JP6025761B2 - Drive unit - Google Patents

Drive unit Download PDF

Info

Publication number
JP6025761B2
JP6025761B2 JP2014015732A JP2014015732A JP6025761B2 JP 6025761 B2 JP6025761 B2 JP 6025761B2 JP 2014015732 A JP2014015732 A JP 2014015732A JP 2014015732 A JP2014015732 A JP 2014015732A JP 6025761 B2 JP6025761 B2 JP 6025761B2
Authority
JP
Japan
Prior art keywords
gear member
teeth
intermediate gear
drive unit
electric motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014015732A
Other languages
Japanese (ja)
Other versions
JP2015140910A (en
Inventor
哲男 野田
哲男 野田
林太郎 長岡
林太郎 長岡
雅晴 小森
雅晴 小森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2014015732A priority Critical patent/JP6025761B2/en
Publication of JP2015140910A publication Critical patent/JP2015140910A/en
Application granted granted Critical
Publication of JP6025761B2 publication Critical patent/JP6025761B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Retarders (AREA)

Description

本発明は、波動歯車装置、遊星歯車装置等の歯車減速機に電動モータを組み込んだ駆動ユニットに関する。   The present invention relates to a drive unit in which an electric motor is incorporated in a gear reducer such as a wave gear device or a planetary gear device.

従来、減速機をアクチュエータに連結した駆動ユニットが様々な技術分野で用いられている。例えば、産業用ロボット、工作機械等の用途には、高い位置決め精度と大トルクが要求されるので、波動歯車装置、遊星歯車装置等の歯車減速機を電動モータの回転軸に連結した駆動ユニットが用いられている。   Conventionally, a drive unit in which a speed reducer is connected to an actuator is used in various technical fields. For example, applications such as industrial robots and machine tools require high positioning accuracy and large torque. Therefore, a drive unit in which a gear reducer such as a wave gear device or a planetary gear device is connected to a rotating shaft of an electric motor is provided. It is used.

近年、特に多関節ロボットは、より多様な作業に対応可能とするために、関節部に配置される駆動ユニットの小型軽量化が要求されている。そのため、歯車減速機の内部にアクチュエータを組み込むことにより、駆動ユニットを小型軽量化することが提案されている。   In recent years, in particular, multi-joint robots have been required to reduce the size and weight of drive units arranged at joints in order to be able to cope with more diverse work. Therefore, it has been proposed to reduce the size and weight of the drive unit by incorporating an actuator inside the gear reducer.

ここで、歯車減速機の内部にアクチュエータが組み込まれた駆動ユニットとして、例えば、特許文献1には、波動歯車装置のサーキュラスプライン(剛歯車)に噛み合うフレクスプライン(柔歯車)と該フレクスプラインの内側に設けた保持部材との間に、流体の圧力で半径方向に伸縮する複数の伸縮体を放射状に配置した構成が開示されている。また、特許文献2には、加熱により互いに向きが異なる楕円形状に変形する複数のリング状の形状記憶合金を軸方向に並べて配置した構成が開示されている。さらに、特許文献3には、円環状のロータの内側に、複数の圧力室を備えた弾性体を配置し、各圧力室に順次圧力を供給して弾性体とロータとの接触点を移動させることにより、弾性体の外周面に沿ってロータを摺動することなく転動運動させ、ロータを回転させる構成が開示されている。   Here, as a drive unit in which an actuator is incorporated in a gear reducer, for example, Patent Document 1 discloses a flex spline (flexible gear) that meshes with a circular spline (rigid gear) of a wave gear device and an inner side of the flex spline. A configuration is disclosed in which a plurality of elastic bodies that expand and contract in the radial direction by the pressure of a fluid are arranged radially between the holding member and the holding member. Patent Document 2 discloses a configuration in which a plurality of ring-shaped shape memory alloys that are deformed into elliptical shapes whose directions are different from each other by heating are arranged side by side in the axial direction. Further, in Patent Document 3, an elastic body having a plurality of pressure chambers is arranged inside an annular rotor, and pressure is sequentially supplied to each pressure chamber to move a contact point between the elastic body and the rotor. Thus, a configuration in which the rotor is rotated along the outer peripheral surface of the elastic body without causing the rotor to slide and the rotor is rotated is disclosed.

一方で、産業用ロボットなどの分野において、従来にも増して高い位置決め精度が要求されており、そのために、駆動ユニット等の動力伝達系が軸周りにねじれることに生じる位置ずれまたは振動を低減することが求められている。   On the other hand, in the field of industrial robots and the like, higher positioning accuracy is required than before, and as a result, the displacement or vibration caused when the power transmission system such as the drive unit is twisted around the axis is reduced. It is demanded.

特開平7−77158号公報Japanese Unexamined Patent Publication No. 7-77158 特開平7−98048号公報JP 7-98048 A 特開平10−78010号公報JP-A-10-78010

しかしながら、特許文献1、2の場合、カップ状のフレクスプラインが出力部を支持し、特許文献3の場合、剛性の低いアクチュエータである弾性体が出力部を支持しており、これら従来技術はいずれも、駆動部から出力部に至るまでに剛性の低い部分を有する。出力部に大きな負荷トルクがかかると、この剛性の低い部分でねじれが生じるので、構造上、高い回転精度で回転駆動することは難しい。   However, in Patent Documents 1 and 2, a cup-shaped flexspline supports the output unit, and in Patent Document 3, an elastic body that is a low-rigid actuator supports the output unit. Also, it has a low rigidity part from the drive part to the output part. When a large load torque is applied to the output portion, twisting occurs in this low rigidity portion, so that it is difficult to rotationally drive with high rotational accuracy due to the structure.

また、一般に、特許文献1〜3に記載されるような流体圧力や熱を用いるアクチュエータは、電動モータに比べて、位置や速度を制御するのがやや困難であり、制御性に劣る。したがって、従来技術では、制御面からも、高い回転精度での回転駆動が困難である。   In general, actuators using fluid pressure and heat as described in Patent Documents 1 to 3 are somewhat difficult to control the position and speed as compared with electric motors, and have poor controllability. Therefore, in the prior art, it is difficult to perform rotational driving with high rotational accuracy also from the control surface.

したがって、本発明の目的は、歯車減速機に電動モータを組み込むことで小型軽量化を図りながら良好な制御性を実現すると共に、ねじり剛性をより高くすることで更なる回転精度の向上を可能とする駆動ユニットを提供することにある。   Therefore, the object of the present invention is to realize an excellent controllability while reducing the size and weight by incorporating an electric motor into the gear reducer, and to further improve the rotation accuracy by increasing the torsional rigidity. It is in providing the drive unit which performs.

上述の目的を達成するために、本願発明に係る駆動ユニットは、
第1および第2の内歯が互いに離間して同軸に形成され、前記第1および第2の内歯が中心軸部を介して一体的に構成された第1の歯車部材と、
前記第1および第2の内歯の間に同軸に配置される第3の内歯が形成された第2の歯車部材と、
前記第1、第2および第3の内歯とそれぞれ周方向の一部で噛み合う第1、第2および第3の外歯が同軸に形成された円筒状の可撓性中間歯車部材と、
前記可撓性中間歯車部材の内側に回転可能に設けられ、前記可撓性中間歯車部材を内側から押圧するカム部が外周に設けられた円筒状のロータと、該ロータの内側に空隙を介して配置され、前記中心軸部に固定されたステータとを有する電動モータと、を備え、
前記第1の内歯と前記第1の外歯の歯数比と、前記第2の内歯と前記第2の外歯の歯数比とは、互いに等しく、かつ、それぞれ、前記第3の内歯と前記第3の外歯の歯数比とは異なり、
前記電動モータの回転駆動により、前記可撓性中間歯車部材の前記第1乃至第3の外歯がそれぞれ前記第1乃至第3の内歯と周方向の一部で噛み合う箇所を周方向に移動させるように、前記カム部の回転により前記可撓性中間歯車部材を半径方向に変形させ、前記第1の歯車部材と前記第2の歯車部材が相対回転する
ことを特徴とするものである。
In order to achieve the above object, the drive unit according to the present invention is:
A first gear member in which first and second inner teeth are formed coaxially apart from each other, and the first and second inner teeth are integrally configured via a central shaft portion;
A second gear member having a third inner tooth disposed coaxially between the first and second inner teeth;
A cylindrical flexible intermediate gear member formed coaxially with first, second and third external teeth which mesh with the first, second and third internal teeth in a part of the circumferential direction, respectively;
A cylindrical rotor that is rotatably provided inside the flexible intermediate gear member and that has a cam portion that presses the flexible intermediate gear member from the inside, and an inner side of the rotor via a gap. And an electric motor having a stator fixed to the central shaft portion,
The ratio of the number of teeth of the first internal teeth and the first external teeth and the ratio of the numbers of teeth of the second internal teeth and the second external teeth are equal to each other, and Unlike the tooth ratio of the inner teeth and the third outer teeth,
By the rotational drive of the electric motor, the first to third external teeth of the flexible intermediate gear member move in the circumferential direction where the first to third internal teeth respectively mesh with the first to third internal teeth in a part of the circumferential direction. As described above, the flexible intermediate gear member is deformed in the radial direction by the rotation of the cam portion, and the first gear member and the second gear member rotate relative to each other.

本発明によれば、歯車減速機に電動モータを組み込むことで小型軽量化を図りながら良好な制御性を実現すると共に、ねじり剛性をより高くすることで、更なる回転精度の向上が可能である。   According to the present invention, an electric motor is incorporated into the gear reducer to achieve good controllability while achieving a reduction in size and weight, and to improve torsional rigidity by further increasing torsional rigidity. .

本発明の実施の形態1を示す駆動ユニットをその軸線を通る平面で切断した断面図(a)と一部拡大図(b)である。They are sectional drawing (a) and a partially enlarged view (b) which cut | disconnected the drive unit which shows Embodiment 1 of this invention by the plane which passes along the axis line. 図1の駆動ユニットをA−A断面で切断した断面図(a)とB−B断面で切断した断面図(b)である。They are sectional drawing (a) which cut | disconnected the drive unit of FIG. 1 in the AA cross section, and sectional drawing (b) cut | disconnected by the BB cross section. 図1の駆動ユニットの動作を説明する説明図である。It is explanatory drawing explaining operation | movement of the drive unit of FIG. 図1の駆動ユニットのねじり剛性について説明する概念図である。It is a conceptual diagram explaining the torsional rigidity of the drive unit of FIG. 本発明の実施の形態2を示す駆動ユニットをその軸線を通る平面で切断した断面図(a)と一部拡大図(b)である。It is sectional drawing (a) and the partially expanded view (b) which cut | disconnected the drive unit which shows Embodiment 2 of this invention by the plane which passes along the axis line. 図5の駆動ユニットをA−A断面で切断した断面図(a)とB−B断面で切断した断面図(b)である。It is sectional drawing (a) which cut | disconnected the drive unit of FIG. 5 by the AA cross section, and sectional drawing (b) cut | disconnected by the BB cross section. 図5の駆動ユニットの動作を説明する説明図である。It is explanatory drawing explaining operation | movement of the drive unit of FIG. 図5の駆動ユニットのねじり剛性について説明する概念図である。It is a conceptual diagram explaining the torsional rigidity of the drive unit of FIG.

実施の形態1.
本発明の実施の形態1として、波動歯車装置に電動モータが組み込まれた駆動ユニット100の構成について、図1から図3を参照しながら説明する。
Embodiment 1 FIG.
As a first embodiment of the present invention, a configuration of a drive unit 100 in which an electric motor is incorporated in a wave gear device will be described with reference to FIGS.

図1(a)に示すように、駆動ユニット100は、ベース部材80と被回転体(図示しない)の間に設けられ、被回転体をベース部材80に対して相対的に回転させる装置であり、その回転は、回転軸線1を中心として行われる。   As shown in FIG. 1A, the drive unit 100 is a device that is provided between a base member 80 and a rotated body (not shown) and rotates the rotated body relative to the base member 80. The rotation is performed around the rotation axis 1.

駆動ユニット100は、主要な構成部品として、剛性のある材料で形成された第1の歯車部材10を有する。第1の歯車部材10は、回転軸線1の方向(以下、「軸方向」という。)に延びる中心軸部11を有し、該中心軸部11の軸方向の両端には、半径方向に拡がる第1および第2の円盤部12、15がそれぞれ連続して設けられている。第1の円盤部12は、その軸方向の外側端面(図1の右側)にベース部材80が締結ボルト等(図示しない)により固定されている。第1および第2の円盤部12、15は、互いに平行に配置され、それらの互いに対向する面には、第1および第2の円筒部13、16がそれぞれ連続して設けられている。第1および第2の円筒部13、16は、それらの中心線が回転軸線1と同軸となるように配置されており、それらの互いに対向する面が軸方向に離間するような軸方向の長さを備える。また、第1および第2の円筒部13、16は、第1および第2の円盤部12、15と略同じ外径をそれぞれ備えると共に、互いに略同じ内径を備え、各内周面には、第1および第2の内歯14、17が形成されている。   The drive unit 100 includes a first gear member 10 formed of a rigid material as a main component. The first gear member 10 has a central shaft portion 11 extending in the direction of the rotation axis 1 (hereinafter referred to as “axial direction”), and expands in the radial direction at both axial ends of the central shaft portion 11. The 1st and 2nd disk parts 12 and 15 are each provided continuously. As for the 1st disk part 12, the base member 80 is being fixed to the outer side end surface (right side of FIG. 1) of the axial direction with a fastening bolt etc. (not shown). The first and second disk portions 12 and 15 are arranged in parallel to each other, and first and second cylindrical portions 13 and 16 are continuously provided on the surfaces facing each other. The first and second cylindrical portions 13 and 16 are arranged such that their center lines are coaxial with the rotation axis 1, and the axial length is such that their mutually facing surfaces are separated in the axial direction. It is prepared. The first and second cylindrical portions 13 and 16 have substantially the same outer diameter as the first and second disk portions 12 and 15, respectively, and substantially the same inner diameter. First and second internal teeth 14 and 17 are formed.

第1の歯車部材10に設けられた上述の中心軸部11、第2の円盤部12、15および第1および第2の円筒部13、16は、互いに一体的に構成され、駆動ユニット100において一つの部品として機能する。なお、これら中心軸部11、第2の円盤部12、15および第1および第2の円筒部13、16は、いずれの部品同士を各々別個にまたは一体の部品として製造するかは任意である。別個に製造された場合、別個の隣接する部品同士は、例えば溶接、締結ボルト、焼き嵌めなどにより相互に連結してもよい。   The above-described central shaft portion 11, second disk portions 12 and 15, and first and second cylindrical portions 13 and 16 provided on the first gear member 10 are configured integrally with each other, and in the drive unit 100. It functions as one part. In addition, it is arbitrary whether these center axis | shaft part 11, the 2nd disk parts 12 and 15, and the 1st and 2nd cylindrical parts 13 and 16 are manufactured separately as one part, respectively. . When manufactured separately, separate adjacent parts may be connected to each other, for example, by welding, fastening bolts, shrink fitting, and the like.

駆動ユニット100は、第1の歯車部材10の第2の円盤部15と第2の円筒部16を隙間を介して取り囲むように配置された、剛性のある材料で形成された第2の歯車部材20を有する。駆動ユニット100において、第2の歯車部材20は、第1の歯車部材10と同軸に配置され、第1の歯車部材10に対して回転軸線1を中心として相対的に回転可能に設けられている。第2の歯車部材20は、軸方向の一端に半径方向に拡がる円盤部21を備え、該円盤部21の第1の歯車部材10側(図1の右側)の端面には、円筒部22が連続して設けられている。円筒部22は、円盤部21と略同じ外径を備えると共に、第1の歯車部材10の第2の円筒部16の外径よりもわずかに大きい内径を備える。また、円筒部22は、その端面に円環部23が連続して設けられている。円環部23は、その軸方向の長さが、第1の歯車部材10の第1および第2の円筒部13、16の対向する端面間の距離よりもわずかに短く、その中心線が回転軸線1と同軸であって、第1および第2の円筒部13、16の間に軸方向に隙間を介して配置される。また、円環部23は、円筒部22と略同じ外径を備えると共に、第1の歯車部材10の第1および第2の円筒部13、16と略同じ内径を備え、内周面に第3の内歯24が形成されている。   The drive unit 100 is a second gear member formed of a rigid material and disposed so as to surround the second disk portion 15 and the second cylindrical portion 16 of the first gear member 10 via a gap. 20 In the drive unit 100, the second gear member 20 is disposed coaxially with the first gear member 10, and is provided to be rotatable relative to the first gear member 10 about the rotation axis 1. . The second gear member 20 includes a disk portion 21 that extends in the radial direction at one end in the axial direction, and a cylindrical portion 22 is provided on the end surface of the disk portion 21 on the first gear member 10 side (right side in FIG. 1). It is provided continuously. The cylindrical portion 22 has substantially the same outer diameter as the disk portion 21 and an inner diameter slightly larger than the outer diameter of the second cylindrical portion 16 of the first gear member 10. Further, the cylindrical portion 22 is provided with an annular portion 23 continuously on the end face thereof. The annular portion 23 has a length in the axial direction slightly shorter than the distance between the opposing end surfaces of the first and second cylindrical portions 13 and 16 of the first gear member 10, and its center line rotates. It is coaxial with the axis 1 and is disposed between the first and second cylindrical portions 13 and 16 with a gap in the axial direction. The annular portion 23 has substantially the same outer diameter as the cylindrical portion 22, and has substantially the same inner diameter as the first and second cylindrical portions 13 and 16 of the first gear member 10, and the inner peripheral surface has a first inner diameter. Three internal teeth 24 are formed.

第2の歯車部材20に設けられた上述の円盤部21、円筒部22および円環部23は、互いに一体的に構成され、駆動ユニット100において一つの部品として機能する。なお、これら円盤部21、円筒部22および円環部23は、いずれの部品同士を各々別個にまたは一体の部品として製造するかは任意である。別個に製造された場合、隣接する部品同士は、例えば溶接、締結ボルト、焼き嵌め等により相互に連結してもよい。   The disk portion 21, the cylindrical portion 22, and the annular portion 23 provided in the second gear member 20 are configured integrally with each other and function as one component in the drive unit 100. In addition, it is arbitrary whether these disk parts 21, the cylindrical part 22, and the annular part 23 are manufactured separately or as an integral part. When manufactured separately, adjacent parts may be connected to each other, for example, by welding, fastening bolts, shrink fitting, or the like.

また、本実施の形態1の場合、被回転体は、第2の歯車部材20の円盤部21に締結ボルト等(図示しない)により固定される。さらに、第2の歯車部材20を第1の歯車部材10に対して相対回転可能に支持するため、互いに対向する第2の歯車部材20の円筒部22と第1の歯車部材10の第2の円筒部16との間に、例えばクロスローラ軸受(図示しない)を設けてもよい。   In the case of the first embodiment, the rotated body is fixed to the disk portion 21 of the second gear member 20 with fastening bolts or the like (not shown). Furthermore, in order to support the second gear member 20 so as to be relatively rotatable with respect to the first gear member 10, the cylindrical portion 22 of the second gear member 20 and the second gear member 10 of the first gear member 10 facing each other are supported. For example, a cross roller bearing (not shown) may be provided between the cylindrical portion 16.

駆動ユニット100は、上述の第1の歯車部材10と第2の歯車部材20によって囲まれた円環状の空間を有する。この空間内には、楕円形状に弾性変形可能な可撓性のある薄肉円筒状の中間歯車部材30が設けられると共に、さらにその中間歯車部材30の内側に駆動部70が設けられている。中間歯車部材30は、その軸方向の長さが、第1の歯車部材10の第1および第2の円盤部12、15の対向する端面間の距離よりもわずかに短く、その中心線が回転軸線1と同軸であって、第1および第2の円盤部12、15の間に軸方向に隙間を介して配置される。また、中間歯車部材30は、その外周面に第1、第2および第3の外歯32、34、36が軸方向に順に形成されており、非変形(図示しない円筒形状)時には、第1の歯車部材10と第2の歯車部材20の内径よりも小さな外径を備える。   The drive unit 100 has an annular space surrounded by the first gear member 10 and the second gear member 20 described above. In this space, a flexible thin cylindrical intermediate gear member 30 that can be elastically deformed into an elliptical shape is provided, and a drive unit 70 is further provided inside the intermediate gear member 30. The intermediate gear member 30 has an axial length slightly shorter than the distance between the opposing end surfaces of the first and second disk portions 12 and 15 of the first gear member 10, and its center line rotates. It is coaxial with the axis 1 and is disposed between the first and second disk portions 12 and 15 with a gap in the axial direction. The intermediate gear member 30 has first, second, and third external teeth 32, 34, 36 formed on the outer peripheral surface thereof in this order in the axial direction. When the intermediate gear member 30 is not deformed (cylindrical shape not shown), The gear member 10 and the second gear member 20 have an outer diameter smaller than the inner diameter.

図1(b)に示すように、第1の歯車部材10の第1および第2の内歯14、17は、軸方向に互いに離間しており、これら第1および第2の内歯14、17の間に、第2の歯車部材20の第3の内歯24が同軸状態で配置されている。後述するように中間歯車部材30が楕円形状に変形された状態では、中間歯車部材30の第1および第2の外歯32、34は、第1の歯車部材10の第1および第2の内歯14、17とそれぞれ周方向の一部で噛み合うと共に、中間歯車部材30の第3の外歯36は、第2の歯車部材20の第3の内歯24と周方向の一部で噛み合うように構成されている。すなわち、中間歯車部材30は、その軸方向の両端で第1の歯車部材10と噛み合い、その軸方向の中央で第2の歯車部材20と噛み合う構成を備えている。   As shown in FIG. 1 (b), the first and second internal teeth 14, 17 of the first gear member 10 are axially spaced from each other, and the first and second internal teeth 14, 17, the third internal teeth 24 of the second gear member 20 are arranged coaxially. As will be described later, when the intermediate gear member 30 is deformed into an elliptical shape, the first and second external teeth 32 and 34 of the intermediate gear member 30 are connected to the first and second inner teeth of the first gear member 10. The third outer teeth 36 of the intermediate gear member 30 mesh with the third inner teeth 24 of the second gear member 20 at a part in the circumferential direction while meshing with the teeth 14 and 17 at a part in the circumferential direction. It is configured. In other words, the intermediate gear member 30 is configured to mesh with the first gear member 10 at both ends in the axial direction and mesh with the second gear member 20 at the center in the axial direction.

これらの内歯14、17、24および外歯32、34、36は、第1の内歯14と第1の外歯32の歯数比と、第2の内歯17と第2の外歯34の歯数比とは、互いに等しく、かつ、それぞれ、第3の内歯24と第3の外歯36の歯数比とは異なるように設けられている。また、通常、互いに噛み合う内歯と外歯に歯数差を設ける場合、外歯に対して内歯の歯数を2n(nは正の整数)だけ少なくする。前述の歯車比の条件を満たす例として、本実施の形態1では、第1および第2の内歯14、17と第1乃至第3の外歯32、34、36の歯数を100、第3の内歯24の歯数を102とする。   The internal teeth 14, 17, 24 and the external teeth 32, 34, 36 are the ratio of the number of the first internal teeth 14 and the first external teeth 32, and the second internal teeth 17 and the second external teeth. The tooth number ratio of 34 is equal to each other and is different from the tooth number ratio of the third inner teeth 24 and the third outer teeth 36. Usually, when a difference in the number of teeth is provided between the internal teeth and external teeth that mesh with each other, the number of internal teeth is reduced by 2n (n is a positive integer) with respect to the external teeth. As an example of satisfying the above-described gear ratio, in the first embodiment, the number of teeth of the first and second inner teeth 14 and 17 and the first to third outer teeth 32, 34, and 36 is set to 100. The number of teeth of the three internal teeth 24 is 102.

図2に示すように、駆動部70は、中間歯車部材30の内側に楕円軸受40を有する。楕円軸受40は、その外形が楕円形状の軸受であり、外輪41、転動体42および内輪43で主に構成されている。外輪41は、その外周面で中間歯車部材30の内側に嵌合し、中間歯車部材30と共に楕円形状に変形可能な可撓性のある材料で形成されている。内輪43は、その内周面で後述する楕円カム部50の外側に嵌合可能に構成されている。また、外輪41と内輪43の間には、外輪41と内輪43が互いに相対回転可能とするため、球状の転動体42が複数設けられている。なお、転動体42は、球状の形状に限らず、例えば円筒状のものであってもよい。また、図1では、転動体42が軸方向に3列並んで設けられているが、これに限るものではない。   As shown in FIG. 2, the drive unit 70 has an elliptical bearing 40 inside the intermediate gear member 30. The oval bearing 40 is an oval bearing, and is mainly composed of an outer ring 41, rolling elements 42 and an inner ring 43. The outer ring 41 is formed of a flexible material that fits inside the intermediate gear member 30 on the outer peripheral surface thereof and can be deformed into an elliptical shape together with the intermediate gear member 30. The inner ring 43 is configured to be fitted to the outside of an elliptical cam portion 50 described later on the inner peripheral surface thereof. A plurality of spherical rolling elements 42 are provided between the outer ring 41 and the inner ring 43 so that the outer ring 41 and the inner ring 43 can rotate relative to each other. Note that the rolling element 42 is not limited to a spherical shape, and may be, for example, a cylindrical shape. In FIG. 1, the rolling elements 42 are provided in three rows in the axial direction, but the present invention is not limited to this.

また、駆動部70は、楕円軸受40の内側に楕円カム部50を有する。楕円カム部50は、楕円形状の外形を有する筒状のカムであり、楕円軸受40の内輪43に嵌合して配置される。楕円カム部50は、後述する電動モータ60のロータ62の外側に嵌合可能な内周面を備える。   Further, the drive unit 70 has an elliptical cam portion 50 inside the elliptical bearing 40. The elliptical cam portion 50 is a cylindrical cam having an elliptical outer shape, and is fitted to the inner ring 43 of the elliptical bearing 40. The elliptic cam portion 50 includes an inner peripheral surface that can be fitted to the outside of the rotor 62 of the electric motor 60 described later.

さらに、駆動部70は、楕円カム部50の内側に電動モータ60を有する。電動モータ60は、楕円カム部50が外側に嵌合される円筒状のロータ62を有する。本実施の形態1において、ロータ62は、その内周面に周方向に等間隔に固定された複数の永久磁石66を有する。また、電動モータ60は、ロータ62の内側に空隙を介して配置されたステータ64を有する。ステータ64は、軸方向に積層された電磁鋼板からなる円環状の鉄心に巻線が施されたものであり、該鉄心は、第1の歯車部材10の中心軸部11に嵌合して固定されている。このステータ64に通電して回転磁界を発生させることで、鉄心の外周面に対向して配置された複数の永久磁石66に回転トルクが生じるので、ロータ62を回転させることができる。なお、図1に示すように、ロータ62をステータ64も対して回転可能に支持するために、ロータ62の両端部に軸受が配置されているが、軸受の配置する位置は、図示されたものに限らない。   Furthermore, the drive unit 70 includes an electric motor 60 inside the elliptical cam unit 50. The electric motor 60 has a cylindrical rotor 62 into which the elliptical cam portion 50 is fitted. In the first embodiment, the rotor 62 has a plurality of permanent magnets 66 fixed to the inner circumferential surface thereof at equal intervals in the circumferential direction. The electric motor 60 has a stator 64 disposed inside the rotor 62 via a gap. The stator 64 is formed by winding an annular iron core made of electromagnetic steel plates laminated in the axial direction, and the iron core is fitted and fixed to the central shaft portion 11 of the first gear member 10. Has been. By energizing the stator 64 to generate a rotating magnetic field, rotational torque is generated in the plurality of permanent magnets 66 arranged to face the outer peripheral surface of the iron core, so that the rotor 62 can be rotated. As shown in FIG. 1, in order to rotatably support the rotor 62 with respect to the stator 64, bearings are arranged at both ends of the rotor 62. The positions where the bearings are arranged are illustrated. Not limited to.

また、電動モータ60は、モータ回転数を検出するための、例えばアブソリュートタイプのエンコーダ等の回転センサ(図示しない)を備えており、駆動ユニット100の外部にあるモータドライバ(図示しない)に接続され、該モータドライバによって回転センサの出力信号に基づいて回転制御される。なお、電動モータ60として、一般的なサーボモータ、ステッピングモータなどが使用できる。また、電動モータ60には、ロータ62の回転を摩擦により停止させるためのブレーキ(図示しない)を設けてもよい。   Further, the electric motor 60 includes a rotation sensor (not shown) such as an absolute type encoder for detecting the motor rotation speed, and is connected to a motor driver (not shown) outside the drive unit 100. The rotation of the motor driver is controlled based on the output signal of the rotation sensor. As the electric motor 60, a general servo motor, stepping motor, or the like can be used. The electric motor 60 may be provided with a brake (not shown) for stopping the rotation of the rotor 62 by friction.

図2に示すように、第1の歯車部材10の中心軸部11には、駆動ユニット100の外部にあるモータドライバと電動モータ60間を配線するために、軸方向に延びる複数の穴部18が周方向に等間隔に形成されている。なお、複数の穴部18の代わりに、中心軸部11の中心に大径の貫通穴を一つ形成してもよい。これによれば、第2の歯車部材20の円盤部21にも中心に大径の貫通穴を設けることで、駆動ユニット100のベース部材80側からこの貫通穴を介して出力部側(ベース部材80と反対側)へ様々な配線、配管を通すことができる。   As shown in FIG. 2, the central shaft portion 11 of the first gear member 10 has a plurality of holes 18 extending in the axial direction so as to wire between the motor driver outside the drive unit 100 and the electric motor 60. Are formed at equal intervals in the circumferential direction. Instead of the plurality of holes 18, one large-diameter through hole may be formed at the center of the central shaft portion 11. According to this, by providing a large-diameter through hole in the center of the disk portion 21 of the second gear member 20 as well, the output unit side (base member) from the base member 80 side of the drive unit 100 through the through hole. Various wirings and pipes can be passed through to the opposite side to 80).

さらに、本実施の形態1のように、楕円カム部50を用いて中間歯車部材30を楕円形状に変形させる場合、内歯14、17、24と外歯32、34、36とが周方向の一部で噛み合う箇所の数は2であるが、この噛み合う箇所の数は2に限られない。例えば、略M角形形状(M=3、4、…)のカム部を用いて中間歯車部材30を略M角形形状に変形させ、上述の噛み合い箇所の数がMになるようにしてもよい。これによれば、内歯14、17、24と外歯32、34、36の噛み合い歯数を増やせるので、駆動ユニット100による伝達可能な最大トルクを増やすことができる。なお、上述の略M角形形状には、目で見てほぼ円形にしか見えないほどわずかな変形のものも含まれる。   Further, when the intermediate gear member 30 is deformed into an elliptical shape using the elliptical cam portion 50 as in the first embodiment, the inner teeth 14, 17, 24 and the outer teeth 32, 34, 36 are in the circumferential direction. The number of portions that mesh with each other is two, but the number of portions that mesh with each other is not limited to two. For example, the intermediate gear member 30 may be deformed into a substantially M-square shape using a cam portion having a substantially M-square shape (M = 3, 4,...) So that the number of meshing portions is M. According to this, since the number of meshing teeth of the internal teeth 14, 17, 24 and the external teeth 32, 34, 36 can be increased, the maximum torque that can be transmitted by the drive unit 100 can be increased. In addition, the above-described substantially M-gonal shape includes a slightly deformed shape that can be seen only in a substantially circular shape.

次に、図3を参照しながら、駆動ユニット100の動作について説明する。なお、図3は、図1のA−A断面で切断した駆動ユニット100の断面図を概略的に表している。第2の歯車部材20、中間歯車部材30および楕円カム部50の相対回転を説明するために、各部材20、30、50の所定の位相に目印としてそれぞれ矢印を付している。   Next, the operation of the drive unit 100 will be described with reference to FIG. FIG. 3 schematically shows a cross-sectional view of the drive unit 100 taken along the line AA in FIG. In order to explain the relative rotation of the second gear member 20, the intermediate gear member 30, and the elliptical cam portion 50, arrows are attached to the predetermined phases of the members 20, 30, 50 as marks.

まず、図3(a)は、ある時点での駆動ユニット100を示す。図3(a)に示すように、可撓性のある中間歯車部材30は、楕円カム部50によって楕円軸受40を介して上下方向に長く、左右方向に短くなるように変形している。このとき、内歯14、17、24と外歯32、34、36が上下位置でそれぞれ噛み合っている。   First, FIG. 3A shows the drive unit 100 at a certain time. As shown in FIG. 3A, the flexible intermediate gear member 30 is deformed by the elliptic cam portion 50 so as to be long in the vertical direction and short in the horizontal direction via the elliptical bearing 40. At this time, the inner teeth 14, 17, 24 and the outer teeth 32, 34, 36 are engaged with each other in the vertical position.

次に、図3(a)の状態から楕円カム部50がさらに回転すると、互いに歯数が同じ第1の歯車部材10の第1および第2の内歯14、17と中間歯車部材30の第3の外歯36とが噛み合っているので、中間歯車部材30自体は回転しない。楕円カム部50によって楕円形状に変形された中間歯車部材30は、楕円カム部50の回転に伴って、その楕円形状の長軸の向きが回転する。したがって、中間歯車部材30の外歯32、34、36と、第1および第2の歯車部材10、20の内歯14、17、24との噛み合う箇所が周方向に移動する。このとき、中間歯車部材30の第1および第2の外歯32、34は、第1の歯車部材10の第1および第2の内歯14、17と歯数が同じであるので、中間歯車部材30は、第1の歯車部材10に対して相対的に回転しない。一方、中間歯車部材30の第3の外歯36は、第2の歯車部材20の第3の内歯24と歯数が異なるので、中間歯車部材30は、第2の歯車部材20に対して相対的に回転する。したがって、第2の歯車部材20は、第1の歯車部材10に対して相対的に回転する。   Next, when the elliptical cam portion 50 further rotates from the state of FIG. 3A, the first and second internal teeth 14 and 17 of the first gear member 10 and the intermediate gear member 30 having the same number of teeth are used. Since the three external teeth 36 are engaged with each other, the intermediate gear member 30 itself does not rotate. The intermediate gear member 30 that has been deformed into an elliptical shape by the elliptical cam portion 50 rotates in the direction of the major axis of the elliptical shape as the elliptical cam portion 50 rotates. Therefore, the portions where the outer teeth 32, 34, 36 of the intermediate gear member 30 and the inner teeth 14, 17, 24 of the first and second gear members 10, 20 mesh with each other move in the circumferential direction. At this time, the first and second external teeth 32, 34 of the intermediate gear member 30 have the same number of teeth as the first and second internal teeth 14, 17 of the first gear member 10. The member 30 does not rotate relative to the first gear member 10. On the other hand, the third external teeth 36 of the intermediate gear member 30 have a different number of teeth from the third internal teeth 24 of the second gear member 20, so that the intermediate gear member 30 is different from the second gear member 20. Rotate relatively. Therefore, the second gear member 20 rotates relative to the first gear member 10.

例えば、図3(b)に示すように、楕円カム部50が時計回りに90°回転すると、該回転に応じて、中間歯車部材30が左右方向に長く、上下方向に短い楕円形状に変形し、内歯14、17、24と外歯32、34、36が左右位置で噛み合う。このとき、本実施の形態1の場合、第1の歯車部材10はベース部材80に固定され、第2の歯車部材20は中間歯車部材30よりも歯数が多いので、第2の歯車部材20は、その位相が(第2の歯車部材20の第3の内歯24と中間歯車部材30の第3の外歯36の歯数差)×90/360((102−100)×90/360=0.5歯分)だけ時計回りに回る。   For example, as shown in FIG. 3B, when the elliptical cam portion 50 is rotated 90 ° clockwise, the intermediate gear member 30 is deformed into an elliptical shape that is long in the left-right direction and short in the vertical direction according to the rotation. The inner teeth 14, 17, 24 and the outer teeth 32, 34, 36 mesh at the left and right positions. At this time, in the case of the first embodiment, the first gear member 10 is fixed to the base member 80, and the second gear member 20 has more teeth than the intermediate gear member 30, so the second gear member 20 Is the phase difference (the difference in the number of teeth between the third internal teeth 24 of the second gear member 20 and the third external teeth 36 of the intermediate gear member 30) × 90/360 ((102-100) × 90/360). Rotate clockwise by = 0.5 teeth).

さらに、図3(c)に示すように、楕円カム部50が時計回りに360°回転すると、図3(a)と同様に、中間歯車部材30が上下方向に長く、左右方向に短い楕円形状に変形し、内歯14、17、24と外歯32、34、36が上下位置で噛み合う。このとき、本実施の形態1の場合、第2の歯車部材20は、その位相がちょうど第2の歯車部材20と中間歯車部材30の歯数差(102−100=2歯分)だけ時計回りに回る。   Further, as shown in FIG. 3 (c), when the elliptical cam portion 50 is rotated 360 ° clockwise, the intermediate gear member 30 is long in the vertical direction and short in the horizontal direction, as in FIG. 3 (a). The inner teeth 14, 17, 24 and the outer teeth 32, 34, 36 mesh in the vertical position. At this time, in the case of the first embodiment, the second gear member 20 rotates clockwise by the number of teeth difference between the second gear member 20 and the intermediate gear member 30 (102-100 = 2 teeth). Turn around.

その後も同様に、楕円カム部50が1回転する毎に、第2の歯車部材20がベース部材80に対して第2の歯車部材20と中間歯車部材30の歯数差だけ相対的に回転する。したがって、本実施の形態1のように、第1の歯車部材10をベース部材80に固定し、第2の歯車部材20を出力部とした場合には、両歯車部材20、30の歯数差に応じて減速して回転させた第2の歯車部材20から出力を取り出すことができる。   Thereafter, similarly, every time the elliptical cam portion 50 makes one rotation, the second gear member 20 rotates relative to the base member 80 by a difference in the number of teeth between the second gear member 20 and the intermediate gear member 30. . Therefore, when the first gear member 10 is fixed to the base member 80 and the second gear member 20 is used as the output portion as in the first embodiment, the difference in the number of teeth between the gear members 20 and 30 is obtained. Accordingly, the output can be taken out from the second gear member 20 which has been decelerated and rotated according to the above.

ここで、出力部に作用する負荷トルクに対する駆動ユニット100のねじり剛性について、第2の歯車部材20を出力部とした場合を例として、図4を参照しながら説明する。なお、図4は、中間歯車部材30が負荷トルクによりねじれた状態を概念的に示した斜視図である。   Here, the torsional rigidity of the drive unit 100 with respect to the load torque acting on the output unit will be described with reference to FIG. 4 as an example where the second gear member 20 is used as the output unit. FIG. 4 is a perspective view conceptually showing a state in which the intermediate gear member 30 is twisted by the load torque.

図4(a)に示すように、楕円カム部50が加速する際、例えば、楕円カム部50が停止状態から回転状態に移行する際、第2の歯車部材20(第3の内歯24)は、楕円カム部50の回転方向と同方向(点線矢印を参照)に回転し始める。このとき、第2の歯車部材20には、回転方向と逆方向(実線矢印を参照)に負荷トルクが作用する。つまり、中間歯車部材30は軸方向の中央部に両端とは逆方向の力を受けるので、楕円カム部50の外形状に沿って楕円形状に変形されていた中間歯車部材30の第3の外歯36が変形し、軸方向に延びる中間歯車部材30は、第3の外歯36の部分が両端にある第1および第2の外歯32、34の部分に対して最もねじれた状態となる。このときの最大ねじれ角をθとする。なお、楕円カム部50も負荷トルクによってねじられるが、可撓性のある中間歯車部材30に比べて剛性のある楕円カム部50のねじれ角は非常に小さい。   As shown in FIG. 4A, when the elliptical cam portion 50 accelerates, for example, when the elliptical cam portion 50 shifts from a stopped state to a rotating state, the second gear member 20 (third internal teeth 24). Begins to rotate in the same direction as the rotational direction of the elliptical cam portion 50 (see the dotted arrow). At this time, a load torque acts on the second gear member 20 in the direction opposite to the rotation direction (see the solid line arrow). That is, since the intermediate gear member 30 receives a force in the direction opposite to both ends at the center in the axial direction, the third outside of the intermediate gear member 30 that has been deformed into an elliptical shape along the outer shape of the elliptical cam portion 50. The teeth 36 are deformed, and the intermediate gear member 30 extending in the axial direction is in a state where the third external teeth 36 are most twisted with respect to the first and second external teeth 32 and 34 at both ends. . The maximum twist angle at this time is defined as θ. The elliptic cam portion 50 is also twisted by the load torque, but the torsion angle of the rigid elliptic cam portion 50 is very small compared to the flexible intermediate gear member 30.

次に、図4(b)に示すように、中間歯車部材30’が第1の歯車部材10’と軸方向の一端(第1の外歯32’と第1の内歯14’)のみで噛み合うと共に、中間歯車部材30’が第2の歯車部材20’と軸方向の他端(第3の外歯36’と第3の内歯24’)のみで噛み合う構成とした駆動ユニット100’を比較例として検討する。この比較例の場合、第2の歯車部材20’には、回転方向と逆方向に負荷トルクが作用する。つまり、中間歯車部材30’が両端部で逆方向の力を受けるので、楕円形状に変形されていた中間歯車部材30’の第3の外歯36’が変形し、軸方向に延びる中間歯車部材30’は、一端にある第3の外歯36’の部分が他端にある第1の外歯32’の部分に対して最もねじれた状態となる。このときの最大ねじれ角をθ’とする。なお、薄肉カップ状のフレクスプラインを有する従来の駆動ユニットは、通常、フレクスプラインの一端がサーキュラスプラインに対して相対的に固定されており、この比較例と同様の構成を備えるものである。   Next, as shown in FIG. 4 (b), the intermediate gear member 30 ′ is composed only of the first gear member 10 ′ and one end in the axial direction (first outer teeth 32 ′ and first inner teeth 14 ′). The drive unit 100 ′ is configured such that the intermediate gear member 30 ′ meshes with the second gear member 20 ′ only at the other end in the axial direction (the third outer teeth 36 ′ and the third inner teeth 24 ′). Considered as a comparative example. In the case of this comparative example, a load torque acts on the second gear member 20 'in the direction opposite to the rotation direction. That is, since the intermediate gear member 30 ′ receives forces in opposite directions at both ends, the third external teeth 36 ′ of the intermediate gear member 30 ′ that has been deformed into an elliptical shape is deformed, and the intermediate gear member that extends in the axial direction 30 'is in a state where the portion of the third external tooth 36' at one end is most twisted with respect to the portion of the first external tooth 32 'at the other end. The maximum twist angle at this time is defined as θ ′. Note that a conventional drive unit having a thin cup-shaped flexspline usually has one end of the flexspline fixed relatively to the circular spline, and has the same configuration as this comparative example.

ここで、これら駆動ユニット100、100’のねじり剛性を比較検討する。一般に、棒材をねじる場合、棒材の一端を固定して他端をねじる場合に比べて、棒材の両端を固定して中央部をねじる場合の方がねじり難い。したがって、中間歯車部材30’の第3の外歯36’に対して他端にある第1の外歯32’のみが固定された駆動ユニット100’よりも、中間歯車部材30の第3の外歯36の両端にある第1および第2の外歯32、34が固定された駆動ユニット100の方が、中間歯車部材30(30’)がねじれ難い(θ<θ’)。したがって、本実施の形態1の駆動ユニット100の方がねじれ剛性が高く、負荷トルクによる回転精度への影響が少ない。   Here, the torsional rigidity of these drive units 100 and 100 'will be compared and examined. In general, when twisting a bar, it is more difficult to twist the center part by fixing both ends of the bar than when fixing one end of the bar and twisting the other end. Therefore, the third external gear 30 of the intermediate gear member 30 is more than the drive unit 100 ′ in which only the first external teeth 32 ′ at the other end are fixed to the third external teeth 36 ′ of the intermediate gear member 30 ′. In the drive unit 100 to which the first and second external teeth 32 and 34 at both ends of the tooth 36 are fixed, the intermediate gear member 30 (30 ′) is less likely to twist (θ <θ ′). Therefore, the drive unit 100 according to the first embodiment has higher torsional rigidity, and the load torque has less influence on the rotational accuracy.

したがって、本実施の形態1の場合、中間歯車部材30と第1の歯車部材10とが軸方向の両端で噛み合い、その中央部で中間歯車部材30と第2の歯車部材20とが噛み合う構成にすることで、中間歯車部材30がねじれ難く、高い回転精度でトルクを伝達することができる。   Therefore, in the case of the first embodiment, the intermediate gear member 30 and the first gear member 10 are engaged at both ends in the axial direction, and the intermediate gear member 30 and the second gear member 20 are engaged at the center thereof. By doing so, the intermediate gear member 30 is difficult to twist, and torque can be transmitted with high rotational accuracy.

以上により、実施の形態1の駆動ユニット100によれば、波動歯車装置に電動モータ60を組み込む構成とすることで小型軽量化を図りながら、ねじり剛性を高めることができるので、高い回転精度の位置決めが可能となる。   As described above, according to the drive unit 100 of the first embodiment, the torsional rigidity can be increased while reducing the size and weight by adopting the configuration in which the electric motor 60 is incorporated in the wave gear device, so that positioning with high rotational accuracy can be achieved. Is possible.

また、本実施の形態1の駆動ユニット100の場合、曲げ剛性も向上している。すなわち、出力部である第2の歯車部材20は、第2の歯車部材20の第3の内歯24、中間歯車部材30の第1乃至第3の外歯32、34、36、第1の歯車部材10の第1および第2の内歯14、17を介して、ベース部材80により支持されている。加えて、第2の歯車部材20は、第2の歯車部材20の第3の内歯24、中間歯車部材30の第1乃至第3の外歯32、34、36、電動モータ60、第1の歯車部材10の中心軸部11を介して、ベース部材80により支持されている。このため、従来技術のようにアクチュエータのみで出力部を支持する場合と比べて曲げ剛性を高くできる。また、中間歯車部材30を剛性のある第1の歯車部材10で支持しており、従来の薄肉カップ状の部品を用いて支持する場合と比べて曲げ剛性を高くできる。このように曲げ剛性が向上したことで、従来のように出力部の曲がり、傾き、偏心等が生じ難い。したがって、本実施の形態1の場合、上述の曲がり、傾き、偏心等に起因する振動やエネルギ損失を低減する効果も有する。   In the case of the drive unit 100 according to the first embodiment, the bending rigidity is also improved. That is, the second gear member 20 as the output portion includes the third internal teeth 24 of the second gear member 20, the first to third external teeth 32, 34, 36, and the first of the intermediate gear member 30. The gear member 10 is supported by the base member 80 via the first and second internal teeth 14 and 17. In addition, the second gear member 20 includes the third internal teeth 24 of the second gear member 20, the first to third external teeth 32, 34, and 36 of the intermediate gear member 30, the electric motor 60, and the first. The gear member 10 is supported by the base member 80 via the central shaft portion 11. For this reason, bending rigidity can be made high compared with the case where an output part is supported only with an actuator like a prior art. Further, the intermediate gear member 30 is supported by the first gear member 10 having rigidity, and the bending rigidity can be increased as compared with the case where the intermediate gear member 30 is supported using a conventional thin cup-shaped component. Since the bending rigidity is improved in this way, the output portion is unlikely to be bent, tilted, or eccentric as in the conventional case. Therefore, in the case of this Embodiment 1, it also has the effect of reducing the vibration and energy loss resulting from the above-mentioned bending, inclination, and eccentricity.

さらに、本実施の形態1の駆動ユニット100によれば、アクチュエータとして双方向に回転可能な電動モータ60を用いているので、バックドライバビリティを有する。さらに、本実施の形態1は、電動モータ60を組み込んでいるので、電動モータの回転軸に歯車減速機を連結した従来の駆動ユニットに比べて、特に軸長が短縮され、更なる小型化を実現できる。   Furthermore, according to the drive unit 100 of the first embodiment, since the electric motor 60 that can rotate bidirectionally is used as the actuator, it has back drivability. Further, since the electric motor 60 is incorporated in the first embodiment, the shaft length is particularly shortened and further miniaturization is achieved as compared with the conventional drive unit in which the gear reducer is connected to the rotating shaft of the electric motor. realizable.

実施の形態2.
実施の形態1では、波動歯車装置に電動モータを組み込んだ駆動ユニット100について説明したが、次に、実施の形態2として、遊星歯車装置に電動モータを組み込んだ駆動ユニット200の構成について、図5から図7を参照しながら説明する。なお、実施の形態1と同様の機能、作用を有する構成部材については、説明を省略し、図面には同じ符号を付す。
Embodiment 2. FIG.
In the first embodiment, the drive unit 100 in which the electric motor is incorporated in the wave gear device has been described. Next, as the second embodiment, the configuration of the drive unit 200 in which the electric motor is incorporated in the planetary gear device will be described with reference to FIG. Will be described with reference to FIG. In addition, description is abbreviate | omitted about the structural member which has the function and effect | action similar to Embodiment 1, and attaches | subjects the same code | symbol to drawing.

図5(a)に示すように、駆動ユニット200は、上述の駆動ユニット100と同様に、ベース部材80と被回転体(図示しない)の間に設けられ、被回転体をベース部材80に対して相対的に回転させる装置であり、その回転は、回転軸線1を中心として行われる。駆動ユニット200は、主要な構成部品として、剛性のある材料で形成された第1および第2の歯車部材10、20を有し、これら第1および第2の歯車部材10、20は、駆動ユニット100と同様の構成をそれぞれ備える。   As shown in FIG. 5A, the drive unit 200 is provided between the base member 80 and the rotated body (not shown), like the above-described drive unit 100, and the rotated body is attached to the base member 80. The rotation is performed around the rotation axis 1. The drive unit 200 includes first and second gear members 10 and 20 formed of a rigid material as main components, and the first and second gear members 10 and 20 include the drive unit. The same configuration as 100 is provided.

駆動ユニット200は、上述の第1の歯車部材10と第2の歯車部材20によって囲まれた円環状の空間を有する。この空間内には、剛性のある円筒状の中間歯車部材130が設けられると共に、さらにその中間歯車部材130の内側に駆動部170が設けられている。中間歯車部材130は、その軸方向の長さが、第1の歯車部材10の第1および第2の円盤部12、15の対向する端面間の距離よりもわずかに短く、その中心線が回転軸線1と同軸であって、第1および第2の円盤部12、15の間に軸方向に隙間を介して配置される。また、中間歯車部材130は、その外周面に第1、第2および第3の外歯132、134、136が軸方向に順に形成されており、第1の歯車部材10と第2の歯車部材20の内径よりも小さな外径を備える。   The drive unit 200 has an annular space surrounded by the first gear member 10 and the second gear member 20 described above. In this space, a rigid cylindrical intermediate gear member 130 is provided, and a drive unit 170 is further provided inside the intermediate gear member 130. The intermediate gear member 130 has an axial length slightly shorter than the distance between the opposing end faces of the first and second disk portions 12 and 15 of the first gear member 10, and its center line rotates. It is coaxial with the axis 1 and is disposed between the first and second disk portions 12 and 15 with a gap in the axial direction. The intermediate gear member 130 has first, second, and third external teeth 132, 134, 136 formed on the outer peripheral surface thereof in this order in the axial direction, and the first gear member 10 and the second gear member. The outer diameter is smaller than the inner diameter of 20.

図5(b)に示すように、第1の歯車部材10の第1および第2の内歯14、17は、軸方向に互いに離間しており、これら第1および第2の内歯14、17の間に、第2の歯車部材20の第3の内歯24が同軸状態で配置されている。後述するように中間歯車部材130が偏心した状態では、中間歯車部材130の第1および第2の外歯32、34は、第1の歯車部材10の第1および第2の内歯14、17とそれぞれ周方向の一部で噛み合うと共に、中間歯車部材130の第3の外歯136は、第2の歯車部材20の第3の内歯24と周方向の一部で噛み合うように構成されている。すなわち、中間歯車部材130は、その軸方向の両端で第1の歯車部材10と噛み合い、その軸方向の中央で第2の歯車部材20と噛み合う構成を備えている。   As shown in FIG. 5 (b), the first and second internal teeth 14, 17 of the first gear member 10 are axially spaced from each other, and the first and second internal teeth 14, 17, the third internal teeth 24 of the second gear member 20 are arranged coaxially. As will be described later, when the intermediate gear member 130 is eccentric, the first and second external teeth 32 and 34 of the intermediate gear member 130 are the first and second internal teeth 14 and 17 of the first gear member 10. And the third outer teeth 136 of the intermediate gear member 130 are configured to mesh with the third inner teeth 24 of the second gear member 20 in a part of the circumferential direction. Yes. In other words, the intermediate gear member 130 is configured to mesh with the first gear member 10 at both ends in the axial direction and mesh with the second gear member 20 at the center in the axial direction.

これらの内歯14、17、24および外歯132、134、136は、第1の内歯14と第1の外歯132の歯数比と、第2の内歯17と第2の外歯134の歯数比とは、互いに等しく、かつ、それぞれ、第3の内歯24と第3の外歯136の歯数比とは異なるように設けられている。また、通常、互いに噛み合う内歯と外歯に歯数差を設ける場合、外歯に対して内歯の歯数を2n(nは正の整数)だけ少なくする。前述の歯車比の条件を満たす例として、本実施の形態1では、第1および第2の内歯14、17と第1乃至第3の外歯132、134、136の歯数を100、第3の内歯24の歯数を102とする。   These internal teeth 14, 17, 24 and external teeth 132, 134, 136 are the number ratio of the first internal teeth 14 and the first external teeth 132, and the second internal teeth 17 and the second external teeth. The tooth number ratio of 134 is equal to each other and is different from the tooth number ratio of the third inner teeth 24 and the third outer teeth 136, respectively. Usually, when a difference in the number of teeth is provided between the internal teeth and external teeth that mesh with each other, the number of internal teeth is reduced by 2n (n is a positive integer) with respect to the external teeth. As an example of satisfying the above-mentioned gear ratio, in the first embodiment, the number of teeth of the first and second internal teeth 14 and 17 and the first to third external teeth 132, 134, and 136 is 100, The number of teeth of the three internal teeth 24 is 102.

図6に示すように、駆動部170は、中間歯車部材130の内側に軸受140を有する。軸受140は、その外形が円形状の一般的な軸受であり、外輪141、転動体142および内輪143で主に構成されている。本実施の形態2の場合、外輪141は、その外周面で中間歯車部材130の内側に嵌合する剛性のある材料で形成されている。内輪143は、その内周面で後述する偏心カム部150の外側に嵌合可能に構成されている。また、外輪141と内輪143の間には、外輪141と内輪143が互いに相対回転可能とするため、球状の転動体142が複数設けられている。なお、転動体142は、球状の形状に限らず、例えば円筒状のものであってもよい。また、図5では、転動体142が軸方向に3列並んで設けられているが、これに限るものではない。   As shown in FIG. 6, the drive unit 170 has a bearing 140 inside the intermediate gear member 130. The bearing 140 is a general bearing having a circular outer shape, and mainly includes an outer ring 141, rolling elements 142, and an inner ring 143. In the case of the second embodiment, the outer ring 141 is formed of a rigid material that fits inside the intermediate gear member 130 on the outer peripheral surface thereof. The inner ring 143 is configured to be fitted to the outside of an eccentric cam portion 150 described later on the inner peripheral surface thereof. A plurality of spherical rolling elements 142 are provided between the outer ring 141 and the inner ring 143 so that the outer ring 141 and the inner ring 143 can rotate relative to each other. In addition, the rolling element 142 is not limited to a spherical shape, and may be, for example, a cylindrical shape. In FIG. 5, the rolling elements 142 are arranged in three rows in the axial direction, but the present invention is not limited to this.

また、駆動部170は、軸受140の内側に偏心カム部150を有する。偏心カム部150は、回転軸線1から偏心した円形状の外形を有する筒状のカムであり、軸受140の内輪143に嵌合して配置される。また、偏心カム部150は、回転軸線1を中心とする円形状の貫通穴を有し、該貫通穴に後述する電動モータ60のロータ62の外側に嵌合可能な内周面を備える。   In addition, the drive unit 170 has an eccentric cam portion 150 inside the bearing 140. The eccentric cam portion 150 is a cylindrical cam having a circular outer shape that is eccentric from the rotation axis 1, and is arranged to be fitted to the inner ring 143 of the bearing 140. Further, the eccentric cam portion 150 has a circular through hole centering on the rotation axis 1, and an inner peripheral surface that can be fitted to the outside of the rotor 62 of the electric motor 60 described later in the through hole.

さらに、駆動部170は、偏心カム部150の内側に電動モータ60を有する。図6に示すように、駆動ユニット200に設けられた電動モータ60も、上述の駆動ユニット100と同様の構成を備えるが、本実施の形態2の場合、ロータ62の外周に偏心カム部150が固定されている。   Furthermore, the drive unit 170 has the electric motor 60 inside the eccentric cam unit 150. As shown in FIG. 6, the electric motor 60 provided in the drive unit 200 also has the same configuration as that of the drive unit 100 described above, but in the case of the second embodiment, an eccentric cam portion 150 is provided on the outer periphery of the rotor 62. It is fixed.

次に、図7を参照しながら、駆動ユニット200の動作について説明する。なお、図7は、図5のA−A断面で切断した駆動ユニット200の断面図を概略的に表している。第2の歯車部材20、中間歯車部材130および偏心カム部150の相対回転を説明するために、各部材20、130、150の所定の位相に目印としてそれぞれ矢印を付している。   Next, the operation of the drive unit 200 will be described with reference to FIG. FIG. 7 schematically shows a cross-sectional view of the drive unit 200 taken along the line AA of FIG. In order to explain the relative rotation of the second gear member 20, the intermediate gear member 130, and the eccentric cam portion 150, arrows are attached to the predetermined phases of the members 20, 130, and 150 as marks.

まず、図7(a)は、ある時点での駆動ユニット200を示す。図7(a)に示すように、中間歯車部材130は、偏心カム部150によって軸受140を介して上方に偏心されている。このとき、内歯14、17、24と外歯132、134、136が上位置でそれぞれ噛み合っている。   First, FIG. 7A shows the drive unit 200 at a certain point in time. As shown in FIG. 7A, the intermediate gear member 130 is eccentrically shifted upward via the bearing 140 by the eccentric cam portion 150. At this time, the inner teeth 14, 17, 24 and the outer teeth 132, 134, 136 are engaged with each other at the upper position.

次に、図7(a)の状態から偏心カム部150がさらに回転すると、互いに歯数が同じ第1の歯車部材10の第1および第2の内歯14、17と中間歯車部材130の第3の外歯136とが噛み合っているので、中間歯車部材130はその中心に対して回転(自転)しない。偏心カム部150によって偏心されている中間歯車部材130は、偏心カム部150の回転に伴って、その中心が揺動回転(公転)する。したがって、中間歯車部材130の外歯132、134、136と、第1および第2の歯車部材10、20の内歯14、17、24との噛み合う箇所が周方向に移動する。このとき、中間歯車部材130の第1および第2の外歯132、134は、第1の歯車部材10の第1および第2の内歯14、17と歯数が同じであるので、中間歯車部材130は、第1の歯車部材10に対して相対的に回転しない。一方、中間歯車部材130の第3の外歯136は、第2の歯車部材20の第3の内歯24と歯数が異なるので、中間歯車部材130は、第2の歯車部材20に対して相対的に回転する。したがって、第2の歯車部材20は、第1の歯車部材10に対して相対的に回転する。   Next, when the eccentric cam portion 150 further rotates from the state of FIG. 7A, the first and second internal teeth 14 and 17 of the first gear member 10 and the intermediate gear member 130 having the same number of teeth are used. Since the three external teeth 136 are engaged with each other, the intermediate gear member 130 does not rotate (spin) around its center. The center of the intermediate gear member 130 that is eccentric by the eccentric cam portion 150 rotates and revolves (revolves) as the eccentric cam portion 150 rotates. Therefore, the portions where the external teeth 132, 134, 136 of the intermediate gear member 130 mesh with the internal teeth 14, 17, 24 of the first and second gear members 10, 20 move in the circumferential direction. At this time, since the first and second external teeth 132, 134 of the intermediate gear member 130 have the same number of teeth as the first and second internal teeth 14, 17 of the first gear member 10, the intermediate gear The member 130 does not rotate relative to the first gear member 10. On the other hand, since the third external teeth 136 of the intermediate gear member 130 are different in the number of teeth from the third internal teeth 24 of the second gear member 20, the intermediate gear member 130 is different from the second gear member 20. Rotate relatively. Therefore, the second gear member 20 rotates relative to the first gear member 10.

例えば、図7(b)に示すように、偏心カム部150が時計回りに90°回転すると、該回転に応じて、中間歯車部材130が右方に偏心され、内歯14、17、24と外歯132、134、136が右位置で噛み合う。このとき、本実施の形態2の場合、第1の歯車部材10はベース部材80に固定され、第2の歯車部材20は中間歯車部材130よりも歯数が多いので、第2の歯車部材20は、その位相が(第2の歯車部材20の第3の内歯24と中間歯車部材130の第3の外歯136の歯数差)×90/360((102−100)×90/360=0.5歯分)だけ時計回りに回る。   For example, as shown in FIG. 7B, when the eccentric cam portion 150 rotates 90 ° clockwise, the intermediate gear member 130 is eccentric rightward according to the rotation, and the internal teeth 14, 17, 24 and The external teeth 132, 134, 136 mesh with each other at the right position. At this time, in the case of the second embodiment, the first gear member 10 is fixed to the base member 80, and the second gear member 20 has more teeth than the intermediate gear member 130. Is the phase difference (the difference in the number of teeth between the third internal teeth 24 of the second gear member 20 and the third external teeth 136 of the intermediate gear member 130) × 90/360 ((102-100) × 90/360). Rotate clockwise by = 0.5 teeth).

さらに、図7(c)に示すように、偏心カム部150が時計回りに360°回転すると、図7(a)と同様に、中間歯車部材130が上方に偏心され、内歯14、17、24と外歯132、134、136が上位置で噛み合う。このとき、本実施の形態2の場合、第2の歯車部材20は、その位相がちょうど第2の歯車部材20と中間歯車部材130の歯数差(102−100=2歯分)だけ時計回りに回る。   Further, as shown in FIG. 7 (c), when the eccentric cam portion 150 rotates 360 ° clockwise, the intermediate gear member 130 is eccentric upward as in FIG. 7 (a), and the internal teeth 14, 17, 24 and the external teeth 132, 134, 136 mesh with each other at the upper position. At this time, in the case of the second embodiment, the second gear member 20 rotates clockwise by the difference in the number of teeth between the second gear member 20 and the intermediate gear member 130 (102-100 = 2 teeth). Turn around.

その後も同様に、偏心カム部150が1回転する毎に、第2の歯車部材20がベース部材80に対して第2の歯車部材20と中間歯車部材130の歯数差だけ相対的に回転する。したがって、本実施の形態2のように、第1の歯車部材10をベース部材80に固定し、第2の歯車部材20を出力部とした場合には、両歯車部材20、30の歯数差に応じて減速して回転させた第2の歯車部材20から出力を取り出すことができる。   Thereafter, similarly, every time the eccentric cam portion 150 makes one rotation, the second gear member 20 rotates relative to the base member 80 by a difference in the number of teeth between the second gear member 20 and the intermediate gear member 130. . Therefore, when the first gear member 10 is fixed to the base member 80 and the second gear member 20 is used as the output portion as in the second embodiment, the difference in the number of teeth between the gear members 20 and 30 is obtained. Accordingly, the output can be taken out from the second gear member 20 which has been decelerated and rotated according to the above.

ここで、出力部に作用する負荷トルクに対する駆動ユニット200のねじり剛性について、第2の歯車部材20を出力部とした場合を例として、図8を参照しながら説明する。なお、図8は、中間歯車部材130が負荷トルクによりねじれた状態を概念的に示した斜視図である。   Here, the torsional rigidity of the drive unit 200 with respect to the load torque acting on the output unit will be described with reference to FIG. 8, taking the second gear member 20 as an output unit as an example. FIG. 8 is a perspective view conceptually showing a state in which the intermediate gear member 130 is twisted by the load torque.

図8(a)に示すように、偏心カム部150が加速する際、例えば、楕円カム部50が停止状態から回転状態に移行する際、第2の歯車部材20(第3の内歯24)は、偏心カム部150の回転方向と同方向(点線矢印を参照)に回転し始める。このとき、第2の歯車部材20と偏心カム部150には、回転方向と逆方向(実線矢印を参照)に負荷トルクが作用する。つまり、中間歯車部材130と偏心カム部150は軸方向の中央部に両端とは逆方向の力を受けるので、軸方向に延びる中間歯車部材130は、第3の外歯136の部分が両端にある第1および第2の外歯132、134の部分に対して最もねじれた状態となる。このときの中間歯車部材130の最大ねじれ角をθとする。   As shown in FIG. 8A, when the eccentric cam portion 150 accelerates, for example, when the elliptical cam portion 50 shifts from the stopped state to the rotating state, the second gear member 20 (third internal teeth 24). Starts to rotate in the same direction as the rotation direction of the eccentric cam portion 150 (see the dotted arrow). At this time, a load torque acts on the second gear member 20 and the eccentric cam portion 150 in the direction opposite to the rotational direction (see the solid line arrow). That is, since the intermediate gear member 130 and the eccentric cam portion 150 receive a force in the direction opposite to both ends at the central portion in the axial direction, the intermediate gear member 130 extending in the axial direction has the third external teeth 136 at both ends. The first and second external teeth 132 and 134 are most twisted. The maximum twist angle of the intermediate gear member 130 at this time is defined as θ.

次に、図8(b)に示すように、中間歯車部材130’が第1の歯車部材10’と軸方向の一端(第1の外歯132’と第1の内歯14’)のみで噛み合うと共に、中間歯車部材130’が第2の歯車部材20’と軸方向の他端(第3の外歯136’と第3の内歯24’)のみで噛み合う構成とした駆動ユニット200’を比較例として検討する。この比較例の場合、第2の歯車部材20’と偏心カム部150’には、回転方向と逆方向に負荷トルクが作用する。つまり、中間歯車部材130’と偏心カム部150’が両端部で逆方向の力を受けるので、軸方向に延びる中間歯車部材130’は、一端にある第3の外歯136’の部分が他端にある第1の外歯132’の部分に対して最もねじれた状態となる。このときの中間歯車部材130’の最大ねじれ角をθ’とする。   Next, as shown in FIG. 8 (b), the intermediate gear member 130 ′ is composed only of the first gear member 10 ′ and one end in the axial direction (first outer teeth 132 ′ and first inner teeth 14 ′). The drive unit 200 ′ is configured so that the intermediate gear member 130 ′ meshes with the second gear member 20 ′ only at the other end in the axial direction (the third outer teeth 136 ′ and the third inner teeth 24 ′). Considered as a comparative example. In the case of this comparative example, a load torque acts on the second gear member 20 'and the eccentric cam portion 150' in the direction opposite to the rotational direction. That is, since the intermediate gear member 130 ′ and the eccentric cam portion 150 ′ receive forces in opposite directions at both ends, the intermediate gear member 130 ′ extending in the axial direction has a third external tooth 136 ′ at one end. It will be in the state twisted most with respect to the part of 1st external tooth 132 'in an end. At this time, the maximum twist angle of the intermediate gear member 130 ′ is θ ′.

ここで、これら駆動ユニット200、200’のねじり剛性を比較検討する。一般に、棒材をねじる場合、棒材の一端を固定して他端をねじる場合に比べて、棒材の両端を固定して中央部をねじる場合の方がねじり難い。したがって、中間歯車部材130’の第3の外歯136’に対して他端にある第1の外歯132’のみが固定された駆動ユニット200’よりも、中間歯車部材130の第3の外歯136の両端にある第1および第2の外歯132、134が固定された駆動ユニット200の方が、中間歯車部材130(130’)がねじれ難い(θ<θ’)。したがって、本実施の形態2の駆動ユニット200の方がねじれ剛性が高く、負荷トルクによる回転精度への影響が少ない。   Here, the torsional rigidity of these drive units 200 and 200 'will be compared. In general, when twisting a bar, it is more difficult to twist the center part by fixing both ends of the bar than when fixing one end of the bar and twisting the other end. Therefore, the third external gear of the intermediate gear member 130 is more than the drive unit 200 ′ in which only the first external teeth 132 ′ at the other end are fixed to the third external teeth 136 ′ of the intermediate gear member 130 ′. In the drive unit 200 to which the first and second external teeth 132 and 134 at both ends of the tooth 136 are fixed, the intermediate gear member 130 (130 ′) is less likely to twist (θ <θ ′). Therefore, the drive unit 200 according to the second embodiment has higher torsional rigidity, and the load torque has less influence on the rotation accuracy.

したがって、本実施の形態2の場合、中間歯車部材130と第1の歯車部材10とが軸方向の両端で噛み合い、その中央部で中間歯車部材130と第2の歯車部材20とが噛み合う構成にすることで、中間歯車部材130がねじれ難く、高い回転精度でトルクを伝達することができる。   Therefore, in the case of the second embodiment, the intermediate gear member 130 and the first gear member 10 are engaged with each other at both axial ends, and the intermediate gear member 130 and the second gear member 20 are engaged with each other at the center. By doing so, the intermediate gear member 130 is difficult to twist and torque can be transmitted with high rotational accuracy.

以上により、実施の形態2の駆動ユニット200によれば、波動歯車装置に電動モータ60を組み込む構成とすることで小型軽量化を図りながら、ねじり剛性を高めることができるので、高い回転精度の位置決めが可能となる。   As described above, according to the drive unit 200 of the second embodiment, the torsional rigidity can be increased while reducing the size and weight by adopting the configuration in which the electric motor 60 is incorporated in the wave gear device, so that positioning with high rotational accuracy can be achieved. Is possible.

なお、本発明は例示された実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、種々の改良および設計上の変更が可能であることは言うまでもない。   It should be noted that the present invention is not limited to the illustrated embodiment, and it goes without saying that various improvements and design changes can be made without departing from the gist of the present invention.

例えば、本実施の形態1、2は、第1の歯車部材10をベース部材80に固定したが、第2の歯車部材20をベース部材80に固定して、第1の歯車部材10を出力部としてもよい。この場合も同様に、出力部の支持部のねじり剛性を高くできるので、高い回転精度の位置決めが可能となる。   For example, in the first and second embodiments, the first gear member 10 is fixed to the base member 80. However, the second gear member 20 is fixed to the base member 80, and the first gear member 10 is output to the output unit. It is good. In this case as well, since the torsional rigidity of the support portion of the output portion can be increased, positioning with high rotational accuracy is possible.

また、本実施の形態2は、遊星歯車装置として、いわゆる揺動内接式の遊星歯車装置(K-H-V型遊星歯車、ハイポサイクロイド減速機ともいう)を用いたが、これに限るものではなく、他のタイプの遊星歯車装置、例えば、円弧歯形とローラを用いたサイクロ減速機(登録商標)などを用いてもよい。サイクロ減速機(登録商標)を用いた場合、ローラによって滑り接触が転がり接触に変換されるので、機械的損失が非常に小さく、極めて高いギヤ効率が得られる。   In the second embodiment, a so-called oscillating inscribed planetary gear device (also referred to as a KHV planetary gear or a hypocycloid reducer) is used as the planetary gear device, but the present invention is not limited to this. A planetary gear device of this type, for example, a cyclo reducer (registered trademark) using an arc tooth profile and a roller may be used. When a cyclo reducer (registered trademark) is used, the sliding contact is converted into a rolling contact by the roller, so that mechanical loss is very small and extremely high gear efficiency is obtained.

以上のように、本発明によれば、波動歯車装置、遊星歯車装置等の歯車減速機に電動モータを組み込んだ駆動ユニットにおいて、更に回転精度を向上できるので、産業用ロボットや工作機械等の技術分野において好適に利用される可能性がある。   As described above, according to the present invention, in a drive unit in which an electric motor is incorporated in a gear reducer such as a wave gear device or a planetary gear device, the rotational accuracy can be further improved. It may be suitably used in the field.

10 第1の歯車部材、14 第1の内歯、17 第2の内歯、11 中心軸部、18 穴部、20 第2の歯車部材、24 第3の内歯、30 中間歯車部材(可撓性中間歯車部材)、32、132 第1の外歯、34、134 第2の外歯、36、136 第3の外歯、50 楕円カム部、60 電動モータ、62 ロータ、64 ステータ、66 永久磁石、130 中間歯車部材(剛性中間歯車部材)、150 偏心カム部 DESCRIPTION OF SYMBOLS 10 1st gear member, 14 1st internal tooth, 17 2nd internal tooth, 11 center axis | shaft part, 18 hole part, 20 2nd gear member, 24 3rd internal tooth, 30 intermediate | middle gear member (possible Flexible intermediate gear member), 32, 132 first external teeth, 34, 134 second external teeth, 36, 136 third external teeth, 50 elliptical cam portion, 60 electric motor, 62 rotor, 64 stator, 66 Permanent magnet, 130 intermediate gear member (rigid intermediate gear member), 150 eccentric cam

Claims (3)

第1および第2の内歯が軸方向に互いに離間して同軸に形成され、前記第1および第2の内歯が中心軸部を介して一体的に構成された第1の歯車部材と、
前記第1および第2の内歯の間に同軸に配置される第3の内歯が形成された第2の歯車部材と、
前記第1、第2および第3の内歯とそれぞれ周方向の一部で噛み合う第1、第2および第3の外歯が同軸に形成された円筒状の剛性中間歯車部材と、
前記剛性中間歯車部材の内側に回転可能に設けられ、前記中心軸部の中心から偏心した偏心カム部が外周に設けられた円筒状のロータと、該ロータの内側に空隙を介して配置され、前記中心軸部に固定されたステータとを有する電動モータと、を備え、
前記第1の内歯と前記第1の外歯の歯数比と、前記第2の内歯と前記第2の外歯の歯数比とは、互いに等しく、かつ、それぞれ、前記第3の内歯と前記第3の外歯の歯数比とは異なり、
前記電動モータの回転駆動により、前記剛性中間歯車部材の前記第1乃至第3の外歯がそれぞれ前記第1乃至第3の内歯と周方向の一部で噛み合う箇所を周方向に移動させるように、前記偏心カム部の偏心回転により前記剛性中間歯車部材を揺動回転させ、前記第1の歯車部材と前記第2の歯車部材が相対回転する
ことを特徴とする駆動ユニット。
A first gear member in which the first and second inner teeth are formed coaxially apart from each other in the axial direction, and the first and second inner teeth are integrally configured via a central shaft portion;
A second gear member having a third inner tooth disposed coaxially between the first and second inner teeth;
A cylindrical rigid intermediate gear member having first, second and third outer teeth coaxially formed to mesh with the first, second and third inner teeth respectively in a circumferential direction;
A cylindrical rotor that is rotatably provided inside the rigid intermediate gear member and has an eccentric cam portion that is eccentric from the center of the central shaft portion, and is disposed inside the rotor via a gap; An electric motor having a stator fixed to the central shaft portion,
The ratio of the number of teeth of the first internal teeth and the first external teeth and the ratio of the numbers of teeth of the second internal teeth and the second external teeth are equal to each other, and Unlike the tooth ratio of the inner teeth and the third outer teeth,
By rotating and driving the electric motor, the first to third outer teeth of the rigid intermediate gear member are moved in the circumferential direction at positions where the first to third inner teeth mesh with the first to third inner teeth in a part of the circumferential direction. Further, the rigid intermediate gear member is swung and rotated by the eccentric rotation of the eccentric cam portion, and the first gear member and the second gear member rotate relative to each other.
前記ステータは、前記中心軸部に嵌合され、軸方向に積層された電磁鋼板からなる円環状の鉄心を有し、
前記ロータは、その内周面に周方向に等間隔に配置され、前記鉄心の外周面に対向して設けられた複数の永久磁石を備える
ことを特徴とする請求項1に記載の駆動ユニット。
The stator has an annular iron core made of electromagnetic steel plates fitted into the central shaft portion and laminated in the axial direction,
2. The drive unit according to claim 1, wherein the rotor includes a plurality of permanent magnets arranged at equal intervals in the circumferential direction on the inner circumferential surface thereof and provided facing the outer circumferential surface of the iron core.
前記第1の歯車部材は、前記中心軸部に軸方向に延びる穴部が形成されており、
前記電動モータは、前記穴部を通した配線を介して前記ステータに電力が供給されることを特徴とする請求項1又は2に記載の駆動ユニット。
In the first gear member, a hole extending in the axial direction is formed in the central shaft portion,
3. The drive unit according to claim 1, wherein the electric motor is supplied with electric power to the stator via a wire passing through the hole.
JP2014015732A 2014-01-30 2014-01-30 Drive unit Active JP6025761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014015732A JP6025761B2 (en) 2014-01-30 2014-01-30 Drive unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014015732A JP6025761B2 (en) 2014-01-30 2014-01-30 Drive unit

Publications (2)

Publication Number Publication Date
JP2015140910A JP2015140910A (en) 2015-08-03
JP6025761B2 true JP6025761B2 (en) 2016-11-16

Family

ID=53771387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014015732A Active JP6025761B2 (en) 2014-01-30 2014-01-30 Drive unit

Country Status (1)

Country Link
JP (1) JP6025761B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101759171B1 (en) 2015-08-31 2017-07-19 (주)화담알앤알 Motor module with transmission
JP6699213B2 (en) * 2016-02-12 2020-05-27 日本電産株式会社 Reducer with electric motor
JP6713208B2 (en) 2016-05-17 2020-06-24 株式会社ハーモニック・ドライブ・システムズ Wave gear device with built-in motor
DE102016223969A1 (en) 2016-12-01 2018-03-29 Schaeffler Technologies AG & Co. KG Actuator for the variable adjustment of a compression ratio of an internal combustion engine
JP7182985B2 (en) * 2018-10-09 2022-12-05 住友重機械工業株式会社 Flexible mesh gearbox with built-in motor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002058180A (en) * 2000-08-07 2002-02-22 Denso Corp Rotating electric machine
JP3897567B2 (en) * 2001-10-29 2007-03-28 松下電器産業株式会社 Outer rotor motor
JP5697356B2 (en) * 2010-04-06 2015-04-08 キヤノン株式会社 Wave gear device and robot arm
JP5846435B2 (en) * 2012-02-26 2016-01-20 国立大学法人京都大学 Drive unit

Also Published As

Publication number Publication date
JP2015140910A (en) 2015-08-03

Similar Documents

Publication Publication Date Title
JP4787753B2 (en) Drive unit with reduction gear
JP5697356B2 (en) Wave gear device and robot arm
JP6025761B2 (en) Drive unit
JP7170389B2 (en) gear motor
KR101748177B1 (en) Wave gear device with composite roller bearing
US11041557B2 (en) Speed reducer with electric motor
JP6599220B2 (en) Reducer with electric motor
JP2015142454A (en) Actuator and multi-joint robot arm
JP6711535B2 (en) Wave gear reducer with electric motor
JP6601836B2 (en) Reducer with electric motor
WO2018008692A1 (en) Motor unit for wave gear speed reducer
TWI762624B (en) Rotary actuator and linear actuator
JP6563124B2 (en) Rotary actuator with wave gear reducer
US20180216715A1 (en) Joint apparatus
JP5801688B2 (en) Drive device
WO2017222012A1 (en) Strain wave gear speed reducer unit
KR20140095064A (en) Drive device
JP6427470B2 (en) Variable gap motor
JP2015074036A (en) Actuator, and robot joint structure provided with the same
EP2875578B1 (en) Improved torque rotary motor
JP2017025979A (en) Oscillation allowable coupling mechanism and inscribed planet gear device
US11111997B2 (en) Magnetically driven harmonic drive
JP7037619B2 (en) Strain wave gear reducer unit
JP7164791B2 (en) Motor unit for strain wave gear reducer
JP2022103575A (en) Speed reducer with motor, speed reduction device, robot, and movable body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161011

R150 Certificate of patent or registration of utility model

Ref document number: 6025761

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250