JP6025111B2 - Steam flow measurement method and heat supply system - Google Patents

Steam flow measurement method and heat supply system Download PDF

Info

Publication number
JP6025111B2
JP6025111B2 JP2012050464A JP2012050464A JP6025111B2 JP 6025111 B2 JP6025111 B2 JP 6025111B2 JP 2012050464 A JP2012050464 A JP 2012050464A JP 2012050464 A JP2012050464 A JP 2012050464A JP 6025111 B2 JP6025111 B2 JP 6025111B2
Authority
JP
Japan
Prior art keywords
steam
flow rate
heat
pipe
ultrasonic flowmeter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012050464A
Other languages
Japanese (ja)
Other versions
JP2013185914A (en
Inventor
正樹 高本
正樹 高本
雅裕 石橋
雅裕 石橋
達也 舩木
達也 舩木
紀之 古市
紀之 古市
文夫 稲田
文夫 稲田
良 森田
良 森田
雄太 内山
雄太 内山
梅沢 修一
修一 梅沢
治雄 甘利
治雄 甘利
寛之 島田
寛之 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
National Institute of Advanced Industrial Science and Technology AIST
Tokyo Electric Power Co Holdings Inc
Original Assignee
Central Research Institute of Electric Power Industry
Tokyo Electric Power Co Inc
National Institute of Advanced Industrial Science and Technology AIST
Tokyo Electric Power Co Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry, Tokyo Electric Power Co Inc, National Institute of Advanced Industrial Science and Technology AIST, Tokyo Electric Power Co Holdings Inc filed Critical Central Research Institute of Electric Power Industry
Priority to JP2012050464A priority Critical patent/JP6025111B2/en
Publication of JP2013185914A publication Critical patent/JP2013185914A/en
Application granted granted Critical
Publication of JP6025111B2 publication Critical patent/JP6025111B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

本発明は、蒸気流量の計測方法、及び熱供給システムに関する。   The present invention relates to a steam flow rate measuring method and a heat supply system.

工場などにおいて、蒸気は、生産工程での加熱や空調の加熱・加湿まで幅広い用途に用いられている。例えば、集中設置されたボイラから延びる配管を工場の多くの場所に敷設し、当該配管を介して生産工程等に蒸気を送るシステムが知られている(例えば、特許文献1参照)。   In factories and the like, steam is used in a wide range of applications from heating in production processes to heating and humidification of air conditioning. For example, a system is known in which piping extending from a centrally installed boiler is laid in many places in a factory and steam is sent to a production process or the like via the piping (for example, see Patent Document 1).

特開平6−249450号公報JP-A-6-249450

従来、熱供給システムから外部装置(熱需要部)に供給される蒸気の流量は、オリフィス流量計を用いて計測するのが一般的であった。しかしながら、オリフィス流量計は蒸気の湿り度に依存して計測値が変化するため、配管内を流通する蒸気の湿り度が不明である場合には計測が困難であった。   Conventionally, the flow rate of the steam supplied from the heat supply system to the external device (heat demand section) is generally measured using an orifice flow meter. However, since the measurement value of the orifice flowmeter changes depending on the wetness of the steam, the measurement is difficult when the wetness of the steam flowing through the pipe is unknown.

本発明は、上記従来技術の問題点に鑑み成されたものであって、蒸気の湿り度によらず簡便に蒸気流量を測定することができる方法、及び蒸気の制御性に優れた熱供給システムを提供することを目的としている。   The present invention has been made in view of the above-described problems of the prior art, and is a method capable of easily measuring the flow rate of steam regardless of the wetness of the steam, and a heat supply system excellent in steam controllability. The purpose is to provide.

本発明の蒸気流量の計測方法は、配管内を流通する湿り蒸気の流量を超音波流量計により計測し、当該計測値を蒸気のみの流量として取得することを特徴とする。
この方法によれば、湿り蒸気の湿り度によらず少ない誤差で蒸気のみの流量を取得することができる。
The steam flow rate measuring method of the present invention is characterized in that the flow rate of wet steam flowing through a pipe is measured by an ultrasonic flow meter, and the measured value is obtained as a flow rate of only steam.
According to this method, the flow rate of only the steam can be acquired with a small error regardless of the wetness of the wet steam.

本発明の蒸気流量の計測方法は、配管内を流通する湿り蒸気の流量を超音波流量計により計測し、当該計測値を前記湿り蒸気の総流量として取得した後、前記計測値を、前記湿り蒸気の密度を用いて補正し、当該補正値を湿り蒸気の総流量として取得することを特徴とする。
この方法によれば、湿り蒸気の湿り度によらず少ない誤差で湿り蒸気の総流量を取得することができる。
In the method for measuring the steam flow rate of the present invention, the flow rate of the wet steam flowing through the pipe is measured by an ultrasonic flowmeter, and the measured value is acquired as the total flow rate of the wet steam, and then the measured value is converted to the wetness. The correction is performed using the density of the steam, and the correction value is acquired as the total flow rate of the wet steam.
According to this method, the total flow rate of the wet steam can be acquired with a small error regardless of the wetness of the wet steam.

本発明の熱供給システムは、配管を介して熱需要部に蒸気を供給する蒸気源と、前記熱需要部の入口近傍の前記配管に設けられ、前記配管内を流通する蒸気の流量を測定する超音波流量計と、前記超音波流量計の測定値に基づいて前記蒸気源の出力を制御する制御部と、を有することを特徴とする。
この構成によれば、超音波流量計を用いて蒸気の流量を計測するので、蒸気の湿り度によらず少ない誤差で蒸気流量を取得することができる。そして、かかる蒸気流量に基づいて蒸気源の出力を調整するので、熱需要部に対して供給される熱量を精度良く制御することができる。
The heat supply system of the present invention measures the flow rate of the steam that is provided in the pipe near the inlet of the heat demand section and the steam source that supplies steam to the heat demand section through the pipe and circulates in the pipe. It has an ultrasonic flow meter and a control part which controls the output of the steam source based on the measured value of the ultrasonic flow meter.
According to this configuration, since the flow rate of the steam is measured using the ultrasonic flow meter, the steam flow rate can be acquired with a small error regardless of the wetness of the steam. And since the output of a vapor | steam source is adjusted based on this vapor | steam flow volume, the calorie | heat amount supplied with respect to a heat demand part can be controlled accurately.

前記制御部は、前記超音波流量計の前記測定値を、前記配管内を流通する湿り蒸気のうち蒸気のみの流量として取得する蒸気流量取得動作と、前記蒸気流量に基づいて前記熱需要部に供給されている供給熱量を算出する供給熱量算出動作と、前記熱需要部へ供給すべき設定熱量と前記供給熱量との比較に基づいて前記蒸気源の出力を調整する出力調整動作と、を実行する構成としてもよい。
この構成によれば、超音波流量計の測定値を蒸気のみの流量として取得し、これを用いて供給熱量を算出するので、蒸気流量を簡便に取得できるとともに熱需要部への供給熱量を容易に推定することができる。そして、取得した供給熱量に基づいて蒸気源の出力を調整することで、熱需要部に対して所望の熱量を精度良く供給することができる。
The control unit obtains the measured value of the ultrasonic flowmeter as a flow rate of only steam out of the wet steam flowing through the pipe, and the heat demand unit based on the steam flow rate. A supply heat amount calculation operation for calculating the supply heat amount being supplied, and an output adjustment operation for adjusting the output of the steam source based on a comparison between the set heat amount to be supplied to the heat demand section and the supply heat amount It is good also as composition to do.
According to this configuration, the measurement value of the ultrasonic flowmeter is acquired as the flow rate of only the steam, and the supply heat amount is calculated using this, so that the steam flow rate can be easily acquired and the supply heat amount to the heat demand section is easy. Can be estimated. And by adjusting the output of the steam source based on the acquired supply heat quantity, the desired heat quantity can be accurately supplied to the heat demand section.

前記制御部は、前記超音波流量計の前記測定値を、前記配管内を流通する湿り蒸気の総流量として取得する総流量取得動作と、前記総流量を前記湿り蒸気の密度を用いて補正する総流量補正動作と、補正後の前記総流量に基づいて前記熱需要部に供給されている供給熱量を算出する供給熱量算出動作と、前記熱需要部へ供給すべき設定熱量と前記供給熱量との比較に基づいて前記蒸気源の出力を調整する出力調整動作と、を実行する構成としてもよい。
この構成によれば、超音波流量計の測定値を湿り蒸気の総流量として取得し、この総流量を湿り蒸気密度を用いて補正した値を用いて供給熱量を算出するので、熱需要部への供給熱量をより精度良く推定することができる。そして、取得した供給熱量に基づいて蒸気源の出力を調整することで、熱需要部に対して所望の熱量を精度良く供給することができる。
The control unit corrects the total flow rate using the wet steam density, and a total flow rate acquisition operation for acquiring the measurement value of the ultrasonic flowmeter as a total flow rate of the wet steam flowing through the pipe. A total flow correction operation, a supply heat amount calculation operation for calculating a supply heat amount supplied to the heat demand unit based on the corrected total flow rate, a set heat amount to be supplied to the heat demand unit, and the supply heat amount It is good also as a structure which performs the output adjustment operation | movement which adjusts the output of the said steam source based on these comparisons.
According to this configuration, the measurement value of the ultrasonic flowmeter is acquired as the total flow rate of the wet steam, and the supply heat amount is calculated using a value obtained by correcting the total flow rate using the wet steam density. Can be estimated with higher accuracy. And by adjusting the output of the steam source based on the acquired supply heat quantity, the desired heat quantity can be accurately supplied to the heat demand section.

本発明によれば、蒸気の湿り度によらず簡便に蒸気流量を測定する方法、及び蒸気の制御性に優れた熱供給システムを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the heat supply system excellent in the method of measuring a vapor | steam flow volume easily irrespective of the wetness of a vapor | steam, and the controllability of a vapor | steam can be provided.

本発明の一実施の形態である熱供給システムを示す概略図。Schematic which shows the heat supply system which is one embodiment of this invention. 超音波流量計の構成の一例を示す図。The figure which shows an example of a structure of an ultrasonic flowmeter. 超音波流量計の測定精度検証に用いた計測装置を示す図。The figure which shows the measuring apparatus used for the measurement accuracy verification of the ultrasonic flowmeter. 総流量誤差[%]と湿り度[%]の関係を示すグラフ。The graph which shows the relationship between total flow error [%] and wetness [%]. 測定誤差[%]と湿り度[%]の関係を示すグラフ。The graph which shows the relationship between measurement error [%] and wetness [%]. 総流量誤差[%](補正)と湿り度[%]の関係を示すグラフ。The graph which shows the relationship between total flow error [%] (correction) and wetness [%]. 乾き蒸気を測定したときの計測誤差を示すグラフ。The graph which shows the measurement error when measuring dry steam. 超音波流量計の変形例に係る構成の一例を示す図。The figure which shows an example of the structure which concerns on the modification of an ultrasonic flowmeter.

図1は、本発明の一実施の形態である熱供給システムを示す概略図である。
図1に示すように、熱供給システムS1は、蒸気源10と、超音波流量計20と、これらを接続する配管30と、制御部70とを備えている。熱供給システムS1は、制御部70の制御のもと、蒸気源10において生成した蒸気を配管30を介して熱需要部90(外部装置)に供給する。超音波流量計20は、熱需要部90の蒸気入口近傍の配管30に設置されている。
FIG. 1 is a schematic diagram showing a heat supply system according to an embodiment of the present invention.
As shown in FIG. 1, the heat supply system S <b> 1 includes a steam source 10, an ultrasonic flow meter 20, a pipe 30 that connects them, and a control unit 70. The heat supply system S <b> 1 supplies the steam generated in the steam source 10 to the heat demand unit 90 (external device) through the pipe 30 under the control of the control unit 70. The ultrasonic flow meter 20 is installed in the pipe 30 near the steam inlet of the heat demand section 90.

蒸気源10は例えばボイラであり、熱需要部90は例えば各種生産装置や空調装置などである。配管30は不図示の保熱手段により保熱されていてもよい。保熱手段としては、配管の外面を覆う保温材や、配管を加熱する加熱装置などを用いることができる。   The steam source 10 is, for example, a boiler, and the heat demand unit 90 is, for example, various production apparatuses or air conditioners. The pipe 30 may be heat-retained by heat retention means (not shown). As the heat retaining means, a heat insulating material that covers the outer surface of the pipe, a heating device that heats the pipe, or the like can be used.

超音波流量計20としては、配管30を流通する蒸気の温度や圧力に応じて適切なものを選択して用いることができる。図2は、超音波流量計の構成の一例を示す図である。
図2に示す超音波流量計20は、円筒状の管体21と、管体21の途中に設けられた一対の超音波送信部22と受信部23とを有する。超音波流量計20は、配管30内に、管体21の軸方向と蒸気の流通方向とがほぼ平行になるように設置される。なお、超音波流量計20は、超音波送信部22と受信部23とが水平状態となるように配管30内に設置されるのが好ましい。
As the ultrasonic flow meter 20, an appropriate one can be selected and used according to the temperature and pressure of the steam flowing through the pipe 30. FIG. 2 is a diagram illustrating an example of the configuration of the ultrasonic flowmeter.
An ultrasonic flow meter 20 illustrated in FIG. 2 includes a cylindrical tube body 21 and a pair of ultrasonic transmission units 22 and a reception unit 23 provided in the middle of the tube body 21. The ultrasonic flow meter 20 is installed in the pipe 30 so that the axial direction of the tube body 21 and the flow direction of the steam are substantially parallel. The ultrasonic flow meter 20 is preferably installed in the pipe 30 so that the ultrasonic transmission unit 22 and the reception unit 23 are in a horizontal state.

超音波送信部22及び受信部23は、管体21の側面に設けられた取付部24、25の開口24a,25aを介して管体21内に露出した状態に配置されている。本実施形態では、上述のように超音波送信部22及び受信部23が水平状態となるように配管30内に設置されているので、蒸気のドレンが取付部24,25内に溜まることによって流量の測定不良が生じるのを防止することが可能である。   The ultrasonic transmission unit 22 and the reception unit 23 are arranged in a state of being exposed in the tube body 21 through openings 24 a and 25 a of attachment portions 24 and 25 provided on the side surface of the tube body 21. In the present embodiment, as described above, since the ultrasonic transmission unit 22 and the reception unit 23 are installed in the pipe 30 so as to be in a horizontal state, the steam drainage is accumulated in the mounting units 24 and 25 so that the flow rate is increased. It is possible to prevent the occurrence of measurement failures.

超音波流量計20は、管体21内において蒸気導入口から蒸気排出口側へ流れる蒸気(被計測流体)に対し、超音波送信部22及び受信部23間で超音波を送受信する。具体的に超音波流量計20は、管体21内に超音波を斜めに送信し、蒸気の流れに沿った向きと蒸気の流れに逆らった向きとで超音波信号の伝搬時間に生じる差を検出し、図示略の流量変換器に出力する。流量変換器では、超音波信号の伝搬時間に生じる差に基づいて蒸気の流速を算出し、蒸気の流速に管体21の断面積を掛けることで管体21内を流通する蒸気の流量が算出される。そして本実施形態の場合、流量変換器で算出された流量値が、蒸気流量の測定値として制御部70へ出力される。制御部70では、超音波流量計20から出力される測定値に基づいて熱需要部90への供給熱量の制御が行われる。   The ultrasonic flowmeter 20 transmits and receives ultrasonic waves between the ultrasonic transmission unit 22 and the reception unit 23 with respect to the vapor (measuring fluid) flowing from the vapor inlet to the vapor outlet in the tube body 21. Specifically, the ultrasonic flowmeter 20 transmits ultrasonic waves obliquely into the tube body 21, and calculates the difference in the propagation time of the ultrasonic signal between the direction along the steam flow and the direction against the steam flow. Detect and output to a flow rate converter (not shown). In the flow rate converter, the flow rate of the steam is calculated based on the difference in the propagation time of the ultrasonic signal, and the flow rate of the steam flowing through the tube body 21 is calculated by multiplying the steam flow rate by the cross-sectional area of the tube body 21. Is done. In the case of this embodiment, the flow rate value calculated by the flow rate converter is output to the control unit 70 as a measured value of the steam flow rate. In the control unit 70, the amount of heat supplied to the heat demand unit 90 is controlled based on the measurement value output from the ultrasonic flow meter 20.

上記構成を備えた本実施形態の熱供給システムでは、配管30を介して熱需要部90に供給される蒸気の流量計測手段として、超音波流量計20が用いられている。これにより、従来のオリフィス流量計を用いた場合と比較して簡便かつ高精度に、配管30内を流通する蒸気の流量を計測することが可能である。   In the heat supply system of the present embodiment having the above-described configuration, the ultrasonic flowmeter 20 is used as a flow rate measuring unit for the steam supplied to the heat demand unit 90 via the pipe 30. Thereby, compared with the case where the conventional orifice flowmeter is used, it is possible to measure the flow volume of the vapor | steam which distribute | circulates the inside of the piping 30 simply and with high precision.

ここで図3は、超音波流量計の測定精度検証に用いた計測装置を示す図である。計測装置100は、ボイラ101と、過熱器102と、圧力調整弁103、104と、第1の熱交換器105と、計測配管106と、超音波流量計20と、背圧弁107と、第2の熱交換器108と、コリオリ流量計109とを、蒸気配管150と凝縮水配管151を介して環状に接続した構成を備えている。   Here, FIG. 3 is a diagram showing a measuring apparatus used for measuring accuracy verification of the ultrasonic flowmeter. The measuring device 100 includes a boiler 101, a superheater 102, pressure regulating valves 103 and 104, a first heat exchanger 105, a measurement pipe 106, an ultrasonic flow meter 20, a back pressure valve 107, a second pressure valve 107, and a second pressure valve 107. The heat exchanger 108 and the Coriolis flow meter 109 are connected in a ring shape via a steam pipe 150 and a condensed water pipe 151.

また計測装置100には、水を冷却媒体とする冷却装置110と、計測装置100を制御する制御部170とが併設されている。冷却装置110は、冷却水貯留部111と、冷却塔112と、第1の冷却部113と、第2の冷却部114と、を備えており、これらは冷却水配管115を介して環状に接続されている。制御部170は、冷却装置110を含む計測装置100全体を総合的に制御する。   In addition, the measuring device 100 is provided with a cooling device 110 that uses water as a cooling medium and a control unit 170 that controls the measuring device 100. The cooling device 110 includes a cooling water storage unit 111, a cooling tower 112, a first cooling unit 113, and a second cooling unit 114, which are annularly connected via a cooling water pipe 115. Has been. The control unit 170 comprehensively controls the entire measurement apparatus 100 including the cooling device 110.

計測装置100では、ボイラ101で生成した蒸気を、過熱器102で過熱蒸気とし、その後、圧力調整弁103、104により所定圧力に調整して第1の熱交換器105に供給する。第1の熱交換器105では、蒸気配管150と冷却装置110の第1の冷却部113との熱交換により蒸気配管150内の蒸気が所定温度に冷却される。これにより、蒸気配管150内を流通する蒸気が凝縮水を含む湿り蒸気となって計測配管106に導入される。   In the measuring apparatus 100, the steam generated in the boiler 101 is converted into superheated steam in the superheater 102, and then adjusted to a predetermined pressure by the pressure control valves 103 and 104 and supplied to the first heat exchanger 105. In the first heat exchanger 105, the steam in the steam pipe 150 is cooled to a predetermined temperature by heat exchange between the steam pipe 150 and the first cooling unit 113 of the cooling device 110. As a result, the steam flowing through the steam pipe 150 becomes wet steam containing condensed water and is introduced into the measurement pipe 106.

第1の熱交換器105において生成される湿り蒸気の湿り度は、第1の冷却部113に供給される蒸気の温度及び圧力(温度計120及び圧力計123により計測)、並びに第1の冷却部113に供給する冷却水の温度、流量(温度計121、冷却水流量計127により計測)により調整することができる。   The wetness of the wet steam generated in the first heat exchanger 105 includes the temperature and pressure of the steam supplied to the first cooling unit 113 (measured by the thermometer 120 and the pressure gauge 123), and the first cooling. The temperature and flow rate of the cooling water supplied to the unit 113 (measured by the thermometer 121 and the cooling water flow meter 127) can be adjusted.

計測配管106内に導入された湿り蒸気は、計測配管106の中途に設置された超音波流量計20による流量計測に供される。また、超音波流量計20の下流側に設けられた圧力計124及び温度計125により、湿り蒸気の圧力と温度が計測される。計測後の湿り蒸気は、背圧弁107により一定圧力に調整されつつ第2の熱交換器108に供給される。   The wet steam introduced into the measurement pipe 106 is subjected to flow measurement by the ultrasonic flowmeter 20 installed in the middle of the measurement pipe 106. Further, the pressure and temperature of the wet steam are measured by a pressure gauge 124 and a thermometer 125 provided on the downstream side of the ultrasonic flowmeter 20. The wet steam after the measurement is supplied to the second heat exchanger 108 while being adjusted to a constant pressure by the back pressure valve 107.

第2の熱交換器108では、冷却装置110の第2の冷却部114と蒸気配管150との熱交換により蒸気配管150内の蒸気が所定温度に冷却され、ほぼ全量が凝縮水とされ、凝縮水配管151を通りボイラ101に帰還される。第2の冷却部114において蒸気の冷却に用いられた後の冷却水は比較的高温になっているため、冷却塔112で冷却された後、地下水槽などの冷却水貯留部111に帰還される。   In the second heat exchanger 108, the steam in the steam pipe 150 is cooled to a predetermined temperature by heat exchange between the second cooling unit 114 of the cooling device 110 and the steam pipe 150, and almost all of the steam is converted into condensed water. It returns to the boiler 101 through the water pipe 151. Since the cooling water after being used for cooling the steam in the second cooling unit 114 has a relatively high temperature, it is cooled by the cooling tower 112 and then returned to the cooling water storage unit 111 such as an underground water tank. .

第2の熱交換器108から排出された凝縮水は、コリオリ流量計109により流量を測定される。これにより、超音波流量計20により計測された湿り蒸気の総流量を取得することができる。コリオリ流量計109により計測された後の凝縮水はボイラ101に供給され、再利用される。   The condensed water discharged from the second heat exchanger 108 is measured for flow rate by a Coriolis flow meter 109. Thereby, the total flow rate of the wet steam measured by the ultrasonic flow meter 20 can be acquired. The condensed water after being measured by the Coriolis flow meter 109 is supplied to the boiler 101 and reused.

以上に説明した計測装置100によれば、第1の熱交換器105において制御された湿り度の湿り蒸気を生成してこれを超音波流量計20により計測し、その後にコリオリ流量計109を用いて測定に用いた湿り蒸気の総流量(蒸気と凝縮水の合計流量)を計測することができる。これにより、任意の湿り度の蒸気についての超音波流量計20の測定値を、コリオリ流量計109による測定値との比較により検証することができる。   According to the measuring apparatus 100 described above, the wet steam controlled in the first heat exchanger 105 is generated and measured by the ultrasonic flow meter 20, and then the Coriolis flow meter 109 is used. The total flow rate of wet steam used for the measurement (total flow rate of steam and condensed water) can be measured. Thereby, the measured value of the ultrasonic flowmeter 20 about the vapor | steam of arbitrary wetness can be verified by the comparison with the measured value by the Coriolis flowmeter 109. FIG.

下記に示す表1は、計測装置100を用いた超音波流量計の精度検証試験のサンプル条件である。なお、表1に示す圧力と流量の条件は、第1の熱交換器105を動作させずに、計測配管106に乾き蒸気を供給し、この乾き蒸気を超音波流量計20で計測した場合における圧力と流量である。   Table 1 below shows sample conditions for an accuracy verification test of an ultrasonic flowmeter using the measuring apparatus 100. Note that the pressure and flow conditions shown in Table 1 are obtained when dry steam is supplied to the measurement pipe 106 without operating the first heat exchanger 105 and the dry steam is measured by the ultrasonic flowmeter 20. Pressure and flow rate.

ここで図7は、計測装置100により乾き蒸気を測定したときの超音波流量計20のコリオリ流量計109に対する計測誤差を示すグラフである。測定対象が乾き蒸気である場合、超音波流量計20の測定値とコリオリ流量計109の測定値はよく一致し、両者の差異は広い流量範囲で±1%程度である。表1に条件を示した湿り蒸気の測定では、乾き蒸気の測定で誤差が±1%以内であった圧力、流量の条件を選択し、それぞれの条件で湿り蒸気を生成して測定を実施した。   Here, FIG. 7 is a graph showing a measurement error of the ultrasonic flow meter 20 with respect to the Coriolis flow meter 109 when dry steam is measured by the measurement apparatus 100. When the measurement target is dry steam, the measurement value of the ultrasonic flow meter 20 and the measurement value of the Coriolis flow meter 109 are in good agreement, and the difference between them is about ± 1% in a wide flow range. In the measurement of wet steam whose conditions are shown in Table 1, the pressure and flow conditions where the error was within ± 1% in the measurement of dry steam were selected, and measurement was performed by generating wet steam under each condition. .

表1において、湿り度の欄に記載された複数の数値は、圧力と流量を固定した状態で湿り度の条件を変えて測定を行ったことを示している。具体的に表1の第1行目に示す条件は、圧力0.2MPaA、流量200kg/hの乾き蒸気に対して、第1の熱交換器105における冷却条件の調整により、湿り度6.1%、7.8%、15.1%の3種類の湿り蒸気を生成し、それぞれについて超音波流量計20及びコリオリ流量計109による計測を実施したことを示している。全体では、36条件について計測を実施した。   In Table 1, a plurality of numerical values described in the column of wetness indicate that the measurement was performed by changing the wetness conditions in a state where the pressure and the flow rate were fixed. Specifically, the condition shown in the first row of Table 1 is that the wetness is 6.1 by adjusting the cooling conditions in the first heat exchanger 105 for dry steam having a pressure of 0.2 MPaA and a flow rate of 200 kg / h. It shows that three kinds of wet steam of%, 7.8%, and 15.1% were generated, and the measurement by the ultrasonic flowmeter 20 and the Coriolis flowmeter 109 was performed for each. Overall, measurements were made for 36 conditions.

Figure 0006025111
Figure 0006025111

図4は、表1に示す各条件について、超音波流量計20の測定値と、コリオリ流量計109の測定値との差異(総流量誤差[%])を、横軸を湿り度[%]としてプロットしたグラフである。総流量誤差εは、下記に示す式(1)により算出した。 FIG. 4 shows the difference (total flow error [%]) between the measured value of the ultrasonic flow meter 20 and the measured value of the Coriolis flow meter 109 for each condition shown in Table 1, and the wetness [%] on the horizontal axis. Is a graph plotted as The total flow error ε t was calculated by the following equation (1).

Figure 0006025111
Figure 0006025111

図4に示すように、湿り度が大きくなるほど、総流量誤差がマイナス側に大きい値となっている。すなわち、湿り度が大きいほど、超音波流量計20はコリオリ流量計109に対して過小な測定値を出力する。   As shown in FIG. 4, the greater the wetness, the greater the total flow rate error on the minus side. That is, as the wetness degree increases, the ultrasonic flowmeter 20 outputs a smaller measurement value to the Coriolis flowmeter 109.

一方、図5は、超音波流量計20の測定値と、コリオリ流量計109の測定値から凝縮水に相当する流量を差し引いた値との差(測定誤差[%])を、横軸を湿り度[%]としてプロットしたグラフである。測定誤差εは、上記の式(2)により算出することができる。式(2)における係数xは、湿り蒸気に含まれる蒸気の割合である。係数xは、湿り蒸気の湿り度をβ(0<β<1)とすると、x=1−βと表すことができる。 On the other hand, FIG. 5 shows the difference (measurement error [%]) between the measured value of the ultrasonic flow meter 20 and the value obtained by subtracting the flow rate corresponding to the condensed water from the measured value of the Coriolis flow meter 109, and the horizontal axis is wet. It is the graph plotted as degree [%]. The measurement error ε r can be calculated by the above equation (2). The coefficient x in the equation (2) is a ratio of the steam contained in the wet steam. The coefficient x can be expressed as x = 1−β when the wetness of the wet steam is β (0 <β <1).

図5に示すように、測定誤差εは±3%以内に抑えられており、湿り度に対する依存性も見られない。この結果から、超音波流量計20の計測値を、蒸気と凝縮水を合わせた総流量ではなく、蒸気のみの流量として取得すれば、湿り度によらず実用的な精度で蒸気流量を測定することができる。 As shown in FIG. 5, the measurement error ε r is suppressed within ± 3%, and no dependency on the wetness is observed. From this result, if the measurement value of the ultrasonic flowmeter 20 is acquired not as a total flow rate of steam and condensed water but as a flow rate of only steam, the steam flow rate is measured with practical accuracy regardless of the wetness. be able to.

なお、従来から蒸気の流量計として使用されてきたオリフィス流量計では、図5のような湿り度に対して測定誤差εがほぼ一定になる傾向は得られないことが本発明者らの試験により明らかとなっている。具体的には、オリフィス流量計の場合、湿り度が大きくなるほど総流量誤差εがマイナス側に大きな値になる傾向は超音波流量計の場合と同様であるが、測定誤差εは、湿り度が大きくなるほどプラス側に大きくなる。このように総流量誤差ε、測定誤差εの双方に湿り度に対する依存性があるため、オリフィス流量計の場合には、湿り度が不明な湿り蒸気の流量を正確に計測することは困難である。 It is to be noted that the orifice flow meter conventionally used as a steam flow meter does not have a tendency that the measurement error ε r tends to be substantially constant with respect to the wetness as shown in FIG. It has become clear. Specifically, in the case of an orifice flow meter, the tendency that the total flow error ε t becomes larger on the minus side as the wetness increases is the same as in the case of the ultrasonic flow meter, but the measurement error ε r The greater the degree, the greater the positive side. As described above, since the total flow error ε t and the measurement error ε r both depend on the wetness, it is difficult to accurately measure the flow of wet steam whose wetness is unknown in the case of an orifice flow meter. It is.

一方、図4に示したように、総流量誤差εは湿り度に依存するパラメータであることから、湿り度に依存する他の状態量を用いて補正することが可能であると考えられる。
そこで、下記式(3)に示す超音波流量の計算式を見ると、ρは飽和蒸気密度、KはKファクター、Aは管体21の断面積、uulsは蒸気の流速である。これらのうち、Kファクターは定数であり、uulsは超音波流量計20の出力値であるから、超音波流量Qulsの変動要因は実質的に飽和蒸気密度ρの項である。
On the other hand, as shown in FIG. 4, since the total flow error ε t is a parameter that depends on the wetness, it can be corrected by using another state quantity that depends on the wetness.
Therefore, looking at the calculation formula of the ultrasonic flow rate shown in the following formula (3), ρ is the saturated vapor density, K is the K factor, A is the cross-sectional area of the tube body 21, and u uls is the vapor flow velocity. Among these, the K factor is a constant, and u uls is the output value of the ultrasonic flowmeter 20, so that the fluctuation factor of the ultrasonic flow rate Q uls is substantially a term of the saturated vapor density ρ.

Figure 0006025111
Figure 0006025111

飽和蒸気密度ρの項を補正するに際して、本発明者らは、式(4)に示すように均質流を仮定した湿り蒸気密度ρwetを規定し、式(5)に示すように超音波流量を補正することを試みた。すなわち、蒸気のみの密度ρstrと凝縮水の密度ρwatとを、湿り度に係わる係数x(=1−β)に応じて案分することで得られる湿り蒸気密度ρwetにより、式(5)に示すように、飽和蒸気密度ρを補正することとした。 In correcting the term of the saturated vapor density ρ, the present inventors define a wet vapor density ρ wet assuming a homogeneous flow as shown in the equation (4), and an ultrasonic flow rate as shown in the equation (5). Tried to correct. That is, by the wet steam density ρ wet obtained by proportionally dividing the steam-only density ρ str and the density of condensed water ρ wat according to the coefficient x (= 1−β) related to the wetness, the formula (5 ), The saturated vapor density ρ was corrected.

図6は、超音波流量計20の測定値を式(5)により補正した補正値と、コリオリ流量計109の測定値との差異(総流量誤差[%])を、横軸に湿り度[%]をとってプロットしたグラフである。
図6に示す総流量誤差は、全ての条件で±3%以下の範囲である。これにより、超音波流量計20の測定値を湿り蒸気密度ρwetで補正することにより、コリオリ流量計109の測定値との良好な一致が得られることがわかる。
FIG. 6 shows the difference (total flow error [%]) between the correction value obtained by correcting the measurement value of the ultrasonic flow meter 20 by the equation (5) and the measurement value of the Coriolis flow meter 109, and the wetness [ %] Is a graph plotted.
The total flow error shown in FIG. 6 is in the range of ± 3% or less under all conditions. Thus, it is understood that a good agreement with the measured value of the Coriolis flow meter 109 can be obtained by correcting the measured value of the ultrasonic flow meter 20 with the wet steam density ρ wet .

以上に詳細に説明したように、湿り蒸気の流量測定に超音波流量計20を用いることで、湿り蒸気の湿り度によらず実用的な精度で蒸気流量を測定することができる。本発明者らの検証試験によれば、図5に示したように、超音波流量計20の測定値を蒸気のみの流量として取得した場合であっても、±3%以内の測定誤差で流量を測定することが可能である。さらに、超音波流量計20の測定値を湿り蒸気密度ρwetを用いて補正すれば、±3%以内の測定誤差で総流量を測定することが可能である。 As described in detail above, by using the ultrasonic flowmeter 20 for measuring the wet steam flow rate, the steam flow rate can be measured with practical accuracy regardless of the wetness of the wet steam. According to the verification test of the present inventors, as shown in FIG. 5, even when the measurement value of the ultrasonic flowmeter 20 is acquired as the flow rate of only the steam, the flow rate is measured with a measurement error within ± 3%. Can be measured. Furthermore, if the measurement value of the ultrasonic flowmeter 20 is corrected using the wet steam density ρ wet , the total flow rate can be measured with a measurement error within ± 3%.

なお、上記説明では、超音波送信部22と受信部23とが水平状態となるように配管30内に設置される場合を例に挙げて説明したが、本発明はこれに限定されることはない。例えば、図8に示すように取付部24,25が上下方向(鉛直方向)に配置されるように超音波流量計20を配管30内に設置するようにしてもよい。この構成において、鉛直方向下側に配置される接続部25にバルブ26を設けてもよい。これによれば、例えば流量測定を行わない時にバルブ26を開くことで接続部25内に溜まったドレンを排出することができる。よって、ドレン排出用の機構を別途設ける必要が無く、付加価値の高い熱供給システムS1を提供できる。   In the above description, the case where the ultrasonic transmitter 22 and the receiver 23 are installed in the pipe 30 so as to be in a horizontal state has been described as an example, but the present invention is not limited to this. Absent. For example, as shown in FIG. 8, the ultrasonic flow meter 20 may be installed in the pipe 30 so that the mounting portions 24 and 25 are arranged in the vertical direction (vertical direction). In this configuration, the valve 26 may be provided in the connection portion 25 arranged on the lower side in the vertical direction. According to this, for example, when the flow rate is not measured, by opening the valve 26, the drain accumulated in the connecting portion 25 can be discharged. Therefore, it is not necessary to separately provide a drain discharge mechanism, and it is possible to provide a heat supply system S1 with high added value.

次に、熱供給システムS1における供給熱量制御について説明する。
上述したように、超音波流量計20を用いることで、湿り蒸気における蒸気のみの流量を精度良く測定できるとともに、さらに蒸気密度補正を行うことで総流量についても精度良く測定することができる。したがって、本実施形態の熱供給システムS1では、(制御1)超音波流量計20の計測値をそのまま使用して供給熱量制御を実行することができ、(制御2)超音波流量計20の測定値を湿り蒸気密度を用いて補正し、得られた補正値を用いて供給熱量制御を実行することもできる。
Next, supply heat amount control in the heat supply system S1 will be described.
As described above, by using the ultrasonic flowmeter 20, it is possible to accurately measure the flow rate of only the steam in the wet steam, and it is possible to accurately measure the total flow rate by further correcting the vapor density. Therefore, in the heat supply system S1 of the present embodiment, (control 1) the supply heat amount control can be executed using the measurement value of the ultrasonic flow meter 20 as it is, and (control 2) the measurement of the ultrasonic flow meter 20 is performed. It is also possible to correct the value using the wet steam density and execute the supply heat amount control using the obtained correction value.

上記(制御1)の場合、制御部70は、超音波流量計20の測定値を蒸気源10から熱需要部90に供給される湿り蒸気のうち、蒸気のみの流量として取得する蒸気流量取得動作と、かかる蒸気流量から熱需要部90に供給されている熱量(供給熱量)を算出する供給熱量算出動作と、かかる供給熱量と、制御部70において設定された設定熱量(蒸気源10から熱需要部90へ供給するよう設定された熱量)との比較に基づいて蒸気源10の出力を調整する出力調整動作と、を実行する。   In the case of the above (Control 1), the control unit 70 acquires the measured value of the ultrasonic flowmeter 20 as a flow rate of only steam among the wet steam supplied from the steam source 10 to the heat demand unit 90. Then, the supply heat amount calculation operation for calculating the amount of heat (supply heat amount) supplied to the heat demand unit 90 from the steam flow rate, the supply heat amount, and the set heat amount (heat demand from the steam source 10) set in the control unit 70 Output adjustment operation for adjusting the output of the steam source 10 based on the comparison with the amount of heat set to be supplied to the unit 90.

蒸気流量取得動作では、配管30に設置された超音波流量計20を動作させ、配管30内を流通している湿り蒸気の流量を測定する。本例での動作では、図5に示した結果に基づいて、超音波流量計20の測定値を、蒸気のみの流量として取得する。
供給熱量算出動作では、蒸気流量と蒸気の潜熱とから、熱需要部90に供給されている供給熱量を算出する。これにより、熱需要部90に供給されている供給熱量を精度良く推定することができる。
そして、出力調整動作では、蒸気流量から算出した供給熱量が設定熱量に一致するように、蒸気源10の出力を調整する。すなわち、設定熱量に対して供給熱量が不足していれば、蒸気源10の出力を上昇させることで蒸気流量(供給熱量)を増加させる制御を実行する。一方、設定熱量に対して供給熱量が過剰であれば蒸気源10の出力を低下させることで蒸気流量(供給熱量)を減少させる制御を実行する。
以上の蒸気流量取得動作と供給熱量算出動作と出力調整動作とを連続的に実行することで、熱需要部90に対して持続的に所望の熱量(設定熱量)を供給することができる。
In the steam flow rate acquisition operation, the ultrasonic flow meter 20 installed in the pipe 30 is operated, and the flow rate of the wet steam flowing through the pipe 30 is measured. In the operation in this example, based on the result shown in FIG. 5, the measurement value of the ultrasonic flowmeter 20 is acquired as the flow rate of only steam.
In the supply heat amount calculation operation, the supply heat amount supplied to the heat demand unit 90 is calculated from the steam flow rate and the latent heat of the steam. Thereby, the supply heat quantity currently supplied to the heat demand part 90 can be estimated accurately.
In the output adjustment operation, the output of the steam source 10 is adjusted so that the supply heat amount calculated from the steam flow rate matches the set heat amount. In other words, if the supply heat quantity is insufficient with respect to the set heat quantity, control is performed to increase the steam flow rate (supply heat quantity) by increasing the output of the steam source 10. On the other hand, if the supply heat quantity is excessive with respect to the set heat quantity, control is performed to reduce the steam flow rate (supply heat quantity) by reducing the output of the steam source 10.
By continuously executing the steam flow rate acquisition operation, the supply heat amount calculation operation, and the output adjustment operation, a desired heat amount (set heat amount) can be continuously supplied to the heat demand unit 90.

一方、(制御2)の場合、制御部70は、超音波流量計20の測定値を蒸気源10から熱需要部90に供給される湿り蒸気の総流量として取得する総流量取得動作と、かかる総流量を湿り蒸気密度を用いて補正する総流量補正動作と、補正後の総流量から熱需要部90に供給されている熱量(供給熱量)を算出する供給熱量算出動作と、かかる供給熱量と、制御部70において設定された設定熱量(蒸気源10から熱需要部90へ供給するよう設定された熱量)との比較に基づいて蒸気源10の出力を調整する出力調整動作と、を実行する。   On the other hand, in the case of (Control 2), the control unit 70 takes the total flow rate acquisition operation for acquiring the measurement value of the ultrasonic flow meter 20 as the total flow rate of the wet steam supplied from the steam source 10 to the heat demand unit 90, and A total flow correction operation for correcting the total flow rate using the wet steam density, a supply heat amount calculation operation for calculating the amount of heat (supplied heat amount) supplied to the heat demand unit 90 from the corrected total flow rate, and the supply heat amount And an output adjustment operation for adjusting the output of the steam source 10 based on a comparison with the set heat amount set in the control unit 70 (the heat amount set to be supplied from the steam source 10 to the heat demand unit 90). .

総流量取得動作は、超音波流量計20を用いて流量を測定する動作自体は(制御1)と同様であるが、超音波流量計20の測定値を湿り蒸気の総流量として取得する点で異なる。
総流量補正動作では、上記総流量を、湿り蒸気密度ρwetを用いて補正する。これにより、補正後の総流量は、湿り度によらずコリオリ流量計109の測定値とよく一致する値となる。
供給熱量算出動作では、補正後の総流量と蒸気の潜熱及び凝縮水の顕熱とから、熱需要部90に供給されている供給熱量を算出する。これにより、熱需要部90に供給されている供給熱量を精度良く推定することができる。
そして、出力調整動作では、(制御1)と同様に、設定熱量との比較に基づいて蒸気源10の出力調整が実行され、熱需要部90に対して供給される熱量が制御される。
以上の総流量取得動作と総流量補正動作と供給熱量算出動作と出力調整動作とを連続的に実行することで、熱需要部90に対して持続的に所望の熱量(設定熱量)を供給することができる。
The total flow rate acquisition operation is the same as (Control 1) in which the flow rate is measured using the ultrasonic flow meter 20, but the measurement value of the ultrasonic flow meter 20 is acquired as the total flow rate of wet steam. Different.
In the total flow rate correcting operation, the total flow rate is corrected using the wet steam density ρ wet . As a result, the corrected total flow rate is a value that agrees well with the measured value of the Coriolis flow meter 109 regardless of the wetness.
In the supply heat amount calculation operation, the supply heat amount supplied to the heat demand unit 90 is calculated from the corrected total flow rate, the latent heat of the steam, and the sensible heat of the condensed water. Thereby, the supply heat quantity currently supplied to the heat demand part 90 can be estimated accurately.
In the output adjustment operation, similarly to (Control 1), the output adjustment of the steam source 10 is executed based on the comparison with the set heat amount, and the amount of heat supplied to the heat demand section 90 is controlled.
By continuously executing the above total flow acquisition operation, total flow correction operation, supply heat amount calculation operation, and output adjustment operation, a desired amount of heat (set heat amount) is continuously supplied to the heat demand unit 90. be able to.

このように、(制御1)、(制御2)のいずれの場合にも、超音波流量計20の測定値に基づいて熱需要部90への供給熱量を精度良く推定することができ、熱需要部90に供給すべき設定熱量との比較に基づいて蒸気源10の出力を調整することで、熱需要部90に所望の熱量を確実に供給することができる。   Thus, in any case of (Control 1) and (Control 2), the amount of heat supplied to the heat demand section 90 can be accurately estimated based on the measurement value of the ultrasonic flowmeter 20, and the heat demand By adjusting the output of the steam source 10 based on the comparison with the set heat amount to be supplied to the unit 90, the desired heat amount can be reliably supplied to the heat demand unit 90.

(制御1)の動作では、超音波流量計20の測定値から得られる蒸気のみの流量を用いて蒸気源10の出力を調整するので、(制御2)のように測定値を補正する必要が無く、また供給熱量の算出も容易であるため、簡便に供給熱量の制御を実行することができる。なお、(制御1)では蒸気のみの流量から供給熱量を算出しているため、実際の供給熱量と異なる値になってしまうが、湿り蒸気の熱量はその大部分が蒸気の潜熱であるため、両者が大きく乖離することはない。   In the operation of (Control 1), since the output of the steam source 10 is adjusted using the flow rate of only the steam obtained from the measurement value of the ultrasonic flowmeter 20, it is necessary to correct the measurement value as in (Control 2). In addition, since it is easy to calculate the amount of heat supplied, it is possible to simply control the amount of heat supplied. In addition, since the supply heat amount is calculated from the flow rate of only steam in (Control 1), it becomes a value different from the actual supply heat amount, but the heat amount of the wet steam is mostly the latent heat of the steam, There is no big difference between the two.

一方、(制御2)の動作では、超音波流量計20を湿り蒸気密度ρwetを用いて補正した総流量を用いるので、(制御1)の場合と比較して総流量の値自体の誤差が小さくなる。
また、湿り蒸気の総流量から供給熱量を算出するので、実際の供給熱量により近い値を得ることができる。これらから、(制御2)では、(制御1)と比較しても高い精度で熱需要部90への供給熱量を制御することが可能である。
On the other hand, in the operation of (Control 2), since the total flow rate corrected by the ultrasonic flowmeter 20 using the wet steam density ρ wet is used, the error of the total flow value itself is smaller than that in the case of (Control 1). Get smaller.
Further, since the supply heat amount is calculated from the total flow rate of the wet steam, a value closer to the actual supply heat amount can be obtained. From these, in (Control 2), it is possible to control the amount of heat supplied to the heat demand section 90 with higher accuracy than in (Control 1).

10…蒸気源、20…超音波流量計、30,150…蒸気配管、151…凝縮水配管、70,170…制御部、90…熱需要部、S1…熱供給システム DESCRIPTION OF SYMBOLS 10 ... Steam source, 20 ... Ultrasonic flowmeter, 30, 150 ... Steam piping, 151 ... Condensate water piping, 70, 170 ... Control part, 90 ... Heat demand part, S1 ... Heat supply system

Claims (5)

配管内を流通する湿り蒸気の流量を前記湿り蒸気を水と乾き蒸気とに分けることなく超音波流量計により計測し、当該計測値を前記乾き蒸気のみの流量として取得することを特徴とする蒸気流量の計測方法。 Steam that measures the flow rate of wet steam flowing in a pipe with an ultrasonic flowmeter without dividing the wet steam into water and dry steam, and obtains the measured value as the flow rate of the dry steam only How to measure the flow rate. 配管内を流通する湿り蒸気の流量を超音波流量計により計測し、当該計測値を、前記湿り蒸気の密度を用いて補正し、当該補正値を湿り蒸気の総流量として取得することを特徴とする蒸気流量の計測方法。 The flow rate of the wet steam flowing through the pipe is measured by an ultrasonic flowmeter, the measured value is corrected using the density of the wet steam, and the corrected value is acquired as the total flow rate of the wet steam. To measure the flow rate of steam. 前記超音波流量計は、超音波送信部と受信部とが水平状態となるように前記配管に設置されることを特徴とする請求項1又は2に記載の蒸気流量の計測方法。  The said ultrasonic flowmeter is installed in the said piping so that an ultrasonic transmission part and a receiving part may become a horizontal state, The measuring method of the steam flow rate of Claim 1 or 2 characterized by the above-mentioned. 配管を介して熱需要部に湿り蒸気を供給する蒸気源と、
前記熱需要部の入口近傍の前記配管に設けられ、前記配管内を流通する前記湿り蒸気の流量を測定する超音波流量計と、
前記超音波流量計の測定値に基づいて前記蒸気源の出力を制御する制御部と、
を有し、
前記制御部は、
前記超音波流量計の前記測定値を、前記配管内を流通する湿り蒸気のうち乾き蒸気のみの流量として取得する蒸気流量取得動作と、
前記蒸気流量に基づいて前記熱需要部に供給されている供給熱量を算出する供給熱量算出動作と、
前記熱需要部へ供給すべき設定熱量と前記供給熱量との比較に基づいて前記蒸気源の出力を調整する出力調整動作と、
を実行することを特徴とする熱供給システム。
A steam source for supplying wet steam to the heat demand section via piping;
An ultrasonic flowmeter that is provided in the pipe near the entrance of the heat demand section and measures the flow rate of the wet steam flowing through the pipe;
A control unit for controlling the output of the steam source based on the measurement value of the ultrasonic flowmeter;
Have
The controller is
A steam flow rate acquisition operation for acquiring the measurement value of the ultrasonic flowmeter as a flow rate of only dry steam out of wet steam flowing through the pipe;
Supply heat amount calculation operation for calculating the supply heat amount supplied to the heat demand unit based on the steam flow rate;
An output adjustment operation for adjusting the output of the steam source based on a comparison between the set heat amount to be supplied to the heat demand section and the supplied heat amount;
Heat supply system that is characterized in that the run.
配管を介して熱需要部に湿り蒸気を供給する蒸気源と、
前記熱需要部の入口近傍の前記配管に設けられ、前記配管内を流通する前記湿り蒸気の流量を測定する超音波流量計と、
前記超音波流量計の測定値に基づいて前記蒸気源の出力を制御する制御部と、
を有し、
前記制御部は、
前記超音波流量計の前記測定値を、前記湿り蒸気の密度を用いて補正し、当該補正値を湿り蒸気の総流量として取得する総流量補正動作と、
補正後の前記総流量に基づいて前記熱需要部に供給されている供給熱量を算出する供給熱量算出動作と、
前記熱需要部へ供給すべき設定熱量と前記供給熱量との比較に基づいて前記蒸気源の出力を調整する出力調整動作と、
を実行することを特徴とする熱供給システム。
A steam source for supplying wet steam to the heat demand section via piping;
An ultrasonic flowmeter that is provided in the pipe near the entrance of the heat demand section and measures the flow rate of the wet steam flowing through the pipe;
A control unit for controlling the output of the steam source based on the measurement value of the ultrasonic flowmeter;
Have
The controller is
Wherein the measurement of the ultrasonic flowmeter, corrected using the density before Symbol wet steam, and the total flow rate correction operation for obtaining the correction value as a total flow rate of the wet steam,
Supply heat amount calculation operation for calculating the supply heat amount supplied to the heat demand unit based on the corrected total flow rate,
An output adjustment operation for adjusting the output of the steam source based on a comparison between the set heat amount to be supplied to the heat demand section and the supplied heat amount;
Heat supply system that is characterized in that the run.
JP2012050464A 2012-03-07 2012-03-07 Steam flow measurement method and heat supply system Active JP6025111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012050464A JP6025111B2 (en) 2012-03-07 2012-03-07 Steam flow measurement method and heat supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012050464A JP6025111B2 (en) 2012-03-07 2012-03-07 Steam flow measurement method and heat supply system

Publications (2)

Publication Number Publication Date
JP2013185914A JP2013185914A (en) 2013-09-19
JP6025111B2 true JP6025111B2 (en) 2016-11-16

Family

ID=49387471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012050464A Active JP6025111B2 (en) 2012-03-07 2012-03-07 Steam flow measurement method and heat supply system

Country Status (1)

Country Link
JP (1) JP6025111B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6380170B2 (en) * 2015-03-05 2018-08-29 住友金属鉱山株式会社 Thermal energy loss evaluation method for steam piping
JP2016200409A (en) * 2015-04-07 2016-12-01 東京電力ホールディングス株式会社 Steam flow rate measuring system and method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6262218A (en) * 1985-09-12 1987-03-18 Kansai Electric Power Co Inc:The Ultrasonic flowmeter
JPH0612278B2 (en) * 1988-10-14 1994-02-16 株式会社テイエルブイ Two-phase flow ultrasonic type flow rate measuring method and measuring apparatus
JP2733717B2 (en) * 1991-07-29 1998-03-30 九州電力株式会社 Two-phase flow meter
JPH05296860A (en) * 1992-04-15 1993-11-12 Tlv Co Ltd Measuring apparatus for consumed calory of device using steam
JP2002139356A (en) * 2000-10-31 2002-05-17 Osaka Gas Co Ltd Flow measuring method
GB0221782D0 (en) * 2002-09-19 2002-10-30 Univ Sussex Methods of measuring two-phase fluid flow using single-phase flowmeters
JP4459828B2 (en) * 2005-01-27 2010-04-28 元 小野田 Ultrasonic flow meter

Also Published As

Publication number Publication date
JP2013185914A (en) 2013-09-19

Similar Documents

Publication Publication Date Title
JP6002029B2 (en) Flow rate calculation device and flow rate control device
JP2009150644A (en) System and method for controlling liquid level in vessel
WO2015119139A1 (en) Flow speed measurement method and flow speed measurement system
JP5961962B2 (en) Boiler steam amount measuring method, boiler load analyzing method, boiler steam amount measuring device, and boiler load analyzing device
JP6025111B2 (en) Steam flow measurement method and heat supply system
JP7248455B2 (en) Thermal flow meter and flow correction method
JP6527950B2 (en) Control method for operating a once-through steam generator
CN113960109A (en) Self-feedback online monitoring system and method for dryness of wet steam
JP6201640B2 (en) Steam pipe loss measurement system and measurement method
KR101767415B1 (en) Two-phase Fluid Sensor
JP6113947B2 (en) Steam flow measurement method and heat supply system
JP5575579B2 (en) Steam dryness measuring device
CN113837565B (en) Steam heat supply network water hammer risk assessment system and method based on condensation coefficient
JP2016212030A (en) Measurement system and method
JP5924809B2 (en) Wetness measuring method and wetness measuring device
JP5575580B2 (en) Steam dryness measuring device
JP2011179708A (en) Method and device for controlling water level in boiler
JP6303473B2 (en) Steam pipe loss measurement system and steam pipe loss measurement method
RU2624593C1 (en) Installation for verifying hot water meters
JP6610283B2 (en) Steam pipe loss measurement system and measurement method
JP6264898B2 (en) Steam pipe loss measurement system and measurement method
RU2534239C1 (en) Method for automatic control of evaporation process in evaporation installation
JP6380170B2 (en) Thermal energy loss evaluation method for steam piping
JP2006162380A (en) Measuring method of input energy of equipment apparatus, and measuring method of steam flow rate
RU2020119404A (en) DEVICE FOR DETERMINING THE PRESSURE OF FLOWING VAPORS AND THE CORRECT METHOD

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161003

R150 Certificate of patent or registration of utility model

Ref document number: 6025111

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250