JP6026882B2 - Heating device - Google Patents

Heating device Download PDF

Info

Publication number
JP6026882B2
JP6026882B2 JP2012284057A JP2012284057A JP6026882B2 JP 6026882 B2 JP6026882 B2 JP 6026882B2 JP 2012284057 A JP2012284057 A JP 2012284057A JP 2012284057 A JP2012284057 A JP 2012284057A JP 6026882 B2 JP6026882 B2 JP 6026882B2
Authority
JP
Japan
Prior art keywords
heat
temperature
insulating member
heat insulating
generating means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012284057A
Other languages
Japanese (ja)
Other versions
JP2014126312A (en
Inventor
勝美 中村
勝美 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2012284057A priority Critical patent/JP6026882B2/en
Publication of JP2014126312A publication Critical patent/JP2014126312A/en
Application granted granted Critical
Publication of JP6026882B2 publication Critical patent/JP6026882B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Furnace Details (AREA)

Description

本発明は、例えばセラミックスの脱脂、仮焼及び焼成等の熱処理に用いる加熱装置に関する。   The present invention relates to a heating apparatus used for heat treatment such as degreasing, calcination and firing of ceramics.

近年、電子機器や自動車等に用いるセラミック部品の特性上の要求が厳しくなってきており、特に、同一製品を大量(多数)生産した際の各製品毎の特性の均一性が強く求められるようになってきている。セラミック部品の特性の均一性を向上するには、各製造工程の処理条件の安定と均一化が必要であり、熱処理装置においても、温度や雰囲気等の高精度な制御が求められている。   In recent years, the demands on the characteristics of ceramic parts used in electronic devices and automobiles have become stricter. In particular, the uniformity of the characteristics of each product when the same product is mass-produced (many) is strongly demanded. It has become to. In order to improve the uniformity of the characteristics of ceramic parts, it is necessary to stabilize and equalize the processing conditions of each manufacturing process, and high-precision control of temperature, atmosphere, and the like is also required in heat treatment apparatuses.

セラミック部品の製造における熱処理工程では、少品種を大量に生産する場合には、通常、熱処理する対象である被処理物を台板や搬送ベルト等に載せてトンネル状の炉体を通過させる連続炉が用いられている。しかし近年、様々な特性の多様なセラミック部品が必要とされており、その生産形態は多品種少量生産の傾向が強いことから、熱処理装置として、熱処理条件の変更が容易なバッチ炉が使用される機会も増えてきている。   In the heat treatment process in the production of ceramic parts, when a small variety is produced in large quantities, a continuous furnace that normally passes the object to be heat-treated on a base plate or a conveyor belt and passes through a tunnel-like furnace body Is used. However, in recent years, various ceramic parts with various characteristics are required, and since the production form has a strong tendency to produce a variety of products in small quantities, a batch furnace in which the heat treatment conditions can be easily changed is used as a heat treatment apparatus. Opportunities are also increasing.

セラミック部品の焼成に用いられる、例えば下記特許文献1等に記載されている従来の一般的なバッチ式の加熱装置は、被処理物であるセラミックスの生成形体が配置された熱処理領域を囲む断熱部材と、この断熱部材で囲まれた熱処理領域内の所定部位に配置された発熱手段(ヒーター)とを備え、断熱部材で囲まれた熱処理領域内の温度を計測する、所定部位に配置された温度センサと、温度センサの計測値に基いて発熱手段の出力を調整するための制御手段とを備えている。断熱部材は、熱処理領域を囲んでいる側の内面から外面への熱エネルギーの移動を抑制し、熱処理領域内の温度を高く保つよう作用する。従来の一般的なバッチ炉では、熱処理領域内の温度センサによって熱処理領域内の所定位置の温度を計測し、制御手段が、この計測した所定位置の温度に応じて熱処理領域内に配置された発熱手段の出力を調整し、熱処理領域内の温度分布が適当な状態となるよう制御している。   A conventional general batch-type heating device used for firing ceramic parts, for example, described in Patent Document 1 below, is a heat insulating member that surrounds a heat treatment region in which a ceramic generation form as a workpiece is disposed. And a heating unit (heater) disposed at a predetermined part in the heat treatment region surrounded by the heat insulating member, and measures the temperature in the heat treatment region surrounded by the heat insulating member. A sensor and a control means for adjusting the output of the heat generating means based on the measured value of the temperature sensor are provided. The heat insulating member acts to suppress the transfer of thermal energy from the inner surface to the outer surface on the side surrounding the heat treatment region, and keep the temperature in the heat treatment region high. In a conventional general batch furnace, the temperature at a predetermined position in the heat treatment region is measured by a temperature sensor in the heat treatment region, and the control means generates heat generated in the heat treatment region according to the measured temperature at the predetermined position. The output of the means is adjusted to control the temperature distribution in the heat treatment region to be in an appropriate state.

特開2005−77001号公報JP 2005-77001 A

従来のバッチ式炉ではこのように、熱処理領域内の所定位置に配置された温度センサによる温度計測値に基き、熱処理領域内に配置された発熱手段によって供給される熱量を調整することで、熱処理領域内の温度を制御していた。しかし、このような制御を行っているだけでは、加熱装置を長期間使用していると、熱処理領域内の特定部分の温度が高くなったり、逆に他の部分では温度が低くなったりし、熱処理領域内の温度分布が大きくなるといった課題があった。この温度分布の変動は、熱処理領域を囲む断熱部材の特性の変化や、ヒーターの抵抗値変化などの発熱特性の変化および環境温度の変化など複数の要因が原因となっている。   In conventional batch furnaces, heat treatment is performed by adjusting the amount of heat supplied by the heating means disposed in the heat treatment region based on the temperature measurement value by the temperature sensor disposed at a predetermined position in the heat treatment region. The temperature in the area was controlled. However, only by performing such control, if the heating device is used for a long time, the temperature of a specific part in the heat treatment region becomes high, and conversely the temperature becomes low in other parts, There has been a problem that the temperature distribution in the heat treatment region becomes large. This variation in temperature distribution is caused by a plurality of factors such as a change in the characteristics of the heat insulating member surrounding the heat treatment region, a change in heat generation characteristics such as a change in the resistance value of the heater, and a change in the environmental temperature.

熱処理領域を囲む断熱部材の特性の変化による温度分布の変動の例について説明しておく。発熱手段は、伝熱によって熱処理領域内の空気を温めて、高温となった熱処理領域内の空気から断熱部材への伝熱により、断熱部材の内面の温度も上昇する。また、発熱手段
からの輻射熱が断熱部材の内面に届くことでも、断熱部材の内面の温度は上昇する。すなわち発熱手段は、熱処理領域内の空気や各種部材の温度に加え、断熱部材の内面の温度も上昇させる。
An example of temperature distribution variation due to a change in the characteristics of the heat insulating member surrounding the heat treatment region will be described. The heat generating means warms the air in the heat treatment region by heat transfer, and the temperature of the inner surface of the heat insulation member also rises by heat transfer from the air in the heat treatment region that has become high temperature to the heat insulation member. Moreover, the temperature of the inner surface of the heat insulating member also rises when radiant heat from the heat generating means reaches the inner surface of the heat insulating member. That is, the heat generating means raises the temperature of the inner surface of the heat insulating member in addition to the temperature of the air and various members in the heat treatment region.

断熱部材では、断熱部材の内面から外面へは温度が伝わり難く、断熱部材の内面の温度は比較的高い状態に保たれる。すなわち断熱部材では、熱処理領域を囲む内面から外面へは熱エネルギーは伝わり難く、断熱部材に伝わった熱エネルギーは熱処理領域を囲む内面の側に留まる。例えば、熱処理領域内の空気の比較的低温部分が断熱部材の内面に接触した場合には、比較的高い温度に保たれた断熱部材の内面が熱処理領域内の空気を温める。このように断熱部材の内面に蓄えられた熱エネルギーのうちの一部は、熱処理領域内に再び伝わる。このように熱処理領域内に伝わる熱エネルギーには、発熱手段から熱処理領域に直接的に伝わる熱エネルギーと、発熱手段から断熱部材に伝わった後に熱処理領域内に伝わる熱エネルギー(断熱部材を介して伝わる熱エネルギー)とがある。   In the heat insulating member, the temperature is hardly transmitted from the inner surface to the outer surface of the heat insulating member, and the temperature of the inner surface of the heat insulating member is kept relatively high. That is, in the heat insulating member, heat energy is hardly transmitted from the inner surface surrounding the heat treatment region to the outer surface, and the heat energy transmitted to the heat insulating member remains on the inner surface side surrounding the heat treatment region. For example, when a relatively low temperature portion of the air in the heat treatment region contacts the inner surface of the heat insulating member, the inner surface of the heat insulating member maintained at a relatively high temperature warms the air in the heat treatment region. Thus, a part of the heat energy stored on the inner surface of the heat insulating member is transmitted again into the heat treatment region. As described above, the heat energy transmitted in the heat treatment region includes the heat energy directly transmitted from the heat generating means to the heat treatment region, and the heat energy transmitted from the heat generating means to the heat insulating member and then transmitted in the heat treatment region (transmitted through the heat insulating member). Thermal energy).

