JP6025126B2 - Method and system for producing sterilizing water - Google Patents
Method and system for producing sterilizing water Download PDFInfo
- Publication number
- JP6025126B2 JP6025126B2 JP2014514977A JP2014514977A JP6025126B2 JP 6025126 B2 JP6025126 B2 JP 6025126B2 JP 2014514977 A JP2014514977 A JP 2014514977A JP 2014514977 A JP2014514977 A JP 2014514977A JP 6025126 B2 JP6025126 B2 JP 6025126B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- sodium hypochlorite
- producing
- acetic acid
- sterilizing water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 147
- 230000001954 sterilising effect Effects 0.000 title claims description 75
- 238000000034 method Methods 0.000 title description 12
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 105
- 239000005708 Sodium hypochlorite Substances 0.000 claims description 86
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 claims description 86
- 239000007864 aqueous solution Substances 0.000 claims description 77
- 238000004519 manufacturing process Methods 0.000 claims description 41
- 239000012895 dilution Substances 0.000 claims description 33
- 238000010790 dilution Methods 0.000 claims description 33
- 239000000243 solution Substances 0.000 claims description 25
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 18
- QWPPOHNGKGFGJK-UHFFFAOYSA-N hypochlorous acid Chemical compound ClO QWPPOHNGKGFGJK-UHFFFAOYSA-N 0.000 claims description 18
- 239000007853 buffer solution Substances 0.000 claims description 15
- 239000008351 acetate buffer Substances 0.000 claims description 10
- 239000000872 buffer Substances 0.000 claims description 10
- 238000007865 diluting Methods 0.000 claims description 9
- 238000012544 monitoring process Methods 0.000 claims description 6
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 claims description 4
- 239000001632 sodium acetate Substances 0.000 claims description 4
- 235000017281 sodium acetate Nutrition 0.000 claims description 4
- 239000011259 mixed solution Substances 0.000 claims description 3
- 230000005611 electricity Effects 0.000 claims 1
- 239000008223 sterile water Substances 0.000 claims 1
- 239000002253 acid Substances 0.000 description 20
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 18
- BHZOKUMUHVTPBX-UHFFFAOYSA-M sodium acetic acid acetate Chemical compound [Na+].CC(O)=O.CC([O-])=O BHZOKUMUHVTPBX-UHFFFAOYSA-M 0.000 description 12
- 239000007974 sodium acetate buffer Substances 0.000 description 11
- 239000011550 stock solution Substances 0.000 description 11
- 238000012545 processing Methods 0.000 description 9
- 238000003860 storage Methods 0.000 description 9
- 239000008399 tap water Substances 0.000 description 9
- 235000020679 tap water Nutrition 0.000 description 9
- 238000004659 sterilization and disinfection Methods 0.000 description 8
- 230000002378 acidificating effect Effects 0.000 description 6
- 230000000844 anti-bacterial effect Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000003002 pH adjusting agent Substances 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 238000005868 electrolysis reaction Methods 0.000 description 4
- 235000013305 food Nutrition 0.000 description 4
- 239000002349 well water Substances 0.000 description 4
- 235000020681 well water Nutrition 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000013535 sea water Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000003899 bactericide agent Substances 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- XTEGARKTQYYJKE-UHFFFAOYSA-N chloric acid Chemical compound OCl(=O)=O XTEGARKTQYYJKE-UHFFFAOYSA-N 0.000 description 1
- 229940005991 chloric acid Drugs 0.000 description 1
- QBWCMBCROVPCKQ-UHFFFAOYSA-N chlorous acid Chemical compound OCl=O QBWCMBCROVPCKQ-UHFFFAOYSA-N 0.000 description 1
- 229940077239 chlorous acid Drugs 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 150000004684 trihydrates Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/76—Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/66—Treatment of water, waste water, or sewage by neutralisation; pH adjustment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/05—Conductivity or salinity
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2303/00—Specific treatment goals
- C02F2303/04—Disinfection
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Description
本発明は、次亜塩素酸を有効成分とする殺菌水を、安全かつ簡便に製造することを可能とする殺菌水の製造方法及び製造システムに関する。 The present invention relates to a method and a system for producing sterilized water that enables safe and simple production of sterilized water containing hypochlorous acid as an active ingredient.
次亜塩素酸ナトリウムは、工業的には、塩水の電気分解により水酸化ナトリウムを製造するにあたり、陽極で発生する塩素ガスを陰極で生成する水酸化ナトリウム水溶液に吸収させることによりアルカリ性の水溶液として製造され、食品加工、農水産業、医療などの種々の分野で殺菌剤として使用されている。 Sodium hypochlorite is industrially manufactured as an alkaline aqueous solution by absorbing the chlorine gas generated at the anode into the sodium hydroxide aqueous solution generated at the cathode when producing sodium hydroxide by electrolysis of salt water. It is used as a bactericidal agent in various fields such as food processing, agriculture and fisheries, and medicine.
一方、次亜塩素酸ナトリウム水溶液のpHを弱酸性から中性領域に調整すると、水溶液中の次亜塩素酸濃度が高まり、殺菌力が強化される。しかしながら、pHが酸性領域では有害な塩素ガスが発生する。そこで、このような危険を防止しつつ、次亜塩素酸ナトリウム水溶液をpH3〜6に調整した殺菌水を製造するため、次亜塩素酸ナトリウム水溶液と酸とをそれぞれ十分に水で希釈してから混合することが提案され(特許文献1)、また、そのように殺菌水を製造する場合の次亜塩素酸ナトリウム希釈水溶液又は酸の希釈水溶液の濃度監視とこれらの添加量の調整のために、希釈に使用する水の電気伝導率(d3)と、次亜塩素酸ナトリウム希釈水溶液の電気伝導率(d1)と、酸の希釈水溶液の電気伝導率(d2)を測定し、(d1−d3)と(d2−d3)を求めることが提案されている(特許文献2)。この方法によれば、希釈水の電気伝導率のばらつきに影響されることなく、次亜塩素酸ナトリウム希釈水溶液と酸の希釈水溶液の濃度監視とこれらの添加量の調整を行うことができる。 On the other hand, when the pH of the sodium hypochlorite aqueous solution is adjusted from weakly acidic to a neutral region, the concentration of hypochlorous acid in the aqueous solution increases and the bactericidal power is enhanced. However, harmful chlorine gas is generated in an acidic pH range. Therefore, in order to produce sterilized water in which the sodium hypochlorite aqueous solution is adjusted to pH 3 to 6 while preventing such danger, the sodium hypochlorite aqueous solution and the acid are each sufficiently diluted with water. In order to monitor the concentration of dilute aqueous solution of sodium hypochlorite or dilute aqueous solution of acid and adjust the amount of these additives, it is proposed to mix (Patent Document 1). The electrical conductivity (d3) of the water used for dilution, the electrical conductivity (d1) of the diluted aqueous solution of sodium hypochlorite, and the electrical conductivity (d2) of the diluted aqueous solution of acid are measured, and (d1-d3) And (d2-d3) are proposed (Patent Document 2). According to this method, the concentration of the sodium hypochlorite diluted aqueous solution and the acid diluted aqueous solution can be monitored and the amount of addition can be adjusted without being affected by variations in the electrical conductivity of the diluted water.
また、NaCl水溶液を電気分解することにより次亜塩素酸水溶液を生成して義歯等を洗浄する装置において、電解する水溶液のpHを酢酸及び酢酸ナトリウムの緩衝液でpH2〜7に調整することが知られている(特許文献3)。 In addition, it is known that the pH of an aqueous solution to be electrolyzed is adjusted to pH 2 to 7 with a buffer solution of acetic acid and sodium acetate in an apparatus for cleaning a denture by producing an aqueous solution of hypochlorous acid by electrolyzing an aqueous NaCl solution. (Patent Document 3).
しかしながら、次亜塩素酸ナトリウム水溶液と酸とをそれぞれ水で希釈して混合する方法(特許文献1、2)では、混合前の次亜塩素酸ナトリウム水溶液や酸の原液が搬送時の事故で混合したり、それらの原液を水で希釈するときの取り違えなどの誤操作により原液同士が混ざり合ってしまうと、有毒な塩素ガスが発生するおそれがある。 However, in the method of diluting and mixing the sodium hypochlorite aqueous solution and the acid with water (Patent Documents 1 and 2), the sodium hypochlorite aqueous solution and the acid stock solution before mixing are mixed due to an accident during transportation. If the undiluted solutions are mixed due to misoperation such as mixing up when diluting these undiluted solutions with water, toxic chlorine gas may be generated.
また、次亜塩素酸ナトリウム希釈水溶液と酸の希釈水溶液の濃度監視とこれらの添加量の調整のために、これらの電気伝導率と希釈水の電気伝導率の合計3種の電気伝導率を測定してこれらの供給量を制御すること(特許文献2)は煩雑である。 Also, in order to monitor the concentration of dilute aqueous solution of sodium hypochlorite and dilute aqueous solution of acid and adjust the amount of these additives, we measured a total of three types of electrical conductivity: electrical conductivity of these and diluted water. And controlling these supply amounts (Patent Document 2) is complicated.
さらに、酸として酢酸を使用することは、塩酸などを使用する場合に比して人体に安全であるが、酢酸の電気伝導率は低いため、酢酸の水溶液の電気伝導率の測定によって、その水溶液中の酸の濃度を正確に知ることは困難である。農水産物の洗浄と殺菌には井戸水や海水も使用されるので、酢酸水溶液の調製に使用する希釈水が井戸水や海水の場合にはこの問題が顕著となる。さらに、希釈水として井戸水や海水を使用する場合には、共存イオンの存在によりpHが所期の値からずれてしまい、殺菌力を確実に得ることは難しい。 Furthermore, the use of acetic acid as an acid is safer to the human body than when hydrochloric acid or the like is used. However, since the electrical conductivity of acetic acid is low, the aqueous solution of It is difficult to know exactly the concentration of acid in it. Since well water and seawater are also used for cleaning and sterilizing agricultural and marine products, this problem becomes prominent when the dilution water used for preparing the acetic acid aqueous solution is well water or seawater. Furthermore, when well water or seawater is used as dilution water, the pH deviates from the expected value due to the presence of coexisting ions, and it is difficult to reliably obtain sterilizing power.
pH緩衝液中でNaClを電気分解することにより次亜塩素酸水溶液を生成する方法(特許文献3)によれば、塩素ガスの発生の危険を解消することができるが、この方法では、塩水の電気分解のための電極、電源等の設備が必要となるので、塩水の電気分解により水酸化ナトリウムを製造する際の副産物として安価に入手できる次亜塩素酸ナトリウムを利用する場合に比してコスト高となる。また、この方法では、200ppm以上の高濃度の次亜塩素酸水溶液を安価に多量に製造することは困難である。 According to the method of generating hypochlorous acid aqueous solution by electrolyzing NaCl in pH buffer solution (Patent Document 3), the risk of generation of chlorine gas can be eliminated. Since equipment such as electrodes and power supply for electrolysis is required, the cost is lower than when sodium hypochlorite, which is available as a by-product when producing sodium hydroxide by electrolysis of salt water, is used at low cost. Become high. Also, with this method, it is difficult to produce a large amount of a hypochlorous acid aqueous solution having a high concentration of 200 ppm or more at a low cost.
上述の次亜塩素酸ナトリウム希釈水溶液と酸の希釈水溶液とを混合する方法(特許文献2)において、酸の希釈水溶液に代えてpH調整剤を使用し、希釈に使用する水の電気伝導率と、次亜塩素酸ナトリウム希釈水溶液の電気伝導率と、pH調製剤の電気伝導率のそれぞれを測定することも考えられる。しかしながら、殺菌水の製造に使用する、希釈水と次亜塩素酸ナトリウム希釈水溶液とpH調製剤の3種について電気伝導率を測定し、さらにこれらの使用量も監視することは、依然として煩雑である。 In the method of mixing the dilute aqueous solution of sodium hypochlorite and the dilute aqueous solution of the acid described above (Patent Document 2), a pH adjuster is used instead of the dilute aqueous solution of acid, and the electrical conductivity of water used for dilution is It is also conceivable to measure each of the electric conductivity of the diluted sodium hypochlorite aqueous solution and the electric conductivity of the pH adjuster. However, it is still cumbersome to measure the electrical conductivity of three kinds of dilution water, dilute sodium hypochlorite aqueous solution and pH adjuster used for the production of sterilizing water, and to monitor the usage amount of these. .
以上のような従来技術に対し、本発明は、次亜塩素酸ナトリウムを用いて殺菌力の高い殺菌液を、簡便かつ安全な方法で製造できるようにすることを目的とする。 In contrast to the conventional techniques as described above, an object of the present invention is to enable a simple and safe method to produce a bactericidal solution having a high bactericidal power using sodium hypochlorite.
本発明は、上述の課題を解決するため、希釈水、次亜塩素酸ナトリウム及びpH4〜6.5の酢酸緩衝液から殺菌水を製造し、該殺菌水の電気伝導率を測定し、その電気伝導率に基づいて殺菌水の製造に係る次亜塩素酸ナトリウムの濃度を監視する殺菌水の製造方法を提供する。 In order to solve the above-mentioned problems, the present invention produces sterilized water from diluted water, sodium hypochlorite and an acetic acid buffer solution having a pH of 4 to 6.5, measures the electrical conductivity of the sterilized water, Provided is a method for producing sterilizing water that monitors the concentration of sodium hypochlorite related to the production of sterilizing water based on conductivity.
また、本発明は、希釈水、次亜塩素酸ナトリウム及びpH4〜6.5の酢酸緩衝液の混合液からなる殺菌水が製造される混合部、混合部で製造された殺菌水の電気伝導率を測定する電気伝導率測定手段、電気伝導率測定手段からの出力信号に基づいて殺菌水の製造に係る次亜塩素酸ナトリウムの濃度を監視するモニター手段を備えた殺菌水の製造システムを提供する。 In addition, the present invention provides a mixing part for producing sterilizing water composed of a mixture of diluted water, sodium hypochlorite and an acetic acid buffer having a pH of 4 to 6.5, and the electric conductivity of the sterilizing water produced in the mixing part. And a sterilizing water production system comprising a monitoring means for monitoring the concentration of sodium hypochlorite related to the production of sterilizing water based on an output signal from the electric conductivity measuring means .
本発明によれば、次亜塩素酸ナトリウム水溶液に酸を添加することなく、酢酸緩衝液を添加することにより次亜塩素酸ナトリウム水溶液中の次亜塩素酸濃度を高め、それにより殺菌力を強化することができる。この場合、事故又は誤操作により、次亜塩素酸ナトリウムが希釈水で充分に希釈されることなく酢酸緩衝液と混合されても、塩素ガスが発生する酸性領域にpHが低下する虞はない。したがって、殺菌水の製造上の安全性が確保される。 According to the present invention, without adding acid to the sodium hypochlorite aqueous solution, the concentration of hypochlorous acid in the sodium hypochlorite aqueous solution is increased by adding an acetic acid buffer, thereby enhancing the bactericidal power. can do. In this case, even if sodium hypochlorite is mixed with an acetic acid buffer without being sufficiently diluted with diluting water due to an accident or an erroneous operation, there is no possibility that the pH is lowered in an acidic region where chlorine gas is generated. Therefore, the safety in the manufacture of sterilizing water is ensured.
また、殺菌水の製造時に、塩素ガスが発生する酸性領域にpHが低下する虞がないことにより、市販の次亜塩素酸ナトリウム水溶液を予め水で希釈することなく、酢酸緩衝液と混合することができる。 In addition, when manufacturing sterilizing water, there is no risk of pH drop in the acidic region where chlorine gas is generated, so that a commercially available sodium hypochlorite aqueous solution can be mixed with an acetate buffer without diluting with water in advance. Can do.
さらに、殺菌水の濃度監視は、殺菌水の電気伝導率を測定すれば足る。したがって、ポーラログラフやpHメータを使用して次亜塩素酸ナトリウム水溶液中の次亜塩素酸濃度を測定する従前の方法に比して、極めて簡便、安価かつ安全に殺菌水の濃度監視と濃度調整を行うことが可能となる。 Furthermore, the concentration monitoring of the sterilizing water is sufficient if the electrical conductivity of the sterilizing water is measured. Therefore, compared to the previous method of measuring hypochlorous acid concentration in sodium hypochlorite aqueous solution using a polarograph or pH meter, the concentration monitoring and concentration adjustment of sterilizing water is extremely simple, inexpensive and safe. Can be done.
以下、本発明を詳細に説明する。なお、各図中、同一符号は、同一又は同等の構成要素を表している。 Hereinafter, the present invention will be described in detail. In addition, in each figure, the same code | symbol represents the same or equivalent component.
図1は、本発明の殺菌水の製造方法を実施する殺菌水の製造システムの一実施形態の概略構成図である。この殺菌水の製造システム100は、希釈水、次亜塩素酸ナトリウム及びpH4〜6.5の酢酸緩衝液の混合液からなる殺菌水の濃度監視を殺菌水の電気伝導率の測定に基づいて行うものであり、より具体的には、混合部6に、希釈水、次亜塩素酸ナトリウム水溶液及び酢酸緩衝液が供給され、混合部6で殺菌水が製造される。 FIG. 1 is a schematic configuration diagram of an embodiment of a sterilizing water manufacturing system for implementing the sterilizing water manufacturing method of the present invention. The sterilizing water production system 100 monitors the concentration of sterilizing water composed of a mixture of dilution water, sodium hypochlorite and an acetic acid buffer solution having a pH of 4 to 6.5 based on the measurement of electric conductivity of the sterilizing water. More specifically, dilution water, a sodium hypochlorite aqueous solution, and an acetic acid buffer solution are supplied to the mixing unit 6, and sterilizing water is produced in the mixing unit 6.
本システム100において、希釈水を混合部6に供給する希釈水供給路には、希釈水の供給口1、供給口1から供給される希釈水の開閉バルブ2、希釈水の流量を一定流量に調整する定流量弁3、希釈水の電気伝導率を測定する電気伝導率測定手段(D1)4が設けられている。ここで、希釈水としては、水道水、逆浸透水、井戸水等を使用することができ、供給口1には、例えば、水道水の蛇口等が接続される。また、電気伝導率測定手段(D1)4としては、流通型の電気伝導率センサを好ましく使用することができる。 In the present system 100, a dilution water supply passage for supplying dilution water to the mixing unit 6 is provided with a dilution water supply port 1, a dilution water opening / closing valve 2 supplied from the supply port 1, and a flow rate of the dilution water at a constant flow rate. A constant flow valve 3 for adjustment and an electric conductivity measuring means (D1) 4 for measuring the electric conductivity of dilution water are provided. Here, tap water, reverse osmosis water, well water or the like can be used as the dilution water, and a tap faucet or the like is connected to the supply port 1, for example. As the electrical conductivity measuring means (D1) 4, a flow-type electrical conductivity sensor can be preferably used.
一方、混合部6に酢酸緩衝液を供給するために、酢酸緩衝液の貯留槽7とポンプP1が設けられ、混合部6に次亜塩素酸ナトリウム水溶液を供給するために、次亜塩素酸ナトリウム水溶液の貯留槽8とポンプP2が設けられ、希釈水とこれらの混合液、即ち、殺菌液が、取出口15から吐出可能となっている。 On the other hand, an acetic acid buffer storage tank 7 and a pump P1 are provided to supply the acetic acid buffer to the mixing unit 6, and sodium hypochlorite is used to supply the sodium hypochlorite aqueous solution to the mixing unit 6. An aqueous solution storage tank 8 and a pump P2 are provided, and dilution water and a mixed solution thereof, that is, a sterilizing solution can be discharged from the outlet 15.
ここで、次亜塩素酸ナトリウム水溶液における次亜塩素酸の含有率(%)と塩素ガスの発生とpHとは図2に示す関係にある。そこで、本発明では、希釈水と酢酸緩衝液と次亜塩素酸ナトリウム水溶液との混合液から塩素ガスが発生することを防止するため、貯留槽7の酢酸緩衝液のpHは4以上、好ましくは4.5以上とする。また、次亜塩素酸ナトリウム水溶液における次亜塩素酸の含有率を高めて殺菌力を強くする点から、酢酸緩衝液のpHは6.5以下とし、好ましくは6.0以下、より好ましくは5.5以下とする。 Here, the content (%) of hypochlorous acid in the sodium hypochlorite aqueous solution, the generation of chlorine gas, and the pH are in the relationship shown in FIG. Therefore, in the present invention, the pH of the acetic acid buffer in the storage tank 7 is 4 or more, preferably, in order to prevent generation of chlorine gas from the mixture of the dilution water, the acetic acid buffer, and the sodium hypochlorite aqueous solution. 4.5 or more. Moreover, from the point which raises the content rate of hypochlorous acid in the sodium hypochlorite aqueous solution, and strengthens bactericidal power, the pH of an acetic acid buffer solution shall be 6.5 or less, Preferably it is 6.0 or less, More preferably, it is 5 .5 or less.
また、酢酸緩衝液は、濃度0.3mol/L以上、より好ましくは5〜7mol/Lの酢酸と、酢酸ナトリウム又は水酸化ナトリウムから調製された、好ましくは電気伝導率10ms/cm以上、より好ましくは30〜80ms/cm、さらに好ましくは50〜70ms/cmの酢酸−酢酸ナトリウム緩衝液とし、酢酸緩衝液の電気伝導率を、貯留槽8の次亜塩素酸ナトリウム水溶液の電気伝導率と略同一にすること、より具体的には、双方の電気伝導率の差を大凡10ms/cm以内に調整することが好ましい。これにより、殺菌水を製造するにあたり、貯留槽7における酢酸緩衝液の単位時間あたりの消費量と、貯留槽8における次亜塩素酸ナトリウム水溶液の単位時間当たりの消費量とを等しくすることができるので、これらの液剤の補充時期が同じになり、液剤管理が容易になると共に、液剤の補充に要する労力も軽減させることができる。 The acetate buffer is prepared from acetic acid at a concentration of 0.3 mol / L or more, more preferably 5 to 7 mol / L, and sodium acetate or sodium hydroxide, preferably an electrical conductivity of 10 ms / cm or more, more preferably. Is an acetic acid-sodium acetate buffer solution of 30 to 80 ms / cm, more preferably 50 to 70 ms / cm, and the electric conductivity of the acetic acid buffer solution is substantially the same as the electric conductivity of the sodium hypochlorite aqueous solution in the storage tank 8. More specifically, it is preferable to adjust the difference between the electrical conductivities of both to within about 10 ms / cm. Thereby, in manufacturing sterilization water, the consumption per unit time of the acetic acid buffer solution in the storage tank 7 and the consumption per unit time of the sodium hypochlorite aqueous solution in the storage tank 8 can be made equal. Therefore, the replenishment timings of these liquid agents are the same, the liquid agent management becomes easy, and the labor required for replenishment of the liquid agents can be reduced.
一方、貯留槽8の次亜塩素酸ナトリウム水溶液としては、例えば、濃度5〜12質量%、pH12〜13の市販の次亜塩素酸ナトリウム水溶液を使用することができる。特に、塩水の電気分解により水酸化ナトリウムを製造する際の副産物として安価に入手できる12質量%の次亜塩素酸ナトリウム水溶液を使用することが、コストの点から好ましい。 On the other hand, as the sodium hypochlorite aqueous solution in the storage tank 8, for example, a commercially available sodium hypochlorite aqueous solution having a concentration of 5 to 12% by mass and a pH of 12 to 13 can be used. In particular, it is preferable from the viewpoint of cost to use a 12 mass% sodium hypochlorite aqueous solution that can be obtained at a low cost as a by-product in producing sodium hydroxide by electrolysis of brine.
なお、希釈水、次亜塩素酸ナトリウム水溶液及びpH調製剤のそれぞれの混合部6への供給量は、当該殺菌水の用途や使用目的に応じて、殺菌水の製造に係る次亜塩素酸ナトリウムの濃度(即ち、解離又は非解離を問わず、殺菌水中に存在する次亜塩素酸残基の濃度)を設定し、その設定濃度に応じて定める。例えば、医療機器、食材などの殺菌の用途に使用される殺菌水の場合、殺菌水の製造に係る次亜塩素酸ナトリウムの濃度は5ppm以上が好ましい。 In addition, the supply amount to each mixing part 6 of dilution water, sodium hypochlorite aqueous solution, and a pH adjuster is the sodium hypochlorite which concerns on manufacture of sterilization water according to the use and intended purpose of the said sterilization water. (That is, the concentration of hypochlorous acid residue present in the sterilized water regardless of dissociation or non-dissociation) is set and determined according to the set concentration. For example, in the case of sterilizing water used for sterilizing applications such as medical devices and foods, the concentration of sodium hypochlorite involved in the manufacture of sterilizing water is preferably 5 ppm or more.
混合部6としては、撹拌子、邪魔板、乱流を引き起こす流通孔などにより撹拌能力を備えた任意の混合器を使用することができる。中でも、希釈水の供給口1から殺菌水の取出口15に至る配管ライン内に閉鎖型混合部を設けることが好ましく、閉鎖型混合部として、図3に示すようにし、外容器21と内筒22の二重容器構造で内筒22に乱流を引き起こす流通孔23を設けたミキシングチューブ20が好ましい。混合部6を閉鎖型とすることにより、例えば、希釈水の供給口1に水道水の蛇口を繋げた場合に、希釈水の供給口1にかかる水圧を、殺菌水の取出口15における殺菌水の吐出圧に利用することができる。また混合部6に図3に示すミキシングチューブ20を使用することにより、簡便な構造で、希釈水と酢酸緩衝液と次亜塩素酸ナトリウム水溶液の均一な混合液を得ることができる。 As the mixing unit 6, an arbitrary mixer having a stirring ability by a stirring bar, a baffle plate, a flow hole that causes turbulent flow, or the like can be used. In particular, it is preferable to provide a closed type mixing part in the piping line from the dilution water supply port 1 to the sterilizing water outlet 15. As shown in FIG. 3, the outer container 21 and the inner cylinder are provided as the closed type mixing part. The mixing tube 20 provided with the flow hole 23 which causes a turbulent flow in the inner cylinder 22 with the double container structure of 22 is preferable. By making the mixing unit 6 closed, for example, when a tap water faucet is connected to the dilution water supply port 1, the water pressure applied to the dilution water supply port 1 is changed to the sterilization water at the sterilization water outlet 15. It can be used for the discharge pressure. Moreover, by using the mixing tube 20 shown in FIG. 3 for the mixing unit 6, a uniform mixed solution of dilution water, acetate buffer solution and sodium hypochlorite aqueous solution can be obtained with a simple structure.
混合部6で調製された殺菌水を吐出させる取出口15と混合部6との間には、殺菌水の電気伝導率を測定する電気伝導率測定手段(D2)9と、殺菌水の流路を開閉するバルブ14が設けられている。 Between the outlet 15 for discharging the sterilized water prepared by the mixing unit 6 and the mixing unit 6, an electrical conductivity measuring means (D 2) 9 for measuring the electrical conductivity of the sterilized water, and a flow path of the sterilized water There is provided a valve 14 for opening and closing.
ここで、電気伝導率測定手段(D2)9としては、希釈水の流路に設けられた電気伝導率測定手段(D1)4と同様のものを使用することができ、これらの電気伝導率測定手段4、9により、殺菌水の製造に係る次亜塩素酸ナトリウムの濃度を監視する。即ち、殺菌水の製造に使用された次亜塩素酸ナトリウムは、pH調整剤による弱酸性乃至中性域のpHでは、殺菌水中で全て又は殆どが解離しているので、殺菌水の単位体積あたりの製造に使用された次亜塩素酸ナトリウムの使用量と酢酸緩衝液の使用量に応じて殺菌水の電気伝導率は増加する。一方、殺菌水の電気伝導率は、希釈水の電気伝導率によっても変化する。そこで、電気伝導率測定手段4で測定された希釈水の電気伝導率のセンサ信号をセンサ信号変換器5で直流信号に変換し、それを信号処理部11に供給すると共に、電気伝導率測定手段9で測定された殺菌水の電気伝導率のセンサ信号もセンサ信号変換器10で直流信号に変換して信号処理部11に供給し、殺菌水の電気伝導率測定手段9で検出されたセンサ信号から、希釈水の電気伝導率測定手段4で検出されたセンサ信号の影響を差し引いた電気伝導率を信号処理部11で算出し、その出力信号を出力部12からモニター用のディスプレイ、プリンタ、警報出力装置などに出力する。 Here, as the electrical conductivity measuring means (D2) 9, the same electrical conductivity measuring means (D1) 4 provided in the flow path of the dilution water can be used. By means 4 and 9, the concentration of sodium hypochlorite related to the production of sterilizing water is monitored. That is, the sodium hypochlorite used for the production of sterilizing water is almost completely dissociated in the sterilizing water at a weakly acidic to neutral pH by the pH adjuster. The electrical conductivity of the sterilizing water increases according to the amount of sodium hypochlorite used in the production of and the amount of acetate buffer used. On the other hand, the electrical conductivity of the sterilizing water also changes depending on the electrical conductivity of the dilution water. Therefore, the sensor signal of the electrical conductivity of the diluted water measured by the electrical conductivity measuring means 4 is converted into a DC signal by the sensor signal converter 5 and supplied to the signal processing unit 11, and the electrical conductivity measuring means. The sensor signal of the electric conductivity of the sterilizing water measured in 9 is also converted into a DC signal by the sensor signal converter 10 and supplied to the signal processing unit 11, and the sensor signal detected by the electric conductivity measuring means 9 of the sterilizing water is detected. Then, the electric conductivity obtained by subtracting the influence of the sensor signal detected by the electric conductivity measuring means 4 of the diluted water is calculated by the signal processing unit 11, and the output signal is output from the output unit 12 to the monitor display, printer, alarm. Output to an output device.
ここで、センサ信号変換器5、10としてはオペアンプIC等を使用することができ、また、信号処理部11はアナログ演算器又はデジタル演算器等から構成することができる。 Here, an operational amplifier IC or the like can be used as the sensor signal converters 5 and 10, and the signal processing unit 11 can be configured by an analog computing unit or a digital computing unit.
殺菌水の電気伝導率と、殺菌水のpHとの関係を予め求めておくことにより、信号処理部11から出力された電気伝導率から、殺菌水のpHを知り、殺菌水に含有される次亜塩素酸濃度、あるいは殺菌水の製造に係る次亜塩素酸ナトリウム濃度を知ることができる。そして、信号処理部11から出力された電気伝導率が、所定の電気伝導率と異なっていた場合には、混合部6への酢酸緩衝液の供給と次亜塩素酸ナトリウム水溶液の供給のいずれか一方又は双方に異常があることを意味するから、異常を知らせる信号の出力により、警報を発したり、システムを停止させたりするなどの措置をとることができる。 By obtaining the relationship between the electrical conductivity of the sterilizing water and the pH of the sterilizing water in advance, the pH of the sterilizing water is known from the electrical conductivity output from the signal processing unit 11, and then contained in the sterilizing water. It is possible to know the concentration of chlorous acid or the concentration of sodium hypochlorite related to the production of sterilizing water. When the electrical conductivity output from the signal processing unit 11 is different from the predetermined electrical conductivity, either the supply of the acetate buffer solution or the supply of the aqueous sodium hypochlorite solution to the mixing unit 6 is performed. Since it means that one or both are abnormal, it is possible to take measures such as issuing an alarm or stopping the system by outputting a signal notifying the abnormality.
なお、本発明の殺菌水の製造システムでは、混合部6で次亜塩素酸ナトリウム水溶液にpHが4よりも低い酸を添加することはないので、次亜塩素酸ナトリウム水溶液に、酸を添加することによる塩素ガス発生を防止する必要がない。そのため、混合部6に供給する次亜塩素酸ナトリウムと酸との混合比率を監視する必要がなく、混合部6で製造した殺菌水の電気伝導率の測定から、殺菌水に設定濃度の次亜塩素酸が含まれているか否か、あるいは殺菌水の製造に係る所定濃度の次亜塩素酸ナトリウムが含まれているか否かを監視すればよい。 In the sterilizing water production system of the present invention, an acid having a pH lower than 4 is not added to the sodium hypochlorite aqueous solution in the mixing unit 6, so an acid is added to the sodium hypochlorite aqueous solution. There is no need to prevent the generation of chlorine gas. Therefore, it is not necessary to monitor the mixing ratio of the sodium hypochlorite and the acid supplied to the mixing unit 6, and from the measurement of the electric conductivity of the sterilizing water produced in the mixing unit 6, the set concentration of hypochlorous acid is set in the sterilizing water. What is necessary is just to monitor whether chloric acid is contained or whether the sodium hypochlorite of the predetermined density | concentration which concerns on manufacture of sterilization water is contained.
また、殺菌水中の次亜塩素酸含量の測定方法として、ポーラログラフを利用する方法もあるが、ポーラログラフを利用した次亜塩素酸濃度検出センサは比較的高価であり、検出精度を維持するためには、電極のメンテナンスなどの保守の手間も費用もかかる。 In addition, as a method of measuring the hypochlorous acid content in sterilized water, there is a method using a polarograph, but a hypochlorous acid concentration detection sensor using a polarograph is relatively expensive, and in order to maintain detection accuracy In addition, maintenance work such as electrode maintenance is costly.
pHメータを使用して、次亜塩素酸ナトリウム水溶液のpHを監視しながら次亜塩素酸ナトリウムに酸を添加していく従前の方法は、pHメータのガラス電極の破損の虞を考慮すると、食品に使用する殺菌水の製造には適さないが、本発明によれば、このような問題もなく、次亜塩素酸ナトリウム水溶液の殺菌力を強化した殺菌水を、安価に、簡便に、安全に得ることができる。 The conventional method of adding acid to sodium hypochlorite while monitoring the pH of the sodium hypochlorite aqueous solution using a pH meter is based on the risk of damage to the glass electrode of the pH meter. However, according to the present invention, sterilized water with enhanced sterilizing power of an aqueous sodium hypochlorite solution can be obtained inexpensively, simply and safely. Can be obtained.
本発明は、種々の態様をとることができる。例えば、希釈水として逆浸透圧水等を使用して食品用の殺菌水を製造する場合には、その電気伝導率が低いので、上述の殺菌水の製造システム100において、希釈水の電気伝導率の測定を省略し、殺菌水の電気伝導率の測定のみに基づいて、殺菌水の製造に係る次亜塩素酸ナトリウムの濃度を監視してもよい。 The present invention can take various aspects. For example, when producing sterilizing water for food using reverse osmotic pressure water or the like as dilution water, the electrical conductivity is low. May be omitted, and the concentration of sodium hypochlorite related to the production of sterilizing water may be monitored based only on the measurement of the electrical conductivity of the sterilizing water.
以下、実施例に基づいて本発明を具体的に説明する。 Hereinafter, the present invention will be specifically described based on examples.
[実施例1]
まず、5mol/L酢酸水溶液(30質量%酢酸水溶液)400gと酢酸ナトリウム(3水和物)200gから、pH4.85、電気伝導率59.9ms/cm(25℃)の酢酸−酢酸ナトリウム緩衝液を調製した。[Example 1]
First, an acetic acid-sodium acetate buffer solution having a pH of 4.85 and an electric conductivity of 59.9 ms / cm (25 ° C.) from 400 g of 5 mol / L acetic acid aqueous solution (30% by mass acetic acid aqueous solution) and 200 g of sodium acetate (trihydrate). Was prepared.
希釈水として水道水(温度25℃)400mLをビーカーに入れ、マグネティックスターラーで撹拌しつつ、pHメータのセンサーと電気伝導率計のセンサーを挿入し、水道水のpHと電気伝導率を測定した。 400 mL of tap water (temperature: 25 ° C.) as dilution water was placed in a beaker, and while stirring with a magnetic stirrer, a pH meter sensor and an electrical conductivity meter were inserted, and the pH and electrical conductivity of tap water were measured.
これに6質量%次亜塩素酸ナトリウム水溶液0.5mLを加え、混合後にpHと電気伝導率を測定した。 To this was added 0.5 mL of a 6% by mass aqueous sodium hypochlorite solution, and the pH and electrical conductivity were measured after mixing.
次に、上述の酢酸−酢酸ナトリウム緩衝液0.5mLを添加し、混合後にpHと電気伝導率を測定した。 Next, 0.5 mL of the above-mentioned acetic acid-sodium acetate buffer was added, and pH and electrical conductivity were measured after mixing.
さらに、6質量%次亜塩素酸ナトリウム水溶液0.5mL、酢酸−酢酸ナトリウム緩衝液0.5mL、6質量%次亜塩素酸ナトリウム水溶液0.5mLを順次添加し、それぞれの混合後のpHと電気伝導率を測定した。 Further, 0.5 mL of 6 mass% sodium hypochlorite aqueous solution, 0.5 mL of acetic acid-sodium acetate buffer solution, and 0.5 mL of 6 mass% sodium hypochlorite aqueous solution were sequentially added. Conductivity was measured.
以上の結果を表1及び図4に示す。
なお、pHメータとしてはHM−21P(東亜ディーケーケー株式会社製)を使用し、電気伝導率計としてはCM−11P(東亜電波株式会社製)により測定した。The above results are shown in Table 1 and FIG.
In addition, HM-21P (manufactured by Toa DK Corporation) was used as a pH meter, and CM-11P (manufactured by Toa Denpa Inc.) was used as an electric conductivity meter.
表1及び図4から、水道水に、酢酸−酢酸ナトリウム緩衝液と次亜塩素酸ナトリウム水溶液を交互に添加していくと、酢酸−酢酸ナトリウムの緩衝作用によりpHは約5で一定となることがわかる。したがって、次亜塩素酸ナトリウムと酢酸−酢酸ナトリウム緩衝液との混合により殺菌水を製造すると、得られた殺菌水は、次亜塩素酸濃度が高く(図2参照)、殺菌力が強いこと、また、製造中に、塩素ガスが発生するpH3以下の酸性域にはならないので、安全であることがわかる。 From Table 1 and FIG. 4, when acetic acid-sodium acetate buffer solution and sodium hypochlorite aqueous solution are alternately added to tap water, the pH becomes constant at about 5 due to the buffering action of acetic acid-sodium acetate. I understand. Therefore, when producing sterilized water by mixing sodium hypochlorite and acetic acid-sodium acetate buffer, the obtained sterilized water has a high hypochlorous acid concentration (see FIG. 2) and a strong sterilizing power. Moreover, since it does not become the acidic region below pH3 which generate | occur | produces chlorine gas during manufacture, it turns out that it is safe.
また、水道水に、酢酸−酢酸ナトリウム緩衝液と次亜塩素酸ナトリウム水溶液を交互に添加していくと、それらの添加量に応じて電気伝導率が上昇していることがわかる。この場合、表1の操作5までの操作において、水道水400mLに次亜塩素酸ナトリウム水溶液と酢酸−酢酸ナトリウム緩衝液をそれぞれ1.0mLずつ添加した場合の電気伝導率は、約1530μs/cmである。そこで、例えば、図1に示した殺菌水の製造システムにおいて、水道水を定流量弁3で毎分400mLの流量で供給し、次亜塩素酸ナトリウム水溶液と酢酸−酢酸ナトリウム緩衝液をそれぞれ毎分1.0mLの流量で混合部6に添加する設定とした場合に、これらが設定量で混合部6に添加されると、取出口15から得られる殺菌水の電気伝導率は約1530μs/cmとなり、その場合の次亜塩素酸濃度は、0.06/402=149ppmとなる。これに対し、取出口15から得られる殺菌水の電気伝導率がこれよりも低い場合には、混合部6への酢酸緩衝液もしくは次亜塩素酸ナトリウム水溶液又はこれら双方の供給量が設定量よりも不足しており、反対に殺菌水の電気伝導率がこれよりも高い場合には、混合部への酢酸緩衝液又は次亜塩素酸ナトリウム水溶液又はこれら双方の供給量が設定量よりも多いことがわかる。 In addition, when the acetic acid-sodium acetate buffer solution and the sodium hypochlorite aqueous solution are alternately added to the tap water, it can be seen that the electrical conductivity increases according to the amount of addition. In this case, in the operations up to operation 5 in Table 1, when 1.0 mL each of an aqueous sodium hypochlorite solution and an acetic acid-sodium acetate buffer solution is added to 400 mL of tap water, the electric conductivity is about 1530 μs / cm. is there. Therefore, for example, in the sterilizing water production system shown in FIG. 1, tap water is supplied at a flow rate of 400 mL per minute with the constant flow valve 3, and a sodium hypochlorite aqueous solution and an acetic acid-sodium acetate buffer solution are supplied every minute. When it is set to be added to the mixing unit 6 at a flow rate of 1.0 mL, when these are added to the mixing unit 6 in a set amount, the electric conductivity of the sterilizing water obtained from the outlet 15 is about 1530 μs / cm. In this case, the hypochlorous acid concentration is 0.06 / 402 = 149 ppm. On the other hand, when the electrical conductivity of the sterilizing water obtained from the outlet 15 is lower than this, the supply amount of the acetic acid buffer solution or the sodium hypochlorite aqueous solution or both to the mixing unit 6 is more than the set amount. If the electrical conductivity of the sterilizing water is higher than this, the supply amount of the acetate buffer solution or the sodium hypochlorite aqueous solution or both to the mixing part must be larger than the set amount. I understand.
[比較例1]
酢酸−酢酸ナトリウム緩衝液を使用することなく、水道水400mlに対して、6質量%次亜塩素酸ナトリウム水溶液(30質量%酢酸水溶液)0.5mLと、5mol/L酢酸水溶液0.5mLを交互に添加し、それぞれの添加後にpHと電気伝導率を測定した。
結果を表2及び図5に示す。[Comparative Example 1]
Without using an acetic acid-sodium acetate buffer, 0.5 mL of a 6% by mass sodium hypochlorite aqueous solution (30% by mass acetic acid aqueous solution) and 0.5 mL of a 5 mol / L acetic acid aqueous solution are alternately used for 400 ml of tap water. The pH and electrical conductivity were measured after each addition.
The results are shown in Table 2 and FIG.
表2及び図5から、操作3において酢酸水溶液を添加しても、その添加の前後で電気伝導率は殆ど変わらないことがわかる。したがって、殺菌水の電気伝導率を測定しても、その製造に使用した酢酸水溶液の添加量を監視できないことがわかる。 From Table 2 and FIG. 5, it can be seen that even when an acetic acid aqueous solution is added in operation 3, the electrical conductivity hardly changes before and after the addition. Therefore, even if it measures the electrical conductivity of sterilization water, it turns out that the addition amount of the acetic acid aqueous solution used for the manufacture cannot be monitored.
[塩素ガス発生試験]
原液とする次亜塩素酸ナトリウム水溶液と、原液とする酸水溶液とをそれぞれ希釈して混合することにより殺菌水を製造するにあたり、不用意に原液同士が混合した場合、あるいは、希釈率が当初の設定と異なったときに塩素ガスが発生する危険性を調べるため、次亜塩素酸ナトリウム水溶液(原液)と酸水溶液(原液)とをそれぞれ希釈して表3に示す所定濃度の溶液とし、これらを蓋付きペットボトル(容量500mL)内に表3に示すように10〜50mL注入し、蓋を閉めて振とうすることにより混合した。その後2分以内にペットボトル上部の気体を吸入し、その気体中の塩素ガス濃度を検知管式ガス測定器で測定した(試験室温度14.7℃)(JIS K 0804)。この場合、検知管としては、ペットボトル内の空気の塩素ガス濃度に応じて株式会社ガステックの検知管8H(25〜1000ppm)又は検知管8LL(0.025〜2ppm)を使用した。[Chlorine gas generation test]
In producing sterilizing water by diluting and mixing the sodium hypochlorite aqueous solution as the stock solution and the acid aqueous solution as the stock solution, respectively, when the stock solutions are mixed carelessly, or the dilution rate is the original In order to investigate the danger of chlorine gas being generated when it is different from the setting, dilute each of the sodium hypochlorite aqueous solution (stock solution) and the acid aqueous solution (stock solution) to give the solutions with the prescribed concentrations shown in Table 3, As shown in Table 3, 10 to 50 mL was poured into a plastic bottle with a lid (capacity 500 mL), mixed by shaking with the lid closed. Within 2 minutes, the gas at the top of the PET bottle was inhaled, and the chlorine gas concentration in the gas was measured with a detector tube type gas measuring device (test chamber temperature 14.7 ° C.) (JIS K 0804). In this case, the detector tube 8H (25 to 1000 ppm) or detector tube 8LL (0.025 to 2 ppm) manufactured by Gastec Co., Ltd. was used as the detector tube depending on the chlorine gas concentration of the air in the PET bottle.
また、同様にして、次亜塩素酸ナトリウム水溶液と酢酸−酢酸ナトリウム緩衝液をペットボトル内で混合した場合のペットボトル内の空気の塩素ガス濃度を測定した。
これらの結果を表3に示す。Similarly, the chlorine gas concentration of the air in the PET bottle when the sodium hypochlorite aqueous solution and the acetic acid-sodium acetate buffer were mixed in the PET bottle was measured.
These results are shown in Table 3.
表3から、次亜塩素酸ナトリウム水溶液(原液)と酸水溶液(原液)とをそれぞれ希釈して混合する場合には、原液同士が不用意に混合してしまった場合は勿論のこと、原液が100倍に希釈されている場合でも塩素ガスが発生するので、次亜塩素酸ナトリウム水溶液(原液)と酸水溶液(原液)とをそれぞれ希釈して混合することにより殺菌水を製造するシステムを実稼働させることは、塩素ガスの大量発生の危険を伴うこと、これに対し、次亜塩素酸ナトリウムと酢酸緩衝液を混合することにより殺菌水を製造する本発明の方法によれば、塩素ガスの発生の危険がなく、安全であることがわかる。 From Table 3, when diluting and mixing the sodium hypochlorite aqueous solution (stock solution) and the acid aqueous solution (stock solution), the stock solution is of course mixed inadvertently. Chlorine gas is generated even when diluted 100 times, so a system that produces sterilized water by diluting and mixing sodium hypochlorite aqueous solution (stock solution) and acid aqueous solution (stock solution) is put into actual operation. In contrast to this, there is a risk of a large amount of chlorine gas being generated. In contrast, according to the method of the present invention for producing sterilized water by mixing sodium hypochlorite and an acetic acid buffer, the generation of chlorine gas It turns out that there is no danger and is safe.
本発明の殺菌水の製造方法及び殺菌水の製造方法は、食品加工、農水産業、医療などの種々の分野で使用する殺菌剤として有用である。 The method for producing sterilized water and the method for producing sterilized water of the present invention are useful as a bactericidal agent used in various fields such as food processing, agricultural and marine industries, and medicine.
1 希釈水の供給口
2 バルブ
3 定流量弁
4 電気伝導率測定手段
5 センサ信号変換器
6 混合部
7 酢酸緩衝液の貯留槽
8 次亜塩素酸ナトリウム水溶液の貯留槽
9 電気伝導率測定手段
10 センサ信号変換器
11 信号処理部
12 出力部
14 バルブ
15 取出口
20 ミキシングチューブ
21 外容器
22 内筒
23 流通孔
P1、P2 ポンプ
100 殺菌水の製造システムDESCRIPTION OF SYMBOLS 1 Supply port of dilution water 2 Valve 3 Constant flow valve 4 Electrical conductivity measurement means 5 Sensor signal converter 6 Mixing part 7 Acetic acid buffer solution storage tank 8 Sodium hypochlorite aqueous solution storage tank 9 Electrical conductivity measurement means 10 Sensor signal converter 11 Signal processing part 12 Output part 14 Valve 15 Outlet 20 Mixing tube 21 Outer container 22 Inner cylinder 23 Flow hole P1, P2 Pump 100 Sterilization water production system
Claims (13)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012257630 | 2012-11-26 | ||
JP2012257630 | 2012-11-26 | ||
PCT/JP2013/080917 WO2014080847A1 (en) | 2012-11-26 | 2013-11-15 | Method and system for producing sterilization water |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6025126B2 true JP6025126B2 (en) | 2016-11-16 |
JPWO2014080847A1 JPWO2014080847A1 (en) | 2017-01-05 |
Family
ID=50776030
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014514977A Active JP6025126B2 (en) | 2012-11-26 | 2013-11-15 | Method and system for producing sterilizing water |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6025126B2 (en) |
WO (1) | WO2014080847A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021092048A1 (en) * | 2019-11-06 | 2021-05-14 | De Nora Holdings Us, Inc. | Controlled production of aqueous halogen solutions with varying compositions |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6986797B1 (en) * | 2021-04-22 | 2021-12-22 | 有限会社クラウン商会 | Hypochlorite water preparation agent, its individual package, and method for producing hypochlorite water |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001321778A (en) * | 2000-05-12 | 2001-11-20 | Dkk Toa Corp | Method and apparatus for making sterilizing water |
JP2004105423A (en) * | 2002-09-18 | 2004-04-08 | Sanyo Electric Co Ltd | Method and apparatus for sterilization |
JP2006223690A (en) * | 2005-02-18 | 2006-08-31 | Dkk Toa Corp | Sterile water preparation method and apparatus |
JP2006289352A (en) * | 2005-03-18 | 2006-10-26 | Hitachi Ltd | Chemical solution injecting device, sterilizing device, and deferrizing and sterilizing system |
JP2011056377A (en) * | 2009-09-09 | 2011-03-24 | Yuki Chemical:Kk | Hypochlorous acid-containing sterilizing water and production method of the same, and hypochlorous acid-containing sterilizing sheet |
-
2013
- 2013-11-15 WO PCT/JP2013/080917 patent/WO2014080847A1/en active Application Filing
- 2013-11-15 JP JP2014514977A patent/JP6025126B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001321778A (en) * | 2000-05-12 | 2001-11-20 | Dkk Toa Corp | Method and apparatus for making sterilizing water |
JP2004105423A (en) * | 2002-09-18 | 2004-04-08 | Sanyo Electric Co Ltd | Method and apparatus for sterilization |
JP2006223690A (en) * | 2005-02-18 | 2006-08-31 | Dkk Toa Corp | Sterile water preparation method and apparatus |
JP2006289352A (en) * | 2005-03-18 | 2006-10-26 | Hitachi Ltd | Chemical solution injecting device, sterilizing device, and deferrizing and sterilizing system |
JP2011056377A (en) * | 2009-09-09 | 2011-03-24 | Yuki Chemical:Kk | Hypochlorous acid-containing sterilizing water and production method of the same, and hypochlorous acid-containing sterilizing sheet |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021092048A1 (en) * | 2019-11-06 | 2021-05-14 | De Nora Holdings Us, Inc. | Controlled production of aqueous halogen solutions with varying compositions |
Also Published As
Publication number | Publication date |
---|---|
WO2014080847A1 (en) | 2014-05-30 |
JPWO2014080847A1 (en) | 2017-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2315355C (en) | Electrochemical treatment of an aqueous solution | |
KR100802361B1 (en) | Electrolysis sterilization disinfecting possibility supply apparatus | |
CN117441740A (en) | Weak acid disinfection solution, preparation method thereof and hypochlorous acid-based weak acid disinfection solution preparation device | |
KR100761311B1 (en) | Apparatus and method for automatic manufacturing | |
BR112013032314B1 (en) | device for producing sodium hypochlorite or hypochlorous acid for water treatment, water treatment system in general, unit for remote data processing, method for water treatment and method for remote data processing. | |
US8617403B1 (en) | Methods and stabilized compositions for reducing deposits in water systems | |
JP4828012B2 (en) | Disinfection water generation method and apparatus | |
CN104555928A (en) | Method for producing stable hypochlorous acid solution | |
EP1878704A1 (en) | Electrochemical treatment of an aqueous solution | |
JP6025126B2 (en) | Method and system for producing sterilizing water | |
JP2018103167A (en) | Method and apparatus for supplying sterile water | |
KR101145326B1 (en) | Sterile water producing method and apparatus | |
US20230313389A1 (en) | Apparatus and method for the electrolytic production of hypochlorous acid | |
KR20110088665A (en) | Sterile water producing apparatus and method | |
JP4755836B2 (en) | Disinfection water generation method and apparatus | |
CN203646397U (en) | Device for producing stable acidic electrolyzed oxidizing water disinfectant | |
CN215479929U (en) | Waterway disinfection system of oral comprehensive treatment table and control unit thereof | |
KR20120028515A (en) | Device and method for generating sterilizer | |
JP2014148526A (en) | Method for producing disinfectant antiseptic solution | |
KR102057093B1 (en) | Disinfection water supply system by electrolysis and method | |
WO2022091381A1 (en) | Method and apparatus for producing aqueous hypochlorous acid solution | |
CN111560622A (en) | High-concentration weak-acid hypochlorous acid disinfectant generator for manufacturing stable pH value | |
KR101436111B1 (en) | Method and device for generating sterilizing agent | |
JP2005125276A (en) | Sterilizing electrolytic water making apparatus | |
JP2006089332A (en) | Chlorine dioxide water production device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160812 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160920 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20161003 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6025126 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |