JP6026316B2 - Secondary battery control device - Google Patents

Secondary battery control device Download PDF

Info

Publication number
JP6026316B2
JP6026316B2 JP2013036943A JP2013036943A JP6026316B2 JP 6026316 B2 JP6026316 B2 JP 6026316B2 JP 2013036943 A JP2013036943 A JP 2013036943A JP 2013036943 A JP2013036943 A JP 2013036943A JP 6026316 B2 JP6026316 B2 JP 6026316B2
Authority
JP
Japan
Prior art keywords
secondary battery
soc
charge
control device
straight line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013036943A
Other languages
Japanese (ja)
Other versions
JP2014165106A (en
Inventor
久保田 雅之
雅之 久保田
智 天木
智 天木
門田 行生
行生 門田
麻美 水谷
麻美 水谷
進 西田
進 西田
祐介 山下
祐介 山下
富士雄 須藤
富士雄 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2013036943A priority Critical patent/JP6026316B2/en
Publication of JP2014165106A publication Critical patent/JP2014165106A/en
Application granted granted Critical
Publication of JP6026316B2 publication Critical patent/JP6026316B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明の実施形態は、二次電池を昇温するための二次電池制御装置に関する。   Embodiments described herein relate generally to a secondary battery control device for heating a secondary battery.

二次電池を低温環境下で使用する場合、内部抵抗が高くなるため所望の電流を出力できないという問題があった。この問題に対し、従来では、ヒーター装置等を用いることで電池を温めてから使用する手法が提案されているが、ヒーターによって電池を温めるときの熱エネルギーのロスが大きいという課題があった。そこで、二次電池の充放電の繰り返しを二次電池と直流コンデンサとの間で実施するという昇温方法が提案されている(例えば、特許文献1参照)。   When the secondary battery is used in a low temperature environment, there is a problem that a desired current cannot be output because the internal resistance increases. Conventionally, a method of using the heater device or the like after warming the battery has been proposed for this problem, but there is a problem that a loss of heat energy when the battery is warmed by the heater is large. In view of this, there has been proposed a temperature raising method in which the secondary battery is repeatedly charged and discharged between the secondary battery and the DC capacitor (see, for example, Patent Document 1).

特開2007−12568号公報JP 2007-12568 A

ところが、上記昇温方法では、電池を短時間で昇温するのに必要な大電流の充放電に対して、コンデンサの容量を相当大きくする必要があり、体積やコストの点で課題となる。   However, in the above temperature raising method, it is necessary to considerably increase the capacity of the capacitor with respect to charge and discharge of a large current necessary for raising the temperature of the battery in a short time, which is a problem in terms of volume and cost.

本実施形態の目的は、短時間に効率良く二次電池を昇温可能な二次電池制御装置を提供することにある。   The objective of this embodiment is to provide the secondary battery control apparatus which can heat up a secondary battery efficiently in a short time.

本実施形態に係る二次電池制御装置は、第1の二次電池と第2の二次電池を制御する装置であって、前記第1及び第2の二次電池間を接続し、互いに一方の二次電池が放電した電力によって他方の二次電池を充電する充放電手段と、前記第1の二次電池のSOCを推定する第1のSOC推定手段と、前記第2の二次電池のSOCを推定する第2のSOC推定手段と、予め取得した前記第1及び第2の二次電池の出力可能なSOC領域に基づいて目標SOCを表す直線を決定し、前記第1及び第2のSOC推定手段で推定されたSOCの和が一定値を維持したまま、それぞれのSOCが前記直線上の目標SOCになるように前記充放電手段を制御する充放電制御手段とを具備するものである。 The secondary battery control device according to the present embodiment is a device that controls the first secondary battery and the second secondary battery, and connects the first and second secondary batteries to each other. Charging / discharging means for charging the other secondary battery with the electric power discharged by the secondary battery, first SOC estimating means for estimating the SOC of the first secondary battery, and the second secondary battery A straight line representing a target SOC is determined on the basis of second SOC estimation means for estimating the SOC and the SOC regions that can be output from the first and second secondary batteries acquired in advance, and the first and second Charge / discharge control means for controlling the charge / discharge means so that each SOC becomes the target SOC on the straight line while maintaining a constant value of the SOC estimated by the SOC estimation means. .

第1実施形態に係る二次電池制御装置を用いた二次電池システムを示す図。The figure which shows the secondary battery system using the secondary battery control apparatus which concerns on 1st Embodiment. 第1実施形態に係る目標SOC設定方法を示す図。The figure which shows the target SOC setting method which concerns on 1st Embodiment. 第1実施形態に係る昇温動作の一例を示す図。The figure which shows an example of the temperature rising operation which concerns on 1st Embodiment. 第2実施形態に係る目標SOC設定方法を示す図。The figure which shows the target SOC setting method which concerns on 2nd Embodiment. 第3実施形態に係るSOCによる昇温効果特性を示す図。The figure which shows the temperature rising effect characteristic by SOC which concerns on 3rd Embodiment. 第3実施形態に係る目標SOC設定方法を示す図。The figure which shows the target SOC setting method which concerns on 3rd Embodiment. 第4実施形態に係る充放電器制御部10の詳細を示す図。The figure which shows the detail of the charger / discharger control part 10 which concerns on 4th Embodiment. 第4実施形態に係る目標SOC設定方法を示す図。The figure which shows the target SOC setting method which concerns on 4th Embodiment.

以下、図面を参照しながら本実施形態に係る二次電池制御装置を説明する。   Hereinafter, the secondary battery control device according to the present embodiment will be described with reference to the drawings.

(第1実施形態)
図1に、本実施形態に係る二次電池制御装置を用いた二次電池システムを示す。
(First embodiment)
FIG. 1 shows a secondary battery system using the secondary battery control device according to the present embodiment.

第1の二次電池2a及び第2の二次電池2b(二次電池と総称する)は、電気的に多直列多並列に接続された二次電池セル1から構成され、内部に二次電池SOC推定部3と、少なくとも1つの二次電池の温度測定部4とを含む。二次電池の電圧や容量は異なっていてもよく、温度測定部4としては、例えば、サーミスタや熱電対を用いる。二次電池SOC推定部3は、セル電圧や電池の通電電流、温度等を用いて電池エネルギー残量(SOC:State of Charge)を推定する。   A first secondary battery 2a and a second secondary battery 2b (collectively referred to as a secondary battery) are composed of secondary battery cells 1 electrically connected in a multi-series and multi-parallel configuration, and have a secondary battery inside. The SOC estimation unit 3 and the temperature measurement unit 4 of at least one secondary battery are included. The voltage and capacity of the secondary battery may be different. As the temperature measurement unit 4, for example, a thermistor or a thermocouple is used. The secondary battery SOC estimation unit 3 estimates the remaining battery energy (SOC: State of Charge) using the cell voltage, the battery conduction current, the temperature, and the like.

負荷装置5には、二次電池の電力もしくは充電器8により電力が供給される。負荷装置5は直流電力を交流電力に変換するインバータや直流電圧を変化させるDC/DCコンバータ等の電力変換器を含む。充放電器6は、第1の二次電池2aと第2の二次電池2bとの間で電力のやり取りを行う。この充放電器6は、半導体スイッチを内部に有し、スイッチングタイミングを変化させることで出力電力や電流を変化させる。また、図1では、充放電器6は、一台であるが、片方向のコンバータを組み合わせもよい。さらに、充放電器6は、二次電池の電流を計測する電池電流計測部12と、二次電池の電圧を計測する電池電圧計測部13を含む。   The load device 5 is supplied with power from the secondary battery or from the charger 8. The load device 5 includes a power converter such as an inverter that converts DC power into AC power and a DC / DC converter that changes DC voltage. The charger / discharger 6 exchanges electric power between the first secondary battery 2a and the second secondary battery 2b. The charger / discharger 6 includes a semiconductor switch inside, and changes output power and current by changing switching timing. Moreover, in FIG. 1, although the charger / discharger 6 is one, it may combine a unidirectional converter. Furthermore, the charger / discharger 6 includes a battery current measuring unit 12 that measures the current of the secondary battery and a battery voltage measuring unit 13 that measures the voltage of the secondary battery.

充放電器制御装置7は、充放電器6に昇温開始を指令する昇温指令部9と、充放電器6の充放電を制御する充放電器制御部10と、負荷装置5に電気エネルギーを出力させる負荷出力指令部11を含む。   The charger / discharger control device 7 supplies electrical energy to the load device 5, a temperature increase command unit 9 that instructs the charger / discharger 6 to start temperature increase, a charger / discharger controller 10 that controls charging / discharging of the charger / discharger 6, and the like. Is included.

充放電器6は、充放電器制御装置7の昇温指令部9からの昇温開始指令もしくは、二次電池の温度測定部4の測定温度が所定の温度より低下したことを起点として、昇温動作を開始し、二次電池SOC推定部3で推定されるSOCが、後述する充放電器制御装置7により設定される目標SOCとなるように、充放電器6により二次電池に交互にパルスの電流を流す。パルス時間は一定値(例えば40sec)でもよいし、電池電圧がそれぞれの二次電池の使用電圧範囲外になった時点で停止してもよい。しかし、このようなパルス充放電をSOCの管理をせずに行った場合、電池の温度が上昇しても、所望する出力を得るのに必要なSOCに達していないことがあるため、さらに電池のSOCを調整する時間がかかる場合がある。   The charger / discharger 6 starts from the temperature rise start command from the temperature rise command unit 9 of the charger / discharger control device 7 or the temperature measured by the temperature measurement unit 4 of the secondary battery is lower than a predetermined temperature. The temperature / charge operation starts and the secondary battery SOC estimation unit 3 alternately turns the secondary battery into a secondary battery by the charger / discharger 6 so that the SOC estimated by the charger / discharger controller 7 described later becomes a target SOC. Apply pulse current. The pulse time may be a fixed value (for example, 40 sec), or may be stopped when the battery voltage falls outside the use voltage range of each secondary battery. However, when such pulse charge / discharge is performed without managing the SOC, even if the temperature of the battery rises, it may not reach the SOC required to obtain the desired output. It may take time to adjust the SOC.

以下に、この問題を解決するために、充放電器制御装置7の充放電器制御部10が行う充放電制御処理を図2及び図3を用いて説明する。所望の出力を得るのに必要な二次電池のSOCは、その二次電池自身の温度に応じて決まり、一般に、温度が低いほど高いSOCを必要とし、温度が高くなるにつれて必要なSOCは低下する傾向を示す。そして、所定の温度において、所望の出力を得るのに必要なSOCに達している状態にあれば、この二次電池は高出力可能領域にあるとし、そうでなければ高出力不可領域にあるとする。   Below, in order to solve this problem, the charging / discharging control process which the charger / discharger control part 10 of the charger / discharger controller 7 performs is demonstrated using FIG.2 and FIG.3. The SOC of the secondary battery necessary to obtain a desired output is determined according to the temperature of the secondary battery itself. Generally, the lower the temperature, the higher the SOC is required, and the higher the temperature, the lower the required SOC. Show a tendency to If the SOC has reached the SOC required to obtain a desired output at a predetermined temperature, the secondary battery is in a high output possible region, and otherwise is in a high output impossible region. To do.

図2は、低温環境(例えば−30℃)における2つの二次電池2a及び2bのそれぞれの高出力可能領域及び高出力不可領域、ならびに目標SOC直線設定の一例を示す図である。この事例では、低温環境で所望の出力を得るのに必要なSOCは、いずれの二次電池も80%としている。高出力可能領域16は、第1の二次電池2aの高出力不可領域14と第2の二次電池2bの高出力不可領域15以外の部分で表す。図2の場合、2つの高出力不可領域14,15の交点P1と2つの電池のSOCが0%である点とを結んだ直線を、目標SOC直線17と表す。昇温動作中の充電器8の充電電流や負荷装置5での消費電流に応じて二次電池のSOCは一定とならない場合があるが、目標SOCをこのように直線とすることで、二次電池のSOCが変化しても目標SOCをこの直線上で逐次変化することができる。   FIG. 2 is a diagram illustrating an example of the high output possible region and the high output impossibility region of each of the two secondary batteries 2a and 2b in a low temperature environment (for example, −30 ° C.), and target SOC straight line setting. In this case, the SOC required to obtain a desired output in a low temperature environment is 80% for any secondary battery. The high output possible area 16 is represented by a portion other than the high output impossible area 14 of the first secondary battery 2a and the high output impossible area 15 of the second secondary battery 2b. In the case of FIG. 2, a straight line connecting the intersection P <b> 1 between the two high output impossibility regions 14 and 15 and the point where the SOC of the two batteries is 0% is represented as a target SOC straight line 17. The SOC of the secondary battery may not be constant depending on the charging current of the charger 8 during the temperature raising operation or the current consumption of the load device 5, but the secondary SOC can be obtained by making the target SOC straight in this way. Even if the SOC of the battery changes, the target SOC can be successively changed on this straight line.

図3に、低温(例えば上記した−30℃)の時点から開始する昇温動作の例を示す。昇温開始時の2組の二次電池のSOC状態がP2(第1の二次電池2aのSOC=5%、第2の二次電池2bのSOC=70%)にあるものとする。2つの二次電池に対して、外部からのエネルギーの出入りや充放電器6の変換損失や二次電池の発熱損失を無視した場合、第1の二次電池2aのSOC+第2の二次電池2bのSOC=一定値となる。そして、このSOCの一定値を維持したまま、それぞれの二次電池のSOCが目標SOC直線17上の値となるように、二次電池間で充放電制御を行う。図3の事例では、第2の二次電池2bから第1の二次電池2aへ放電を行う。また、この時の充放電制御の際に、電池電圧が二次電池の動作電圧を超えない限り目標SOCになるまでは、充放電を切り替えないものとする。これによって、それぞれの二次電池のSOCは、図3中のP2から目標SOC直線17に向けて、矢線の方向に昇温しながら移動していく。   FIG. 3 shows an example of the temperature raising operation starting from the time of low temperature (for example, the above-described −30 ° C.). It is assumed that the SOC state of the two sets of secondary batteries at the start of temperature increase is P2 (SOC of the first secondary battery 2a = 5%, SOC of the second secondary battery 2b = 70%). When the input / output of energy from the outside, the conversion loss of the charger / discharger 6 and the heat loss of the secondary battery are ignored for the two secondary batteries, the SOC of the first secondary battery 2a + the second secondary battery 2b SOC = constant value. Then, charge / discharge control is performed between the secondary batteries so that the SOC of each secondary battery becomes a value on the target SOC straight line 17 while maintaining the constant value of the SOC. In the case of FIG. 3, the second secondary battery 2b is discharged to the first secondary battery 2a. In addition, in the charge / discharge control at this time, charge / discharge is not switched until the target SOC is reached unless the battery voltage exceeds the operating voltage of the secondary battery. As a result, the SOC of each secondary battery moves from P2 in FIG. 3 toward the target SOC straight line 17 while raising the temperature in the direction of the arrow.

そして、一度目標SOCに到達した後は、パルス充放電の幅を一定値(例えば40s)とし、相互に充放電動作を継続することによって、更に所期の値に昇温させる。このパルス幅が大きいと目標SOC直線から離れることになり、短すぎると十分な昇温効果が得られない。これらの関係からΔSOCを設定するとより効果的である。   Once the target SOC is reached, the pulse charge / discharge width is set to a constant value (for example, 40 s), and the charge / discharge operation is continued to increase the temperature further to an expected value. If this pulse width is large, the target SOC line is separated, and if it is too short, a sufficient temperature rise effect cannot be obtained. From these relationships, it is more effective to set ΔSOC.

以上述べたように、上記第1実施形態によれば、各二次電池の目標SOCを管理しながら充放電制御による昇温を行うので、それぞれの二次電池では所望する出力を得るのに必要なSOCが確保されつつ昇温されていく。従って、昇温後にSOCを再調整する必要はなく、二次電池の昇温開始から使用可能になるまでの時間を短縮することができる。   As described above, according to the first embodiment, since the temperature is increased by charge / discharge control while managing the target SOC of each secondary battery, each secondary battery is necessary to obtain a desired output. The temperature is increased while ensuring a sufficient SOC. Therefore, there is no need to readjust the SOC after the temperature rise, and the time from the start of the temperature rise of the secondary battery until it can be used can be shortened.

(第2実施形態)
二次電池の特性から電池温度が上がると二次電池の高出力不可領域は低減していく。また、双方の二次電池の温度上昇は、電池の構成、設置場所、冷却環境、電池残量等によって異なる。このことから、より短時間で高出力可能領域に到達させるためには、温度上昇に応じて目標SOCを変化させていくことが望ましい。
(Second Embodiment)
When the battery temperature rises due to the characteristics of the secondary battery, the high output impossible area of the secondary battery decreases. Moreover, the temperature rise of both secondary batteries changes with battery structures, installation locations, cooling environments, remaining battery levels, and the like. Therefore, in order to reach the high output possible region in a shorter time, it is desirable to change the target SOC according to the temperature rise.

図4に、第1の二次電池2aが−20℃、第2の二次電池2bが−10℃の時の特性の例を示す。双方の二次電池2a,2bが−30℃から昇温を開始する場合の目標SOCをP4とすると、第1の二次電池2aが−20℃、第2の二次電池2bが−10℃になった時は、第1の二次電池2aと第2の二次電池2bの高出力不可領域の違いからP3を通るように目標SOC直線を算出すると新たに目標値が変化することになる。目標値の更新タイミングは、現在の目標値と更新後の目標値のSOC差が一定値以上離れた時点や昇温開始から一定時間ごとに更新してもよい。   FIG. 4 shows an example of characteristics when the first secondary battery 2a is −20 ° C. and the second secondary battery 2b is −10 ° C. Assuming that the target SOC when both secondary batteries 2a and 2b start to rise from −30 ° C. is P4, the first secondary battery 2a is −20 ° C., and the second secondary battery 2b is −10 ° C. When the target SOC straight line is calculated so as to pass through P3 from the difference in the high output impossibility region between the first secondary battery 2a and the second secondary battery 2b, the target value newly changes. . The update timing of the target value may be updated every time when the SOC difference between the current target value and the updated target value is a predetermined value or more, or every fixed time from the start of temperature increase.

(第3実施形態)
図5に、SOCによる昇温効果特性を示す。図5において、高昇温効果領域19は、電池の昇温時には大電流を一定時間流すことで大きな昇温効果が得られる。一方、SOCが極端に高い領域と極端に低い領域からなる低昇温効果領域18においては、昇温効果が低い。これらの特性を事前に試験等で取得しておくと、さらに効率良く昇温可能となる。
(Third embodiment)
FIG. 5 shows the temperature rise effect characteristic by SOC. In FIG. 5, a large temperature increase effect region 19 can obtain a large temperature increase effect by flowing a large current for a certain period of time when the battery is heated. On the other hand, the temperature increase effect is low in the low temperature increase effect region 18 composed of an extremely high SOC region and an extremely low region. If these characteristics are acquired in advance by a test or the like, the temperature can be increased more efficiently.

図6を用いて、図5の特性を考慮したときの目標SOCの設定方法を説明する。第1の実施形態によれば、目標SOC直線17は、P6を通る直線で表されるが、第3実施形態では、昇温前のSOCがP5にあるとき、P5と高出力不可領域の交点から算出した目標SOCはP7を通る直線を目標SOC直線とする。   A method of setting the target SOC when considering the characteristics of FIG. 5 will be described with reference to FIG. According to the first embodiment, the target SOC straight line 17 is represented by a straight line passing through P6. However, in the third embodiment, when the SOC before the temperature rise is at P5, the intersection of P5 and the high output impossible region As for the target SOC calculated from the above, a straight line passing through P7 is set as a target SOC straight line.

(第4実施形態)
図7を用いて、第4実施形態を説明する。いずれかの負荷装置5の出力のみが過大に必要な場合、充放電器6を用いた電力の供給が可能である。図7の電圧制御部102では、第1の二次電池2aの電圧を取得して電圧指令値101との差分をPI制御器を通して電流制御部104に入力する電流指令値を計算する。第1の二次電池2aの電圧が低い場合、電圧指令値101を高く設定することで第2の二次電池2bから第1の二次電池2aへの充電電流を大きくすることが可能である。リミッタ103では、電圧制御部102で演算された電流値がある電流以上の値が流れないように制限するものであり、電流の供給量の最大値を決定することができる。図7の電流制御部104では、第1の二次電池2aに流れる電流と電圧制御部101から得られた電流指令値の差分をPI制御器で演算結果をゲート信号生成部105に入力することにより、所望の電流を発生させる半導体デバイスへのスイッチング信号を生成することができる。
(Fourth embodiment)
The fourth embodiment will be described with reference to FIG. When only the output of any one of the load devices 5 is excessively large, power can be supplied using the charger / discharger 6. In the voltage control unit 102 of FIG. 7, the voltage of the first secondary battery 2a is acquired, and a current command value to be input to the current control unit 104 through the PI controller is calculated as a difference from the voltage command value 101. When the voltage of the first secondary battery 2a is low, the charging current from the second secondary battery 2b to the first secondary battery 2a can be increased by setting the voltage command value 101 high. . The limiter 103 limits the current value calculated by the voltage control unit 102 so that a value greater than a certain current does not flow, and can determine the maximum value of the current supply amount. In the current control unit 104 in FIG. 7, the difference between the current flowing through the first secondary battery 2 a and the current command value obtained from the voltage control unit 101 is input to the gate signal generation unit 105 by the PI controller. Thus, a switching signal to the semiconductor device that generates a desired current can be generated.

このような方法で、昇温後に所望の出力を得るために必要なSOCが、第1の二次電池2aの方が第2の二次電池2bより小さい場合の昇温可能領域の変化を図8を用いて説明する。上記図2に示したのが第1の二次電池2a、第2の二次電池2b共に電池温度が−30℃の時の高出力可能領域16であるとき、上記のように充放電器による電力の融通を行った場合の高出力可能領域16は図8のように変化する。電力を第1の二次電池2aから第2の二次電池2bに供給する場合を前提としているので、第1の二次電池2aの目標SOCは低下させ、第2の二次電池2bの目標SOCは増加させる必要がある。これに伴い、第1の電池2aの高出力不可領域14は減少し、第2の二次電池2bの高出力不可領域15は増加する。   In this way, the change in the temperature rise possible region when the SOC required for obtaining a desired output after the temperature rise is smaller in the first secondary battery 2a than in the second secondary battery 2b is shown. 8 will be used for explanation. When the first secondary battery 2a and the second secondary battery 2b are in the high output possible region 16 when the battery temperature is −30 ° C. as shown in FIG. When the power is interchanged, the high output possible area 16 changes as shown in FIG. Since it is assumed that electric power is supplied from the first secondary battery 2a to the second secondary battery 2b, the target SOC of the first secondary battery 2a is lowered and the target of the second secondary battery 2b is reduced. The SOC needs to be increased. Accordingly, the high output impossible area 14 of the first battery 2a decreases, and the high output impossible area 15 of the second secondary battery 2b increases.

この割合は電流指令値のリミッタ103で設定可能であるため、第2の二次電池2bを使用しない場合は、最大限リミットを大きく設定できる。第2の二次電池2bが出力可能な電流はSOCと温度によって変化するため予め電池特性を取得したテーブルを用いて設定することが望ましい。以上により、昇温することなく二次電池のいずれかの出力を本来の電池能力より大きくとることができる。出力時に電力を片方に融通することができることを前提にすれば、目標SOC直線も図8のP8を通るように変化させることが効果的である。   Since this ratio can be set by the current command value limiter 103, when the second secondary battery 2b is not used, the maximum limit can be set as large as possible. Since the current that can be output by the second secondary battery 2b varies depending on the SOC and temperature, it is desirable to set the current using a table in which battery characteristics are acquired in advance. As described above, any output of the secondary battery can be made larger than the original battery capacity without increasing the temperature. Assuming that power can be accommodated in one side at the time of output, it is effective to change the target SOC straight line so as to pass through P8 in FIG.

なお、いくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1…二次電池セル、2a…第1の二次電池、2b…第2の二次電池、3…二次電池SOC推定部、4…温度測定部、5…負荷装置、6…充放電器、7…充放電器制御装置、8…充電器、9…昇温指令部、10…充放電器制御部、11…負荷出力指令部、12…電池電流計測部、13…電池電圧計測部、14…電池1の高出力不可領域、15…電池2の高出力不可領域、16…第1の二次電池と第2の二次電池の高出力可能領域、17…目標SOC直線、18…低昇温効果領域、19…高昇温効果領域。   DESCRIPTION OF SYMBOLS 1 ... Secondary battery cell, 2a ... 1st secondary battery, 2b ... 2nd secondary battery, 3 ... Secondary battery SOC estimation part, 4 ... Temperature measurement part, 5 ... Load apparatus, 6 ... Charge / discharge device , 7: Charger / discharger control device, 8 ... Charger, 9 ... Temperature increase command unit, 10 ... Charger / discharger control unit, 11 ... Load output command unit, 12 ... Battery current measurement unit, 13 ... Battery voltage measurement unit, 14 ... High output impossible area of battery 1, 15 ... High output impossible area of battery 2, 16 ... High output possible area of first secondary battery and second secondary battery, 17 ... Target SOC straight line, 18 ... Low Temperature increase effect region, 19 ... High temperature increase effect region.

Claims (6)

第1の二次電池と第2の二次電池を制御する装置であって、
前記第1及び第2の二次電池間を接続し、互いに一方の二次電池が放電した電力によって他方の二次電池を充電する充放電手段と、
前記第1の二次電池のSOCを推定する第1のSOC推定手段と、
前記第2の二次電池のSOCを推定する第2のSOC推定手段と、
予め取得した前記第1及び第2の二次電池の出力可能なSOC領域に基づいて目標SOCを表す直線を決定し、前記第1及び第2のSOC推定手段で推定されたSOCの和が一定値を維持したまま、それぞれのSOCが前記直線上の目標SOCになるように前記充放電手段を制御する充放電制御手段と
を具備することを特徴とする二次電池制御装置。
An apparatus for controlling a first secondary battery and a second secondary battery,
Charging / discharging means for connecting the first and second secondary batteries and charging the other secondary battery with electric power discharged by the one secondary battery;
First SOC estimating means for estimating the SOC of the first secondary battery;
Second SOC estimating means for estimating the SOC of the second secondary battery;
A straight line representing the target SOC is determined based on the SOC regions that can be output from the first and second secondary batteries acquired in advance, and the sum of the SOCs estimated by the first and second SOC estimating means is constant. A secondary battery control device comprising charge / discharge control means for controlling the charge / discharge means so that each SOC becomes a target SOC on the straight line while maintaining the value .
前記充放電制御手段は、前記目標SOCから一定のSOC範囲内で充放電を行うことをさらに特徴とする請求項1に記載の二次電池制御装置。   The secondary battery control device according to claim 1, wherein the charge / discharge control unit performs charge / discharge within a certain SOC range from the target SOC. 前記充放電制御手段は、前記第1及び第2の二次電池の温度の上昇に応じて前記直線を変化させることをさらに特徴とする請求項1又は2に記載の二次電池制御装置。   3. The secondary battery control device according to claim 1, wherein the charge / discharge control unit further changes the straight line in accordance with an increase in temperature of the first and second secondary batteries. 前記充放電制御手段は、予め取得した低昇温効果領域に応じて前記直線を変化させることをさらに特徴とする請求項1乃至3のいずれか1項に記載の二次電池制御装置。   4. The secondary battery control device according to claim 1, wherein the charge / discharge control unit changes the straight line in accordance with a low temperature increase effect region acquired in advance. 5. 前記充放電制御手段は、前記第1又は第2の二次電池から他方の二次電池へ電力を供給するように前記充放電手段を制御することをさらに特徴とする請求項1乃至4のいずれか1項に記載の二次電池制御装置。   The charge / discharge control means further controls the charge / discharge means to supply power from the first or second secondary battery to the other secondary battery. A secondary battery control device according to claim 1. 前記充放電制御手段は、前記他方の二次電池へ電力を供給した場合に前記第1及び第2の二次電池の出力可能なSOC領域を変更し、前記変更したSOC領域に基づいて前記直線を変化させることをさらに特徴とする請求項5に記載の二次電池制御装置。   The charge / discharge control means changes the SOC region that can be output from the first and second secondary batteries when power is supplied to the other secondary battery, and the straight line based on the changed SOC region. The secondary battery control device according to claim 5, further characterized in that:
JP2013036943A 2013-02-27 2013-02-27 Secondary battery control device Active JP6026316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013036943A JP6026316B2 (en) 2013-02-27 2013-02-27 Secondary battery control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013036943A JP6026316B2 (en) 2013-02-27 2013-02-27 Secondary battery control device

Publications (2)

Publication Number Publication Date
JP2014165106A JP2014165106A (en) 2014-09-08
JP6026316B2 true JP6026316B2 (en) 2016-11-16

Family

ID=51615523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013036943A Active JP6026316B2 (en) 2013-02-27 2013-02-27 Secondary battery control device

Country Status (1)

Country Link
JP (1) JP6026316B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4984754B2 (en) * 2006-09-04 2012-07-25 トヨタ自動車株式会社 Power supply system and vehicle equipped with the same
US8760111B2 (en) * 2011-02-03 2014-06-24 Toyota Jidosha Kabushiki Kaisha Secondary battery output power controller

Also Published As

Publication number Publication date
JP2014165106A (en) 2014-09-08

Similar Documents

Publication Publication Date Title
US10647211B2 (en) Power consumption control device
WO2020259104A1 (en) Switch control device and method, motor controller, and battery pack heating control system
US11050287B2 (en) Battery pack system and its control method, management device
JP5225519B2 (en) Charge / discharge device and charge / discharge control method
JP5996151B1 (en) Battery system
US10770766B2 (en) Heating control device
JP5682433B2 (en) Charge control system
US9209637B2 (en) Battery control apparatus
JP5567040B2 (en) Secondary battery control device
JP6132788B2 (en) Storage battery system and storage battery SOC estimation method
JP6160355B2 (en) Storage battery self-heating device, storage battery self-heating method and power supply system
JP6516525B2 (en) Power storage system
JP5861063B2 (en) Power storage device and power supply system
JP2013200966A (en) Power storage cell temperature regulation circuit, and power storage device having the same
JP6723204B2 (en) Charge/discharge control device, charge/discharge control system, charge/discharge control method, and charge/discharge control program
JP6026316B2 (en) Secondary battery control device
WO2017101830A1 (en) Electric automobile, on-board charger thereof, and on-board charger control method
JP2019092321A (en) Charger and charging method
JP2013200979A (en) Control device
JP6977354B2 (en) Temperature controller and secondary battery system
JP2013021752A (en) Charging control circuit, charging control method, and portable terminal
JP2012249348A (en) Power supply control system
JP2016119167A (en) Power source system
JP6359948B2 (en) Power storage device and method for controlling power storage device
WO2017101831A1 (en) Electric automobile, on-board charger thereof, and on-board charger control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161012

R151 Written notification of patent or utility model registration

Ref document number: 6026316

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151