ところで、長期間にわたって熱処理を繰り返し実施した場合には、断熱部材の断熱特性は劣化する。断熱特性が劣化すると、断熱部材の内面から外面へ熱エネルギーが移動し易くなり、発熱手段から供給された熱エネルギーが、最終的に断熱部材の外面から熱処理領域の外側へ逃げ易くなってくる。   By the way, when heat processing is repeatedly performed over a long period of time, the heat insulating properties of the heat insulating member deteriorate. When the heat insulation characteristics deteriorate, the heat energy easily moves from the inner surface to the outer surface of the heat insulating member, and the heat energy supplied from the heat generating means finally easily escapes from the outer surface of the heat insulating member to the outside of the heat treatment region.

この場合、特に断熱部材を介して伝わる熱エネルギーが減少するので、断熱部材の断熱特性が劣化していない場合と同一の条件で発熱手段を発熱させても、熱処理領域内に伝わる熱エネルギーの総和は断熱特性が劣化していない場合と比べて小さくなってしまう。 この場合、断熱特性が劣化していない場合と同一の条件で発熱手段を制御して熱処理領域内に熱エネルギーを供給すると、断熱部材を介して伝わる熱エネルギーの減少分を熱処理領域内の発熱手段のみによって補う形となり、発熱手段から熱処理領域に直接的に伝わる熱エネルギーと断熱部材を介して伝わる熱エネルギーとのバランスが崩れ、断熱部材近傍の温度が断熱特性が劣化していない場合と比べて低下するなど、熱処理領域内の温度分布が使用開始の当初から変化してしまうこともあった。本発明はこのような課題を解決するためになされたものである。   In this case, since the heat energy transmitted through the heat insulating member is reduced in particular, even if the heat generating means is heated under the same conditions as those in the case where the heat insulating characteristics of the heat insulating member are not deteriorated, the sum of the heat energy transmitted in the heat treatment region. Becomes smaller than the case where the heat insulating property is not deteriorated. In this case, when the heat generating means is controlled under the same conditions as when the heat insulating properties are not deteriorated and the heat energy is supplied into the heat treatment region, the heat energy transmitted through the heat insulating member is reduced by the heat generating means in the heat treatment region. As a result, the balance between the heat energy directly transmitted from the heat generating means to the heat treatment region and the heat energy transmitted through the heat insulating member is lost, and the temperature in the vicinity of the heat insulating member is less than the case where the heat insulating characteristics are not deteriorated. In some cases, the temperature distribution in the heat treatment region may change from the beginning of use, such as a decrease. The present invention has been made to solve such problems.

本発明は、被処理物を熱処理するための加熱装置であって、前記被処理物が配置される熱処理領域を囲む内面および該内面と反対の側の外面を有する断熱部材と、前記熱処理領域に配置された、前記被処理物を加熱するための第1発熱手段と、前記断熱部材を前記外面の側から加熱する、前記断熱部材を挟んで前記熱処理領域と反対の側の領域に配置された第2発熱手段と、前記熱処理領域に設定された第1測温部分の温度を計測するための第1温度センサと、前記断熱部材の内部の、前記第1温度センサに比べて前記断熱部材の前記外面に近い位置または前記断熱部材の前記外面に設定された第2測温部分の温度を計測するための第2温度センサと、前記第1温度センサによって計測された前記第1測温部分の温度と、前記第2温度センサによって計測された前記第2測温部分の温度とに基づき、少なくとも前記第2発熱手段の発熱量を調整することで、前記断熱部材を介して前記熱処理領域へ伝わる熱量の大きさを調整するための制御手段とを有することを特徴とする加熱装置を提供する。 The present invention is a heating apparatus for heat-treating an object to be processed, the heat-insulating member having an inner surface surrounding the heat-treatment region in which the object to be processed is disposed and an outer surface opposite to the inner surface, and the heat-treatment region. The first heat generating means for heating the object to be processed and the heat insulating member are heated from the outer surface side, and disposed in a region opposite to the heat treatment region with the heat insulating member interposed therebetween. and second heating means, a first temperature sensor for measuring the temperature of the first temperature sensing part set in the heat treatment area, wherein the internal insulating member, the insulating member than the first temperature sensor A second temperature sensor for measuring a temperature of a second temperature measuring portion set at a position close to the outer surface of the heat insulating member or the outer surface of the heat insulating member, and the first temperature measuring portion measured by the first temperature sensor And the second temperature sensor Therefore, to adjust the amount of heat transmitted to the heat treatment region via the heat insulating member by adjusting at least the amount of heat generated by the second heat generating means based on the measured temperature of the second temperature measuring portion. And a control device.

本発明は、複数の温度センサによって計測した断熱部材の内面側および外面側それぞれの温度情報に基いて、断熱部材の外側に配置した発熱手段の発熱の程度を調整することで、断熱部材の断熱特性の劣化にともなって発生する熱処理領域内の温度変化を補正することができるので、断熱部材の特性が変化しても熱処理領域内の温度分布を小さくすることできる。   The present invention adjusts the degree of heat generation of the heat generating means arranged on the outside of the heat insulating member based on the temperature information on the inner surface side and the outer surface side of the heat insulating member measured by a plurality of temperature sensors, thereby insulating the heat insulating member. Since the temperature change in the heat treatment region that occurs as the characteristics deteriorate can be corrected, the temperature distribution in the heat treatment region can be reduced even if the characteristics of the heat insulating member change.

本発明の加熱装置の一実施形態の上断面図である。It is an upper section of one embodiment of the heating device of the present invention. 本発明の加熱装置の一実施形態の側断面図である。It is side sectional drawing of one Embodiment of the heating apparatus of this invention. 本発明の加熱装置の一実施形態が備える、第1発熱手段、第2発熱手段および第3発熱手段の構成について説明する概略側断面図である。It is a schematic sectional side view explaining the structure of a 1st heat generating means, a 2nd heat generating means, and a 3rd heat generating means with which one Embodiment of the heating apparatus of this invention is provided. 本発明の加熱装置の一実施形態が備える、第1温度センサ、第2温度センサおよび第3温度センサの構成について説明する概略側断面図である。It is a schematic sectional side view explaining the structure of a 1st temperature sensor, a 2nd temperature sensor, and a 3rd temperature sensor with which one Embodiment of the heating apparatus of this invention is provided. (a)および(b)は、図1に示す加熱装置において取得される温度情報t1とt2の変動について説明する概略図である。(A) And (b) is the schematic explaining the fluctuation | variation of the temperature information t1 and t2 which are acquired in the heating apparatus shown in FIG. (a)〜(c)は、断熱部材の断熱性能の劣化にともなう、測温部分T1およびT2に伝わる熱エネルギーの大きさを説明するための概略断面図である。(A)-(c) is a schematic sectional drawing for demonstrating the magnitude | size of the thermal energy transmitted to the temperature-measurement part T1 and T2 with the deterioration of the heat insulation performance of a heat insulation member.

図1および図2は、本発明の加熱装置の一実施形態について説明する図であり、図1は加熱装置10の上断面図、図2は加熱装置10の側断面図である。なお図1では、後述する制御手段28の図示は省略している。   FIG. 1 and FIG. 2 are diagrams for explaining an embodiment of the heating device of the present invention. FIG. 1 is a top sectional view of the heating device 10, and FIG. 2 is a side sectional view of the heating device 10. In FIG. 1, illustration of the control means 28 described later is omitted.

