable. As the component (A), one type may be used alone, or two or more types may be mixed and used.

本発明の半導体接着用熱硬化型樹脂組成物に使用される(B)成分の重合性モノマーは、エチレン性不飽和基を有するものであり、例えば、脂環式(メタ)アクリル酸エステル、脂肪族(メタ)アクリル酸エステル、芳香族(メタ)アクリル酸エステル等が挙げられるが、これらに限定されるものではない。具体的には、例えば、1,6−ヘキサンジオールジメタクリレート、1,9−ノナンジオールジメタクリレート、フェノキシジエチレングリコールジメタクリレート、ラウリルアクリレート、ステアリルアクリレート、フェノキシエチルメタクリレート等が使用される。(B)成分は1種を単独で使用してもよく、2種以上を混合して使用してもよい。   The polymerizable monomer of the component (B) used in the thermosetting resin composition for semiconductor adhesion of the present invention has an ethylenically unsaturated group, such as alicyclic (meth) acrylic acid ester, fat Group (meth) acrylic acid ester, aromatic (meth) acrylic acid ester, and the like, but are not limited thereto. Specifically, for example, 1,6-hexanediol dimethacrylate, 1,9-nonanediol dimethacrylate, phenoxydiethylene glycol dimethacrylate, lauryl acrylate, stearyl acrylate, phenoxyethyl methacrylate and the like are used. As the component (B), one type may be used alone, or two or more types may be mixed and used.

この(B)成分の配合量は、(A)成分と(B)成分の合計質量中の割合が10〜90質量%となる範囲、つまり、(A)成分と(B)成分の質量比が10:90〜90:10となる範囲が好ましい。(B)成分の割合が10質量%未満では、半導体接着用熱硬化型樹脂組成物の粘度が高くなり作業性が低下する。また、90質量%を越えると接着性に問題が生ずるおそれがある。より好ましくは(A)成分と(B)成分の質量比が20:80〜80:20となる範囲である。   The blending amount of the component (B) is a range in which the ratio of the total mass of the component (A) and the component (B) is 10 to 90% by mass, that is, the mass ratio of the component (A) and the component (B). A range of 10:90 to 90:10 is preferred. When the proportion of the component (B) is less than 10% by mass, the viscosity of the thermosetting resin composition for semiconductor bonding is increased and workability is lowered. Moreover, when it exceeds 90 mass%, there exists a possibility that a problem may arise in adhesiveness. More preferably, the mass ratio of the component (A) to the component (B) is in the range of 20:80 to 80:20.

本発明の半導体接着用熱硬化型樹脂組成物に使用される(C)成分のラジカル重合触媒は、ラジカル重合に一般に用いられている触媒であれば特に限定されることなく使用することができるが、好ましくは、急速加熱試験における分解温度(試料1gを電熱板の上に乗せ、4℃/分で昇温したときの分解開始温度)が40〜140℃となるものである。分解温度が40℃未満であると、半導体接着用熱硬化型樹脂組成物の常温における保存性が不良となり、140℃を越えると硬化時間が極端に長くなるおそれがある。   The radical polymerization catalyst of component (C) used in the thermosetting resin composition for semiconductor adhesion of the present invention can be used without any particular limitation as long as it is a catalyst generally used for radical polymerization. Preferably, the decomposition temperature in the rapid heating test (decomposition start temperature when 1 g of the sample is placed on an electric heating plate and heated at 4 ° C./min) is 40 to 140 ° C. When the decomposition temperature is less than 40 ° C., the preservability at room temperature of the thermosetting resin composition for semiconductor bonding becomes poor, and when it exceeds 140 ° C., the curing time may become extremely long.

上記条件を満たすラジカル重合触媒の例としては、例えば、1,1−ビス(t−ブチルパーオキシ)−2−メチルシクロヘキサン、t−ブチルパーオキシネオデカノエート、ジクミルパーオキサイド等が挙げられる。これらは1種を単独で使用してもよく、あるいは硬化性を制御するために2種以上を混合して使用してもよい。   Examples of the radical polymerization catalyst that satisfies the above conditions include 1,1-bis (t-butylperoxy) -2-methylcyclohexane, t-butylperoxyneodecanoate, dicumyl peroxide, and the like. . These may be used alone or in combination of two or more in order to control curability.

なお、本発明においては、半導体接着用熱硬化型樹脂組成物の保存性の低下を防止するために、重合禁止剤をラジカル重合触媒を添加する前に予め添加しておいてもよい。そのような重合禁止剤の例としては、ヒドロキノン、メチルヒドロキノン、ジブチルヒドロキシトルエン(BHT)等が挙げられる。   In the present invention, a polymerization inhibitor may be added in advance before adding the radical polymerization catalyst, in order to prevent a decrease in storage stability of the thermosetting resin composition for semiconductor adhesion. Examples of such polymerization inhibitors include hydroquinone, methylhydroquinone, dibutylhydroxytoluene (BHT) and the like.

この(C)成分の配合量は、(A)成分と(B)成分の合計質量100質量部に対して、0.1〜10質量部が好ましく、0.5〜8質量部がより好ましい。0.1質量部未満では、硬化性が著しく低下するおそれがあり、10質量部を越えると、半導体接着用熱硬化型樹脂組成物の粘度の経時変化が大きくなり、作業性が低下するおそれがある。   0.1-10 mass parts is preferable with respect to 100 mass parts of total mass of (A) component and (B) component, and, as for the compounding quantity of this (C) component, 0.5-8 mass parts is more preferable. If the amount is less than 0.1 parts by mass, the curability may be remarkably reduced. If the amount exceeds 10 parts by mass, the change in the viscosity of the thermosetting resin composition for semiconductor bonding may increase with time, and the workability may decrease. is there.

本発明の半導体接着用熱硬化型樹脂組成物に使用される(D)成分は、下記一般式(1)で示されるチアジアゾリルジスルフィド化合物

Figure 0006029310
(式中、RおよびRはそれぞれ炭素数1〜20の2価の有機残基を表し、XおよびXはそれぞれラジカル重合性不飽和結合を有する1価の有機基を表し、YおよびYはそれぞれ硫黄原子、窒素原子又はNH基を表し、nは1〜3の整数、mは前記Yが硫黄原子またはNH基であるときは1を、窒素原子であるときは2を表し、oは前記Yが硫黄原子またはNH基であるときは1を、窒素原子であるときは2を表す。)であり、このような特定の構造を有する化合物を含有するプライマーまたは接着剤は、上記課題を解決するのに適し、金、銀、白金、パラジウム等の貴金属およびそれらの合金に対し、スズ電析や酸化処理等の煩雑な処理を施すことなく、強力かつ耐久的な接着性を発現できるだけでなく、優れた可とう性を有する。また、この(D)成分は上記(B)成分には含まれない。 The component (D) used in the thermosetting resin composition for semiconductor adhesion of the present invention is a thiadiazolyl disulfide compound represented by the following general formula (1)
Figure 0006029310
(Wherein R 1 and R 2 each represent a divalent organic residue having 1 to 20 carbon atoms, X 1 and X 2 each represent a monovalent organic group having a radical polymerizable unsaturated bond, Y 1 and Y 2 each represent a sulfur atom, a nitrogen atom or an NH group, n is an integer of 1 to 3, m is 1 when the Y 1 is a sulfur atom or an NH group, and 2 is a nitrogen atom. O represents 1 when Y 2 is a sulfur atom or an NH group, and 2 when Y 2 is a nitrogen atom.), And primer or adhesion containing a compound having such a specific structure The agent is suitable for solving the above-mentioned problems, and is powerful and durable without subjecting noble metals such as gold, silver, platinum, palladium and their alloys and complicated treatments such as tin electrodeposition and oxidation treatment. Not only can it exhibit adhesive properties, Having sex. The component (D) is not included in the component (B).

ここで、RおよびRは、炭素数1〜20の2価の有機残基を表すが、具体的には、直鎖状または分枝鎖状のアルキレン基、該アルキレン基の主鎖に酸素が含まれるオキシアルキレン基、上記アルキレン基の主鎖にカルボキシル基が含まれる基が挙げられる。さらに具体的には、次の化学式で表わされる基が挙げられる。 Here, R 1 and R 2 represent a divalent organic residue having 1 to 20 carbon atoms, specifically, a linear or branched alkylene group, or a main chain of the alkylene group. Examples thereof include an oxyalkylene group containing oxygen and a group containing a carboxyl group in the main chain of the alkylene group. More specifically, a group represented by the following chemical formula is exemplified.

Figure 0006029310
(式中、hは1〜20の整数、iは1〜9の整数、jは1〜5の整数、kは1〜4の整数、lは1〜4の整数をそれぞれ表す。)
Figure 0006029310
(In the formula, h represents an integer of 1 to 20, i represents an integer of 1 to 9, j represents an integer of 1 to 5, k represents an integer of 1 to 4, and l represents an integer of 1 to 4.)

また、XおよびXは、ラジカル重合性不飽和結合を有する1価の有機基を表すが、具体的には、メタクリロイルオキシ基、アクリロイルオキシ基、4−ビニルベンジルオキシ基が挙げられる。 X 1 and X 2 represent a monovalent organic group having a radical polymerizable unsaturated bond, and specific examples include a methacryloyloxy group, an acryloyloxy group, and a 4-vinylbenzyloxy group.

本発明で用いられる(D)成分であるチアジアゾリルジスルフィド化合物としては、具体的には、次の化合物が例示できる。   Specific examples of the thiadiazolyl disulfide compound that is the component (D) used in the present invention include the following compounds.

Figure 0006029310
Figure 0006029310

Figure 0006029310
Figure 0006029310

Figure 0006029310
Figure 0006029310

Figure 0006029310
Figure 0006029310

Figure 0006029310
Figure 0006029310

この(D)成分としては、特に、下記一般式(2)に示すチアジアゾリルジスルフィド化合物が、接着力、溶解性及び合成の容易さの点で好ましく採用される。   As the component (D), a thiadiazolyl disulfide compound represented by the following general formula (2) is particularly preferably used in terms of adhesive strength, solubility, and ease of synthesis.

Figure 0006029310
(式中、Wはメタクリロイルオキシ基、アクリロイルオキシ基、4−ビニルベンジルオキシ基を表し、pは6〜11の整数を表す。)
Figure 0006029310
(Wherein, W represents a methacryloyloxy group, an acryloyloxy group, and a 4-vinylbenzyloxy group, and p represents an integer of 6 to 11.)

この(D)成分の配合量は、(A)成分と(B)成分の合計質量100質量部に対して、0.01〜20質量部が好ましく、0.05〜10質量部がより好ましい。0.01質量部未満では、密着性が十分に得られないおそれがあり、20質量部を越えると、硬化物の耐熱性が低下するおそれがある。また、この(D)成分は1種を単独で使用してもよく、2種以上を混合して使用してもよい。   The compounding amount of the component (D) is preferably 0.01 to 20 parts by mass and more preferably 0.05 to 10 parts by mass with respect to 100 parts by mass of the total mass of the component (A) and the component (B). If the amount is less than 0.01 part by mass, sufficient adhesion may not be obtained. If the amount exceeds 20 parts by mass, the heat resistance of the cured product may be reduced. Moreover, this (D) component may be used individually by 1 type, and 2 or more types may be mixed and used for it.

