JP6021260B2 - Hydraulic blast furnace slag composition and hardened concrete - Google Patents

Hydraulic blast furnace slag composition and hardened concrete Download PDF

Info

Publication number
JP6021260B2
JP6021260B2 JP2012282345A JP2012282345A JP6021260B2 JP 6021260 B2 JP6021260 B2 JP 6021260B2 JP 2012282345 A JP2012282345 A JP 2012282345A JP 2012282345 A JP2012282345 A JP 2012282345A JP 6021260 B2 JP6021260 B2 JP 6021260B2
Authority
JP
Japan
Prior art keywords
mass
blast furnace
furnace slag
water
structural unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012282345A
Other languages
Japanese (ja)
Other versions
JP2014125371A (en
Inventor
敏男 米澤
敏男 米澤
健郎 三井
健郎 三井
和政 井上
和政 井上
正朗 小島
正朗 小島
大二郎 辻
大二郎 辻
哲郎 松下
哲郎 松下
閑田 徹志
徹志 閑田
坂田 昇
昇 坂田
和久 依田
和久 依田
橋本 学
橋本  学
木之下 光男
光男 木之下
伸二 玉木
伸二 玉木
和秀 齊藤
和秀 齊藤
萌 黒田
萌 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Takemoto Oil and Fat Co Ltd
Takenaka Corp
Original Assignee
Kajima Corp
Takemoto Oil and Fat Co Ltd
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp, Takemoto Oil and Fat Co Ltd, Takenaka Corp filed Critical Kajima Corp
Priority to JP2012282345A priority Critical patent/JP6021260B2/en
Publication of JP2014125371A publication Critical patent/JP2014125371A/en
Application granted granted Critical
Publication of JP6021260B2 publication Critical patent/JP6021260B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Description

本発明は水硬性高炉スラグ組成物及びコンクリート硬化体に関する。近年、副産物の有効利用、省資源・省エネルギー、地球温暖化対策のための炭酸ガス削減等の観点から、製鉄所から副産する高炉水砕スラグの微粉末をポルトランドセメントと混合した混合セメントの利用が、コンクリート硬化体を得る上において益々重要になっている。本発明は高炉スラグ微粉末を多く含有する結合材を用いた場合でも高品質のコンクリート硬化体を得ることができる水硬性高炉スラグ組成物及びこれを硬化して得られるコンクリート硬化体に関する。   The present invention relates to a hydraulic blast furnace slag composition and a hardened concrete body. In recent years, from the viewpoint of effective use of by-products, resource and energy savings, and reduction of carbon dioxide for global warming countermeasures, use of mixed cement mixed with fine powder of granulated blast furnace slag by-produced from steelworks with Portland cement However, it is becoming more and more important in obtaining a hardened concrete body. The present invention relates to a hydraulic blast furnace slag composition capable of obtaining a high-quality concrete cured body even when a binder containing a large amount of blast furnace slag fine powder is used, and a concrete cured body obtained by curing the composition.

高炉スラグ微粉末を多く含有する結合材(以下、高炉スラグ高含有結合材という)を用いてコンクリート組成物を調製すると、以下の1)及び2)のような問題があることが指摘されている。すなわち、1)高炉スラグ高含有結合材を用いて調製したコンクリート組成物は、ポルトランドセメントを用いて調製したコンクリート組成物に比べて、得られるコンクリート硬化体の圧縮強度が低くなる傾向がある(標準水中養生供試体の圧縮強度が低い)。また 2)高炉スラグ高含有結合材を用いて調製したコンクリート組成物を大型構造物に適用した場合、調製したコンクリート組成物が水和反応により硬化する過程で発熱により温度上昇する熱履歴を受けると、得られるコンクリート硬化体の構造体強度が低下する傾向があり(高温履歴構造体の圧縮強度が低い)、この傾向は調製時(練り混ぜ時)の温度が高いほど、また高炉スラグ微粉末の含有量が多い結合材を用いて調製したコンクリート組成物ほど著しい。従来、高炉スラグ高含有結合材を用いてCOの発生を抑制した環境性能の高いコンクリート組成物が知られており(例えば特許文献1参照)、またコンクリート組成物の水和反応による発熱を抑える混和剤等も知られている(例えば特許文献2〜8参照)。しかし、これらの従来技術では、前記の1)及び2)の問題を同時に且つ充分に解決することができない。 It has been pointed out that when a concrete composition is prepared using a binder containing a large amount of blast furnace slag fine powder (hereinafter referred to as a binder containing a high amount of blast furnace slag), there are problems such as the following 1) and 2). . That is, 1) A concrete composition prepared using a binder containing a high content of blast furnace slag tends to have a lower compressive strength of the resulting concrete cured body than a concrete composition prepared using Portland cement (standard). The compressive strength of the underwater curing specimen is low). 2) When a concrete composition prepared using a binder containing a high content of blast furnace slag is applied to a large structure, if the prepared concrete composition is subjected to a heat history that rises in temperature due to heat generation in the process of hardening by a hydration reaction. There is a tendency that the structure strength of the obtained concrete hardened body tends to decrease (the compressive strength of the high-temperature hysteresis structure is low), and this tendency is higher when the temperature at the time of preparation (when kneading) is higher, and the blast furnace slag fine powder A concrete composition prepared using a binder having a high content is more remarkable. Conventionally, a concrete composition with high environmental performance in which generation of CO 2 is suppressed by using a binder containing a high content of blast furnace slag is known (see, for example, Patent Document 1), and heat generation due to a hydration reaction of the concrete composition is suppressed. Admixtures and the like are also known (for example, see Patent Documents 2 to 8). However, these conventional techniques cannot solve the problems 1) and 2) simultaneously and sufficiently.

特開2010−285291号公報JP 2010-285291 A 特開昭59−30743号公報JP 59-30743 A 特開昭63−117941号公報JP-A-63-117941 特開平1−242447号公報JP-A-1-242447 特開平6−298560号公報JP-A-6-298560 特開2003−34564号公報JP 2003-34564 A 特開2009−7187号公報JP 2009-7187 A 特開2010−180065号公報JP 2010-180065 A

本発明が解決しようとする課題は、1)高炉スラグ高含有結合材を用いて調製したコンクリート組成物(以下、かかるコンクリート組成物を水硬性高炉スラグ組成物という)は、得られるコンクリート硬化体の圧縮強度が低い、2)水硬性高炉スラグ組成物は水和反応により硬化する過程での発熱により温度上昇する熱履歴を受けると、得られるコンクリート硬化体の圧縮強度が低下する、という二つの問題を同時に且つ充分に解決できる水硬性高炉スラグ組成物及びこれを硬化して得られるコンクリート硬化体を提供する処にある。   Problems to be solved by the present invention are as follows. 1) A concrete composition prepared using a binder containing a high content of blast furnace slag (hereinafter, such a concrete composition is referred to as a hydraulic blast furnace slag composition) Two problems that the compressive strength is low 2) When the hydraulic blast furnace slag composition is subjected to a heat history that rises due to heat generation in the process of hardening by the hydration reaction, the compressive strength of the resulting concrete hardened body decreases. The present invention is to provide a hydraulic blast furnace slag composition capable of solving the above simultaneously and sufficiently and a concrete hardened body obtained by curing the composition.

本発明者らは、前記の課題を解決するべく鋭意研究した結果、特定の結合材に、特定の混和剤を、特定割合で含有させたものが好適であることを見出した。   As a result of intensive studies to solve the above problems, the present inventors have found that a specific binder containing a specific admixture in a specific ratio is suitable.

すなわち本発明は、下記の結合材、水、細骨材、粗骨材及び混和剤を含有する水硬性高炉スラグ組成物であって、混和剤の一部として下記の強度増進剤を結合材100質量部当たり0.01〜0.50質量部の割合で含有することを特徴とする水硬性高炉スラグ組成物に係る。また本発明は、かかる水硬性高炉スラグ組成物を硬化して得られるコンクリート硬化体に係る。   That is, the present invention is a hydraulic blast furnace slag composition containing the following binder, water, fine aggregate, coarse aggregate, and an admixture, and includes the following strength enhancer as a part of the admixture. It relates to the hydraulic blast furnace slag composition characterized by containing in the ratio of 0.01-0.50 mass part per mass part. Moreover, this invention concerns on the concrete hardening body obtained by hardening | curing this hydraulic blast furnace slag composition.

結合材:粉末度が3000〜8000cm/gの高炉スラグ微粉末を40〜80質量%、ポルトランドセメントを15〜55質量%及び硫酸塩をSO換算で1.0〜5.0質量%(高炉スラグ微粉末、ポルトランドセメント及び硫酸塩の合計100質量%)の割合で含有してなるもの。 Binder: 40-80 mass% of ground granulated blast furnace slag having a fineness of 3000-8000 cm 2 / g, 15-55 mass% of Portland cement and 1.0-5.0 mass% of sulfate in terms of SO 3 ( The total content of blast furnace slag fine powder, Portland cement and sulfate is 100% by mass).

強度増進剤:質量平均分子量が1000〜20000及び21℃の水に対する溶解度が90%以上の水溶性デキストリン化合物   Strength enhancer: Water-soluble dextrin compound having a mass average molecular weight of 1000 to 20000 and a solubility in water of 21 ° C. of 90% or more

本発明に係る水硬性高炉スラグ組成物(以下、本発明の組成物という)に供する混和剤は、その一部として質量平均分子量が1000〜20000及び21℃の水に対する溶解度が90%以上の水溶性デキストリン化合物からなる強度増進剤を含有してなるものである。   The admixture used for the hydraulic blast furnace slag composition (hereinafter referred to as the composition of the present invention) according to the present invention includes, as part thereof, an aqueous solution having a mass average molecular weight of 1000 to 20000 and a solubility in water of 21 ° C. of 90% or more. It contains a strength enhancer composed of a functional dextrin compound.

デキストリン化合物は澱粉をアミラーゼ類等の酵素や酸等で加水分解して得られる植物由来の高分子系化合物の総称である。厚肉のコンクリート硬化体における水和熱によるひび割れを防止するために特定のデキストリンを利用する技術は既に提案されている(例えば前記の特許文献2〜8参照)。コンクリート部材(例えば肉厚の壁)の温度が水和熱によって上昇し、再度外気温まで低下するプロセスで、この部材が他の部材(例えば底版)によって拘束されると、概念的には下記の数1のような引張応力が発生し、ひび割れにいたる。   A dextrin compound is a generic term for plant-derived high molecular weight compounds obtained by hydrolyzing starch with an enzyme such as amylase or an acid. In order to prevent cracking due to heat of hydration in a thick concrete hardened body, a technique using a specific dextrin has already been proposed (see, for example, Patent Documents 2 to 8 above). In the process where the temperature of a concrete member (for example, a thick wall) rises due to heat of hydration and decreases to the outside temperature again, if this member is constrained by another member (for example, a bottom plate), conceptually the following A tensile stress as shown in Equation 1 is generated, leading to cracking.

Figure 0006021260
Figure 0006021260

数1において、
σ:引張応力
R:拘束度
T:温度上昇量
α:線膨張係数
:昇温時の平均ヤング率
:降温時の平均ヤング率(E>>E
In Equation 1,
σ: Tensile stress R: Restraint degree T: Temperature rise α: Linear expansion coefficient E 1 : Average Young's modulus during temperature rise E 2 : Average Young's modulus during temperature drop (E 2 >> E 1 )

コンクリート硬化体のひび割れを防止するには温度の上昇量を抑制することが何よりも有効である。そのため、例えば特許文献2では常温での溶解度を10〜50質量%、温度60℃での溶解度を50〜100質量%としたデキストリンが有効に温度上昇を抑制することを示している。これはセメントの反応を遅らせて温度上昇を抑制するデキストリンを高温時まで残すことに着目した技術である。ただし、この技術は、温度の上昇抑制には有効であっても、セメントの凝結が遅くなり過ぎることや得られるコンクリート硬化体の圧縮強度が低下することに問題がある。   In order to prevent cracks in the hardened concrete body, it is most effective to suppress the temperature rise. Therefore, for example, Patent Document 2 shows that a dextrin having a solubility at room temperature of 10 to 50% by mass and a solubility at a temperature of 60 ° C. of 50 to 100% by mass effectively suppresses the temperature rise. This is a technique focused on leaving dextrin that delays the reaction of cement and suppresses temperature rise until high temperatures. However, even if this technique is effective in suppressing the rise in temperature, there is a problem that the setting of the cement becomes too slow and the compressive strength of the obtained concrete hardened body is lowered.

これに対して本発明者らは、各種のデキストリンが水硬性高炉スラグ組成物から得られるコンクリート硬化体の圧縮強度に及ぼす影響を研究した結果、常温で水に溶解するデキストリン(21℃の溶解度が90%以上のデキストリン)が分子量に応じて前記の1)及び2)の問題を同時に且つ充分に解決できることを見出した。すなわち、質量平均分子量1000〜20000の範囲の水溶性デキストリンが前記の問題1)及び2)を同時に且つ充分に解決できた。かかる効果が発揮される理由は必ずしも明らかでないが、前記の水溶性デキストリン化合物が水和生成物によるスラグの反応阻害を抑制しているものと推定される。   On the other hand, as a result of studying the effect of various dextrins on the compressive strength of a hardened concrete body obtained from a hydraulic blast furnace slag composition, the present inventors have found that dextrin (21 ° C. solubility is soluble in water at room temperature). It has been found that 90% or more of dextrin) can simultaneously and sufficiently solve the problems 1) and 2) according to the molecular weight. That is, a water-soluble dextrin having a mass average molecular weight in the range of 1000 to 20000 can simultaneously and sufficiently solve the above problems 1) and 2). The reason why such an effect is exhibited is not necessarily clear, but it is presumed that the water-soluble dextrin compound suppresses slag reaction inhibition by the hydrated product.

本発明の組成物に供する混和剤の一部として用いる強度増進剤は、21℃の水に対する溶解度が90%以上の水溶性デキストリン化合物であって、質量平均分子量が1000〜20000のもの、好ましくは質量平均分子量が2000〜10000のものである。本発明において、デキストリン化合物の質量平均分子量は水系のGPC法(ゲル浸透クロマトグラフ法、以下同じ)で測定したポリエチレングリコール換算の質量平均分子量である。かかるデキストリン化合物はGPC法で測定した分子量分布曲線における分散度(質量平均分子量Mw/数平均分子量Mnの比)が1.2〜6.0のものが好ましい。分散度がかかる範囲よりも大きいと、本発明が目的とする強度増進効果が低下する傾向がある。このような分散度の小さいデキストリン化合物それ自体は公知の方法(例えば特開2008−222822号公報に記載された方法)で製造され、通常は食品添加物等の用途に粉末品として供給されている。   The strength enhancer used as a part of the admixture used in the composition of the present invention is a water-soluble dextrin compound having a solubility in water at 21 ° C. of 90% or more, preferably having a mass average molecular weight of 1000 to 20000, preferably A mass average molecular weight is 2000-10000. In the present invention, the mass average molecular weight of the dextrin compound is a polyethylene glycol equivalent mass average molecular weight measured by an aqueous GPC method (gel permeation chromatography, the same applies hereinafter). Such a dextrin compound preferably has a dispersity (ratio of mass average molecular weight Mw / number average molecular weight Mn) in the molecular weight distribution curve measured by GPC method of 1.2 to 6.0. When the degree of dispersion is larger than this range, the strength enhancement effect intended by the present invention tends to decrease. Such a dextrin compound having a low degree of dispersion itself is produced by a known method (for example, the method described in JP-A-2008-222822), and is usually supplied as a powder product for uses such as food additives. .

混和剤の一部として用いる前記した強度増進剤は標準水中養生供試体の圧縮強度と高温履歴構造体の圧縮強度の両方を増進させる。   The aforementioned strength enhancer used as part of the admixture enhances both the compressive strength of the standard underwater curing specimen and the compressive strength of the high temperature hysteretic structure.

本発明の組成物において、混和剤の一部として用いる強度増進剤の含有量は通常、結合材100質量部当たり、0.01〜0.50質量部の割合とするが、0.02〜0.40質量部の割合とするのが好ましい。含有量がこれらの割合より多い場合には凝結遅延が大きくなって、得られるコンクリート硬化体が初期材齢では硬化不良となる問題が起こり、逆に少ない場合は本発明が目的とする効果は得られない。   In the composition of the present invention, the content of the strength enhancer used as a part of the admixture is usually 0.01 to 0.50 parts by mass per 100 parts by mass of the binder, but 0.02 to 0. The ratio is preferably 40 parts by mass. When the content is higher than these ratios, the setting delay is increased, and there is a problem that the obtained hardened concrete becomes hardened at the initial age. Conversely, when the content is low, the intended effect of the present invention is obtained. I can't.

本発明の組成物に供する混和剤は、前記した強度増進剤に加えて、更にその一部としてセメント分散剤を含有することができる。かかるセメント分散剤としては、リグニンスルホン酸塩、ナフタレンスルホン酸ホルマリン高縮合物塩、ポリカルボン酸系水溶性ビニル共重合体等の従来から知られているものを使用できるが、なかでも下記の水溶性ビニル共重合体が好ましい。   The admixture used for the composition of the present invention can further contain a cement dispersant as a part of the strength enhancer. As such a cement dispersant, conventionally known ones such as lignin sulfonate, naphthalene sulfonate formalin high condensate salt, polycarboxylic acid-based water-soluble vinyl copolymer, etc. can be used. A preferred vinyl copolymer is preferred.

水溶性ビニル共重合体:分子中に下記の構成単位Xを35〜85モル%、下記の構成単位Yを15〜65モル%及び下記の構成単位Zを0〜5モル%(合計100モル%)の割合で有する質量平均分子量が2000〜80000の水溶性ビニル共重合体。   Water-soluble vinyl copolymer: 35 to 85 mol% of the following structural unit X in the molecule, 15 to 65 mol% of the following structural unit Y and 0 to 5 mol% of the following structural unit Z (total 100 mol%) ), A water-soluble vinyl copolymer having a mass average molecular weight of 2000 to 80000.

構成単位X:メタクリル酸から形成された構成単位及びメタクリル酸塩から形成された構成単位から選ばれる一つ又は二つ以上   Structural unit X: one or two or more selected from structural units formed from methacrylic acid and structural units formed from methacrylate

構成単位Y:分子中に7〜150個のオキシエチレン単位で構成されたポリオキシエチレン基を有するメトキシポリエチレングリコールメタクリレートから形成された構成単位   Structural unit Y: a structural unit formed from methoxypolyethylene glycol methacrylate having a polyoxyethylene group composed of 7 to 150 oxyethylene units in the molecule

構成単位Z:(メタ)アリルスルホン酸塩から形成された構成単位及びメチル
(メタ)アクリレートから形成された構成単位から選ばれる一つ又は二つ以上
Structural unit Z: one or two or more selected from a structural unit formed from (meth) allyl sulfonate and a structural unit formed from methyl (meth) acrylate

本発明の組成物において、混和剤の一部として用いる水溶性ビニル共重合体の含有量は通常、結合材100質量部当たり0.1〜1.0質量部の割合とする。   In the composition of the present invention, the content of the water-soluble vinyl copolymer used as a part of the admixture is usually 0.1 to 1.0 part by mass per 100 parts by mass of the binder.

本発明の組成物では、結合材として高炉スラグ微粉末の含有量が多い高炉スラグ高含有結合材を用いる。一般に、高炉スラグ高含有結合材を用いて調製したコンクリート組成物は、結合材として高炉スラグ微粉末の含有量が少ない高炉セメントやポルトランドセメントを用いて調製したコンクリート組成物に比べて、流動性の低下が大きい。現場での施行性を確保するため、本発明の組成物のように結合材として高炉スラグ高含有結合材を用いて調製したコンクリート組成物には、セメント分散剤の他に、流動性保持剤の使用が必要となるのであるが、本発明の組成物では、セメント分散剤として用いる前記した水溶性ビニル共重合体に対して、強度増強剤として用いる前記した水溶性デキストリン化合物が流動性保持剤としても機能し、調製した本発明の組成物の流動性低下を防止する。   In the composition of the present invention, a high-blast furnace slag-containing binder having a high content of fine blast furnace slag powder is used as the binder. In general, a concrete composition prepared using a binder containing a high content of blast furnace slag is more fluid than a concrete composition prepared using blast furnace cement or Portland cement with a low content of blast furnace slag fine powder as a binder. The decline is great. In order to ensure on-site enforcement, the concrete composition prepared using a high blast furnace slag-containing binder as a binder like the composition of the present invention includes a fluidity retention agent in addition to a cement dispersant. Although it is necessary to use, in the composition of the present invention, the above-mentioned water-soluble dextrin compound used as a strength enhancer is used as a fluidity retention agent for the above-mentioned water-soluble vinyl copolymer used as a cement dispersant. Also functions and prevents the fluidity of the prepared composition of the present invention from decreasing.

本発明の組成物において、混和剤として強度増進剤と水溶性ビニル共重合体とを用いる場合、これらは予め混合し、一液型混和剤として使用することが好ましい。この場合、混和剤は、強度増進剤を20〜80質量%及び水溶性ビニル共重合体を80〜20質量%(合計100質量%)の割合で含有するものとするのが好ましく、強度増進剤を35〜65質量%及び水溶性ビニル共重合体を65〜35質量%(合計100質量%)の割合で含有するものとするのがより好ましい。またかかる一液型混和剤は、結合材100質量部当たり、0.12〜1.4質量部の割合となるよう用いるのが好ましく、0.2〜1.0質量部の割合となるよう用いるのがより好ましい。   In the composition of the present invention, when a strength enhancer and a water-soluble vinyl copolymer are used as an admixture, they are preferably mixed in advance and used as a one-component admixture. In this case, the admixture preferably contains 20-80% by weight of the strength enhancer and 80-20% by weight (total 100% by weight) of the water-soluble vinyl copolymer. It is more preferable to contain 35-65 mass% and 65-35 mass% (total 100 mass%) of a water-soluble vinyl copolymer. Such a one-component admixture is preferably used in a proportion of 0.12 to 1.4 parts by mass, and used in a proportion of 0.2 to 1.0 parts by mass per 100 parts by mass of the binder. Is more preferable.

本発明の組成物に供する結合材は、粉末度が3000〜8000cm/gの高炉スラグ微粉末を40〜80質量%、ポルトランドセメントを15〜55質量%及び硫酸塩をSO換算で1.0〜5.0質量%(高炉スラグ微粉末、ポルトランドセメント及び硫酸塩の合計100質量%)の割合で含有してなるものであり、好ましくは高炉スラグ微粉末を60〜70質量%、ポルトランドセメントを26〜36質量%及び硫酸塩をSO換算で1.5〜4.0質量%(高炉スラグ微粉末、ポルトランドセメント及び硫酸塩の合計100質量%)の割合で含有してなるものである。普通ポルトランドセメントと高炉スラグ微粉末とを混合したものとしては、JIS規格を満足する高炉セメントがある。高炉セメントは、高炉スラグ微粉末の分量によって、高炉セメントA種(5質量%超〜30質量%)、高炉セメントB種(30質量%超〜60質量%)及び高炉セメントC種(60質量%超〜70質量%)の3種類に分類されている。本発明の組成物に供する結合材は、前記したものであれば特に制限されるものではなく、JIS規格を満足する高炉セメントB種及び高炉セメントC種を使用することができ、なかでも高炉スラグ微粉末の分量が最も多い高炉セメントC種を使用することができる。 The binder used for the composition of the present invention is 40 to 80% by mass of fine powder of blast furnace slag having a fineness of 3000 to 8000 cm 2 / g, 15 to 55% by mass of Portland cement, and 1.3 in terms of SO 3 in terms of SO 3 . 0 to 5.0% by mass (a total of 100% by mass of blast furnace slag fine powder, Portland cement and sulfate), preferably 60 to 70% by mass of fine blast furnace slag powder, Portland cement 26 to 36% by mass and sulfate in an amount of 1.5 to 4.0% by mass in terms of SO 3 (100% by mass in total of fine blast furnace slag powder, Portland cement and sulfate). . As a mixture of ordinary Portland cement and blast furnace slag fine powder, there is a blast furnace cement that satisfies JIS standards. Depending on the amount of blast furnace slag fine powder, blast furnace cement is classified into blast furnace cement type A (over 5% by mass to 30% by mass), blast furnace cement type B (over 30% by mass to 60% by mass), and blast furnace cement C type (60% by mass). (Over 70 mass%). The binder used in the composition of the present invention is not particularly limited as long as it is described above, and blast furnace cement type B and blast furnace cement type C satisfying JIS standards can be used, and in particular, blast furnace slag. Blast furnace cement type C with the largest amount of fine powder can be used.

本発明の組成物に供する結合材は、前記した高炉スラグ微粉末、ポルトランドセメント及び硫酸塩以外にも、その性能を向上させる目的で、更に石灰石微粉末、フライアッシュ、シリカフューム等を併用することもできる。なかでも、粉末度が3000〜12000cm/g及びCaCO含有量が70質量%以上の石灰石微粉末を結合材中に3〜20質量%となるよう、好ましくは5〜15質量%となるよう併用したものは、調製した水硬性高炉スラグ組成物の流動性と得られるコンクリート硬化体の圧縮強度が向上する。 In addition to the above-mentioned blast furnace slag fine powder, Portland cement and sulfate, the binder used in the composition of the present invention may be used in combination with limestone fine powder, fly ash, silica fume, etc. for the purpose of improving its performance. it can. Among them, limestone fine powder having a fineness of 3000 to 12000 cm 2 / g and a CaCO 3 content of 70% by mass or more is preferably 3 to 20% by mass in the binder, and preferably 5 to 15% by mass. The combined use improves the fluidity of the prepared hydraulic blast furnace slag composition and the compressive strength of the resulting concrete cured body.

本発明の組成物に供する細骨材としては、公知の川砂、砕砂、山砂等が挙げられ、また粗骨材としては公知の川砂利、砕石、軽量骨材等が挙げられる。   Examples of the fine aggregate used in the composition of the present invention include known river sand, crushed sand, mountain sand and the like, and examples of the coarse aggregate include known river gravel, crushed stone, lightweight aggregate and the like.

本発明の組成物には、必要に応じて他の混和剤を併用することもできる。かかる他の混和剤としては、AE減水剤、高性能AE減水剤、AE剤、消泡剤、防水剤、防腐剤、防錆剤等が挙げられる。   The composition of the present invention can be used in combination with other admixtures as necessary. Examples of such other admixtures include AE water reducing agents, high performance AE water reducing agents, AE agents, antifoaming agents, waterproofing agents, preservatives, and rustproofing agents.

本発明の組成物は、以上説明した結合材、水、細骨材、粗骨材及び混和剤を公知の方法で練り混ぜることにより調製することができる。具体的には、結合材、水の一部、細骨材及び粗骨材をミキサーで混練する一方で、前記した混和剤と、更に必要に応じてセメント分散剤及びAE調節剤を水の残部で希釈して一液型混和剤となし、しかる後に双方を練り混ぜる方法で調製することができる。この場合、前記した混和剤は、通常粉末で供給されるデキストリン化合物を予め室温で水の一部に完全に溶解し、デキストリンの10〜50質量%水溶液としたものを用いるのが練り混ぜの均一性を図る点で好ましい。   The composition of the present invention can be prepared by kneading the binder, water, fine aggregate, coarse aggregate and admixture described above by a known method. Specifically, a binder, a part of water, fine aggregate and coarse aggregate are kneaded with a mixer, while the above-mentioned admixture, and further, a cement dispersant and an AE regulator are added to the remainder of the water. It can be prepared by diluting with 1 to form a one-component admixture and then kneading both. In this case, the above-mentioned admixture is prepared by dissolving a dextrin compound, which is usually supplied as a powder, in advance in a part of water at room temperature to obtain a 10-50 mass% aqueous solution of dextrin. It is preferable in terms of improving the performance.

本発明によると、高炉スラグ高含有結合材を用いた場合であっても、得られるコンクリート硬化体の圧縮強度を増進させ、しかも高温の熱履歴を受けたときでも得られるコンクリート硬化体の圧縮強度を増進させるという優れた効果を発揮する。   According to the present invention, even when using a binder containing a high content of blast furnace slag, the compressive strength of the resulting hardened concrete is increased and the compressive strength of the hardened concrete obtained even when subjected to a high temperature thermal history Exhibits an excellent effect of improving

以下、本発明の構成及び効果をより具体的にするため、実施例等を挙げるが、本発明が該実施例に限定されるというものではない。なお、以下の実施例等において、別に記載しない限り、%は質量%を、また部は質量部を意味する。   Hereinafter, in order to make the configuration and effects of the present invention more specific, examples and the like will be described. However, the present invention is not limited to the examples. In the following examples and the like, unless otherwise indicated,% means mass%, and part means mass part.

試験区分1(混和剤の調製)
・強度増進剤の調製
食品添加物として流通している多くのデキストリン化合物のなかから、GPC法による分子量及び分散度の測定を行ない、分子量及び分散度が異なる各種のデキストリン化合物を準備した。それらのなかから強度増進剤に相当するデキストリン化合物を選択し、それらの30%水溶液を調製した。選択したデキストリン化合物の内容を表1にまとめて示した。
Test Category 1 (Preparation of admixture)
-Preparation of Strength Enhancer Among many dextrin compounds distributed as food additives, molecular weight and dispersion degree were measured by GPC method, and various dextrin compounds having different molecular weight and dispersion degree were prepared. Among them, dextrin compounds corresponding to strength enhancers were selected, and 30% aqueous solutions thereof were prepared. The contents of the selected dextrin compounds are summarized in Table 1.

Figure 0006021260
Figure 0006021260

表1において、
分子量:GPC法によるポリエチレングリコール換算の質量平均分子量又は数平均分子量
分散度:質量平均分子量(Mw)を数平均分子量(Mn)で除した数値
In Table 1,
Molecular weight: Mass average molecular weight or number average molecular weight in terms of polyethylene glycol by GPC method Dispersity: Numerical value obtained by dividing mass average molecular weight (Mw) by number average molecular weight (Mn)

・水溶性ビニル共重合体の合成
メタクリル酸60g、メトキシポリ(オキシエチレン単位の数が23個、以下n=23とする)エチレングリコールメタクリレート300g、メタリルスルホン酸ナトリウム5g、3−メルカプトプロピオン酸3g及び水490gを反応容器に仕込んだ後、48%水酸化ナトリウム水溶液58gを加え、攪拌しながら部分中和して均一に溶解した。反応容器内の雰囲気を窒素置換した後、反応系の温度を温水浴にて60℃に保ち、過硫酸ナトリウムの20%水溶液25gを加えてラジカル重合反応を開始し、5時間反応を継続して反応を終了した。その後、48%水酸化ナトリウム水溶液23gを加えて反応物を完全中和し、水溶性ビニル共重合体(b−1)の40%水溶液を得た。水溶性ビニル共重合体(b−1)を分析したところ、メタクリル酸ナトリウムから形成された構成単位/メトキシポリ(n=23)エチレングリコールメタクリレートから形成された構成単位/メタリルスルホン酸ナトリウムから形成された構成単位=70/27/3(モル%)の割合で有する質量平均分子量34200(GPC法、ポリエチレングリコール換算)の水溶性ビニル共重合体(b−1)であった。同様にして、水溶性ビニル共重合体(b−2)〜(b−3)及び(br−1)〜(br−3)の40%水溶性を得た。以上で合成した水溶性ビニル共重合体の内容を表2にまとめて示した。
Synthesis of water-soluble vinyl copolymer 60 g of methacrylic acid, methoxypoly (23 oxyethylene units, hereinafter referred to as n = 23) ethylene glycol methacrylate 300 g, sodium methallylsulfonate 5 g, 3-mercaptopropionic acid 3 g and After 490 g of water was charged into the reaction vessel, 58 g of a 48% aqueous sodium hydroxide solution was added, and the mixture was partially neutralized with stirring and dissolved uniformly. After the atmosphere in the reaction vessel was replaced with nitrogen, the temperature of the reaction system was maintained at 60 ° C. in a warm water bath, 25 g of a 20% aqueous solution of sodium persulfate was added to start radical polymerization reaction, and the reaction was continued for 5 hours. The reaction was terminated. Thereafter, 23 g of a 48% aqueous sodium hydroxide solution was added to completely neutralize the reaction product, thereby obtaining a 40% aqueous solution of the water-soluble vinyl copolymer (b-1). When the water-soluble vinyl copolymer (b-1) was analyzed, it was formed from a structural unit formed from sodium methacrylate / a structural unit formed from methoxypoly (n = 23) ethylene glycol methacrylate / sodium methallylsulfonate. The structural unit was a water-soluble vinyl copolymer (b-1) having a mass average molecular weight of 34200 (GPC method, converted to polyethylene glycol) having a ratio of 70/27/3 (mol%). Similarly, 40% water solubility of water-soluble vinyl copolymers (b-2) to (b-3) and (br-1) to (br-3) was obtained. The contents of the water-soluble vinyl copolymer synthesized above are summarized in Table 2.

Figure 0006021260
Figure 0006021260

表2において、
質量平均分子量:GPC法、ポリエチレングリコール換算
X−1:メタクリル酸ナトリウムから形成された構成単位
X−2:メタクリル酸から形成された構成単位
Y−1:メトキシポリ(23モル)エチレングリコールメタクリレートから形成された構成単位
Y−2:メトキシポリ(70モル)エチレングリコールメタクリレートから形成された構成単位
Z−1:メタリルスルホン酸ナトリウムから形成された構成単位
Z−2:アリルスルホン酸ナトリウムから形成された構成単位
Z−3:メチルアクリレートから形成された構成単位
In Table 2,
Mass average molecular weight: GPC method, converted into polyethylene glycol X-1: Structural unit formed from sodium methacrylate X-2: Structural unit formed from methacrylic acid Y-1: Formed from methoxypoly (23 mol) ethylene glycol methacrylate Structural unit Y-2: Structural unit formed from methoxypoly (70 mol) ethylene glycol methacrylate Z-1: Structural unit formed from sodium methallyl sulfonate Z-2: Structural unit formed from sodium allyl sulfonate Z-3: a structural unit formed from methyl acrylate

・一液型混和剤の調製
前記したデキストリン化合物の水溶液と水溶性ビニル共重合体の水溶液と水とを所定の比率で混合し、一液型混和剤(P−1)〜(P−10)の30%水溶液を調製した。同様にして、一液型混和剤(R−1)〜(R−10)の30%水溶液を調製した。調製した各水溶液における混和剤の内容を表3にまとめて示した。










-Preparation of one-component admixture An aqueous solution of the above dextrin compound, an aqueous solution of a water-soluble vinyl copolymer, and water are mixed at a predetermined ratio, and one-component admixtures (P-1) to (P-10) are mixed. A 30% aqueous solution of was prepared. Similarly, 30% aqueous solutions of one-component admixtures (R-1) to (R-10) were prepared. Table 3 summarizes the contents of the admixture in each of the prepared aqueous solutions.










Figure 0006021260
Figure 0006021260

表3において、
デキストリン化合物:表1に記載のデキストリン化合物
水溶性ビニル共重合体:表2に記載の水溶性ビニル共重合体
*1:タンニン酸
*2:デンプン
*3:ブドウ糖
In Table 3,
Dextrin compound: dextrin compound listed in Table 1 water-soluble vinyl copolymer: water-soluble vinyl copolymer listed in Table 2 * 1: tannic acid * 2: starch * 3: glucose

試験区分2(結合材の調製)
表4に記載の配合条件で、高炉スラグ微粉末、無水石膏、普通ポルトランドセメント、石灰石微粉末を用いて結合材を調製し、結合材(sb−1)〜(sb−3)を得た。
Test category 2 (Preparation of binder)
Under the blending conditions shown in Table 4, a binder was prepared using blast furnace slag fine powder, anhydrous gypsum, ordinary Portland cement, and limestone fine powder to obtain binders (sb-1) to (sb-3).

Figure 0006021260
Figure 0006021260

表4において、
sg−1:粉末度が6150cm/g及び密度が3.01g/cmの高炉スラグ微粉末
sg−2:粉末度が4100cm/g及び密度が3.04g/cmの高炉スラグ微粉末
gp−1:粉末度が4080cm/g及び密度が3.01g/cmの無水石膏
pc−1:普通ポルトランドセメント
石灰石微粉末:粉末度が5500cm/g及びCaCO含有量が97質量%の石灰石微粉末
In Table 4,
sg-1: Blast furnace slag fine powder having a fineness of 6150 cm 2 / g and a density of 3.01 g / cm 3 sg-2: Blast furnace slag fine powder having a fineness of 4100 cm 2 / g and a density of 3.04 g / cm 3 gp-1: anhydrous gypsum having a fineness of 4080 cm 2 / g and a density of 3.01 g / cm 3 pc-1: ordinary Portland cement limestone fine powder: fineness of 5500 cm 2 / g and CaCO 3 content of 97% by mass Limestone fine powder

試験区分3(水硬性高炉スラグ組成物等の調製及び評価)
・実施例1〜20及び比較例1〜21(水硬性高炉スラグ組成物の調製)
表5に記載の配合条件で、50リットルのパン型強制練りミキサーに、結合材、細骨材、水道水、AE減水剤(竹本油脂社製の商品名チューポールEX50)、AE調節剤(竹本油脂社製の商品名AE300)及び表3記載の混和剤の30%水溶液の各所定量を順次投入して、均一なスラリーとなるまで練り混ぜた。次に、粗骨材を投入して30秒間練り混ぜ、目標スランプが18±1cm、目標空気量が4.5±0.5%とした実施例1〜20及び比較例1〜21の水硬性高炉スラグ組成物等を調製した。練り混ぜ時の温度はいずれも30℃であった。調製した各例の水硬性高炉スラグ組成物等の内容を表6及び表7にまとめて示した。
Test category 3 (Preparation and evaluation of hydraulic blast furnace slag composition, etc.)
Examples 1 to 20 and Comparative Examples 1 to 21 (Preparation of hydraulic blast furnace slag composition)
Under the blending conditions shown in Table 5, a 50-liter pan-type forced kneader mixer was combined with a binder, fine aggregate, tap water, an AE water reducing agent (trade name Tupol EX50 manufactured by Takemoto Yushi Co., Ltd.), and an AE regulator (Takemoto). Predetermined amounts of 30% aqueous solutions of admixtures listed in Table 3 (trade name AE300 manufactured by Yushi Co., Ltd.) and Table 3 were added in order and kneaded until a uniform slurry was obtained. Next, the coarse aggregate was added and kneaded for 30 seconds, and the hydraulic properties of Examples 1 to 20 and Comparative Examples 1 to 21 in which the target slump was 18 ± 1 cm and the target air amount was 4.5 ± 0.5%. A blast furnace slag composition and the like were prepared. The temperature at the time of kneading was 30 ° C in all cases. Tables 6 and 7 collectively show the contents of the prepared hydraulic blast furnace slag composition and the like of each example.

Figure 0006021260
Figure 0006021260

表5において、
sb−1〜sb−3:表4に記載の結合材
細骨材:大井川水系砂、密度が2.58g/cm
粗骨材:岡崎産砕石、密度が2.68g/cm
In Table 5,
sb-1 to sb-3: binders described in Table 4 Fine aggregate: Oikawa water sand, density is 2.58 g / cm 3
Coarse aggregate: Okazaki crushed stone, density 2.68 g / cm 3

・調製した水硬性高炉スラグ組成物等の評価
調製した各例の水硬性高炉スラグ組成物等について、スランプ、空気量、標準水中養生供試体の圧縮強度及び高温履歴供試体の圧縮強度を下記のように求めた。結果を表6及び表7にまとめて示した。
・ Evaluation of prepared hydraulic blast furnace slag composition, etc.For the prepared hydraulic blast furnace slag composition, etc., the slump, air volume, compression strength of standard underwater curing specimen and compressive strength of high temperature history specimen are as follows: Asked. The results are summarized in Table 6 and Table 7.

・スランプ(cm):練り混ぜ直後及び60分静置後の水硬性高炉スラグ組成物等について、JIS−A1101に準拠して測定した。
・空気量(容量%):練り混ぜ直後及び60分静置後の水硬性高炉スラグ組成物等について、JIS−A1128に準拠して測定した。
・標準水中養生供試体の圧縮強度(N/mm):練り混ぜて調製した各例の水硬性高炉スラグ組成物等を直径10cm×高さ20cmの円柱モールドに充填し、20℃の水中で材齢7日又は28日まで水中養生した供試体について、JIS−A1108に準拠して測定した。
・高温履歴供試体の圧縮強度(N/mm):練り混ぜて調製した各例の水硬性高炉スラグ組成物等を直径10cm×高さ20cmの円柱モールドに充填したものを9本作製した。内寸が500mm×500mm×400mmで、周囲6面を厚さ約30cmの断熱材(発砲スチレン)で覆った断熱箱内に、前記の9本を縦3本×横3本の等間隔で並列静置し、中心位置の1本に熱電対を設置して内部の温度上昇履歴を測定した(最高発熱温度40〜60℃)。かかる高温履歴の負荷を材齢28日まで継続した高温履歴供試体について、JIS−A1108に準拠して圧縮強度を測定した。
-Slump (cm): It measured according to JIS-A1101 about the hydraulic blast furnace slag composition etc. immediately after kneading | mixing and after leaving still for 60 minutes.
-Air amount (volume%): It measured based on JIS-A1128 about the hydraulic blast furnace slag composition etc. immediately after kneading | mixing and after leaving still for 60 minutes.
Compressive strength (N / mm 2 ) of standard water curing specimen: Filled with a cylindrical mold having a diameter of 10 cm and a height of 20 cm in each case with a hydraulic blast furnace slag composition of each example prepared by mixing, The specimens cured underwater until the age of 7 or 28 days were measured according to JIS-A1108.
Compressive strength (N / mm 2 ) of high-temperature history specimen: Nine pieces of hydraulic blast furnace slag compositions, etc., prepared by kneading each in a cylindrical mold having a diameter of 10 cm and a height of 20 cm were prepared. Inside the heat insulation box with inner dimensions of 500mm x 500mm x 400mm and six surrounding surfaces covered with a heat insulation material (foamed styrene) with a thickness of about 30cm, the nine above are arranged in parallel at equal intervals of 3 vertical x 3 horizontal It left still, the thermocouple was installed in one of the center positions, and the temperature rise history inside was measured (maximum exothermic temperature 40-60 degreeC). The compressive strength was measured in accordance with JIS-A1108 for the high temperature history specimen in which the high temperature history load was continued until the age of 28 days.

Figure 0006021260
Figure 0006021260


















Figure 0006021260
Figure 0006021260

表6及び表7において、
配合条件:表5に記載の配合条件
混合剤の種類:表3に記載の混和剤の種類
混和剤の使用量:結合材100質量部に対する混和剤の添加質量部。
*4:各実施例の標準水中養生供試体の圧縮強度(材齢7日又は28日)から相当する配合条件の混和剤を用いなかった比較例(表3の混和剤R−1を用いた比較例1、11又は21)の標準水中養生供試体の圧縮強度(材齢7日又は28日)を差し引いた値
*5:各実施例の高温履歴供試体の圧縮強度(材齢28日)から相当する配合条件の混和剤を用いなかった比較例(表3の混和剤R−1を用いた比較例1、11又は21)の高温履歴供試体の圧縮強度(材齢28日)を差し引いた値
In Table 6 and Table 7,
Compounding conditions: Compounding conditions described in Table 5 Types of admixture: Types of admixture described in Table 3 Amount of admixture used: part by mass of admixture added to 100 parts by mass of the binder.
* 4: Comparative example (admixture R-1 in Table 3 was used) in which the admixture with the corresponding blending condition was not used from the compressive strength (age 7 days or 28 days) of the standard water curing specimen of each example. Value obtained by subtracting the compressive strength (material age 7 days or 28 days) of the standard underwater curing specimen of Comparative Example 1, 11 or 21) * 5: Compressive strength of the high temperature history specimens of each example (material age 28 days) Is subtracted from the compressive strength (material age 28 days) of the high temperature history specimen of Comparative Example (Comparative Example 1, 11 or 21 using Admixture R-1 in Table 3) that did not use the admixture of the corresponding blending conditions. Value

表6及び表7の結果からも明らかなように、各実施例の水硬性高炉スラグ組成物は、各比較例の水硬性高炉スラグ組成物に比べ、得られるコンクリート硬化体の圧縮強度の発現が高く、しかも高温履歴後においても圧縮強度が高いという増進効果が得られている。本発明によると、高炉スラグ高含有結合材を用いた場合の問題を同時に且つ充分に改善できるのである。   As is clear from the results of Tables 6 and 7, the hydraulic blast furnace slag composition of each example has a higher compressive strength than the hydraulic blast furnace slag composition of each comparative example. In addition, the effect of increasing the compressive strength is high even after high temperature history. According to this invention, the problem at the time of using a blast furnace slag high content binder can be improved simultaneously and fully.

Claims (8)

下記の結合材、水、細骨材、粗骨材及び混和剤を含有する水硬性高炉スラグ組成物であって、混和剤の一部として下記の強度増進剤を結合材100質量部当たり0.01〜0.50質量部の割合で含有することを特徴とする水硬性高炉スラグ組成物。
結合材:粉末度が3000〜8000cm/gの高炉スラグ微粉末を40〜80質量%、ポルトランドセメントを15〜55質量%及び硫酸塩をSO換算で1.0〜5.0質量%(高炉スラグ微粉末、ポルトランドセメント及び硫酸塩の合計100質量%)の割合で含有してなるもの。
強度増進剤:質量平均分子量が1000〜20000及び21℃の水に対する溶解度が90%以上の水溶性デキストリン化合物
A hydraulic blast furnace slag composition containing the following binder, water, fine aggregate, coarse aggregate, and an admixture, wherein the following strength enhancer is added as a part of the admixture to an amount of 0. A hydraulic blast furnace slag composition, which is contained at a ratio of 01 to 0.50 parts by mass.
Binder: 40-80 mass% of ground granulated blast furnace slag having a fineness of 3000-8000 cm 2 / g, 15-55 mass% of Portland cement and 1.0-5.0 mass% of sulfate in terms of SO 3 ( The total content of blast furnace slag fine powder, Portland cement and sulfate is 100% by mass).
Strength enhancer: Water-soluble dextrin compound having a mass average molecular weight of 1000 to 20000 and a solubility in water of 21 ° C. of 90% or more
強度増進剤が、質量平均分子量が2000〜10000、分散度が1.2〜6.0及び21℃の水に対する溶解度が90%以上の水溶性デキストリン化合物である請求項1記載の水硬性高炉スラグ組成物。   The hydraulic blast furnace slag according to claim 1, wherein the strength enhancer is a water-soluble dextrin compound having a mass average molecular weight of 2000 to 10,000, a dispersity of 1.2 to 6.0, and a solubility in water of 21 ° C of 90% or more. Composition. 強度増進剤を結合材100質量部当たり0.02〜0.40質量部の割合で含有する請求項1又は2記載の水硬性高炉スラグ組成物。   The hydraulic blast furnace slag composition according to claim 1 or 2, wherein the strength enhancer is contained at a ratio of 0.02 to 0.40 parts by mass per 100 parts by mass of the binder. 混和剤の一部として、更に下記の水溶性ビニル共重合体を結合材100質量部当たり0.1〜1.0質量部の割合で含有する請求項1〜3のいずれか一つの項記載の水硬性高炉スラグ組成物。
水溶性ビニル共重合体:分子中に下記の構成単位Xを35〜85モル%、下記の構成単位Yを15〜65モル%及び下記の構成単位Zを0〜5モル%(合計100モル%)の割合で有する質量平均分子量が2000〜80000の水溶性ビニル共重合体。
構成単位X:メタクリル酸から形成された構成単位及びメタクリル酸塩から形成された構成単位から選ばれる一つ又は二つ以上
構成単位Y:分子中に7〜150個のオキシエチレン単位で構成されたポリオキシエチレン基を有するメトキシポリエチレングリコールメタクリレートから形成された構成単位
構成単位Z:(メタ)アリルスルホン酸塩から形成された構成単位及びメチル
(メタ)アクリレートから形成された構成単位から選ばれる一つ又は二つ以上
The water-soluble vinyl copolymer below as a part of the admixture is further contained at a ratio of 0.1 to 1.0 part by mass per 100 parts by mass of the binder. Hydraulic blast furnace slag composition.
Water-soluble vinyl copolymer: 35 to 85 mol% of the following structural unit X in the molecule, 15 to 65 mol% of the following structural unit Y and 0 to 5 mol% of the following structural unit Z (total 100 mol%) ), A water-soluble vinyl copolymer having a mass average molecular weight of 2000 to 80000.
Structural unit X: One or more selected from a structural unit formed from methacrylic acid and a structural unit formed from methacrylic acid salt. Structural unit Y: composed of 7 to 150 oxyethylene units in the molecule. Structural unit formed from methoxypolyethylene glycol methacrylate having a polyoxyethylene group Structural unit Z: one selected from a structural unit formed from (meth) allyl sulfonate and a structural unit formed from methyl (meth) acrylate Or two or more
混和剤が強度増進剤を20〜80質量%及び水溶性ビニル共重合体を80〜20質量%(合計100質量%)の割合で含有するものであり、且つかかる混和剤を結合材100質量部当たり0.12〜1.4質量部の割合で含有する請求項4記載の水硬性高炉スラグ組成物。   The admixture contains 20 to 80% by mass of the strength enhancer and 80 to 20% by mass (total 100% by mass) of the water-soluble vinyl copolymer, and 100 parts by mass of the admixture is added to the admixture. The hydraulic blast furnace slag composition according to claim 4, which is contained at a ratio of 0.12 to 1.4 parts by mass per unit. 結合材が、高炉スラグ微粉末を60〜70質量%、ポルトランドセメントを26〜36質量%及び硫酸塩をSO3換算で1.5〜4.0質量%(高炉スラグ微粉末、ポルトランドセメント及び硫酸塩の合計100質量%)の割合で含有してなるものである請求項1〜5のいずれか一つの項記載の水硬性高炉スラグ組成物。   The binder is 60 to 70% by mass of blast furnace slag fine powder, 26 to 36% by mass of Portland cement, and 1.5 to 4.0% by mass of sulfate in terms of SO3 (blast furnace slag fine powder, Portland cement and sulfate The hydraulic blast furnace slag composition according to any one of claims 1 to 5, wherein the hydraulic blast furnace slag composition according to any one of claims 1 to 5 is contained. 結合材が、更に下記の石灰石微粉末を結合材中に3〜20質量%となるよう含有するものである請求項1〜6記載の水硬性高炉スラグ組成物。
石灰石微粉末:粉末度が3000〜12000cm/g及びCaCO含有量が70質量%以上の石灰石微粉末。
The hydraulic blast furnace slag composition according to claim 1, wherein the binder further contains the following limestone fine powder in the binder so as to be 3 to 20 mass%.
Limestone fine powder: Limestone fine powder having a fineness of 3000 to 12000 cm 2 / g and a CaCO 3 content of 70% by mass or more.
請求項1〜7のいずれか一つの項記載の水硬性高炉スラグ組成物を硬化させて得られるコンクリート硬化体。   A hardened concrete body obtained by curing the hydraulic blast furnace slag composition according to any one of claims 1 to 7.
JP2012282345A 2012-12-26 2012-12-26 Hydraulic blast furnace slag composition and hardened concrete Active JP6021260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012282345A JP6021260B2 (en) 2012-12-26 2012-12-26 Hydraulic blast furnace slag composition and hardened concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012282345A JP6021260B2 (en) 2012-12-26 2012-12-26 Hydraulic blast furnace slag composition and hardened concrete

Publications (2)

Publication Number Publication Date
JP2014125371A JP2014125371A (en) 2014-07-07
JP6021260B2 true JP6021260B2 (en) 2016-11-09

Family

ID=51405161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012282345A Active JP6021260B2 (en) 2012-12-26 2012-12-26 Hydraulic blast furnace slag composition and hardened concrete

Country Status (1)

Country Link
JP (1) JP6021260B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6333101B2 (en) * 2014-07-22 2018-05-30 鹿島建設株式会社 Concrete binder for blast furnace cement concrete.

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4302251A (en) * 1978-11-29 1981-11-24 Denki Kagaku Kogyo Kabushiki Kaisha Cement composition containing dextrin
JPS59227753A (en) * 1983-06-08 1984-12-21 日曹マスタ−ビルダ−ズ株式会社 Cement composition
JPS6117457A (en) * 1984-07-03 1986-01-25 日曹マスタ−ビルダ−ズ株式会社 Concrete composition
JPS6117458A (en) * 1984-07-03 1986-01-25 日曹マスタ−ビルダ−ズ株式会社 Mass concrete construction work
JPS6230652A (en) * 1985-08-02 1987-02-09 電気化学工業株式会社 Machine member and tool
GB8806692D0 (en) * 1988-03-21 1988-04-20 Cerestar Holding Bv Acrylate polymer compositions
DE4133193A1 (en) * 1991-10-07 1993-04-08 Basf Ag WAFER POLYMERISATE DISPERSIONS
JP3282758B2 (en) * 1993-09-27 2002-05-20 電気化学工業株式会社 Cement admixture slurry and mortar or concrete using the same
JPH08268744A (en) * 1995-03-30 1996-10-15 Onoda:Kk Low exothermic nonshrinkable filler
JP2001240445A (en) * 2000-02-28 2001-09-04 Taiheiyo Cement Corp Hydraulic cement composition
EP1233008B1 (en) * 2001-02-19 2005-03-30 Denki Kagaku Kogyo Kabushiki Kaisha Cement admixture and cement composition
JP5008225B2 (en) * 2001-06-28 2012-08-22 宇部興産株式会社 Method for producing dust-suppressing solidified material
JP2008222822A (en) * 2007-03-12 2008-09-25 Sanwa Denpun Kogyo Kk Dextrin and its use
JP5545616B2 (en) * 2009-06-09 2014-07-09 株式会社竹中工務店 Concrete composition using blast furnace cement composition
JP5539673B2 (en) * 2009-06-09 2014-07-02 株式会社竹中工務店 Concrete composition using blast furnace slag composition
JP5892696B2 (en) * 2012-03-29 2016-03-23 株式会社竹中工務店 Concrete composition and concrete hardened body using blast furnace cement

Also Published As

Publication number Publication date
JP2014125371A (en) 2014-07-07

Similar Documents

Publication Publication Date Title
JP5539673B2 (en) Concrete composition using blast furnace slag composition
JP2013203635A (en) Concrete composition using blast furnace cement, and concrete hardened body
WO1995011204A1 (en) Self-leveling water-base composition
JP4798806B2 (en) Low shrinkage AE concrete composition using blast furnace cement
JP5545617B2 (en) Concrete composition using blast furnace cement
JP2015187054A (en) Cement dispersing agent composition and cement composition
JP5822397B2 (en) AE concrete composition using blast furnace cement
JP6263404B2 (en) Preparation method of concrete containing blast furnace slag
JP5660724B2 (en) Preparation method of non-shrink AE concrete and non-shrink AE concrete
JP6021260B2 (en) Hydraulic blast furnace slag composition and hardened concrete
JP7097536B2 (en) Concrete composition and hardened concrete
JP6985177B2 (en) Hydraulic composition and concrete
JP6021259B2 (en) Hydraulic blast furnace slag composition and hardened concrete
JP5344692B2 (en) Preparation method of AE concrete using blast furnace cement and AE concrete
JP5676238B2 (en) Dispersant composition for hydraulic composition
JP3135781B2 (en) Self-leveling aqueous composition
JP6263405B2 (en) Preparation method of concrete containing blast furnace slag
JP5100366B2 (en) Admixture for hydraulic composition
CN116964019A (en) Method for producing geopolymer cured product, method for producing geopolymer composition, and geopolymer composition
JP5975716B2 (en) Freeze-thaw resistant low shrinkage AE concrete composition and cured body thereof
JP6192226B2 (en) Multifunctional admixture for concrete
JP6363354B2 (en) Concrete admixture
JP6618743B2 (en) Concrete composition and hardened concrete
JP5870878B2 (en) Cement admixture and method for producing cement composition using the same
JPH0535100B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161003

R150 Certificate of patent or registration of utility model

Ref document number: 6021260

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250