加熱装置10は、被処理物1を熱処理するための装置であって、被処理物1が配置される熱処理領域Aを囲む内面12Aおよび内面12Aと反対の側の外面12Bを有する断熱部材12と、熱処理領域Aに配置された、被処理物1を加熱するための第1発熱手段14と、断熱部材12を外面12Bの側から加熱する、断熱部材12を挟んで熱処理領域Aと反対の側の領域に配置された第2発熱手段16と、熱処理領域Aの内部または断熱部材12の内部(図1および図2に示す実施形態では熱処理領域Aの内部)に設定された第1測温部分T1の温度を計測するための第1温度センサ22と、断熱部材12の内部の、第1温度センサ22に比べて断熱部材12の外面12Bに近い位置、または断熱部材12の外面12B(図1および図2に示す実施形態では断熱部材12の内部)に設定された第2測温部分T2の温度を計測するための第2温度センサ24と、第1温度センサ22によって計測された第1測温部分T1の温度t1と、第2温度センサ24によって計測された第2測温部分の温度t2とに基き、少なくとも第2発熱手段16の発熱量を調整することで、断熱部材12を介して熱処理領域Aへ伝わる熱量の大きさを調整する制御手段28とを有する。   The heating device 10 is a device for heat-treating the workpiece 1 and has a heat insulating member 12 having an inner surface 12A surrounding a heat treatment region A where the workpiece 1 is disposed and an outer surface 12B opposite to the inner surface 12A. The first heat generating means 14 for heating the workpiece 1 and the heat insulating member 12 which are disposed in the heat treatment region A and the heat insulating member 12 are heated from the side of the outer surface 12B. The second heat generating means 16 arranged in the area of the first heat-sensing portion and the first temperature measuring portion set inside the heat treatment area A or inside the heat insulating member 12 (in the embodiment shown in FIGS. 1 and 2, inside the heat treatment area A). A first temperature sensor 22 for measuring the temperature of T1, and a position closer to the outer surface 12B of the heat insulating member 12 than the first temperature sensor 22 inside the heat insulating member 12, or the outer surface 12B of the heat insulating member 12 (FIG. 1). And shown in Figure 2 In the embodiment, the second temperature sensor 24 for measuring the temperature of the second temperature measuring portion T2 set in the heat insulating member 12) and the temperature of the first temperature measuring portion T1 measured by the first temperature sensor 22 are used. Based on t1 and the temperature t2 of the second temperature measuring portion measured by the second temperature sensor 24, the amount of heat generated by the second heat generating means 16 is adjusted at least to be transmitted to the heat treatment region A via the heat insulating member 12. Control means 28 for adjusting the amount of heat.

また加熱装置10では、制御手段28は、第1温度センサ22によって計測された第1測温部分T1の温度と第2温度センサ24によって計測された第2測温部分T2の温度とに基き、第1の発熱手段14の発熱量も調整することで、熱処理領域Aの温度を調整する。   In the heating apparatus 10, the control means 28 is based on the temperature of the first temperature measuring portion T 1 measured by the first temperature sensor 22 and the temperature of the second temperature measuring portion T 2 measured by the second temperature sensor 24. The temperature of the heat treatment area A is adjusted by adjusting the amount of heat generated by the first heating means 14.

また加熱装置10は、熱処理領域Aの内部の、第1測温部分T1よりも断熱部材12から離れた位置に設定された第3測温部分T3の温度を計測するための第3温度センサ26と、熱処理領域Aの内部の、第1発熱手段14よりも断熱部材12から離れた位置に設定された第3発熱手段18とを備えている。制御手段28は、第3温度センサ26によって計測された第3測温部分T3の温度に基き、少なくとも第3発熱手段18の発熱量も調整する。   Further, the heating device 10 has a third temperature sensor 26 for measuring the temperature of the third temperature measuring portion T3 set at a position farther from the heat insulating member 12 than the first temperature measuring portion T1 inside the heat treatment region A. And a third heat generating means 18 set in a position farther from the heat insulating member 12 than the first heat generating means 14 inside the heat treatment region A. The control means 28 also adjusts at least the amount of heat generated by the third heat generating means 18 based on the temperature of the third temperature measuring portion T3 measured by the third temperature sensor 26.

断熱部材12は、円筒状の部材であって、例えば公知のアルミナ繊維を主成分としたセラミックファイバー材からなる。断熱部材12の上側開口には円板状の蓋部材32が配置されている。蓋部材32も、断熱部材12と同様にアルミナ繊維を主成分としたセラミックファイバー材からなる。蓋部材32には、複数の貫通孔が設けられており、第3発熱手段18、第3温度センサ26および複数の第2発熱手段14がこれら貫通孔に挿通されて
、これら部材が蓋部材32に固定されている。断熱部材12の下側の開口には、円形の開口34aが設けられたリング状の底板部材34が取り付けられている。開口34aには、平坦な上面を有する載置体36が配置されている。載置体36は、図示しないモータ等の駆動手段により、図1に矢印Rで示す方向の水平回転および図2に矢印Vで示す方向の上下移動が可能な駆動ステージ38上に配置されている。この駆動ステージ38を駆動する図示しないモータ等の駆動手段は制御手段28と接続しており、制御手段28が矢印Rで示す方向の水平回転と矢印Vで示す上下移動の動作を制御する。
The heat insulating member 12 is a cylindrical member, and is made of, for example, a ceramic fiber material whose main component is a known alumina fiber. A disk-shaped lid member 32 is disposed in the upper opening of the heat insulating member 12. The lid member 32 is also made of a ceramic fiber material mainly composed of alumina fibers, like the heat insulating member 12. The lid member 32 is provided with a plurality of through holes. The third heat generating means 18, the third temperature sensor 26, and the plurality of second heat generating means 14 are inserted into the through holes, and these members are the lid member 32. It is fixed to. A ring-shaped bottom plate member 34 provided with a circular opening 34 a is attached to the lower opening of the heat insulating member 12. A placement body 36 having a flat upper surface is disposed in the opening 34a. The mounting body 36 is disposed on a driving stage 38 that can be horizontally rotated in a direction indicated by an arrow R in FIG. 1 and moved up and down in a direction indicated by an arrow V in FIG. 2 by driving means such as a motor (not shown). . Driving means such as a motor (not shown) for driving the driving stage 38 is connected to the control means 28, and the control means 28 controls the horizontal rotation in the direction indicated by the arrow R and the vertical movement operation indicated by the arrow V.

被処理物1は、例えばセラミック生成形体等である。図1および図2に示す実施形態では、複数の被処理物1が載置された載置体11が複数個積み上げられてなる組立体13が、断熱部材12で囲まれた熱処理領域A内に複数配置されている。より具体的には、載置体36の上面に土台部材39が配置されており、この土台部材39の上面に、複数の組立体13が配置されている。   The workpiece 1 is, for example, a ceramic production form. In the embodiment shown in FIG. 1 and FIG. 2, an assembly 13 formed by stacking a plurality of mounting bodies 11 on which a plurality of workpieces 1 are mounted is in a heat treatment region A surrounded by a heat insulating member 12. Several are arranged. More specifically, the base member 39 is disposed on the upper surface of the mounting body 36, and the plurality of assemblies 13 are disposed on the upper surface of the base member 39.

図3は、第1発熱手段14、第2発熱手段16および第3発熱手段18の構成について説明する概略側断面図である。第1発熱手段14、第2発熱手段16および第3発熱手段18は、いずれも同様の構成を有しており、図3では第1発熱手段14のみを代表して示している。第1発熱手段14は、電流が流れることで発熱するU字型の抵抗加熱ヒーターである。第1発熱手段14は、2つの棒状の抵抗加熱ヒーター14aと、これら2つの抵抗加熱ヒーター14aをそれぞれの下端側(図2および図3の下側の端)で電気的に接続する、U字型に湾曲した電極部材14bとを備えて構成されている。   FIG. 3 is a schematic sectional side view for explaining the configuration of the first heat generating means 14, the second heat generating means 16 and the third heat generating means 18. The first heat generating means 14, the second heat generating means 16 and the third heat generating means 18 all have the same configuration, and FIG. 3 shows only the first heat generating means 14 as a representative. The first heat generating means 14 is a U-shaped resistance heater that generates heat when a current flows. The first heating means 14 is U-shaped, which electrically connects two rod-shaped resistance heaters 14a and the two resistance heaters 14a at their lower ends (lower ends in FIGS. 2 and 3). And an electrode member 14b curved into a mold.

2つの抵抗加熱ヒータ14aの上側の端部は、蓋部材32に設けられた貫通孔に挿通されて蓋部材32に固定されている。2つの抵抗加熱ヒータの14aのうち一方の抵抗加熱ヒータ14aの上側の端部は正極に接続され、他方の抵抗加熱ヒータの上側の端部は負極に接続されている。これら双方の電極を介して2つの抵抗加熱ヒーター14aの双方に電流が流れることで、2つの抵抗加熱ヒータ14aが発熱する。   The upper end portions of the two resistance heaters 14 a are inserted into through holes provided in the lid member 32 and fixed to the lid member 32. Of the two resistance heaters 14a, the upper end of one resistance heater 14a is connected to the positive electrode, and the upper end of the other resistance heater 14a is connected to the negative electrode. Two current heaters 14a generate heat when current flows through both of these electrodes to both resistance heaters 14a.

第1発熱手段14は、円筒状の断熱部材12の内面12Aに沿って、等間隔に複数個配置されている。第2発熱手段16は、断熱部材12を外面12Bの側から加熱するための部材であり、円筒状の断熱部材12の外面12Bに沿って、等間隔に複数個配置されている。   A plurality of first heat generating means 14 are arranged at equal intervals along the inner surface 12A of the cylindrical heat insulating member 12. The second heat generating means 16 is a member for heating the heat insulating member 12 from the outer surface 12B side, and a plurality of second heat generating means 16 are arranged along the outer surface 12B of the cylindrical heat insulating member 12 at equal intervals.

なお加熱装置10では、断熱部材12の外側にも外側断熱部材48が配置されている。第2発熱手段16は、断熱部材12と外側断熱部材48とで囲まれた領域に複数個配置されている。このように外側断熱部材48を設け、第2発熱手段16を断熱部材12と外側断熱部材48とで囲まれた領域に配置することで、第2発熱手段16の保温性を高め、断熱部材12を外面12Bの側から加熱する際に必要な電力を比較的低くすることができる。   In the heating device 10, the outer heat insulating member 48 is also disposed outside the heat insulating member 12. A plurality of second heat generating means 16 are arranged in a region surrounded by the heat insulating member 12 and the outer heat insulating member 48. Thus, by providing the outer heat insulating member 48 and arranging the second heat generating means 16 in a region surrounded by the heat insulating member 12 and the outer heat insulating member 48, the heat retaining property of the second heat generating means 16 is improved, and the heat insulating member 12. The electric power required when heating from the outer surface 12B side can be made relatively low.

第3発熱手段18は、被処理物1を加熱するとともに熱処理領域Aの温度分布を平均化させるための補助ヒーターであり、断熱部材12で囲まれた熱処理領域A内の中央部の近傍に配置されている。   The third heat generating means 18 is an auxiliary heater for heating the workpiece 1 and averaging the temperature distribution in the heat treatment region A, and is disposed in the vicinity of the central portion in the heat treatment region A surrounded by the heat insulating member 12. Has been.

第1発熱手段14、第2発熱手段16および第3発熱手段18は、制御手段28と接続されている。より具体的には、第1発熱手段14、第2発熱手段16および第3発熱手段18は、制御手段28が備える図示しない電流供給機構と接続されており、制御手段28から電流が供給されて各発熱手段が発熱する。制御手段28は、第1発熱手段14、第2発熱手段16および第3発熱手段18のそれぞれに供給される電流の大きさをそれぞれ調整することができる構成となっている。   The first heat generating means 14, the second heat generating means 16 and the third heat generating means 18 are connected to the control means 28. More specifically, the first heat generating means 14, the second heat generating means 16, and the third heat generating means 18 are connected to a current supply mechanism (not shown) provided in the control means 28, and current is supplied from the control means 28. Each heating means generates heat. The control means 28 is configured to be able to adjust the magnitude of the current supplied to each of the first heat generating means 14, the second heat generating means 16, and the third heat generating means 18.

第1温度センサ22、第2温度センサ24および第3温度センサ26は、それぞれ公知の熱電対型温度センサである。図4は、第1温度センサ22、第2温度センサ24および第3温度センサ26の構成について説明する概略側断面図である。第1温度センサ22、第2温度センサ24および第3温度センサ26はいずれも同様の構成を有しており、図4では第1温度センサ22のみを代表して示している。第1温度センサ22は、先端の一部に開口部42aが設けられたセラミック保護管42内に熱電対素線44が挿通され、先端の測温部46が保護管42の開口部42aから露出している。第1温度センサ22は、この測温部46に対応する部分の温度を計測することができる。   The first temperature sensor 22, the second temperature sensor 24, and the third temperature sensor 26 are each known thermocouple type temperature sensors. FIG. 4 is a schematic sectional side view for explaining the configuration of the first temperature sensor 22, the second temperature sensor 24, and the third temperature sensor 26. The first temperature sensor 22, the second temperature sensor 24, and the third temperature sensor 26 have the same configuration, and only the first temperature sensor 22 is shown as a representative in FIG. In the first temperature sensor 22, a thermocouple wire 44 is inserted into a ceramic protective tube 42 provided with an opening 42 a at a part of the tip, and a temperature measuring unit 46 at the tip is exposed from the opening 42 a of the protection tube 42. doing. The first temperature sensor 22 can measure the temperature of the part corresponding to the temperature measuring unit 46.

加熱装置10では、熱処理領域Aの内部または断熱部材12の内部に設定された第1測温部分T1にこの測温部46が位置するよう、第1温度センサ22が配置されている。同様に加熱装置10では、第2温度センサ24の図示しない測温部が第2測温部分T2に位置し、第3温度センサ26の図示しない測温部が第3測温部分T3に位置するよう、それぞれの温度センサが配置されている。   In the heating apparatus 10, the first temperature sensor 22 is arranged so that the temperature measuring unit 46 is positioned in the first temperature measuring portion T <b> 1 set inside the heat treatment region A or inside the heat insulating member 12. Similarly, in the heating device 10, a temperature measuring unit (not shown) of the second temperature sensor 24 is located in the second temperature measuring part T2, and a temperature measuring unit (not shown) of the third temperature sensor 26 is located in the third temperature measuring part T3. Each temperature sensor is arranged.

加熱装置10では、第2測温部分T2は断熱部材12の内部に設定されており、第2温度センサ24は断熱部材12の内部に配置されて第2測温部分T2の温度を計測する。また加熱装置10では、第1測温部分T1は熱処理Aの内部の、断熱部材12の内面12A近傍に設定されており、第1温度センサ22は第1部分T1の温度を計測する。具体的には、断熱部材12の上側(図2における上側)の端面12Cから第2温度センサ24が挿入されている。第1測温部分T1および第2測温部分T2は、断熱部材12の図2における上下方向に沿った長さのちょうど中央部分に設定されており、これら第1測温部分T1および第2測温部分T2に対応する位置のそれぞれに、第1温度センサ22の測温部46と第2温度センサ24の測温部(図2では図示せず)が位置している。第3温度センサ26は、断熱部材12で囲まれた熱処理領域A内の中央部の近傍に配置されている。   In the heating device 10, the second temperature measuring portion T2 is set inside the heat insulating member 12, and the second temperature sensor 24 is arranged inside the heat insulating member 12 to measure the temperature of the second temperature measuring portion T2. In the heating apparatus 10, the first temperature measuring portion T1 is set in the vicinity of the inner surface 12A of the heat insulating member 12 inside the heat treatment A, and the first temperature sensor 22 measures the temperature of the first portion T1. Specifically, the second temperature sensor 24 is inserted from the end face 12C on the upper side (the upper side in FIG. 2) of the heat insulating member 12. The first temperature measurement portion T1 and the second temperature measurement portion T2 are set at the central portion of the length of the heat insulating member 12 along the vertical direction in FIG. 2, and the first temperature measurement portion T1 and the second temperature measurement portion T2 are set. A temperature measuring unit 46 of the first temperature sensor 22 and a temperature measuring unit (not shown in FIG. 2) of the second temperature sensor 24 are located at positions corresponding to the temperature portion T2. The third temperature sensor 26 is disposed in the vicinity of the central portion in the heat treatment region A surrounded by the heat insulating member 12.

なお、上述のように加熱装置10では、第1発熱手段14および第2発熱手段16は円筒状の断熱部材12の内面12Aに沿って複数個配置されている。第1発熱手段14および第2発熱手段16を、このように断熱部材12の内面12Aに沿って複数配置することで、熱処理領域A内の部分的な温度のばらつき(より詳しくは、断熱部材12の内面12Aに沿った方向でのばらつき)を抑制している。また加熱装置10では上述のように、被処理物1が載置される載置体36が、図示しないモータ等の駆動手段により、図1に矢印Rで示す方向の水平回転および図2に矢印Vで示す方向の上下移動が可能な駆動ステージ38上に配置されている。被処理物1の加熱の最中、駆動ステージ38を図1に矢印Rで示す方向や図2に矢印Vで示す方向に連続して移動させておくことで、各被処理物1における熱履歴のばらつきを抑制することができる。   As described above, in the heating device 10, a plurality of the first heat generating means 14 and the second heat generating means 16 are arranged along the inner surface 12 </ b> A of the cylindrical heat insulating member 12. By disposing a plurality of the first heat generating means 14 and the second heat generating means 16 along the inner surface 12A of the heat insulating member 12 in this manner, partial temperature variations in the heat treatment region A (more specifically, the heat insulating member 12 Variation in the direction along the inner surface 12A). In the heating device 10, as described above, the mounting body 36 on which the workpiece 1 is mounted is rotated horizontally in the direction indicated by the arrow R in FIG. 1 and the arrow in FIG. It is disposed on a drive stage 38 that can move up and down in the direction indicated by V. During the heating of the workpiece 1, the drive stage 38 is continuously moved in the direction indicated by the arrow R in FIG. 1 or in the direction indicated by the arrow V in FIG. Can be suppressed.

制御手段28は、第1温度センサ22、第2温度センサ24および第3温度センサ26それぞれと接続されており、各温度センサからの出力値、すなわち第1部分T1の現在の温度情報t1、第2部分T2の現在の温度情報t2および第3部分T3の現在の温度情報t3を取得する。   The control means 28 is connected to each of the first temperature sensor 22, the second temperature sensor 24, and the third temperature sensor 26, and the output value from each temperature sensor, that is, the current temperature information t1 of the first portion T1, the first The current temperature information t2 of the second part T2 and the current temperature information t3 of the third part T3 are acquired.

なお、本実施形態では、第1温度センサ22と第2温度センサ24とがそれぞれ2つ配置されている。本実施形態において制御手段28が取得する第1部分T1の現在の温度情報t1とは、2つの第1部分T1において取得されたそれぞれの温度情報の平均値のことをいい、同様に、制御手段28が取得する第2部分T2の現在の温度情報t2は、2つの第2部分T2において取得されたそれぞれの温度情報の平均値のことをいう。   In the present embodiment, two first temperature sensors 22 and two second temperature sensors 24 are arranged. In the present embodiment, the current temperature information t1 of the first portion T1 acquired by the control means 28 means an average value of the respective temperature information acquired in the two first portions T1, and similarly, the control means The current temperature information t2 of the second part T2 acquired by 28 is an average value of the temperature information acquired in the two second parts T2.

加熱装置10は、駆動ステージ38が配置される開口が設けられた底板とを備える金属
製の筐体52によって全体が囲まれている。金属製の筐体52には、図示しない給排気口が設けられており、この給排気口から窒素やアルゴン等の気体を筐体52内に供給できる構成となっている。また、例えば蓋部材32等にも図示しない給排気口や給排気バルブが設けられており、熱処理領域Aの雰囲気を調整することができる構成となっている。
The heating device 10 is entirely surrounded by a metal casing 52 having a bottom plate provided with an opening in which the drive stage 38 is disposed. The metal housing 52 is provided with an air supply / exhaust port (not shown), and a gas such as nitrogen or argon can be supplied into the housing 52 from the air supply / exhaust port. In addition, for example, the lid member 32 or the like is provided with an air supply / exhaust port and an air supply / exhaust valve (not shown) so that the atmosphere of the heat treatment region A can be adjusted.

次に、被処理物1としてセラミック生成形体を焼結する場合を例に、加熱装置10における熱処理動作について説明する。   Next, the heat treatment operation in the heating apparatus 10 will be described by taking as an example the case of sintering a ceramic generating shape as the workpiece 1.

まず、図示しない給排気口から、筐体52および熱処理領域A内に所定種類の気体が供給されて、筐体52および熱処理領域A内の雰囲気が所定の状態に調整される。この段階では、駆動ステージ38は図2中の下側に配置されており、熱処理領域A内に被処理物1は配置されていない。   First, a predetermined type of gas is supplied into the casing 52 and the heat treatment area A from an air supply / exhaust port (not shown), and the atmosphere in the casing 52 and the heat treatment area A is adjusted to a predetermined state. At this stage, the drive stage 38 is disposed on the lower side in FIG. 2, and the workpiece 1 is not disposed in the heat treatment region A.

次に、第3発熱手段18に電流が供給され、第3発熱手段18のキャリブレーションが行われる。具体的には、第3発熱手段18に所定の大きさの電流を流しつつ、所定時間経過後の温度情報t3を取得する。温度情報t3は、第3発熱手段18に近い位置に配置された第3部分T3の温度であり、温度情報t3は第3発熱手段18からの発熱の程度に精度良く対応しているといえる。第3発熱手段18を長期間にわたって繰り返し使用した場合、第3発熱手段に供給する電流が変わらなくても第3発熱手段18の発熱の程度が変化する場合がある。このキャリブレーションでは、第3温度情報t3が所定の設定温度範囲となるように、第3発熱手段18に供給する電流の大きさを調整し、熱処理における第3発熱手段18の発熱の程度(すなわち、第3発熱手段18から供給される熱エネルギー)を、熱処理のたびに一定化させる。   Next, a current is supplied to the third heat generating means 18 and the third heat generating means 18 is calibrated. Specifically, the temperature information t3 after the elapse of a predetermined time is acquired while a current having a predetermined magnitude is passed through the third heat generating means 18. The temperature information t3 is the temperature of the third portion T3 arranged at a position close to the third heat generating means 18, and it can be said that the temperature information t3 accurately corresponds to the degree of heat generated from the third heat generating means 18. When the third heat generating means 18 is repeatedly used over a long period of time, the degree of heat generated by the third heat generating means 18 may change even if the current supplied to the third heat generating means does not change. In this calibration, the magnitude of the current supplied to the third heat generating means 18 is adjusted so that the third temperature information t3 falls within a predetermined set temperature range, and the degree of heat generated by the third heat generating means 18 in the heat treatment (that is, , The thermal energy supplied from the third heat generating means 18) is made constant at each heat treatment.

次に、第1発熱手段14および第2発熱手段16に電流が供給され、熱処理領域A内の本格的な加熱を開始する。このとき、第3発熱手段18には、上記キャリブレーションで設定した所定の大きさの電流が継続して供給されている。   Next, a current is supplied to the first heat generating means 14 and the second heat generating means 16 to start full-scale heating in the heat treatment region A. At this time, a current of a predetermined magnitude set by the calibration is continuously supplied to the third heat generating means 18.

まず、第1発熱手段14、第2発熱手段16それぞれに所定の大きさの電流を供給し、所定時間経過した時点(温度が安定化する十分な時間が経過した後の時点)で、制御手段28は、温度情報t1および温度情報t2をそれぞれ取得する。   First, a current of a predetermined magnitude is supplied to each of the first heat generating means 14 and the second heat generating means 16, and when a predetermined time elapses (at a time after a sufficient time for the temperature to stabilize), the control means 28 acquires temperature information t1 and temperature information t2.

T1部分の温度情報t1は、断熱部材12の内面12Aの温度に精度よく対応している。また、温度情報t1と温度情報t2との違いは、断熱部材12の内面12Aから外面12Bにわたる断熱部材12内の温度の勾配を精度良く表しているといえる。この断熱部材12内の温度の勾配の程度は、断熱部材12の劣化等にともなって変化する。   The temperature information t1 of the T1 portion corresponds to the temperature of the inner surface 12A of the heat insulating member 12 with high accuracy. Further, it can be said that the difference between the temperature information t1 and the temperature information t2 accurately represents the temperature gradient in the heat insulating member 12 from the inner surface 12A to the outer surface 12B of the heat insulating member 12. The degree of the temperature gradient in the heat insulating member 12 changes as the heat insulating member 12 deteriorates.

図5(a)および(b)は、断熱部材12の劣化にともなう断熱部材12内の温度の勾配の程度について説明する図であり、温度情報t1とt2との変動を示す概略図である。図5(a)は、断熱部材12の断熱性能が劣化していない状態における、測温部分T1の温度情報t1(a)および測温部分T2の温度情報t2(a)を示している。図5(b)は、断熱部材の断熱性能が劣化した状態における、測温部分T1の温度情報t1(b)および測温部分T2の温度情報t2(b)を示している。なお、図5(a)と図5(a)とで、第1発熱手段14、第2発熱手段16、および第3発熱手段18それぞれからの発熱量は同じと仮定している。また図6(a)〜(c)は、断熱部材12の断熱性能の劣化にともなう、測温部分T1およびT2に伝わる熱エネルギーの大きさを説明するための概略断面図である。図6(a)は、図5(a)に示す断熱部材12の断熱性能が劣化していない状態(断熱部材12が高い断熱性能を維持している状態)に対応しており、図6(b)は、図5(b)に示す断熱部材12の断熱性能が劣化した状態に対応している。   FIGS. 5A and 5B are diagrams for explaining the degree of temperature gradient in the heat insulating member 12 due to deterioration of the heat insulating member 12, and are schematic diagrams showing fluctuations in the temperature information t1 and t2. FIG. 5A shows temperature information t1 (a) of the temperature measuring portion T1 and temperature information t2 (a) of the temperature measuring portion T2 in a state where the heat insulating performance of the heat insulating member 12 is not deteriorated. FIG. 5B shows temperature information t1 (b) of the temperature measuring portion T1 and temperature information t2 (b) of the temperature measuring portion T2 in a state where the heat insulating performance of the heat insulating member is deteriorated. 5A and 5A, it is assumed that the heat generation amounts from the first heat generating means 14, the second heat generating means 16, and the third heat generating means 18 are the same. 6A to 6C are schematic cross-sectional views for explaining the magnitude of the thermal energy transmitted to the temperature measuring portions T1 and T2 due to the deterioration of the heat insulating performance of the heat insulating member 12. FIG. FIG. 6A corresponds to a state where the heat insulating performance of the heat insulating member 12 shown in FIG. 5A is not deteriorated (a state where the heat insulating member 12 maintains high heat insulating performance). b) corresponds to a state in which the heat insulating performance of the heat insulating member 12 shown in FIG.

第1発熱手段14から発せられた熱エネルギーのうち第1温度センサ22の測温部分T1に伝わる熱エネルギーの成分としては、例えば図6(a)に示すように、第1発熱手段14から断熱部材12の内面に伝わった熱エネルギーの成分Dのうち断熱部材12を介して第1温度センサ22に伝わる熱エネルギーの成分Lと、第1発熱手段14から断熱部材12を介さずに第1温度センサ22に直接伝わる熱エネルギーの成分Hとがある。なお、この断熱部材12を介して伝わる熱エネルギーの成分Lは、断熱部材12の内面12Aで輻射熱が反射されることで第1温度センサ22に伝わる熱エネルギーの成分や、高温となった断熱部材12の内面12Aの側が例えば熱処理領域A内の空気を温めて第1温度センサ22まで伝熱されて伝わる熱エネルギーの成分等の総和である。   Of the thermal energy emitted from the first heat generating means 14, as a component of the heat energy transmitted to the temperature measuring portion T1 of the first temperature sensor 22, for example, as shown in FIG. Of the thermal energy component D transmitted to the inner surface of the member 12, the thermal energy component L transmitted to the first temperature sensor 22 via the heat insulating member 12, and the first temperature from the first heating means 14 without passing through the thermal insulating member 12. There is a component H of thermal energy that is directly transmitted to the sensor 22. The component L of thermal energy transmitted through the heat insulating member 12 is a component of heat energy transmitted to the first temperature sensor 22 due to reflection of radiant heat by the inner surface 12A of the heat insulating member 12, or a heat insulating member that has reached a high temperature. The inner surface 12 </ b> A side of 12 is, for example, the sum total of components of thermal energy that is transferred to the first temperature sensor 22 by heating the air in the heat treatment region A.

図6(a)に示すように、断熱部材12の断熱性能が充分に高い状態では、断熱部材12内部を伝わって断熱部材12の内面12Aから外面12Bまで到達する熱エネルギーの成分Eはごく小さく、外面12Bから断熱部材12の外側に逃げる熱エネルギーの成分O(図6(a)では図示せず)もごく小さくなっている。   As shown in FIG. 6A, in a state where the heat insulating performance of the heat insulating member 12 is sufficiently high, the component E of the heat energy that reaches the outer surface 12B from the inner surface 12A of the heat insulating member 12 through the heat insulating member 12 is very small. The component O (not shown in FIG. 6A) of thermal energy that escapes from the outer surface 12B to the outside of the heat insulating member 12 is also extremely small.

例えば公知のアルミナ繊維を主成分としたセラミックファイバー材からなる断熱部材12は、比較的高温に曝されることで繊維内でアルミナの粒成長が起こる。断熱部材12が比較的高温に繰り返し曝されると、このアルミナ粒が徐々に大きくなることにともない、断熱部材12の断熱性能は徐々に低下してくる。断熱部材12の断熱性能が劣化すると、断熱部材12の内面12Aから外面12Bへ熱エネルギーが伝わり易くなる。   For example, when the heat insulating member 12 made of a ceramic fiber material mainly composed of known alumina fibers is exposed to a relatively high temperature, grain growth of alumina occurs in the fibers. When the heat insulating member 12 is repeatedly exposed to a relatively high temperature, the heat insulating performance of the heat insulating member 12 gradually decreases as the alumina grains gradually increase. When the heat insulating performance of the heat insulating member 12 deteriorates, heat energy is easily transmitted from the inner surface 12A of the heat insulating member 12 to the outer surface 12B.

このように断熱部材12の断熱性能が劣化した状態(図5(b)や図6(b)に示す状態)では、第1発熱手段14から発せられる熱エネルギーの大きさ自体は変わらない場合でも、断熱部材12内部を伝わって断熱部材12の内面12Aから外面12Bまで到達する熱エネルギーの成分Eが比較的大きくなり、外面12Bから断熱部材12の外側へ、比較的多くの熱エネルギーの成分Oが逃げていく。このため断熱部材12の断熱性能が劣化した状態(図5(b)や図6(b)に示す状態)では、断熱部材12を介して伝わる熱エネルギーの成分Lが小さくなってしまう。このため、第1発熱手段14からの発熱量、第1発熱手段14から断熱部材12を介さずに第1温度センサ22に直接伝わる熱成分Hおよび第1発熱手段14から断熱部材12の内面に伝わる熱エネルギーの成分Dが変わらない場合でも、断熱部材12の断熱性能が劣化した状態では、熱処理領域A内に配置された第1温度センサ22の第1測温部分T1の温度は、図5(a)や図6(a)に示す断熱性能が劣化していない状態に比べて低くなってしまう。この場合は図6(b)に示すように、断熱部材12の内面12Aから外面12Bに向けて流れる熱エネルギーの成分Eが比較的大きくなるので、図5(b)に示すように、測温部分T2の温度t2(b)は当初の状態(断熱部材12の断熱性能が劣化していない状態)の温度t2(a)に比べて高くなる。また、断熱部材12を介して伝わる熱エネルギーの成分Lが小さくなるので、測温部分T1の温度情報t1(b)は、当初の温度t1(a)に比べて低くなる。   Thus, in the state where the heat insulating performance of the heat insulating member 12 is deteriorated (the state shown in FIG. 5B or FIG. 6B), even when the magnitude of the heat energy emitted from the first heat generating means 14 does not change. The component E of the thermal energy that reaches the outer surface 12B from the inner surface 12A of the heat insulating member 12 through the inside of the heat insulating member 12 is relatively large, and the component O of the relatively large heat energy is transferred from the outer surface 12B to the outside of the heat insulating member 12. Will run away. Therefore, in a state where the heat insulating performance of the heat insulating member 12 is deteriorated (the state shown in FIG. 5B or FIG. 6B), the thermal energy component L transmitted through the heat insulating member 12 becomes small. Therefore, the amount of heat generated from the first heat generating means 14, the heat component H transmitted directly from the first heat generating means 14 to the first temperature sensor 22 without passing through the heat insulating member 12, and the inner surface of the heat insulating member 12 from the first heat generating means 14. Even when the component D of the transmitted thermal energy does not change, the temperature of the first temperature measuring portion T1 of the first temperature sensor 22 disposed in the heat treatment region A is as shown in FIG. The heat insulation performance shown in FIG. 6A and FIG. In this case, as shown in FIG. 6B, the component E of the thermal energy flowing from the inner surface 12A to the outer surface 12B of the heat insulating member 12 becomes relatively large. Therefore, as shown in FIG. The temperature t2 (b) of the portion T2 is higher than the temperature t2 (a) in the initial state (the state where the heat insulating performance of the heat insulating member 12 is not deteriorated). Moreover, since the component L of the thermal energy transmitted through the heat insulating member 12 is reduced, the temperature information t1 (b) of the temperature measurement portion T1 is lower than the initial temperature t1 (a).

このように、第1温度センサ22によって計測された第1測温部分T1の温度t1と、第2温度センサ24によって計測された第2測温部分T2の温度t2とは、断熱部材12の断熱性能の劣化にともなって変化する。   Thus, the temperature t1 of the first temperature measuring portion T1 measured by the first temperature sensor 22 and the temperature t2 of the second temperature measuring portion T2 measured by the second temperature sensor 24 are the heat insulation of the heat insulating member 12. Changes as performance degrades.

制御手段28は、例えば第1温度センサ22によって計測された第1測温部分T1の温度t1と、第2温度センサ24によって計測された第2測温部分T2の温度t2とに基き、少なくとも第2発熱手段16の発熱量を調整することで、断熱部材12を介して熱処理領域Aへ伝わる熱量の大きさを調整する。すなわち制御手段28は、第2発熱手段16に流す電流の大きさ、ひいては第2発熱手段16の発熱量を、上記第1測温部分T1の温度t1と、第2測温部分T2の温度t2とに基いて決定する。   The control means 28 is based on, for example, the temperature t1 of the first temperature measuring portion T1 measured by the first temperature sensor 22 and the temperature t2 of the second temperature measuring portion T2 measured by the second temperature sensor 24. The amount of heat transmitted to the heat treatment region A via the heat insulating member 12 is adjusted by adjusting the amount of heat generated by the two heat generating means 16. That is, the control means 28 determines the magnitude of the current flowing through the second heat generating means 16 and the amount of heat generated by the second heat generating means 16 according to the temperature t1 of the first temperature measuring portion T1 and the temperature t2 of the second temperature measuring portion T2. Determine based on

例えば、所定の電流を流した際にt1が所定値より小さく、かつt2が所定値より大きくなっている場合は、図5(b)および図6(b)に示しているような、断熱部材12の内面12Aから外面12Bへの熱の逃げが大きくなっている状態と考えられる。この場合に制御手段28は、まず第2発熱手段16に流す電流の量を増加させて第2発熱手段16からの発熱の量を上昇させればよい。すなわち制御手段28は、第2発熱手段16を発熱させることで、断熱部材12を介して伝わる熱エネルギーの成分Lの減少分を補完するように、外面12Bから外面12Aを流れて熱処理領域Aに到達する熱エネルギーの成分Iを生じさせることで、断熱部材12を介して熱処理領域Aへ伝わる熱量の大きさの総和を調整する。この場合には、例えば熱処理領域A内にある第1測温部分T1の温度t1が、図5(a)および図6(a)に示す断熱部材12の断熱性能が劣化していない場合と同じ大きさとなるよう、第2発熱手段16の発熱量を制御する。上述のように、第1測温部分T1の温度t1と第2測温部分T2の温度t2との差は、断熱部材12の断熱性能の劣化の程度によく対応している。これらの温度t1および温度t2と断熱部材12の劣化の程度との関係は、実験やシミュレーション等で予め把握することが可能である。加熱装置10では、この予め把握していた関係に基いた制御アルゴリズムが、制御手段28内の図示しないメモリに記憶されている。加熱装置10では、制御手段28が、第1測温部分T1の温度t1と第2測温部分T2の温度t2とに基いて、この制御アルゴリズムによって第2発熱手段16への電流量を調整する。   For example, when t1 is smaller than a predetermined value and t2 is larger than a predetermined value when a predetermined current is passed, a heat insulating member as shown in FIGS. 5 (b) and 6 (b) It is considered that the heat escape from the inner surface 12A to the outer surface 12B is increased. In this case, the control unit 28 may increase the amount of heat generated from the second heat generating unit 16 by first increasing the amount of current flowing through the second heat generating unit 16. That is, the control means 28 causes the second heat generating means 16 to generate heat, and flows from the outer surface 12B through the outer surface 12A to the heat treatment region A so as to complement the decrease in the thermal energy component L transmitted through the heat insulating member 12. By generating the component I of the reaching thermal energy, the total amount of heat transferred to the heat treatment region A through the heat insulating member 12 is adjusted. In this case, for example, the temperature t1 of the first temperature measuring portion T1 in the heat treatment region A is the same as the case where the heat insulating performance of the heat insulating member 12 shown in FIGS. 5A and 6A is not deteriorated. The amount of heat generated by the second heat generating means 16 is controlled so as to be the size. As described above, the difference between the temperature t1 of the first temperature measuring portion T1 and the temperature t2 of the second temperature measuring portion T2 corresponds well to the degree of deterioration of the heat insulating performance of the heat insulating member 12. The relationship between the temperatures t1 and t2 and the degree of deterioration of the heat insulating member 12 can be grasped in advance by experiments, simulations, or the like. In the heating apparatus 10, a control algorithm based on this previously grasped relationship is stored in a memory (not shown) in the control means 28. In the heating apparatus 10, the control means 28 adjusts the amount of current to the second heat generating means 16 by this control algorithm based on the temperature t1 of the first temperature measuring portion T1 and the temperature t2 of the second temperature measuring portion T2. .

また制御手段28は、第1温度センサ22によって計測された第1測温部分T1の温度t1と、第2温度センサ24によって計測された第2測温部分T2の温度t2とに基き、第1発熱手段14の発熱量を調整してもよい。例えば、上述の第3発熱手段18のキャリブレーションの後に、所定の大きさの電流を第1発熱手段14に流した際のt1の温度が所定値より小さく、かつt2も所定値より小さい(熱エネルギーの成分Eも小さい)場合など、第1発熱手段14の発熱性能が劣化していることが考えられるので、制御手段28は、第1発熱手段14に供給する電流の大きさを上昇させることで、第1発熱手段14からの発熱量自体を調整してもよい。   Further, the control means 28 is based on the temperature t1 of the first temperature measuring portion T1 measured by the first temperature sensor 22 and the temperature t2 of the second temperature measuring portion T2 measured by the second temperature sensor 24. The amount of heat generated by the heat generating means 14 may be adjusted. For example, after the calibration of the third heat generating means 18 described above, the temperature of t1 when a current of a predetermined magnitude is passed through the first heat generating means 14 is smaller than a predetermined value, and t2 is also smaller than the predetermined value (heat Since the heat generation performance of the first heat generating means 14 is considered to have deteriorated, such as when the energy component E is also small), the control means 28 increases the magnitude of the current supplied to the first heat generating means 14. Thus, the amount of heat generated from the first heat generating means 14 may be adjusted.

また、加熱装置10が備える2つの第1温度センサ22で取得した温度情報の差が大き過ぎる場合など、どちらかの第1温度センサ22が動作不良を起こしている可能性がある。同様に、加熱装置10が備える2つの第2温度センサ24で取得した温度情報の差が大き過ぎる場合も、どちらかの第2温度センサ24が動作不良を起こしている可能性がある。このような場合、制御手段28は熱処理動作を停止し、加熱装置10に設けられた図示しない画像表示手段等に、第1温度センサ22または第2温度センサ22に動作不良が発生している旨の警告画面を表示すればよい。   Moreover, when the difference of the temperature information acquired with the two 1st temperature sensors 22 with which the heating apparatus 10 is provided is too large, one of the 1st temperature sensors 22 may have malfunctioned. Similarly, when the difference between the temperature information acquired by the two second temperature sensors 24 included in the heating device 10 is too large, one of the second temperature sensors 24 may have malfunctioned. In such a case, the control means 28 stops the heat treatment operation, and the malfunction of the first temperature sensor 22 or the second temperature sensor 22 has occurred in the image display means (not shown) provided in the heating device 10. The warning screen may be displayed.

上述のように、第1測温部分T1の温度t1と第2測温部分T2の温度t2とは、断熱部材12の断熱性能や、第1発熱手段14の発熱性能、および第2発熱手段16の発熱性能等に応じて変化する。本発明の加熱装置では、上述の実施形態に限らず、制御手段が、実験やシミュレーション等によって設定した各種の制御アルゴリズムによって第1測温部分の温度と第2測温部分の温度とに基いて少なくとも第2発熱手段の発熱量を調整すればよく、制御アルゴリズムの詳細等については特に限定されない。   As described above, the temperature t1 of the first temperature measuring portion T1 and the temperature t2 of the second temperature measuring portion T2 are the heat insulating performance of the heat insulating member 12, the heat generating performance of the first heat generating means 14, and the second heat generating means 16. It changes according to the heat generation performance of the. In the heating apparatus of the present invention, not limited to the above-described embodiment, the control means is based on the temperature of the first temperature measurement portion and the temperature of the second temperature measurement portion by various control algorithms set by experiments or simulations. It is sufficient to adjust at least the amount of heat generated by the second heat generating means, and details of the control algorithm are not particularly limited.

制御手段28による制御が終了し、所定時間経過すると(熱処理領域A内の温度が安定化する十分な時間が経過した後の時点)、駆動ステージ38を上昇させて被処理物1を熱処理領域A内に導入して、被処理物1の熱処理(加熱処理)を開始する。この熱処理の最中に、駆動ステージ38を図1に矢印Rで示す回転方向および図2に矢印Vで示す上下方向に連続して移動させる。制御手段28は、被処理部物1の熱処理の最中も、第1測温部分T1の温度情報t1と第2測温部分T2の温度情報t2とに基いて、第1発熱手段14、第2発熱手段16および第3発熱手段18等に流す電流の大きさを連続して調整すれば
よい。加熱装置10では、このように被処理物1を加熱処理することができる。
When the control by the control means 28 is finished and a predetermined time has elapsed (after a sufficient time for the temperature in the heat treatment region A to stabilize), the drive stage 38 is raised to place the workpiece 1 in the heat treatment region A. The heat treatment (heat treatment) of the workpiece 1 is started. During this heat treatment, the drive stage 38 is continuously moved in the rotational direction indicated by the arrow R in FIG. 1 and in the vertical direction indicated by the arrow V in FIG. During the heat treatment of the object 1 to be processed, the control means 28 is based on the temperature information t1 of the first temperature measurement portion T1 and the temperature information t2 of the second temperature measurement portion T2, and the first heating means 14, What is necessary is just to adjust continuously the magnitude | size of the electric current sent through the 2 heat generating means 16 and the 3rd heat generating means 18 grade | etc.,. In the heating device 10, the workpiece 1 can be heat-treated in this way.

以上、本発明の加熱装置について実施形態を例に説明したが、本発明は前述した実施形態に限定されるものではなく、各部材の形状や個数や配置位置など、本発明の要旨を逸脱しない範囲において種々の変更、改良、組合せ等が可能である。   As mentioned above, although the embodiment of the heating device of the present invention has been described as an example, the present invention is not limited to the above-described embodiment, and does not depart from the gist of the present invention, such as the shape, number, and arrangement position of each member. Various changes, improvements, combinations and the like can be made within the range.

1 被処理物
10 加熱装置
12 断熱部材
12A 内面
12B 外面
13 組立体
14 第1発熱手段
14a 抵抗加熱ヒーター
14b 電極部材
16 第2発熱手段
18 第3発熱手段
22 第1温度センサ
24 第2温度センサ
26 第3温度センサ
28 制御手段
32 蓋部材
34 底板部材
34a 開口
36 載置体
38 駆動ステージ
39 土台部材
42 セラミック保護管
42a 開口部
44 熱電対素線
46 測温部
48 外側断熱部材
A 熱処理領域
T1 第1測温部分
T2 第2測温部分
T3 第3測温部分
DESCRIPTION OF SYMBOLS 1 To-be-processed object 10 Heating device 12 Heat insulation member 12A Inner surface 12B Outer surface 13 Assembly 14 1st heat generating means 14a Resistance heater 14b Electrode member 16 2nd heat generating means 18 3rd heat generating means 22 1st temperature sensor 24 2nd temperature sensor 26 Third temperature sensor 28 Control means 32 Lid member 34 Bottom plate member 34a Opening 36 Mounting body 38 Drive stage 39 Base member 42 Ceramic protective tube 42a Opening 44 Thermocouple wire 46 Temperature measuring part 48 Outer heat insulating member A Heat treatment region T1 First 1 temperature measurement portion T2 2nd temperature measurement portion T3 3rd temperature measurement portion

Claims (3)

被処理物を熱処理するための加熱装置であって、
前記被処理物が配置される熱処理領域を囲む内面および該内面と反対の側の外面を有する断熱部材と、
前記熱処理領域に配置された、前記被処理物を加熱するための第1発熱手段と、
前記断熱部材を前記外面の側から加熱する、前記断熱部材を挟んで前記熱処理領域と反対の側の領域に配置された第2発熱手段と、
前記熱処理領域に設定された第1測温部分の温度を計測するための第1温度センサと、
前記断熱部材の内部の、前記第1温度センサに比べて前記断熱部材の前記外面に近い位置または前記断熱部材の前記外面に設定された第2測温部分の温度を計測するための第2温度センサと、
前記第1温度センサによって計測された前記第1測温部分の温度と、前記第2温度センサによって計測された前記第2測温部分の温度とに基づき、少なくとも前記第2発熱手段の発熱量を調整することで、前記断熱部材を介して前記熱処理領域へ伝わる熱量の大きさを調整するための制御手段とを有することを特徴とする加熱装置。
A heating device for heat-treating a workpiece,
A heat insulating member having an inner surface surrounding a heat treatment region in which the workpiece is disposed and an outer surface opposite to the inner surface;
A first heating means disposed in the heat treatment region for heating the workpiece;
Heating the heat insulating member from the outer surface side, a second heat generating means disposed in a region on the opposite side of the heat treatment region across the heat insulating member;
A first temperature sensor for measuring the temperature of the first temperature sensing part set in the heat treatment area,
A second temperature for measuring the temperature of the second temperature measuring portion set in the heat insulation member at a position closer to the outer surface of the heat insulation member or on the outer surface of the heat insulation member than the first temperature sensor. A sensor,
Based on the temperature of the first temperature measuring portion measured by the first temperature sensor and the temperature of the second temperature measuring portion measured by the second temperature sensor, at least the amount of heat generated by the second heating means is determined. And a control means for adjusting the amount of heat transmitted to the heat treatment region via the heat insulating member by adjusting.
前記制御手段は、前記第1温度センサによって計測された前記第1測温部分の温度と、前記第2温度センサによって計測された前記第2測温部分の温度とに基づき、前記第1発熱手段の発熱量も調整することで、前記熱処理領域の温度を調整することを特徴とする請求項1記載の加熱装置。   The control means is based on the temperature of the first temperature measuring portion measured by the first temperature sensor and the temperature of the second temperature measuring portion measured by the second temperature sensor. The heating apparatus according to claim 1, wherein a temperature of the heat treatment region is adjusted by adjusting a heat generation amount of the heat treatment region. 前記熱処理領域内のうち前記第1測温部分よりも前記断熱部材から離れた位置に設定された第3測温部分の温度を計測するための第3温度センサと、
前記熱処理領域内のうち前記第1発熱手段よりも前記断熱部材から離れた位置に設定された第3発熱手段とを備え、
前記制御手段は、前記第3温度センサによって計測された前記第3測温部分の温度に基づき、前記第3発熱手段の発熱量も調整することで、前記熱処理領域の温度分布を調整することを特徴とする請求項1または2記載の加熱装置。
A third temperature sensor for measuring the temperature of the third temperature measuring portion set at a position farther from the heat insulating member than the first temperature measuring portion in the heat treatment region;
A third heat generating means set at a position farther from the heat insulating member than the first heat generating means in the heat treatment region,
The control means adjusts the temperature distribution of the heat treatment region by adjusting the amount of heat generated by the third heat generating means based on the temperature of the third temperature measuring portion measured by the third temperature sensor. The heating device according to claim 1 or 2, characterized in that
JP2012284057A 2012-12-27 2012-12-27 Heating device Expired - Fee Related JP6026882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012284057A JP6026882B2 (en) 2012-12-27 2012-12-27 Heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012284057A JP6026882B2 (en) 2012-12-27 2012-12-27 Heating device

Publications (2)

Publication Number Publication Date
JP2014126312A JP2014126312A (en) 2014-07-07
JP6026882B2 true JP6026882B2 (en) 2016-11-16

Family

ID=51405949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012284057A Expired - Fee Related JP6026882B2 (en) 2012-12-27 2012-12-27 Heating device

Country Status (1)

Country Link
JP (1) JP6026882B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112747603A (en) * 2020-12-04 2021-05-04 深圳市拉普拉斯能源技术有限公司 Wire winding structure and thermal field temperature control method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6018915B2 (en) * 1975-12-25 1985-05-13 日本電気株式会社 Electric furnace temperature control method
JP2535485Y2 (en) * 1990-07-31 1997-05-14 品川白煉瓦株式会社 Lining structure of ultra-high temperature resistance furnace
JPH04268186A (en) * 1991-02-20 1992-09-24 Murata Mfg Co Ltd Burning furnace
JP4510393B2 (en) * 2003-03-17 2010-07-21 日本碍子株式会社 Temperature adjustment method
JP4283715B2 (en) * 2004-03-19 2009-06-24 新日本製鐵株式会社 Induction heating device
JP2011169489A (en) * 2010-02-17 2011-09-01 Matels Inc Variable-temperature-gradient multi-zone type electric furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112747603A (en) * 2020-12-04 2021-05-04 深圳市拉普拉斯能源技术有限公司 Wire winding structure and thermal field temperature control method

Also Published As

Publication number Publication date
JP2014126312A (en) 2014-07-07

Similar Documents

Publication Publication Date Title
US8823404B2 (en) Evaluation device and evaluation method for substrate mounting apparatus and evaluation substrate used for the same
KR101648082B1 (en) Apparatus and method for controlling heating of base within chemical vapour deposition chamber
JP4879060B2 (en) Substrate heating device
JP5915026B2 (en) Plate for temperature measurement and temperature measurement apparatus provided with the same
JP4931376B2 (en) Substrate heating device
KR20220147113A (en) Dynamic calibration of the control system that controls the heater
KR20060048643A (en) Substrate heating apparatus
CN102759417A (en) Temperature measuring device, temperature calibrating device and temperature calibrating method
KR20230058534A (en) Multi-zone heater
US10883885B2 (en) Method for calibrating a temperature measuring device of a dental oven and calibration element
KR20150024260A (en) Heat treatment furnace and heat treatment method
JP2012253222A (en) Method of predicting service life of resistance heating type heater, and thermal processing device
JP6026882B2 (en) Heating device
US20210368584A1 (en) Passive and active calibration methods for a resistive heater
US20120213249A1 (en) Heat treatment apparatus and temperature measuring method thereof
US20220276003A1 (en) Dental Furnace
JP5303825B2 (en) Thermoelectric conversion device and thermoelectric module control method
JP2008277098A (en) Heating cooker
JP2007242850A (en) Semiconductor manufacturing apparatus and semiconductor manufacturing method
JP6831502B2 (en) Hot air heater
JP5733399B2 (en) Heat treatment equipment
JP2006046717A (en) Heating furnace
JP2016125784A (en) Thermal treatment apparatus and thermal treatment method
EP3769843A1 (en) Heater
JP7005836B2 (en) Fluid heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161013

R150 Certificate of patent or registration of utility model

Ref document number: 6026882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees