JP6017844B2 - Flowmeter - Google Patents

Flowmeter Download PDF

Info

Publication number
JP6017844B2
JP6017844B2 JP2012128800A JP2012128800A JP6017844B2 JP 6017844 B2 JP6017844 B2 JP 6017844B2 JP 2012128800 A JP2012128800 A JP 2012128800A JP 2012128800 A JP2012128800 A JP 2012128800A JP 6017844 B2 JP6017844 B2 JP 6017844B2
Authority
JP
Japan
Prior art keywords
conductive film
fixing member
capillary
thermal
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012128800A
Other languages
Japanese (ja)
Other versions
JP2013253828A (en
Inventor
久夫 清田
久夫 清田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2012128800A priority Critical patent/JP6017844B2/en
Publication of JP2013253828A publication Critical patent/JP2013253828A/en
Application granted granted Critical
Publication of JP6017844B2 publication Critical patent/JP6017844B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Volume Flow (AREA)

Description

本発明は計測技術に関し、特に流量計に関する。   The present invention relates to measurement technology, and more particularly to a flow meter.

半導体装置の製造工程、工業炉、ボイラ、及び空調熱源機器等においては、適切な流量の流体が供給されることが求められている。そのため、流量を正確に計測するための流量計が種々開発されている。特に半導体装置の製造工程においては、熱式質量流量キャピラリセンサが多く用いられている(例えば、特許文献1参照。)。   In a semiconductor device manufacturing process, an industrial furnace, a boiler, an air conditioning heat source device, and the like, it is required that an appropriate flow rate of fluid is supplied. For this reason, various flow meters for accurately measuring the flow rate have been developed. In particular, in a semiconductor device manufacturing process, a thermal mass flow capillary sensor is often used (for example, see Patent Document 1).

熱式質量流量キャピラリセンサにおいては、流体が流れる管にバイパス管路としてキャピラリが設けられ、キャピラリの少なくとも2カ所において、絶縁被膜された感熱抵抗体の細線が巻き付けられる。キャピラリ内部に流体が流れていない場合は、2カ所における感熱抵抗体の抵抗値は同じである。しかし、キャピラリに流体が流れると、キャピラリの上流側に巻き付けられた感熱抵抗体から下流側に巻き付けられた感熱抵抗体に、流体が熱を運搬する。そのため、キャピラリの下流側に巻き付けられた感熱抵抗体のほうが、上流側に巻き付けられた感熱抵抗体よりも抵抗値が高くなる。二つの感熱抵抗体の間に生じた抵抗値の差は、キャピラリ内部を流れる流体の流量に依存するため、二つの感熱抵抗体の間に生じた抵抗値の差から、キャピラリ内部を流れる流体の流量を求めることが可能である。   In the thermal mass flow capillary sensor, a capillary is provided as a bypass line in a pipe through which a fluid flows, and a thin wire of a heat-sensitive resistor with an insulating coating is wound around at least two locations of the capillary. When no fluid is flowing inside the capillary, the resistance values of the thermal resistors at the two locations are the same. However, when fluid flows through the capillary, the fluid carries heat from the thermal resistor wound around the upstream side of the capillary to the thermal resistor wound around the downstream side. Therefore, the resistance value of the thermal resistor wound on the downstream side of the capillary is higher than that of the thermal resistor wound on the upstream side. Since the difference in resistance value generated between the two thermal resistors depends on the flow rate of the fluid flowing inside the capillary, the difference between the resistance values generated between the two thermal resistors causes the difference in the fluid flowing inside the capillary. It is possible to determine the flow rate.

特公平6−63805号公報Japanese Examined Patent Publication No. 6-63805

しかし、従来の熱式質量流量キャピラリセンサにおいては、感熱抵抗体及び絶縁被膜の均一性に個体差があり、キャピラリに流体が流れていない場合における、上流側に巻き付けられた感熱抵抗体の抵抗値と、下流側に巻き付けられた感熱抵抗体の抵抗値と、の差が、流量計の個体毎に異なる場合があった。そこで、本発明は、個体差の少ない流量計を提供することを目的の一つとする。   However, in the conventional thermal mass flow capillary sensor, there is individual difference in the uniformity of the thermal resistor and the insulation coating, and the resistance value of the thermal resistor wound upstream is when no fluid is flowing through the capillary. And the resistance value of the thermal resistor wound on the downstream side may differ for each individual flow meter. Accordingly, an object of the present invention is to provide a flow meter with little individual difference.

本発明の態様によれば、(a)流体が流れるキャピラリと、(b)キャピラリの表面に配置された第1の熱伝導膜と、(c)第1の熱伝導膜上に配置された第1の感熱抵抗素子と、(d)キャピラリの表面に、第1の熱伝導膜と間隔をおいて配置された第2の熱伝導膜と、(e)第2の熱伝導膜上に配置された第2の感熱抵抗素子と、を備え、(f)第1の感熱抵抗素子が、電気絶縁体からなる第1の固定部材と、第1の固定部材の内部に挿入された第1の白金抵抗体と、を備え、(g)第2の感熱抵抗素子が、電気絶縁体からなる第2の固定部材と、第2の固定部材の内部に挿入された第2の白金抵抗体と、を備える、流量計が提供される。   According to an aspect of the present invention, (a) a capillary through which a fluid flows, (b) a first thermal conductive film disposed on the surface of the capillary, and (c) a first thermal conductive film disposed on the first thermal conductive film. 1 heat-sensitive resistive element, (d) a second heat conductive film disposed on the surface of the capillary and spaced from the first heat conductive film, and (e) disposed on the second heat conductive film. (F) a first fixing member made of an electrical insulator and a first platinum inserted into the first fixing member. A resistor, and (g) a second thermosensitive resistor element, a second fixing member made of an electrical insulator, and a second platinum resistor inserted inside the second fixing member. A flow meter is provided.

本発明によれば、個体差の少ない流量計を提供可能である。   According to the present invention, it is possible to provide a flow meter with little individual difference.

本発明の実施の形態に係る流量計の上面図である。It is a top view of a flow meter concerning an embodiment of the invention. 本発明の実施の形態に係る流量計の図1に示したII−II方向から見た断面図である。It is sectional drawing seen from the II-II direction shown in FIG. 1 of the flowmeter which concerns on embodiment of this invention. 本発明の実施の形態に係る流量計の部分拡大図である。It is the elements on larger scale of the flowmeter which concerns on embodiment of this invention. 本発明の実施の形態に係る流量計の基体の上面図である。It is a top view of the base | substrate of the flowmeter which concerns on embodiment of this invention. 本発明の実施の形態に係る流量計の基体の図4に示したV−V方向から見た断面図である。It is sectional drawing seen from the VV direction shown in FIG. 4 of the base | substrate of the flowmeter which concerns on embodiment of this invention. 本発明の実施の形態に係る流量計の回路の模式図である。It is a schematic diagram of the circuit of the flowmeter which concerns on embodiment of this invention.

以下に本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号で表している。但し、図面は模式的なものである。したがって、具体的な寸法等は以下の説明を照らし合わせて判断するべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。   Embodiments of the present invention will be described below. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, the drawings are schematic. Therefore, specific dimensions and the like should be determined in light of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

実施の形態に係る流量計は、上面図である図1及びII−II方向から見た断面図である図2に示すように、流体が流れる流路3が設けられた基体1を備える。基体1には、流路3のバイパス流路であるキャピラリ5が挿入される。キャピラリ5の部分拡大図である図3に示すように、流量計は、キャピラリ5の表面に配置された第1の熱伝導膜11と、第1の熱伝導膜11上に配置された第1の感熱抵抗素子12と、図3に示すキャピラリ5の表面に、第1の熱伝導膜11と間隔をおいて配置された第2の熱伝導膜21と、第2の熱伝導膜21上に配置された第2の感熱抵抗素子22と、をさらに備える。第1の感熱抵抗素子12は、電気絶縁体からなる第1の固定部材と、第1の固定部材の内部に挿入された第1の白金抵抗体13と、を備え、第2の感熱抵抗素子22は、電気絶縁体からなる第2の固定部材と、第2の固定部材の内部に挿入された第2の白金抵抗体23と、を備える。   As shown in FIG. 1 which is a top view and FIG. 2 which is a cross-sectional view seen from the II-II direction, the flow meter according to the embodiment includes a base body 1 provided with a flow path 3 through which a fluid flows. A capillary 5 that is a bypass flow path of the flow path 3 is inserted into the substrate 1. As shown in FIG. 3, which is a partially enlarged view of the capillary 5, the flow meter includes a first heat conductive film 11 disposed on the surface of the capillary 5 and a first heat conductive film 11 disposed on the first heat conductive film 11. On the surface of the capillary 5 shown in FIG. 3, the second heat conductive film 21 spaced from the first heat conductive film 11, and the second heat conductive film 21. And a second heat-sensitive resistance element 22 arranged. The first thermal resistance element 12 includes a first fixing member made of an electrical insulator and a first platinum resistor 13 inserted into the first fixing member, and the second thermal resistance element 22 includes a second fixing member made of an electrical insulator, and a second platinum resistor 23 inserted into the second fixing member.

基体1は例えば金属からなる。基体1は、例えば直方体である。流路3は、基体1の第1の側面から、第1の側面と対向する第2の側面に貫通する貫通孔である。流路3を流れる流体は、気体であっても、液体であってもよい。上面図である図4及びV−V方向から見た断面図である図5に示すように、基体1には、第1の側面及び第2の側面と隣り合い、第1の側面及び第2の側面と垂直な上面から、流路3に向かって二つの貫通孔31、32が設けられている。流路3の貫通孔31、32の間には、層流素子40が配置されている。流路3の貫通孔31、32の間には、圧損素子が配置されていてもよい。図1及び図2に示したキャピラリ5の両端は、図4及び図5に示した貫通孔31、32に挿入されている。   The substrate 1 is made of metal, for example. The base 1 is a rectangular parallelepiped, for example. The flow path 3 is a through-hole penetrating from the first side surface of the substrate 1 to the second side surface facing the first side surface. The fluid flowing through the flow path 3 may be a gas or a liquid. As shown in FIG. 4 which is a top view and FIG. 5 which is a cross-sectional view seen from the VV direction, the base 1 is adjacent to the first side face and the second side face, and the first side face and the second side face. Two through holes 31 and 32 are provided from the upper surface perpendicular to the side surface toward the flow path 3. A laminar flow element 40 is disposed between the through holes 31 and 32 of the flow path 3. A pressure loss element may be arranged between the through holes 31 and 32 of the flow path 3. Both ends of the capillary 5 shown in FIGS. 1 and 2 are inserted into the through holes 31 and 32 shown in FIGS. 4 and 5.

図1乃至図3に示したキャピラリ5は、例えばSUS316Lなどのステンレス鋼等の金属からなり、熱伝導率は例えば16W/mKである。キャピラリ5の外径は例えば350乃至1000μmであり、肉厚が50μmである。ただし、キャピラリ5の材料、熱伝導率、及び形状は、これらに限定されない。   The capillary 5 shown in FIGS. 1 to 3 is made of a metal such as stainless steel such as SUS316L, and has a thermal conductivity of 16 W / mK, for example. The outer diameter of the capillary 5 is, for example, 350 to 1000 μm and the wall thickness is 50 μm. However, the material, thermal conductivity, and shape of the capillary 5 are not limited to these.

図3に示した第1の熱伝導膜11及び第2の熱伝導膜21のそれぞれは、キャピラリ5の表面の一部に固定されていてもよいし、キャピラリ5の表面を周回するように巻き付けられていてもよい。第1の熱伝導膜11及び第2の熱伝導膜21のそれぞれは、例えば銅(Cu)、金(Au)、銀(Ag)、又はアルミニウム(Al)等の金属等の熱伝導性物質からなる。第1の熱伝導膜11及び第2の熱伝導膜21のそれぞれの熱伝導率は例えば420W/mKであり、キャピラリ5の熱伝導率よりも高い。第1の熱伝導膜11及び第2の熱伝導膜21のそれぞれの膜厚は、例えば5μmである。第1の熱伝導膜11及び第2の熱伝導膜21のそれぞれは、例えばスパッタリング法や、電気メッキ法により、キャピラリ5上に成膜される。ただし、第1の熱伝導膜11及び第2の熱伝導膜21のそれぞれの材料、熱伝導率、形状、及び形成方法は、これらに限定されない。   Each of the first heat conductive film 11 and the second heat conductive film 21 shown in FIG. 3 may be fixed to a part of the surface of the capillary 5 or wound around the surface of the capillary 5. It may be done. Each of the first heat conductive film 11 and the second heat conductive film 21 is made of a heat conductive material such as a metal such as copper (Cu), gold (Au), silver (Ag), or aluminum (Al). Become. The thermal conductivity of each of the first thermal conductive film 11 and the second thermal conductive film 21 is, for example, 420 W / mK, which is higher than the thermal conductivity of the capillary 5. Each film thickness of the first heat conductive film 11 and the second heat conductive film 21 is, for example, 5 μm. Each of the first thermal conductive film 11 and the second thermal conductive film 21 is formed on the capillary 5 by, for example, sputtering or electroplating. However, each material, thermal conductivity, shape, and formation method of the first thermal conductive film 11 and the second thermal conductive film 21 are not limited to these.

第1の感熱抵抗素子12の第1の固定部材及び第2の感熱抵抗素子22の第2の固定部材のそれぞれは、電気絶縁体からなる。第1の固定部材及び第2の固定部材の熱伝導率は高い方が好ましく、熱容量は小さい方が好ましい。電気絶縁体としては、例えばガラスやアルミナ(Al23)等のセラミックスが挙げられる。セラミックスの純度が低いと、第1の固定部材及び第2の固定部材に挿入される第1の白金抵抗体13及び第2の白金抵抗体23が不純物で汚染され、第1の白金抵抗体13及び第2の白金抵抗体23の抵抗値のドリフトの原因となったり、切断の原因となったりする。そのため、第1の固定部材及び第2の固定部材のそれぞれの材料となるセラミックスは、高純度セラミックスが好ましい。第1の固定部材及び第2の固定部材のそれぞれは、例えば円柱状であり、第1の白金抵抗体13及び第2の白金抵抗体23が挿入される一又は複数の穴が設けられている。第1の白金抵抗体13及び第2の白金抵抗体23が挿入される穴の直径は、キャピラリ5の直径よりも小さい。ただし、第1の固定部材及び第2の固定部材のそれぞれの材料及び形状は、これらに限定されない。 Each of the first fixing member of the first thermal resistance element 12 and the second fixing member of the second thermal resistance element 22 is made of an electrical insulator. The first fixing member and the second fixing member preferably have higher thermal conductivities, and preferably have smaller heat capacities. Examples of the electrical insulator include ceramics such as glass and alumina (Al 2 O 3 ). When the purity of the ceramic is low, the first platinum resistor 13 and the second platinum resistor 23 inserted into the first fixing member and the second fixing member are contaminated with impurities, and the first platinum resistor 13 And it causes the drift of the resistance value of the second platinum resistor 23 or causes the cutting. For this reason, high-purity ceramics are preferable as the ceramics that are the materials of the first fixing member and the second fixing member. Each of the first fixing member and the second fixing member has, for example, a cylindrical shape, and is provided with one or a plurality of holes into which the first platinum resistor 13 and the second platinum resistor 23 are inserted. . The diameter of the hole into which the first platinum resistor 13 and the second platinum resistor 23 are inserted is smaller than the diameter of the capillary 5. However, the materials and shapes of the first fixing member and the second fixing member are not limited to these.

例えば、第1の熱伝導膜11と第1の感熱抵抗素子12の第1の固定部材は、ろう付けにより接合されており、第2の熱伝導膜21と第2感熱抵抗素子22の第2の固定部材も、ろう付けにより接合されている。ろう材の材料としては、銀、リン銅等が使用可能であるが、これらに限定されない。また、第1の熱伝導膜11と第1の感熱抵抗素子12の第1の固定部材とを、半田により固定してもよい。第2の熱伝導膜21及び第2感熱抵抗素子22の第2の固定部材についても同様である。   For example, the first heat conductive film 11 and the first fixing member of the first heat sensitive resistor element 12 are joined by brazing, and the second heat conductive film 21 and the second heat sensitive resistor element 22 are second. These fixing members are also joined by brazing. As a material for the brazing material, silver, phosphor copper or the like can be used, but is not limited thereto. Moreover, you may fix the 1st heat conductive film 11 and the 1st fixing member of the 1st thermosensitive resistance element 12 with solder. The same applies to the second fixing member of the second thermal conductive film 21 and the second thermal resistance element 22.

図2に示した第1の白金抵抗体13及び第2の白金抵抗体23のそれぞれは、抵抗値のドリフトを抑制する観点から、純白金(Pt100)からなることが好ましい。第1の白金抵抗体13及び第2の白金抵抗体23のそれぞれは、例えば直径が数μmの細線からなる巻線であってもよい。ただし、第1の白金抵抗体13及び第2の白金抵抗体23のそれぞれの材料及び形状は、これらに限定されない。   Each of the first platinum resistor 13 and the second platinum resistor 23 shown in FIG. 2 is preferably made of pure platinum (Pt100) from the viewpoint of suppressing resistance value drift. Each of the first platinum resistor 13 and the second platinum resistor 23 may be a winding made of a thin wire having a diameter of several μm, for example. However, the materials and shapes of the first platinum resistor 13 and the second platinum resistor 23 are not limited to these.

図6に示すように、第1の白金抵抗体13及び第2の白金抵抗体23は、抵抗素子R1、R2と共に、ブリッジ回路を構成する。第1の白金抵抗体13及び第2の白金抵抗体23と、抵抗素子R1、R2と、には、電圧Eが印可される。抵抗素子R1、R2の接続点xと、第1の白金抵抗体13及び第2の白金抵抗体23の接続点yと、は、増幅器30の入力端子に接続されている。増幅器30は、接続点x、yの電位差を取り出す。キャピラリ5に流体が流れると、上流側に配置された第1の熱伝導膜11から、下流側に配置された第2の熱伝導膜21に流体が熱を運搬する。そのため、第1の白金抵抗体13の温度よりも第2の白金抵抗体23の温度が高くなり、第1の白金抵抗体13の抵抗値よりも第2の白金抵抗体23の抵抗値が高くなる。これに伴い、接続点x、yの電位差に変化が生じる。接続点x、yの電位差の変化は、キャピラリ5を流れる流体の流量に依存する。したがって、接続点x、yの電位差に基づき、キャピラリ5を流れる流体の流量を求めることが可能となる。 As shown in FIG. 6, the first platinum resistor 13 and the second platinum resistor 23, the resistance element R 1, R 2, constitute a bridge circuit. A voltage E is applied to the first platinum resistor 13 and the second platinum resistor 23 and the resistance elements R 1 and R 2 . A connection point x between the resistance elements R 1 and R 2 and a connection point y between the first platinum resistor 13 and the second platinum resistor 23 are connected to an input terminal of the amplifier 30. The amplifier 30 takes out the potential difference between the connection points x and y. When a fluid flows through the capillary 5, the fluid carries heat from the first heat conductive film 11 disposed on the upstream side to the second heat conductive film 21 disposed on the downstream side. Therefore, the temperature of the second platinum resistor 23 is higher than the temperature of the first platinum resistor 13, and the resistance value of the second platinum resistor 23 is higher than the resistance value of the first platinum resistor 13. Become. Along with this, a change occurs in the potential difference between the connection points x and y. The change in the potential difference between the connection points x and y depends on the flow rate of the fluid flowing through the capillary 5. Accordingly, the flow rate of the fluid flowing through the capillary 5 can be obtained based on the potential difference between the connection points x and y.

従来の流量計においては、キャピラリに絶縁被膜された感熱抵抗体の細線を巻き付けている。そのため、巻き付けられた感熱抵抗体の細線の残留応力が強く、感熱抵抗体の抵抗値のドリフトの原因となっている。また、感熱抵抗体をキャピラリに巻き付けると、感熱抵抗体を覆う絶縁膜が変形し、感熱抵抗体とキャピラリの接触面積が一定でなくなるという問題がある。よって、従来の流量計は、流体が流れていないときの出力が一定でなく、また個体差が大きいという問題がある。   In a conventional flow meter, a thin wire of a thermal resistor having an insulating coating is wound around a capillary. For this reason, the residual stress of the thin wire of the wound thermal resistor is strong, which causes a drift of the resistance value of the thermal resistor. Further, when the thermal resistor is wound around the capillary, there is a problem that the insulating film covering the thermal resistor is deformed and the contact area between the thermal resistor and the capillary is not constant. Therefore, the conventional flowmeter has a problem that the output when the fluid is not flowing is not constant and individual differences are large.

これに対し、実施の形態に係る流量計においては、第1の白金抵抗体13及び第2の白金抵抗体23のそれぞれは、第1の感熱抵抗素子12の第1の固定部材及び第2感熱抵抗素子22の第2の固定部材に設けられた、キャピラリ5の直径よりも小さい穴の中で巻線されているため、残留応力が小さい。また、第1の感熱抵抗素子12の第1の固定部材及び第2感熱抵抗素子22の第2の固定部材がセラミックスからなる場合、第1の固定部材及び第2の固定部材は経年劣化しにくい。そのため、実施の形態に係る流量計は、流体が流れていないときの出力を一定に保ちやすく、また個体差を抑制することが可能となる。   On the other hand, in the flowmeter according to the embodiment, the first platinum resistor 13 and the second platinum resistor 23 are respectively the first fixing member and the second thermosensitive member of the first thermosensitive resistor element 12. Since the coil is wound in a hole smaller than the diameter of the capillary 5 provided in the second fixing member of the resistance element 22, the residual stress is small. Further, when the first fixing member of the first thermal resistance element 12 and the second fixing member of the second thermal resistance element 22 are made of ceramics, the first fixing member and the second fixing member are unlikely to deteriorate over time. . Therefore, the flow meter according to the embodiment can easily maintain a constant output when no fluid is flowing, and can suppress individual differences.

(その他の実施の形態)
上記のように、本発明は実施の形態によって記載したが、この開示の一部をなす記述及び図面はこの発明を限定するものであると理解するべきではない。この開示から当業者には様々な代替実施の形態、実施の形態及び運用技術が明らかになるはずである。例えば、第1の感熱抵抗素子12の第1の固定部材及び第2感熱抵抗素子22の第2の固定部材のそれぞれの材料としては、ポリイミド等の高分子も使用可能である。また、キャピラリの表面に、第2の熱伝導膜と間隔をおいてさらに第3の熱伝導膜を配置し、第3の熱伝導膜上に第3のセラミック碍子を配置し、第3のセラミック碍子の内部に第3の白金抵抗体を挿入してもよい。このように、本発明はここでは記載していない様々な実施の形態等を包含するということを理解すべきである。
(Other embodiments)
As described above, the present invention has been described according to the embodiment. However, it should not be understood that the description and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, embodiments, and operation techniques should be apparent to those skilled in the art. For example, as materials of the first fixing member of the first thermal resistance element 12 and the second fixing member of the second thermal resistance element 22, polymers such as polyimide can be used. Further, a third heat conductive film is further arranged on the surface of the capillary at a distance from the second heat conductive film, a third ceramic insulator is arranged on the third heat conductive film, and a third ceramic is provided. A third platinum resistor may be inserted inside the insulator. Thus, it should be understood that the present invention includes various embodiments and the like not described herein.

1 基体
3 流路
5 キャピラリ
11 第1の熱伝導膜
12 第1のセラミック碍子
13 第1の白金抵抗体
21 第2の熱伝導膜
22 第2のセラミック碍子
23 第2の白金抵抗体
30 増幅器
31、32 貫通孔
40 層流素子
DESCRIPTION OF SYMBOLS 1 Base | substrate 3 Flow path 5 Capillary 11 1st heat conductive film 12 1st ceramic insulator 13 1st platinum resistor 21 2nd heat conductive film 22 2nd ceramic insulator 23 2nd platinum resistor 30 Amplifier 31 32 Through hole 40 Laminar flow element

Claims (7)

流体が流れるキャピラリと、
前記キャピラリの表面を周回するように配置された第1の熱伝導膜と、
前記第1の熱伝導膜上に配置された第1の感熱抵抗素子と、
前記第1の熱伝導膜と間隔をおいて、前記キャピラリの表面を周回するように配置された第2の熱伝導膜と、
前記第2の熱伝導膜上に配置された第2の感熱抵抗素子と、
を備え、
前記第1の感熱抵抗素子が、前記第1の熱伝導膜上に配置された電気絶縁体からなる第1の固定部材と、前記第1の固定部材の内部に挿入された第1の白金抵抗体と、を備え、
前記第1の固定部材に穴が設けられており、
前記第1の固定部材に設けられた穴の直径が、前記キャピラリの直径よりも小さく、
前記第1の白金抵抗体が、前記第1の固定部材に設けられた穴の中で巻線されており、
前記第2の感熱抵抗素子が、前記第2の熱伝導膜上に配置された電気絶縁体からなる第2の固定部材と、前記第2の固定部材の内部に挿入された第2の白金抵抗体と、を備え、
前記第2の固定部材に穴が設けられており、
前記第2の固定部材に設けられた穴の直径が、前記キャピラリの直径よりも小さく、
前記第2の白金抵抗体が、前記第2の固定部材に設けられた穴の中で巻線されている、
流量計。
A capillary through which fluid flows;
A first heat conducting film arranged to circulate around the surface of the capillary;
A first thermal resistance element disposed on the first thermal conductive film;
A second heat conductive film disposed around the surface of the capillary at an interval from the first heat conductive film;
A second thermal resistance element disposed on the second thermal conductive film;
With
The first thermosensitive resistor element includes a first fixing member made of an electrical insulator disposed on the first heat conductive film, and a first platinum resistor inserted into the first fixing member. With body,
A hole is provided in the first fixing member;
The diameter of the hole provided in the first fixing member is smaller than the diameter of the capillary;
The first platinum resistor is wound in a hole provided in the first fixing member;
The second thermosensitive resistor element includes a second fixing member made of an electrical insulator disposed on the second heat conductive film, and a second platinum resistor inserted into the second fixing member. With body,
A hole is provided in the second fixing member;
The diameter of the hole provided in the second fixing member is smaller than the diameter of the capillary;
The second platinum resistor is wound in a hole provided in the second fixing member;
Flowmeter.
前記第1の熱伝導膜と、前記第1の感熱抵抗素子と、が、ろう付けにより接合されており、
前記第2の熱伝導膜と、前記第2の感熱抵抗素子と、が、ろう付けにより接合されている、
請求項1に記載の流量計。
The first thermal conductive film and the first thermal resistance element are joined by brazing,
The second thermal conductive film and the second thermal resistance element are joined by brazing,
The flow meter according to claim 1.
前記第1の白金抵抗体及び前記第2の白金抵抗体のそれぞれが純白金からなる、請求項1又は2に記載の流量計。   The flowmeter according to claim 1 or 2, wherein each of the first platinum resistor and the second platinum resistor is made of pure platinum. 前記第1の熱伝導膜及び前記第2の熱伝導膜のそれぞれが銅、金、銀、又はアルミニウムからなる、請求項1乃至のいずれか1項に記載の流量計。 The flowmeter according to any one of claims 1 to 3 , wherein each of the first thermal conductive film and the second thermal conductive film is made of copper, gold, silver, or aluminum. 前記キャピラリが金属からなる、請求項1乃至のいずれか1項に記載の流量計。 The capillary is made of a metal, a flow meter according to any one of claims 1 to 4. 前記金属がステンレス鋼である、請求項に記載の流量計。 6. A flow meter according to claim 5 , wherein the metal is stainless steel. 前記第1及び第2の固定部材が、セラミックからなる、請求項1乃至6のいずれか1項に記載の流量計。  The flowmeter according to claim 1, wherein the first and second fixing members are made of ceramic.
JP2012128800A 2012-06-06 2012-06-06 Flowmeter Expired - Fee Related JP6017844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012128800A JP6017844B2 (en) 2012-06-06 2012-06-06 Flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012128800A JP6017844B2 (en) 2012-06-06 2012-06-06 Flowmeter

Publications (2)

Publication Number Publication Date
JP2013253828A JP2013253828A (en) 2013-12-19
JP6017844B2 true JP6017844B2 (en) 2016-11-02

Family

ID=49951448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012128800A Expired - Fee Related JP6017844B2 (en) 2012-06-06 2012-06-06 Flowmeter

Country Status (1)

Country Link
JP (1) JP6017844B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0754263B2 (en) * 1987-09-30 1995-06-07 株式会社日立製作所 Heat wire type air flow meter and manufacturing method thereof
JPH02161318A (en) * 1988-12-14 1990-06-21 Hitachi Metals Ltd Heat sensitive type flow rate sensor
DE50107052D1 (en) * 2000-05-04 2005-09-15 Sensirion Ag Zuerich FLUID SENSOR FOR LIQUIDS
JP2003279395A (en) * 2002-03-20 2003-10-02 Mitsui Mining & Smelting Co Ltd Flow rate measuring method and flowmeter

Also Published As

Publication number Publication date
JP2013253828A (en) 2013-12-19

Similar Documents

Publication Publication Date Title
JP4935225B2 (en) Electronic component assembly
US20060209920A1 (en) Probe for electronic clinical thermometer
US20040045352A1 (en) Flow sensor
US9810586B2 (en) Temperature sensor and thermal, flow measuring device
JP2012032247A (en) Thermal type flowmeter
US9182262B2 (en) Temperature sensor and thermal flow-measuring device
CN109211342B (en) Airflow flowmeter, MEMS silicon-based temperature-sensitive chip and preparation method thereof
US7469583B2 (en) Flow sensor
JP6017844B2 (en) Flowmeter
JP5564457B2 (en) Flow sensor
US11092471B2 (en) Sensor element and thermal flow sensor for determining a physical variable of a measurement medium
US7185539B2 (en) Flow sensor
JP5907688B2 (en) Flow sensor and method of manufacturing flow sensor
JP2000275078A (en) Thin-film heater
JP2014170772A (en) Temperature sensor
JP3766290B2 (en) Flow sensor
JP2011209035A (en) Sensor
JP2670882B2 (en) Thermal mass flow sensor
JP2016142710A (en) Thermal flow sensor
JP2619735B2 (en) Heat flow sensor
JP2014016240A (en) Flow sensor
US9188494B2 (en) Measurement of fluid temperatures
JP2011209009A (en) Sensor
US20140007670A1 (en) Flow sensor
JP6219769B2 (en) Flow sensor and method of manufacturing flow sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160929

R150 Certificate of patent or registration of utility model

Ref document number: 6017844

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees