JP6026792B2 - Braking mechanism and bearing device provided with the braking mechanism - Google Patents

Braking mechanism and bearing device provided with the braking mechanism Download PDF

Info

Publication number
JP6026792B2
JP6026792B2 JP2012136114A JP2012136114A JP6026792B2 JP 6026792 B2 JP6026792 B2 JP 6026792B2 JP 2012136114 A JP2012136114 A JP 2012136114A JP 2012136114 A JP2012136114 A JP 2012136114A JP 6026792 B2 JP6026792 B2 JP 6026792B2
Authority
JP
Japan
Prior art keywords
rotating body
eddy current
bearing
radial
static pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012136114A
Other languages
Japanese (ja)
Other versions
JP2014003762A (en
Inventor
琢哉 平山
琢哉 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Corp
Original Assignee
Oiles Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Corp filed Critical Oiles Corp
Priority to JP2012136114A priority Critical patent/JP6026792B2/en
Publication of JP2014003762A publication Critical patent/JP2014003762A/en
Application granted granted Critical
Publication of JP6026792B2 publication Critical patent/JP6026792B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ラジアル軸受によってラジアル方向の荷重が支持された回転体の制動機構およびこの制動機構を備えた軸受装置に関する。   The present invention relates to a braking mechanism for a rotating body in which a radial load is supported by a radial bearing, and a bearing device including the braking mechanism.

支持対象である回転体のラジアル方向の荷重を非接触で支持する静圧気体ラジアル軸受が知られている。   A static pressure gas radial bearing that supports a radial load of a rotating body that is a support target in a non-contact manner is known.

例えば、特許文献1には、長尺であっても、気体層を形成する気体を適切に外部に逃がしてその滞留を防ぐことにより気体の発熱を防止し、これにより、軸受面および支持対象である回転体の熱膨張を防いで、高精度な回転を可能とする静圧気体ラジアル軸受が開示されている。   For example, in Patent Document 1, even if it is long, the gas forming the gas layer is appropriately released to the outside to prevent the retention of the gas, thereby preventing the heat generation of the gas. A static pressure gas radial bearing that prevents thermal expansion of a certain rotating body and enables high-precision rotation is disclosed.

特開2006−97797号公報Japanese Unexamined Patent Publication No. 2006-97797

しかしながら、例えばローラコンベア、輪転印刷機のローラ等、モータに連結されずに回転自在に配置された回転体を支持するために静圧気体ラジアル軸受が利用された場合、その高い回転性能のためにつぎのような問題が生じる。すなわち、静圧気体ラジアル軸受が非接触で回転体を支持するため、静圧気体ラジアル軸受の軸受面と回転体の外周面(支持対象面)との間には摩擦力が殆ど働かない。このため、静圧気体ラジアル軸受によって支持された回転体は、一旦、回転を開始すると、慣性により回転し続け、回転体の回転が停止するまでには相当の時間がかかる。したがって、例えば、回転体のメンテナンス作業等において、実際に作業が開始されるまでに時間を要してしまう。   However, when a static pressure gas radial bearing is used to support a rotating body that is rotatably connected without being connected to a motor, such as a roller conveyor, a roller of a rotary printing press, etc., due to its high rotational performance. The following problems occur. That is, since the static pressure gas radial bearing supports the rotating body in a non-contact manner, the frictional force hardly acts between the bearing surface of the static pressure gas radial bearing and the outer peripheral surface (support target surface) of the rotating body. For this reason, once the rotating body supported by the static pressure gas radial bearing starts rotating, it continues to rotate due to inertia, and it takes a considerable time until the rotating body stops rotating. Therefore, for example, in the maintenance work of the rotating body, it takes time until the work is actually started.

ところで、回転体にラジアル方向あるいはスラスト方向からブレーキパッドを押し当てて、回転体の回転を強制的に停止させることも考えられる。しかし、この場合、ラジアル方向あるいはスラスト方向から回転体に大きな外力が加わるので、回転体が傾き、静圧気体ラジアル軸受の軸受面と回転体の支持対象面とが接触して損傷する可能性がある。   By the way, it is also conceivable to forcibly stop the rotation of the rotating body by pressing the brake pad against the rotating body from the radial direction or the thrust direction. However, in this case, since a large external force is applied to the rotating body from the radial direction or the thrust direction, the rotating body may be inclined, and the bearing surface of the hydrostatic gas radial bearing and the surface to be supported of the rotating body may come into contact with each other and be damaged. is there.

本発明は上記事情に鑑みてなされたものであり、その目的は、ラジアル軸受によってラジアル方向の荷重が支持された回転体の回転をより安全に制動可能な制動機構および制動機構を備えた軸受装置を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a braking mechanism that can safely brake the rotation of a rotating body in which a radial load is supported by a radial bearing, and a bearing device including the braking mechanism. Is to provide.

上記課題を解決するために、本発明では、ラジアル軸受の支持対象である回転体に、非磁性良導体あるいは弱磁性良導体で形成された渦電流発生部を設け、回転体の回転を停止させたい場合に、この渦電流発生部に磁力線を照射して、回転体の回転による磁束密度の変化に応じた渦電流を渦電流発生部内に発生させることにより、回転体の回転エネルギーを熱エネルギーに変換して回転体の回転を減衰させるようにした。   In order to solve the above-mentioned problem, in the present invention, when a rotating body that is a support target of a radial bearing is provided with an eddy current generating portion formed of a nonmagnetic good conductor or a weakly magnetic good conductor, and the rotation of the rotating body is to be stopped In addition, the rotational energy of the rotating body is converted into thermal energy by irradiating the eddy current generating part with magnetic lines of force to generate an eddy current in the eddy current generating part according to the change in magnetic flux density due to the rotation of the rotating body. The rotation of the rotating body is attenuated.

例えば、本発明の制動機構は、ラジアル軸受によってラジアル方向の荷重が支持された回転体の回転を制動する制動機構であって、
磁力線を発生する磁力線発生手段と、
前記回転体に設けられ、前記回転体の回転により前記磁力発生手段に対して相対的に回転する、非磁性良導体あるいは弱磁性良導体で形成された渦電流発生部と、
前記磁力線発生手段により発生された磁力線の前記渦電流発生部への照射を制御する照射制御手段と、を備え、
前記渦電流発生部は、
前記回転体と回転軸を一致させて当該回転体の外周面から張り出した円板部と、
前記円板部の一方の端面から前記回転体のスラスト方向に向けて、当該回転体と回転軸を一致させて同心円状に設けられた複数の円筒部と、を有し、
前記磁力線発生手段は、
前記円筒部毎に設けられた複数の磁石を有し、
前記照射制御手段は、
前記複数の磁石を個別に前記回転体のスラスト方向に移動して、前記磁石毎に、当該磁石に対応する前記円筒部と当該円筒部の内側に位置して当該円筒部と隣り合う他の前記円筒部あるいは前記回転体との間に、当該磁石を出し入れする
For example, the braking mechanism of the present invention is a braking mechanism that brakes the rotation of a rotating body in which a radial load is supported by a radial bearing,
A magnetic force line generating means for generating magnetic force lines;
An eddy current generator formed of a non-magnetic good conductor or a weak magnetic good conductor, which is provided in the rotating body and rotates relative to the magnetic force line generating means by the rotation of the rotating body;
Irradiation control means for controlling irradiation of the magnetic field lines generated by the magnetic field line generation means to the eddy current generation unit ,
The eddy current generator is
A disk portion projecting from the outer peripheral surface of the rotating body with the rotating body and the rotation axis aligned,
A plurality of cylindrical portions that are concentrically provided in such a way that the rotating body and the rotating shaft coincide with each other in the thrust direction of the rotating body from one end face of the disk portion;
The magnetic force line generating means is
It has a plurality of magnets provided for each cylindrical part,
The irradiation control means includes
The plurality of magnets are individually moved in the thrust direction of the rotating body, and for each of the magnets, the cylindrical portion corresponding to the magnet and the other cylindrical portion positioned adjacent to the cylindrical portion. The magnet is put into and out of the cylindrical portion or the rotating body .

また、本発明の軸受装置は、回転体のラジアル方向の荷重を支持するラジアル軸受と、上述の制動機構と、を有する。   Moreover, the bearing apparatus of this invention has a radial bearing which supports the load of the radial direction of a rotary body, and the above-mentioned braking mechanism.

本発明では、回転体の回転エネルギーを熱エネルギーに変換し、回転体の回転を減衰させる。また、回転体に設けた渦電流発生部を非磁性良導体あるいは弱磁性良導体で形成しているので、渦電流発生部が磁力発生手段に引き寄せられる力は発生しない、あるいは発生しても無視できる程度に小さい。このため、ラジアル方向あるいはスラスト方向から回転体に外力を殆ど加えることなく回転体の回転を制動することができる。したがって、本発明によれば、ラジアル軸受によってラジアル方向の荷重が支持された回転体の回転をより安全に制動可能となる。   In the present invention, the rotational energy of the rotating body is converted into thermal energy, and the rotation of the rotating body is attenuated. In addition, since the eddy current generating portion provided on the rotating body is formed of a nonmagnetic good conductor or a weakly magnetic good conductor, the force that the eddy current generating portion is attracted to the magnetic force generating means is not generated or can be ignored. Small. For this reason, it is possible to brake the rotation of the rotating body with almost no external force applied to the rotating body from the radial direction or the thrust direction. Therefore, according to the present invention, it is possible to more safely brake the rotation of the rotating body in which the radial load is supported by the radial bearing.

図1は、本発明の第一実施の形態に係る静圧気体軸受装置1Aを説明するための断面図である。FIG. 1 is a cross-sectional view for explaining a static pressure gas bearing device 1A according to a first embodiment of the present invention. 図2は、図1に示す静圧気体軸受装置1Aの変形例1A´を説明するための断面図である。FIG. 2 is a cross-sectional view for explaining a modified example 1A ′ of the hydrostatic gas bearing device 1A shown in FIG. 図3は、本発明の第二実施の形態に係る静圧気体軸受装置1Bを説明するための断面図である。FIG. 3 is a cross-sectional view for explaining a static pressure gas bearing device 1B according to the second embodiment of the present invention. 図4は、図3に示す静圧気体軸受装置1Bの変形例1B´を説明するための断面図である。FIG. 4 is a cross-sectional view for explaining a modified example 1B ′ of the static pressure gas bearing device 1B shown in FIG. 図5は、本発明の第三実施の形態に係る静圧気体軸受装置1Cを説明するための断面図である。FIG. 5 is a cross-sectional view for explaining a static pressure gas bearing device 1C according to the third embodiment of the present invention.

以下に、本発明の実施の形態について、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

<第一実施の形態>
まず、本発明の第一実施の形態を説明する。図1は、本実施の形態に係る静圧気体軸受装置1Aを説明するための断面図である。
<First embodiment>
First, a first embodiment of the present invention will be described. FIG. 1 is a cross-sectional view for explaining a static pressure gas bearing device 1A according to the present embodiment.

本実施の形態に係る静圧気体軸受装置1Aは、例えばローラコンベア、輪転印刷機のローラ等、モータに連結されずに回転自在に配置された回転体2を非接触で支持する。   The hydrostatic gas bearing device 1A according to the present embodiment supports, for example, a rotating body 2 that is rotatably connected without being connected to a motor, such as a roller conveyor or a roller of a rotary printing press.

図示するように、静圧気体軸受装置1Aは、回転体2のラジアル方向Rの荷重を非接触で支持する円筒状の静圧気体軸受3と、回転体2の外周面22からラジアル方向Rに張り出すように回転体2の一方の端部21側に取り付けられた円板状の渦電流発生部4と、ネオジム等の永久磁石5と、永久磁石5をラジアル方向Rに往復移動させるための磁石移動機構6と、を備えている。   As shown in the figure, the static pressure gas bearing device 1A includes a cylindrical static pressure gas bearing 3 that supports a load in the radial direction R of the rotating body 2 in a non-contact manner, and an outer peripheral surface 22 of the rotating body 2 in the radial direction R. A disk-like eddy current generator 4 attached to one end 21 side of the rotating body 2 so as to overhang, a permanent magnet 5 such as neodymium, and the permanent magnet 5 for reciprocating in the radial direction R. A magnet moving mechanism 6.

静圧気体軸受3は、回転体2の外周面22に向けて圧縮気体を吐出するラジアル軸受面31を内周面に備えており、この圧縮気体によりラジアル軸受面31と回転体2の外周面22との間に気体層32を形成し、この気体層32を介して回転体2のラジアル方向Rの荷重を非接触で支持する。ここで、静圧気体軸受3は、自成絞り、オリフィス絞り等による圧縮気体の吐出口がラジアル軸受面31に多数形成されたものでもよいし、静圧気体軸受3の内周面に形成された多孔質焼結層を介して、ラジアル軸受面31の全面から圧縮気体を吐出するものでもよい。   The static pressure gas bearing 3 includes a radial bearing surface 31 that discharges compressed gas toward the outer peripheral surface 22 of the rotating body 2 on the inner peripheral surface, and the radial bearing surface 31 and the outer peripheral surface of the rotating body 2 by this compressed gas. A gas layer 32 is formed between the rotor 22 and the load in the radial direction R of the rotating body 2 via the gas layer 32 in a non-contact manner. Here, the static pressure gas bearing 3 may have a plurality of compressed gas discharge ports formed on the radial bearing surface 31 by a self-formed throttle, an orifice throttle, or the like, or may be formed on the inner peripheral surface of the static pressure gas bearing 3. Alternatively, the compressed gas may be discharged from the entire radial bearing surface 31 through the porous sintered layer.

渦電流発生部4は、銅、アルミニウム等の非磁性良導体あるいは弱磁性良導体で形成されており、回転体2とともに、回転体2の軸心Oを回転軸として回転する。   The eddy current generating unit 4 is formed of a nonmagnetic good conductor such as copper or aluminum or a weakly magnetic good conductor, and rotates together with the rotating body 2 about the axis O of the rotating body 2 as a rotation axis.

永久磁石5は、フランジ4の一方の端面41側に配置されており、回転体2のスラスト方向Sと平行かつ回転体2の回転方向Cと交差する方向に磁力線Mを発生する。   The permanent magnet 5 is disposed on one end face 41 side of the flange 4 and generates a magnetic force line M in a direction parallel to the thrust direction S of the rotating body 2 and intersecting the rotating direction C of the rotating body 2.

磁石移動機構6は、永久磁石5を保持し、この永久磁石5を回転体2のラジアル方向Rに案内する。これにより、永久磁石5は、渦電流発生部4の一方の端面41に磁力線Mを照射する位置P2および照射しない位置P1のいずれか一方に位置付けられる。   The magnet moving mechanism 6 holds the permanent magnet 5 and guides the permanent magnet 5 in the radial direction R of the rotating body 2. As a result, the permanent magnet 5 is positioned at one of the position P2 where the magnetic field lines M are irradiated to the one end surface 41 of the eddy current generator 4 and the position P1 where it is not irradiated.

上記構成の静圧気体軸受装置1Aにおいて、静圧気体軸受3によって非接触で支持された回転体2を回転させる場合、磁石移動機構6により永久磁石5を回転体2のラジアル方向Rの外側(軸心Oから離れる方向)r1に位置P1まで移動させ、永久磁石5からの磁力線Mが渦電流発生部4の一方の端面41に照射されないようにする。   In the static pressure gas bearing device 1A having the above-described configuration, when the rotating body 2 supported in a non-contact manner by the static pressure gas bearing 3 is rotated, the permanent magnet 5 is moved outside the radial direction R of the rotating body 2 by the magnet moving mechanism 6 ( It is moved to a position P1 in a direction r1 away from the axis O) so that the magnetic field lines M from the permanent magnet 5 are not irradiated onto one end face 41 of the eddy current generator 4.

一方、静圧気体軸受3によって非接触で支持された回転体2の回転を停止させる場合、磁石移動機構6により永久磁石5を回転体2のラジアル方向Rの内側(軸心Oに近づく方向)r2に位置P1から位置P2まで移動させ、永久磁石5からの磁力線Mが渦電流発生部4の一方の端面41に照射されるようにする。その結果、回転体2の回転による磁束密度の変化に応じた渦電流が渦電流発生部4に発生するため、渦電流発生部4の抵抗により渦電流発生部4が発熱する。これにより、回転体2の回転エネルギーが熱エネルギーに変換され、回転体2の回転が減衰する。この際、渦電流発生部4が非磁性良導体あるいは弱磁性良導体で形成されているので、渦電流発生部4が永久磁石5に引き寄せられる力は発生しない、あるいは発生しても無視できる程度に小さい。   On the other hand, when the rotation of the rotating body 2 supported in a non-contact manner by the static pressure gas bearing 3 is stopped, the permanent magnet 5 is moved inside the radial direction R of the rotating body 2 by the magnet moving mechanism 6 (direction approaching the axis O). The r2 is moved from the position P1 to the position P2 so that the magnetic force lines M from the permanent magnet 5 are applied to one end face 41 of the eddy current generator 4. As a result, an eddy current is generated in the eddy current generation unit 4 according to a change in magnetic flux density due to the rotation of the rotating body 2, and the eddy current generation unit 4 generates heat due to the resistance of the eddy current generation unit 4. Thereby, the rotational energy of the rotating body 2 is converted into thermal energy, and the rotation of the rotating body 2 is attenuated. At this time, since the eddy current generation part 4 is formed of a nonmagnetic good conductor or a weak magnetic good conductor, the force that the eddy current generation part 4 is attracted to the permanent magnet 5 is not generated or is small enough to be ignored. .

したがって、本実施の形態によれば、回転体2のラジアル方向Rあるいはスラスト方向Sから回転体2に外力を殆ど加えることなく、回転体2の回転を制動することができる。このため、回転体2の回転を停止する際に、回転体2が傾いて静圧気体軸受3のラジアル軸受面31と回転体2の外周面22とが接触して損傷する可能性を低減でき、これにより、静圧気体軸受3によってラジアル方向Rの荷重が支持された回転体2をより安全に停止させることができる。   Therefore, according to the present embodiment, it is possible to brake the rotation of the rotating body 2 with almost no external force applied to the rotating body 2 from the radial direction R or the thrust direction S of the rotating body 2. For this reason, when the rotation of the rotating body 2 is stopped, the possibility that the rotating body 2 is inclined and the radial bearing surface 31 of the static pressure gas bearing 3 and the outer peripheral surface 22 of the rotating body 2 are in contact with each other and damaged can be reduced. Thereby, the rotary body 2 in which the load in the radial direction R is supported by the static pressure gas bearing 3 can be stopped more safely.

なお、本実施の形態では、永久磁石5を、渦電流発生部4の一方の端面41側に配置しておき、磁石移動機構6により回転体2のラジアル方向Rに移動させて、渦電流発生部4の一方の端面41に磁力線Mが照射される位置P2および照射されない位置P1のいずれか一方に位置付ける場合を例にとり説明したが、本発明はこれに限定されない。   In the present embodiment, the permanent magnet 5 is arranged on the one end face 41 side of the eddy current generating unit 4 and is moved in the radial direction R of the rotating body 2 by the magnet moving mechanism 6 to generate eddy currents. The case where one end surface 41 of the portion 4 is positioned at one of the position P2 where the magnetic force lines M are irradiated and the position P1 where the magnetic field lines M are not irradiated has been described as an example, but the present invention is not limited to this.

例えば、静圧気体軸受3と渦電流発生部4との間に適当な間隔があけられている場合には、永久磁石5を、渦電流発生部4の他方の端面42側に配置し、磁石移動機構6により2つの位置P1、P2の間を移動させてもよい。   For example, when an appropriate space is provided between the static pressure gas bearing 3 and the eddy current generator 4, the permanent magnet 5 is disposed on the other end face 42 side of the eddy current generator 4, and the magnet The movement mechanism 6 may be used to move between the two positions P1 and P2.

または、図2に示す静圧気体軸受装置1A´のように、互いに異なる極性が渦電流発生部4を介して対向するように、渦電流発生部4の両方の端面41、42側にそれぞれ永久磁石51、52を配置し、磁石移動機構6により、これらの永久磁石51、52を回転体2のラジアル方向Rに移動させて、永久磁石51、52を、渦電流発生部4を挟み込む位置P2および挟み込まない位置P1のいずれか一方に位置付けるようにしてよい。このようにすることにより、より強力な磁力線Mを渦電流発生部4に照射することが可能となり、その結果、回転体2の回転に伴いより大きな渦電流を渦電流発生部4に発生させることができる。したがって、回転体2の回転を、より大きく減衰させることが可能となる。   Alternatively, as in the static pressure gas bearing device 1A ′ shown in FIG. 2, each end face 41, 42 of the eddy current generator 4 is permanently set so that different polarities face each other via the eddy current generator 4. The magnets 51 and 52 are arranged, and the permanent magnets 51 and 52 are moved in the radial direction R of the rotating body 2 by the magnet moving mechanism 6 so that the permanent magnets 51 and 52 are sandwiched between the eddy current generators 4. And you may make it position in any one of the position P1 which is not pinched. By doing in this way, it becomes possible to irradiate the eddy current generation part 4 with a stronger magnetic force line M, and as a result, a larger eddy current is generated in the eddy current generation part 4 as the rotating body 2 rotates. Can do. Therefore, the rotation of the rotating body 2 can be attenuated more greatly.

また、永久磁石5、51、52の代わりに電磁石を設け、通電中の電磁石を磁石移動機構6により2つの位置P1、P2間で移動させてもよい。   Further, an electromagnet may be provided instead of the permanent magnets 5, 51, 52, and the energized electromagnet may be moved between the two positions P 1, P 2 by the magnet moving mechanism 6.

<第二実施の形態>
つぎに、本発明の第二実施の形態を説明する。図3は、本実施の形態に係る静圧気体軸受装置1Bを説明するための断面図である。
<Second embodiment>
Next, a second embodiment of the present invention will be described. FIG. 3 is a cross-sectional view for explaining the static pressure gas bearing device 1B according to the present embodiment.

図示するように、本実施の形態に係る静圧気体軸受装置1Bが、図1に示す第一実施の形態に係る静圧気体軸受装置1Aと異なる点は、円板状の渦電流発生部4に代えて円筒状の渦電流発生部7を回転体2の一方の端部21側に取り付けたこと、および永久磁石5、磁石移動機構6に代えて、永久磁石53、磁石移動機構63を設けたことである。その他の構成は第一実施の形態に係る静圧気体軸受装置1Aと同様である。   As shown in the figure, the hydrostatic gas bearing device 1B according to the present embodiment is different from the hydrostatic gas bearing device 1A according to the first embodiment shown in FIG. Instead of this, the cylindrical eddy current generator 7 is attached to the one end 21 side of the rotating body 2, and a permanent magnet 53 and a magnet moving mechanism 63 are provided instead of the permanent magnet 5 and the magnet moving mechanism 6. That is. Other configurations are the same as those of the hydrostatic gas bearing device 1A according to the first embodiment.

渦電流発生部7は、銅、アルミ等の非磁性良導体あるいは弱磁性良導体で形成されており、回転体2とともに、回転体2の軸心Oを回転軸として回転する。   The eddy current generator 7 is formed of a nonmagnetic good conductor such as copper or aluminum or a weakly magnetic good conductor, and rotates together with the rotating body 2 about the axis O of the rotating body 2 as a rotation axis.

永久磁石53は、渦電流発生部7の外周面71側に配置されており、回転体2のラジアル方向Rと平行かつ回転体2の回転方向Cと交差する方向に磁力線Mを発生する。   The permanent magnet 53 is disposed on the outer peripheral surface 71 side of the eddy current generator 7 and generates a magnetic force line M in a direction parallel to the radial direction R of the rotating body 2 and intersecting the rotating direction C of the rotating body 2.

磁石移動機構63は、永久磁石53を保持し、この永久磁石53を回転体2のスラスト方向Sに案内する。これにより、永久磁石53は、渦電流発生部7の外周面71に磁力線Mを照射する位置P2および照射しない位置P1のいずれか一方に位置付けられる。   The magnet moving mechanism 63 holds the permanent magnet 53 and guides the permanent magnet 53 in the thrust direction S of the rotating body 2. Thereby, the permanent magnet 53 is positioned at either one of the position P2 where the outer peripheral surface 71 of the eddy current generator 7 is irradiated with the magnetic force lines M and the position P1 where it is not irradiated.

上記構成の静圧気体軸受装置1Bにおいて、静圧気体軸受3によって非接触で支持されている回転体2を回転させる場合、磁石移動機構63により永久磁石53を回転体2のスラスト方向Sの外側(静圧気体軸受3から離れる方向)s1に位置P1まで移動させ、永久磁石53からの磁力線Mが渦電流発生部7の外周面71に照射されないようにする。   In the static pressure gas bearing device 1B configured as described above, when the rotating body 2 supported in a non-contact manner by the static pressure gas bearing 3 is rotated, the permanent magnet 53 is moved outside the thrust direction S of the rotating body 2 by the magnet moving mechanism 63. (A direction away from the static pressure gas bearing 3) The s1 is moved to the position P1 so that the magnetic force lines M from the permanent magnet 53 are not irradiated onto the outer peripheral surface 71 of the eddy current generator 7.

一方、静圧気体軸受3によって非接触で支持されている回転体2の回転を停止させる場合、磁石移動機構63により永久磁石53を回転体2のスラスト方向Sの内側(静圧気体軸受3に近づく方向)s2に位置P1から位置P2まで移動させ、永久磁石53からの磁力線Mが渦電流発生部7の外周面71に照射されるようにする。その結果、回転体2の回転による磁束密度の変化に応じた渦電流が渦電流発生部7に発生するため、渦電流発生部7の抵抗により渦電流発生部7が発熱する。これにより、回転体2の回転エネルギーが熱エネルギーに変換され、回転体2の回転が減衰する。この際、渦電流発生部7が非磁性良導体あるいは弱磁性良導体で形成されているので、渦電流発生部7が永久磁石53に引き寄せられる力は発生しない、あるいは発生しても無視できる程度に小さい。   On the other hand, when the rotation of the rotating body 2 supported in a non-contact manner by the static pressure gas bearing 3 is stopped, the permanent magnet 53 is moved inside the thrust direction S of the rotating body 2 by the magnet moving mechanism 63 (to the static pressure gas bearing 3). The direction of approach) s2 is moved from position P1 to position P2, so that the magnetic field lines M from the permanent magnet 53 are applied to the outer peripheral surface 71 of the eddy current generator 7. As a result, an eddy current corresponding to a change in the magnetic flux density due to the rotation of the rotating body 2 is generated in the eddy current generating unit 7, and the eddy current generating unit 7 generates heat due to the resistance of the eddy current generating unit 7. Thereby, the rotational energy of the rotating body 2 is converted into thermal energy, and the rotation of the rotating body 2 is attenuated. At this time, since the eddy current generation part 7 is formed of a nonmagnetic good conductor or a weak magnetic good conductor, the force that the eddy current generation part 7 is attracted to the permanent magnet 53 is not generated or is small enough to be ignored. .

したがって、本実施の形態によれば、回転体2のラジアル方向Rあるいはスラスト方向Sから回転体2に外力を殆ど加えることなく、回転体2の回転を制動することができる。このため、回転体2の回転を停止する際に、回転体2が傾いて静圧気体軸受3のラジアル軸受面31と回転体2の外周面22とが接触し損傷する可能性を低減でき、これにより、静圧気体軸受3によってラジアル方向Rの荷重が支持された回転体2をより安全に停止させることができる。   Therefore, according to the present embodiment, it is possible to brake the rotation of the rotating body 2 with almost no external force applied to the rotating body 2 from the radial direction R or the thrust direction S of the rotating body 2. For this reason, when the rotation of the rotating body 2 is stopped, the possibility that the rotating body 2 is inclined and the radial bearing surface 31 of the static pressure gas bearing 3 and the outer peripheral surface 22 of the rotating body 2 are in contact with each other and damaged can be reduced. Thereby, the rotary body 2 in which the load in the radial direction R is supported by the static pressure gas bearing 3 can be stopped more safely.

なお、本実施の形態では、永久磁石53を、渦電流発生部7の外周面71側に配置しておき、磁石移動機構63により回転体2のスラスト方向Sに移動させて、渦電流発生部7の外周面71に磁力線Mが照射される位置P2および照射されない位置P1のいずれか一方に位置付ける場合を例にとり説明したが、本発明はこれに限定されない。   In the present embodiment, the permanent magnet 53 is arranged on the outer peripheral surface 71 side of the eddy current generator 7 and is moved in the thrust direction S of the rotating body 2 by the magnet moving mechanism 63, so that the eddy current generator Although the case where the outer peripheral surface 71 is positioned at one of the position P2 where the magnetic force lines M are irradiated and the position P1 where the outer peripheral surface 71 is not irradiated has been described as an example, the present invention is not limited to this.

例えば、図4に示す静圧気体軸受装置1B´のように、回転体2に、回転体2から張り出すように設けられた円板部73と、円板部73の一方の端面(静圧気体軸受3に対向する端面と反対側の端面)75の外周縁部からスラスト方向Sの外側(静圧気体軸受3から離れる方向)に延びるように設けられた円筒部74と、を有する渦電流発生部72を設け、磁石移動機構64により、永久磁石54を、回転体2のスラスト方向Sに移動させて、渦電流発生部7の円筒部74の内周面76に磁力線Mを照射する位置P2および照射しない位置P1のいずれか一方に位置付けるようにしてよい。   For example, as in the static pressure gas bearing device 1B ′ shown in FIG. 4, the rotating body 2 is provided with a disk portion 73 provided so as to protrude from the rotating body 2 and one end surface (static pressure) of the disk portion 73. An eddy current having a cylindrical portion 74 provided so as to extend from the outer peripheral edge portion of the end surface opposite to the gas bearing 3 to the outer side in the thrust direction S (the direction away from the hydrostatic gas bearing 3). A position where the generator 72 is provided, and the magnet moving mechanism 64 moves the permanent magnet 54 in the thrust direction S of the rotating body 2 to irradiate the inner peripheral surface 76 of the cylindrical portion 74 of the eddy current generator 7 with the magnetic force lines M. You may make it position in any one of P2 and the position P1 which does not irradiate.

ここで、円板部73の一方の端面75からスラスト方向Sの外側に延びる円筒部74を同心円状に複数設け、回転体2の外周面と最も内側に位置する円筒部74の内周面との間、および、隣り合う円筒部74各々において内側の円筒部74の外周面と外側の円筒部74の内周面との間のそれぞれに、永久磁石54を出し入れできるように、永久磁石64と磁石移動機構64との組を複数用意してもよい。回転体2と最も内側に位置する円筒部74との間、および、隣り合う円筒部74の間のそれぞれに、永久磁石54を個別に出し入れすることにより、回転体2の回転のより細やかな制動が可能となる。   Here, a plurality of concentric cylindrical portions 74 extending outward in the thrust direction S from one end surface 75 of the disc portion 73 are provided, and the outer peripheral surface of the rotating body 2 and the inner peripheral surface of the cylindrical portion 74 located on the innermost side are provided. And the permanent magnet 64 so that the permanent magnet 54 can be taken in and out between the outer peripheral surface of the inner cylindrical portion 74 and the inner peripheral surface of the outer cylindrical portion 74 in each of the adjacent cylindrical portions 74. A plurality of sets with the magnet moving mechanism 64 may be prepared. By individually putting in and out the permanent magnets 54 between the rotating body 2 and the innermost cylindrical portion 74 and between the adjacent cylindrical portions 74, finer braking of the rotation of the rotating body 2 is achieved. Is possible.

なお、本実施の形態では、永久磁石53、54を用いているが、永久磁石53、54の代わりに電磁石を設け、通電中の電磁石を磁石移動機構63、64により2つの位置P1、P2間で移動させてもよい。   In the present embodiment, the permanent magnets 53 and 54 are used. However, instead of the permanent magnets 53 and 54, an electromagnet is provided, and the electromagnet being energized is moved between the two positions P1 and P2 by the magnet moving mechanisms 63 and 64. You may move it with.

<第三実施の形態>
つぎに、本発明の第三実施の形態を説明する。図5は、本実施の形態に係る静圧気体軸受装置1Cを説明するための断面図である。
<Third embodiment>
Next, a third embodiment of the present invention will be described. FIG. 5 is a cross-sectional view for explaining the hydrostatic gas bearing device 1C according to the present embodiment.

図示するように、本実施の形態に係る静圧気体軸受装置1Cが、図1に示す第一実施の形態に係る静圧気体軸受装置1Aと異なる点は、永久磁石5および磁石移動機構6に代えて電磁石8および通電制御装置9を設けたことである。その他の構成は第一実施の形態に係る静圧気体軸受装置1Aと同様である。   As shown in the figure, the static pressure gas bearing device 1C according to the present embodiment differs from the static pressure gas bearing device 1A according to the first embodiment shown in FIG. Instead, an electromagnet 8 and an energization control device 9 are provided. Other configurations are the same as those of the hydrostatic gas bearing device 1A according to the first embodiment.

電磁石8は、渦電流発生部4の一方の端面41側の所定の位置に固定されており、通電されると、回転体2のスラスト方向Sと平行かつ回転体2の回転方向Cと交差する方向に磁力線Mを発生する。   The electromagnet 8 is fixed at a predetermined position on the one end face 41 side of the eddy current generator 4, and when energized, the electromagnet 8 is parallel to the thrust direction S of the rotating body 2 and intersects the rotating direction C of the rotating body 2. Magnetic field lines M are generated in the direction.

通電制御装置9は、電磁石8への通電を制御する。   The energization controller 9 controls energization to the electromagnet 8.

上記構成の静圧気体軸受装置1Cにおいて、静圧気体軸受3によって非接触で支持された回転体2を回転させる場合には、通電制御装置9により電磁石8への通電を遮断し、電磁石8が磁力線Mを発生しないようにする。   In the static pressure gas bearing device 1C configured as described above, when the rotating body 2 supported in a non-contact manner by the static pressure gas bearing 3 is rotated, the energization control device 9 cuts off the energization to the electromagnet 8 and the electromagnet 8 The magnetic field lines M are not generated.

一方、静圧気体軸受3によって非接触で支持された回転体2の回転を停止させる場合、通電制御装置9により電磁石8への通電を実施し、電磁石8に磁力線Mを発生させる。その結果、電磁石8からの磁力線Mが渦電流発生部4の一方の端面41に照射され、回転体2の回転による磁束密度の変化に応じた渦電流が渦電流発生部4に発生するため、渦電流発生部4の抵抗により渦電流発生部4が発熱する。これにより、回転体2の回転エネルギーが熱エネルギーに変換され、回転体2の回転が減衰する。この際、渦電流発生部4が非磁性良導体あるいは弱磁性良導体で形成されているので、渦電流発生部4が電磁石8に引き寄せられる力は発生しない、あるいは発生しても無視できる程度に小さい。   On the other hand, when the rotation of the rotating body 2 supported in a non-contact manner by the static pressure gas bearing 3 is stopped, the electromagnet 8 is energized by the energization control device 9 to generate the lines of magnetic force M in the electromagnet 8. As a result, the line of magnetic force M from the electromagnet 8 is applied to one end face 41 of the eddy current generator 4, and an eddy current is generated in the eddy current generator 4 according to the change in magnetic flux density due to the rotation of the rotating body 2. The eddy current generator 4 generates heat due to the resistance of the eddy current generator 4. Thereby, the rotational energy of the rotating body 2 is converted into thermal energy, and the rotation of the rotating body 2 is attenuated. At this time, since the eddy current generating part 4 is formed of a nonmagnetic good conductor or a weak magnetic good conductor, the force that the eddy current generating part 4 is attracted to the electromagnet 8 is not generated or is small enough to be ignored.

したがって、本実施の形態によれば、回転体2のラジアル方向Rあるいはスラスト方向Sから回転体2に外力を殆ど加えることなく、回転体2の回転を制動することができる。このため、回転体2の回転を停止する際に、回転体2が傾いて静圧気体軸受3のラジアル軸受面31と回転体2の外周面22とが接触して損傷する可能性を低減でき、これにより、静圧気体軸受3によってラジアル方向Rの荷重が支持された回転体2をより安全に停止させることができる。   Therefore, according to the present embodiment, it is possible to brake the rotation of the rotating body 2 with almost no external force applied to the rotating body 2 from the radial direction R or the thrust direction S of the rotating body 2. For this reason, when the rotation of the rotating body 2 is stopped, the possibility that the rotating body 2 is inclined and the radial bearing surface 31 of the static pressure gas bearing 3 and the outer peripheral surface 22 of the rotating body 2 are in contact with each other and damaged can be reduced. Thereby, the rotary body 2 in which the load in the radial direction R is supported by the static pressure gas bearing 3 can be stopped more safely.

なお、本実施の形態では、電磁石8からの磁力線Mが回転体2のスラスト方向Sと平行かつ回転体2の回転方向Cと交差する方向に発生するように、電磁石8を渦電流発生部4の一方の端面41側の位置に固定しているが、本発明の第二実施の形態に係る静圧気体軸受装置1Bと同様、円板状の渦電流発生部4に代えて円筒状の渦電流発生部7を設けるとともに、電磁石8に通電すると、回転体2のラジアル方向Rと平行かつ回転体2の回転方向Cと交差する方向に磁力線Mを発生するように、渦電流発生部7の外周面71側の位置に電磁石8を固定してもよい。   In the present embodiment, the electromagnet 8 is generated in the eddy current generator 4 so that the magnetic force lines M from the electromagnet 8 are generated in a direction parallel to the thrust direction S of the rotating body 2 and intersecting the rotating direction C of the rotating body 2. However, in the same manner as in the static pressure gas bearing device 1B according to the second embodiment of the present invention, a cylindrical eddy is used instead of the disk-shaped eddy current generator 4. When the electromagnet 8 is energized while the current generator 7 is provided, the eddy current generator 7 generates a magnetic force line M in a direction parallel to the radial direction R of the rotating body 2 and intersecting the rotating direction C of the rotating body 2. The electromagnet 8 may be fixed at a position on the outer peripheral surface 71 side.

また、通電制御装置9が電磁石8への通電量を制御することにより、回転体2の回転が停止する時間を調整可能としてもよい。   Further, the energization control device 9 may control the amount of energization to the electromagnet 8 so that the time during which the rotation of the rotating body 2 stops can be adjusted.

なお、本発明は上記の各実施の形態に限定されるものではなく、その要旨の範囲内において様々な変形が可能である。   The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope of the gist.

例えば、上記の第一あるいは第三実施の形態において、渦電流発生部4を静圧気体軸受3に近接させるとともに、渦電流発生部4の他方の端面42と対向する静圧気体軸受3の端面33に、圧縮気体を吐出するスラスト軸受面33を設けてもよい。これにより、この圧縮気体によりスラスト軸受面33と渦電流発生部4の他方の端面42との間に形成される気体層を介して、回転体2のスラスト方向Sの荷重を非接触で支持するようにしてもよい。   For example, in the first or third embodiment described above, the eddy current generator 4 is brought close to the static pressure gas bearing 3 and the end face of the static pressure gas bearing 3 facing the other end face 42 of the eddy current generator 4. 33 may be provided with a thrust bearing surface 33 for discharging compressed gas. Thereby, the load in the thrust direction S of the rotating body 2 is supported in a non-contact manner by the compressed gas through a gas layer formed between the thrust bearing surface 33 and the other end surface 42 of the eddy current generating unit 4. You may do it.

ここで、静圧気体軸受3は、自成絞り、オリフィス絞り等による圧縮気体の吐出口がスラスト軸受面33に多数形成されたものでもよいし、あるいは、渦電流発生部4の他方の端面42と対向する静圧気体軸受3の端面に形成された多孔質焼結層を介してスラスト軸受面33の全面から圧縮気体を吐出するものでもよい。また、スラスト軸受面33を磁性体で形成してもよい。スラスト軸受面33を磁性体で形成することにより、永久磁石5あるいは電磁石8によってスラスト軸受面33を渦電流発生部4側に引き寄せる力が発生し、この力と、スラスト軸受面33から吐出される圧縮気体によってスラスト軸受面33が渦電流発生部4から離される力とがバランスして、回転体2のスラスト方向Sの荷重をより安定的に支持することが可能となる。   Here, the static pressure gas bearing 3 may have a plurality of compressed gas discharge ports formed on the thrust bearing surface 33 by a self-formed throttle, an orifice throttle, or the other end face 42 of the eddy current generator 4. Alternatively, the compressed gas may be discharged from the entire thrust bearing surface 33 through a porous sintered layer formed on the end surface of the static pressure gas bearing 3 facing the surface. Further, the thrust bearing surface 33 may be formed of a magnetic material. By forming the thrust bearing surface 33 with a magnetic material, a force that draws the thrust bearing surface 33 toward the eddy current generating unit 4 is generated by the permanent magnet 5 or the electromagnet 8, and this force is discharged from the thrust bearing surface 33. The force with which the thrust bearing surface 33 is separated from the eddy current generating unit 4 by the compressed gas balances, and the load in the thrust direction S of the rotating body 2 can be supported more stably.

また、上記の各実施の形態において、回転体2が銅、アルミニウム等の非磁性良導体あるいは弱磁性良導体で形成されている場合には、渦電流発生部4、7が回転体2と一体的に形成されていてもよい。   In each of the embodiments described above, when the rotating body 2 is formed of a nonmagnetic good conductor such as copper or aluminum or a weakly magnetic good conductor, the eddy current generators 4 and 7 are integrated with the rotating body 2. It may be formed.

また、上記の各実施の形態では、回転体2のラジアル方向Rの荷重を支持する軸受として、回転体2を非接触で支持する静圧気体軸受3を用いた場合を例にとり説明したが、本発明はこれに限定されない。滑り軸受、転がり軸受等の回転体2を接触して支持する軸受にも、本発明は同様に適用可能である。   In each of the above embodiments, the case where the static pressure gas bearing 3 that supports the rotating body 2 in a non-contact manner is used as a bearing that supports the load in the radial direction R of the rotating body 2 has been described as an example. The present invention is not limited to this. The present invention is also applicable to bearings that support and support the rotating body 2 such as sliding bearings and rolling bearings.

また、上記の各実施の形態では、円筒体を固定して静圧気体軸受3とし、この円筒体に挿入された円柱体を支持対象の回転体2として、円筒体が円柱体のラジアル方向の荷重を支持する場合を例にとり説明した。しかし、本発明はこれに限定されない。円柱体を固定して軸受とし、この円柱体が挿入された円筒体を支持対象の回転体として、円柱体が円筒体のラジアル方向の荷重を支持する軸受装置にも、本発明は同様に適用可能である。この場合、渦電流発生部4、7は、円筒体側に形成される。   In each of the above embodiments, the cylindrical body is fixed to form the static pressure gas bearing 3, the columnar body inserted into the cylindrical body is the rotating body 2 to be supported, and the cylindrical body is in the radial direction of the columnar body. The case where the load is supported has been described as an example. However, the present invention is not limited to this. The present invention is similarly applied to a bearing device in which a cylindrical body is fixed and used as a bearing, and the cylindrical body in which the cylindrical body is inserted is a rotating body to be supported, and the cylindrical body supports the radial load of the cylindrical body. Is possible. In this case, the eddy current generators 4 and 7 are formed on the cylindrical body side.

また、上記の各実施の形態では、回転体2の回転による磁束密度の変化に応じた渦電流を渦電流発生部4、7、72に発生させることにより、回転体2の回転エネルギーを熱エネルギーに変換し、回転体2の回転を減衰させて、回転体2の回転を安全に停止させている。しかし、本発明はこれに限定されない。この回転体2の回転の減衰を回転速度の調整に利用するようにしてもよい。   Further, in each of the above-described embodiments, the eddy current is generated in the eddy current generators 4, 7, 72 according to the change in the magnetic flux density due to the rotation of the rotator 2, whereby the rotational energy of the rotator 2 is converted into thermal energy. The rotation of the rotating body 2 is attenuated and the rotation of the rotating body 2 is safely stopped. However, the present invention is not limited to this. You may make it utilize this attenuation | damping of rotation of the rotary body 2 for adjustment of a rotational speed.

具体的には、磁石移動機構6、61、63、64により永久磁石5、51、52、53、54を移動して、渦電流発生部4、7、72に照射される磁力線を制御することにより、回転体2の回転の減衰量を制御して、その回転速度を調整する。あるいは、通電制御装置9により電磁石8の通電を制御して、渦電流発生部4に照射される磁力線を制御することにより、回転体2の回転の減衰量を制御して、その回転速度を調整する。このようにすることで、例えば、回転体2がサーボモータ等の回転速度の細かく制御できないモータに連結されている場合に、モータの性能以上の細かさで回転体2の回転速度を細やかに調整することが可能となる。   Specifically, the permanent magnets 5, 51, 52, 53, 54 are moved by the magnet moving mechanisms 6, 61, 63, 64 to control the lines of magnetic force applied to the eddy current generators 4, 7, 72. Thus, the amount of rotation attenuation of the rotating body 2 is controlled to adjust the rotation speed. Alternatively, the energization controller 9 controls the energization of the electromagnet 8 to control the magnetic lines of force applied to the eddy current generator 4, thereby controlling the rotation attenuation of the rotating body 2 and adjusting the rotation speed. To do. In this way, for example, when the rotating body 2 is connected to a motor such as a servo motor whose rotational speed cannot be finely controlled, the rotational speed of the rotating body 2 is finely adjusted with a finer degree than the motor performance. It becomes possible to do.

1A、1A´、1B、1B´、1C:静圧気体軸受装置、 2:回転体、 3:静圧気体軸受、4:渦電流発生部、 5:永久磁石、 6:磁石移動機構、 7:渦電流発生部、 8:電磁石、 9:通電制御装置、 21:回転体2の一方の端部、 22:回転体2の外周面、 31:ラジアル軸受面、 32:気体層、 33:スラスト軸受面、 41:フランジ4の一方の端面、 42:フランジ4の他方の端面、 51、52、53、54:永久磁石、61、63、64:磁石移動機構、71:フランジ7の外周面、72:渦電流発生部、73:渦電流発生部72の円板部、74:渦電流発生部72の円筒部、75:円板部73の一方の端面、76:円筒部74の内周面   1A, 1A ′, 1B, 1B ′, 1C: Static pressure gas bearing device, 2: Rotating body, 3: Static pressure gas bearing, 4: Eddy current generator, 5: Permanent magnet, 6: Magnet moving mechanism, 7: Eddy current generator, 8: electromagnet, 9: energization control device, 21: one end of rotating body 2, 22: outer peripheral surface of rotating body 2, 31: radial bearing surface, 32: gas layer, 33: thrust bearing 41: One end face of the flange 4 42: The other end face of the flange 4 51, 52, 53, 54: Permanent magnet 61, 63, 64: Magnet moving mechanism 71: Outer peripheral face of the flange 7 72 : Eddy current generation part, 73: disc part of eddy current generation part 72, 74: cylindrical part of eddy current generation part 72, 75: one end face of disc part 73, 76: inner peripheral surface of cylinder part 74

Claims (4)

ラジアル軸受によってラジアル方向の荷重が支持された回転体の回転を制動する制動機構であって、
磁力線を発生する磁力線発生手段と、
前記回転体に設けられ、前記回転体の回転により前記磁力発生手段に対して相対的に回転する、非磁性良導体あるいは弱磁性良導体で形成された渦電流発生部と、
前記磁力線発生手段により発生された磁力線の前記渦電流発生部への照射を制御する照射制御手段と、を備え、
前記渦電流発生部は、
前記回転体と回転軸を一致させて当該回転体の外周面から張り出した円板部と、
前記円板部の一方の端面から前記回転体のスラスト方向に向けて、当該回転体と回転軸を一致させて同心円状に設けられた複数の円筒部と、を有し、
前記磁力線発生手段は、
前記円筒部毎に設けられた複数の磁石を有し、
前記照射制御手段は、
前記複数の磁石を個別に前記回転体のスラスト方向に移動して、前記磁石毎に、当該磁石に対応する前記円筒部と当該円筒部の内側に位置して当該円筒部と隣り合う他の前記円筒部あるいは前記回転体との間に、当該磁石を出し入れする
ことを特徴とする制動機構。
A braking mechanism for braking the rotation of a rotating body supported by a radial bearing with a radial load,
A magnetic force line generating means for generating magnetic force lines;
An eddy current generator formed of a non-magnetic good conductor or a weak magnetic good conductor, which is provided in the rotating body and rotates relative to the magnetic force line generating means by the rotation of the rotating body;
Irradiation control means for controlling irradiation of the magnetic field lines generated by the magnetic field line generation means to the eddy current generation unit ,
The eddy current generator is
A disk portion projecting from the outer peripheral surface of the rotating body with the rotating body and the rotation axis aligned,
A plurality of cylindrical portions that are concentrically provided in such a way that the rotating body and the rotating shaft coincide with each other in the thrust direction of the rotating body from one end face of the disk portion;
The magnetic force line generating means is
It has a plurality of magnets provided for each cylindrical part,
The irradiation control means includes
The plurality of magnets are individually moved in the thrust direction of the rotating body, and for each of the magnets, the cylindrical portion corresponding to the magnet and the other cylindrical portion positioned adjacent to the cylindrical portion. A braking mechanism , wherein the magnet is taken in and out between the cylindrical portion and the rotating body .
回転体のラジアル方向の荷重を支持するラジアル軸受と、
前記回転体の回転を制動する請求項1に記載の制動機構と、を有する
ことを特徴する軸受装置。
A radial bearing that supports the radial load of the rotating body;
A braking mechanism according to claim 1, which brakes rotation of the rotating body.
請求項に記載の軸受装置であって、
前記ラジアル軸受は、
前記回転体のラジアル方向に圧縮気体を吐出するラジアル軸受面を備え、当該圧縮気体により前記ラジアル軸受面と当該ラジアル軸受面に対面する前記回転体の支持対象面との間に形成される気体層を介して、前記回転体のラジアル方向の荷重を非接触で支持する静圧気体軸受である
ことを特徴とする軸受装置。
The bearing device according to claim 2 ,
The radial bearing is
A gas layer formed between the radial bearing surface and the surface to be supported of the rotating body facing the radial bearing surface by the compressed gas, the surface including a radial bearing surface that discharges compressed gas in a radial direction of the rotating body. A bearing device, wherein the bearing is a static pressure gas bearing that supports a radial load of the rotating body in a non-contact manner.
請求項に記載の軸受装置であって、
前記静圧気体軸受は、
前記回転体のスラスト方向に圧縮気体を吐出するスラスト軸受面をさらに備え、当該圧縮気体により前記スラスト軸受面と当該スラスト軸受面に対面する前記渦電流発生部の支持対象面との間に形成される気体層を介して、前記回転体のスラスト方向の荷重を非接触で支持する
ことを特徴とする軸受装置。
The bearing device according to claim 3 ,
The static pressure gas bearing is
A thrust bearing surface that discharges compressed gas in the thrust direction of the rotating body is further provided, and is formed between the thrust bearing surface and the support target surface of the eddy current generating unit facing the thrust bearing surface by the compressed gas. A bearing device, wherein the load in the thrust direction of the rotating body is supported in a non-contact manner through a gas layer.
JP2012136114A 2012-06-15 2012-06-15 Braking mechanism and bearing device provided with the braking mechanism Active JP6026792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012136114A JP6026792B2 (en) 2012-06-15 2012-06-15 Braking mechanism and bearing device provided with the braking mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012136114A JP6026792B2 (en) 2012-06-15 2012-06-15 Braking mechanism and bearing device provided with the braking mechanism

Publications (2)

Publication Number Publication Date
JP2014003762A JP2014003762A (en) 2014-01-09
JP6026792B2 true JP6026792B2 (en) 2016-11-16

Family

ID=50036400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012136114A Active JP6026792B2 (en) 2012-06-15 2012-06-15 Braking mechanism and bearing device provided with the braking mechanism

Country Status (1)

Country Link
JP (1) JP6026792B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110138176A (en) * 2019-05-23 2019-08-16 安徽沃弗电力科技有限公司 A kind of lifting clutch type permanent magnet coupler

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS615895Y2 (en) * 1980-02-28 1986-02-22
JPS6152493U (en) * 1984-09-07 1986-04-09
JPH09275672A (en) * 1996-04-01 1997-10-21 Akebono Brake Ind Co Ltd Eddy current type retarder
US6286637B1 (en) * 1998-03-09 2001-09-11 Kwangju Institute Of Science & Technology Contactless eddy current brake for cars
JP4600156B2 (en) * 2005-05-31 2010-12-15 住友金属工業株式会社 Eddy current reducer
JP5368876B2 (en) * 2009-05-22 2013-12-18 オイレス工業株式会社 Air slide device having a magnetic damper

Also Published As

Publication number Publication date
JP2014003762A (en) 2014-01-09

Similar Documents

Publication Publication Date Title
US6148967A (en) Non-contacting and torquer brake mechanism
US20100127589A1 (en) Bearing device having a shaft which is mounted magnetically such that it can rotate about an axis with respect to a stator, and having a damping apparatus
JP5931824B2 (en) Method for centering a vacuum pump and / or for reducing the stray field of a vacuum pump or the stray field of a rotary device for a vacuum pump
EP3542079B1 (en) Thrust active magnetic bearing for shaft slow roll control
JP2006353078A (en) Axial-gap rotary electric machine
KR101684841B1 (en) Permanent magnet rotating electric machine
JP2019135910A (en) Damping assembly for use in device having aerodynamic moving surface
JP6026792B2 (en) Braking mechanism and bearing device provided with the braking mechanism
JP2017082757A (en) Method for reducing stray vector magnetic field of vacuum pump or rotary unit, vacuum pump and rotary unit
EP2422100B1 (en) A magnetic bearing, a rotary stage, and a reflective electron beam lithography apparatus
US10983415B2 (en) Shutter device, method of controlling same, photolithography machine, and method of controlling exposure dose thereof
EP3628636B1 (en) Elevator braking device and elevator system
JPH04112669A (en) Braking device
KR101134966B1 (en) Motor with motor brake
JPH0614523A (en) Eddy-current brake
JP5233196B2 (en) Rotating electrical machine rotor
EP3641107B1 (en) Electric motor and elevator system
JP2000266117A (en) Rotary magnetic damper
JP2012143122A (en) Spindle motor
SU1005243A1 (en) Electric machine with magnetic suspension of rotor
JP6872456B2 (en) Braking force adjustment device
CN114375371A (en) Magnetic actuator for magnetic levitation systems
JP2006177444A (en) Electromagnetic brake device
KR100363245B1 (en) Magnetic bearing assembly with deceleration unit
JP2003319637A (en) Small and light eddy current speed reducer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161013

R150 Certificate of patent or registration of utility model

Ref document number: 6026792

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250