JP6027376B2 - Fuel addition structure - Google Patents

Fuel addition structure Download PDF

Info

Publication number
JP6027376B2
JP6027376B2 JP2012205236A JP2012205236A JP6027376B2 JP 6027376 B2 JP6027376 B2 JP 6027376B2 JP 2012205236 A JP2012205236 A JP 2012205236A JP 2012205236 A JP2012205236 A JP 2012205236A JP 6027376 B2 JP6027376 B2 JP 6027376B2
Authority
JP
Japan
Prior art keywords
fuel
fuel addition
exhaust
exhaust gas
addition valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012205236A
Other languages
Japanese (ja)
Other versions
JP2014058928A (en
Inventor
敏明 山崎
敏明 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2012205236A priority Critical patent/JP6027376B2/en
Publication of JP2014058928A publication Critical patent/JP2014058928A/en
Application granted granted Critical
Publication of JP6027376B2 publication Critical patent/JP6027376B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Description

本発明は、燃料添加弁により排気系路内を流れる排気ガスに燃料を添加するようにした燃料添加構造に関するものである。   The present invention relates to a fuel addition structure in which fuel is added to exhaust gas flowing in an exhaust system passage by a fuel addition valve.

ディーゼルエンジンから排出されるパティキュレート(Particulate Matter:粒子状物質)は、炭素質から成る煤分と、高沸点炭化水素成分から成るSOF分(Soluble Organic Fraction:可溶性有機成分)とを主成分とし、更に微量のサルフェート(ミスト状硫酸成分)を含んだ組成を成すものであるが、この種のパティキュレートの低減対策として、排気ガスが流通する排気管の途中に、パティキュレートフィルタを装備することが行われている。   Particulate matter (particulate matter) discharged from a diesel engine is mainly composed of a soot fraction composed of carbon and a SOF fraction (Soluble Organic Fraction) composed of a high-boiling hydrocarbon component. Furthermore, it has a composition containing a small amount of sulfate (mist-like sulfuric acid component). As a measure to reduce this type of particulates, a particulate filter can be installed in the middle of the exhaust pipe through which exhaust gas flows. Has been done.

前記パティキュレートフィルタは、コージェライト等のセラミックから成る多孔質のハニカム構造となっており、格子状に区画された各流路の入口が交互に目封じされ、入口が目封じされていない流路については、その出口が目封じされるようになっており、各流路を区画する多孔質薄壁を透過した排気ガスのみが下流側へ排出されるようにしてある。   The particulate filter has a porous honeycomb structure made of a ceramic such as cordierite, and the inlets of the respective channels partitioned in a lattice shape are alternately sealed, and the channels are not sealed. The outlet is sealed, and only the exhaust gas that has permeated through the porous thin wall defining each flow path is discharged to the downstream side.

そして、排気ガス中のパティキュレートは、前記多孔質薄壁の内側表面に捕集されて堆積するので、目詰まりにより排気抵抗が増加しないうちにパティキュレートを適宜に燃焼除去してパティキュレートフィルタの再生を図る必要があるが、通常のディーゼルエンジンの運転状態にあっては、パティキュレートが自己燃焼するほどの高い排気温度が得られる機会が少ないため、酸化触媒を一体的に担持させた触媒再生型のパティキュレートフィルタが採用されている。   Then, the particulates in the exhaust gas are collected and deposited on the inner surface of the porous thin wall, so that the particulates are appropriately burned and removed before the exhaust resistance increases due to clogging. It is necessary to regenerate, but in normal diesel engine operating conditions, there are few opportunities to obtain exhaust temperatures that are high enough for particulates to self-combust. A type of particulate filter is used.

このような触媒再生型のパティキュレートフィルタを採用すれば、捕集されたパティキュレートの酸化反応が促進されて着火温度が低下し、従来より低い排気温度でもパティキュレートを燃焼除去することが可能となるが、斯かる触媒再生型のパティキュレートフィルタを採用した場合であっても、排気温度の低い運転領域では、パティキュレートの処理量よりも捕集量が上まわってしまうので、このような低い排気温度での運転状態が続くと、パティキュレートフィルタの再生が良好に進まずに該パティキュレートフィルタが過捕集状態に陥る虞れがある。   By adopting such a catalyst regeneration type particulate filter, the oxidation reaction of the collected particulates is promoted, the ignition temperature is lowered, and it is possible to burn and remove the particulates even at an exhaust temperature lower than before. However, even when such a catalyst regeneration type particulate filter is adopted, the trapped amount exceeds the particulate processing amount in the operation region where the exhaust temperature is low, so such a low value. If the operation state at the exhaust gas temperature continues, there is a possibility that the particulate filter will fall into an over trapped state without the particulate filter regenerating well.

そこで、パティキュレートフィルタの前段に再生用の酸化触媒を別途配置し、パティキュレートの堆積量が増加してきた段階で前記酸化触媒より上流側の排気ガス中に燃料を添加してパティキュレートフィルタを積極的に強制再生することが行われている。   Therefore, an oxidation catalyst for regeneration is separately arranged in the front stage of the particulate filter, and when the accumulated amount of particulates has increased, fuel is added to the exhaust gas upstream of the oxidation catalyst to actively use the particulate filter. Forced regeneration is performed.

つまり、パティキュレートフィルタより上流側で添加された燃料が前段の酸化触媒を通過する間に酸化反応し、その反応熱で昇温した排気ガスの流入により直後のパティキュレートフィルタの触媒床温度が上げられてパティキュレートが燃やし尽くされ、パティキュレートフィルタの再生化が図られることになる。   In other words, the fuel added on the upstream side of the particulate filter undergoes an oxidation reaction while passing through the preceding oxidation catalyst, and the catalyst bed temperature of the particulate filter immediately after that rises due to the inflow of exhaust gas heated by the reaction heat. As a result, the particulates are burned out, and the particulate filter is regenerated.

この種の燃料添加を実行するための具体的手段としては、圧縮上死点付近で行われる燃料のメイン噴射に続いて圧縮上死点より遅い非着火のタイミングでポスト噴射を追加することで排気ガス中に燃料を添加するのが一般的である。   As a specific means for executing this kind of fuel addition, post-injection is added at the timing of non-ignition later than the compression top dead center following the main injection of fuel performed near the compression top dead center. It is common to add fuel to the gas.

ただし、このようにポスト噴射で燃料添加を行うと、燃料とエンジンオイルと煤分とHCガスとが高温高圧環境下で混ざり合うことでHC重合が起こり易くなり、EGRクーラの出口等における急激な温度低下を伴う箇所でタール状の粘度の高い重合物が生成され、この重合物が吸気系や動弁系に悪影響を及ぼす虞れがあったため、ターボチャージャのタービンより下流の排気系路の途中に燃料添加弁を装備し、該燃料添加弁により燃料を排気系路内に直噴することで燃料添加を行うことも既に提案されている。   However, when fuel is added by post injection in this way, fuel, engine oil, apportionment, and HC gas are mixed in a high temperature and high pressure environment, so that HC polymerization is likely to occur and abruptly occurs at the outlet of the EGR cooler. A tar-like high-viscosity polymer is generated at a location with a decrease in temperature, and this polymer may have an adverse effect on the intake system and valve system, so the middle of the exhaust system downstream of the turbocharger turbine. It has also been proposed to add a fuel addition valve by directly injecting fuel into the exhaust system by using the fuel addition valve.

尚、本発明と同様に燃料添加弁により排気系路内を流れる排気ガスに燃料を添加するようにした燃料添加構造に関連する先行技術文献情報としては、例えば、下記の特許文献1等が既に存在している。   In addition, as the prior art document information related to the fuel addition structure in which fuel is added to the exhaust gas flowing in the exhaust system passage by the fuel addition valve in the same manner as the present invention, for example, the following Patent Document 1 has already been disclosed. Existing.

特開2011−252438号公報JP 2011-252438 A

しかしながら、前述の如き燃料添加弁による直噴方式を採用する場合、その噴射口を排気ガスの流れの上流側に向けてしまうと、煤分を含む排気ガスが前記噴射口に対し正面から勢い良く吹き付けて該噴射口が煤分により閉塞し易くなってしまうため、排気ガスの流れ方向に対し斜め下流側へ燃料を噴射するようにしているのが通常であるが、このように排気ガスの流れ方向に対し斜め下流側へ燃料を噴射すると、排気ガスの流れと同じ向きに燃料が噴射されることになって、該燃料が円滑に排気ガスの流れに乗って微細化や拡散が起こらないまま進んでしまい、燃料添加弁から添加した燃料の蒸発と分散が良好に進まないという問題があった。   However, when the direct injection method using the fuel addition valve as described above is employed, if the injection port is directed to the upstream side of the flow of the exhaust gas, the exhaust gas including apportioning is vigorously moved from the front with respect to the injection port. The injection port is likely to be blocked by apportioning, so that it is usual to inject the fuel obliquely downstream with respect to the flow direction of the exhaust gas. When the fuel is injected obliquely downstream with respect to the direction, the fuel is injected in the same direction as the flow of the exhaust gas, and the fuel smoothly rides on the flow of the exhaust gas and is not refined or diffused. There has been a problem that the evaporation and dispersion of the fuel added from the fuel addition valve does not proceed well.

本発明は上述の実情に鑑みてなしたもので、燃料添加弁からの添加燃料の蒸発と分散を従来より促進し得る燃料添加構造を提供することを目的としている。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a fuel addition structure that can accelerate evaporation and dispersion of added fuel from a fuel addition valve.

本発明は、バタフライ型の弁体により排気系路を開閉する排気ブレーキのハウジングに前記弁体に向け燃料を噴射し得るよう燃料添加弁を設け、前記弁体に全開時の傾動位置で前記燃料添加弁からの噴射燃料を衝突させて上流側へ跳ね返し得るよう反射部を設けたことを特徴とする燃料添加構造、に係るものである。   According to the present invention, a fuel addition valve is provided in an exhaust brake housing that opens and closes an exhaust system passage by a butterfly type valve body so that fuel can be injected toward the valve body, and the fuel is in a tilted position when the valve body is fully opened. The present invention relates to a fuel addition structure characterized in that a reflection portion is provided so that the fuel injected from the addition valve can collide and bounce back to the upstream side.

本発明は、排気系路の途中に燃料添加弁を取り付け且つ該燃料添加弁から排気系路内を流れる排気ガスに燃料を添加するようにした燃料添加構造であって、排気系路における燃料添加弁の取付位置に前記排気系路の内側から外側に向けて窪む噴霧ポケットを形成し、該噴霧ポケット内に前記燃料添加弁のノズル部を貫通配置して排気ガスの流れ方向に対し斜め下流側へ燃料を噴射し得るように構成すると共に、前記排気系路内における噴霧ポケットと対峙する位置に排気ガスの流れを噴霧ポケット側へ偏向させて該噴霧ポケット内に上流側へ還流する渦流を形成し且つ燃料添加弁のノズル部からの噴射燃料を衝突させて上流側へ跳ね返すスロープ部を設けたことを特徴とするものである。 The present invention provides a fuel addition structure in which a fuel addition valve is attached in the middle of an exhaust system path, and fuel is added to the exhaust gas flowing through the exhaust system path from the fuel addition valve. A spray pocket recessed from the inside to the outside of the exhaust system passage is formed at the valve mounting position, and the nozzle portion of the fuel addition valve is disposed through the spray pocket so as to be obliquely downstream with respect to the exhaust gas flow direction. And a vortex flow that deflects the flow of exhaust gas to the spray pocket side at a position facing the spray pocket in the exhaust system path and returns to the upstream side in the spray pocket. A slope portion is provided which is formed and collides with the injected fuel from the nozzle portion of the fuel addition valve and rebounds upstream .

尚、燃料の蒸発と分散が促進されると、燃料がHCガスとなって良好に分散した状態で酸化触媒に到り、該酸化触媒にて効果的に酸化反応を起こして効率良く排気ガスを昇温することが可能となるので、パティキュレートフィルタの強制再生を極力少ない時間のうちに完了することが可能となる。   When the evaporation and dispersion of the fuel is promoted, the fuel reaches the oxidation catalyst in a well dispersed state as HC gas. The oxidation catalyst effectively causes an oxidation reaction to efficiently exhaust the exhaust gas. Since the temperature can be raised, the forced regeneration of the particulate filter can be completed in as little time as possible.

更に、本発明においては、排気ブレーキのハウジングに燃料添加弁を設けているので、燃料添加弁の噴射口周囲にデポジットが形成して排気ブレーキの作動範囲内まで成長したとしても、排気ブレーキが作動する度に弁体が傾動してデポジットと干渉し、これによりデポジットが切り崩されて更なる成長が阻止されることになる。 Furthermore, in the present invention, since the fuel addition valve is provided in the exhaust brake housing, even if a deposit is formed around the injection port of the fuel addition valve and grows to the exhaust brake operating range, the exhaust brake operates. Each time the valve is tilted, it interferes with the deposit, which breaks the deposit and prevents further growth.

上記した本発明の燃料添加構造によれば、下記の如き種々の優れた効果を奏し得る。   According to the fuel addition structure of the present invention described above, various excellent effects as described below can be obtained.

(I)本発明の請求項1に記載の発明によれば、燃料添加弁からの燃料を排気ブレーキの弁体の反射部に衝突させて上流側へ跳ね返すことにより排気ガスの流れに対し対向流として混ぜることができ、排気ガスの流れに正面からぶつけることで前記燃料の蒸発と分散を著しく促進することができる。   (I) According to the invention described in claim 1 of the present invention, the fuel from the fuel addition valve collides with the reflecting part of the valve body of the exhaust brake and bounces back to the upstream side to counteract the flow of the exhaust gas. The fuel can evaporate and disperse significantly by striking the exhaust gas flow from the front.

(II)本発明の請求項に記載の発明によれば、燃料添加弁の噴射口周囲におけるデポジットの排気ブレーキの作動範囲内まで及ぶ成長を阻止することができるので、燃料添加弁の装着部分を分解して清掃するといった面倒な清掃作業の頻度を大幅に減らすことができ、その清掃作業に要する労力と時間を削減して作業負担の大幅な軽減化を図ることができる。 According to the invention described in claim 1, (II) the present invention, it is possible to inhibit the growth extends to the operating range of the deposit of the exhaust brake in the injection port around the fuel addition valve, mounting portion of the fuel addition valve The frequency of troublesome cleaning work such as disassembling and cleaning can be greatly reduced, and the labor and time required for the cleaning work can be reduced, and the work burden can be greatly reduced.

本発明を実施する形態の一例を示す断面図である。It is sectional drawing which shows an example of the form which implements this invention. デポジットの形成について説明する断面図である。It is a sectional view for explaining about the shape forming deposit.

以下本発明の実施の形態を図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明を実施する形態の一例を示すもので、図中1は排気系路、2は該排気系路1の途中に介装された排気ブレーキを示し、この排気ブレーキ2は、傾動軸3を中心に傾動するバタフライ型の弁体4により排気系路1を開閉するようになっている。   FIG. 1 shows an example of an embodiment of the present invention. In the figure, 1 is an exhaust system path, 2 is an exhaust brake interposed in the exhaust system path 1, and the exhaust brake 2 is tilted. The exhaust system path 1 is opened and closed by a butterfly-type valve body 4 tilting about the shaft 3.

また、前記排気ブレーキ2のハウジング5には、前記弁体4に向け燃料Fを噴射し得るよう燃料添加弁6が設けられており、前記弁体4には、全開時の傾動位置(図1に示す排気ガス7の流れに沿う傾動位置)で前記燃料添加弁6からの噴射燃料Fを衝突させて上流側へ跳ね返し得るよう反射部8が設けられている。   Further, the housing 5 of the exhaust brake 2 is provided with a fuel addition valve 6 so that the fuel F can be injected toward the valve body 4, and the valve body 4 is tilted at a fully opened position (FIG. 1). The reflecting portion 8 is provided so that the injected fuel F from the fuel addition valve 6 can collide and rebound to the upstream side at a tilting position along the flow of the exhaust gas 7 shown in FIG.

即ち、この反射部8は、排気ガス7の流れ方向に対し傾斜角θの勾配で徐々に燃料添加弁6側に近づくような傾斜面8aを備えており、この傾斜面8aに前記燃料添加弁6からの噴射燃料Fが衝突して上流側へ跳ね返されるようになっている。   That is, the reflecting portion 8 is provided with an inclined surface 8a that gradually approaches the fuel addition valve 6 side at an inclination angle θ with respect to the flow direction of the exhaust gas 7, and the fuel addition valve is provided on the inclined surface 8a. The injected fuel F from 6 collides and is bounced back to the upstream side.

尚、図2は燃料添加弁6の噴射口周囲に形成されるデポジット10について説明したもので、宅配便やコンビニエンスストア等への商品を配送する運搬車両等のように、短時間の走行を挟んで停車を繰り返すような運行形態の車両にあっては、排気ガス7の温度が低く且つ流れも遅い運転状態が間欠的に連続することになるため、燃料添加弁6の噴射口周囲に燃料Fの粒と煤分とが結びついて堆積することで筒状のデポジット10が形成されるが、図2中に弁体4の傾動軌跡9として示す排気ブレーキ2の作動範囲内まで前記デポジット10が成長した際には、排気ブレーキ2が作動する度に弁体4が傾動してデポジット10と干渉することになる。 FIG. 2 illustrates the deposit 10 formed around the injection port of the fuel addition valve 6. The deposit 10 can be used for a short time such as a delivery vehicle for delivering goods to a courier or a convenience store. In the case of a vehicle having an operation mode in which the vehicle is repeatedly stopped, the operating state in which the temperature of the exhaust gas 7 is low and the flow is slow is intermittently continuous. Therefore, the fuel F around the injection port of the fuel addition valve 6 A cylindrical deposit 10 is formed by accumulating and accumulating grains and soot, and the deposit 10 grows within the operating range of the exhaust brake 2 shown as the tilting locus 9 of the valve body 4 in FIG. In this case, the valve body 4 tilts and interferes with the deposit 10 every time the exhaust brake 2 is operated.

而して、以上のように燃料添加構造を構成すれば、排気ブレーキ2が非作動の状態で弁体4が全開時の傾動位置にある場合に、燃料添加弁6からの噴射燃料Fが前記弁体4の反射部8に衝突して上流側へ跳ね返されることで排気ガス7の流れに対し対向流として混ざり、排気ガス7の流れに正面からぶつかることで蒸発と分散が著しく促進されることになる。   Thus, if the fuel addition structure is configured as described above, the injected fuel F from the fuel addition valve 6 can be used when the exhaust brake 2 is inactive and the valve body 4 is in the fully tilted position. By colliding with the reflecting portion 8 of the valve body 4 and bounced upstream, it mixes as a counter flow with the flow of the exhaust gas 7, and by striking the flow of the exhaust gas 7 from the front, evaporation and dispersion are significantly promoted. become.

尚、燃料Fの蒸発と分散が促進されると、燃料FがHCガスとなって良好に分散した状態で酸化触媒に到り、該酸化触媒にて効果的に酸化反応を起こして効率良く排気ガス7を昇温することが可能となるので、パティキュレートフィルタの強制再生を極力少ない時間のうちに完了することが可能となる。   When the evaporation and dispersion of the fuel F are promoted, the fuel F becomes an HC gas and reaches the oxidation catalyst in a well dispersed state. The oxidation catalyst effectively causes an oxidation reaction to efficiently exhaust the fuel F. Since the temperature of the gas 7 can be raised, the forced regeneration of the particulate filter can be completed in as little time as possible.

また、排気ブレーキ2のハウジング5に燃料添加弁6を設けているので、燃料添加弁6の噴射口周囲にデポジット10が形成して排気ブレーキ2の作動範囲内まで成長したとしても、排気ブレーキ2が作動する度に弁体4が傾動してデポジット10と干渉し、これによりデポジット10が切り崩されて更なる成長が阻止されることになる。 Further , since the fuel addition valve 6 is provided in the housing 5 of the exhaust brake 2, even if a deposit 10 is formed around the injection port of the fuel addition valve 6 and grows within the operating range of the exhaust brake 2 , the exhaust brake 2 The valve body 4 tilts and interferes with the deposit 10 each time the valve is actuated, whereby the deposit 10 is broken and further growth is prevented.

従って、上記形態例によれば、燃料添加弁6からの燃料Fを排気ブレーキ2の弁体4の反射部8に衝突させて上流側へ跳ね返すことにより排気ガス7の流れに対し対向流として混ぜることができ、排気ガス7の流れに正面からぶつけることで前記燃料Fの蒸発と分散を著しく促進することができ、また、燃料添加弁6の噴射口周囲におけるデポジット10の排気ブレーキ2の作動範囲内まで及ぶ成長を阻止することができるので、燃料添加弁6の装着部分を分解して清掃するといった面倒な清掃作業の頻度を大幅に減らすことができ、その清掃作業に要する労力と時間を削減して作業負担の大幅な軽減化を図ることができる。 Therefore, according to the above-described embodiment, the fuel F from the fuel addition valve 6 collides with the reflecting portion 8 of the valve body 4 of the exhaust brake 2 and bounces back to the upstream side, thereby mixing as a counter flow with the flow of the exhaust gas 7. It is possible to significantly accelerate the evaporation and dispersion of the fuel F by hitting the flow of the exhaust gas 7 from the front, and the operating range of the exhaust brake 2 of the deposit 10 around the injection port of the fuel addition valve 6. Since it can be prevented from growing to the inside, the frequency of troublesome cleaning work such as disassembling and cleaning the mounting portion of the fuel addition valve 6 can be greatly reduced, and labor and time required for the cleaning work can be reduced. Thus, the work load can be greatly reduced.

尚、本発明の燃料添加構造は、上述の形態例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   The fuel addition structure of the present invention is not limited to the above-described embodiments, and various changes can be made without departing from the scope of the present invention.

1 排気系路
2 排気ブレーキ
4 弁体
5 ハウジング
6 燃料添加弁
7 排気ガス
8 反射部
9 傾動軌跡
10 デポジット
F 燃料
DESCRIPTION OF SYMBOLS 1 Exhaust system path 2 Exhaust brake 4 Valve body 5 Housing 6 Fuel addition valve 7 Exhaust gas 8 Reflecting part 9 Tilt locus 10 Deposit F Fuel

Claims (1)

バタフライ型の弁体により排気系路を開閉する排気ブレーキのハウジングに前記弁体に向け燃料を噴射し得るよう燃料添加弁を設け、前記弁体に全開時の傾動位置で前記燃料添加弁からの噴射燃料を衝突させて上流側へ跳ね返し得るよう反射部を設けたことを特徴とする燃料添加構造。
A fuel addition valve is provided in an exhaust brake housing that opens and closes an exhaust system path by a butterfly-type valve body so that fuel can be injected toward the valve body, and the valve body from the fuel addition valve is tilted when fully opened. A fuel addition structure characterized in that a reflecting portion is provided so that the injected fuel can collide and bounce back to the upstream side.
JP2012205236A 2012-09-19 2012-09-19 Fuel addition structure Active JP6027376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012205236A JP6027376B2 (en) 2012-09-19 2012-09-19 Fuel addition structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012205236A JP6027376B2 (en) 2012-09-19 2012-09-19 Fuel addition structure

Publications (2)

Publication Number Publication Date
JP2014058928A JP2014058928A (en) 2014-04-03
JP6027376B2 true JP6027376B2 (en) 2016-11-16

Family

ID=50615607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012205236A Active JP6027376B2 (en) 2012-09-19 2012-09-19 Fuel addition structure

Country Status (1)

Country Link
JP (1) JP6027376B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001193609A (en) * 2000-01-17 2001-07-17 Keihin Corp Fuel injector
JP4290056B2 (en) * 2004-03-31 2009-07-01 日産ディーゼル工業株式会社 Engine exhaust purification system
JP4807524B2 (en) * 2007-12-25 2011-11-02 三菱自動車工業株式会社 Exhaust gas purification device for internal combustion engine

Also Published As

Publication number Publication date
JP2014058928A (en) 2014-04-03

Similar Documents

Publication Publication Date Title
US7891174B2 (en) Management of regeneration of a diesel particulate filter
EP1939422B1 (en) Exhaust gas purifier for diesel engine
US8549843B2 (en) Method of controlling exhaust gas purification system and exhaust gas purification system
CN103883380A (en) Method and system for controlling exhaust gas temperature of engine
JP5448310B2 (en) Exhaust purification device
US9790829B2 (en) System for injecting fuel into exhaust pipe
KR20120015357A (en) Exhaust gas purification device for internal combustion engine
JP7087722B2 (en) Engine exhaust
JP2019112949A (en) engine
JP2019112954A (en) engine
JP7017479B2 (en) engine
JP6027376B2 (en) Fuel addition structure
US20140208720A1 (en) Catalytic burner system for dpf regeneration
JP2015206262A (en) Fuel addition structure
JP4735505B2 (en) Surge prevention control device and surge prevention control method for turbocharged engine
JP2014134157A (en) Fuel addition device
JP5984598B2 (en) Fuel addition structure
JP6817926B2 (en) engine
JP5553519B2 (en) Exhaust purification device
JP6470602B2 (en) Exhaust temperature raising device
JP5984597B2 (en) Fuel addition structure
JP2006037857A (en) Exhaust emission control device
JP6964046B2 (en) engine
JP2019112950A (en) engine
US11446599B2 (en) Particulate filter and manufacturing method for same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161014

R150 Certificate of patent or registration of utility model

Ref document number: 6027376

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250