本発明において、チアジアゾリルジスルフィドは、例えば、Y及びYが硫黄である場合には、窒素雰囲気下で、2,5−ジメルカプト−1,3,4−チアジアゾールのメタノール溶液の入った3つ口フラスコに、ナトリウムメトキシドのメタノール溶液を滴下ロートを用いて室温でゆっくり滴下し、さらに、X−R−Br、X−R−Br等の末端にラジカル重合性不飽和結合を有するハロゲン化物(X,X,R,Rは上記と同じである。)のメタノール溶液をゆっくり滴下した後、3時間加熱還流させた後、室温まで放冷し、次いで反応混合物に水を加えて反応を停止し、反応系からメタノールを減圧留去することで得られる。 In the present invention, for example, when Y 1 and Y 2 are sulfur, the thiadiazolyl disulfide is 3 containing a methanol solution of 2,5-dimercapto-1,3,4-thiadiazole under a nitrogen atmosphere. A methanol solution of sodium methoxide is slowly dropped into a necked flask at room temperature using a dropping funnel, and further, a radical polymerizable unsaturated bond is attached to the end of X 1 -R 1 -Br, X 2 -R 2 -Br, etc. A methanol solution of a halide having X (X 1 , X 2 , R 1 , R 2 is the same as above) was slowly added dropwise, heated to reflux for 3 hours, allowed to cool to room temperature, and then the reaction mixture Water is added to the reaction to stop the reaction, and methanol is distilled off from the reaction system under reduced pressure.

本発明の半導体接着用熱硬化型樹脂組成物に使用される(E)成分の充填材は、無機系および有機系のいずれであってもよく、従来公知の充填材が使用できる。無機系充填材としては、例えば、銀粉、金粉、銅粉、アルミニウム粉、ニッケル粉等の金属粉や、溶融シリカ、結晶シリカ、窒化珪素、アルミナ、窒化アルミニウム、炭酸カルシウム等が挙げられる。これらの無機系充填材のうち、金属粉は主に導電性や熱伝導性を付与するために用いられる。また、有機系充填材としては、例えば、シリコーン樹脂、ポリテトラフロロエチレン等のフッ素樹脂、ポリメチルメタクリレート等のアクリル樹脂、ベンゾグアナミンやメラミンとホルムアルデヒドとの架橋物等が挙げられる。さらに、シリカとアクリル樹脂との複合材や、有機系充填材表面に金属コーティングを施したもの等、有機化合物と無機化合物を複合した充填材等も使用される。これらの充填材は、分散性等を高めるため、アルコキシシラン、アシロキシシラン、シラザン、オルガノアミノシラン等のシランカップリング材等により表面処理が施されていてもよい。これらの充填剤は1種を単独で使用してもよく、2種以上を混合して使用してもよい。   The filler of the component (E) used in the thermosetting resin composition for semiconductor bonding of the present invention may be either inorganic or organic, and conventionally known fillers can be used. Examples of the inorganic filler include metal powder such as silver powder, gold powder, copper powder, aluminum powder, and nickel powder, and fused silica, crystalline silica, silicon nitride, alumina, aluminum nitride, calcium carbonate, and the like. Among these inorganic fillers, metal powder is mainly used for imparting conductivity and thermal conductivity. Examples of the organic filler include a silicone resin, a fluororesin such as polytetrafluoroethylene, an acrylic resin such as polymethyl methacrylate, a cross-linked product of benzoguanamine, melamine, and formaldehyde. Furthermore, a composite material of an organic compound and an inorganic compound, such as a composite material of silica and an acrylic resin, or a metal coating on the surface of an organic filler is used. These fillers may be surface-treated with a silane coupling material such as alkoxysilane, acyloxysilane, silazane, organoaminosilane, or the like in order to improve dispersibility and the like. These fillers may be used individually by 1 type, and 2 or more types may be mixed and used for them.

(E)成分の充填剤としては、導電性の用途には、特に銀粉が、入手が容易で、形状、粒径の種類が多く、導電性が良好で、かつ加熱しても導電性が変化しないことから好ましい。また、絶縁用途には、特にシリカが、入手の容易さと種類の豊富さの観点から好ましい。これらの充填剤は、ハロゲンイオン、アルカリ金属イオン等のイオン性不純物の含有量が10ppm以下であることが好ましい。また、充填剤の形状は特に限定されず、例えば、フレーク状、鱗片状、樹枝状、球状のもの等が用いられる。また、粒径も特に限定されず、例えば、粒径が1〜100nm程度のナノスケールのものも用いられる。   As the filler of component (E), silver powder is particularly easily available for conductive use, has many types of shapes and particle sizes, has good conductivity, and changes in conductivity even when heated. This is preferable. For insulating applications, silica is particularly preferable from the viewpoint of availability and variety. These fillers preferably have a content of ionic impurities such as halogen ions and alkali metal ions of 10 ppm or less. Further, the shape of the filler is not particularly limited, and for example, a flake shape, a scale shape, a dendritic shape, a spherical shape, or the like is used. Further, the particle size is not particularly limited, and for example, a nanoscale particle having a particle size of about 1 to 100 nm is used.

この(E)成分の配合量は、(A)成分と(B)成分の合計質量100質量部に対して、1〜300質量部が好ましい。配合量を1質量部以上とすることで、硬化物の膨張係数が過度に大きくなることを抑制し、接着の信頼性を良好にすることができる。また、300質量部以下とすることで、粘度が過度に大きくなることを抑制し、作業性を良好にすることができる。   As for the compounding quantity of this (E) component, 1-300 mass parts is preferable with respect to 100 mass parts of total mass of (A) component and (B) component. By setting the blending amount to be 1 part by mass or more, it is possible to suppress the expansion coefficient of the cured product from becoming excessively large and improve the reliability of adhesion. Moreover, by setting it as 300 mass parts or less, it can suppress that a viscosity becomes large too much and can make workability | operativity favorable.

本発明の半導体接着用熱硬化型樹脂組成物には、以上の各成分の他、本発明の効果を阻害しない範囲で、この種の組成物に一般に配合される、硬化促進剤、ゴムやシリコーン等の低応力化剤、カップリング剤、消泡剤、界面活性剤、着色剤(顔料、染料)、難燃剤、その他の各種添加剤を、必要に応じて配合することができる。また、各種溶剤も必要に応じて適宜配合することができる。これらの各添加剤はいずれも1種を単独で使用してもよく、2種以上を混合して使用してもよい。   In the thermosetting resin composition for semiconductor adhesion of the present invention, in addition to the above components, a curing accelerator, rubber or silicone generally blended in this type of composition as long as the effects of the present invention are not impaired. A low stress agent such as a coupling agent, an antifoaming agent, a surfactant, a colorant (pigment, dye), a flame retardant, and other various additives can be blended as necessary. Various solvents can also be appropriately blended as necessary. Each of these additives may be used alone or in combination of two or more.

本発明の半導体接着用熱硬化型樹脂組成物は、上記した(A)〜(E)成分、および必要に応じて配合されるカップリング剤等の添加剤等を十分に混合した後、さらにディスパース、ニーダー、3本ロールミル等により混練処理を行い、次いで、脱泡することにより、調製することができる。   The thermosetting resin composition for semiconductor adhesion according to the present invention comprises the above components (A) to (E), and additives such as a coupling agent blended as necessary. It can be prepared by performing a kneading process using a Perth, a kneader, a three-roll mill or the like and then defoaming.

本発明の半導体接着用熱硬化型樹脂組成物は、低弾性率で、かつ密着性に優れており、これを用いて、特に耐半田クラック性が従来に比べ向上した半導体装置を得ることができる。   The thermosetting resin composition for semiconductor bonding of the present invention has a low elastic modulus and excellent adhesion, and by using this, it is possible to obtain a semiconductor device having particularly improved solder crack resistance compared to the prior art. .

次に、本発明の半導体装置について説明する。
本発明の半導体装置は、例えば、本発明の半導体接着用熱硬化型樹脂組成物を介して半導体素子をリードフレームにマウントし、半導体接着用熱硬化型樹脂組成物を加熱硬化させた後、リードフレームのリード部と半導体素子上の電極とをワイヤボンディングにより接続し、次いで、これらを封止樹脂を用いて封止することにより製造することができる。ボンディングワイヤとしては、例えば、銅、金、アルミ、金合金、アルミ−シリコン等からなるワイヤが例示される。また、導電性ペーストを硬化させる際の温度は、通常、150〜250℃であり、0.5〜2間程度加熱することが好ましい。
Next, the semiconductor device of the present invention will be described.
The semiconductor device of the present invention includes, for example, mounting a semiconductor element on a lead frame via the thermosetting resin composition for bonding semiconductors of the present invention, and heating and curing the thermosetting resin composition for bonding semiconductors. It can be manufactured by connecting the lead part of the frame and the electrode on the semiconductor element by wire bonding and then sealing them with a sealing resin. Examples of the bonding wire include a wire made of copper, gold, aluminum, gold alloy, aluminum-silicon, or the like. Moreover, the temperature at the time of hardening an electrically conductive paste is 150-250 degreeC normally, and it is preferable to heat about 0.5-2.

図1は、このようにして得られた本発明の半導体装置の一例を示したものであり、銅フレーム等のリードフレーム1と半導体素子2の間に、本発明の半導体接着用熱硬化型樹脂組成物の硬化物である接着剤層3が介在されている。また、半導体素子2上の電極4とリードフレーム1のリード部5とがボンディングワイヤ6により接続されており、さらに、これらが封止樹脂7により封止されている。なお、接着剤層3の厚さとしては、10〜30μm程度が好ましい。   FIG. 1 shows an example of the semiconductor device of the present invention obtained as described above. Between the lead frame 1 such as a copper frame and the semiconductor element 2, the thermosetting resin for semiconductor bonding of the present invention is shown. An adhesive layer 3 that is a cured product of the composition is interposed. Further, the electrode 4 on the semiconductor element 2 and the lead portion 5 of the lead frame 1 are connected by a bonding wire 6, and these are further sealed by a sealing resin 7. In addition, as thickness of the adhesive bond layer 3, about 10-30 micrometers is preferable.

本発明の半導体装置は、低弾性率で、かつ密着性に優れた半導体接着用熱硬化型樹脂組成物により半導体素子が接着固定されているので、耐半田クラック性に優れており、高い信頼性を具備している。   The semiconductor device of the present invention is excellent in solder crack resistance and high reliability because the semiconductor element is bonded and fixed by the thermosetting resin composition for semiconductor bonding having a low elastic modulus and excellent adhesion. It has.

次に、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの実施例に何ら限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples at all.

(実施例1)
窒素雰囲気下、300mlの三つ口フラスコに、2,5−ジメルカプト−1,3,4−チアジアゾール 1.5g(10.0mmol)を溶解したメタノール溶液 40mlを収容し、さらに、ナトリウムメトキシド 0.54g(10.0mmol)を溶解したメタノール溶液 15mlを滴下ロートを用いて室温でゆっくり滴下した。引き続き、11−ブロモウンデシルメタクリレート3.19g(10.0mmol)のメタノール溶液15mlをゆっくり滴下した。滴下終了後、3時間加熱還流させた。その後、室温まで放冷し、反応混合物に水を加えて反応を停止した。反応系からメタノールを減圧留去し、水層をエーテルで抽出し、合わせた有機層を飽和食塩水で洗浄した。無水硫酸マグネシウムで乾燥し、溶媒を減圧留去したところ、淡黄色固体の2−(11−メタクリロイルオキシウンデシルチオ)−5−メルカプト−1,3,4−チアジアゾール 3.56gを得た。
Example 1
Under a nitrogen atmosphere, 40 ml of a methanol solution in which 1.5 g (10.0 mmol) of 2,5-dimercapto-1,3,4-thiadiazole was dissolved was placed in a 300 ml three-necked flask. 15 ml of a methanol solution in which 54 g (10.0 mmol) was dissolved was slowly added dropwise at room temperature using a dropping funnel. Subsequently, 15 ml of a methanol solution of 3.19 g (10.0 mmol) of 11-bromoundecyl methacrylate was slowly added dropwise. After completion of dropping, the mixture was heated to reflux for 3 hours. Then, it stood to cool to room temperature, water was added to the reaction mixture, and reaction was stopped. Methanol was distilled off from the reaction system under reduced pressure, the aqueous layer was extracted with ether, and the combined organic layer was washed with saturated brine. After drying over anhydrous magnesium sulfate and evaporating the solvent under reduced pressure, 3.56 g of 2- (11-methacryloyloxyundecylthio) -5-mercapto-1,3,4-thiadiazole was obtained as a pale yellow solid.

300mlの三つ口フラスコに、得られた2−(11−メタクリロイルオキシウンデシルチオ)−5−メルカプト−1,3,4−チアジアゾール 2.85g(7.35mmol)を溶解したメタノール溶液 150mlを収容し、31質量%濃度の過酸化水素水 1.2g(11.1mmol)を滴下ロートを用いてゆっくり滴下した。滴下終了後、1時間室温で撹拌させた。その後、反応系から析出した固体を濾過した。得られた固体をメタノールで洗浄し、乾燥させたところ、式(A)で示されるチアジアゾリルジスルフィド化合物(以下、チアジアゾリルスルフィド化合物Iと称する) 1.85gを得た。   A 300 ml three-necked flask contains 150 ml of a methanol solution in which 2.85 g (7.35 mmol) of 2- (11-methacryloyloxyundecylthio) -5-mercapto-1,3,4-thiadiazole obtained was dissolved. Then, 1.2 g (11.1 mmol) of 31% by mass hydrogen peroxide was slowly added dropwise using a dropping funnel. After completion of the dropwise addition, the mixture was stirred at room temperature for 1 hour. Thereafter, the solid precipitated from the reaction system was filtered. The obtained solid was washed with methanol and dried to obtain 1.85 g of a thiadiazolyl disulfide compound (hereinafter referred to as thiadiazolyl sulfide compound I) represented by the formula (A).

このチアジアゾリルスルフィド化合物I 1質量部、アクリル変性ポリブタジエンとして「MM−1000−80」(日本石油化学(株)製 商品名、数平均分子量1000)70質量部、2−メタクリロイロキシエチルコハク酸として「ライトエステルHO−MS」(共栄社化学(株)製 商品名)30質量部、ジクミルパーオキサイドとして「パークミルD」(日本油脂(株)製 商品名、急速加熱試験における分解温度175℃)1質量部、アルコキシシランとして「KBM−403」(信越化学工業(株)製 商品名)0.2質量部および銀粉(粒径0.1〜30μm、平均粒径3μm、フレーク状)250質量部を十分に混合し、さらに三本ロールで混練して半導体接着用熱硬化型樹脂組成物を調製した。   1 part by mass of this thiadiazolyl sulfide compound I, 70 parts by mass of “MM-1000-80” (trade name, number average molecular weight 1000, manufactured by Nippon Petrochemical Co., Ltd.) as acrylic-modified polybutadiene, 2-methacryloyloxyethyl succinic acid As “light ester HO-MS” (trade name, manufactured by Kyoeisha Chemical Co., Ltd.) 30 parts by mass, as dicumyl peroxide “park mill D” (trade name, manufactured by NOF Corporation, decomposition temperature in rapid heating test 175 ° C.) 1 part by weight, 0.2 parts by weight of “KBM-403” (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.) as alkoxysilane and 250 parts by weight of silver powder (particle size 0.1 to 30 μm, average particle size 3 μm, flake shape) Were mixed well and further kneaded with three rolls to prepare a thermosetting resin composition for semiconductor bonding.

(実施例2)
銀粉に代えて、シリカ粉末(平均粒径3μm、最大粒径20μm、球状)180質量部を用いるとともに、アルコキシシラン「KBM−403」の配合量を0.5質量部とした以外は実施例1と同様にして半導体接着用熱硬化型樹脂組成物を調製した。
(Example 2)
Example 1 except that 180 parts by mass of silica powder (average particle size 3 μm, maximum particle size 20 μm, spherical) was used instead of silver powder, and the amount of alkoxysilane “KBM-403” was 0.5 parts by mass. In the same manner as above, a thermosetting resin composition for semiconductor bonding was prepared.

(実施例3)
アクリル変性ポリブタジエンに代えて、アクリル変性水素添加型ポリブタジエン「TEAI−1000」(日本曹達(株)製 商品名、数平均分子量2250)70質量部を用いた以外は実施例1と同様にして半導体接着用熱硬化型樹脂組成物を調製した。
Example 3
Semiconductor adhesion in the same manner as in Example 1, except that 70 parts by mass of acrylic-modified hydrogenated polybutadiene “TEAI-1000” (trade name, number average molecular weight 2250, manufactured by Nippon Soda Co., Ltd.) was used instead of acrylic-modified polybutadiene. A thermosetting resin composition was prepared.

(実施例4)
アクリル変性ポリブタジエンに代えて、メタクリル変性ポリイソプレン「UC−102」(クラレ(株)製 商品名、数平均分子量17000)70質量部を用いた以外は実施例1と同様にして半導体接着用熱硬化型樹脂組成物を調製した。
Example 4
Thermosetting for semiconductor bonding in the same manner as in Example 1 except that 70 parts by mass of methacryl-modified polyisoprene “UC-102” (trade name, number average molecular weight 17000, manufactured by Kuraray Co., Ltd.) was used instead of acrylic-modified polybutadiene. A mold resin composition was prepared.

(実施例5)
チアジアゾリルジスルフィド化合物Iに代えて、式(B)で示されるチアジアゾリルジスルフィド化合物(以下、チアジアゾリルジスルフィド化合物IIと称する)1質量部を用いた以外は実施例1と同様にして半導体接着用熱硬化型樹脂組成物を調製した。
(Example 5)
In place of thiadiazolyl disulfide compound I, a semiconductor was prepared in the same manner as in Example 1, except that 1 part by mass of thiadiazolyl disulfide compound represented by formula (B) (hereinafter referred to as thiadiazolyl disulfide compound II) was used. A thermosetting resin composition for adhesion was prepared.

(実施例6)
チアジアゾリルジスルフィド化合物Iの配合量を5質量部とした以外は実施例1と同様にして半導体接着用熱硬化型樹脂組成物を調製した。
(Example 6)
A thermosetting resin composition for semiconductor adhesion was prepared in the same manner as in Example 1 except that the amount of the thiadiazolyl disulfide compound I was 5 parts by mass.

(比較例1)
チアジアゾリルジスルフィド化合物を非配合とし、かつアルコキシシラン「KBM−403」の配合量を0.5質量部とした以外は実施例1と同様にして半導体接着用熱硬化型樹脂組成物を調製した。
(Comparative Example 1)
A thermosetting resin composition for semiconductor adhesion was prepared in the same manner as in Example 1 except that the thiadiazolyl disulfide compound was not blended and the amount of alkoxysilane “KBM-403” was 0.5 parts by mass. .

(比較例2)
チアジアゾリルジスルフィド化合物を非配合とし、かつアルコキシシラン「KBM−403」の配合量を0.5質量部とした以外は実施例2と同様にして半導体接着用熱硬化型樹脂組成物を調製した。
(Comparative Example 2)
A thermosetting resin composition for semiconductor adhesion was prepared in the same manner as in Example 2 except that the thiadiazolyl disulfide compound was not blended and the amount of alkoxysilane "KBM-403" was 0.5 parts by mass. .

上記各実施例および各比較例で得られた半導体接着用熱硬化型樹脂組成物について、下記に示す方法で各種特性を評価した。   About the thermosetting resin composition for semiconductor adhesion obtained in each of the above Examples and Comparative Examples, various characteristics were evaluated by the methods described below.

(1)初期粘度
調製直後の半導体接着用熱硬化型樹脂組成物の粘度を、東機産業(株)製のE型粘度計(3°コーン)を用い、25℃、2.5rpmの条件で測定した。
(1) Initial viscosity The viscosity of the thermosetting resin composition for semiconductor bonding immediately after the preparation is measured using an E-type viscometer (3 ° cone) manufactured by Toki Sangyo Co., Ltd. at 25 ° C. and 2.5 rpm. It was measured.

(2)引張弾性率
得られた半導体接着用熱硬化型樹脂組成物を150℃で30分間加熱し硬化させて作製したフィルム状試験片(20mm×4mm×0.1mm)について、セイコーインスツルメンツ(株)製の動的粘弾性測定装置DMS6100を用い、25℃における引張弾性率を測定した。測定条件は以下の通りである。
測定温度:−100〜300℃
昇温速度:5℃/分
周波数:10Hz
荷重:100mN
(2) Tensile elasticity modulus About the film-like test piece (20 mm x 4 mm x 0.1 mm) produced by heating and hardening the obtained thermosetting resin composition for semiconductor adhesion at 150 degreeC for 30 minutes, Seiko Instruments Inc. The tensile elastic modulus at 25 ° C. was measured using a dynamic viscoelasticity measuring device DMS6100 manufactured by KK). The measurement conditions are as follows.
Measurement temperature: -100 to 300 ° C
Temperature increase rate: 5 ° C / min Frequency: 10Hz
Load: 100mN

(3)ポットライフ
得られた半導体接着用熱硬化型樹脂組成物を25℃の恒温槽内に放置し、粘度が初期粘度の1.5倍以上に増粘するまでの日数を調べた。
(3) Pot life The obtained thermosetting resin composition for semiconductor bonding was left in a thermostatic bath at 25 ° C., and the number of days until the viscosity increased to 1.5 times or more of the initial viscosity was examined.

(4)熱時接着強度
得られた半導体接着用熱硬化型樹脂組成物を銅フレーム上に20μm厚に塗布し、その上に2mm×2mmの半導体チップ(シリコンチップ)をマウントし、200℃で60分間加熱硬化させ、接続サンプルを作製した。この接続サンプルについて、西進商事(株)製のボンドテスターSS−100KPを用いて260℃で測定した。
(4) Adhesion strength during heating The obtained thermosetting resin composition for semiconductor adhesion was applied to a copper frame to a thickness of 20 μm, and a 2 mm × 2 mm semiconductor chip (silicon chip) was mounted thereon, at 200 ° C. A connection sample was prepared by heating and curing for 60 minutes. The connection sample was measured at 260 ° C. using a bond tester SS-100KP manufactured by Seishin Shoji Co., Ltd.

(5)耐半田リフロー性
得られた半導体接着用熱硬化型樹脂組成物を銅フレーム上に20μm厚に塗布し、その上に6mm×6mmの半導体チップ(シリコンチップ、表面アルミ配線のみ)をマウントし、200℃で60分間加熱硬化させた後、京セラケミカル(株)製のエポキシ樹脂封止材(商品名:KE−G1200)を用いて封止し、半導体パッケージ(80pQFP、14mm×20mm×2mm)を作製した。封止は、まず、175℃、2分間、1MPaの条件でトランスファー成形し、その後、175℃で8時間の後硬化を行った。このパッケージに85℃、85%RH、168時間の吸湿処理を施した後、IRリフロー処理(260℃、10秒)を行い、パッケージの外部クラック(パッケージ表面のクラック)の発生の有無を顕微鏡(倍率:15倍)で観察し、その発生数を調べた。また、パッケージの内部クラック(チップクラック)の発生の有無を超音波顕微鏡で観察し、その発生数を調べた(n=5)。
(5) Solder reflow resistance The obtained thermosetting resin composition for semiconductor bonding is applied to a copper frame to a thickness of 20 μm, and a 6 mm × 6 mm semiconductor chip (silicon chip, surface aluminum wiring only) is mounted thereon. And then cured by heating at 200 ° C. for 60 minutes, and then sealed with an epoxy resin sealing material (trade name: KE-G1200) manufactured by Kyocera Chemical Co., Ltd., and a semiconductor package (80 pQFP, 14 mm × 20 mm × 2 mm) ) Was produced. For sealing, first, transfer molding was performed under the conditions of 1 MPa at 175 ° C. for 2 minutes, and then post-curing was performed at 175 ° C. for 8 hours. This package was subjected to moisture absorption treatment at 85 ° C., 85% RH and 168 hours, followed by IR reflow treatment (260 ° C., 10 seconds), and the presence or absence of external cracks in the package (package surface cracks) was observed with a microscope ( (Magnification: 15 times) and the number of occurrences was examined. Further, the occurrence of internal cracks (chip cracks) in the package was observed with an ultrasonic microscope, and the number of occurrences was examined (n = 5).

これらの結果を、半導体接着用熱硬化型樹脂組成物の組成とともに表1に示す。

Figure 0006029310
These results are shown in Table 1 together with the composition of the thermosetting resin composition for semiconductor adhesion.
Figure 0006029310

表1からも明らかなように、実施例の半導体接着用熱硬化型樹脂組成物は、低弾性率で、かつ高い密着性を有しており、また、これを用いた半導体装置は耐半田リフロー性に優れていた。   As is clear from Table 1, the thermosetting resin composition for semiconductor bonding of the examples has a low elastic modulus and high adhesion, and a semiconductor device using the same has a solder reflow resistance. It was excellent in nature.

1…リードフレーム、2…半導体素子、3…接着剤層、4…電極、5…リード部、6…ボンディングワイヤ、7…封止樹脂 DESCRIPTION OF SYMBOLS 1 ... Lead frame, 2 ... Semiconductor element, 3 ... Adhesive layer, 4 ... Electrode, 5 ... Lead part, 6 ... Bonding wire, 7 ... Sealing resin

Claims (5)

(A)室温で液状であり、1分子内に少なくとも1つのアクリル基またはメタクリル基を有し、数平均分子量500以上30000以下で、かつ分子骨格中に二重結合を有する炭化水素化合物またはその誘導体、(B)エチレン性不飽和基を有する重合性モノマー、(C)ラジカル重合触媒、(D)下記一般式(1)で示されるチアジアゾリルジスルフィド化合物
Figure 0006029310
(式中、RおよびRはそれぞれ炭素数1〜20の2価の有機残基を表し、XおよびXはそれぞれラジカル重合性不飽和結合を有する1価の有機基を表し、YおよびYはそれぞれ硫黄原子、窒素原子又はNH基を表し、nは1〜3の整数、mは前記Yが硫黄原子またはNH基であるときは1を、窒素原子であるときは2を表し、oは前記Yが硫黄原子またはNH基であるときは1を、窒素原子であるときは2を表す。)および(E)充填剤を含有することを特徴とする半導体接着用熱硬化型樹脂組成物。
(A) A hydrocarbon compound or derivative thereof that is liquid at room temperature, has at least one acryl group or methacryl group in one molecule, has a number average molecular weight of 500 to 30,000, and has a double bond in the molecular skeleton. , (B) a polymerizable monomer having an ethylenically unsaturated group, (C) a radical polymerization catalyst, (D) a thiadiazolyl disulfide compound represented by the following general formula (1)
Figure 0006029310
(Wherein R 1 and R 2 each represent a divalent organic residue having 1 to 20 carbon atoms, X 1 and X 2 each represent a monovalent organic group having a radical polymerizable unsaturated bond, Y 1 and Y 2 each represent a sulfur atom, a nitrogen atom or an NH group, n is an integer of 1 to 3, m is 1 when the Y 1 is a sulfur atom or an NH group, and 2 is a nitrogen atom. And o represents 1 when Y 2 is a sulfur atom or NH group, and 2 when Y 2 is a nitrogen atom.) And (E) a heat for bonding semiconductors, containing a filler A curable resin composition.
前記(A)成分と(B)成分の質量比が10:90〜90:10であることを特徴とする請求項1記載の半導体接着用熱硬化型樹脂組成物。 2. The thermosetting resin composition for semiconductor bonding according to claim 1 , wherein the mass ratio of the component (A) to the component (B) is 10:90 to 90:10. 前記(A)成分と(B)成分の合計量100質量部に対し、前記(D)成分を0.01〜20質量部含有することを特徴とする請求項1または2記載の半導体接着用熱硬化型樹脂組成物。 The heat | fever for semiconductor adhesion of Claim 1 or 2 containing 0.01-20 mass parts of said (D) component with respect to 100 mass parts of total amounts of said (A) component and (B) component. A curable resin composition. 前記(A)成分と(B)成分の合計量100質量部に対し、前記(C)成分を0.1〜10質量部、前記(E)成分を1〜300質量部含有することを特徴とする請求項3記載の半導体接着用熱硬化型樹脂組成物。 0.1 to 10 parts by mass of the component (C) and 1 to 300 parts by mass of the component (E) with respect to 100 parts by mass of the total amount of the component (A) and the component (B) The thermosetting resin composition for semiconductor bonding according to claim 3 . 請求項1乃至4のいずれか1項記載の半導体接着用熱硬化型樹脂組成物により、半導体素子を半導体素子支持部材上に接着してなることを特徴とする半導体装置。 5. A semiconductor device comprising a semiconductor element bonded to a semiconductor element support member with the thermosetting resin composition for semiconductor bonding according to claim 1 .
JP2012093737A 2012-04-17 2012-04-17 Thermosetting resin composition for semiconductor bonding and semiconductor device Expired - Fee Related JP6029310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012093737A JP6029310B2 (en) 2012-04-17 2012-04-17 Thermosetting resin composition for semiconductor bonding and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012093737A JP6029310B2 (en) 2012-04-17 2012-04-17 Thermosetting resin composition for semiconductor bonding and semiconductor device

Publications (2)

Publication Number Publication Date
JP2013221089A JP2013221089A (en) 2013-10-28
JP6029310B2 true JP6029310B2 (en) 2016-11-24

Family

ID=49592311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012093737A Expired - Fee Related JP6029310B2 (en) 2012-04-17 2012-04-17 Thermosetting resin composition for semiconductor bonding and semiconductor device

Country Status (1)

Country Link
JP (1) JP6029310B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0819203B2 (en) * 1991-03-12 1996-02-28 タツタ電線株式会社 UV curable conductive resin composition
JP3799374B2 (en) * 1997-09-01 2006-07-19 株式会社トクヤマ Adhesive composition
JPH11116900A (en) * 1997-10-21 1999-04-27 Tokuyama Corp Adhesive composition
JPH11131036A (en) * 1997-10-30 1999-05-18 Tokuyama Corp Adhesive composition
JP3929220B2 (en) * 2000-01-26 2007-06-13 住友ベークライト株式会社 Die attach paste and semiconductor device
JP2006199824A (en) * 2005-01-20 2006-08-03 Soken Chem & Eng Co Ltd Anisotropic conductive adhesive tape and anisotropic conductive bonded circuit board
JP2008258607A (en) * 2008-03-24 2008-10-23 Hitachi Chem Co Ltd Adhesive for electrode connection, connection structure of fine electrode using this, and connection method of electrode
JP5509738B2 (en) * 2008-09-30 2014-06-04 デクセリアルズ株式会社 Acrylic insulating adhesive

Also Published As

Publication number Publication date
JP2013221089A (en) 2013-10-28

Similar Documents

Publication Publication Date Title
TWI359835B (en) Resin composition and semiconductor device produce
JP6056821B2 (en) Connection material and semiconductor device
JP6348700B2 (en) Thermosetting resin composition for semiconductor bonding and semiconductor device using the same
JP2002184793A (en) Die attachment paste and semiconductor device
JP6456134B2 (en) Conductive resin composition, conductive resin composition for dispensing, die attach agent, and semiconductor device
JP2016017122A (en) Thermosetting resin composition for semiconductor bonding and semiconductor device
US6861013B2 (en) Die-attaching paste and semiconductor device
JP6029310B2 (en) Thermosetting resin composition for semiconductor bonding and semiconductor device
JP6514040B2 (en) Semiconductor adhesive resin composition and semiconductor device
JP5873284B2 (en) Thermosetting resin composition for semiconductor bonding and semiconductor device
JP6100017B2 (en) Thermosetting resin composition for semiconductor bonding and semiconductor device
JP2015078256A (en) Thermosetting conductive silicone composition, conductive adhesive comprising the composition, conductive die-bonding material comprising the composition, and optical semiconductor device having cured product of the die-bonding material
JP6029370B2 (en) Thermosetting resin composition for semiconductor bonding and semiconductor device using the same
JP2008007558A (en) Liquid resin composition and semiconductor device prepared using the same
JP4899316B2 (en) Resin composition and semiconductor device produced using resin composition
JP2002265884A (en) Die-attaching paste and semiconductor device
JP6074309B2 (en) Thermosetting resin composition for semiconductor bonding and semiconductor device using the same
JP2013004868A (en) Thermosetting resin composition for bonding of semiconductor, and semiconductor device using the same
JP4894395B2 (en) Liquid resin composition and semiconductor device produced using liquid resin composition
JP4525079B2 (en) Thermosetting liquid encapsulating resin composition and semiconductor device using the same
JP4835229B2 (en) Resin composition and semiconductor device produced using resin composition
JP3456920B2 (en) Die attach paste
JP4341193B2 (en) Die attach paste and semiconductor device
JP6616201B2 (en) Resin composition for semiconductor bonding and semiconductor device
KR20170062475A (en) Resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160414

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161018

R150 Certificate of patent or registration of utility model

Ref document number: 6029310

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees