JP6024850B2 - Fluoride phosphor and light emitting device using the same - Google Patents

Fluoride phosphor and light emitting device using the same Download PDF

Info

Publication number
JP6024850B2
JP6024850B2 JP2016108502A JP2016108502A JP6024850B2 JP 6024850 B2 JP6024850 B2 JP 6024850B2 JP 2016108502 A JP2016108502 A JP 2016108502A JP 2016108502 A JP2016108502 A JP 2016108502A JP 6024850 B2 JP6024850 B2 JP 6024850B2
Authority
JP
Japan
Prior art keywords
light
fluoride
emitting device
solution
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016108502A
Other languages
Japanese (ja)
Other versions
JP2016191057A (en
Inventor
吉田 智一
智一 吉田
優 ▲高▼島
優 ▲高▼島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Publication of JP2016191057A publication Critical patent/JP2016191057A/en
Application granted granted Critical
Publication of JP6024850B2 publication Critical patent/JP6024850B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Luminescent Compositions (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)
  • Led Device Packages (AREA)

Description

本発明は、フッ化物蛍光体及びそれを用いる発光装置に関する。   The present invention relates to a fluoride phosphor and a light emitting device using the same.

発光ダイオード(Light emitting diode:LED)は、従来の光源の代用品としてよく使用される半導体発光素子であり、ディスプレイ灯、警告灯、表示用、照明用灯として有用である。窒化ガリウム(GaN)のようなIII−V族半導体から生産される半導体発光素子と蛍光体とを組み合わせて白色、電球色、橙色等に発光する発光装置が種々開発されている。これらの白色等に発光する発光装置は、光の混色の原理によって色調が調整されている。白色光を放出する方式としては、紫外線を発光する発光素子と、赤色(R)、緑色(G)、青色(B)のそれぞれに発光する3種の蛍光体とを用いる方式と、青色を発光する発光素子と黄色等を発光する蛍光体とを用いる方式とがよく知られている。青色を発光する発光素子と黄色等を発光する蛍光体とを用いる方式の発光装置は、照明、車載照明、ディスプレイ、液晶用バックライト等の幅広い分野で求められている。このうち、ディスプレイ用途に用いる蛍光体としては、色度座標上の広範囲の色を再現するために、発光効率と共に色純度が良いことも求められている。更にディスプレイ用途に用いる蛍光体には、フィルターとの組合せの相性が求められ、発光ピークの半値幅の狭い蛍光体が求められている。   A light emitting diode (LED) is a semiconductor light emitting element that is often used as a substitute for a conventional light source, and is useful as a display lamp, a warning lamp, a display lamp, and an illumination lamp. Various light emitting devices that emit light in white, light bulb color, orange color, and the like by combining a semiconductor light emitting element produced from a group III-V semiconductor such as gallium nitride (GaN) and a phosphor have been developed. The light emitting devices that emit white light and the like are adjusted in color tone by the principle of color mixing of light. As a method for emitting white light, a method using a light emitting element that emits ultraviolet light and three types of phosphors that emit red (R), green (G), and blue (B), and blue light emission. A method using a light emitting element that emits light and a phosphor that emits yellow or the like is well known. Light-emitting devices using a light-emitting element that emits blue light and a phosphor that emits yellow light or the like are required in a wide range of fields such as lighting, in-vehicle lighting, displays, and backlights for liquid crystals. Among these, as a phosphor used for display applications, in order to reproduce a wide range of colors on the chromaticity coordinates, it is required to have good color purity as well as luminous efficiency. Furthermore, the phosphor used for display is required to have compatibility with a filter, and a phosphor having a narrow emission peak half-value width is required.

例えば、青色域に励起帯を有し、発光ピークの半値幅の狭い赤色発光蛍光体として、KTiF:Mn4+、BaTiF:Mn4+、NaTiF:Mn4+、KZrF:Mn4+等の組成を有するMn4+で付活されたフッ化物蛍光体が知られている(例えば、特許文献1参照)。またKSiF:Mn4+の組成を有するフッ化物蛍光体も知られている(例えば、特許文献2参照)。さらにMn4+で付活されたフッ化物錯体蛍光体の励起・発光スペクトルと発光機構も知られている(例えば、非特許文献1参照)。 For example, as a red light emitting phosphor having an excitation band in a blue region and having a narrow emission peak half-value width, K 2 TiF 6 : Mn 4+ , Ba 2 TiF 6 : Mn 4+ , Na 2 TiF 6 : Mn 4+ , K 3 A fluoride phosphor activated by Mn 4+ having a composition such as ZrF 7 : Mn 4+ is known (see, for example, Patent Document 1). A fluoride phosphor having a composition of K 2 SiF 6 : Mn 4+ is also known (see, for example, Patent Document 2). Furthermore, the excitation / emission spectrum and emission mechanism of a fluoride complex phosphor activated with Mn 4+ are also known (see, for example, Non-Patent Document 1).

特表2009−528429号公報Special table 2009-528429 gazette 特開2010−209311号公報JP 2010-209111 A

A. G. Paulusz著 「Effective Mn(IV) Emission in Fluoride Coordination」 J. Electrochemical Soc., 120 N7, 1973, p.942-947A. G. Paulusz "Effective Mn (IV) Emission in Fluoride Coordination" J. Electrochemical Soc., 120 N7, 1973, p.942-947

特にディスプレイ用途に好適とされる、発光ピークの半値幅が狭い赤色発光のMn4+付活のフッ化物蛍光体の実用化が望まれているが、従来品では発光強度の点で充分な発光特性が得られていない。
以上のことから、本発明は従来の問題を解決すべく、優れた発光強度を有する赤色発光の蛍光体及びそれを用いた発光装置を提供することを目的とする。
The practical application of red-emitting Mn 4 + -activated fluoride phosphors with a narrow emission peak half-width that is particularly suitable for display applications is desired. However, conventional products have sufficient emission characteristics in terms of emission intensity. Is not obtained.
In view of the above, an object of the present invention is to provide a red light emitting phosphor having excellent light emission intensity and a light emitting device using the same, in order to solve the conventional problems.

上記の問題点を解決すべく、本発明者らは鋭意検討を重ねた結果、本発明を完成するに到った。本発明は以下の態様を包含する。
本発明の第一の態様は、下記一般式(I)で表される化学組成を有し、重量メジアン径が30μm以上であるフッ化物蛍光体である。
[M1−aMn4+ ] (I)
(式中、Mは、第4族元素及び第14族元素からなる群より選択される少なくとも1種であり、aは0<a<0.2を満たす。)
In order to solve the above-mentioned problems, the present inventors have intensively studied and as a result, the present invention has been completed. The present invention includes the following aspects.
A first aspect of the present invention is a fluoride phosphor having a chemical composition represented by the following general formula (I) and having a weight median diameter of 30 μm or more.
K 2 [M 1-a Mn 4+ a F 6 ] (I)
(In the formula, M is at least one selected from the group consisting of Group 4 elements and Group 14 elements, and a satisfies 0 <a <0.2.)

本発明の第二の態様は、下記一般式(I)で表される化学組成を有し、嵩密度が0.80g/cm以上であるフッ化物蛍光体である。
[M1−aMn4+ ] (I)
(式中、Mは、第4族元素及び第14族元素からなる群より選択される少なくとも1種であり、aは0<a<0.2を満たす。)
The second aspect of the present invention is a fluoride phosphor having a chemical composition represented by the following general formula (I) and having a bulk density of 0.80 g / cm 3 or more.
K 2 [M 1-a Mn 4+ a F 6 ] (I)
(In the formula, M is at least one selected from the group consisting of Group 4 elements and Group 14 elements, and a satisfies 0 <a <0.2.)

本発明の第三の態様は、380nm〜485nmの波長範囲の光を発する光源と、前記フッ化物蛍光体と、を含む発光装置である。
本発明の第四の態様は、前記発光装置を備える画像表示装置である。
A third aspect of the present invention is a light emitting device including a light source that emits light in a wavelength range of 380 nm to 485 nm and the fluoride phosphor.
The 4th aspect of this invention is an image display apparatus provided with the said light-emitting device.

本発明の第五の態様は、4価のマンガンを含む第一の錯イオン及びフッ化水素を少なくとも含む第一の溶液と、カリウムイオン及びフッ化水素を少なくとも含む第二の溶液と、4族元素及び第14族元素からなる群より選択される少なくとも1種並びにフッ素イオンを含む第二の錯イオンを少なくとも含む第三の溶液と、を混合する工程を含む、前記フッ化物蛍光体の製造方法である。   According to a fifth aspect of the present invention, there is provided a first solution containing at least a first complex ion containing tetravalent manganese and hydrogen fluoride, a second solution containing at least a potassium ion and hydrogen fluoride, and a group 4 And a third solution containing at least one second element selected from the group consisting of an element and a group 14 element and a second complex ion containing fluorine ions. It is.

