JP6015701B2 - Steel plate damping control method and damping control device - Google Patents

Steel plate damping control method and damping control device Download PDF

Info

Publication number
JP6015701B2
JP6015701B2 JP2014065894A JP2014065894A JP6015701B2 JP 6015701 B2 JP6015701 B2 JP 6015701B2 JP 2014065894 A JP2014065894 A JP 2014065894A JP 2014065894 A JP2014065894 A JP 2014065894A JP 6015701 B2 JP6015701 B2 JP 6015701B2
Authority
JP
Japan
Prior art keywords
steel sheet
width direction
steel plate
region
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014065894A
Other languages
Japanese (ja)
Other versions
JP2015188891A (en
Inventor
一紘 安江
一紘 安江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014065894A priority Critical patent/JP6015701B2/en
Publication of JP2015188891A publication Critical patent/JP2015188891A/en
Application granted granted Critical
Publication of JP6015701B2 publication Critical patent/JP6015701B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、搬送中の鋼板の振動を抑制するための鋼板の制振制御方法及び制振制御装置に関する。   The present invention relates to a steel plate vibration damping control method and a vibration damping control device for suppressing vibration of a steel plate being conveyed.

帯状の鋼板の表面に対してめっき処理、コーティング処理、及び洗浄処理等の各種処理を施す薄板プロセスラインでは、ラインに沿って鋼板を連続的に搬送しながら鋼板に対して各種処理を施している。このため、鋼板が振動した場合、様々な問題が発生する。具体的には、溶融亜鉛めっきの浴機やコーターを有するラインでは、溶融亜鉛めっきの付着量を安定化させることが困難になる。また、コーティング処理後にノズルのような気体を吹き付ける設備がラインにある場合には、付着物が飛散することによってノズル詰まり等のトラブルが発生することがある。   In a thin plate process line that performs various processes such as plating, coating, and cleaning on the surface of a strip-shaped steel sheet, various processes are performed on the steel sheet while continuously conveying the steel sheet along the line. . For this reason, when a steel plate vibrates, various problems generate | occur | produce. Specifically, in a line having a hot dip galvanizing bath or a coater, it is difficult to stabilize the amount of hot dip galvanizing. In addition, when there is a facility for blowing a gas such as a nozzle in the line after the coating process, troubles such as nozzle clogging may occur due to the scattered matter.

このような背景から、薄板プロセスラインには、鋼板の表面に直交する方向に磁力を作用させることによって、鋼板の表面に直交する方向の振動を抑制する制振制御装置が設けられている。具体的には、特許文献1には、鋼板の幅方向に沿って配置された、それぞれ鋼板の表面及び裏面に対向する複数の電磁石対と、電磁石対毎に設けられた距離計と、を備える制振制御装置が記載されている。この制振制御装置は、距離計によって計測された鋼板の表面位置と基準位置との偏差に基づいて電磁石対に通電することによって鋼板の表面に直交する方向に磁力を作用させることにより、鋼板の表面位置を基準位置に制御するようにしている。   From such a background, the thin plate process line is provided with a vibration suppression control device that suppresses vibration in a direction orthogonal to the surface of the steel sheet by applying a magnetic force in a direction orthogonal to the surface of the steel sheet. Specifically, Patent Document 1 includes a plurality of electromagnet pairs that are disposed along the width direction of the steel plate and that face the front and back surfaces of the steel plate, respectively, and a distance meter provided for each electromagnet pair. A damping control device is described. This vibration suppression control device applies a magnetic force in a direction perpendicular to the surface of the steel sheet by energizing the electromagnet pair based on the deviation between the surface position of the steel sheet measured by the distance meter and the reference position. The surface position is controlled to the reference position.

特許第3014264号公報Japanese Patent No. 3014264

一般に、鋼板の表面に垂直な方向に鋼板が振動している際、鋼板の表面に直交する方向の力と共に、鋼板を幅方向に曲げた際に働く力のような鋼板の幅方向に相互作用を有する力が発生する。しかしながら、特許文献1記載の制振制御装置では、1つの電磁石対と1つの距離計とによって制御系が形成され、鋼板の幅方向において各制御系が独立している。すなわち、特許文献1記載の制振制御装置は、鋼板の幅方向に相互作用を有する力を考慮していない。このため、特許文献1記載の制振制御装置によれば、鋼板の表面位置を基準位置に制御するために必要な力を正確に算出することができず、結果、鋼板の幅方向に振動が伝播する等して鋼板の振動を効果的に抑制できないことがある。   In general, when the steel plate vibrates in the direction perpendicular to the surface of the steel plate, the interaction in the width direction of the steel plate, such as the force acting when the steel plate is bent in the width direction, along with the force in the direction perpendicular to the surface of the steel plate A force having However, in the vibration suppression control device described in Patent Document 1, a control system is formed by one electromagnet pair and one distance meter, and each control system is independent in the width direction of the steel sheet. That is, the vibration suppression control device described in Patent Document 1 does not consider the force having an interaction in the width direction of the steel plate. For this reason, according to the vibration suppression control device described in Patent Document 1, it is not possible to accurately calculate the force necessary to control the surface position of the steel plate to the reference position, and as a result, vibration occurs in the width direction of the steel plate. It may not be possible to effectively suppress the vibration of the steel sheet due to propagation.

本発明は、上記課題に鑑みてなされたものであって、その目的は、鋼板の振動を効果的に抑制可能な鋼板の制振制御方法及び制振制御装置を提供することにある。   This invention is made | formed in view of the said subject, The objective is to provide the damping control method and damping control apparatus of a steel plate which can suppress the vibration of a steel plate effectively.

本発明に係る鋼板の制振制御方法は、搬送中の鋼板の幅方向の領域毎の鋼板の表面に垂直な方向の目標位置からの変位量を測定するステップと、前記変位量を用いて鋼板の幅方向の領域毎の鋼板の表面に垂直な方向の変位速度を算出する算出ステップと、前記鋼板の幅方向に相互作用を有する力を考慮して、前記変位量及び前記変位速度を用いて鋼板の幅方向の領域毎に鋼板の表面に垂直な方向に作用している力を算出する算出ステップと、鋼板の幅方向の領域毎に設けられた電磁石対を利用して、鋼板の幅方向の領域毎に前記算出ステップにおいて算出された力を打ち消す磁力を作用させるステップと、を含むことを特徴とする。   A method for controlling vibration suppression of a steel plate according to the present invention includes a step of measuring a displacement amount from a target position in a direction perpendicular to the surface of the steel plate for each region in the width direction of the steel plate being conveyed, and a steel plate using the displacement amount. In consideration of the calculation step of calculating the displacement speed in the direction perpendicular to the surface of the steel sheet for each region in the width direction, and the force having an interaction in the width direction of the steel sheet, the displacement amount and the displacement speed are used. Using the calculation step for calculating the force acting in the direction perpendicular to the surface of the steel plate for each region in the width direction of the steel plate, and the electromagnet pair provided for each region in the width direction of the steel plate, the width direction of the steel plate And applying a magnetic force that cancels the force calculated in the calculation step for each region.

本発明に係る鋼板の制振制御装置は、搬送中の鋼板の幅方向の領域毎の鋼板の表面に垂直な方向の目標位置からの変位量を測定する距離計と、前記変位量を用いて鋼板の幅方向の領域毎の鋼板の表面に垂直な方向の変位速度を算出し、鋼板の幅方向に相互作用を有する力を考慮して、前記変位量及び前記変位速度を用いて鋼板の幅方向の領域毎に鋼板の表面に垂直な方向に作用している力を算出し、鋼板の幅方向の領域毎に設けられた電磁石対を利用して、鋼板の幅方向の領域毎に算出された力を打ち消す磁力を作用させる制御部と、を備えることを特徴とする。   A steel plate damping control device according to the present invention uses a distance meter that measures a displacement amount from a target position in a direction perpendicular to the surface of the steel plate for each region in the width direction of the steel plate being conveyed, and the displacement amount. The displacement rate in the direction perpendicular to the surface of the steel sheet for each region in the width direction of the steel sheet is calculated, and the width of the steel sheet is calculated using the displacement amount and the displacement speed in consideration of the force having an interaction in the width direction of the steel sheet. The force acting in the direction perpendicular to the surface of the steel sheet is calculated for each area of the direction, and is calculated for each area in the width direction of the steel sheet using an electromagnet pair provided for each area in the width direction of the steel sheet. And a control unit for applying a magnetic force that counteracts the applied force.

本発明に係る鋼板の制振制御方法及び制振制御装置によれば、鋼板の振動を効果的に抑制することができる。   According to the vibration suppression control method and the vibration suppression control device for a steel sheet according to the present invention, vibration of the steel sheet can be effectively suppressed.

図1は、本発明の概念を説明するための鋼板の物理モデルを示す模式図である。FIG. 1 is a schematic diagram showing a physical model of a steel plate for explaining the concept of the present invention. 図2は、本発明の一実施形態である鋼板の制振制御装置の構成を示す模式図である。FIG. 2 is a schematic diagram showing a configuration of a steel plate vibration damping control apparatus according to an embodiment of the present invention. 図3は、図2に示す電磁石対の構成を示す模式図である。FIG. 3 is a schematic diagram showing the configuration of the electromagnet pair shown in FIG. 図4は、本発明の一実施形態である制振制御処理の流れを示すフローチャートである。FIG. 4 is a flowchart showing the flow of vibration suppression control processing according to an embodiment of the present invention.

〔本発明の概念〕
始めに、図1を参照して、本発明の概念について説明する。
[Concept of the present invention]
First, the concept of the present invention will be described with reference to FIG.

図1は、本発明の概念を説明するための鋼板の物理モデルを示す模式図である。いま図1に示すように、鋼板Sの幅方向に沿って鋼板Sを7つの領域R1〜R7に分割し、各領域に割り当てられた電磁石対を利用して各領域に対し磁力を作用させることによって鋼板Sの表面に直交する方向の振動を抑制することを考える。   FIG. 1 is a schematic diagram showing a physical model of a steel plate for explaining the concept of the present invention. As shown in FIG. 1, the steel plate S is divided into seven regions R1 to R7 along the width direction of the steel plate S, and a magnetic force is applied to each region using an electromagnet pair assigned to each region. The suppression of vibration in the direction perpendicular to the surface of the steel sheet S is considered.

図1に示すように、鋼板Sの表面に垂直な方向に鋼板Sが振動している際、鋼板Sの幅方向の領域R1〜R7にはそれぞれ、鋼板Sの幅方向で独立した鋼板Sの表面に対して垂直な方向の力F〜Fが作用する。図1に示す符号k〜k及び符号D〜Dは、この力F〜Fを記述するバネ要素及びダンパー要素の定数を表している。また、このとき鋼板Sには、鋼板Sの幅方向で独立した力F〜Fとは別に、鋼板Sを幅方向に曲げた際に働く力のような鋼板Sの幅方向で相互作用を有する力も発生する。 As shown in FIG. 1, when the steel plate S vibrates in a direction perpendicular to the surface of the steel plate S, the regions R1 to R7 in the width direction of the steel plate S are each of the steel plates S independent in the width direction of the steel plate S. Forces F 1 to F 7 in a direction perpendicular to the surface act. Symbols k 1 to k 7 and symbols D 1 to D 7 shown in FIG. 1 represent constants of spring elements and damper elements that describe the forces F 1 to F 7 . Further, at this time, the steel sheet S interacts in the width direction of the steel sheet S, such as a force acting when the steel sheet S is bent in the width direction, separately from the forces F 1 to F 7 independent in the width direction of the steel sheet S. A force having

そこで、本発明の鋼板Sの物理モデルでは、図1に示すように、鋼板Sの幅方向の各領域間にバネ要素(バネ定数k12〜k67)及びダンパー要素(ダンパー定数D12〜D67)を規定する。鋼板Sの幅方向の各領域間にバネ要素及びダンパー要素を規定することによって、鋼板Sの幅方向で相互作用を有する力を考慮することができる。 Therefore, in the physical model of the steel sheet S according to the present invention, as shown in FIG. 1, a spring element (spring constant k 12 to k 67 ) and a damper element (damper constant D 12 to D) are provided between the regions in the width direction of the steel sheet S. 67 ). By defining the spring element and the damper element between the regions in the width direction of the steel sheet S, it is possible to consider the force having an interaction in the width direction of the steel sheet S.

詳しくは、本発明の鋼板Sの物理モデルによれば、図1に示す領域R1の運動方程式は以下に示す数式(1)のように表される。ここで、数式(1)中、mは領域R1の質量、xは領域R1の変位量、xは領域R1に隣接する領域R2の変位量を表している。なお、数式(1)では、領域R1に隣接する領域R2からの相互作用のみを考慮しているが、領域R3〜R7からの相互作用も併せて考慮してもよい。 Specifically, according to the physical model of the steel sheet S of the present invention, the equation of motion of the region R1 shown in FIG. 1 is expressed as the following equation (1). Here, in Equation (1), m 1 represents the mass of the region R1, x 1 represents the displacement amount of the region R1, and x 2 represents the displacement amount of the region R2 adjacent to the region R1. In Formula (1), only the interaction from the region R2 adjacent to the region R1 is considered, but the interaction from the regions R3 to R7 may be considered together.

Figure 0006015701
Figure 0006015701

同様に、本発明の鋼板Sの物理モデルでよれば、図1に示す領域R2の運動方程式は以下に示す数式(2)のように表される。ここで、数式(2)中、mは領域R2の質量、xは領域R2に隣接する領域R1の変位量、xは領域R2の変位量、xは領域R2に隣接する領域R3の変位量を表している。なお、数式(2)では、領域R2に隣接する領域R1,R3からの相互作用のみを考慮しているが、領域R4〜R7からの相互作用も考慮してもよい。 Similarly, according to the physical model of the steel sheet S of the present invention, the equation of motion of the region R2 shown in FIG. 1 is expressed as the following equation (2). Here, in Equation (2), the mass m 2 of the area R2, x 1 is the displacement amount in the region R1 adjacent to the area R2, the displacement amount of x 2 region R2, x 3 area adjacent to the area R2 R3 Represents the amount of displacement. In Formula (2), only the interaction from the regions R1 and R3 adjacent to the region R2 is considered, but the interaction from the regions R4 to R7 may also be considered.

Figure 0006015701
Figure 0006015701

以下同様にして領域R3〜R7についても運動方程式を立式する。これにより、鋼板Sの幅方向で相互作用を有する力を考慮した場合、領域R1〜R7に直交する方向に作用する力F(n=1〜7)は以下の数式(3)に示すような行列式によって表すことができる。ここで、Aは7×14の行列であり、行列Aの要素は鋼板Sの幅方向で独立した力F〜Fに由来するバネ定数k〜k及びダンパー定数D〜Dと、鋼板Sの幅方向で相互作用を有する力に由来するバネ定数k12〜k67及びダンパー定数D12〜D67によって求められる。 Similarly, equations of motion are established for the regions R3 to R7. Thereby, when the force which has interaction in the width direction of the steel plate S is taken into consideration, the force F n (n = 1 to 7) acting in the direction orthogonal to the regions R1 to R7 is expressed by the following formula (3). Can be expressed by a determinant. Here, A is a 7 × 14 matrix, and the elements of the matrix A are spring constants k 1 to k 7 and damper constants D 1 to D 7 derived from forces F 1 to F 7 that are independent in the width direction of the steel sheet S. And the spring constants k 12 to k 67 and the damper constants D 12 to D 67 derived from the forces that interact in the width direction of the steel sheet S.

Figure 0006015701
Figure 0006015701

なお、鋼板Sの幅方向で独立した力F〜Fに由来するバネ定数k〜k及びダンパー定数D〜Dはそれぞれ、鋼板Sの質量及び鋼板Sに作用する空気抵抗に応じて変化する。また、鋼板Sの幅方向で相互作用を有する力に由来するバネ定数k12〜k67及びダンパー定数D12〜D67はそれぞれ、鋼板Sの弾性係数及び鋼板Sに作用する空気抵抗に応じて変化する。 The spring constants k 1 to k 7 and the damper constants D 1 to D 7 derived from the forces F 1 to F 7 that are independent in the width direction of the steel sheet S are respectively determined by the mass of the steel sheet S and the air resistance acting on the steel sheet S. Will change accordingly. Further, the spring constants k 12 to k 67 and the damper constants D 12 to D 67 derived from the forces having an interaction in the width direction of the steel sheet S respectively correspond to the elastic coefficient of the steel sheet S and the air resistance acting on the steel sheet S. Change.

従って、鋼板Sの鋼種や寸法に応じて行列式Aの各要素の値を予め求めておき、鋼板Sの表面位置の基準位置からの変位量x(n=1〜7)及び変位速度x(t)−x(t−1)(n=1〜7,t:時間)を上記数式(3)に代入することによって、鋼板Sの幅方向に相互作用を有する力を考慮して、鋼板Sの幅方向の領域R1〜R7に直交する方向に作用する力F(n=1〜7)を算出することができる。結果、電磁石対を利用して力F(n=1〜7)を打ち消す方向に鋼板Sの各領域に磁力を作用させることによって、鋼板Sの振動を効果的に抑制することができる。 Therefore, the value of each element of the determinant A is obtained in advance according to the steel type and dimensions of the steel sheet S, and the displacement amount x n (n = 1 to 7) and the displacement speed x from the reference position of the surface position of the steel sheet S are obtained. By substituting n (t) −x n (t−1) (n = 1 to 7, t: time) into the above equation (3), a force having an interaction in the width direction of the steel sheet S is taken into consideration. The force F n (n = 1 to 7) acting in the direction orthogonal to the regions R1 to R7 in the width direction of the steel sheet S can be calculated. As a result, vibration of the steel sheet S can be effectively suppressed by applying a magnetic force to each region of the steel sheet S in a direction to cancel the force F n (n = 1 to 7) using the electromagnet pair.

以下、上記本発明の概念に基づいて想倒された、本発明の一実施形態である鋼板の制振制御装置について説明する。   Hereinafter, a steel plate vibration damping control apparatus, which is an embodiment of the present invention, conceived based on the concept of the present invention will be described.

〔制振制御装置の構成〕
図2は、本発明の一実施形態である鋼板の制振制御装置の構成を示す模式図である。図3は、図2に示す電磁石対の構成を示す模式図である。図2に示すように、本発明の一実施形態である鋼板の制振制御装置100は、複数の電磁石対101a,101bと、行列パラメータ記憶部110と、制御部120と、を備えている。
[Configuration of vibration control device]
FIG. 2 is a schematic diagram showing a configuration of a steel plate vibration damping control apparatus according to an embodiment of the present invention. FIG. 3 is a schematic diagram showing the configuration of the electromagnet pair shown in FIG. As shown in FIG. 2, a steel plate vibration damping control apparatus 100 according to an embodiment of the present invention includes a plurality of electromagnet pairs 101 a and 101 b, a matrix parameter storage unit 110, and a control unit 120.

図3(a)に示すように、複数の電磁石対101a,101bは、鋼板Sの幅方向に沿って鋼板Sを挟むように配置され、各電磁石は鋼板Sの表面及び裏面に対向配置されている。なお、本実施形態では、電磁石対は鋼板Sの幅方向に沿って7つ配置されているものとするが、電磁石対の配置数は7つに限定されることはない。   As shown to Fig.3 (a), the some electromagnet pair 101a, 101b is arrange | positioned so that the steel plate S may be pinched | interposed along the width direction of the steel plate S, and each electromagnet is opposingly arranged by the surface and the back surface of the steel plate S. Yes. In the present embodiment, seven electromagnet pairs are arranged along the width direction of the steel sheet S. However, the number of electromagnet pairs arranged is not limited to seven.

図3(b)に示すように、各電磁石は、鉄芯102に巻線103を巻いた構造を有しており、電源104を利用して巻線103に通電することによって対向する鋼板Sに対して磁力を作用させることができる。また、各電磁石には、対向する鋼板Sとの間の距離を計測するための距離計105が設けられている。   As shown in FIG. 3B, each electromagnet has a structure in which a winding 103 is wound around an iron core 102, and the opposing steel plates S are energized by energizing the winding 103 using a power source 104. On the other hand, a magnetic force can be applied. Each electromagnet is provided with a distance meter 105 for measuring the distance between the opposing steel plates S.

図2に戻る。行列パラメータ記憶部110は、不揮発性の記憶装置によって構成され、上記数式(3)に示す行列Aの要素aij(i=1〜7,j=1〜14)を代表的な鋼板Sの鋼種及び寸法毎に記憶する。 Returning to FIG. The matrix parameter storage unit 110 is configured by a non-volatile storage device, and an element a ij (i = 1 to 7, j = 1 to 14) of the matrix A shown in the mathematical formula (3) is a steel type of a typical steel sheet S. And memorize for each dimension.

制御部120は、マイクロコンピュータ等の演算処理装置によって構成され、複数の電磁石対101a,101bに通電する電流値を制御することによって鋼板Sに対して磁力を作用させることにより鋼板Sの振動を抑制する。   The control unit 120 is configured by an arithmetic processing device such as a microcomputer, and suppresses vibrations of the steel sheet S by applying a magnetic force to the steel sheet S by controlling the current value applied to the plurality of electromagnet pairs 101a and 101b. To do.

このような構成を有する鋼板の制振制御装置100では、制御部120が以下に示す制振制御処理を実行することによって、鋼板Sの振動を効果的に抑制する。以下、図4に示すフローチャートを参照して、制振制御処理を実行する際の制御部120の動作について説明する。   In the steel plate vibration suppression control apparatus 100 having such a configuration, the control unit 120 effectively suppresses the vibration of the steel plate S by executing the vibration suppression control process shown below. Hereinafter, the operation of the control unit 120 when executing the vibration suppression control process will be described with reference to the flowchart shown in FIG.

〔制振制御処理〕
図4は、本発明の一実施形態である制振制御処理の流れを示すフローチャートである。図4に示すフローチャートは、鋼板Sの搬送が開始されたタイミングで開始となり、制振制御処理はステップS1の処理に進む。制振制御処理は所定の制御周期毎に繰り返し実行される。
[Vibration control processing]
FIG. 4 is a flowchart showing the flow of vibration suppression control processing according to an embodiment of the present invention. The flowchart shown in FIG. 4 starts when the conveyance of the steel sheet S is started, and the vibration suppression control process proceeds to the process of step S1. The vibration suppression control process is repeatedly executed every predetermined control cycle.

ステップS1の処理では、制御部120が、電磁石対101a,101bの距離計105を利用して、電磁石対101a,101bが磁力を作用させる鋼板Sの幅方向の領域R1〜R7毎の鋼板Sの表面に対して垂直な方向の目標位置からの変位量x(n=1〜7)を測定する。これにより、ステップS1の処理は完了し、制振制御処理はステップS2の処理に進む。 In the process of step S1, the control unit 120 uses the distance meter 105 of the electromagnet pairs 101a and 101b, and the steel sheet S for each of the regions R1 to R7 in the width direction of the steel sheet S on which the electromagnet pairs 101a and 101b act. A displacement amount x n (n = 1 to 7) from a target position in a direction perpendicular to the surface is measured. Thereby, the process of step S1 is completed and the vibration suppression control process proceeds to the process of step S2.

ステップS2の処理では、制御部120が、ステップS1の処理において測定された変位量x(n=1〜7)を用いて鋼板Sの幅方向の領域R1〜R7毎の鋼板Sの表面に対して垂直な方向の変位速度x(t)−x(t−1)(n=1〜7,t:時間)を算出する。これにより、ステップS2の処理は完了し、制振制御処理はステップS3の処理に進む。 In the process of step S2, the control unit 120 uses the displacement amount x n (n = 1 to 7) measured in the process of step S1 on the surface of the steel sheet S for each region R1 to R7 in the width direction of the steel sheet S. A displacement speed x n (t) −x n (t−1) (n = 1 to 7, t: time) in a direction perpendicular to the direction is calculated. Thereby, the process of step S2 is completed, and the vibration suppression control process proceeds to the process of step S3.

ステップS3の処理では、制御部120が、鋼板Sの鋼種及び寸法に対応する行列Aの要素aijのデータを行列パラメータ記憶部110から読み出す。そして、制御部120は、読み出された行列Aの要素aijのデータとステップS1及びステップS2の処理において得られた変位量x(n=1〜7)及び変位速度x(t)−x(t−1)(n=1〜7,t:時間)を上記数式(3)に代入することによって、鋼板Sの幅方向の領域R1〜R7毎に鋼板Sの表面に垂直な方向に作用している力F(n=1〜7)を算出する。これにより、ステップS3の処理は完了し、制振制御処理はステップS4の処理に進む。 In the process of step S < b > 3 , the control unit 120 reads the data of the element a ij of the matrix A corresponding to the steel type and dimensions of the steel sheet S from the matrix parameter storage unit 110. Then, the control unit 120 reads the data of the element a ij of the matrix A, the displacement amount x n (n = 1 to 7) and the displacement speed x n (t) obtained in the processing of step S1 and step S2. By substituting −x n (t−1) (n = 1 to 7, t: time) into the above formula (3), the area R1 to R7 in the width direction of the steel sheet S is perpendicular to the surface of the steel sheet S. A force F n (n = 1 to 7) acting in the direction is calculated. Thereby, the process of step S3 is completed, and the vibration suppression control process proceeds to the process of step S4.

ステップS4の処理では、制御部120が、電磁石対101a,101bを利用してステップS3の処理において算出された力F(n=1〜7)を打ち消す方向に鋼板Sの幅方向の各領域R1〜R7に磁力を作用させる。これにより、ステップS4の処理は完了し、一連の制振制御処理は終了する。 In the process of step S4, each region in the width direction of the steel sheet S in the direction in which the control unit 120 cancels the force F n (n = 1 to 7) calculated in the process of step S3 using the electromagnet pairs 101a and 101b. A magnetic force is applied to R1 to R7. Thereby, the process of step S4 is completed and a series of vibration suppression control processes are complete | finished.

以上の説明から明らかなように、本発明の一実施形態である制振制御処理では、制御部120が、距離計105を利用して搬送中の鋼板Sの幅方向の領域R1〜R7毎の鋼板Sの表面に垂直な方向の目標位置からの変位量x(n=1〜7)を測定し、測定された変位量x(n=1〜7)を用いて鋼板Sの幅方向の領域毎の鋼板Sの表面に垂直な方向の変位速度x(t)−x(t−1)(n=1〜7,t:時間)を算出し、鋼板Sの幅方向に相互作用を有する力を考慮して、算出された変位量x(n=1〜7)及び変位速度x(t)−x(t−1)(n=1〜7,t:時間)を用いて鋼板Sの幅方向の領域R1〜R7毎に鋼板Sの表面に垂直な方向に作用している力F(n=1〜7)を算出し、鋼板Sの幅方向の領域R1〜R7毎に設けられた電磁石対101a,101bを利用して、鋼板Sの幅方向の領域R1〜R7毎に算出された力F(n=1〜7)を打ち消す磁力を作用させる。これにより、鋼板Sの振動を効果的に抑制することができる。 As is clear from the above description, in the vibration suppression control process according to an embodiment of the present invention, the control unit 120 uses the distance meter 105 to each of the regions R1 to R7 in the width direction of the steel sheet S being conveyed. The displacement amount x n (n = 1-7) from the target position in the direction perpendicular to the surface of the steel sheet S is measured, and the width direction of the steel sheet S is measured using the measured displacement amount x n (n = 1-7). Displacement speed x n (t) −x n (t−1) (n = 1 to 7, t: time) in the direction perpendicular to the surface of the steel sheet S for each region is calculated, The calculated displacement amount x n (n = 1 to 7) and displacement speed x n (t) −x n (t−1) (n = 1 to 7, t: time) in consideration of the acting force For each region R1 to R7 in the width direction of the steel sheet S, the force F n (n = 1 to 7) acting in the direction perpendicular to the surface of the steel sheet S is calculated, and the region in the width direction of the steel sheet S is calculated. Using the electromagnet pairs 101a and 101b provided for each of the regions R1 to R7, a magnetic force that cancels the force F n (n = 1 to 7) calculated for each of the regions R1 to R7 in the width direction of the steel sheet S is applied. . Thereby, the vibration of the steel sheet S can be effectively suppressed.

以上、本発明者によってなされた発明を適用した実施の形態について説明したが、本実施形態による本発明の開示の一部をなす記述及び図面により本発明は限定されることはない。すなわち、本実施形態に基づいて当業者等によりなされる他の実施の形態、実施例、及び運用技術等は全て本発明の範疇に含まれる。   Although the embodiment to which the invention made by the present inventor is applied has been described above, the present invention is not limited by the description and the drawings that form a part of the disclosure of the present invention according to this embodiment. That is, other embodiments, examples, operational techniques, and the like made by those skilled in the art based on this embodiment are all included in the scope of the present invention.

100 制振制御装置
101a,101b 電磁石対
110 行列パラメータ記憶部
120 制御部
DESCRIPTION OF SYMBOLS 100 Vibration suppression control apparatus 101a, 101b Electromagnet pair 110 Matrix parameter memory | storage part 120 Control part

Claims (3)

搬送中の鋼板の幅方向の領域毎の鋼板の表面に垂直な方向の目標位置からの変位量を測定するステップと、
前記変位量を用いて鋼板の幅方向の領域毎の鋼板の表面に垂直な方向の変位速度を算出する算出ステップと、
前記鋼板の幅方向に相互作用を有する力を考慮して、前記変位量及び前記変位速度を用いて鋼板の幅方向の領域毎に鋼板の表面に垂直な方向に作用している力を算出する算出ステップと、
鋼板の幅方向の領域毎に設けられた電磁石対を利用して、鋼板の幅方向の領域毎に前記算出ステップにおいて算出された力を打ち消す磁力を作用させるステップと、
を含むことを特徴とする鋼板の制振制御方法。
Measuring a displacement amount from a target position in a direction perpendicular to the surface of the steel sheet for each region in the width direction of the steel sheet being conveyed;
A calculation step of calculating a displacement speed in a direction perpendicular to the surface of the steel sheet for each region in the width direction of the steel sheet using the displacement amount;
In consideration of the force having an interaction in the width direction of the steel plate, the force acting in the direction perpendicular to the surface of the steel plate is calculated for each region in the width direction of the steel plate using the displacement amount and the displacement speed. A calculation step;
Using an electromagnet pair provided for each region in the width direction of the steel plate, applying a magnetic force that cancels the force calculated in the calculation step for each region in the width direction of the steel plate;
A method for damping control of a steel sheet, comprising:
前記算出ステップは、鋼板の幅方向の領域間にバネ要素とダンパー要素とを規定した鋼板の物理モデルを用いて鋼板の幅方向に相互作用を有する力を考慮するステップを含むことを特徴とする請求項1に記載の鋼板の制振制御方法。   The calculating step includes a step of considering a force having an interaction in the width direction of the steel sheet using a physical model of the steel sheet in which a spring element and a damper element are defined between regions in the width direction of the steel sheet. The method for controlling vibration suppression of a steel sheet according to claim 1. 搬送中の鋼板の幅方向の領域毎の鋼板の表面に垂直な方向の目標位置からの変位量を測定する距離計と、
前記変位量を用いて鋼板の幅方向の領域毎の鋼板の表面に垂直な方向の変位速度を算出し、鋼板の幅方向に相互作用を有する力を考慮して、前記変位量及び前記変位速度を用いて鋼板の幅方向の領域毎に鋼板の表面に垂直な方向に作用している力を算出し、鋼板の幅方向の領域毎に設けられた電磁石対を利用して、鋼板の幅方向の領域毎に算出された力を打ち消す磁力を作用させる制御部と、
を備えることを特徴とする鋼板の制振制御装置。
A distance meter that measures a displacement amount from a target position in a direction perpendicular to the surface of the steel sheet for each region in the width direction of the steel sheet being conveyed;
The displacement amount in the direction perpendicular to the surface of the steel sheet is calculated for each region in the width direction of the steel sheet using the displacement amount, and the displacement amount and the displacement speed are calculated in consideration of a force having an interaction in the width direction of the steel sheet. The force acting in the direction perpendicular to the surface of the steel sheet is calculated for each area in the width direction of the steel sheet using the electromagnet pair provided for each area in the width direction of the steel sheet, and the width direction of the steel sheet A control unit for applying a magnetic force that cancels the force calculated for each of the regions;
A steel plate vibration damping control device comprising:
JP2014065894A 2014-03-27 2014-03-27 Steel plate damping control method and damping control device Active JP6015701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014065894A JP6015701B2 (en) 2014-03-27 2014-03-27 Steel plate damping control method and damping control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014065894A JP6015701B2 (en) 2014-03-27 2014-03-27 Steel plate damping control method and damping control device

Publications (2)

Publication Number Publication Date
JP2015188891A JP2015188891A (en) 2015-11-02
JP6015701B2 true JP6015701B2 (en) 2016-10-26

Family

ID=54423879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014065894A Active JP6015701B2 (en) 2014-03-27 2014-03-27 Steel plate damping control method and damping control device

Country Status (1)

Country Link
JP (1) JP6015701B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116550759B (en) * 2023-07-11 2023-09-15 太原理工大学 Vibration suppression method and system for rolling mill roller system based on vibration damper

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3014264B2 (en) * 1994-03-23 2000-02-28 新日本製鐵株式会社 Steel plate vibration control device
JP4287213B2 (en) * 2002-09-03 2009-07-01 エドワーズ株式会社 Magnetic bearing device having vibration suppressing function, magnetic bearing device having vibration estimating function, and pump device equipped with the magnetic bearing device

Also Published As

Publication number Publication date
JP2015188891A (en) 2015-11-02

Similar Documents

Publication Publication Date Title
KR101531461B1 (en) Steel sheet shape control method and steel sheet shape control device
JP4827988B2 (en) Mode-based metal strip stabilizer
JP5355568B2 (en) Method for stabilizing a strip with a coating guided between air knife nozzles with melt-dip coating and melt-dip coating equipment
JP6177705B2 (en) Control device of mechanical device and gain determination method for friction compensation
JP2010535945A5 (en)
JP6015701B2 (en) Steel plate damping control method and damping control device
JP2017127964A (en) Robot apparatus having learning function
JP6229799B2 (en) Flatness control device
JP2014164498A (en) Control system, disturbance estimation system, control method, control program and design method
US9037420B2 (en) Internal residual stress calculating device, non-transitory computer-readable medium, and internal residual stress calculating method
JP6038399B1 (en) Power consumption estimation device
TWI375140B (en) Accumulative method for estimating a processing velocity limitation and method for controlling acceleration and deceleration before interpolation
JP6112040B2 (en) Non-contact control device for metal strip and method of manufacturing hot-dip metal strip
JP2016022523A (en) State estimation method for molten metal surface variation in continuous casting mold
JP7019982B2 (en) Adjustment factor estimator, model learning device, and method
JP5614232B2 (en) Robot hand control device, control method, and control program
JP6696742B2 (en) Seismic isolation member response estimation device and seismic isolation member response estimation method
JP4957449B2 (en) Deformed curvature predicting device, medium conveying device, image forming apparatus, and deformed curvature predicting program
KR101657748B1 (en) Apparatus for controlling strip vibration
JP6558306B2 (en) Long material shape estimation method and catenary control system
JP2006247671A (en) Apparatus and method for straightening shape of steel sheet
JP6167962B2 (en) Physical quantity estimation apparatus, image forming apparatus, and program
JP6696527B2 (en) Steel plate thickness control method, plate thickness control device, and manufacturing method
JP7086483B2 (en) Simulation method, simulation equipment and program
CN115598987A (en) Time lag compensation method, system and device and bridge vibration simulation equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160912

R150 Certificate of patent or registration of utility model

Ref document number: 6015701

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250