JP6018576B2 - Process for coating threaded tubular component, threaded tubular component and method for manufacturing the same, and threaded tubular connection - Google Patents

Process for coating threaded tubular component, threaded tubular component and method for manufacturing the same, and threaded tubular connection Download PDF

Info

Publication number
JP6018576B2
JP6018576B2 JP2013538092A JP2013538092A JP6018576B2 JP 6018576 B2 JP6018576 B2 JP 6018576B2 JP 2013538092 A JP2013538092 A JP 2013538092A JP 2013538092 A JP2013538092 A JP 2013538092A JP 6018576 B2 JP6018576 B2 JP 6018576B2
Authority
JP
Japan
Prior art keywords
tubular component
threaded tubular
threaded
coated
dry film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013538092A
Other languages
Japanese (ja)
Other versions
JP2013545946A (en
Inventor
ガール,エリック
ピネル,エリエット
プティ,ミカエル
ギデー,モハメド
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vallourec Mannesmann Oil and Gas France SA
Nippon Steel Corp
Original Assignee
Vallourec Mannesmann Oil and Gas France SA
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vallourec Mannesmann Oil and Gas France SA, Nippon Steel Corp filed Critical Vallourec Mannesmann Oil and Gas France SA
Publication of JP2013545946A publication Critical patent/JP2013545946A/en
Application granted granted Critical
Publication of JP6018576B2 publication Critical patent/JP6018576B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/02Couplings; joints
    • E21B17/04Couplings; joints between rod or the like and bit or between rod and rod or the like
    • E21B17/042Threaded
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/20Lubricating compositions characterised by the base-material being a macromolecular compound containing oxygen
    • C10M107/30Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M107/32Condensation polymers of aldehydes or ketones; Polyesters; Polyethers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/003Threaded pieces, e.g. bolts or nuts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/041Carbon; Graphite; Carbon black
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/062Oxides; Hydroxides; Carbonates or bicarbonates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/065Sulfides; Selenides; Tellurides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/10Compounds containing silicon
    • C10M2201/102Silicates
    • C10M2201/103Clays; Mica; Zeolites
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/101Condensation polymers of aldehydes or ketones and phenols, e.g. Also polyoxyalkylene ether derivatives thereof
    • C10M2209/1013Condensation polymers of aldehydes or ketones and phenols, e.g. Also polyoxyalkylene ether derivatives thereof used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2213/00Organic macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2213/04Organic macromolecular compounds containing halogen as ingredients in lubricant compositions obtained from monomers containing carbon, hydrogen, halogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2213/00Organic macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2213/04Organic macromolecular compounds containing halogen as ingredients in lubricant compositions obtained from monomers containing carbon, hydrogen, halogen and oxygen
    • C10M2213/043Organic macromolecular compounds containing halogen as ingredients in lubricant compositions obtained from monomers containing carbon, hydrogen, halogen and oxygen used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/06Groups 3 or 13
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/08Groups 4 or 14
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/12Inhibition of corrosion, e.g. anti-rust agents or anti-corrosives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/015Dispersions of solid lubricants
    • C10N2050/02Dispersions of solid lubricants dissolved or suspended in a carrier which subsequently evaporates to leave a lubricant coating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/08Solids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2070/00Specific manufacturing methods for lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2080/00Special pretreatment of the material to be lubricated, e.g. phosphatising or chromatising of a metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Fluid Mechanics (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Electrochemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Metallurgy (AREA)
  • Paints Or Removers (AREA)
  • Lubricants (AREA)
  • Non-Disconnectible Joints And Screw-Threaded Joints (AREA)
  • Laminated Bodies (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)

Description

本発明は、炭化水素坑井の掘削及び作業のために用いられる管状コンポーネントに関し、より正確には、当該コンポーネントのねじ末端に関し、前記末端は、雄型又は雌型であり、別のコンポーネントの対応する末端に接続して接続部を形成できる。   The present invention relates to tubular components used for drilling and working in hydrocarbon wells, and more precisely to the screw ends of the components, where the ends are male or female and the correspondence of another component The connection part can be formed by connecting to the terminal.

本発明はさらに、当該管状コンポーネント上に耐摩耗性フィルムを製造するプロセスに関する。   The invention further relates to a process for producing an abrasion resistant film on the tubular component.

「炭化水素坑井の掘削及び作業のために用いられる」コンポーネントとは、同じ又は違う型の別の要素に接続して、炭化水素坑井を掘削するためのストリング若しくは維持管理用のライザー(ワークオーバーライザーとしても知られる)あるいはライザー等の作業用又は坑井作業で用いられるケーシングストリングあるいはチュービングストリング用等のいずれかを最終的に構成することを目的とする、形状が実質的に管状である任意の要素を意味する。本発明はさらに、ドリルストリング、例えばドリルパイプ、重量ドリルパイプ、ドリルカラー並びにツールジョイントとして知られるパイプ接続部及び重量パイプの部分に用いられるコンポーネントに適用しうる。   “Used for drilling and working with hydrocarbon wells” refers to a string or maintenance riser (workpiece) for drilling hydrocarbon wells connected to another element of the same or different type Also known as an over riser) or a tube that is substantially tubular in shape, intended to ultimately constitute either a riser or other work string or a casing string or tubing string used in well work Means any element. The invention is further applicable to components used in drill strings such as drill pipes, heavy drill pipes, drill collars and pipe joints known as tool joints and heavy pipe parts.

各管状コンポーネントはた1つの、雄型ねじ領域を備え末端及び/又は雌ねじ領域を備えた1つの末端を含み、各々接続部を規定するアセンブリである別のコンポーネントの対応する末端と螺合させて接続されることを意図する。   Each tubular component includes only one end with a male threaded region and / or one end with a female threaded region, each threadedly engaged with a corresponding end of another component that is an assembly defining a connection. Intended to be connected.

坑井ではねじ管状コンポーネントがいくつかの組立−分解サイクルを受けうることを考慮し、使用条件により課される締め付け及び封止の要件を満たすために、ねじ管状コンポーネントを所定の応力下で接続する。   Taking into account that a threaded tubular component can undergo several assembly-disassembly cycles in the well, the threaded tubular component is connected under a given stress to meet the tightening and sealing requirements imposed by the conditions of use. .

当該ねじ管状コンポーネントを用いる条件により、様々な種類の応力が起こり、当該応力のために、ねじ領域、隣接部又は封止表面等の当該コンポーネントの感受性部分上にコーティングを用いることが必要となる。   Depending on the conditions in which the threaded tubular component is used, various types of stress occur, which necessitates the use of a coating on the sensitive part of the component, such as the threaded area, adjacent portion or sealing surface.

ねじ込み作業は、一般に、軸方向荷重が高い、例えば、接続されるねじ要素の軸のわずかなずれにより限局されうる、ねじ接続部により接続される長さ数メートルの管の重量下で実施され、これにより、ねじ領域及び金属/金属封止表面で摩耗の危険性が誘発される。この理由から、ねじ領域、隣接表面及び金属/金属封止表面を潤滑剤でコーティングする必要がある。   The screwing operation is generally carried out under the weight of a pipe of several meters in length connected by a screw connection, which can be limited by high axial loads, e.g. a slight displacement of the axis of the screw element to be connected, This induces a risk of wear at the threaded area and the metal / metal sealing surface. For this reason, it is necessary to coat the threaded area, the adjacent surface and the metal / metal sealing surface with a lubricant.

さらに、ねじ管状コンポーネントは、(場合により数年間)保管された後、厳しい環境中で組み立てられる。例えば、塩水噴霧の沖合や、砂、埃又は他の汚染物質が存在する陸上である。したがって、ねじ込み(ねじ領域)又は干渉接触(金属/金属封止表面)により、協働する表面上で、腐食に対抗してコーティングされなければならない。さらに腐食に対する表面処理も必要である。   Furthermore, threaded tubular components are assembled in harsh environments after being stored (possibly for several years). For example, offshore with salt spray or on land where sand, dust or other contaminants are present. Therefore, it must be coated against corrosion on cooperating surfaces by screwing (screw area) or interference contact (metal / metal sealing surface). Furthermore, surface treatment against corrosion is also necessary.

米国特許出願公開第4822081号明細書US Patent Application Publication No. 4822081 米国再発行特許出願公開第30467号明細書US Reissue Patent Application No. 30467 米国再発行特許出願公開第34467号明細書US Reissue Patent Application No. 34467 国際公開第2008/032872号International Publication No. 2008/032872

D Kuhlmann-Wilsdorf et al,“Plastic flow between Bridgman anvils under high pressures”, J. Mater. Res., vol 6, no 12, Dec 1991D Kuhlmann-Wilsdorf et al, “Plastic flow between Bridgman anvils under high pressures”, J. Mater. Res., Vol 6, no 12, Dec 1991

しかしながら、API(American Petroleum Institute)規格RP5A3のねじ込みグリースを用いても環境的には長期的解決策にならないようである。なぜなら、重金属を含む当該グリースが管状コンポーネントから排出されて環境又は坑井中に放出される可能性があり、その結果、閉塞が発生して特別な洗浄作業を要するからである。さらに、当該グリースは腐食を十分保護せず、各ねじ込み作業のための部位上に塗布しなければならない。   However, using threaded grease of API (American Petroleum Institute) standard RP5A3 does not seem to be a long-term solution from an environmental point of view. This is because the grease containing heavy metal can be discharged from the tubular component and released into the environment or well, resulting in blockage and special cleaning operations. Furthermore, the grease does not sufficiently protect against corrosion and must be applied on the site for each screwing operation.

長期耐食性及び耐摩耗性が必要な問題を克服し、環境的優位性を満たすために、ねじ接続部の分野の当業者は、潤滑剤であり、かつ腐食から保護し、工場で管状コンポーネントに確実に塗布できる、固体ドライコーティング(すなわち、グリースのようにべたべたしたり、粘着性であったりしない)を積極的に開発してきた。   In order to overcome the problems that require long-term corrosion resistance and wear resistance and meet environmental advantages, those skilled in the field of threaded connections are lubricants and are protected from corrosion to ensure the tubular components at the factory. Solid dry coatings (ie, not sticky or sticky like grease) have been actively developed.

特に、環境的に不活性であり、摩耗に対して耐性であるコーティングが開発されている。   In particular, coatings have been developed that are environmentally inert and resistant to abrasion.

本発明は、ポリアリールエーテルケトンを用いて、摩耗に対する耐性が高く、抗摩耗性で、機械的強度が高く、摩擦係数が低く、極度の炭化水素坑井作業条件に対して耐性である、潤滑ドライフィルムを得られた発見に基づく。用いられる解決策は、上記管状コンポーネントの接続部用の様々な等級の金属に適合させることができる。   The present invention uses polyaryletherketone to provide high wear resistance, anti-wear properties, high mechanical strength, low friction coefficient, and resistance to extreme hydrocarbon well working conditions. Based on findings obtained dry film. The solution used can be adapted to various grades of metal for the connection of the tubular component.

当該ポリアリールエーテルケトンの使用及び当該定義のねじ管状コンポーネントに関連する当該特性は、先行技術では記載も示唆もされていない。   The use of the polyaryletherketone and the properties associated with the defined threaded tubular component have not been described or suggested in the prior art.

より正確には、本発明は、炭化水素坑井を掘削又は作業するためのねじ管状コンポーネントに関し、前記管状コンポーネントは、ねじ末端が雄型か雌型かによりその末端の一方に外周面又は内周面上に作られたねじ領域があり、末端の少なくとも部分は、少なくとも65質量パーセントのポリアリールエーテルケトンを含む少なくとも1つの潤滑ドライフィルムでコーティングされる。   More precisely, the present invention relates to a threaded tubular component for drilling or working a hydrocarbon well, said tubular component having an outer circumferential surface or inner circumferential surface at one of its ends depending on whether the screw end is male or female. There is a threaded region made on the surface, and at least a portion of the ends are coated with at least one lubricating dry film comprising at least 65 weight percent polyaryletherketone.

相補的又は代替的な任意の特性を以下で定義する。   Any complementary or alternative characteristics are defined below.

ポリアリールエーテルケトンは、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトン(PEK)及びそれらの混合物から選択される。   The polyaryletherketone is selected from polyetheretherketone (PEEK), polyetherketone (PEK) and mixtures thereof.

潤滑ドライフィルムは、結晶化度が10%〜35%である構造を有する。   The lubricated dry film has a structure with a crystallinity of 10% to 35%.

潤滑ドライフィルムは、10%〜35%の質量比で少なくとも1つの4類の固体潤滑剤をさらに含む。   The lubricated dry film further comprises at least one type 4 solid lubricant in a mass ratio of 10% to 35%.

潤滑ドライフィルムは、パーフルオロアルコキシエチレン共重合体を10%〜30%の質量比で含む。   The lubricating dry film contains a perfluoroalkoxyethylene copolymer in a mass ratio of 10% to 30%.

潤滑ドライフィルムは、以下の顔料のリスト:カーボンブラック、マイカ、珪灰石、ナノメートル酸化アルミニウム、ナノメートル酸化チタン、ガラス粉末、ナノダイヤモンド、ナノメートルWS2又はWS2−フラーレンから選択される機械的補強剤を、1%〜15%の質量比で含む。   The lubricated dry film is a mechanical reinforcement selected from the following list of pigments: carbon black, mica, wollastonite, nanometer aluminum oxide, nanometer titanium oxide, glass powder, nanodiamond, nanometer WS2 or WS2-fullerene In a mass ratio of 1% to 15%.

潤滑ドライフィルムでコーティングされた部分は、予め、サンディング、マンガンのリン酸塩皮膜処理、銅又は銅−スズ−亜鉛合金の電解堆積、並びに射出により堆積させた鉄及び亜鉛合金により構成される群から選択される表面調製ステップが施される。   Parts coated with a lubricious dry film are from the group consisting of iron and zinc alloys deposited in advance by sanding, manganese phosphate film treatment, electrolytic deposition of copper or copper-tin-zinc alloy, and injection. A selected surface preparation step is applied.

潤滑ドライフィルムでコーティングされた部分は、マイカ顔料を含有する半結晶構造のポリエーテルエーテルケトンの下塗りで予めコーティングされる。   The part coated with the lubricious dry film is pre-coated with a semi-crystalline polyetheretherketone primer containing mica pigment.

ねじ領域全体は、潤滑ドライフィルムでコーティングされる。   The entire thread area is coated with a lubricious dry film.

ねじ管状コンポーネントは金属/金属封止表面を含み、前記封止表面は潤滑ドライフィルムでコーティングされている。   The threaded tubular component includes a metal / metal sealing surface, which is coated with a lubricious dry film.

本発明はさらに、互いに組み合わさった雄型ねじ管状コンポーネント及び雌型ねじ管状コンポーネントを含むねじ管状接続部にも関し、ここで、少なくとも1つの前記ねじ管状コンポーネントは前記定義のとおりである。   The invention further relates to a threaded tubular connection comprising a male threaded tubular component and a female threaded tubular component combined with each other, wherein at least one said threaded tubular component is as defined above.

本発明はさらに、炭化水素坑井の掘削又は作業のためのねじ管状コンポーネントをコーティングするプロセスにも関し、前記管状コンポーネントにはねじ末端が雄型か雌型かによりその末端の一方に外周面又は内周面上に作られたねじ領域があり、当該プロセスは、以下の:
・ポリアリールエーテルケトン粉末を水中懸濁液中、25%〜35質量パーセントの割合で含む混合物を製造するステップ;
・前記混合物を前記ねじ管状コンポーネントの末端(1、2)の部分に適用するステップ;
・コーティングされた末端(1、2)の部分を100℃〜150℃の温度で5〜10分間乾燥するステップ;
・コーティングされた末端(1、2)の部分を350℃〜450℃の温度まで、5〜15分間、毎分10℃〜20℃の温度上昇率で加熱するステップ;及び
・主に結晶性の構造を得るために、コーティングされた末端(1、2)の部分を周囲温度まで、毎分10℃未満の冷却速度で冷却するステップ;
を含む。
The invention further relates to a process for coating a threaded tubular component for drilling or working in a hydrocarbon well, said tubular component having an outer peripheral surface or one of its ends depending on whether the threaded end is male or female. There is a threaded area made on the inner surface, the process is as follows:
Producing a mixture comprising polyaryletherketone powder in a suspension in water in a proportion of 25% to 35% by weight;
Applying the mixture to the end (1, 2) portion of the threaded tubular component;
Drying the coated end (1,2) part at a temperature of 100 ° C. to 150 ° C. for 5 to 10 minutes;
Heating the coated end (1,2) portion to a temperature of 350 ° C. to 450 ° C. for 5 to 15 minutes at a rate of temperature increase of 10 ° C. to 20 ° C. per minute; and Cooling the coated end (1,2) portion to ambient temperature at a cooling rate of less than 10 ° C. to obtain a structure;
including.

相補的又は代替的の任意の特性を以下で定義する。   Any complementary or alternative characteristics are defined below.

混合物はさらに、100℃〜200℃の沸点で蒸発速度が急速な融合剤を、2.5%〜10質量パーセントの割合で含む。   The mixture further comprises a fusing agent having a boiling point of 100 ° C. to 200 ° C. and a rapid evaporation rate in a proportion of 2.5% to 10% by weight.

混合物は、非イオン性湿潤及び分散剤を2.5%〜10質量パーセントの範囲の割合でさらに含む。   The mixture further comprises nonionic wetting and dispersing agents in proportions ranging from 2.5% to 10 weight percent.

混合物はさらに、少なくとも1つの4類固体潤滑剤を3%〜12質量パーセントの割合で含む。   The mixture further comprises at least one Group 4 solid lubricant in a proportion of 3% to 12% by weight.

4類固体潤滑剤が、3%〜12%の質量比のパーフルオロアルコキシエチレン共重合体である。   The Group 4 solid lubricant is a perfluoroalkoxyethylene copolymer having a mass ratio of 3% to 12%.

混合物はさらに、以下の顔料のリスト:カーボンブラック、マイカ、珪灰石、ナノメートル酸化アルミニウム、ナノメートル酸化チタン、ガラス粉末、ナノダイヤモンド、ナノメートルWS2又はWS2−フラーレンから選択される機械的補強剤を0.5%〜5%の質量比で含む。   The mixture further comprises a mechanical reinforcement selected from the following list of pigments: carbon black, mica, wollastonite, nanometer aluminum oxide, nanometer titanium oxide, glass powder, nanodiamond, nanometer WS2 or WS2-fullerene. It is included at a mass ratio of 0.5% to 5%.

末端の部分が、空気圧式スプレーシステムを用いてコーティングされ、前記システムの直径が0.7〜1.8mmであり、空気圧が4〜6barである。   The end portion is coated using a pneumatic spray system, the system diameter is 0.7-1.8 mm and the air pressure is 4-6 bar.

サンディング、マンガンのリン酸塩皮膜処理、銅又は銅−スズ−亜鉛合金の電解堆積、並びに射出により堆積された鉄及び亜鉛合金の粒子からなる群から選択される表面調製ステップが、混合物を前記末端の前記部分へ適用する前に実施される。   A surface preparation step selected from the group consisting of sanding, manganese phosphate coating, electrolytic deposition of copper or copper-tin-zinc alloy, and particles of iron and zinc alloy deposited by injection; Before applying to said part.

マイカ顔料を含有する、半結晶構造のポリエーテルエーテルケトンを下塗りすることからなる表面調製ステップが、混合物を前記末端の前記部分に適用する前に実施される。   A surface preparation step consisting of priming a semi-crystalline polyetheretherketone containing mica pigment is performed before applying the mixture to the end portion.

本発明はさらに炭化水素坑井の掘削又は作業のためのねじ管状コンポーネントをコーティングするプロセスであって、前記管状コンポーネントにはねじ末端が雄型か雌型かによりその末端(1、2)の一方に外周面又は内周面上に作られたねじ領域(3、4)があり、以下の:
・前記ねじ管状コンポーネントの末端(1、2)の部分を、360℃〜420℃の温度まで、好ましくは400℃に近い温度まで加熱するステップ;
・PEK及び/又はPEEK粉末を前記ねじ管状コンポーネントの末端(1、2)の前記部分上に射出するステップ;
・このようにコーティングされた末端(1、2)の部分を360℃〜420℃の温度で、好ましくは400℃に近い温度で、1〜4分間維持するステップ;及び
・主に結晶性の構造を得るために、コーティングされた末端(1、2)の部分を周囲温度まで毎分10℃未満の冷却速度で冷却するステップ;
を含む。
The present invention further provides a process for coating a threaded tubular component for drilling or working in a hydrocarbon well, wherein the tubular component has one of its ends (1, 2) depending on whether the threaded end is male or female. Have threaded areas (3, 4) made on the outer peripheral surface or the inner peripheral surface, the following:
Heating the end (1, 2) portion of the threaded tubular component to a temperature of 360-420 ° C, preferably close to 400 ° C;
Injecting PEK and / or PEEK powder onto said part of the end (1, 2) of said threaded tubular component;
Maintaining the portion of the end (1,2) coated in this way at a temperature of 360 ° C. to 420 ° C., preferably close to 400 ° C. for 1 to 4 minutes; and Cooling the coated end (1,2) portion to ambient temperature at a cooling rate of less than 10 ° C. per minute;
including.

有利には、前記部分の加熱前にコーティング部分に脱脂するステップを実施する。   Advantageously, a step of degreasing the coated part is carried out before heating said part.

本発明の特性及び利点は、添付の図面を参照して、以下の説明でさらに詳細に記載される。   The characteristics and advantages of the present invention will be described in more detail in the following description with reference to the accompanying drawings.

組立により2つの管状コンポーネントを接続する結果として生じる接続部の図である。FIG. 4 is a view of the resulting connection that connects two tubular components by assembly. 2つのねじ管状コンポーネントのねじ込み曲線の図である。FIG. 3 is a screw curve of two threaded tubular components. 潤滑ドライフィルムでコーティングされた基体の図である。FIG. 2 is a diagram of a substrate coated with a lubricious dry film. 試験セットアップの図である。FIG. 6 is a diagram of a test setup. 別の試験セットアップの図である。FIG. 6 is another test setup diagram. 試験曲線を示す。A test curve is shown. 試験曲線を示す。A test curve is shown.

図1で示されるねじ接続部は、雄型末端1を備えた回転軸10がある第1管状コンポーネントと、雌型末端2を備えた回転軸10がある第2管状コンポーネントとを含む。2つの末端1及び2は各々ねじ接続部の軸10に関して放射状に向いた末端面で終わり、各々ねじ込んで2つのコンポーネントの相互の接続部に相互に協働するねじ領域3及び4を備える。ねじ領域3及び4は、台形、自動ロック式等のねじ型であってよい。さらに、ねじ込みにより2つのねじコンポーネントを接続した後、互いに封止干渉接触するようになることを意図した金属/金属封止表面5、6が、各々ねじ領域3、4に近い雄型及び雌型末端上に設けられる。最後に、雄型末端1は、2つの末端が互いに組み合わさっている場合に雌型末端2上に設けられた対応する表面8に対して隣接する末端面7で終わる。   The screw connection shown in FIG. 1 includes a first tubular component with a rotating shaft 10 with a male end 1 and a second tubular component with a rotating shaft 10 with a female end 2. The two ends 1 and 2 each end with a radially facing end face with respect to the axis 10 of the screw connection and are each provided with screw regions 3 and 4 which are screwed together and cooperate with each other in the connection of the two components. The screw regions 3 and 4 may be screw types such as trapezoidal and self-locking types. Furthermore, after connecting two screw components by screwing, the metal / metal sealing surfaces 5, 6 intended to come into sealing interference contact with each other are male and female close to the screw regions 3, 4 respectively. Provided on the end. Finally, the male end 1 ends with an end face 7 adjacent to the corresponding surface 8 provided on the female end 2 when the two ends are combined with each other.

本出願人は、この場合に2つの接触表面7及び8により形成される隣接が、ねじ領域3、4の自動ロック式締め付け協働作用により置換される他の構造も予見した(特許文献1、特許文献2及び特許文献3を参照)。   The Applicant has also foreseen other structures in which the adjacent formed by the two contact surfaces 7 and 8 is replaced by a self-locking clamping cooperation of the screw regions 3, 4 (Patent Document 1, (See Patent Document 2 and Patent Document 3).

図1及び3で明らかなように、少なくとも1つのねじ管状接続部は、基体11の末端1の部分全体にわたり、少なくとも65質量パーセントのポリアリールエーテルケトンを含む潤滑ドライフィルム12でコーティングされ、前記ドライフィルム12は、結晶化度が少なくとも10%の構造である。結晶化度は重合体の融合又は結晶化エンタルピー(ΔΗ0)により測定しうることが思い起こされるであろう。完全に結晶性のポリアリールエーテルケトン、特にポリエーテルエーテルケトン(PEEK)の理論的融合エンタルピーは、Hay及びColl(Polymer Communications, 1984, 25, 175-178)によると122J/gである。結晶化度が少なくとも10%の存在は、機械的特性に優れ、肩トルク抵抗値が特に良好である利点がある。しかしながら、結晶化度を35%より低く保持し、腐食に対する表面調製の接着性及び保護に関するフィルムの特性を保存するのが好ましい。 As can be seen in FIGS. 1 and 3, at least one threaded tubular connection is coated with a lubricious dry film 12 comprising at least 65 weight percent polyaryletherketone throughout the terminal 1 portion of the substrate 11, and The film 12 has a structure with a crystallinity of at least 10%. It will be recalled that crystallinity can be measured by polymer fusion or crystallization enthalpy (ΔΗ 0 ). The theoretical fusion enthalpy of fully crystalline polyaryletherketone, especially polyetheretherketone (PEEK), is 122 J / g according to Hay and Coll (Polymer Communications, 1984, 25, 175-178). The presence of at least 10% crystallinity has the advantage of excellent mechanical properties and particularly good shoulder torque resistance. However, it is preferred to keep the crystallinity below 35% and preserve the film properties for surface preparation adhesion and protection against corrosion.

本発明で用いられるポリアリールエーテルケトンは、水性ポリエーテルエーテルケトン分散液又は水性ポリエーテルケトン分散液から得られる。当該水性分散液は、有機又は無機機械的補強剤、例えばケイ酸アルミニウム及び水和カリウム又はマグネシウム、ガンマ結晶構造及び粒子サイズが20〜300nmであるアモルファス酸化アルミニウムにより構成される白雲母及び/又は黒雲母型のマイカ顔料、粒子サイズが10〜100nmの二酸化チタン顔料、パーフルオロアルコキシエチレン共重合体樹脂(PFA)、アモルファスカーボンブラック顔料、直径が5μm未満の合成グラファイト粉末、デトネーションにより得られ、粒子サイズが4〜6nmのナノダイヤモンド粉末、線維の太さが1〜1.3μmであり、直径D90<50μmのC型ガラス、粒子サイズが80〜220nmのWS2フラーレンナノ材料又は粒子サイズD50=55nmであるWS2二硫化タングステンラメラ顔料を含んでよい。   The polyaryl ether ketone used in the present invention is obtained from an aqueous polyether ether ketone dispersion or an aqueous polyether ketone dispersion. The aqueous dispersions are muscovite and / or black composed of organic or inorganic mechanical reinforcing agents such as aluminum silicate and hydrated potassium or magnesium, gamma crystal structure and amorphous aluminum oxide with a particle size of 20-300 nm. Mica-type mica pigment, titanium dioxide pigment with particle size of 10-100 nm, perfluoroalkoxyethylene copolymer resin (PFA), amorphous carbon black pigment, synthetic graphite powder with diameter less than 5 μm, particle size obtained by detonation Is nanodiamond powder of 4-6 nm, fiber thickness is 1-1.3 μm, C-type glass with diameter D90 <50 μm, WS2 fullerene nanomaterial with particle size of 80-220 nm or particle size D50 = 55 nm WS2 tungsten disulfide Mera pigment may include.

ポリエーテルエーテルケトン(略語PEEK)及びポリエーテルケトン(略語PEK)は求核置換型合成経路により得られる。ポリエーテル化の結果、高融点の硬質半結晶重合体が得られる。それらは、熱可塑性材料群で性能材料が最良のカテゴリーに該当する。それらのガラス転移温度は143℃であり半結晶性であるため、343℃である融点に近い温度までその優れた機械的特性を保持する。当該準線形及び芳香族構造は、長期熱安定性に優れるPEEK及びPEKを提供する。   Polyetheretherketone (abbreviation PEEK) and polyetherketone (abbreviation PEK) are obtained by a nucleophilic substitution type synthetic route. As a result of the polyetherification, a hard semicrystalline polymer having a high melting point is obtained. They fall into the category with the best performance materials in the thermoplastic material group. Their glass transition temperature is 143 ° C. and they are semi-crystalline, so they retain their excellent mechanical properties up to a melting point of 343 ° C .. The quasi-linear and aromatic structures provide PEEK and PEK with excellent long-term thermal stability.

ポリエーテルエーテルケトンの分子構造は以下のとおりである:   The molecular structure of polyetheretherketone is as follows:

Figure 0006018576
ポリエーテルケトンの分子構造は以下のとおりである:
Figure 0006018576
The molecular structure of polyetherketone is as follows:

Figure 0006018576
ガラス転移温度が157℃、融点が374℃で、ポリエーテルケトン(PEK)は、ポリエーテルエーテルケトン(PEEK)と比較して、剛性、固体性及び耐薬品性等で同様の利点を全て有しつつ、高温で性能が拡張する。
Figure 0006018576
With a glass transition temperature of 157 ° C and a melting point of 374 ° C, polyether ketone (PEK) has all the same advantages in terms of rigidity, solidity and chemical resistance, etc., compared to polyether ether ketone (PEEK). However, the performance expands at high temperatures.

連続使用温度は240℃であり、他の重合体と比べて補強等級のPEEK及びPEKについて荷重変形温度は300℃を超える。   The continuous use temperature is 240 ° C., and the load deformation temperature exceeds 300 ° C. for reinforcement grades PEEK and PEK compared to other polymers.

PEEKは、機械的特性が高く、当該特性を、引張強度については250℃まで、そして曲げ強度については300℃まで保持する。当該機械的特性は、10%〜30%の固体潤滑剤、例えばグラファイト、カーボンブラック、フッ素化PTFEタイプの重合体又はパーフルオロアルコキシエチレン(PFA)タイプの樹脂若しくはガラス繊維を組み入れて大幅に改善される。   PEEK has high mechanical properties that hold it up to 250 ° C. for tensile strength and 300 ° C. for bending strength. The mechanical properties are greatly improved by incorporating 10-30% solid lubricants such as graphite, carbon black, fluorinated PTFE type polymers or perfluoroalkoxyethylene (PFA) type resins or glass fibers. The

PEKは、高温で耐摩耗性がPEEKの3倍まで、永続的に変形せずより高い負荷に適応しつつ、PEEKよりも30℃以上高温で当該機械的及び物理的特性を保持する。   PEK retains its mechanical and physical properties at temperatures above 30 ° C. higher than PEEK, while being permanently deformed and adapting to higher loads up to 3 times higher than PEEK at high temperatures.

PEEK及びPEKは、特に飽和塩溶液、200℃でガス状の硫化水素に対して耐薬品性があり、さらに200℃にて1.6MPa下で加水分解に対する耐性と、フッ素化重合体に匹敵する温度耐性もある。表1は、フッ素化重合体(PTFE及びPFA)と比較して、PEEK及びPEKの優れた機械的特性を明らかに示す。   PEEK and PEK are particularly resistant to saturated salt solutions, gaseous hydrogen sulfide at 200 ° C., and further resistant to hydrolysis at 200 ° C. under 1.6 MPa, comparable to fluorinated polymers. There is also temperature resistance. Table 1 clearly shows the superior mechanical properties of PEEK and PEK compared to fluorinated polymers (PTFE and PFA).

Figure 0006018576
PEK及びPEEKについて様々な実施が可能であるが、370℃〜420℃の温度で融解させる変換を含む。堆積は、静電粉末射出、水性分散液の噴霧及び熱射出により実施できる。PEEK及びPEKは腐食に対して融解状態では感受性でない。しかし、分解を触媒してコーティングが酸化に対して耐性の低い、(例えば、13%のクロムを含むある等級のマルテンサイトステンレス鋼において)銅又はクロムを含有する合金から形成される型に汚染されうる。全体として、融解による変換後、PEK及びPEEKは特に金属があまり研磨されていない場合に金属によく接着する。許容される粗度はドライフィルムの所望の厚さ全体の20%〜25%である。接着は、下塗りを接着促進剤として用いて、又は機械的摩耗(サンディング又はショットブラスティング)による表面処理を用いて、クロム酸中での媒染により、若しくは空気あるいはO2タイプの酸化剤さらにNH3タイプの還元剤でのプラズマ処理により、増大させうる。同時に、ほとんど全ての金属の表面酸化により重合体の接着が低下する傾向がある。支持体の表面エネルギーを変えないため、金属を不活性雰囲気中で又は誘導により加熱しなければならないことが明らかである。最後に、冷却により再結晶が良好に得られ、重合体の内因的特性、例えば耐摩耗性及び耐ひっかき性を保存するために十分遅くなければならない。急速冷却で、当該部分を200℃で30分間アニーリングすると依然として再結晶化しうるアモルファスコーティングが生成されるであろう。例えば、400℃から250℃まで10℃/分の冷却速度、その後30分〜1時間250℃での一定温度段階が続くよう制御された冷却プロセスで結晶化度を高めて、重合体の機械的特性を高め得る。
Figure 0006018576
Various implementations are possible for PEK and PEEK, including transformations that melt at temperatures between 370 ° C and 420 ° C. Deposition can be performed by electrostatic powder injection, aqueous dispersion spraying and thermal injection. PEEK and PEK are not sensitive to corrosion in the molten state. However, catalyzing decomposition, the coating is less resistant to oxidation and is contaminated with molds formed from copper or chromium containing alloys (eg, in certain grades of martensitic stainless steel containing 13% chromium). sell. Overall, after conversion by melting, PEK and PEEK adhere well to the metal, especially when the metal is not very polished. Acceptable roughness is 20% to 25% of the overall desired thickness of the dry film. Adhesion can be achieved by using a primer as an adhesion promoter, or by surface treatment by mechanical abrasion (sanding or shot blasting), by mordanting in chromic acid, or by air or an O 2 type oxidant and NH 3 It can be increased by plasma treatment with a type of reducing agent. At the same time, polymer adhesion tends to decrease due to surface oxidation of almost all metals. It is clear that the metal must be heated in an inert atmosphere or by induction in order not to change the surface energy of the support. Finally, good recrystallization is obtained by cooling and must be slow enough to preserve the intrinsic properties of the polymer, such as abrasion resistance and scratch resistance. With rapid cooling, annealing the part at 200 ° C. for 30 minutes will produce an amorphous coating that can still be recrystallized. For example, the crystallinity can be increased by a controlled cooling process from 400 ° C. to 250 ° C. at a cooling rate of 10 ° C./min, followed by a constant temperature step at 250 ° C. for 30 minutes to 1 hour, Can enhance the properties.

第1段階で、本出願人は、耐摩耗性を強化するために少なくとも1つの固体潤滑剤、好ましくはパーフルオロアルコキシエチレン共重合体樹脂タイプのフッ素化重合体及び/又は研磨耐性を強化するために少なくとも1つの無機カーボンブラックタイプの固体化合物を含有する、VictrexからVicote F800シリーズ名で販売されるポリエーテルエーテルケトンの水性懸濁液からポリアリールエーテルケトンコーティングを得ることを検討した。Vicote F800シリーズ懸濁液の様々な水性相の物理化学的特性を表2で評価した。   In the first stage, the applicant has to increase at least one solid lubricant, preferably a fluorinated polymer of perfluoroalkoxyethylene copolymer resin type and / or polishing resistance to enhance the wear resistance. It was investigated to obtain a polyaryletherketone coating from an aqueous suspension of polyetheretherketone sold under the name Vicote F800 series from Victrex, which contains at least one inorganic carbon black type solid compound. The physicochemical properties of various aqueous phases of Vicote F800 series suspensions were evaluated in Table 2.

Figure 0006018576
本出願人はさらに、ポリエーテルエーテルケトン粉末の水性懸濁液の組成を正確に測定した。特に、水性懸濁液は、好ましくは25%〜35質量パーセントの範囲の、Victrexから商品名Vicote 704で販売される10μmの粒子サイズD90のPEEK粉末を含んでよいことが示された。
Figure 0006018576
The Applicant has further accurately determined the composition of an aqueous suspension of polyetheretherketone powder. In particular, it has been shown that the aqueous suspension may comprise 10 μm particle size D90 PEEK powder sold by Victrex under the trade name Vicote 704, preferably in the range of 25% to 35% by weight.

水性懸濁液はさらに、少なくとも1つの1、2及び4類の固体潤滑剤粒子、好ましくは3%〜12質量パーセントの4類の固体潤滑剤であって、平均粒子サイズ20〜30μmのDYNEONから商品名Hyflon(登録商標)PFAで販売されるパーフルオロアルコキシエチレン共重合体タイプのフッ素化粉末の形態で含んでもよい。   The aqueous suspension further comprises at least one, one, two and four kinds of solid lubricant particles, preferably 3% to 12% by weight of four kinds of solid lubricants from DYNEON having an average particle size of 20 to 30 μm. It may also be included in the form of a perfluoroalkoxyethylene copolymer type fluorinated powder sold under the trade name Hyflon® PFA.

「固体潤滑剤」という用語は、本明細書中で用いられる場合には、2つの摩擦面間に置くと摩擦係数を低下させることができ、表面に対する摩耗及び損傷を軽減できる、固形で安定な物体を意味する。当該物体は、当該作用機序及び当該構造により異なるカテゴリー、すなわち:
・1類:例えば、グラファイト、酸化亜鉛(ZnO)又は窒化ホウ素(BN)等の潤滑特性が結晶構造に起因する固形物;
・2類:例えば、二硫化モリブデンMoS2、フッ化グラファイト、硫化スズ、硫化ビスマス、二硫化タングステン又はフッ化カルシウム等の潤滑特性が結晶構造及び組成中の反応性化学元素にも起因する固形物;
・3類:例えば、チオスルフェート型のある種の化合物又はDesilube Technologies Incから販売されるDesilube 88(登録商標)等の潤滑特性が化学反応性に起因する固形物;
・4類:例えば、ポリテトラフルオロエチレン(PTFE)又はポリアミド等の潤滑特性が摩擦応力下での可塑性又は粘塑性挙動に起因する固形物;
に分類できる。
The term “solid lubricant” as used herein is a solid, stable material that can reduce the coefficient of friction when placed between two friction surfaces and reduce wear and damage to the surface. Means an object. The object has different categories depending on the mechanism of action and the structure:
-Class 1: For example, solids whose lubricating properties are attributable to the crystal structure, such as graphite, zinc oxide (ZnO) or boron nitride (BN);
・ Class 2: Solids whose lubricating properties such as molybdenum disulfide MoS 2 , graphite fluoride, tin sulfide, bismuth sulfide, tungsten disulfide or calcium fluoride are also attributed to the reactive chemical elements in the crystal structure and composition ;
• Class 3: solids whose lubricating properties are due to chemical reactivity, such as certain compounds of the thiosulfate type or Desilube 88® sold by Desilube Technologies Inc;
Class 4: Solids whose lubricating properties such as polytetrafluoroethylene (PTFE) or polyamide are caused by plasticity or viscoplastic behavior under frictional stress;
Can be classified.

水性懸濁液は、機械的補強剤、好ましくは、0.5%〜1質量パーセントの、Evonikから商品名Printexで販売される、BET比表面積が25〜300m2/g及び平均粒子サイズが1〜5μmのカーボンブラック顔料を含んでもよい。 The aqueous suspension is a mechanical reinforcing agent, preferably 0.5% to 1% by weight, sold by Evonik under the trade name Printex, with a BET specific surface area of 25 to 300 m 2 / g and an average particle size of 1 A carbon black pigment of ˜5 μm may be included.

水性懸濁液は、重合体の外部樹脂加工による融合又はフィルム形成を促進し、拡散を促進するために懸濁液の表面張力を変えるため、好ましくは蒸発速度が迅速で沸点が100℃〜200℃のエチレングリコールモノブチルエーテル型の融合剤を、懸濁液の2.5%〜10質量パーセント、さらに好ましくは2.5%〜5質量パーセントで含んでもよい。   Aqueous suspensions promote fusion or film formation by external resin processing of the polymer and change the surface tension of the suspension to promote diffusion, preferably with a rapid evaporation rate and a boiling point of 100 ° C to 200 ° C. An ethylene glycol monobutyl ether type fusing agent at 0 ° C. may be included at 2.5% to 10 weight percent, more preferably 2.5% to 5 weight percent of the suspension.

水性懸濁液は、支持体の湿潤を改善し、粉末が溶液から沈殿するのを防ぐため、界面活性剤及び好ましくはジオクチルスルホコハク酸ナトリウムタイプの非イオン性湿潤及び分散剤(水とエタノールとの混合物中硫酸及び脂肪族エステルの化合物)を懸濁液の2.5%〜10質量パーセント、好ましくは2.5%〜5質量パーセントで含んでもよい。   Aqueous suspensions improve the wetting of the support and prevent the powder from precipitating out of solution, preferably non-ionic wetting and dispersing agents (of water and ethanol) of the sodium dioctylsulfosuccinate type. The compound of sulfuric acid and aliphatic ester) in the mixture may be comprised between 2.5% and 10% by weight of the suspension, preferably between 2.5% and 5% by weight.

ドライフィルムをねじ管状コンポーネントの末端1、2の部分上に堆積させるためのプロセスに関して、本出願人は、静電ガンを用い、乾式又は湿式のいずれかの手順を用いる射出でVicote 704ポリエーテルエーテルケトン粉末等級を適用できることを示した。   For a process for depositing a dry film on the distal end 1, 2 portion of a threaded tubular component, Applicants have used a Statice 704 polyetherether by injection using an electrostatic gun and either a dry or wet procedure. It was shown that ketone powder grade can be applied.

第1バリエーションでは、末端1、2の部分を400℃まで予熱した後、PEEK粉末を適用する。次に、コーティング部分を温度360℃〜420℃で2分間、好ましくは400℃の初期温度で維持すると表面外観が良好になる。所望の厚さにするために作業を数回繰り返してよい。粉末を最低2時間180℃で脱水しておかなければならない。   In the first variation, the PEEK powder is applied after preheating the portions 1 and 2 to 400 ° C. Next, maintaining the coating portion at an initial temperature of 360 ° C. to 420 ° C. for 2 minutes, preferably 400 ° C., improves the surface appearance. The operation may be repeated several times to achieve the desired thickness. The powder must be dehydrated at 180 ° C for a minimum of 2 hours.

第2バリエーションでは、末端1、2の部分を、Vicote 704粉末(強化の有無は問わない)の冷水性懸濁液の空気圧式スプレーでコーティングする。このプロセスでは、末端1、2の部分の清浄が完璧であり、溶媒、好ましくはアセトン等の極性非プロトン性溶媒を用いて脱脂されるのが好ましい。   In the second variation, the ends 1, 2 are coated with a pneumatic spray of a cold aqueous suspension of Vicote 704 powder (with or without strengthening). In this process, the terminal 1 and 2 portions are completely cleaned and preferably degreased using a solvent, preferably a polar aprotic solvent such as acetone.

適用は、重力送りガン及びカップがある空気圧式ガンスプレーシステムを用いて実施でき、末端1、2の部分は周囲温度である。混合物の温度は、好ましくは周囲温度に近く、当該周囲温度は好ましくは20℃〜30℃の範囲内である。   Application can be performed using a pneumatic gun spray system with a gravity feed gun and cup, with the ends 1, 2 being at ambient temperature. The temperature of the mixture is preferably close to ambient temperature, which is preferably in the range of 20 ° C to 30 ° C.

ガンノズルの直径は好ましくは0.7〜1.8mmであり、4barの最低空気圧は好ましくは4〜6barである。   The diameter of the gun nozzle is preferably 0.7 to 1.8 mm and the minimum air pressure of 4 bar is preferably 4 to 6 bar.

コーティングされた部分を次に周囲温度で5〜10分間放置する。   The coated part is then left for 5-10 minutes at ambient temperature.

この部分を5〜10分間で温度120℃のオーブン又は炉中に置く。この乾燥作業は、例えば誘導により実施できる。次に、この部分を400℃又はそれより低い温度のいずれかの炉中に置き、続いて400℃まで10℃〜20℃/分の範囲の速度で上昇させる。   This part is placed in an oven or furnace at a temperature of 120 ° C. for 5-10 minutes. This drying operation can be performed by induction, for example. This portion is then placed in a furnace at either 400 ° C. or lower and subsequently raised to 400 ° C. at a rate in the range of 10 ° C. to 20 ° C./min.

金属の最高温度に達したら、ドライフィルムを完全に融合させて均一なフィルムを形成するため、ねじ末端1、2の部分を当該温度で5〜15分間、好ましくは少なくとも10分間放置する。   When the maximum metal temperature is reached, the screw ends 1, 2 are left at that temperature for 5-15 minutes, preferably at least 10 minutes, in order to completely fuse the dry film to form a uniform film.

次いでねじ末端部分1、2を炉から取り出し、周囲温度まで冷却させる。半結晶構造を得るための冷却速度は、好ましくはゆっくり、即ち1℃/分〜200℃/分である。   The screw end portions 1, 2 are then removed from the furnace and allowed to cool to ambient temperature. The cooling rate for obtaining the semicrystalline structure is preferably slow, i.e. from 1 ° C / min to 200 ° C / min.

静電射出の代替法は、ヒートガンを用いてねじ末端1、2の部分上に乾燥熱射出によりVicote粉末を適用することからなる。このプロセスでは、末端1、2の部分の清浄が完璧で、溶媒、好ましくはアセトン等の極性非プロトン性溶媒で脱脂されるのが好ましい。   An alternative to electrostatic injection consists of applying Vicote powder by dry heat injection onto the screw ends 1, 2 using a heat gun. In this process, the terminal 1 and 2 portions are completely cleaned and preferably degreased with a solvent, preferably a polar aprotic solvent such as acetone.

部分をオーブン又は炉中で260℃で予熱する。ベクターガスと共にヒートガンを用いてポリアリールエーテルケトンの微粒子を融点まで加熱して加速し、基体へ輸送してVicote粉末を部分に適用する。この作業に続いて空気中で周囲温度まで急速冷却する。所望の厚さを得るために作業を数回繰り返してもよい。   Preheat the part in an oven or furnace at 260 ° C. The polyaryletherketone microparticles are heated to the melting point using a heat gun with vector gas, accelerated, transported to the substrate and Vicote powder applied to the part. This is followed by rapid cooling to ambient temperature in air. The operation may be repeated several times to obtain the desired thickness.

ドライコーティングの厚さは20〜70μm、好ましくは30〜50μmである。   The thickness of the dry coating is 20 to 70 μm, preferably 30 to 50 μm.

試験は、ある数のパラメータ、すなわち:
・高Hertz応力下で接触した表面での摩擦トルク(Bridgman試験);
・基体上のフィルムの接着力(スクラッチ試験、クロスハッチ試験);
・湿潤媒体曝露耐性;
・水中浸漬耐性;
・高圧耐摩耗性(Falex試験)
を評価することからなる。
The test has a number of parameters:
-Friction torque at the contacted surface under high Hertz stress (Bridgman test);
-Adhesive strength of the film on the substrate (scratch test, cross-hatch test);
-Wet medium exposure resistance;
・ Immersion resistance in water;
・ High pressure wear resistance (Falex test)
Consists of evaluating.

Bridgman試験で「プレミアム」接続部に特異的なねじ込み作業中のドライフィルム顔料のトライポロジー特性を測定しうる。より正確には、ToSR(肩トルク抵抗値)としても知られる肩トルク抵抗値CSBをモデル化して測定する。このトルクは石油産業で用いられるプレミアム接続部に特異的なねじ込み作業中に生じ、図2に表す。   The Bridgman test can measure the tribological properties of dry film pigments during screwing operations specific to “premium” connections. More precisely, the shoulder torque resistance value CSB, also known as ToSR (shoulder torque resistance value), is modeled and measured. This torque occurs during the screwing operation specific to the premium connection used in the oil industry and is represented in FIG.

図2の曲線は、ねじ込み(又は締め付け)トルクを、施された回転数の関数として表す。図に示すように、「プレミアム」接続部のねじ込みトルクのプロフィールは4つの部分に分けられる。   The curve in FIG. 2 represents the screwing (or tightening) torque as a function of the applied rotational speed. As shown, the “premium” connection screw torque profile is divided into four parts.

第1部分P1では、ねじ管状接続部の第1コンポーネントの雄型ねじ要素(又はピン)の雄ねじは、まだ同じねじ管状接続部の第2コンポーネントの対応する雌型ねじ要素(又はボックス)の雌ねじで放射方向に締め付けられていない。   In the first part P1, the male thread of the male thread element (or pin) of the first component of the threaded tubular connection is still the female thread of the corresponding female thread element (or box) of the second component of the same threaded tubular connection. It is not tightened in the radial direction.

第2部分P2では、雄型及び雌型ねじ要素のねじの幾何学的干渉は、ねじ込みが続くにつれて放射方向の締め付けが高まる(ねじ込みトルクは小さいが増大する)。   In the second part P2, the geometric interference of the threads of the male and female screw elements increases the radial tightening as the screwing continues (screwing torque is small but increases).

第3部分P3では、雄型ねじ要素の末端部分の外周の封止表面は、雌型ねじ要素の対応する封止表面と放射方向に干渉して、金属/金属封止を生じる。   In the third part P3, the sealing surface at the outer periphery of the end part of the male screw element interferes radially with the corresponding sealing surface of the female screw element, resulting in a metal / metal seal.

第4部分P4では、雄型ねじ要素の前端表面は、雌型ねじ要素の組立隣接部の環状表面と軸方向に隣接する。この第4部分P4は組立の終末期に相当する。   In the fourth part P4, the front end surface of the male screw element is axially adjacent to the annular surface of the adjacent assembly of the female screw element. The fourth portion P4 corresponds to the end stage of assembly.

第3部分P3の終期に相当し、第4部分P4の開始に相当する組立トルクCABを肩トルクという。   The assembly torque CAB corresponding to the end of the third portion P3 and corresponding to the start of the fourth portion P4 is referred to as shoulder torque.

第4部分P4の最後に相当する組立トルクCPを樹脂加工トルクという。この樹脂加工トルクCPを超えると、雄型組立隣接部(雄型ねじ要素の末端部分)及び/又は雌型組立隣接部(雌型ねじ要素の環状隣接表面の後ろに位置する帯域)の塑性が変形されると考えられ、これにより、封止表面の樹脂加工による封止表面間の接触の緊密さに関する性能も同様に低下しうる。   The assembly torque CP corresponding to the end of the fourth portion P4 is referred to as resin processing torque. When this resin processing torque CP is exceeded, the plasticity of the male assembly adjacent portion (the end portion of the male screw element) and / or the female assembly adjacent portion (the band located behind the annular adjacent surface of the female screw element) is increased. It is thought that it deform | transforms and, thereby, the performance regarding the closeness of the contact between the sealing surfaces by the resin processing of the sealing surface may fall similarly.

樹脂加工トルクCPと肩トルクCABの値間の差を肩トルク抵抗値CSBという(CSB=CP−CAB)。ねじ管状接続部は組立終期で締め付けが最適となり、これは例えば張力だけでなく、使用中の偶発的な分解及び最適封止性能に関しても、ねじ接続部の最適機械的強度を確保する。   A difference between the values of the resin processing torque CP and the shoulder torque CAB is referred to as a shoulder torque resistance value CSB (CSB = CP−CAB). The threaded tubular connection is optimally tightened at the end of assembly, which ensures the optimum mechanical strength of the threaded connection, not only for tension, but also for accidental disassembly and optimum sealing performance during use.

つまり、ねじ接続部の設計者は、所定のタイプのねじ接続部に関して、全ての接続部が、(隣接部の樹脂加工及びそれによる欠点を回避するため)樹脂加工トルクCPよりも低く、肩トルク(CAB)よりも高い、最適組立トルクの値を規定しなければならない。組立をCABより低いトルクで終えると、雄型及び雌型要素の正しい相対的配置を確保することができず、封止表面間の有効な締まりばめを確保できない。さらに、分解の危険がある。肩トルクCABの有効値は、雄型及び雌型ねじ並びに封止表面(複数可)の直径方向及び軸方向の機械加工公差に依存するので、同じ型の接続部でも接続部ごとに大きく変動し、最適組立トルクは、肩トルクCABよりも実質的に高くなければならない。   In other words, the designer of the screw connection part has a shoulder torque that is lower than the resin processing torque CP (in order to avoid the resin processing of the adjacent part and the disadvantages thereof) for a given type of screw connection part. An optimum assembly torque value higher than (CAB) must be specified. If the assembly is finished with a torque lower than CAB, the correct relative placement of the male and female elements cannot be ensured and an effective interference fit between the sealing surfaces cannot be ensured. In addition, there is a risk of disassembly. The effective value of shoulder torque CAB depends on the diametrical and axial machining tolerances of the male and female screws and the sealing surface (s), so it varies greatly from connection to connection, even for connections of the same type. The optimum assembly torque must be substantially higher than the shoulder torque CAB.

その結果、肩トルク抵抗値CSBの値が高いほど、最適化組立トルクを規定するマージンが大きくなり、より多くのねじ接続部が作業応力に対して耐性になる。   As a result, the higher the value of the shoulder torque resistance value CSB, the larger the margin for defining the optimized assembly torque, and the more screw connection portions are resistant to working stress.

摩擦試験をBridgman型機械を用いて実施した。この型の機械は、特に非特許文献1に記載されている。Bridgman機械の概略及び機能例を図5に示す。   The friction test was carried out using a Bridgman type machine. This type of machine is described in particular in Non-Patent Document 1. FIG. 5 shows an outline and an example of functions of the Bridgman machine.

この機械は:選択した速度で回転駆動され得るディスクDQ;ディスクDQの第1面に永久的に設置された、好ましくは円錐型の第1アンビルEC1;ディスクDQの第1面と反対側の第2面に永久的に設置された、好ましくは円錐型の第2アンビルEC2;例えば、選択された軸方向圧力Pを及ぼしうるピストン等の第1EP1及び第2EP2圧力要素;第1圧力要素EP1の1面に永久的に設置された、好ましくは円筒型の第3アンビルEC3;第2圧力要素EP2の1面に永久的に設置された、好ましくは円筒型の第4アンビルEC4を含む。   The machine is: a disc DQ that can be driven to rotate at a selected speed; a first anvil EC1 that is permanently installed on the first side of the disc DQ, preferably a conical first anvil; a first side opposite the first side of the disc DQ Second anvil EC2, preferably conical, installed permanently on two sides; for example, a first EP1 and a second EP2 pressure element such as a piston capable of exerting a selected axial pressure P; one of the first pressure elements EP1 A third anvil EC3, preferably cylindrical, permanently installed on the surface; a fourth anvil EC4, preferably cylindrical, permanently installed on one surface of the second pressure element EP2.

潤滑剤組成物を試験するために、ねじ要素を構成するのと同じ2つの材料を前記組成物で被覆して第1試料S1及び第2試料S2試料を形成する。次に、第1試料S1を第1EC1及び第3EC3アンビルの自由面間に挿入し、第2試料S2を第2EC2及び第4EC4アンビルの自由面間に挿入する。次に、第1EP1及び第2EP2圧力要素各々で選択した軸方向圧力P(例えばほぼ1GPa程度)を加えてディスクDQを選択した速度で回転させ、各試料S1、S2が付される組立トルクを測定する。組立終期での隣接表面のヘルツ圧力及び相対的速度をシミュレーションするために、軸方向圧力、回転速度及び回転角をBridgman試験で選択する。試料S1及びS2に予め決められた組立トルクを加え、当該試料S1及びS2が所定の組立トルクプロフィールに密接したか否か、特に、摩耗するまでに、選択した組立トルクに関して選択した閾値に少なくとも等しい完了回転数に到達したかを確認するため、当該機械を用いていくつかの異なるパラメータ対(組立トルク、回転速度)を固定しうる。   To test the lubricant composition, the same two materials that make up the screw element are coated with the composition to form a first sample S1 and a second sample S2. Next, the first sample S1 is inserted between the free surfaces of the first EC1 and the third EC3 anvil, and the second sample S2 is inserted between the free surfaces of the second EC2 and the fourth EC4 anvil. Next, the axial pressure P (for example, about 1 GPa) selected by each of the first EP1 and second EP2 pressure elements is applied to rotate the disk DQ at the selected speed, and the assembly torque to which the samples S1 and S2 are attached is measured. To do. In order to simulate the Hertz pressure and relative speed of adjacent surfaces at the end of assembly, axial pressure, rotational speed and rotational angle are selected in the Bridgman test. Apply a predetermined assembly torque to the samples S1 and S2, and whether the samples S1 and S2 are in close contact with a predetermined assembly torque profile, in particular, at least equal to a selected threshold for the selected assembly torque before being worn Several different parameter pairs (assembly torque, rotational speed) can be fixed using the machine to see if the complete rotational speed has been reached.

この場合、選択された接触圧力は1GPaで回転速度は1rpmであった。試験試料を、13%Cr含有ステンレス鋼から形成し、機械加工し、次いで異なるドライフィルム配合物でコーティングした。   In this case, the selected contact pressure was 1 GPa and the rotation speed was 1 rpm. Test samples were formed from 13% Cr containing stainless steel, machined, and then coated with different dry film formulations.

図4に概略的に示すスクラッチ試験で、表面又は表面調製上のフィルムの接着力又は接着の測定ができる。荷重を増大した球状ビーズでフィルムを剪断して変形することからなる方法で、2つの主なトライポロジーのパラメータ、即ち、摩擦係数及びフィルム凝集の損失に対応する臨界荷重を測定できる。   The scratch test schematically shown in FIG. 4 can measure the adhesion or adhesion of the film on the surface or surface preparation. In a method consisting of shearing and deforming the film with spherical beads with increased load, two main tribological parameters can be measured, the critical load corresponding to the coefficient of friction and the loss of film aggregation.

実験条件は、直径5mmのInconel 718から形成された球状圧子及び亜鉛もしくはマンガンのリン酸塩皮膜処理又は電解銅−スズ−亜鉛堆積により処理されたXC48炭素鋼から形成された金属試料を用いる。パラメータは:荷重増加率が10Nから310Nまで15N/sで増加する荷重又は荷重増加率250Nから750Nまで25N/sで増加する荷重であった。ビーズ置換速度は20秒間は2mm/sであった(飛跡長40mm)。測定された摩擦係数は、10Nの荷重についてμ=0.05及び310Nの荷重についてμ=0.09の範囲で低いと考えられる。炭素鋼表面上で310Nの荷重では0.07のμと測定された。コーティングの各タイプの試験の荷重及び操作条件を明確に提示する必要があることに注目すべきである。   The experimental conditions use a spherical indenter formed from 5 mm diameter Inconel 718 and a metal sample formed from zinc or manganese phosphate coating or XC48 carbon steel treated by electrolytic copper-tin-zinc deposition. The parameters were: a load increasing rate from 10 N to 310 N at 15 N / s or a load increasing from 25 N to 750 N at 25 N / s. The bead replacement speed was 2 mm / s for 20 seconds (track length 40 mm). The measured coefficient of friction is considered to be low in the range of μ = 0.05 for a 10N load and μ = 0.09 for a 310N load. It was measured to be 0.07 μ at a load of 310 N on the carbon steel surface. It should be noted that the load and operating conditions for each type of coating test need to be clearly presented.

クロスハッチ試験は、基体が分類により6つのカテゴリーに分類されるまで切り込みを入れてコーティングをクロスハッチングする場合、前記基体から分離される場合の単層又は多層コーティングの耐性を評価することからなる。コーティングの基体に対する優れた接着性は、ISO規格2409(2007)の0類に対応し、切開のエッジは完璧に滑らかで、クロスハッチの四隅は切り取られない。環境を考慮して、クロスハッチ試験は、湿性媒体(35℃及び90%RH)中に置いた後に実施する。外観の変化がない、水泡形成がない、腐食がない、亀裂がない、ISO規格4628の分類に対応するスケーリングがない及び接着の損失がないことが、良好な耐湿性の特徴である。   The cross-hatch test consists of assessing the resistance of a single or multi-layer coating when it is separated from the substrate when the coating is cross-hatched until the substrate is classified into six categories by classification. The excellent adhesion of the coating to the substrate corresponds to class 0 of ISO standard 2409 (2007), the edges of the incision are perfectly smooth and the four corners of the cross hatch are not cut off. Considering the environment, the cross-hatch test is performed after placing in a wet medium (35 ° C. and 90% RH). Good moisture resistance is characterized by no change in appearance, no bubble formation, no corrosion, no cracks, no scaling corresponding to ISO 4628 classification and no loss of adhesion.

腐食試験は、気候室中、以下の条件で実施される塩水噴霧試験からなる:35℃、25℃で密度1.029〜1.036、25℃でpH6.5〜7.2の50g/Lの塩溶液を用いて、平均速度1.5mL/hで回収。   The corrosion test consists of a salt spray test carried out in a climatic chamber under the following conditions: 50 g / L with a density of 1.029-1.036 at 35 ° C. and 25 ° C. and a pH of 6.5-7.2 at 25 ° C. Was collected at an average rate of 1.5 mL / h.

次に、さびのない無傷の試料は曝露後にISO規格9227のReO類に相当した。当該方法は、腐食を防ぐコーティング(金属材料上の金属又は有機コーティング)の有無を問わず金属材料の相対的品質が維持されることを検証する手段となる。   The rust-free intact sample then corresponded to ISO standard 9227 ReOs after exposure. The method provides a means to verify that the relative quality of the metal material is maintained with or without a coating that prevents corrosion (metal or organic coating on the metal material).

耐水性試験は、気候室中で実施するDIN規格50017により試料を加速腐食試験に供することからなる。1日1サイクルからなる当該試験は、以下の条件下:35℃、90%の相対湿度(RH)で8時間の凝縮により水蒸気を堆積させ、次いで試料を乾燥させることからなる。7サイクル後、コーティングで保護された基体が腐食したかどうかを確認するために調査する。   The water resistance test consists of subjecting the sample to an accelerated corrosion test according to DIN standard 50017 carried out in a climate chamber. The test consisting of one cycle per day consists of depositing water vapor by condensation for 8 hours at 35 ° C. and 90% relative humidity (RH), and then drying the sample. After 7 cycles, the substrate protected with the coating is investigated to see if it corroded.

優れた耐性は、ISO規格4628の分類:腐食がなく、水泡形成がなく、亀裂がなくそして亜鉛(8〜20g/m2のリン酸塩堆積)又はマンガンでのリン酸塩皮膜処理の有無、若しくはNi中間層がある3成分銅−スズ−亜鉛合金の電解堆積で処理されたクロム又は炭素鋼プレートのスケーリングがない、に対応する。 Excellent resistance is classified according to ISO standard 4628: no corrosion, no foam formation, no cracks and with or without phosphate coating with zinc (8-20 g / m 2 phosphate deposit) or manganese, Alternatively, there is no scaling of chromium or carbon steel plates treated with electrolytic deposition of a ternary copper-tin-zinc alloy with a Ni intermediate layer.

水中浸漬試験は、DIN規格50017の耐水性試験よりもはるかに厳しい。それはコーティングの耐水性を試験することからなる。工業用及び自動車用塗料のASTM規格D870−09に由来する。   The underwater immersion test is much more severe than the DIN standard 50017 water resistance test. It consists of testing the water resistance of the coating. Derived from ASTM standard D870-09 for industrial and automotive paints.

水中浸漬は、コーティングの分解を起こしうる。コーティングが水中の浸漬に抵抗する方法に関する知見は、耐用年数の予測に有用である。水中浸漬試験での破裂又は破壊は、多くの要因、特にコーティング自体の不備、基体の汚染又は不十分な表面調製により起こりうる。したがって、試験は単独又は完全コーティング系での評価に有用である。   Soaking in water can cause the coating to degrade. Knowledge about how the coating resists immersion in water is useful for predicting service life. Rupture or breakage in an underwater immersion test can occur due to a number of factors, notably the coating itself, contamination of the substrate or poor surface preparation. Therefore, the test is useful for evaluation in a single or complete coating system.

試験は、試料を脱塩水中に168時間40℃にてオーブン内で半分浸漬することからなる。接着性、水泡形成、さび、又はブローホールが視覚的に観察され、コーティングの水に対する感受性が示される。   The test consisted of immersing the sample in demineralized water halfway in an oven at 40 ° C. for 168 hours. Adhesion, foam formation, rust, or blowholes are visually observed, indicating the sensitivity of the coating to water.

高圧耐摩耗性(Falex試験ともいう)は図6に示す2つのV型ブロック間で圧迫された回転圧子を用いる。Falex試験は、ASTM規格D2670及びASTM D3233により潤滑液の抗摩耗及び過度の圧力特性の評価に特に高速で用いられるが、ASTM法D2625により固体潤滑剤の評価に低速でも用いられる。Falex試験は:
・半閉鎖接触幾何学(第3潤滑体をトラップするため);
・接続部と調和する圧力・速度範囲;
・組立及び分解作業をモデル化するために一方向又は交互試験を実施する可能性;
を用いる点で、炭化水素坑井の作業で使用されるねじ接続部を調節するように適応させる。
For high-pressure wear resistance (also referred to as Falex test), a rotary indenter pressed between two V-shaped blocks shown in FIG. 6 is used. The Falex test is used at particularly high speeds to evaluate anti-wear and excessive pressure characteristics of lubricating fluids according to ASTM standards D2670 and ASTM D3233, but is also used at low speeds to evaluate solid lubricants according to ASTM method D2625. The Falex exam:
Semi-closed contact geometry (to trap the third lubricant);
・ Pressure / speed range in harmony with the connection;
The possibility to perform one-way or alternating tests to model assembly and disassembly operations;
Is adapted to adjust the screw connections used in the operation of hydrocarbon wells.

試験条件は次のとおりである:
・荷重=785N;
・圧子の回転速度=60rpm;
・平均金属/金属接触圧力=560MPa;
・圧子スライド速度=20mm/s。
The test conditions are as follows:
・ Load = 785N;
-Indenter rotation speed = 60 rpm;
-Average metal / metal contact pressure = 560 MPa;
Indenter slide speed = 20 mm / s.

当該試験の目的は、接続部の評価を実施する必要なく、種々のフィルムの耐摩耗性の観点から耐久性をモデル化して評価することである。当該試験は、種々のコーティングの性能を接続部に関する実際の試験と比較できることを意味する。摩耗基準は、固体潤滑剤フィルムの荷重の測定に関するASTM規格D2625−94を用いて定義され、785Nの荷重について1130N.mmとほぼ同程度及び0.15とほぼ同程度の摩擦係数の初期状態と比較してトルクの急激な増加に相当する。一般に、材料及び構成に関係なく適用された荷重が減少する場合、摩耗が観察される。   The purpose of the test is to model and evaluate the durability from the viewpoint of the wear resistance of various films without the need to evaluate the connection. This test means that the performance of various coatings can be compared with the actual test on the connection. The wear criteria is defined using ASTM standard D2625-94 for the measurement of solid lubricant film load, and for a load of 785N, 1130N. This corresponds to a rapid increase in torque as compared to the initial state of the friction coefficient approximately equal to mm and approximately equal to 0.15. In general, wear is observed when the applied load decreases regardless of material and configuration.

本出願人は、性能、特にポリエーテルエーテルケトンの水性懸濁液で得られる様々なフィルムの摩擦・流動学的性能を、特に観察されるフルオロエタンタイプの熱硬化性フィルム又はろう様熱可塑性マトリックスがある粘塑性フィルムと比較するため、評価した。   The Applicant has observed the performance, in particular the tribological and rheological performance of various films obtained with aqueous suspensions of polyetheretherketone, especially the fluoroethane type thermosetting films or waxy thermoplastic matrices that are observed. In order to compare with a certain viscoplastic film, it was evaluated.

フルオロエタンフィルムは、脂肪族ポリイソシアネート硬化剤を用いて硬化させたフルオロエチレンビニルエーテルの水性分散液から構成される。   The fluoroethane film is composed of an aqueous dispersion of fluoroethylene vinyl ether cured with an aliphatic polyisocyanate curing agent.

ろう様熱可塑性マトリックスは、特許国際公開第2008/139058号に記載されているように、少なくとも1つのポリエチレンワックスと、主に、摩擦修飾顔料が分散された過剰塩基スルホン酸カルシウムとを含む。   The waxy thermoplastic matrix comprises at least one polyethylene wax and predominantly excess base calcium sulfonate in which the friction modifying pigment is dispersed, as described in patent application WO 2008/139058.

第1段階で、本出願人は、以下の特定の表面調製処理:
・機械加工をしたままのXC48炭素鋼(XC48AsM);
・Z20C13ステンレス鋼(13Cr);
・亜鉛(PhZn)又はマンガン(PhMn)のリン酸塩皮膜処理をしたXC48炭素鋼;
・電解銅−スズ−亜鉛堆積(TA)XC48炭素鋼
がされた様々な基体上のポリエーテルエーテルケトンの水性懸濁液の接着性、摩擦係数、抗腐食保護及び水中浸漬特性を評価した。
In the first stage, the Applicant has the following specific surface preparation treatment:
-As-machined XC48 carbon steel (XC48AsM);
-Z20C13 stainless steel (13Cr);
-XC48 carbon steel with zinc (PhZn) or manganese (PhMn) phosphate coating treatment;
-The adhesion, coefficient of friction, anti-corrosion protection and immersion in water properties of aqueous suspensions of polyetheretherketone on various substrates with electrolytic copper-tin-zinc deposited (TA) XC48 carbon steel were evaluated.

表3、4及び5に、ISO規格2409によるスクラッチ試験及びクロスハッチ試験により様々な表面調製された試料上のVicote F804、Vicote F805及びVicote F807Blkの各水性懸濁液で得られた接着性結果をまとめる。   Tables 3, 4 and 5 show the adhesion results obtained with each aqueous suspension of Vicote F804, Vicote F805 and Vicote F807Blk on various surface prepared samples by scratch and crosshatch tests according to ISO standard 2409. To summarize.

スクラッチ試験は、高性能材料、好ましくは熱硬化性又は熱可塑性の接着力を、加荷重増加関数として特定することが思い起こされるであろう。界面破裂を決定する臨界荷重と当該材料の接着力は、当該材料が耐性かつ接着性である場合に高い。310Nの最小臨界荷重より低いと増加した摩耗生成物量が接触して圧力が耐摩耗性として不十分な最小接着性である1.1GPaになりうる。   It will be recalled that the scratch test specifies high performance materials, preferably thermosetting or thermoplastic adhesion as a function of increasing load. The critical load that determines interfacial rupture and the adhesion of the material are high when the material is resistant and adhesive. If it is below the minimum critical load of 310 N, the increased wear product amount can come into contact and the pressure can be 1.1 GPa, which is the minimum adhesion that is insufficient as wear resistance.

材料のひっかきによる損傷後の界面に対する接着性の測定を提供する、ISO規格2409によるクロスハッチ試験に関し、得点0は優れた接着に相当する一方、得点5は非常に低い接着性と定義する。   For a crosshatch test according to ISO standard 2409, which provides a measure of adhesion to the interface after damage due to material scratching, a score of 0 corresponds to excellent adhesion, while a score of 5 is defined as very low adhesion.

Figure 0006018576
Figure 0006018576

Figure 0006018576
Figure 0006018576

Figure 0006018576
試験フィルムは、マンガンのリン酸塩皮膜処理をした炭素鋼を除いて、亜鉛のリン酸塩皮膜処理をした炭素鋼上で、実施された表面調製に関係なく接着力が不十分であった。加えて、ポリエーテルエーテルケトンフィルムは、亜鉛のリン酸塩皮膜処理タイプの表面処理と適合性がほとんどなかった。
Figure 0006018576
The test films had insufficient adhesion on carbon steel with zinc phosphate coating treatment, regardless of the surface preparation performed, except for carbon steel with manganese phosphate coating treatment. In addition, the polyetheretherketone film was hardly compatible with the zinc phosphate film treatment type surface treatment.

当該結果を説明するため、本出願人はさらに、リン酸塩皮膜処理なしで得られた粗度の発生率も評価した。ポリエーテルエーテルケトンフィルムの接着機序は機械的キーイングにより主に物理的であるので、基体の粗度は決定要因である。   In order to explain the results, the applicant further evaluated the incidence of roughness obtained without the phosphate coating treatment. Since the adhesion mechanism of polyetheretherketone film is mainly physical by mechanical keying, the roughness of the substrate is a decisive factor.

同時に、フィルムの良好な接着性、つまり、粗度Ra(Raは粗度の幅の中心線の算術平均)を最低4μm〜6μmで保証するため、粗度Raを所望の最終フィルムの厚さの20%又は25%にするため、射出により基体にサンディングすることが推奨される。粗度は、ISO規格1997によりロゴシメーター(rugosimeter)を用いて測定した。   At the same time, to ensure good adhesion of the film, that is, the roughness Ra (Ra is the arithmetic average of the center line of the roughness width) at a minimum of 4 μm to 6 μm, the roughness Ra of the desired final film thickness To achieve 20% or 25%, it is recommended to sand the substrate by injection. The roughness was measured using a rugosimeter according to ISO standard 1997.

Figure 0006018576
表6は、マンガンのリン酸塩皮膜処理により得られた比較的高い粗度は、接着度が良好であることを示す。表6はまた微弱極性表面調製、例えば3成分銅−スズ−亜鉛の電解堆積は接着を促進しないことも示す。
Figure 0006018576
Table 6 shows that the relatively high roughness obtained by the manganese phosphate coating treatment has good adhesion. Table 6 also shows that weakly polar surface preparations such as ternary copper-tin-zinc electrolytic deposition do not promote adhesion.

これらの最初の結果を考慮し、本出願人は、耐食性を決定するため、本来的耐食性が低い基体のみを選択し、それによりポリエーテルエーテルケトンフィルムについての臨界接着荷重が180Nより大きい13%クロム含有マルテンサイトステンレス鋼を除外した。   In view of these initial results, Applicants chose only a substrate with inherently low corrosion resistance to determine the corrosion resistance, so that the critical adhesion load for the polyetheretherketone film is 13% chromium greater than 180N. The contained martensitic stainless steel was excluded.

冷空気圧式スプレーで製造されたフィルムの厚さは20〜45μmであった。Re0〜Re9のさびの程度をISO規格4528−3により決定した。2S2(低濃度の水泡形成及び小寸法)〜5S5(全体的な水泡形成及び大寸法)の水泡形成及び剥離の程度をISO規格4628−2により決定した。結果を表7及び8にまとめる。   The thickness of the film produced by the cold air spray was 20 to 45 μm. The degree of rust of Re0 to Re9 was determined according to ISO standard 4528-3. The degree of water bubble formation and peeling from 2S2 (low concentration water bubble formation and small dimensions) to 5S5 (overall water bubble formation and large dimensions) was determined according to ISO standard 4628-2. The results are summarized in Tables 7 and 8.

Figure 0006018576
Figure 0006018576

Figure 0006018576
単層ポリエーテルエーテルケトンフィルムでコーティングされた表面調製の耐食性は、応力下ではフィルムの接着性が低く、凝集の損失が強力であったにもかかわらず、銅−スズ−亜鉛電解堆積を除いては概して不十分であった。結果はさらに、表面調製に関係なく、無機カーボンブラックタイプ化合物を含むVicote F807Blkポリエーテルエーテルケトンフィルムの耐食性はVicote F805と比較して比較的良好であることも示す。最良の結果が電解堆積で得られ、1000時間後に腐食が5点しかなかった。導電性カーボンブラック補強剤を添加すると、犠牲アノードとして作用すると腐食に対する保護機序が補強されることが観察された。
Figure 0006018576
The corrosion resistance of the surface preparation coated with a single layer polyetheretherketone film, except for the copper-tin-zinc electrolytic deposition, despite the low film adhesion under stress and the strong loss of aggregation Was generally inadequate. The results further show that the corrosion resistance of Vicote F807Blk polyetheretherketone film containing inorganic carbon black type compound is relatively good compared to Vicote F805 regardless of surface preparation. The best results were obtained with electrolytic deposition, with only 5 points of corrosion after 1000 hours. It has been observed that the addition of conductive carbon black reinforcement enhances the protection mechanism against corrosion when acting as a sacrificial anode.

最後に、本出願人は10N〜750Nの広い荷重範囲でスクラッチ試験により摩損に曝されたフィルムの平均摩擦係数を評価した。結果を表9にまとめる。   Finally, Applicants evaluated the average coefficient of friction of films exposed to abrasion by a scratch test over a wide load range of 10N to 750N. The results are summarized in Table 9.

Figure 0006018576
ポリエーテルエーテルケトンフィルムの摩擦係数は表面調製に関係なく0.135未満であり、パーフルオロアルコキシエチレンタイプのフッ素化重合体を含むポリエーテルエーテルケトンでは平均接触圧力500MPaに対して0.075に達した。
Figure 0006018576
The coefficient of friction of the polyetheretherketone film is less than 0.135 regardless of the surface preparation, and the polyetheretherketone containing perfluoroalkoxyethylene type fluorinated polymer reaches 0.075 for an average contact pressure of 500 MPa. did.

第1の結果は、単層ポリエーテルエーテルケトンフィルムが、フィルムの組成だけでなく基体の接着性にも依存して、抗腐食性能があり潤滑性も十分であることを示す。   The first result shows that the single layer polyetheretherketone film has anti-corrosion performance and sufficient lubricity depending on not only the film composition but also the adhesion of the substrate.

次に、第2段階で、本出願人は接着性及び抗腐食性能を改善する手段を開発した。本出願人は、部分の形状でコーティングが不可能な場合にサンディングを置換しようと考えた。とりわけ、本出願人は、検討した市販のフィルムの組成を変更しないで調査した。実際、接着促進剤又は腐食阻害顔料が10%を超えて添加されると、PCV(顔料の容積濃度)が粉末状物質(顔料及びフィラー)をコーティングするのに必要最低限のバインダーがあるPCVよりも高まり、その結果、市販の水性懸濁液から得られたフィルムの多孔率及び凝集の損失が増す。   Next, in a second stage, the applicant developed a means to improve adhesion and anti-corrosion performance. Applicant has sought to replace the sanding when the shape of the part is impossible to coat. In particular, the Applicant investigated without changing the composition of the commercial films considered. In fact, when adhesion promoters or corrosion-inhibiting pigments are added in excess of 10%, PCV (pigment volume concentration) is more than PCV with the minimum binder required to coat powdered materials (pigments and fillers). Resulting in increased porosity and agglomeration loss of films obtained from commercial aqueous suspensions.

Vicote 704ポリエーテルエーテルケトン粉末を用いる他の代替法も予測できる。   Other alternatives using Vicote 704 polyetheretherketone powder can be envisaged.

本出願人は、接着促進剤タイプの下塗りで接着を高めることを考案した。物質間の直接接着はまれである。直接接着は一意的ではないが主にファンデルワールス相互作用に関連し、非常に清浄でなめらかな物質(例えばマイカ又はケイ素)でのみ起こり、密接に、すなわち、原子スケール(ナノメートル)で接触する。つまり、これは多くの場合、表面が粗い場合は実施できず、対照的に、低粗度のフィルムには完全に好適である。   The Applicant has devised enhancing adhesion with an adhesion promoter type primer. Direct adhesion between materials is rare. Direct bonding is not unique but is primarily related to van der Waals interactions, occurs only with very clean and smooth materials (eg mica or silicon), and contacts closely, ie at the atomic scale (nanometers) . That is, this is often not possible when the surface is rough, as opposed to being perfectly suitable for low roughness films.

したがって、本出願人は、400℃での融解によりポリエーテルエーテルケトンフィルムを得るためのプロセスと適合性であるフィルムを主に調査した。   Accordingly, Applicants have primarily investigated films that are compatible with the process for obtaining polyetheretherketone films by melting at 400 ° C.

下塗りは、亜鉛のリン酸塩皮膜処理の代替であるDacralから商品名Dacroforge Zで販売される鉄及び亜鉛の合金の射出堆積物でもよく、サンディング/ショットブラスティングと同等の機械的射出でのプロセスでは、直径が短く高さが低い中空体で使用が制限される。   The primer may be an injection deposit of an alloy of iron and zinc sold under the trade name Dacroforge Z by Dacral, an alternative to zinc phosphate coating treatment, and is a mechanical injection process equivalent to sanding / shot blasting. Then, use is restricted by a hollow body having a short diameter and a low height.

下塗りは、好ましくは充填ポリアリールエーテルケトンである。特に白雲母又は黒雲母タイプのマイカ顔料を有機ポリエーテルエーテルケトンバインダー中25〜50質量パーセントの割合で含む溶液は供給業者Victrexにより商品名Vicote F817で販売される。   The primer is preferably a filled polyaryletherketone. In particular, a solution containing a muscovite or biotite type mica pigment in an organic polyetheretherketone binder in a proportion of 25 to 50% by weight is sold under the trade name Vicote F817 by the supplier Victrex.

下塗りの適用及び融解のためのプロセスは、上層(上塗り)プロセスと同じである。対照的に、腐食ピットの開始を遅らせ、物質の不動態保持電流密度を低下させるため、より絶縁性が高い低結晶構造を得るためには、急速な冷却速度が望ましい。   The process for applying and melting the primer is the same as the top layer (overcoat) process. In contrast, rapid cooling rates are desirable in order to delay the onset of corrosion pits and reduce the passive retention current density of the material, so as to obtain a low crystal structure that is more insulating.

下塗りの厚さは30〜40μmであってよい。   The thickness of the undercoat may be 30-40 μm.

異なる冷却動力学の2つのプロセスを用いて評価された下塗りの抗腐食及び接着特性をそれぞれ表10及び11にまとめる。   The anti-corrosion and adhesion properties of the primer evaluated using two processes with different cooling kinetics are summarized in Tables 10 and 11, respectively.

Figure 0006018576
Figure 0006018576

Figure 0006018576
Vicote F817下塗りは保護力や接着性は十分であるが潤滑性は十分でない。潤滑特性はポリアリールエーテルケトン上層により提供された。
Figure 0006018576
The Vicote F817 undercoat has sufficient protection and adhesion, but not sufficient lubricity. Lubrication properties were provided by the polyaryl ether ketone upper layer.

抗腐食、接着及び二重層摩擦性能を表12及び13にまとめる。下塗り及び上塗りを含むフィルム厚の合計は40〜70μmであった。   Anti-corrosion, adhesion and double layer friction performance are summarized in Tables 12 and 13. The total film thickness including undercoat and topcoat was 40-70 μm.

Figure 0006018576
Figure 0006018576

Figure 0006018576
平均接触圧力500MPa、特に表面調製に関係なくμ=0.085であるVicote F807 Blkフィルムの摩擦係数は十分低く、フルオロエタン又はエポキシド熱硬化性フィルムの摩擦係数に匹敵し、得られる最適組立トルクの肩トルク値を70%未満にしうるはずである。
Figure 0006018576
The coefficient of friction of Vicote F807 Blk film with an average contact pressure of 500 MPa, in particular μ = 0.085 regardless of surface preparation, is sufficiently low, comparable to that of fluoroethane or epoxide thermosetting films, Shoulder torque values should be less than 70%.

全体として、ポリエーテルエーテルケトンフィルムの摩擦係数、接着性及び抗腐食保護は、好ましくはマイカ顔料フィラー含有ポリエーテルエーテルケトン下塗りで、さらに詳細には、応力下で塑性変形する少なくとも1つのフッ素化重合体及び/又はカーボンブラック型機械的補強顔料を含むポリエーテルエーテルケトンの上塗りで大幅に改善される。   Overall, the coefficient of friction, adhesion and anti-corrosion protection of the polyetheretherketone film is preferably a polyetheretherketone primer containing a mica pigment filler, more particularly at least one fluorinated heavy which undergoes plastic deformation under stress. A significant improvement is achieved with an overcoat of polyetheretherketone containing coalesced and / or carbon black type mechanical reinforcing pigments.

最後に、本出願人は、肩トルク抵抗値を測定するために、Bridgman試験によりフィルムの摩擦・流動学的挙動を評価した。Vicote F807 Blkで得られた肩トルク抵抗値は、XC48炭素鋼及びZ20C13ステンレス鋼上のAPI RP5A3グリースの参照値の85%に等しかった。しかしながら、フィルムを製造するプロセス及び試料の小直径に起因する試料の調製の問題は、この値を絶対参照と見なしえないことを意味する。ポリエーテルエーテルケトン中の結晶構造及び多くの潜在的なファンデルワールス型分子間相互作用は、材料の凝集が強力かつ高剪断強度の傾向を示し、つまり実質的に肩トルク抵抗値がさらに高い傾向を示すであろう。   Finally, the Applicant evaluated the tribological and rheological behavior of the film by the Bridgman test in order to measure the shoulder torque resistance value. The shoulder torque resistance value obtained with Vicote F807 Blk was equal to 85% of the reference value of API RP5A3 grease on XC48 carbon steel and Z20C13 stainless steel. However, the problem of sample preparation due to the process of manufacturing the film and the small diameter of the sample means that this value cannot be considered an absolute reference. Crystal structure and many potential van der Waals type intermolecular interactions in polyetheretherketone show a tendency for material agglomeration to be strong and high shear strength, ie, substantially higher shoulder torque resistance Will show.

同時に、本出願人は、Falex試験でフィルムの耐摩耗性を評価した。接続部に適合させた試験の構成は、単層又は二重層中のPEEKフィルムでコーティングされた異なる表面調製された一対のV型ブロックであるVeeブロック及び13%クロム含有の機械加工されたXC48炭素鋼圧子又はZ20C13ステンレス鋼圧子を含みうる。   At the same time, the Applicant evaluated the wear resistance of the film in the Falex test. Test configurations adapted to the joint consisted of a pair of differently prepared V-shaped Vee blocks coated with PEEK film in single or double layers and machined XC48 carbon containing 13% chromium. A steel indenter or a Z20C13 stainless steel indenter may be included.

荷重が785Nで行う試験条件は、ねじ及びベアリング表面でのショルダリングの開始時のねじ込みの間に記録された(100〜300MPa)のと比較的近い、接触中平均圧力150MPa、圧力速度係数(PV)=5MPa.m/sでのロードフランクでのねじ切りの摩耗則の立証に近いPV=11.2MPa.m/sに相当する。   The test conditions carried out at a load of 785 N are relatively close to the recorded (100-300 MPa) during screwing at the beginning of shouldering on the screw and bearing surface, with an average pressure during contact of 150 MPa and a pressure rate coefficient (PV ) = 5 MPa. PV = 11.2 MPa. which is close to the proof of the wear rule of thread cutting with load flank at m / s. It corresponds to m / s.

本出願人は、Vicote F805及びF807Blk強化ポリエーテルエーテルケトンを調査した。   Applicants investigated Vicote F805 and F807Blk reinforced polyetheretherketone.

図6は、接続部上で現在使用中のろう様熱可塑性溶液と比較したが、抗摩耗性と考えられる3成分電解堆積型表面処理にもかかわらず、二重層Vicote F807/Vicote F807 Blkフィルムの非常に良好な耐久性を示す(特許文献4参照)。ASTM規格D2625−94により定義される摩耗は決して得られないが、HMS3ろう様熱可塑性溶液では51分後に得られた。一定の摩擦係数μ=0.08は比較的低く、摩損が非常に低い特徴があった。   FIG. 6 compares the double layer Vicote F807 / Vicote F807 Blk film despite the ternary electrolytic deposition type surface treatment that is considered anti-wearing compared to the wax-like thermoplastic solution currently in use on the connection. It shows very good durability (see Patent Document 4). Wear as defined by ASTM standard D2625-94 is never obtained, but was obtained after 51 minutes with the HMS3 waxy thermoplastic solution. The constant friction coefficient μ = 0.08 was relatively low, and there was a characteristic that the abrasion was very low.

以下のフィルムの耐摩耗性の限界を決定するため、本出願人は、負荷を1335N〜4200Nで増大させたFalex試験を用いてフィルムの耐久性及び摩擦係数を評価した。スライド速度は、以前に用いた20mm/sに対して、10mm/sであった。結果を図7に示す。   In order to determine the following film wear resistance limits, Applicants evaluated film durability and coefficient of friction using the Falex test with increasing loads from 1335N to 4200N. The slide speed was 10 mm / s versus 20 mm / s used previously. The results are shown in FIG.

結果、平均接触圧力が350MPaでは摩耗が発生せず、本発明のフィルムの耐摩耗性が非常に高いことが示された。さらに、圧力が高まると摩擦係数は低下して0.056〜0.078であった。   As a result, when the average contact pressure was 350 MPa, no abrasion occurred, indicating that the film of the present invention has very high wear resistance. Furthermore, when the pressure increased, the friction coefficient decreased to 0.056-0.078.

特に、電解銅−スズ−亜鉛堆積炭素鋼の試料についてFalex及びスクラッチ試験を用いて実験室で観察された耐摩耗性及び摩擦係数を確認するため、本出願人は、摩耗に対して非常に感受性が高い7"29 L80 VAM TOP HT接続部の組立を実施した。組立トルクは29900N.m.であった。   In particular, to confirm the wear resistance and coefficient of friction observed in the laboratory using a Falex and scratch test for a sample of electrolytic copper-tin-zinc deposited carbon steel, Applicants are very sensitive to wear. 7 "29 L80 VAM TOP HT connection part was assembled. The assembly torque was 29900Nm.

炭素鋼の雌型末端2を電解堆積で処理し、雄型末端1を亜鉛のリン酸塩皮膜処理で処理し、特許公報国際公開第2006/104251号に記載されるUV硬化性アクリル樹脂でコーティングした。二重層PEEKフィルムを処理カップリングに5℃/分未満の冷却速度で適用した。表14に組立結果をまとめる。   Carbon steel female end 2 is treated with electrolytic deposition, male end 1 is treated with zinc phosphate coating and coated with UV curable acrylic resin as described in patent publication WO 2006/104251 did. Double layer PEEK film was applied to the treatment coupling at a cooling rate of less than 5 ° C / min. Table 14 summarizes the assembly results.

Figure 0006018576
得られた組立結果は、ポリエーテルエーテルケトンフィルム及び特に強化されたポリエーテルエーテルケトンフィルムの顕著な抗摩耗性を裏付ける。
Figure 0006018576
The resulting assembly results support the remarkable anti-wear properties of polyetheretherketone films and particularly reinforced polyetheretherketone films.

Figure 0006018576
したがって、本発明は、炭素鋼表面又は少なくとも13%のクロムを含む鋼鉄表面に適用する場合、非常に興味深い耐摩耗特性である潤滑剤フィルムを提供する。それにより、2成分銅−スズ又は3成分銅−スズ−亜鉛タイプの電解堆積を用いないですむ。
Figure 0006018576
Thus, the present invention provides a lubricant film that is a very interesting antiwear property when applied to carbon steel surfaces or steel surfaces containing at least 13% chromium. This eliminates the need for electrolytic deposition of the two component copper-tin or ternary copper-tin-zinc type.

Claims (17)

炭化水素坑井の掘削又は作業のためのねじ管状コンポーネントであって、前記管状コンポーネントは、ねじ末端が雄型か雌型かによりその末端(1、2)の一方に外周面又は内周面上に作られたねじ領域(3、4)があり、末端(1、2)の少なくとも部分が、少なくとも65質量パーセントのポリアリールエーテルケトンを含む少なくとも1つの潤滑ドライフィルム(12)でコーティングされており、
前記潤滑ドライフィルム(12)が、少なくとも1つの4類固体潤滑剤を10%〜35%の質量比でさらに含み、
前記潤滑ドライフィルム(12)が、パーフルオロアルコキシエチレン共重合体を10%〜30%の質量比で含み、
前記潤滑ドライフィルム(12)の結晶化度が10%〜35%である、ねじ管状コンポーネント。
A threaded tubular component for drilling or working in a hydrocarbon well, said tubular component being on the outer peripheral surface or inner peripheral surface at one of its ends (1, 2) depending on whether the screw end is male or female And at least a portion of the ends (1, 2) is coated with at least one lubricating dry film (12) comprising at least 65 weight percent polyaryletherketone ,
The lubricating dry film (12) further comprises at least one Type 4 solid lubricant in a mass ratio of 10% to 35%,
The lubricating dry film (12) is seen containing perfluoro alkoxy ethylene copolymer mass ratio of 10% to 30%,
A threaded tubular component , wherein the lubricated dry film (12) has a crystallinity of 10% to 35% .
ポリアリールエーテルケトンが、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトン(PEK)及びそれらの混合物から選択される、請求項1に記載のねじ管状コンポーネント。   The threaded tubular component of claim 1, wherein the polyaryletherketone is selected from polyetheretherketone (PEEK), polyetherketone (PEK), and mixtures thereof. 前記潤滑ドライフィルム(12)が、以下の顔料のリスト:カーボンブラック、マイカ、珪灰石、ナノメートル酸化アルミニウム、ナノメートル酸化チタン、ガラス粉末、ナノダイヤモンド、ナノメートルWS2又はWS2−フラーレンから選択される機械的補強剤を1%〜15%の質量比で含む、請求項1又は2に記載のねじ管状コンポーネント。 Said lubricated dry film (12) is selected from the following list of pigments: carbon black, mica, wollastonite, nanometer aluminum oxide, nanometer titanium oxide, glass powder, nanodiamond, nanometer WS2 or WS2-fullerene The threaded tubular component according to claim 1 or 2 , comprising a mechanical reinforcing agent in a mass ratio of 1% to 15%. 前記潤滑ドライフィルム(12)でコーティングされた部分に、予め、サンディング、マンガンのリン酸塩皮膜処理、銅又は銅−スズ−亜鉛合金の電解堆積並びに射出により堆積させた鉄及び亜鉛合金により構成される群から選択される表面調製ステップが施される、請求項1〜のいずれか1項に記載のねじ管状コンポーネントの製造方法。 The portion coated with the lubrication dry film (12) is composed of iron and zinc alloy deposited in advance by sanding, manganese phosphate film treatment, electrolytic deposition of copper or copper-tin-zinc alloy and injection. The method for manufacturing a threaded tubular component according to any one of claims 1 to 3 , wherein a surface preparation step selected from the group is applied. 前記潤滑ドライフィルム(12)でコーティングされた部分が、予め、マイカ顔料を含有する半結晶構造のポリエーテルエーテルケトンの下塗りされる、請求項1〜のいずれか1項に記載のねじ管状コンポーネントの製造方法。 The lubricating dry film (12) coated part is, in advance, is primed polyetheretherketone semi-crystalline structure containing mica pigments, screw tubular component according to any one of claims 1 to 3 Manufacturing method. 前記ねじ領域(3、4)全体が前記潤滑ドライフィルム(12)でコーティングされる、請求項1〜のいずれか1項に記載のねじ管状コンポーネントの製造方法。 The entire threaded region (3, 4) is coated with the lubricating dry film (12), the manufacturing method of the screw tubular component according to any one of claims 1-5. 金属/金属封止表面を含み、前記封止表面が前記潤滑ドライフィルム(12)でコーティングされる、請求項1〜のいずれか1項に記載のねじ管状コンポーネントの製造方法。 Comprises a metal / metal sealing surface, the sealing surface is coated with the lubricating dry film (12), the manufacturing method of the screw tubular component according to any one of claims 1-6. 互いに組み合わさった雄型ねじ管状コンポーネント及び雌型ねじ管状コンポーネントを含むねじ管状接続部であって、少なくとも1つの前記ねじ管状コンポーネントが、請求項1〜のいずれか1項に記載のねじ管状コンポーネントである、ねじ管状接続部。 A threaded tubular connection comprising a male threaded tubular component and a female threaded tubular component combined with each other, wherein at least one threaded tubular component is a threaded tubular component according to any one of claims 1-3. A threaded tubular connection. 炭化水素坑井の掘削又は作業のためのねじ管状コンポーネントをコーティングするプロセスであって、前記管状コンポーネントにはねじ末端が雄型か雌型かによりその末端(1、2)の一方に外周面又は内周面上に作られたねじ領域(3、4)があり、前記プロセスが以下の:
・ポリアリールエーテルケトン粉末を水中懸濁液中、25%〜35質量パーセントの割合で含む混合物を製造するステップ;
・前記混合物を前記ねじ管状コンポーネントの末端(1、2)の部分に適用するステップ;
・コーティングされた末端(1、2)の部分を100℃〜150℃の温度で5〜10分間乾燥するステップ;
・コーティングされた末端(1、2)の部分を350℃〜450℃の温度まで、5〜15分間、毎分10℃〜20℃の温度上昇率で加熱するステップ;及び
・主に結晶性の構造を得るために、コーティングされた末端(1、2)の部分を周囲温度まで、毎分10℃未満の冷却速度で冷却するステップ;
を含み、
前記混合物がさらに、100℃〜200℃の沸点で蒸発速度が急速な融合剤を、2.5%〜10質量パーセントの割合で含み、
前記混合物が、非イオン性湿潤及び分散剤を2.5%〜10質量パーセントの範囲の割合でさらに含む、プロセス。
A process of coating a threaded tubular component for drilling or working in a hydrocarbon well, said tubular component having an outer peripheral surface or one of its ends (1, 2) depending on whether the threaded end is male or female There are threaded areas (3, 4) made on the inner peripheral surface, and the process is as follows:
Producing a mixture comprising polyaryletherketone powder in a suspension in water in a proportion of 25% to 35% by weight;
Applying the mixture to the end (1, 2) portion of the threaded tubular component;
Drying the coated end (1,2) part at a temperature of 100 ° C. to 150 ° C. for 5 to 10 minutes;
Heating the coated end (1,2) portion to a temperature of 350 ° C. to 450 ° C. for 5 to 15 minutes at a rate of temperature increase of 10 ° C. to 20 ° C. per minute; and Cooling the coated end (1,2) portion to ambient temperature at a cooling rate of less than 10 ° C. to obtain a structure;
Including
The mixture further comprises a fusing agent having a boiling point of 100 ° C. to 200 ° C. and a rapid evaporation rate in a proportion of 2.5% to 10% by weight;
The process wherein the mixture further comprises a non-ionic wetting and dispersing agent in a proportion ranging from 2.5% to 10 weight percent.
前記混合物がさらに、少なくとも1つの4類固体潤滑剤を3%〜12質量パーセントの割合で含む、請求項に記載のプロセス。 The process of claim 9 , wherein the mixture further comprises at least one Type 4 solid lubricant in a proportion of 3% to 12 weight percent. 前記4類固体潤滑剤が、3%〜12%の質量比のパーフルオロアルコキシエチレン共重合体である、請求項10に記載のプロセス。 The process according to claim 10 , wherein the Group 4 solid lubricant is a perfluoroalkoxyethylene copolymer having a mass ratio of 3% to 12%. 前記混合物がさらに、以下の顔料のリスト:カーボンブラック、マイカ、珪灰石、ナノメートル酸化アルミニウム、ナノメートル酸化チタン、ガラス粉末、ナノダイヤモンド、ナノメートルWS2又はWS2−フラーレンから選択される機械的補強剤を0.5%〜5%の質量比で含む、請求項10に記載のプロセス。 The mixture further comprises a mechanical reinforcement selected from the following list of pigments: carbon black, mica, wollastonite, nanometer aluminum oxide, nanometer titanium oxide, glass powder, nanodiamond, nanometer WS2 or WS2-fullerene. The process according to claim 10 , comprising a mass ratio of 0.5% to 5%. 前記末端(1、2)の部分が、空気圧式スプレーシステムを用いてコーティングされ、前記システムの直径が0.7〜1.8mmであり、空気圧が4〜6barである、請求項に記載のプロセス。 Part of the end (1,2) is coated with a pneumatic spray system, the diameter of the system is 0.7~1.8Mm, air pressure is not 4~6Bar, according to claim 9 process. サンディング、マンガンのリン酸塩皮膜処理、銅又は銅−スズ−亜鉛合金の電解堆積、並びに射出により堆積された鉄及び亜鉛合金の粒子からなる群から選択される表面調製ステップが、混合物を前記末端の前記部分へ適用する前に実施される、請求項9〜13のいずれか1項に記載のプロセス。 A surface preparation step selected from the group consisting of sanding, manganese phosphate coating, electrolytic deposition of copper or copper-tin-zinc alloy, and particles of iron and zinc alloy deposited by injection; 14. The process according to any one of claims 9 to 13 , wherein the process is performed prior to application to the portion of the. マイカ顔料を含有する、半結晶構造のポリエーテルエーテルケトンを下塗りすることからなる表面調製ステップが、混合物を前記末端の前記部分に適用する前に実施される、請求項9〜13のいずれか1項に記載のプロセス。 Containing mica pigment, the surface preparation steps consisting in primed polyetheretherketone semi-crystalline structure, the mixture is carried out prior to application to said portion of said distal or more of claims 9 to 13 1 The process described in the section. 炭化水素坑井の掘削又は作業のためのねじ管状コンポーネントをコーティングするプロセスであって、前記管状コンポーネントにはねじ末端が雄型か雌型かによりその末端(1、2)の一方に外周面又は内周面上に作られたねじ領域(3、4)があり、以下の:
・前記ねじ管状コンポーネントの末端(1、2)の部分を、360℃〜420℃の温度まで、好ましくは400℃に近い温度まで加熱するステップ;
・PEK及び/又はPEEK粉末を前記ねじ管状コンポーネントの末端(1、2)の前記部分上に射出するステップ;
・前記コーティングされた末端(1、2)の部分を360℃〜420℃の温度で、好ましくは400℃に近い温度で、1〜4分間維持するステップ;及び
・主に結晶性の構造を得るために、コーティングされた末端(1、2)の部分を周囲温度まで毎分10℃未満の冷却速度で冷却するステップ;
を含み、
前記PEK及び/又はPEEK粉末が、100℃〜200℃の沸点で蒸発速度が急速な融合剤を、2.5%〜10質量パーセントの割合で含み、
前記PEK及び/又はPEEK粉末がさらに、非イオン性湿潤及び分散剤を2.5%〜10質量パーセントの範囲の割合でさらに含む、プロセス。
A process of coating a threaded tubular component for drilling or working in a hydrocarbon well, said tubular component having an outer peripheral surface or one of its ends (1, 2) depending on whether the threaded end is male or female There are threaded areas (3, 4) made on the inner circumference, the following:
Heating the end (1, 2) portion of the threaded tubular component to a temperature of 360-420 ° C, preferably close to 400 ° C;
Injecting PEK and / or PEEK powder onto said part of the end (1, 2) of said threaded tubular component;
Maintaining the coated end (1,2) part at a temperature of 360 ° C. to 420 ° C., preferably close to 400 ° C. for 1 to 4 minutes; and • obtaining a predominantly crystalline structure Cooling the coated end (1,2) portion to ambient temperature at a cooling rate of less than 10 ° C. per minute;
Including
The PEK and / or PEEK powder comprises a fusion agent having a boiling point of 100 ° C. to 200 ° C. and a rapid evaporation rate in a proportion of 2.5% to 10% by mass;
The process wherein the PEK and / or PEEK powder further comprises a non-ionic wetting and dispersing agent in a proportion ranging from 2.5% to 10 weight percent.
前記部分の加熱前にコーティング部分に脱脂するステップを実施する、請求項16に記載のプロセス。 The process of claim 16 , wherein the step of degreasing the coated portion prior to heating the portion is performed.
JP2013538092A 2010-11-10 2011-11-02 Process for coating threaded tubular component, threaded tubular component and method for manufacturing the same, and threaded tubular connection Active JP6018576B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1004399A FR2967199B1 (en) 2010-11-10 2010-11-10 METHOD FOR COATING A THREADED TUBULAR COMPONENT, THREADED TUBULAR COMPONENT AND RESULTING SEAL
FR10/04399 2010-11-10
PCT/EP2011/005524 WO2012062426A1 (en) 2010-11-10 2011-11-02 Process for coating a threaded tubular component, threaded tubular component and resulting connection

Publications (2)

Publication Number Publication Date
JP2013545946A JP2013545946A (en) 2013-12-26
JP6018576B2 true JP6018576B2 (en) 2016-11-02

Family

ID=44245076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013538092A Active JP6018576B2 (en) 2010-11-10 2011-11-02 Process for coating threaded tubular component, threaded tubular component and method for manufacturing the same, and threaded tubular connection

Country Status (13)

Country Link
US (1) US20130320665A1 (en)
EP (1) EP2638134B1 (en)
JP (1) JP6018576B2 (en)
CN (1) CN103221519B (en)
AR (1) AR083823A1 (en)
AU (1) AU2011328484B2 (en)
BR (1) BR112013011454B1 (en)
CA (1) CA2815723C (en)
EA (1) EA024642B1 (en)
FR (1) FR2967199B1 (en)
MX (1) MX2013005243A (en)
UA (1) UA112064C2 (en)
WO (1) WO2012062426A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2626390C1 (en) * 2016-09-19 2017-07-26 Акционерное общество "Обнинское научно-производственное предприятие "Технология" им. А.Г. Ромашина" Method for determining nature of dielectrics' conduction

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008125740A1 (en) 2007-04-13 2008-10-23 Vallourec Mannesmann Oil & Gas France Tubular threaded member with dry protection coating
FR2981395B1 (en) 2011-10-14 2016-04-01 Vallourec Mannesmann Oil & Gas TUBULAR THREADED COMPONENT AND RESULTING SEAL
FR2985297B1 (en) 2011-12-29 2016-04-01 Vallourec Mannesmann Oil & Gas TUBULAR THREADED COMPONENT AND METHOD FOR COATING SUCH TUBULAR THREADED COMPONENT
JP6428101B2 (en) * 2014-09-26 2018-11-28 住友電気工業株式会社 Optical fiber core and optical fiber ribbon
US11092266B2 (en) 2015-02-03 2021-08-17 925599 Alberta Ltd. Pipe connector
MX2017012976A (en) * 2015-04-10 2018-06-06 925599 Alberta Ltd Pipe connector.
US11339634B2 (en) 2015-04-10 2022-05-24 925599 Alberta Ltd. Pipe connector
US11041358B2 (en) * 2015-11-30 2021-06-22 Halliburton Energy Services, Inc. Chemically bonded coated metal-to-metal seals
EP3192853B1 (en) * 2016-01-15 2023-04-26 Sikemia Method for treating a surface in order to obtain a hydrophobic and/or oleophobic coating
AR117811A1 (en) * 2019-01-16 2021-08-25 Nippon Steel Corp THREADED CONNECTION FOR PIPES OR PIPES, AND METHOD FOR PRODUCING A THREADED CONNECTION FOR PIPES OR PIPES
CA3140077A1 (en) * 2019-05-28 2020-12-03 Saudi Arabian Oil Company Casing with external thread and methods of manufacture
JP7336311B2 (en) * 2019-08-21 2023-08-31 信越ポリマー株式会社 dummy wafer

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE30467E (en) 1978-12-29 1980-12-30 Brunswick Corporation Bowling scorer utilizing semiconductor elements
USRE34467E (en) 1983-04-29 1993-12-07 The Hydril Company Tubular connection
JPS60196334A (en) * 1984-03-19 1985-10-04 三菱電機株式会社 Corrosion-resistant pipe body and manufacture thereof
US4822081A (en) 1987-03-23 1989-04-18 Xl Systems Driveable threaded tubular connection
US5264274A (en) * 1991-02-04 1993-11-23 Honda Giken Kogyo Kabushiki Kaisha Thermoplastic composite material having improved toughness and method of producing same
US6300762B1 (en) * 1998-02-19 2001-10-09 Schlumberger Technology Corporation Use of polyaryletherketone-type thermoplastics in a production well
JP2000272049A (en) * 1999-03-23 2000-10-03 Nikken Toso Kogyo Kk Method for forming peek resin film and peek resin film
US6921205B2 (en) * 2001-03-16 2005-07-26 Taiho Kogyo Co., Ltd. Sliding material
AU2002248003B2 (en) * 2001-04-11 2005-01-06 Nippon Steel Corporation Threaded joint for steel pipe and method for surface treatment of the threaded joint
JP4123810B2 (en) * 2001-04-11 2008-07-23 住友金属工業株式会社 Threaded joint for steel pipes with excellent seizure resistance and its surface treatment method
JP3921962B2 (en) * 2001-05-24 2007-05-30 住友金属工業株式会社 Threaded joints for steel pipes
JP4599874B2 (en) * 2004-04-06 2010-12-15 住友金属工業株式会社 Threaded joint for oil well pipe and method for manufacturing the same
JP4701735B2 (en) * 2004-07-09 2011-06-15 株式会社豊田自動織機 Sliding member
JP4490205B2 (en) * 2004-08-10 2010-06-23 日本山村硝子株式会社 COATING COMPOSITION FOR FORMING SOLID LUBRICATION FILM AND METAL PRODUCT COATED WITH THE COATING COMPOSITION
US8146889B2 (en) * 2004-08-27 2012-04-03 Vetco Gray Inc. Low friction coatings for dynamically engaging load bearing surfaces
EP1864048B1 (en) 2005-03-29 2013-07-17 Nippon Steel & Sumitomo Metal Corporation Threaded joint for steel pipes
JP4880243B2 (en) * 2005-04-04 2012-02-22 協同油脂株式会社 Lubricant composition
GB0506934D0 (en) * 2005-04-06 2005-05-11 Victrex Mfg Ltd Polymeric material
US7789012B2 (en) * 2005-04-25 2010-09-07 Aquasyn, Llc Valve bonnet assembly
KR100542730B1 (en) * 2005-07-13 2006-01-20 이미현 Mobile position information service system for mobile common property and method therefor
JP4899691B2 (en) * 2006-07-28 2012-03-21 富士ゼロックス株式会社 Authenticator true / false judgment system, identification system and interrogator
JP5028923B2 (en) 2006-09-14 2012-09-19 住友金属工業株式会社 Threaded joints for steel pipes
FR2914926B1 (en) 2007-04-11 2013-11-01 Vallourec Mannesmann Oil & Gas LUBRICATING COMPOSITION WITH ADAPTABLE FRICTION COEFFICIENT FOR A THREADED ELEMENT OF A TUBULAR THREADED COMPONENT.
JP2010024980A (en) * 2008-07-18 2010-02-04 Toyota Central R&D Labs Inc Valve gear for internal combustion engine, and manufacturing method thereof
FR2939490B1 (en) * 2008-12-10 2013-01-18 Vallourec Mannesmann Oil & Gas SEALED TUBULAR JOINT USED IN THE OIL INDUSTRY AND METHOD OF MAKING SAME
CN101665621B (en) * 2009-09-29 2011-09-14 上海海隆赛能新材料有限公司 Preparation and application of ultrahigh wear-resisting hydrogen sulfide-proof polyether-ether-ketone aqueous suspension specially used for oil-well tube
US8535762B2 (en) * 2009-10-09 2013-09-17 Tenaris Connections Limited Tubular joint having wedge threads with surface coating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2626390C1 (en) * 2016-09-19 2017-07-26 Акционерное общество "Обнинское научно-производственное предприятие "Технология" им. А.Г. Ромашина" Method for determining nature of dielectrics' conduction

Also Published As

Publication number Publication date
AU2011328484B2 (en) 2015-11-19
US20130320665A1 (en) 2013-12-05
FR2967199B1 (en) 2013-11-01
CA2815723C (en) 2018-08-21
BR112013011454A2 (en) 2016-08-09
EA024642B1 (en) 2016-10-31
AR083823A1 (en) 2013-03-27
WO2012062426A1 (en) 2012-05-18
UA112064C2 (en) 2016-07-25
BR112013011454B1 (en) 2019-04-24
CA2815723A1 (en) 2012-05-18
FR2967199A1 (en) 2012-05-11
EP2638134B1 (en) 2019-07-24
EA201370114A1 (en) 2013-12-30
MX2013005243A (en) 2013-06-12
EP2638134A1 (en) 2013-09-18
AU2011328484A1 (en) 2013-05-02
JP2013545946A (en) 2013-12-26
CN103221519A (en) 2013-07-24
CN103221519B (en) 2015-04-15

Similar Documents

Publication Publication Date Title
JP6018576B2 (en) Process for coating threaded tubular component, threaded tubular component and method for manufacturing the same, and threaded tubular connection
CA2998097C (en) Composition, threaded joint for pipes including solid lubricant coating formed from the composition, and method for producing the threaded joint for pipes
CA2755888C (en) Threaded joint for pipes
AU2011324338B2 (en) Tubular threaded joint having improved low temperature performance
JP5998278B2 (en) COMPOSITION FOR SOLID LUBRICATION COATING, Threaded Joint for Pipes with Solid Lubricant Film Formed from the Composition, and Method for Producing Threaded Joint for Pipes
EA026646B1 (en) Tubular threaded joint having improved high-torque makeup properties
EP2860432B1 (en) Threaded coupling for steel pipe
JP6765301B2 (en) Connecting elements of tubular components covered with metal composite precipitates and methods for obtaining such elements
JP2013515918A (en) Wear-resistant threaded tubular component and method of coating the component
JP5826754B2 (en) Method of coating wear-resistant threaded tubular components and wear-resistant threaded tubular components and threaded tubular connections
AU2018348604B2 (en) Threaded connection for pipe and method for producing threaded connection for pipe
CA2891525C (en) Assembly for producing a galling-resistant threaded tubular connection
JP2015511294A (en) Threaded tubular component and method for coating the threaded tubular component
OA16410A (en) Process for coating a threaded tubular component, threaded tubular component and resulting connection.
OA20120A (en) Threaded joint for pipes and method for producing threaded joint for pipes.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160804

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160930

R150 Certificate of patent or registration of utility model

Ref document number: 6018576

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250