本発明によれば、優れた発光強度を有する赤色発光の蛍光体及びそれを用いた発光装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the red light emission fluorescent substance which has the outstanding light emission intensity, and a light-emitting device using the same can be provided.

本実施形態に係る発光装置の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the light-emitting device which concerns on this embodiment. 本実施形態に係る発光装置の一例を示す概略平面図である。It is a schematic plan view which shows an example of the light-emitting device which concerns on this embodiment.

以下、本発明に係るフッ化物蛍光体、その製造方法及び発光装置について、実施の形態及び実施例を用いて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための、フッ化物蛍光体、その製造方法及び発光装置を例示するものであって、本発明は、フッ化蛍光体、その製造方法及び発光装置を以下のものに特定するものではない。
なお、色名と色度座標との関係、光の波長範囲と単色光の色名との関係等は、JIS Z8110に従う。具体的には、380nm〜455nmが青紫色、455nm〜485nmが青色、485nm〜495nmが青緑色、495nm〜548nmが緑色、548nm〜573nmが黄緑色、573nm〜584nmが黄色、584nm〜610nmが黄赤色、610nm〜780nmが赤色である。
Hereinafter, the fluoride fluorescent substance, the manufacturing method thereof, and the light emitting device according to the present invention will be described with reference to embodiments and examples. However, the embodiment described below exemplifies a fluoride phosphor, a manufacturing method thereof, and a light-emitting device for embodying the technical idea of the present invention. The manufacturing method and the light emitting device are not specified as follows.
The relationship between the color name and the chromaticity coordinates, the relationship between the wavelength range of light and the color name of monochromatic light, and the like comply with JIS Z8110. Specifically, 380 nm to 455 nm is blue purple, 455 nm to 485 nm is blue, 485 nm to 495 nm is blue green, 495 nm to 548 nm is green, 548 nm to 573 nm is yellow green, 573 nm to 584 nm is yellow, 584 nm to 610 nm is yellow red , 610 nm to 780 nm is red.

本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。また「〜」を用いて示された数値範囲は、「〜」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。さらに組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。   In this specification, the term “process” is not limited to an independent process, and is included in the term if the intended purpose of the process is achieved even when it cannot be clearly distinguished from other processes. . Moreover, the numerical range shown using "to" shows the range which includes the numerical value described before and behind "to" as a minimum value and a maximum value, respectively. Further, the content of each component in the composition means the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition.

<フッ化物蛍光体>
本発明のフッ化物蛍光体は、下記一般式(I)で表される化学組成を有し、重量メジアン径が30μm以上である。
[M1−aMn4+ ] (I)
式中、Mは、第4族元素及び第14族元素からなる群より選択される少なくとも1種であり、aは0<a<0.2を満たす。
組成式が一般式(I)で表される化学組成を有し、重量メジアン径が30μm以上であることで、発光ピークの半値幅が狭く、優れた発光強度(輝度)を有するフッ化物蛍光体を構成することができる。重量メジアン径が30μm未満では充分な発光強度が得られない傾向がある。
<Fluoride phosphor>
The fluoride fluorescent substance of the present invention has a chemical composition represented by the following general formula (I), and has a weight median diameter of 30 μm or more.
K 2 [M 1-a Mn 4+ a F 6 ] (I)
In the formula, M is at least one selected from the group consisting of Group 4 elements and Group 14 elements, and a satisfies 0 <a <0.2.
A fluoride phosphor having a chemical composition represented by the general formula (I) and having a weight median diameter of 30 μm or more, a narrow half-value width of the emission peak, and excellent emission intensity (luminance). Can be configured. When the weight median diameter is less than 30 μm, sufficient light emission intensity tends to be not obtained.

フッ化物蛍光体の重量メジアン径は30μm以上であるが、発光強度の観点から、35μm以上であることが好ましく、40μmを超えることがより好ましく、50μmを超えることが更に好ましい。フッ化物蛍光体の重量メジアン径の上限値は特に制限されず、蛍光体と樹脂とを混合する際の作業性および成形性の観点から、100μ以下であることが好ましく、80μm以下であることがより好ましく、70μm以下であることが更に好ましい。発光装置を製造する際に、蛍光体と樹脂との混合および混合物の成形が容易になるためである。重量メジアン径が大きくなりすぎると蛍光体と樹脂との混合および混合物の成形が困難になる虞がある。
本発明において、「重量メジアン径」は、以下のように定義される。重量メジアン径とは、レーザー回折・散乱法により粒度分布を測定して得られる、重量基準粒度分布曲線から求められる値である。具体的には、分散剤を含む水溶液中に蛍光体を分散させ、レーザー回折式粒度分布測定装置(例えば、MALVERN社製MASTER SIZER 2000)により、粒径範囲を0.1μm以上600μm以下として重量基準粒度分布を測定して得られる値である。このうち、重量メジアン径(Dm)は、小径側からの重量累積50%に対応する粒径として求められる。
The weight median diameter of the fluoride phosphor is 30 μm or more, but from the viewpoint of light emission intensity, it is preferably 35 μm or more, more preferably 40 μm, and even more preferably 50 μm. The upper limit of the weight median diameter of the fluoride phosphor is not particularly limited, and is preferably 100 μm or less, and preferably 80 μm or less from the viewpoint of workability and moldability when mixing the phosphor and the resin. More preferably, it is 70 μm or less. This is because when the light emitting device is manufactured, it is easy to mix the phosphor and the resin and to form the mixture. If the weight median diameter is too large, mixing of the phosphor and the resin and molding of the mixture may be difficult.
In the present invention, the “weight median diameter” is defined as follows. The weight median diameter is a value obtained from a weight-based particle size distribution curve obtained by measuring the particle size distribution by a laser diffraction / scattering method. Specifically, the phosphor is dispersed in an aqueous solution containing a dispersant, and the particle size range is set to 0.1 μm or more and 600 μm or less by a laser diffraction particle size distribution measuring apparatus (for example, MASTER SIZER 2000 manufactured by MALVERN). It is a value obtained by measuring the particle size distribution. Among these, a weight median diameter (Dm) is calculated | required as a particle size corresponding to 50% of weight accumulation from a small diameter side.

フッ化物蛍光体の粒度分布は特に制限されない。フッ化物蛍光体の粒度分布は、発光強度と耐久性の観点から、単一ピークの粒度分布を示すことが好ましく、分布幅の狭い単一ピークの粒度分布であることがより好ましい。
フッ化物蛍光体の粒子形状は、例えば、非平板状であることが好ましく、角形粒子状であることがより好ましい。
The particle size distribution of the fluoride phosphor is not particularly limited. The particle size distribution of the fluoride phosphor is preferably a single peak particle size distribution, more preferably a single peak particle size distribution with a narrow distribution width, from the viewpoints of emission intensity and durability.
The particle shape of the fluoride phosphor is, for example, preferably non-tabular, and more preferably rectangular.

フッ化物蛍光体のフィッシャー法(Fischer Sub-Sieve Sizer:F.S.S.S.)により測定される平均粒径は特に制限されない。フッ化物蛍光体のフィッシャー法による平均粒径は、発光強度と耐久性の観点から、20μm以上であることが好ましく、30μm以上であることが更に好ましい。フィッシャー法による平均粒径の上限値は、100μm以下であることが好ましく、80μm以下であることがより好ましい。
フィッシャー法による平均粒径は、例えば、Fisher Scientific社製 Fisher Sub−Sieve Sizer Model95を用いて測定される。
The average particle diameter measured by the Fischer Sub-Sieve Sizer (FSSS) of the fluoride phosphor is not particularly limited. The average particle diameter of the fluoride phosphor by the Fischer method is preferably 20 μm or more, and more preferably 30 μm or more, from the viewpoint of light emission intensity and durability. The upper limit of the average particle diameter by the Fisher method is preferably 100 μm or less, and more preferably 80 μm or less.
The average particle diameter by the Fisher method is measured using, for example, Fisher Sub-Sieve Sizer Model 95 manufactured by Fisher Scientific.

フッ化物蛍光体の嵩密度は特に制限されない。フッ化物蛍光体の嵩密度は、発光強度と耐久性の観点から、0.80g/cm以上であることが好ましく、0.90g/cm以上であることがより好ましく、1.00g/cm以上であることが更に好ましい。また、フッ化物蛍光体の嵩密度は、2.67g/cm以下であることが好ましい。
嵩密度は、例えば、メスシリンダーを用いる通常の測定方法により測定される。以下、嵩密度について具体的に説明する。一般に、粉体の嵩密度は、メスシリンダーに入れた既知重量の粉体試料の体積を測定するか、又はボリュメーターを通して容器内に入れた既知体積の粉体試料の重量を測定するか、若しくは専用の測定用容器を用いることによって求める。これらのうち、メスシリンダーを用いる方法が簡便であるため好ましい。
以下、メスシリンダーを用いる方法について説明する。まず、測定するのに十分な量の試料を準備し、必要に応じて、篩に通す。次に、乾いた一定容量のメスシリンダーに必要量の試料を入れる。ここで、必要に応じて、試料の上面を均す。これらの操作は試料の物性に影響を与えないように静かに行う。そして、体積を最小目盛単位まで読み取り、単位体積当たりの試料の重量を算出することによって嵩密度を求める。この嵩密度は、繰り返し測定することが好ましく、複数回測定し、それら測定値の算術平均値として求められることがより好ましい。
The bulk density of the fluoride phosphor is not particularly limited. The bulk density of the fluoride phosphor is preferably 0.80 g / cm 3 or more, more preferably 0.90 g / cm 3 or more, from the viewpoints of emission intensity and durability, and 1.00 g / cm 3. More preferably, it is 3 or more. The bulk density of the fluoride phosphor is preferably 2.67 g / cm 3 or less.
The bulk density is measured by, for example, a normal measurement method using a graduated cylinder. Hereinafter, the bulk density will be specifically described. In general, the bulk density of a powder is determined by measuring the volume of a powder sample of a known weight placed in a graduated cylinder, or measuring the weight of a powder sample of a known volume placed in a container through a volume meter, or Obtained by using a dedicated measuring container. Among these, the method using a graduated cylinder is preferable because it is simple.
Hereinafter, a method using a graduated cylinder will be described. First, a sufficient amount of sample is prepared for measurement, and passed through a sieve as necessary. Next, the required amount of sample is placed in a dry, constant-volume graduated cylinder. Here, the upper surface of the sample is leveled as necessary. These operations are performed gently so as not to affect the physical properties of the sample. Then, the volume density is obtained by reading the volume to the minimum scale unit and calculating the weight of the sample per unit volume. This bulk density is preferably measured repeatedly, more preferably measured multiple times, and more preferably obtained as an arithmetic average value of the measured values.

フッ化物蛍光体は、発光強度の観点から、重量メジアン径が30μm以上且つ嵩密度が0.80g/cm以上であることが好ましく、重量メジアン径が35μm以上且つ嵩密度が0.90g/cm以上であることがより好ましく、重量メジアン径が40μmを超え且つ嵩密度が0.90g/cm以上であることが更に好ましく、重量メジアン径が50μmを超え且つ嵩密度が0.90g/cm以上であることが特に好ましい。 From the viewpoint of emission intensity, the fluoride phosphor preferably has a weight median diameter of 30 μm or more and a bulk density of 0.80 g / cm 3 or more, a weight median diameter of 35 μm or more and a bulk density of 0.90 g / cm. more preferably 3 or more, more preferably has a weight median diameter of and the bulk density exceeded 40μm is 0.90 g / cm 3 or more, and bulk density exceeded 50μm weight median diameter 0.90 g / cm It is particularly preferable that the number is 3 or more.

また、本発明のフッ化物蛍光体は、下記一般式(I)で表される化学組成を有し、嵩密度が0.80g/cm以上である。
[M1−aMn4+ ] (I)
式中、Mは、第4族元素及び第14族元素からなる群より選択される少なくとも1種であり、aは0<a<0.2を満たす。
組成式が一般式(I)で表される化学組成を有し、嵩密度が0.80g/cm以上であることで、発光ピークの半値幅が狭く、優れた発光強度(輝度)を有するフッ化物蛍光体を構成することができる。嵩密度が0.80g/cm未満では充分な発光強度が得られない傾向がある。
Moreover, the fluoride fluorescent substance of the present invention has a chemical composition represented by the following general formula (I) and a bulk density of 0.80 g / cm 3 or more.
K 2 [M 1-a Mn 4+ a F 6 ] (I)
In the formula, M is at least one selected from the group consisting of Group 4 elements and Group 14 elements, and a satisfies 0 <a <0.2.
The composition formula has the chemical composition represented by the general formula (I), and the bulk density is 0.80 g / cm 3 or more, so that the half-value width of the emission peak is narrow and the emission intensity (luminance) is excellent. A fluoride phosphor can be constructed. When the bulk density is less than 0.80 g / cm 3 , there is a tendency that sufficient light emission intensity cannot be obtained.

フッ化物蛍光体の組成は一般式(I)で表される。フッ化物蛍光体は、Mn4+で付活された蛍光体であり、可視光の短波長領域の光を吸収して赤色に発光可能である。可視光の短波長領域の光である励起光は、主に青色領域の光であることが好ましい。励起光は、具体的には、強度スペクトルの主ピーク波長が380nm〜500nmの範囲に存在することが好ましく、380nm〜485nmの範囲に存在することがより好ましく、400nm〜485nmの範囲に存在することが更に好ましく、440nm〜480nmの範囲に存在することが特に好ましい。
またフッ化物蛍光体の発光波長は、励起光よりも長波長であって、赤色であれば特に制限されない。フッ化物蛍光体の発光スペクトルは、ピーク波長が610nm〜650nmの範囲に存在することが好ましい。また発光スペクトルの半値幅は、小さいことが好ましく、具体的には10nm以下であることが好ましい。
The composition of the fluoride phosphor is represented by the general formula (I). The fluoride phosphor is a phosphor activated by Mn 4+ and can absorb red light in the short wavelength region of visible light and emit red light. The excitation light that is light in the short wavelength region of visible light is preferably mainly light in the blue region. Specifically, the excitation light preferably has a main peak wavelength of the intensity spectrum in the range of 380 nm to 500 nm, more preferably in the range of 380 nm to 485 nm, and in the range of 400 nm to 485 nm. Is more preferable, and it is particularly preferable to exist in the range of 440 nm to 480 nm.
The emission wavelength of the fluoride phosphor is not particularly limited as long as it is longer than the excitation light and is red. The emission spectrum of the fluoride phosphor preferably has a peak wavelength in the range of 610 nm to 650 nm. The half width of the emission spectrum is preferably small, specifically 10 nm or less.

一般式(I)におけるMは、第4族元素及び第14族元素からなる群より選択される少なくとも1種であり、Mは、発光特性の観点から、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)、ケイ素(Si)、ゲルマニウム(Ge)及びスズ(Sn)からなる群より選択される少なくとも1種であることが好ましく、ケイ素(Si)、又はケイ素(Si)及びゲルマニウム(Ge)を含むことがより好ましく、ケイ素(Si)、又はケイ素(Si)及びゲルマニウム(Ge)であることが更に好ましい。
Mがケイ素(Si)、又はケイ素(Si)及びゲルマニウム(Ge)を含む場合、Si及びGeの少なくとも一方の一部が、Ti、Zr及びHfを含む第4族元素、並びにC及びSnを含む第14族元素からなる群より選ばれる少なくとも1種で置換されていてもよい。
M in the general formula (I) is at least one selected from the group consisting of Group 4 elements and Group 14 elements, and M is titanium (Ti), zirconium (Zr), It is preferably at least one selected from the group consisting of hafnium (Hf), silicon (Si), germanium (Ge), and tin (Sn), silicon (Si), or silicon (Si) and germanium (Ge) It is more preferable that silicon (Si) or silicon (Si) and germanium (Ge) are included.
When M includes silicon (Si), or silicon (Si) and germanium (Ge), a part of at least one of Si and Ge includes a Group 4 element including Ti, Zr, and Hf, and C and Sn It may be substituted with at least one selected from the group consisting of Group 14 elements.

フッ化物蛍光体は、上記一般式(I)で表される化学組成を有するが、カリウムイオン(K)の一部が、Li、Na、Rb、Cs及びNH からなる群より選択される少なくとも1種のカチオンで置換されていてもよい。すなわち、フッ化物蛍光体は、下記一般式(Ia)で表される化学組成を有していてもよい。
[M1−aMn4+ ] (Ia)
式中、Aは、少なくともKを含み、Li、Na、Rb、Cs及びNH からなる群より選択される少なくとも1種を含んでいてもよいカチオンであり、Mは、第4族元素及び第14族元素からなる群より選択される少なくとも1種であり、aは0<a<0.2を満たす。
The fluoride phosphor has a chemical composition represented by the above general formula (I), but a part of potassium ions (K + ) is composed of Li + , Na + , Rb + , Cs + and NH 4 +. It may be substituted with at least one cation selected from the group. That is, the fluoride fluorescent material may have a chemical composition represented by the following general formula (Ia).
A 2 [M 1-a Mn 4+ a F 6 ] (Ia)
In the formula, A is a cation containing at least K + , and optionally containing at least one selected from the group consisting of Li + , Na + , Rb + , Cs + and NH 4 + , and M is It is at least one selected from the group consisting of Group 4 elements and Group 14 elements, and a satisfies 0 <a <0.2.

フッ化物蛍光体は、例えば、従来公知の発光装置に使用することができる。従来公知の発光装置としては、例えば、蛍光ランプ等の照明器具、ディスプレイやレーダ等の表示装置、液晶用バックライト等が挙げられる。中でも、フッ化物蛍光体はディスプレイ(好ましくは、液晶表示装置)用の発光装置に用いることが好ましい。   The fluoride phosphor can be used, for example, in a conventionally known light emitting device. Examples of conventionally known light emitting devices include lighting devices such as fluorescent lamps, display devices such as displays and radars, and backlights for liquid crystals. Among these, the fluoride fluorescent material is preferably used for a light emitting device for a display (preferably a liquid crystal display device).

<フッ化物蛍光体の製造方法>
フッ化物粒子の製造方法は特に制限されない。フッ化物粒子は、例えば、4価のマンガンを含む第一の錯イオン及びフッ化水素を少なくとも含む第一の溶液と、カリウムイオン及びフッ化水素を少なくとも含む第二の溶液と、第4族元素及び第14族元素からなる群より選択される少なくとも1種並びにフッ素イオンを含む第二の錯イオンを少なくとも含む第三の溶液とを混合する工程を含む製造方法で、製造することができる。
第一の溶液と、第二の溶液と、第三の溶液とを混合することで、所望の組成を有し、所望の重量メジアン径を有するフッ化物蛍光体を、優れた生産性で簡便に製造することができる。
<Method for producing fluoride phosphor>
The method for producing fluoride particles is not particularly limited. The fluoride particles include, for example, a first solution containing at least a first complex ion containing tetravalent manganese and hydrogen fluoride, a second solution containing at least a potassium ion and hydrogen fluoride, and a Group 4 element. And at least one selected from the group consisting of Group 14 elements and a third solution containing at least a second complex ion containing fluorine ions.
By mixing the first solution, the second solution, and the third solution, a fluoride phosphor having a desired composition and a desired weight median diameter can be easily obtained with excellent productivity. Can be manufactured.

(第一の溶液)
第一の溶液(以下「溶液A」ともいう)は、4価のマンガンを含む第一の錯イオンと、フッ化水素とを少なくとも含み、必要に応じてその他の成分を含んでいてもよい。第一の溶液は、例えば、4価のマンガン源を含むフッ化水素酸の水溶液として得られる。マンガン源は、マンガンを含む化合物であれば特に制限はされない。第一の溶液を構成可能なマンガン源として、具体的には、KMnF、KMnO、KMnCl等を挙げることができる。中でも、結晶格子を歪ませて不安定化させる傾向にある塩素を含まないこと、付活することのできる酸化数(4価)を維持しながら、MnF錯イオンとしてフッ化水素酸中に安定して存在することができること等から、KMnFが好ましい。なお、マンガン源のうち、カリウムを含むものは、第二溶液に含まれるカリウム源を兼ねることができる。
第一の溶液を構成するマンガン源は、1種単独で用いても2種以上を併用してもよい。
(First solution)
The first solution (hereinafter also referred to as “solution A”) contains at least a first complex ion containing tetravalent manganese and hydrogen fluoride, and may contain other components as necessary. The first solution is obtained, for example, as an aqueous solution of hydrofluoric acid containing a tetravalent manganese source. The manganese source is not particularly limited as long as it is a compound containing manganese. Specific examples of the manganese source that can constitute the first solution include K 2 MnF 6 , KMnO 4 , and K 2 MnCl 6 . Above all, it is stable in hydrofluoric acid as a MnF 6 complex ion while maintaining the oxidation number (tetravalent) that can be activated without containing chlorine, which tends to destabilize the crystal lattice. Therefore, K 2 MnF 6 is preferable. In addition, among the manganese sources, those containing potassium can also serve as the potassium source contained in the second solution.
Manganese sources constituting the first solution may be used alone or in combination of two or more.

第一の溶液におけるフッ化水素濃度の下限値は、通常30重量%以上、好ましくは35重量%以上、より好ましくは40重量%以上である。また、第一の溶液におけるフッ化水素濃度の上限値は、通常70重量%以下、好ましくは65重量%以下、より好ましくは60重量%以下である。フッ化水素濃度が30重量%以上であると、第一の溶液を構成するマンガン源(例えば、KMnF)の加水分解に対する安定性が向上し、第一の溶液における4価のマンガン濃度の変動が抑制される。これにより得られるフッ化物蛍光体に含まれるマンガン付活量を容易に制御することができ、フッ化物蛍光体における発光効率のバラつき(変動)を抑制することができる傾向がある。またフッ化水素濃度が70重量%以下であると、第一の溶液の沸点の低下が抑制され、フッ化水素ガスの発生が抑制される。これにより、第一の溶液におけるフッ化水素濃度を容易に制御することができ、得られるフッ化物蛍光体の粒子径のバラつき(変動)を効果的に抑制することができる。 The lower limit of the hydrogen fluoride concentration in the first solution is usually 30% by weight or more, preferably 35% by weight or more, more preferably 40% by weight or more. Moreover, the upper limit of the hydrogen fluoride concentration in the first solution is usually 70% by weight or less, preferably 65% by weight or less, more preferably 60% by weight or less. When the hydrogen fluoride concentration is 30% by weight or more, the stability of the manganese source (for example, K 2 MnF 6 ) constituting the first solution to hydrolysis is improved, and the tetravalent manganese concentration in the first solution is increased. Fluctuations are suppressed. As a result, the amount of manganese activation contained in the resulting fluoride phosphor can be easily controlled, and variations in the luminous efficiency of the fluoride phosphor tend to be suppressed. Further, when the hydrogen fluoride concentration is 70% by weight or less, a decrease in the boiling point of the first solution is suppressed, and generation of hydrogen fluoride gas is suppressed. Thereby, the hydrogen fluoride concentration in the first solution can be easily controlled, and the variation (variation) in the particle diameter of the obtained fluoride phosphor can be effectively suppressed.

第一の溶液における第一の錯イオンの濃度は特に制限されない。第一の溶液における第一の錯イオン濃度の下限値は、通常0.1重量%以上、好ましくは0.3重量%以上、より好ましくは0.5重量%以上である。また、第一の溶液における第一の錯イオン濃度の上限値は、通常5重量%以下、好ましくは3重量%以下、より好ましくは2重量%以下である。   The concentration of the first complex ion in the first solution is not particularly limited. The lower limit of the first complex ion concentration in the first solution is usually 0.1% by weight or more, preferably 0.3% by weight or more, more preferably 0.5% by weight or more. The upper limit of the first complex ion concentration in the first solution is usually 5% by weight or less, preferably 3% by weight or less, more preferably 2% by weight or less.

(第二の溶液)
第二の溶液(以下「溶液B」ともいう)は、カリウムイオンとフッ化水素とを少なくとも含み、必要に応じてその他の成分を含んでいてもよい。第二の溶液は、例えば、カリウムイオンを含むフッ化水素酸の水溶液として得られる。第二の溶液を構成可能なカリウムイオンを含むカリウム源として、具体的には、KF、KHF、KOH、KCl、KBr、KI、酢酸カリウム、KCO等の水溶性カリウム塩を挙げることができる。中でも溶液中のフッ化水素濃度を下げることなく溶解することができ、また、溶解熱が小さく安全性が高いことから、KHFが好ましい。
第二の溶液を構成するカリウム源は、1種を単独で用いても2種以上を併用してもよい。また、第二の溶液を構成するカリウム源は、4価のマンガン源を実質的に含まないことが好ましい。
(Second solution)
The second solution (hereinafter also referred to as “solution B”) contains at least potassium ions and hydrogen fluoride, and may contain other components as necessary. The second solution is obtained, for example, as an aqueous solution of hydrofluoric acid containing potassium ions. Specific examples of potassium sources containing potassium ions that can constitute the second solution include water-soluble potassium salts such as KF, KHF 2 , KOH, KCl, KBr, KI, potassium acetate, and K 2 CO 3. Can do. Among these, KHF 2 is preferable because it can be dissolved without lowering the concentration of hydrogen fluoride in the solution, and the heat of dissolution is small and the safety is high.
The potassium source which comprises a 2nd solution may be used individually by 1 type, or may use 2 or more types together. Moreover, it is preferable that the potassium source which comprises a 2nd solution does not contain a tetravalent manganese source substantially.

第二の溶液におけるフッ化水素濃度の下限値は、通常30重量%以上、好ましくは35重量%以上、より好ましくは40重量%以上である。また、第二の溶液におけるフッ化水素濃度の上限値は、通常70重量%以下、好ましくは65重量%以下、より好ましくは60重量%以下である。
また、第二の溶液におけるカリウムイオン濃度の下限値は、通常10重量%以上、好ましくは12.5重量%以上、より好ましくは15重量%以上である。また、第二の溶液におけるカリウムイオン濃度の上限値は、通常35重量%以下、好ましくは32.5重量%以下、より好ましくは30重量%以下である。カリウムイオン濃度が15重量%以上であると、フッ化物蛍光体の収率が向上する傾向がある。またカリウムイオン濃度が30重量%以下であると、得られるフッ化物蛍光体の粒子径がより大きくなる傾向がある。
The lower limit of the hydrogen fluoride concentration in the second solution is usually 30% by weight or more, preferably 35% by weight or more, more preferably 40% by weight or more. The upper limit of the hydrogen fluoride concentration in the second solution is usually 70% by weight or less, preferably 65% by weight or less, more preferably 60% by weight or less.
Further, the lower limit value of the potassium ion concentration in the second solution is usually 10% by weight or more, preferably 12.5% by weight or more, more preferably 15% by weight or more. The upper limit value of the potassium ion concentration in the second solution is usually 35% by weight or less, preferably 32.5% by weight or less, more preferably 30% by weight or less. When the potassium ion concentration is 15% by weight or more, the yield of the fluoride phosphor tends to be improved. Further, when the potassium ion concentration is 30% by weight or less, the particle diameter of the obtained fluoride phosphor tends to be larger.

(第三の溶液)
第三の溶液(以下「溶液C」ともいう)は、第4族元素及び第14族元素からなる群より選択される少なくとも1種と、フッ素イオンとを含む第二の錯イオンを少なくとも含み、必要に応じてその他の成分を含んでいてもよい。第三の溶液は、例えば、第二の錯イオンを含む水溶液として得られる。
第二の錯イオンは、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)、ケイ素(Si)、ゲルマニウム(Ge)及びスズ(Sn)からなる群より選択される少なくとも1種を含むことが好ましく、ケイ素(Si)、又はケイ素(Si)及びゲルマニウム(Ge)を含むことがより好ましく、フッ化ケイ素錯イオンであることが更に好ましい。
(Third solution)
The third solution (hereinafter also referred to as “solution C”) includes at least a second complex ion including at least one selected from the group consisting of Group 4 elements and Group 14 elements, and fluorine ions, Other components may be included as necessary. The third solution is obtained, for example, as an aqueous solution containing the second complex ion.
The second complex ion includes at least one selected from the group consisting of titanium (Ti), zirconium (Zr), hafnium (Hf), silicon (Si), germanium (Ge), and tin (Sn). Preferably, silicon (Si) or silicon (Si) and germanium (Ge) are more preferably contained, and a silicon fluoride complex ion is further preferred.

例えば、第二の錯イオンがケイ素(Si)を含む場合、第二の錯イオン源は、ケイ素とフッ素とを含み、溶液への溶解性に優れる化合物であることが好ましい。第二の錯イオン源として具体的には、HSiF、NaSiF、(NHSiF、RbSiF、CsSiF等を挙げることができる。これらの中でも、水への溶解度が高く、不純物としてアルカリ金属元素を含まないことにより、HSiFが好ましい。
第三の溶液を構成する第二の錯イオン源は、1種を単独で用いて2種以上を併用してもよい。
For example, when the second complex ion includes silicon (Si), the second complex ion source is preferably a compound that includes silicon and fluorine and has excellent solubility in a solution. Specific examples of the second complex ion source include H 2 SiF 6 , Na 2 SiF 6 , (NH 4 ) 2 SiF 6 , Rb 2 SiF 6 , and Cs 2 SiF 6 . Among these, H 2 SiF 6 is preferable because it has high solubility in water and does not contain an alkali metal element as an impurity.
The 2nd complex ion source which comprises a 3rd solution may be used individually by 1 type, and may use 2 or more types together.

第三の溶液における第二の錯イオン濃度の下限値は、通常10重量%以上、好ましくは15重量%以上、より好ましくは20重量%以上である。また、第三の溶液における第二の錯イオン濃度の上限値は、通常60重量%以下、好ましくは55重量%以下、より好ましくは50重量%以下である。   The lower limit of the second complex ion concentration in the third solution is usually 10% by weight or more, preferably 15% by weight or more, more preferably 20% by weight or more. The upper limit of the second complex ion concentration in the third solution is usually 60% by weight or less, preferably 55% by weight or less, more preferably 50% by weight or less.

第一の溶液、第二溶液及び第三の溶液の混合方法としては特に制限はなく、第一の溶液を攪拌しながら第二の溶液及び第三の溶液を添加して混合してもよく、第三の溶液を攪拌しながら第一溶液及び第二の溶液を添加して混合してもよい。また、第一の溶液、第二溶液及び第三の溶液をそれぞれ容器に投入して攪拌混合してもよい。
中でも、第一の溶液、第二溶液及び第三の溶液の混合方法は、所望の重量メジアン径を有するフッ化物蛍光体を効率よく得る観点から、第一の溶液を攪拌しながら第二の溶液及び第三の溶液を添加して混合する方法であることが好ましい。
The mixing method of the first solution, the second solution, and the third solution is not particularly limited, and the second solution and the third solution may be added and mixed while stirring the first solution, The first solution and the second solution may be added and mixed while stirring the third solution. Alternatively, the first solution, the second solution, and the third solution may be charged into a container and mixed with stirring.
Among them, the mixing method of the first solution, the second solution, and the third solution is the second solution while stirring the first solution from the viewpoint of efficiently obtaining a fluoride phosphor having a desired weight median diameter. And a method of adding and mixing the third solution.

第一の溶液、第二溶液及び第三の溶液を混合することにより、所定の割合で第一の錯イオンと、カリウムイオンと、第二の錯イオンとが反応して目的のフッ化物蛍光体の結晶が析出する。析出した結晶は濾過等により固液分離して回収することができる。またエタノール、イソプロピルアルコール、水、アセトン等の溶媒で洗浄してもよい。更に乾燥処理を行ってもよく、通常50℃以上、好ましくは55℃以上、より好ましくは60℃以上、また、通常110℃以下、好ましくは100℃以下、より好ましくは90℃以下で乾燥する。乾燥時間としては、フッ化物蛍光体に付着した水分を蒸発することができれば、特に制限はなく、例えば、10時間程度である。
なお、第一の溶液、第二溶液及び第三の溶液の混合に際しては、前述の蛍光体原料である第一〜第三の溶液の仕込み組成と得られるフッ化物蛍光体の組成とのずれを考慮して、生成物としてのフッ化物蛍光体の組成が目的の組成となるように、第一の溶液、第二の溶液及び第三の溶液の混合割合を適宜調整することが好ましい。
By mixing the first solution, the second solution, and the third solution, the first complex ion, potassium ion, and the second complex ion react with each other at a predetermined ratio, and the target fluoride phosphor. Crystallized out. The precipitated crystals can be recovered by solid-liquid separation by filtration or the like. Moreover, you may wash | clean with solvents, such as ethanol, isopropyl alcohol, water, and acetone. Further, a drying treatment may be performed, and drying is usually performed at 50 ° C. or higher, preferably 55 ° C. or higher, more preferably 60 ° C. or higher, and usually 110 ° C. or lower, preferably 100 ° C. or lower, more preferably 90 ° C. or lower. The drying time is not particularly limited as long as the water adhering to the fluoride phosphor can be evaporated, and is, for example, about 10 hours.
When mixing the first solution, the second solution, and the third solution, there is a difference between the charged composition of the first to third solutions, which are the phosphor raw materials, and the composition of the obtained fluoride phosphor. In consideration of the above, it is preferable to appropriately adjust the mixing ratio of the first solution, the second solution, and the third solution so that the composition of the fluoride phosphor as a product becomes a target composition.

<発光装置>
本発明の発光装置は、380nm〜485nmの波長範囲の光を発する光源と、前記フッ化物蛍光体とを含む。発光装置は、必要に応じて、その他の構成部材を更に含んでいてもよい。発光装置が前記フッ化物蛍光体を含むことで、優れた発光効率を達成することができる。
<Light emitting device>
The light emitting device of the present invention includes a light source that emits light in a wavelength range of 380 nm to 485 nm and the fluoride phosphor. The light emitting device may further include other components as necessary. When the light emitting device contains the fluoride fluorescent material, excellent light emission efficiency can be achieved.

(光源)
光源(以下、「励起光源」ともいう)としては、可視光の短波長領域である380nm〜485nmの波長範囲の光を発するものを使用する。光源として好ましくは420nm〜485nmの波長範囲、より好ましくは440nm〜480nmの波長範囲に発光ピーク波長を有するものである。これにより、フッ化物蛍光体を効率よく励起し、可視光を有効活用することができる。また当該波長範囲の励起光源を用いることにより、発光強度が高い発光装置を提供することができる。
(light source)
As the light source (hereinafter also referred to as “excitation light source”), a light source that emits light in a wavelength range of 380 nm to 485 nm, which is a short wavelength region of visible light, is used. The light source preferably has a light emission peak wavelength in the wavelength range of 420 nm to 485 nm, more preferably in the wavelength range of 440 nm to 480 nm. Thereby, a fluoride fluorescent substance can be excited efficiently and visible light can be used effectively. In addition, a light-emitting device with high emission intensity can be provided by using an excitation light source in the wavelength range.

励起光源には半導体発光素子(以下単に「発光素子」ともいう)を用いることが好ましい。励起光源に半導体発光素子を用いることによって、高効率で入力に対する出力のリニアリティが高く、機械的衝撃にも強い安定した発光装置を得ることができる。
発光素子は、可視光の短波長領域の光を発するものを使用することができる。例えば、青色、緑色の発光素子としては、ZnSeや窒化物系半導体(InAlGa1−X−YN、0≦X、0≦Y、X+Y≦1)、GaPを用いたものを用いることができる。
It is preferable to use a semiconductor light emitting element (hereinafter also simply referred to as “light emitting element”) as the excitation light source. By using a semiconductor light emitting element as the excitation light source, a stable light emitting device with high efficiency, high output linearity with respect to input, and strong against mechanical shock can be obtained.
A light emitting element that emits light in a short wavelength region of visible light can be used. For example, the blue, the green light emitting element, ZnSe and nitride semiconductor (In X Al Y Ga 1- X-Y N, 0 ≦ X, 0 ≦ Y, X + Y ≦ 1), used after using GaP be able to.

(フッ化物蛍光体)
発光装置に含まれるフッ化物蛍光体の詳細については既述の通りである。フッ化物蛍光体は、例えば、励起光源を覆う封止樹脂に含有されることで発光装置を構成することができる。励起光源がフッ化物蛍光体を含有する封止樹脂で覆われた発光装置では、励起光源から出射された光の一部がフッ化物蛍光体に吸収されて、赤色光として放射される。380nm〜485nmの波長範囲の光を発する励起光源を用いることで、放射される光をより有効に利用することができる。よって発光装置から出射される光の損失を少なくすることができ、高効率の発光装置を提供することができる。
発光装置に含まれるフッ化物蛍光体の含有量は特に制限されず、励起光源等に応じて適宜選択することができる。
(Fluoride phosphor)
Details of the fluoride fluorescent material included in the light emitting device are as described above. For example, a fluoride phosphor can be included in a sealing resin that covers an excitation light source to constitute a light emitting device. In the light emitting device in which the excitation light source is covered with the sealing resin containing the fluoride phosphor, a part of the light emitted from the excitation light source is absorbed by the fluoride phosphor and emitted as red light. By using an excitation light source that emits light in a wavelength range of 380 nm to 485 nm, emitted light can be used more effectively. Therefore, loss of light emitted from the light emitting device can be reduced, and a highly efficient light emitting device can be provided.
The content of the fluoride phosphor contained in the light emitting device is not particularly limited and can be appropriately selected according to the excitation light source and the like.

(他の蛍光体)
発光装置は、前記フッ化物蛍光体に加えて、他の蛍光体を更に含むことが好ましい。他の蛍光体は、光源からの光を吸収し、異なる波長の光に波長変換するものであればよい。他の蛍光体は、例えば、前記フッ化物蛍光体と同様に封止樹脂に含有させて発光装置を構成することができる。
他の蛍光体としては例えば、Eu、Ce等のランタノイド系元素で主に付活される窒化物系蛍光体、酸窒化物系蛍光体、サイアロン系蛍光体;Eu等のランタノイド系、Mn等の遷移金属系の元素により主に付活されるアルカリ土類ハロゲンアパタイト蛍光体、アルカリ土類金属ホウ酸ハロゲン蛍光体、アルカリ土類金属アルミン酸塩蛍光体、アルカリ土類ケイ酸塩、アルカリ土類硫化物、アルカリ土類チオガレート、アルカリ土類窒化ケイ素、ゲルマン酸塩;Ce等のランタノイド系元素で主に付活される希土類アルミン酸塩、希土類ケイ酸塩;及びEu等のランタノイド系元素で主に付活される有機及び有機錯体等からなる群より選ばれる少なくとも1種以上であることが好ましい。
他の蛍光体として具体的には例えば、(Ca,Sr,Ba)SiO:Eu、(Y,Gd)(Ga,Al)12:Ce、(Si,Al)(O,N):Eu(β−sialon)、SrGa:Eu、(Ca,Sr)Si:Eu、CaAlSiN:Eu、(Ca,Sr)AlSiN:Eu、LuAl12:Ce、(Ca,Sr,Ba,Zn)MgSi16(F,Cl,Br,I):Eu等が挙げられる。
他の蛍光体を含むことにより、種々の色調の発光装置を提供することができる。
発光装置が他の蛍光体の更に含む場合、その含有量は特に制限されず、所望の発光特性が得られるように適宜調整すればよい。
(Other phosphors)
It is preferable that the light emitting device further includes another phosphor in addition to the fluoride phosphor. Other phosphors only need to absorb light from the light source and perform wavelength conversion to light of different wavelengths. Other phosphors can be included in a sealing resin in the same manner as the fluoride phosphor, for example, to constitute a light emitting device.
Examples of other phosphors include nitride phosphors, oxynitride phosphors, sialon phosphors mainly activated by lanthanoid elements such as Eu and Ce; lanthanoid phosphors such as Eu, and Mn. Alkaline earth halogen apatite phosphor, alkaline earth metal borate phosphor, alkaline earth metal aluminate phosphor, alkaline earth silicate, alkaline earth mainly activated by transition metal elements Sulfide, alkaline earth thiogallate, alkaline earth silicon nitride, germanate; rare earth aluminate, rare earth silicate mainly activated by lanthanoid elements such as Ce; and mainly lanthanoid elements such as Eu It is preferably at least one selected from the group consisting of organics and organic complexes activated by.
Specific examples of other phosphors include (Ca, Sr, Ba) 2 SiO 4 : Eu, (Y, Gd) 3 (Ga, Al) 5 O 12 : Ce, (Si, Al) 6 (O, N) 8 : Eu (β-sialon), SrGa 2 S 4 : Eu, (Ca, Sr) 2 Si 5 N 8 : Eu, CaAlSiN 3 : Eu, (Ca, Sr) AlSiN 3 : Eu, Lu 3 Al 5 O 12 : Ce, (Ca, Sr, Ba, Zn) 8 MgSi 4 O 16 (F, Cl, Br, I) 2 : Eu and the like.
By including other phosphors, light emitting devices of various colors can be provided.
When the light emitting device further includes other phosphors, the content is not particularly limited, and may be appropriately adjusted so as to obtain desired light emission characteristics.

発光装置が他の蛍光体を更に含む場合、緑色蛍光体を含むことが好ましく、380nm〜485nmの波長範囲の光を吸収し。495nm〜573nmの波長範囲の光を発する緑色蛍光体を含むことがより好ましい。発光装置が緑色蛍光体を含むことで、液晶表示装置に、より好適に適用することができる。   When the light emitting device further includes another phosphor, it preferably includes a green phosphor and absorbs light in a wavelength range of 380 nm to 485 nm. It is more preferable to include a green phosphor that emits light in the wavelength range of 495 nm to 573 nm. When the light emitting device includes a green phosphor, the light emitting device can be more suitably applied to a liquid crystal display device.

発光装置の形式は特に制限されず、通常用いられる形式から適宜選択することができる。発光装置の形式としては、砲弾型、表面実装型等を挙げることができる。一般に砲弾型とは、外面を構成する樹脂の形状を砲弾型に形成したものを指す。また表面実装型とは、凹状の収納部内に光源なる発光素子及び樹脂を充填して形成されたものを示す。さらに発光装置の形式としては、平板状の実装基板上に光源となる発光素子を実装し、その発光素子を覆うように、フッ化物蛍光体を含有した封止樹脂をレンズ状等に形成した発光装置等も挙げられる。   The form of the light emitting device is not particularly limited, and can be appropriately selected from commonly used forms. As a type of the light emitting device, a shell type, a surface mount type, and the like can be given. In general, the bullet shape refers to a shape in which the shape of the resin constituting the outer surface is formed into a bullet shape. The surface-mounting type refers to a surface-mounted type that is formed by filling a light-emitting element serving as a light source and a resin in a concave storage portion. Furthermore, as a form of the light emitting device, a light emitting element as a light source is mounted on a flat mounting substrate, and a light emitting device in which a sealing resin containing a fluoride phosphor is formed in a lens shape so as to cover the light emitting element. An apparatus etc. are also mentioned.

以下、本発明の実施の形態に係る発光装置の一例を図面に基づいて説明する。図1は、本発明に係る発光装置の一例を示す概略断面図である。図2は、本発明に係る発光装置の一例を示す概略平面図である。この発光装置は、表面実装型発光装置の一例である。
発光装置100は、可視光の短波長側(例えば380nm〜485nm)の光を発する窒化ガリウム系化合物半導体の発光素子10と、発光素子10を載置する成形体40と、を有する。成形体40は第1のリード20と第2のリード30とを有しており、熱可塑性樹脂又は熱硬化性樹脂により一体成形されている。成形体40は底面と側面を持つ凹部を形成しており、凹部の底面に発光素子10が載置されている。発光素子10は一対の正負の電極を有しており、その一対の正負の電極は第1のリード20及び第2のリード30とワイヤ60を介して電気的に接続されている。発光素子10は封止部材50により封止されている。封止部材50はエポキシ樹脂、シリコーン樹脂、エポキシ変性シリコーン樹脂、変成シリコーン樹脂等の熱硬化性樹脂を用いることが好ましい。封止部材50は発光素子10からの光を波長変換するフッ化物蛍光体70を含有している。
Hereinafter, an example of a light emitting device according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing an example of a light emitting device according to the present invention. FIG. 2 is a schematic plan view showing an example of the light emitting device according to the present invention. This light-emitting device is an example of a surface-mounted light-emitting device.
The light emitting device 100 includes a light emitting element 10 of a gallium nitride compound semiconductor that emits light on a short wavelength side of visible light (for example, 380 nm to 485 nm), and a molded body 40 on which the light emitting element 10 is mounted. The molded body 40 has a first lead 20 and a second lead 30 and is integrally formed of a thermoplastic resin or a thermosetting resin. The molded body 40 has a recess having a bottom surface and side surfaces, and the light emitting element 10 is placed on the bottom surface of the recess. The light emitting element 10 has a pair of positive and negative electrodes, and the pair of positive and negative electrodes are electrically connected to the first lead 20 and the second lead 30 via the wire 60. The light emitting element 10 is sealed with a sealing member 50. The sealing member 50 is preferably made of a thermosetting resin such as an epoxy resin, a silicone resin, an epoxy-modified silicone resin, or a modified silicone resin. The sealing member 50 contains a fluoride phosphor 70 that converts the wavelength of light from the light emitting element 10.

<画像表示装置>
画像表示装置は、前記発光装置の少なくとも1つを備える。画像表示装置は、発光装置を備えるものであれば特に制限されず、従来公知の画像表示装置から適宜選択することができる。画像表示装置は例えば、前記発光装置に加えて、カラーフィルター部材、光透過制御部材等を備えて構成される。
画像表示装置は、前記発光装置を備えることで、輝度と色再現範囲に優れる。
<Image display device>
The image display device includes at least one of the light emitting devices. The image display device is not particularly limited as long as it includes a light emitting device, and can be appropriately selected from conventionally known image display devices. The image display device includes, for example, a color filter member, a light transmission control member, and the like in addition to the light emitting device.
The image display device is excellent in luminance and color reproduction range by including the light emitting device.

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

(実施例1)
MnFを16.25g秤量し、それを55重量%HF水溶液1000gに溶解して、溶液Aを調製した。またKHFを195.10g秤量し、それを55重量%HF水溶液200gに溶解させて溶液Bを調製した。40重量%HSiF水溶液450gを秤量したものを溶液Cとした。
次に溶液Aを、室温で撹拌しながら、約20分かけて溶液Bと溶液Cとをそれぞれ滴下した。得られた沈殿物を固液分離後、IPA(イソプロピルアルコール)洗浄を行い、70℃で10時間乾燥することで、実施例1のフッ化物蛍光体を作製した。
Example 1
A solution A was prepared by weighing 16.25 g of K 2 MnF 6 and dissolving it in 1000 g of a 55 wt% HF aqueous solution. Further, 195.10 g of KHF 2 was weighed and dissolved in 200 g of a 55 wt% HF aqueous solution to prepare a solution B. A solution C was prepared by weighing 450 g of a 40 wt% H 2 SiF 6 aqueous solution.
Next, Solution A and Solution C were added dropwise over about 20 minutes while stirring Solution A at room temperature. The obtained precipitate was subjected to solid-liquid separation, then washed with IPA (isopropyl alcohol), and dried at 70 ° C. for 10 hours to produce the fluoride phosphor of Example 1.

(実施例2、3)
表1に示す仕込み組成比、仕込み量に変えた以外は、実施例1と同様の方法で実施例2及び実施例3のフッ化物蛍光体をそれぞれ作製した。
(Examples 2 and 3)
Except for changing the charging composition ratio and the charging amount shown in Table 1, the fluoride phosphors of Example 2 and Example 3 were produced in the same manner as in Example 1.

(比較例1)
MnFを16.25g秤量し、それを55重量%HF水溶液1000gに溶解した後、40重量%HSiF水溶液450gを加えて溶液A’を調製した。KHFを195.10g秤量し、それを55重量%HF水溶液200gに溶解させて溶液Bを調製した。
次に、室温で溶液A’を撹拌しながら、約20分かけて溶液Bを滴下した。得られた沈殿物を固液分離後、IPA洗浄を行い、70℃で10時間乾燥することで比較例1のフッ化物蛍光体を作製した。
(Comparative Example 1)
After weighing 16.25 g of K 2 MnF 6 and dissolving it in 1000 g of 55 wt% HF aqueous solution, 450 g of 40 wt% H 2 SiF 6 aqueous solution was added to prepare Solution A ′. A solution B was prepared by weighing 195.10 g of KHF 2 and dissolving it in 200 g of a 55 wt% HF aqueous solution.
Next, the solution B was added dropwise over about 20 minutes while stirring the solution A ′ at room temperature. The obtained precipitate was subjected to solid-liquid separation, followed by IPA washing and drying at 70 ° C. for 10 hours to produce a fluoride phosphor of Comparative Example 1.

Figure 0006024850
Figure 0006024850

以上のようにして得られた各フッ化物蛍光体の、発光輝度特性と、粉体特性を、表2に示す。なお、発光輝度特性は、反射輝度として励起波長460nmの条件で測定した。粉体特性のうち、重量メジアン径(Dm)は、レーザー回折式粒度分布測定装置(MALVERN社製MASTER SIZER 2000)を用いて測定し、フィッシャー法により測定される平均粒径(F.S.S.S.)は、Fisher Sub−Sieve Sizer Model95(Fisher Scientific社製)を用いて測定し、嵩密度はメスシリンダーを用いて測定した。   Table 2 shows the light emission luminance characteristics and the powder characteristics of each fluoride phosphor obtained as described above. The light emission luminance characteristics were measured under the conditions of the excitation wavelength of 460 nm as the reflection luminance. Among the powder characteristics, the weight median diameter (Dm) is measured using a laser diffraction particle size distribution measuring apparatus (MASTER SIZER 2000 manufactured by MALVERN), and is measured by the Fisher method. S.) was measured using a Fisher Sub-Sieve Sizer Model 95 (manufactured by Fisher Scientific), and the bulk density was measured using a graduated cylinder.

Figure 0006024850
Figure 0006024850

(実施例4〜7)
実施例2、3のフッ化物蛍光体(赤蛍光体)を使用して発光装置を作製した。フッ化物蛍光体と、緑蛍光体とをシリコーン樹脂に分散した封止材で、主波長451nm〜452nmの半導体発光素子を封止して発光装置を作製した。
実施例4〜7における蛍光体の組み合わせと、発光装置の特性を表3に示す。なお、発光装置の特性は、通常用いられる方法により測定した。
また表3中、βサイアロンは、組成式 (Si,Al)(O,N):Eu
で表される緑蛍光体であり、クロロシリケートは、
組成式 (Ca,Sr,Ba,Zn)MgSi16(F,Cl,Br.I):Eu
で表される緑蛍光体である。
(Examples 4 to 7)
A light emitting device was fabricated using the fluoride phosphors (red phosphors) of Examples 2 and 3. A light emitting device was manufactured by sealing a semiconductor light emitting element having a main wavelength of 451 nm to 452 nm with a sealing material in which a fluoride fluorescent material and a green fluorescent material were dispersed in a silicone resin.
Table 3 shows combinations of phosphors in Examples 4 to 7 and characteristics of the light emitting device. The characteristics of the light emitting device were measured by a commonly used method.
In Table 3, β sialon is represented by the composition formula (Si, Al) 6 (O, N) 8 : Eu
The chlorosilicate is a green phosphor represented by
Composition formula (Ca, Sr, Ba, Zn) 8 MgSi 4 O 16 (F, Cl, Br. I) 2 : Eu
It is a green phosphor represented by.

Figure 0006024850
Figure 0006024850

本発明に係るフッ化物蛍光体及びこれを用いた発光装置は、蛍光表示管、ディスプレイ、PDP、CRT、FL、FED及び投射管等、特に青色発光ダイオードを光源とする発光特性に極めて優れたバックライト光源、LEDディスプレイ、白色の照明用光源、信号機、照明式スイッチ、各種センサ及び各種インジケータ等に利用でき、特にディスプレイ用途において優れた発光特性を示す。   The fluoride fluorescent substance and the light emitting device using the same according to the present invention are extremely excellent in light emission characteristics using a blue light emitting diode as a light source, such as a fluorescent display tube, a display, a PDP, a CRT, a FL, a FED, and a projection tube. It can be used for light sources, LED displays, white illumination light sources, traffic lights, illumination switches, various sensors, various indicators, and the like, and exhibits excellent emission characteristics particularly in display applications.

10:発光素子、50:封止部材、70:フッ化物蛍光体、100:発光装置 10: light emitting element, 50: sealing member, 70: fluoride phosphor, 100: light emitting device

Claims (13)

下記一般式(I)で表される化学組成を有し、重量メジアン径が35μm以上であるフッ化物蛍光体。
[M1−aMn4+ ] (I)
(式中、Mは、ケイ素(Si)、又はケイ素(Si)及びゲルマニウム(Ge)を含み、aは0<a<0.2を満たす。)
A fluoride phosphor having a chemical composition represented by the following general formula (I) and having a weight median diameter of 35 μm or more.
K 2 [M 1-a Mn 4+ a F 6 ] (I)
(In the formula, M includes silicon (Si) or silicon (Si) and germanium (Ge), and a satisfies 0 <a <0.2).
重量メジアン径が100μm以下である請求項1に記載のフッ化物蛍光体。   The fluoride phosphor according to claim 1, wherein the weight median diameter is 100 µm or less. 嵩密度が0.80g/cm以上である請求項1又は2に記載のフッ化物蛍光体。 The fluoride fluorescent material according to claim 1 or 2, wherein the bulk density is 0.80 g / cm 3 or more. 重量メジアン径が40μm以上である請求項1〜3のいずれか1項に記載のフッ化物蛍光体。   The fluoride phosphor according to any one of claims 1 to 3, wherein the weight median diameter is 40 µm or more. 重量メジアン径が50μm以上である請求項1〜4のいずれか1項に記載のフッ化物蛍光体。   The fluoride fluorescent material according to any one of claims 1 to 4, wherein a weight median diameter is 50 µm or more. 下記一般式(I)で表される化学組成を有し、嵩密度が0.80g/cm以上であるフッ化物蛍光体。
[M1−aMn4+ ] (I)
(式中、Mは、ケイ素(Si)、又はケイ素(Si)及びゲルマニウム(Ge)を含み、aは0<a<0.2を満たす。)
A fluoride phosphor having a chemical composition represented by the following general formula (I) and having a bulk density of 0.80 g / cm 3 or more.
K 2 [M 1-a Mn 4+ a F 6 ] (I)
(In the formula, M includes silicon (Si) or silicon (Si) and germanium (Ge), and a satisfies 0 <a <0.2).
嵩密度が1.00g/cm以上である請求項6に記載のフッ化物蛍光体。 The fluoride fluorescent substance according to claim 6, which has a bulk density of 1.00 g / cm 3 or more. 粒子形状が非平板状である請求項1〜7のいずれか1項に記載のフッ化物蛍光体。   The fluoride phosphor according to any one of claims 1 to 7, wherein the particle shape is non-flat. 380nm〜485nmの波長範囲の光を発する光源と、
請求項1〜8のいずれか1項に記載のフッ化物蛍光体と、を含む発光装置。
A light source that emits light in the wavelength range of 380 nm to 485 nm;
A light emitting device comprising the fluoride phosphor according to claim 1.
380nm〜485nmの波長範囲の光を吸収し、495nm〜573nmの波長範囲の光を発する緑色蛍光体を更に含む請求項9に記載の発光装置。   The light emitting device according to claim 9, further comprising a green phosphor that absorbs light in a wavelength range of 380 nm to 485 nm and emits light in a wavelength range of 495 nm to 573 nm. 前記緑色蛍光体は、組成式が(Si,Al)(O,N):Euで表されるβサイアロン、または、組成式が(Ca,Sr,Ba,Zn)MgSi16(F,Cl,Br.I):Euで表されるクロロシリケートである請求項10に記載の発光装置。 The green phosphor has a β sialon represented by a composition formula (Si, Al) 6 (O, N) 8 : Eu or a composition formula (Ca, Sr, Ba, Zn) 8 MgSi 4 O 16 ( The light-emitting device according to claim 10, which is a chlorosilicate represented by F, Cl, Br. I) 2 : Eu. 液晶表示装置用光源である請求項9〜11のいずれか1項に記載の発光装置。   The light-emitting device according to claim 9, which is a light source for a liquid crystal display device. 請求項9〜12のいずれか1項に記載の発光装置を備える画像表示装置。   An image display apparatus provided with the light-emitting device of any one of Claims 9-12.
JP2016108502A 2013-08-01 2016-05-31 Fluoride phosphor and light emitting device using the same Active JP6024850B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013160835 2013-08-01
JP2013160835 2013-08-01

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014090453A Division JP5954355B2 (en) 2013-08-01 2014-04-24 Fluoride phosphor and light emitting device using the same

Publications (2)

Publication Number Publication Date
JP2016191057A JP2016191057A (en) 2016-11-10
JP6024850B2 true JP6024850B2 (en) 2016-11-16

Family

ID=52670747

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2013273473A Active JP6187253B2 (en) 2013-08-01 2013-12-27 Method for producing fluoride phosphor
JP2016108502A Active JP6024850B2 (en) 2013-08-01 2016-05-31 Fluoride phosphor and light emitting device using the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2013273473A Active JP6187253B2 (en) 2013-08-01 2013-12-27 Method for producing fluoride phosphor

Country Status (1)

Country Link
JP (2) JP6187253B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10982139B2 (en) 2017-06-14 2021-04-20 Denka Company Limited Fluoride phosphor and light-emitting device using same
US11114589B2 (en) 2017-06-14 2021-09-07 Denka Company Limited Fluoride phosphor and light-emitting device using same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102530756B1 (en) 2016-01-13 2023-05-10 삼성전자주식회사 Fluoride phosphor, manufacturing method of the same, and light emitting device
US10595336B2 (en) 2016-11-15 2020-03-17 Huawei Technologies Co., Ltd. Systems and methods for grant-free uplink transmissions
JP7017150B2 (en) * 2017-02-07 2022-02-08 宇部興産株式会社 Fluorescent powder, light emitting device, and method for manufacturing fluorescent powder
KR102659883B1 (en) * 2018-03-29 2024-04-24 덴카 주식회사 β-type sialon phosphor and light-emitting device
WO2019188630A1 (en) * 2018-03-29 2019-10-03 デンカ株式会社 α-SIALON FLUORESCENT BODY AND LIGHT-EMITTING DEVICE
KR102658627B1 (en) 2018-03-29 2024-04-19 덴카 주식회사 Red phosphor and light emitting device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101559603B1 (en) * 2008-02-07 2015-10-12 미쓰비시 가가꾸 가부시키가이샤 Semiconductor light emitting device, backlighting device, color image display device and phosphor used for those devices
JP5682104B2 (en) * 2008-09-05 2015-03-11 三菱化学株式会社 Phosphor and method for producing the same, phosphor-containing composition and light emitting device using the phosphor, and image display device and lighting device using the light emitting device
JP5446511B2 (en) * 2009-06-30 2014-03-19 三菱化学株式会社 Phosphor and method for producing the same, phosphor-containing composition and light emitting device using the phosphor, and image display device and lighting device using the light emitting device
US8252613B1 (en) * 2011-03-23 2012-08-28 General Electric Company Color stable manganese-doped phosphors
MY161542A (en) * 2011-04-08 2017-04-28 Shinetsu Chemical Co Preparation of complex fluoride and complex fluoride phosphor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10982139B2 (en) 2017-06-14 2021-04-20 Denka Company Limited Fluoride phosphor and light-emitting device using same
US11114589B2 (en) 2017-06-14 2021-09-07 Denka Company Limited Fluoride phosphor and light-emitting device using same

Also Published As

Publication number Publication date
JP2016191057A (en) 2016-11-10
JP6187253B2 (en) 2017-08-30
JP2015044971A (en) 2015-03-12

Similar Documents

Publication Publication Date Title
JP5954355B2 (en) Fluoride phosphor and light emitting device using the same
JP6024850B2 (en) Fluoride phosphor and light emitting device using the same
JP6102640B2 (en) Fluoride phosphor, method for producing the same, and light emitting device using the same
JP5375906B2 (en) Fluoride phosphor and light emitting device using the same
JP5783302B2 (en) Fluoride phosphor, light emitting device using the same, and method for producing phosphor
KR102587491B1 (en) Fluoride phosphor and light-emitting device using it
TWI758494B (en) Fluoride phosphor and light-emitting device using the same
JP6094532B2 (en) Method for producing fluoride phosphor
JP6149606B2 (en) Method for producing fluoride phosphor
JP5915713B2 (en) Fluoride phosphor, method for producing the same, and light emitting device
JP6094522B2 (en) Method for producing fluoride phosphor
JP6304287B2 (en) Fluoride phosphor particles and light emitting device using the same
JP7244783B2 (en) Fluoride phosphor, light-emitting device, and method for producing fluoride phosphor
JP2020176250A (en) Fluoride phosphor, light emitting device and method for producing fluoride phosphor
JP6451759B2 (en) Fluoride phosphor, method for producing the same, and light emitting device using the same
JP6179455B2 (en) Fluoride phosphor and method for producing the same
JP2019001986A (en) Fluoride phosphor and light-emitting device using the same
WO2022202689A1 (en) Particles of fluorescent substance, composite, and light-emitting device
JP2019001985A (en) Fluoride phosphor and light-emitting device using the same

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20160822

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20160908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160926

R150 Certificate of patent or registration of utility model

Ref document number: 6024850

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250