JP6015344B2 - Biopharmaceutical storage method - Google Patents

Biopharmaceutical storage method Download PDF

Info

Publication number
JP6015344B2
JP6015344B2 JP2012235409A JP2012235409A JP6015344B2 JP 6015344 B2 JP6015344 B2 JP 6015344B2 JP 2012235409 A JP2012235409 A JP 2012235409A JP 2012235409 A JP2012235409 A JP 2012235409A JP 6015344 B2 JP6015344 B2 JP 6015344B2
Authority
JP
Japan
Prior art keywords
group
acid
layer
oxygen
polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012235409A
Other languages
Japanese (ja)
Other versions
JP2014084154A (en
Inventor
翔太 荒川
翔太 荒川
隆史 加柴
隆史 加柴
小川 俊
俊 小川
健一郎 薄田
健一郎 薄田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2012235409A priority Critical patent/JP6015344B2/en
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to ES12852006.1T priority patent/ES2641259T3/en
Priority to US14/360,078 priority patent/US10035129B2/en
Priority to EP12852006.1A priority patent/EP2784120B1/en
Priority to PT128520061T priority patent/PT2784120T/en
Priority to KR1020147013872A priority patent/KR101880332B1/en
Priority to DK12852006.1T priority patent/DK2784120T3/en
Priority to PL12852006T priority patent/PL2784120T3/en
Priority to HUE12852006A priority patent/HUE035345T2/en
Priority to PCT/JP2012/080395 priority patent/WO2013077436A1/en
Priority to IN4745CHN2014 priority patent/IN2014CN04745A/en
Priority to CN201280057913.6A priority patent/CN103958604B/en
Priority to TW101143982A priority patent/TWI568789B/en
Publication of JP2014084154A publication Critical patent/JP2014084154A/en
Application granted granted Critical
Publication of JP6015344B2 publication Critical patent/JP6015344B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、バイオ医薬を、酸素バリア性能および酸素吸収性能を有する医療用多層容器内に保存するバイオ医薬の保存方法に関する。   The present invention relates to a biopharmaceutical storage method for storing a biopharmaceutical in a medical multilayer container having oxygen barrier performance and oxygen absorption performance.

従来、薬液を密閉状態で充填、保管する為の医療用包装容器として、ガラス製のアンプル、バイアル、プレフィルドシリンジ等が使用されてきた。しかしながら、ガラス製容器は、薬剤等が充填された状態での保管中に容器の内容液にナトリウムイオン等が溶出したり、フレークスという微細な物質を発生したり、着色した遮光性ガラス製容器を使用する場合に着色用の金属が内容物に混入する、割れやすい、などの問題があった。また、充填後の容器内部に残存する酸素により薬剤が劣化する問題があった。更に、比重が大きい為に医療用包装容器が重くなってしまうという問題点があり、代替材料の開発が期待されていた。   Conventionally, glass ampoules, vials, prefilled syringes, and the like have been used as medical packaging containers for filling and storing chemical solutions in a sealed state. However, glass containers are used to store sodium ion etc. in the liquid in the container during storage in a state filled with chemicals, to generate fine substances called flakes, or to use colored light-shielding glass containers. When used, there are problems such that the coloring metal is mixed into the contents and is easily broken. In addition, there is a problem that the chemical deteriorates due to oxygen remaining inside the container after filling. Furthermore, since the specific gravity is large, there is a problem that the medical packaging container becomes heavy, and development of an alternative material has been expected.

プラスチックは、ガラスに比べて軽量であり、例えば、ポリカーボネート、ポリプロピレン、シクロオレフィンポリマー等が、ガラス代替のプラスチックとして検討されているが、酸素バリア性、水蒸気バリア性、が要求を満たせず、代替が進んでいないのが現状である。   Plastics are lighter than glass. For example, polycarbonate, polypropylene, cycloolefin polymers, etc. are being investigated as plastic substitutes for glass. However, oxygen barrier properties and water vapor barrier properties do not meet the requirements and can be replaced. The current situation is not progressing.

近年、バイオ医薬の新薬登録が急速に増加しており、承認医薬品に占めるバイオ医薬品の比率が高まっているが、これらの医薬品は特に酸素バリア性能が担保された容器での保存が求められる。プラスチックは、ガラス製及び金属製容器と異なり、酸素を透過する性質があり、薬液の保存性に問題がある。このようなプラスチックからなる容器にガスバリア性を付与するために、ガスバリア層を中間層として有する多層容器が提案されている。   In recent years, new drug registrations for biopharmaceuticals are rapidly increasing, and the ratio of biopharmaceuticals to approved drugs is increasing. These drugs are particularly required to be stored in containers with a guaranteed oxygen barrier performance. Unlike glass and metal containers, plastic has a property of permeating oxygen and has a problem in the storage stability of chemicals. In order to impart gas barrier properties to such plastic containers, multilayer containers having a gas barrier layer as an intermediate layer have been proposed.

特許文献1においてバレルの最内層と最外層がポリオレフィン系樹脂からなり、中間層に酸素バリア性に優れた樹脂を使用し、酸素バリア性を向上させたプレフィルドシリンジが提示されている。   Patent Document 1 discloses a prefilled syringe in which an innermost layer and an outermost layer of a barrel are made of a polyolefin-based resin, a resin having an excellent oxygen barrier property is used for an intermediate layer, and an oxygen barrier property is improved.

他にも、ガスバリア層としては他に、メタキシリレンジアミンとアジピン酸とから得られるポリアミド(以下ナイロンMXD6と称することがある)、エチレン−ビニルアルコール共重合体、ポリアクリロニトリル、ポリ塩化ビニリデン、アルミ箔、カーボンコート、無機酸化物蒸着等のガスバリア層を構成材料として積層する方法が行われているが、成形体内の充填後の内容物の上部に存在するヘッドスペースの気体中の残存酸素を除去することは不可能である。   In addition, as a gas barrier layer, a polyamide obtained from metaxylylenediamine and adipic acid (hereinafter sometimes referred to as nylon MXD6), an ethylene-vinyl alcohol copolymer, polyacrylonitrile, polyvinylidene chloride, aluminum A method of laminating a gas barrier layer such as foil, carbon coat, and inorganic oxide vapor deposition as a constituent material has been carried out, but residual oxygen in the headspace gas existing above the contents after filling in the molded body is removed. It is impossible to do.

近年、ナイロンMXD6に少量の遷移金属化合物を添加、混合して、酸素吸収機能を付与し、これを容器や包装材料を構成する酸素バリア材料として利用することで、外部から透過してくる酸素を及び容器内部に残存する酸素を吸収することにより、従来の酸素バリア性熱可塑性樹脂を利用した容器以上に内容物の保存性を高める方法が実用化されつつある(特許文献2参照)。   In recent years, a small amount of transition metal compound is added to and mixed with nylon MXD6 to give an oxygen absorption function, and this is used as an oxygen barrier material that constitutes containers and packaging materials. In addition, by absorbing oxygen remaining in the inside of the container, a method for improving the storage stability of the contents more than a container using a conventional oxygen-barrier thermoplastic resin is being put into practical use (see Patent Document 2).

一方、容器内の酸素を除去するため、酸素吸収剤や酸素吸収性樹脂を使用することは従来から知られている。例えば、樹脂と遷移金属触媒からなり、酸素捕捉特性を有する酸素吸収性樹脂組成物が知られている。例えば、酸化可能有機成分としてポリアミド、特にキシリレン基含有ポリアミドと遷移金属触媒からなる樹脂組成物が知られており、さらに酸素捕捉機能を有する樹脂組成物やその樹脂組成物を成形して得られる酸素吸収剤、包装材料、包装用多層積層フィルムの例示もある(特許文献3参照)。   On the other hand, in order to remove oxygen in a container, it is conventionally known to use an oxygen absorbent or an oxygen-absorbing resin. For example, an oxygen-absorbing resin composition comprising a resin and a transition metal catalyst and having oxygen scavenging properties is known. For example, a resin composition comprising a polyamide, particularly a xylylene group-containing polyamide and a transition metal catalyst, is known as an oxidizable organic component, and further a resin composition having an oxygen scavenging function and oxygen obtained by molding the resin composition There are also examples of absorbents, packaging materials, and multilayer laminated films for packaging (see Patent Document 3).

また、酸素吸収に水分を必要としない酸素吸収樹脂組成物として、炭素−炭素不飽和結合を有する樹脂と遷移金属触媒からなる酸素吸収樹脂組成物が知られている(特許文献4参照)。   Further, as an oxygen-absorbing resin composition that does not require moisture for oxygen absorption, an oxygen-absorbing resin composition comprising a resin having a carbon-carbon unsaturated bond and a transition metal catalyst is known (see Patent Document 4).

さらに、酸素を捕集する組成物として、置換されたシクロヘキセン官能基を含むポリマーまたは該シクロヘキセン環が結合した低分子量物質と遷移金属とからなる組成物が知られている(特許文献5参照)。   Furthermore, as a composition for collecting oxygen, a composition comprising a polymer containing a substituted cyclohexene functional group or a low molecular weight substance bonded with the cyclohexene ring and a transition metal is known (see Patent Document 5).

特開2004−229750号公報JP 2004-229750 A 特開平2−500846号公報Japanese Patent Laid-Open No. 2-500846 特開2001−252560号公報JP 2001-252560 A 特開平05−115776号公報Japanese Patent Laid-Open No. 05-115776 特表2003−521552号公報Special table 2003-521552 gazette

しかしながら、特許文献1のプレフィルドシリンジでは、酸素を完全に遮断するには酸素バリア性は不十分であり、また、容器の内容物の上部に存在するヘッドスペースの気体中の残存酸素を除去することは不可能であるという問題があった。   However, in the prefilled syringe of Patent Document 1, the oxygen barrier property is insufficient to completely block oxygen, and the residual oxygen in the gas in the headspace existing above the contents of the container is removed. There was a problem that was impossible.

また、特許文献2や3の樹脂組成物は、遷移金属触媒を含有させキシリレン基含有ポリアミド樹脂を酸化させることで酸素吸収機能を発現させるものであるため、樹脂の酸化劣化による強度低下が発生し、包装容器そのものの強度が低下するという問題を有している。さらに、この樹脂組成物は、未だ酸素吸収性能が不十分であり、被保存物が高水分系のものしか効果を発現しない、といった課題を有している。   Moreover, since the resin composition of patent document 2 and 3 expresses an oxygen absorption function by containing a transition metal catalyst and oxidizing a xylylene group-containing polyamide resin, strength reduction due to oxidative degradation of the resin occurs. There is a problem that the strength of the packaging container itself is lowered. Furthermore, this resin composition has a problem that oxygen absorption performance is still insufficient, and the object to be preserved exhibits only an effect of high moisture.

さらに、特許文献4の酸素吸収樹脂組成物は、樹脂の酸化にともなう高分子鎖の切断により臭気成分となる低分子量の有機化合物が生成し、内容物が薬液である場合は、その有機化合物が内容物に移行するという問題がある。   Furthermore, the oxygen-absorbing resin composition of Patent Document 4 generates a low molecular weight organic compound that becomes an odor component by breaking a polymer chain accompanying oxidation of the resin, and when the content is a chemical solution, the organic compound is There is a problem of moving to contents.

一方、特許文献5の組成物は、シクロヘキセン官能基を含む特殊な材料を用いる必要があり、また、この材料は比較的容易に低分子量化合物を生成する、という問題がある。   On the other hand, the composition of Patent Document 5 requires the use of a special material containing a cyclohexene functional group, and there is a problem that this material generates a low molecular weight compound relatively easily.

本発明は、上記課題を鑑みてなされたものであり、その目的は、バイオ医薬の変質や薬効の低下を抑制し、不純物が混入すること無く、長期間保存できる方法を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a method capable of suppressing deterioration of biopharmaceuticals and lowering of drug efficacy and storing them for a long period of time without mixing impurities.

本発明者らは、バイオ医薬の保存方法について検討を進めた結果、バイオ医薬を、テトラリン環を有するポリエステル化合物と遷移金属触媒を用いる酸素吸収性医療用多層成形容器に保存することにより、上記課題が解決されることを見出し、本発明を完成した。   As a result of studying a method for preserving biopharmaceuticals, the present inventors have obtained the above problem by storing biopharmaceuticals in an oxygen-absorbing medical multilayer molded container using a polyester compound having a tetralin ring and a transition metal catalyst. The present invention has been completed.

すなわち、本発明は、以下<1>〜<4>を提供する。
<1> バイオ医薬を、ポリエステル化合物及び遷移金属触媒を含有する酸素吸収性樹脂組成物からなる酸素吸収層(層A)と、熱可塑性樹脂を含有する樹脂層(層B)を前記層Aの両側に積層した、少なくとも3層を含有する酸素吸収性医療用多層成形容器内に保存するバイオ医薬の保存方法であって、
前記ポリエステル化合物が、下記一般式(1)〜(4)

Figure 0006015344

(式中、Rは、それぞれ独立して、水素原子または一価の置換基を示し、一価の置換基は、ハロゲン原子、アルキル基、アルケニル基、アルキニル基、アリール基、複素環基、シアノ基、ヒドロキシ基、カルボキシル基、エステル基、アミド基、ニトロ基、アルコキシ基、アリールオキシ基、アシル基、アミノ基、メルカプト基、アルキルチオ基、アリールチオ基、複素環チオ基及びイミド基からなる群より選択される少なくとも1種であり、これらはさらに置換基を有していてもよい。mは0〜3、nは0〜7の整数を表し、テトラリン環のベンジル位に少なくとも1つ以上の水素原子が結合している。Xは芳香族炭化水素基、飽和または不飽和の脂環式炭化水素基、直鎖状または分岐状の飽和または不飽和の脂肪族炭化水素基及び複素環基からなる群から選ばれる少なくとも1つの基を含有する2価の基を表す。)
からなる群より選択される少なくとも1つのテトラリン環を有する構成単位を含有する、
バイオ医薬の保存方法。
<2> 前記遷移金属触媒が、マンガン、鉄、コバルト、ニッケルおよび銅からなる群より選択される少なくとも1種以上の遷移金属を含むものである、上記<1>記載のバイオ医薬の保存方法。
<3> 前記遷移金属触媒が、前記ポリエステル化合物100質量部に対し、遷移金属量として0.001〜10質量部含まれる、上記<1>または<2>に記載のバイオ医薬の保存方法。
<4> 前記一般式(1)で表される構成単位が、下記式(5)〜(7)からなる群より選択される少なくとも1つである、上記<1>〜<3>のいずれかに記載のバイオ医薬の保存方法。
Figure 0006015344
That is, the present invention provides the following <1> to <4>.
<1> An oxygen absorption layer (layer A) made of an oxygen-absorbing resin composition containing a polyester compound and a transition metal catalyst, and a resin layer (layer B) containing a thermoplastic resin are added to the layer A. A biopharmaceutical storage method for storing in an oxygen-absorbing medical multilayer molded container containing at least three layers laminated on both sides,
The polyester compound is represented by the following general formulas (1) to (4).
Figure 0006015344

(In the formula, each R independently represents a hydrogen atom or a monovalent substituent, and the monovalent substituent is a halogen atom, alkyl group, alkenyl group, alkynyl group, aryl group, heterocyclic group, cyano group, A group consisting of a group, a hydroxy group, a carboxyl group, an ester group, an amide group, a nitro group, an alkoxy group, an aryloxy group, an acyl group, an amino group, a mercapto group, an alkylthio group, an arylthio group, a heterocyclic thio group, and an imide group At least one selected from the above, which may further have a substituent, m represents an integer of 0 to 3, n represents an integer of 0 to 7, and at least one hydrogen atom at the benzyl position of the tetralin ring. X is an aromatic hydrocarbon group, a saturated or unsaturated alicyclic hydrocarbon group, a linear or branched saturated or unsaturated aliphatic hydrocarbon group, and a heterocyclic ring. It represents a divalent group containing at least one group selected from the group consisting of.)
Containing a structural unit having at least one tetralin ring selected from the group consisting of:
Biopharmaceutical storage method.
<2> The method for preserving a biopharmaceutical according to the above <1>, wherein the transition metal catalyst contains at least one transition metal selected from the group consisting of manganese, iron, cobalt, nickel and copper.
<3> The biopharmaceutical storage method according to <1> or <2> above, wherein the transition metal catalyst is contained in an amount of 0.001 to 10 parts by mass as a transition metal amount with respect to 100 parts by mass of the polyester compound.
<4> Any of the above <1> to <3>, wherein the structural unit represented by the general formula (1) is at least one selected from the group consisting of the following formulas (5) to (7): The biopharmaceutical storage method as described in 1.
Figure 0006015344

本発明によれば、バイオ医薬を低酸素濃度下で保存できるため、バイオ医薬の変質や薬効の低下を抑制することが出来る。また、本発明で用いる医療用多層容器では、酸素吸収後の低分子の有機物の発生が抑制されているため、内容物への不純物の混入を防止することが可能である。また、本発明で用いる医療用多層容器は酸素吸収後も酸化によるポリエステル化合物の劣化が極めて小さく、長期の利用においても容器の強度が維持されるため、バイオ医薬を長期間保存することが出来る。   According to the present invention, biopharmaceuticals can be stored under a low oxygen concentration, so that deterioration of biopharmaceuticals and reduction of drug efficacy can be suppressed. Moreover, in the medical multilayer container used in the present invention, generation of low-molecular organic substances after oxygen absorption is suppressed, so that it is possible to prevent impurities from being mixed into the contents. In addition, the medical multilayer container used in the present invention is capable of preserving biopharmaceuticals for a long period of time because the deterioration of the polyester compound due to oxidation is extremely small even after oxygen absorption and the strength of the container is maintained even in long-term use.

以下、本発明の実施の形態について説明する。なお、以下の実施の形態は、本発明を説明するための例示であり、本発明はその実施の形態のみに限定されない。   Embodiments of the present invention will be described below. In addition, the following embodiment is an illustration for demonstrating this invention, and this invention is not limited only to the embodiment.

本実施形態の酸素吸収性医療用多層成形容器は、酸素吸収層(層A)を有し、熱可塑性樹脂を含有する樹脂層(層B)を前記層Aの両側に積層した、少なくとも3層を含有する。本実施形態の酸素吸収性医療用多層成形容器における層構成はB/A/Bの構成を有していれば良く、この他に任意の層を設けることが出来る。また、層Aは1層以上、層Bは2層以上であれば、数や種類は特に限定されない。例えば、1層の層A並びに層B1及び層B2の2種4層の層BからなるB1/B2/A/B2/B1の5層構成であってもよい。さらに、本実施形態の酸素吸収性医療用多層成形容器においては、層Aと層Bとの間に必要に応じて接着層(層AD)等の任意の層を含んでもよく、例えば、B1/B2/AD/A/AD/B2/B1の7層構成であってもよい。   The oxygen-absorbing medical multilayer molded container of the present embodiment has at least three layers each having an oxygen-absorbing layer (layer A) and laminated with a resin layer (layer B) containing a thermoplastic resin on both sides of the layer A. Containing. The layer structure in the oxygen-absorbing medical multilayer molded container of the present embodiment may have a B / A / B structure, and any other layer can be provided. Further, the number and type of the layer A are not particularly limited as long as the layer A is one or more layers and the layer B is two or more layers. For example, a five-layer configuration of B1 / B2 / A / B2 / B1 composed of one layer A and two layers 4 layers B of layers B1 and B2 may be used. Furthermore, in the oxygen-absorbing medical multilayer molded container of the present embodiment, an arbitrary layer such as an adhesive layer (layer AD) may be included between the layer A and the layer B as necessary, for example, B1 / A seven-layer configuration of B2 / AD / A / AD / B2 / B1 may be used.

[酸素吸収層(層A)]
本実施形態の酸素吸収層(層A)は、上記一般式(1)〜(4)からなる群より選択される少なくとも1種のテトラリン環を有する構成単位を含有するポリエステル化合物と遷移金属触媒を含有する酸素吸収性樹脂組成物からなる。
[Oxygen absorbing layer (layer A)]
The oxygen absorption layer (layer A) of this embodiment comprises a polyester compound and a transition metal catalyst containing a structural unit having at least one tetralin ring selected from the group consisting of the above general formulas (1) to (4). It consists of an oxygen-absorbing resin composition.

層A中の前記ポリエステル化合物の含有量は、50質量%以上が好ましく、70質量%以上がより好ましく、90質量%以上が特に好ましい。前記範囲の場合、50質量%未満の場合に比べ、酸素吸収性能をより高めることが出来る。   The content of the polyester compound in the layer A is preferably 50% by mass or more, more preferably 70% by mass or more, and particularly preferably 90% by mass or more. In the case of the said range, compared with the case where it is less than 50 mass%, oxygen absorption performance can be improved more.

[ポリエステル化合物]
本実施形態のポリエステル化合物は、上記一般式(1)〜(4)からなる群より選択される少なくとも1種のテトラリン環を有する構成単位を含有する。
[Polyester compound]
The polyester compound of this embodiment contains the structural unit which has at least 1 type of tetralin ring selected from the group which consists of said general formula (1)-(4).

本願の一般式(1)〜(4)及び(8)〜(15)においてRで表される一価の置換基としては、ハロゲン原子(例えば、塩素原子、臭素原子、ヨウ素原子)、アルキル基(好ましくは炭素数が1〜15、より好ましくは炭素数が1〜6個の直鎖状、分岐状又は環状アルキル基、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、t−ブチル基、n−オクチル基、2−エチルヘキシル基、シクロプロピル基、シクロペンチル基)、アルケニル基(好ましくは炭素数が2〜10、より好ましくは炭素数が2〜6の直鎖状、分岐状又は環状アルケニル基、例えば、ビニル基、アリル基)、アルキニル基(好ましくは炭素数が2〜10、より好ましくは炭素数が2〜6のアルキニル基、例えば、エチニル基、プロパルギル基)、アリール基(好ましくは炭素数が6〜16、より好ましくは炭素数が6〜10のアリール基、例えば、フェニル基、ナフチル基)、複素環基(好ましくは炭素数が1〜12、より好ましくは炭素数が2〜6の5員環或いは6員環の芳香族又は非芳香族の複素環化合物から1個の水素原子を取り除くことによって得られる一価の基、例えば、1−ピラゾリル基、1−イミダゾリル基、2−フリル基)、シアノ基、ヒドロキシ基、カルボキシル基、エステル基、アミド基、ニトロ基、アルコキシ基(好ましくは炭素数が1〜10、より好ましくは炭素数が1〜6の直鎖状、分岐状又は環状アルコキシ基、例えば、メトキシ基、エトキシ基)、アリールオキシ基(好ましくは炭素数が6〜12、より好ましくは炭素数が6〜8のアリールオキシ基、例えば、フェノキシ基)、アシル基(ホルミル基を含む。好ましくは炭素数が2〜10、より好ましくは炭素数が2〜6のアルキルカルボニル基、好ましくは炭素数が7〜12個、より好ましくは炭素数が7〜9のアリールカルボニル基、例えば、アセチル基、ピバロイル基、ベンゾイル基)、アミノ基(好ましくは炭素数が1〜10、より好ましくは炭素数が1〜6のアルキルアミノ基、好ましくは炭素数が6〜12、より好ましくは炭素数が6〜8のアニリノ基、好ましくは炭素数が1〜12、より好ましくは炭素数が2〜6の複素環アミノ基、例えば、アミノ基、メチルアミノ基、アニリノ基)、メルカプト基、アルキルチオ基(好ましくは炭素数が1〜10、より好ましくは炭素数が1〜6のアルキルチオ基、例えば、メチルチオ基、エチルチオ基)、アリールチオ基(好ましくは炭素数が6〜12、より好ましくは炭素数が6〜8のアリールチオ基、例えば、フェニルチオ基)、複素環チオ基(好ましくは炭素数が2〜10、より好ましくは炭素数が1〜6の複素環チオ基、例えば、2−ベンゾチアゾリルチオ基)、イミド基(好ましくは炭素数が2〜10、より好ましくは炭素数が4〜8のイミド基、例えば、N−スクシンイミド基、N−フタルイミド基)等が例示されるが、これらに特に限定されない。   In the general formulas (1) to (4) and (8) to (15) of the present application, examples of the monovalent substituent represented by R include a halogen atom (for example, a chlorine atom, a bromine atom, an iodine atom), and an alkyl group. (Preferably a linear, branched or cyclic alkyl group having 1 to 15 carbon atoms, more preferably 1 to 6 carbon atoms such as methyl group, ethyl group, n-propyl group, isopropyl group, t- A butyl group, an n-octyl group, a 2-ethylhexyl group, a cyclopropyl group, a cyclopentyl group), an alkenyl group (preferably having 2 to 10 carbon atoms, more preferably 2 to 6 linear, branched or branched) Cyclic alkenyl groups such as vinyl and allyl groups, alkynyl groups (preferably alkynyl groups having 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms such as ethynyl groups and propargyl groups), Group (preferably an aryl group having 6 to 16 carbon atoms, more preferably an aryl group having 6 to 10 carbon atoms, such as a phenyl group or a naphthyl group), a heterocyclic group (preferably having a carbon number of 1 to 12, more preferably A monovalent group obtained by removing one hydrogen atom from a 5-membered or 6-membered aromatic or non-aromatic heterocyclic compound having 2 to 6 carbon atoms, such as a 1-pyrazolyl group, 1 -Imidazolyl group, 2-furyl group), cyano group, hydroxy group, carboxyl group, ester group, amide group, nitro group, alkoxy group (preferably having 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms). A linear, branched or cyclic alkoxy group such as a methoxy group or an ethoxy group, an aryloxy group (preferably an aryloxy group having 6 to 12 carbon atoms, more preferably 6 to 8 carbon atoms, eg A phenoxy group), an acyl group (including a formyl group, preferably an alkylcarbonyl group having 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms, preferably 7 to 12 carbon atoms, more preferably carbon. An arylcarbonyl group having 7 to 9 carbon atoms, for example, an acetyl group, a pivaloyl group, a benzoyl group), an amino group (preferably having 1 to 10 carbon atoms, more preferably an alkylamino group having 1 to 6 carbon atoms, preferably An anilino group having 6 to 12 carbon atoms, more preferably 6 to 8 carbon atoms, preferably a heterocyclic amino group having 1 to 12 carbon atoms, more preferably 2 to 6 carbon atoms, such as an amino group, methyl Amino group, anilino group), mercapto group, alkylthio group (preferably an alkylthio group having 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, such as methylthio group, ethyl Luthio group), an arylthio group (preferably an arylthio group having 6 to 12 carbon atoms, more preferably an arylthio group having 6 to 8 carbon atoms, such as a phenylthio group), a heterocyclic thio group (preferably having 2 to 10 carbon atoms, and more). Preferably a heterocyclic thio group having 1 to 6 carbon atoms, such as a 2-benzothiazolylthio group, an imide group (preferably an imide group having 2 to 10 carbon atoms, more preferably 4 to 8 carbon atoms, Examples thereof include N-succinimide group and N-phthalimide group), but are not particularly limited thereto.

なお、上記の一価の置換基Rが水素原子を有する場合、その水素原子が置換基T(ここで、置換基Tは、上記の一価の置換基Rで説明したものと同義である。)でさらに置換されていてもよい。その具体例としては、例えば、ヒドロキシ基で置換されたアルキル基(例えば、ヒドロキシエチル基)、アルコキシ基で置換されたアルキル基(例えば、メトキシエチル基)、アリール基で置換されたアルキル基(例えば、ベンジル基)、第1級或いは第2級アミノ基で置換されたアルキル基(例えば、アミノエチル基)、アルキル基で置換されたアリール基(例えば、p−トリル基)、アルキル基で置換されたアリールオキシ基(例えば、2−メチルフェノキシ基)等が挙げられるが、これらに特に限定されない。なお、上記の一価の置換基Rが一価の置換基Tを有する場合、上述した炭素数には、置換基Tの炭素数は含まれないものとする。例えば、ベンジル基は、フェニル基で置換された炭素数1のアルキル基と看做し、フェニル基で置換された炭素数7のアルキル基とは看做さない。また、上記の一価の置換基Rが置換基Tを有する場合、その置換基Tは複数あってもよい。   In addition, when said monovalent substituent R has a hydrogen atom, the hydrogen atom is a substituent T (Here, the substituent T is synonymous with what was demonstrated by said monovalent substituent R.). ) May be further substituted. Specific examples thereof include, for example, an alkyl group substituted with a hydroxy group (for example, hydroxyethyl group), an alkyl group substituted with an alkoxy group (for example, methoxyethyl group), and an alkyl group substituted with an aryl group (for example, Benzyl group), alkyl groups substituted with primary or secondary amino groups (eg aminoethyl group), aryl groups substituted with alkyl groups (eg p-tolyl group), substituted with alkyl groups Aryloxy groups (for example, 2-methylphenoxy group) and the like, but are not particularly limited thereto. When the monovalent substituent R has a monovalent substituent T, the carbon number described above does not include the carbon number of the substituent T. For example, a benzyl group is regarded as a C 1 alkyl group substituted with a phenyl group, and is not regarded as a C 7 alkyl group substituted with a phenyl group. When the monovalent substituent R has a substituent T, there may be a plurality of the substituents T.

Xは、芳香族炭化水素基、飽和または不飽和の脂環式炭化水素基、直鎖状または分岐状の飽和または不飽和の脂肪族炭化水素基及び複素環基からなる群から選ばれる少なくとも1つの基を含有する2価の基を表す。芳香族炭化水素基、飽和または不飽和の脂環式炭化水素基、直鎖状または分岐状の飽和または不飽和の脂肪族炭化水素基及び複素環基は、置換されていても無置換でもよい。Xは、ヘテロ原子を含有していてもよく、エーテル基、スルフィド基、カルボニル基、ヒドロキシ基、アミノ基、スルホキシド基、スルホン基等を含有していてもよい。ここで、芳香族炭化水素基としては、例えば、o−フェニレン基、m−フェニレン基、p−フェニレン基、メチルフェニレン基、o−キシリレン基、m−キシリレン基、p−キシリレン基、ナフチレン基、アントラセニレン基、フェナントリレン基、ビフェニレン基、フルオニレン基等が挙げられるが、これらに特に限定されない。脂環式炭化水素基としては、例えば、シクロペンチレン基、シクロへキシレン基、メチルシクロへキシレン基、シクロヘプチレン基、シクロオクチレン基等のシクロアルキレン基や、シクロヘキセニレン基等のシクロアルケニレン基が挙げられるが、これらに特に限定されない。脂肪族炭化水素基としては、例えば、メチレン基、エチレン基、トリメチレン基、プロピレン基、イソプロピリデン基、テトラメチレン基、イソブチリデン基、sec‐ブチリデン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、ノナメチレン基、デカメチレン基等の直鎖状又は分枝鎖状アルキレン基や、ビニレン基、プロペニレン基、1−ブテニレン基、2−ブテニレン基、1,3−ブタジエニレン基、1−ペンテニレン基、2−ペンテニレン基、1−ヘキセニレン基、2−ヘキセニレン基、3−ヘキセニレン基等のアルケニレン基等が挙げられるが、これらに特に限定されない。これらは、さらに置換基を有していてもよく、その具体例としては、例えば、ハロゲン、アルコキシ基、ヒドロキシ基、カルボキシル基、カルボアルコキシ基、アミノ基、アシル基、チオ基(例えばアルキルチオ基、フェニルチオ基、トリルチオ基、ピリジルチオ基等)、アミノ基(例えば非置換アミノ基、メチルアミノ基、ジメチルアミノ基、フェニルアミノ基等)、シアノ基、ニトロ基等が挙げられるが、これらに特に限定されない。   X is at least one selected from the group consisting of an aromatic hydrocarbon group, a saturated or unsaturated alicyclic hydrocarbon group, a linear or branched saturated or unsaturated aliphatic hydrocarbon group, and a heterocyclic group. Represents a divalent group containing one group. The aromatic hydrocarbon group, saturated or unsaturated alicyclic hydrocarbon group, linear or branched saturated or unsaturated aliphatic hydrocarbon group and heterocyclic group may be substituted or unsubstituted. . X may contain a hetero atom, and may contain an ether group, sulfide group, carbonyl group, hydroxy group, amino group, sulfoxide group, sulfone group, and the like. Here, as the aromatic hydrocarbon group, for example, o-phenylene group, m-phenylene group, p-phenylene group, methylphenylene group, o-xylylene group, m-xylylene group, p-xylylene group, naphthylene group, Anthracenylene group, phenanthrylene group, biphenylene group, fluoronylene group and the like can be mentioned, but not limited thereto. Examples of the alicyclic hydrocarbon group include a cycloalkylene group such as a cyclopentylene group, a cyclohexylene group, a methylcyclohexylene group, a cycloheptylene group, and a cyclooctylene group, and a cycloalkenylene group such as a cyclohexenylene group. Although it is mentioned, it is not specifically limited to these. Examples of the aliphatic hydrocarbon group include methylene group, ethylene group, trimethylene group, propylene group, isopropylidene group, tetramethylene group, isobutylidene group, sec-butylidene group, pentamethylene group, hexamethylene group, heptamethylene group, Linear or branched alkylene groups such as octamethylene group, nonamethylene group, decamethylene group, vinylene group, propenylene group, 1-butenylene group, 2-butenylene group, 1,3-butadienylene group, 1-pentenylene group Alkenylene groups such as 2-pentenylene group, 1-hexenylene group, 2-hexenylene group, 3-hexenylene group and the like, but are not particularly limited thereto. These may further have a substituent, and specific examples thereof include, for example, halogen, alkoxy group, hydroxy group, carboxyl group, carboalkoxy group, amino group, acyl group, thio group (for example, alkylthio group, Phenylthio group, tolylthio group, pyridylthio group, etc.), amino group (for example, unsubstituted amino group, methylamino group, dimethylamino group, phenylamino group, etc.), cyano group, nitro group and the like, but not limited thereto .

上記一般式(1)で表される構成単位を含有するポリエステル化合物は、テトラリン環を有するジカルボン酸またはその誘導体(I)、及びジオールまたはその誘導体(II)、を重縮合することで得られる。   The polyester compound containing the structural unit represented by the general formula (1) can be obtained by polycondensation of a dicarboxylic acid having a tetralin ring or a derivative (I) thereof and a diol or a derivative (II) thereof.

本実施形態で用いるテトラリン環を有するジカルボン酸またはその誘導体(I)は、下記一般式(8)で表される。これらは、単独でまたは2種以上を組み合わせて用いることが出来る。

Figure 0006015344

(式中、Rは、それぞれ独立して、水素原子または一価の置換基を示し、一価の置換基は、ハロゲン原子、アルキル基、アルケニル基、アルキニル基、アリール基、複素環基、シアノ基、ヒドロキシ基、カルボキシル基、エステル基、アミド基、ニトロ基、アルコキシ基、アリールオキシ基、アシル基、アミノ基、メルカプト基、アルキルチオ基、アリールチオ基、複素環チオ基及びイミド基からなる群より選択される少なくとも1種であり、これらはさらに置換基を有していてもよい。mは0〜3、nは0〜7の整数を表し、テトラリン環のベンジル位に少なくとも1つ以上の水素原子が結合している。Yは水素原子又はアルキル基を表す。) The dicarboxylic acid having a tetralin ring or its derivative (I) used in the present embodiment is represented by the following general formula (8). These can be used alone or in combination of two or more.
Figure 0006015344

(In the formula, each R independently represents a hydrogen atom or a monovalent substituent, and the monovalent substituent is a halogen atom, alkyl group, alkenyl group, alkynyl group, aryl group, heterocyclic group, cyano group, A group consisting of a group, a hydroxy group, a carboxyl group, an ester group, an amide group, a nitro group, an alkoxy group, an aryloxy group, an acyl group, an amino group, a mercapto group, an alkylthio group, an arylthio group, a heterocyclic thio group, and an imide group At least one selected from the above, which may further have a substituent, m represents an integer of 0 to 3, n represents an integer of 0 to 7, and at least one hydrogen atom at the benzyl position of the tetralin ring. Atoms are bonded. Y represents a hydrogen atom or an alkyl group.)

上記一般式(8)で表される化合物は、下記一般式(9)で表されるナフタレン環を有するジカルボン酸またはその誘導体を水素と反応させて得ることが出来る。

Figure 0006015344

(式中、Rは、それぞれ独立して、水素原子または一価の置換基を示し、一価の置換基は、ハロゲン原子、アルキル基、アルケニル基、アルキニル基、アリール基、複素環基、シアノ基、ヒドロキシ基、カルボキシル基、エステル基、アミド基、ニトロ基、アルコキシ基、アリールオキシ基、アシル基、アミノ基、メルカプト基、アルキルチオ基、アリールチオ基、複素環チオ基及びイミド基からなる群より選択される少なくとも1種であり、これらはさらに置換基を有していてもよい。mはそれぞれ独立して0〜3の整数を表す。Yは水素原子又はアルキル基を表す。) The compound represented by the general formula (8) can be obtained by reacting a dicarboxylic acid having a naphthalene ring represented by the following general formula (9) or a derivative thereof with hydrogen.
Figure 0006015344

(In the formula, each R independently represents a hydrogen atom or a monovalent substituent, and the monovalent substituent is a halogen atom, alkyl group, alkenyl group, alkynyl group, aryl group, heterocyclic group, cyano group, A group consisting of a group, a hydroxy group, a carboxyl group, an ester group, an amide group, a nitro group, an alkoxy group, an aryloxy group, an acyl group, an amino group, a mercapto group, an alkylthio group, an arylthio group, a heterocyclic thio group, and an imide group These are at least one selected, and may further have a substituent, each m independently represents an integer of 0 to 3, and Y represents a hydrogen atom or an alkyl group.)

本実施形態で用いるジオールまたはその誘導体(II)としては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、1,3−プロパンジオール、2−メチル−1,3−プロパンジオール、1,3−ブタンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,7−ヘプタンジオール、1,8−オクタンジオール、1,9−ノナンジオール、ネオペンチルグリコール、1,4−シクロヘキサンジメタノール、2−フェニルプロパンジオール、2−(4−ヒドロキシフェニル)エチルアルコール、α,α−ジヒドロキシ−1,3−ジイソプロピルベンゼン、α,α−ジヒドロキシ−1,4−ジイソプロピルベンゼン、o-キシレングリコール、m-キシレングリコール、p-キシレングリコール、ヒドロキノン、4,4−ジヒドロキシフェニル、ナフタレンジオール、またはこれらの誘導体が挙げられる。これらは、単独でまたは2種以上を組み合わせて用いることが出来る。   Examples of the diol or derivative (II) used in the present embodiment include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, 1,3-propanediol, 2-methyl- 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1 , 9-nonanediol, neopentyl glycol, 1,4-cyclohexanedimethanol, 2-phenylpropanediol, 2- (4-hydroxyphenyl) ethyl alcohol, α, α-dihydroxy-1,3-diisopropylbenzene, α, α Dihydroxy-1,4-diisopropylbenzene, o- xylene glycol, m- xylene glycol, p- xylene glycol, hydroquinone, 4,4-dihydroxyphenyl, naphthalene diol or derivatives thereof,. These can be used alone or in combination of two or more.

また、上記一般式(2)で表される構成単位を含有するポリエステル化合物は、テトラリン環を有するジオールまたはその誘導体(III)、及び、ジカルボン酸またはその誘導体(IV)を重縮合することによって得られる。   The polyester compound containing the structural unit represented by the general formula (2) is obtained by polycondensation of a diol having a tetralin ring or a derivative (III) thereof and a dicarboxylic acid or a derivative (IV) thereof. It is done.

本実施形態で用いるテトラリン環を有するジオールまたはその誘導体(III)は、下記一般式(10)で表される。これらは、単独でまたは2種以上を組み合わせて用いることが出来る。

Figure 0006015344

(式中、それぞれ独立して、水素原子または一価の置換基を示し、一価の置換基は、ハロゲン原子、アルキル基、アルケニル基、アルキニル基、アリール基、複素環基、シアノ基、ヒドロキシ基、カルボキシル基、エステル基、アミド基、ニトロ基、アルコキシ基、アリールオキシ基、アシル基、アミノ基、メルカプト基、アルキルチオ基、アリールチオ基、複素環チオ基及びイミド基からなる群より選択される少なくとも1種であり、これらはさらに置換基を有していてもよい。mは0〜3、nは0〜7の整数を表し、テトラリン環のベンジル位に少なくとも1つ以上の水素原子が結合している。) A diol having a tetralin ring or a derivative (III) thereof used in the present embodiment is represented by the following general formula (10). These can be used alone or in combination of two or more.
Figure 0006015344

(In the formula, each independently represents a hydrogen atom or a monovalent substituent, and the monovalent substituent is a halogen atom, alkyl group, alkenyl group, alkynyl group, aryl group, heterocyclic group, cyano group, hydroxy group, Selected from the group consisting of a group, carboxyl group, ester group, amide group, nitro group, alkoxy group, aryloxy group, acyl group, amino group, mercapto group, alkylthio group, arylthio group, heterocyclic thio group and imide group At least one kind, which may further have a substituent, m represents an integer of 0 to 3, n represents an integer of 0 to 7, and at least one hydrogen atom is bonded to the benzyl position of the tetralin ring. doing.)

上記一般式(10)で表される化合物は、下記一般式(11)で表されるナフタレン環を有するジオールまたはその誘導体を水素と反応させて得ることが出来る。

Figure 0006015344

(式中、Rは、それぞれ独立して、水素原子または一価の置換基を示し、一価の置換基は、ハロゲン原子、アルキル基、アルケニル基、アルキニル基、アリール基、複素環基、シアノ基、ヒドロキシ基、カルボキシル基、エステル基、アミド基、ニトロ基、アルコキシ基、アリールオキシ基、アシル基、アミノ基、メルカプト基、アルキルチオ基、アリールチオ基、複素環チオ基及びイミド基からなる群より選択される少なくとも1種であり、これらはさらに置換基を有していてもよい。mはそれぞれ独立して0〜3の整数を表す。) The compound represented by the general formula (10) can be obtained by reacting a diol having a naphthalene ring represented by the following general formula (11) or a derivative thereof with hydrogen.
Figure 0006015344

(In the formula, each R independently represents a hydrogen atom or a monovalent substituent, and the monovalent substituent is a halogen atom, alkyl group, alkenyl group, alkynyl group, aryl group, heterocyclic group, cyano group, A group consisting of a group, a hydroxy group, a carboxyl group, an ester group, an amide group, a nitro group, an alkoxy group, an aryloxy group, an acyl group, an amino group, a mercapto group, an alkylthio group, an arylthio group, a heterocyclic thio group, and an imide group These are at least one selected, and may further have a substituent, each m independently represents an integer of 0 to 3.)

本実施形態で用いるジカルボン酸またはその誘導体(IV)としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、3,3−ジメチルペンタン二酸、フタル酸、イソフタル酸、テレフタル酸等のベンゼンジカルボン酸、2,6−ナフタレンジカルボン酸等のナフタレンジカルボン酸、アントラセンジカルボン酸、フェニルマロン酸、フェニレンジ酢酸、フェニレンジ酪酸、4,4−ジフェニルエーテルジカルボン酸、p-フェニレンジカルボン酸、またはこれらの誘導体等が挙げられる。これらは、単独でまたは2種以上を組み合わせて用いることが出来る。   Examples of the dicarboxylic acid or derivative (IV) used in the present embodiment include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid. Benzenedicarboxylic acid such as 3,3-dimethylpentanedioic acid, phthalic acid, isophthalic acid and terephthalic acid, naphthalenedicarboxylic acid such as 2,6-naphthalenedicarboxylic acid, anthracene dicarboxylic acid, phenylmalonic acid, phenylenediacetic acid, pheny Examples include dibutyric acid, 4,4-diphenyl ether dicarboxylic acid, p-phenylene dicarboxylic acid, and derivatives thereof. These can be used alone or in combination of two or more.

上記一般式(3)又は(4)で表される構成単位を含有するポリエステル化合物は、テトラリン環を有するヒドロキシカルボン酸またはその誘導体(V)を重縮合することで得られる。   The polyester compound containing the structural unit represented by the general formula (3) or (4) can be obtained by polycondensation of a hydroxycarboxylic acid having a tetralin ring or a derivative (V) thereof.

本実施形態で用いるテトラリン環を有するヒドロキシカルボン酸またはその誘導体(V)は、下記一般式(12)又は(13)で表される。これらは、単独でまたは2種以上を組み合わせて用いることが出来る。

Figure 0006015344

(式中、Rは、それぞれ独立して、水素原子または一価の置換基を示し、一価の置換基は、ハロゲン原子、アルキル基、アルケニル基、アルキニル基、アリール基、複素環基、シアノ基、ヒドロキシ基、カルボキシル基、エステル基、アミド基、ニトロ基、アルコキシ基、アリールオキシ基、アシル基、アミノ基、メルカプト基、アルキルチオ基、アリールチオ基、複素環チオ基及びイミド基からなる群より選択される少なくとも1種であり、これらはさらに置換基を有していてもよい。mは0〜3、nは0〜7の整数を表し、テトラリン環のベンジル位に少なくとも1つ以上の水素原子が結合している。Yは水素原子又はアルキル基を表す。) The hydroxycarboxylic acid having a tetralin ring or its derivative (V) used in the present embodiment is represented by the following general formula (12) or (13). These can be used alone or in combination of two or more.
Figure 0006015344

(In the formula, each R independently represents a hydrogen atom or a monovalent substituent, and the monovalent substituent is a halogen atom, alkyl group, alkenyl group, alkynyl group, aryl group, heterocyclic group, cyano group, A group consisting of a group, a hydroxy group, a carboxyl group, an ester group, an amide group, a nitro group, an alkoxy group, an aryloxy group, an acyl group, an amino group, a mercapto group, an alkylthio group, an arylthio group, a heterocyclic thio group, and an imide group At least one selected from the above, which may further have a substituent, m represents an integer of 0 to 3, n represents an integer of 0 to 7, and at least one hydrogen atom at the benzyl position of the tetralin ring. Atoms are bonded. Y represents a hydrogen atom or an alkyl group.)

上記一般式(1)または(2)で表される構成単位を含有するポリエステル化合物は、下記一般式(14)または(15)で表される構成単位を含有するポリエステル化合物の水添反応によって得ることも出来る。

Figure 0006015344

(式中、Rは、それぞれ独立して、水素原子または一価の置換基を示し、一価の置換基は、ハロゲン原子、アルキル基、アルケニル基、アルキニル基、アリール基、複素環基、シアノ基、ヒドロキシ基、カルボキシル基、エステル基、アミド基、ニトロ基、アルコキシ基、アリールオキシ基、アシル基、アミノ基、メルカプト基、アルキルチオ基、アリールチオ基、複素環チオ基及びイミド基からなる群より選択される少なくとも1種であり、これらはさらに置換基を有していてもよい。mはそれぞれ独立して0〜3の整数を表す。Xは芳香族炭化水素基、飽和または不飽和の脂環式炭化水素基、直鎖状または分岐状の飽和または不飽和の脂肪族炭化水素基及び複素環基からなる群から選ばれる少なくとも1つの基を含有する2価の基を表す。)
Figure 0006015344

(式中、Rは、それぞれ独立して、水素原子または一価の置換基を示し、一価の置換基は、ハロゲン原子、アルキル基、アルケニル基、アルキニル基、アリール基、複素環基、シアノ基、ヒドロキシ基、カルボキシル基、エステル基、アミド基、ニトロ基、アルコキシ基、アリールオキシ基、アシル基、アミノ基、メルカプト基、アルキルチオ基、アリールチオ基、複素環チオ基及びイミド基からなる群より選択される少なくとも1種であり、これらはさらに置換基を有していてもよい。mはそれぞれ独立して0〜3の整数を表す。Xは芳香族炭化水素基、飽和または不飽和の脂環式炭化水素基、直鎖状または分岐状の飽和または不飽和の脂肪族炭化水素基及び複素環基からなる群から選ばれる少なくとも1つの基を含有する2価の基を表す。) The polyester compound containing the structural unit represented by the general formula (1) or (2) is obtained by hydrogenation reaction of the polyester compound containing the structural unit represented by the following general formula (14) or (15). You can also
Figure 0006015344

(In the formula, each R independently represents a hydrogen atom or a monovalent substituent, and the monovalent substituent is a halogen atom, alkyl group, alkenyl group, alkynyl group, aryl group, heterocyclic group, cyano group, A group consisting of a group, a hydroxy group, a carboxyl group, an ester group, an amide group, a nitro group, an alkoxy group, an aryloxy group, an acyl group, an amino group, a mercapto group, an alkylthio group, an arylthio group, a heterocyclic thio group, and an imide group At least one selected from the above, which may further have a substituent, each m independently represents an integer of 0 to 3. X is an aromatic hydrocarbon group, a saturated or unsaturated fat. Represents a divalent group containing at least one group selected from the group consisting of a cyclic hydrocarbon group, a linear or branched saturated or unsaturated aliphatic hydrocarbon group and a heterocyclic group. )
Figure 0006015344

(In the formula, each R independently represents a hydrogen atom or a monovalent substituent, and the monovalent substituent is a halogen atom, alkyl group, alkenyl group, alkynyl group, aryl group, heterocyclic group, cyano group, A group consisting of a group, a hydroxy group, a carboxyl group, an ester group, an amide group, a nitro group, an alkoxy group, an aryloxy group, an acyl group, an amino group, a mercapto group, an alkylthio group, an arylthio group, a heterocyclic thio group, and an imide group At least one selected from the above, which may further have a substituent, each m independently represents an integer of 0 to 3. X is an aromatic hydrocarbon group, a saturated or unsaturated fat. Represents a divalent group containing at least one group selected from the group consisting of a cyclic hydrocarbon group, a linear or branched saturated or unsaturated aliphatic hydrocarbon group and a heterocyclic group. )

本実施形態のポリエステル化合物には、性能に影響しない程度で、テトラリン環を有さない構成単位を共重合成分として組み込んでもよい。具体的には、前記ジオールまたはその誘導体(II)、前記ジカルボン酸またはその誘導体(IV)に示した化合物を共重合成分として用いることが出来る。   In the polyester compound of the present embodiment, a constitutional unit having no tetralin ring may be incorporated as a copolymer component to the extent that it does not affect the performance. Specifically, the compounds shown in the diol or its derivative (II) and the dicarboxylic acid or its derivative (IV) can be used as a copolymerization component.

前記一般式(1)で表される構成単位を含有するポリエステル化合物の好ましい具体例としては、上記式(5)〜(7)及び、下記式(16)〜(18)が挙げられるが、これらに限定されない。

Figure 0006015344
Preferred specific examples of the polyester compound containing the structural unit represented by the general formula (1) include the above formulas (5) to (7) and the following formulas (16) to (18). It is not limited to.
Figure 0006015344

本実施形態に用いるポリエステル化合物を製造する方法は特に制限はなく、従来公知のポリエステルの製造方法をいずれも適用することができる。例えばエステル交換法、直接エステル化法等の溶融重合法、又は溶液重合法等を挙げる事ができる。上記したポリエステル化合物の製造方法の中で、原料入手の容易さの点から、エステル交換法が好適に使用される。   There is no restriction | limiting in particular in the method of manufacturing the polyester compound used for this embodiment, All the manufacturing methods of conventionally well-known polyester can be applied. Examples thereof include a melt polymerization method such as a transesterification method and a direct esterification method, or a solution polymerization method. Among the above-described methods for producing a polyester compound, a transesterification method is preferably used from the viewpoint of easy availability of raw materials.

ポリエステル化合物の製造時に用いるエステル交換触媒、エステル化触媒、重縮合触媒等の各種触媒、エーテル化防止剤、熱安定剤、光安定剤等の各種安定剤、重合調整剤等も従来公知のものをいずれも用いることができ、これらは反応速度やポリエステル化合物の色調、安全性、熱安定性、耐候性、自身の溶出性などに応じて適宜選択される。例えば上記各種触媒としては、亜鉛、鉛、セリウム、カドミウム、マンガン、コバルト、リチウム、ナトリウム、カリウム、カルシウム、ニッケル、マグネシウム、バナジウム、アルミニウム、チタン、アンチモン、スズ等の金属の化合物(例えば、脂肪酸塩、炭酸塩、リン酸塩、水酸化物、塩化物、酸化物、アルコキシド)や金属マグネシウムなどが挙げられ、これらは単独で用いることもできるし、複数のものを組み合わせて用いることもできる。   Various known catalysts such as transesterification catalysts, esterification catalysts, polycondensation catalysts, etc., etherification inhibitors, heat stabilizers, light stabilizers, polymerization regulators, etc., used in the production of polyester compounds Any of these can be used, and these are appropriately selected according to the reaction rate, the color tone of the polyester compound, safety, thermal stability, weather resistance, self-elution, and the like. For example, the above-mentioned various catalysts include zinc, lead, cerium, cadmium, manganese, cobalt, lithium, sodium, potassium, calcium, nickel, magnesium, vanadium, aluminum, titanium, antimony, tin, and other metal compounds (for example, fatty acid salts , Carbonates, phosphates, hydroxides, chlorides, oxides, alkoxides), magnesium metal, and the like. These can be used alone or in combination.

上述したポリエステル化合物は、いずれも、テトラリン環のベンジル位に水素を有するものであり、上述した遷移金属触媒と併用することでベンジル位の水素が引き抜かれ、これにより優れた酸素吸収能を発現する。   All of the above-mentioned polyester compounds have hydrogen at the benzylic position of the tetralin ring, and when used in combination with the above-described transition metal catalyst, the hydrogen at the benzylic position is extracted, thereby exhibiting excellent oxygen absorption capacity. .

また、本実施形態の酸素吸収性樹脂組成物は、酸素吸収後の低分子量化合物の生成が抑制されたものである。その理由は明らかではないが、例えば以下の酸化反応機構が推測される。すなわち、ポリエステル化合物においては、まずテトラリン環のベンジル位にある水素が引き抜かれてラジカルが生成し、その後、ラジカルと酸素との反応によりベンジル位の炭素が酸化され、ヒドロキシ基又はケトン基が生成すると考えられる。そのため、本実施形態の酸素吸収性樹脂組成物においては、上記従来技術のような酸化反応による分子鎖の切断がなく、ポリエステル化合物の構造が維持されるため、低分子量化合物が酸素吸収後に生成し難く、その結果、酸素吸収後の内容物への低分子量化合物の混入が防止されているものと推測される。   In addition, the oxygen-absorbing resin composition of the present embodiment is one in which the generation of low molecular weight compounds after oxygen absorption is suppressed. Although the reason is not clear, for example, the following oxidation reaction mechanism is assumed. That is, in the polyester compound, first, hydrogen at the benzylic position of the tetralin ring is extracted to generate a radical, and then the benzylic carbon is oxidized by the reaction between the radical and oxygen to generate a hydroxy group or a ketone group. Conceivable. Therefore, in the oxygen-absorbing resin composition of the present embodiment, the molecular chain is not broken by the oxidation reaction as in the above-described conventional technique, and the structure of the polyester compound is maintained, so that a low molecular weight compound is generated after oxygen absorption. As a result, it is presumed that the low molecular weight compound is prevented from being mixed into the contents after oxygen absorption.

本実施形態のポリエステル化合物の極限粘度(フェノールと1,1,2,2−テトラクロロエタンとの質量比6:4の混合溶媒を用いた25℃での測定値)は特に限定されないが、ポリエステル化合物の成形性の面から、0.1〜2.0dL/gが好ましく、0.5〜1.5dL/gがより好ましい。   The intrinsic viscosity of the polyester compound of the present embodiment (measured value at 25 ° C. using a mixed solvent of phenol and 1,1,2,2-tetrachloroethane in a mass ratio of 6: 4) is not particularly limited. From the viewpoint of moldability, 0.1 to 2.0 dL / g is preferable, and 0.5 to 1.5 dL / g is more preferable.

本実施形態の酸素吸収性樹脂組成物において使用される遷移金属触媒としては、上記ポリエステル化合物の酸化反応の触媒として機能し得るものであれば、公知のものから適宜選択して用いることができ、特に限定されない。   The transition metal catalyst used in the oxygen-absorbing resin composition of the present embodiment can be appropriately selected from known ones as long as it can function as a catalyst for the oxidation reaction of the polyester compound, There is no particular limitation.

かかる遷移金属触媒の具体例としては、例えば、遷移金属の有機酸塩、ハロゲン化物、燐酸塩、亜燐酸塩、次亜燐酸塩、硝酸塩、硫酸塩、酸化物、水酸化物等が挙げられる。ここで、遷移金属触媒に含まれる遷移金属としては、例えば、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ルテニウム、ロジウム等が挙げられるが、これらに限定されない。これらの中でも、マンガン、鉄、コバルト、ニッケル、銅が好ましい。また、有機酸としては、例えば、酢酸、プロピオン酸、オクタノイック酸、ラウリン酸、ステアリン酸、アセチルアセトン、ジメチルジチオカルバミン酸、パルミチン酸、2−エチルヘキサン酸、ネオデカン酸、リノール酸、トール酸、オレイン酸、カプリン酸、ナフテン酸が挙げられるが、これらに限定されない。遷移金属触媒は、これらの遷移金属と有機酸とを組み合わせたものが好ましく、遷移金属がマンガン、鉄、コバルト、ニッケル又は銅であり、有機酸が酢酸、ステアリン酸、2−エチルヘキサン酸、オレイン酸又はナフテン酸である組み合わせがより好ましい。なお、遷移金属触媒は、1種を単独で或いは2種以上を組み合わせて用いることができる。   Specific examples of the transition metal catalyst include, for example, organic acid salts, halides, phosphates, phosphites, hypophosphites, nitrates, sulfates, oxides and hydroxides of transition metals. Here, examples of the transition metal contained in the transition metal catalyst include, but are not limited to, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, ruthenium, and rhodium. Among these, manganese, iron, cobalt, nickel, and copper are preferable. Examples of organic acids include acetic acid, propionic acid, octanoic acid, lauric acid, stearic acid, acetylacetone, dimethyldithiocarbamic acid, palmitic acid, 2-ethylhexanoic acid, neodecanoic acid, linoleic acid, toluic acid, oleic acid, Although capric acid and naphthenic acid are mentioned, it is not limited to these. The transition metal catalyst is preferably a combination of these transition metals and an organic acid, the transition metal is manganese, iron, cobalt, nickel or copper, and the organic acid is acetic acid, stearic acid, 2-ethylhexanoic acid, olein. A combination that is an acid or naphthenic acid is more preferred. In addition, a transition metal catalyst can be used individually by 1 type or in combination of 2 or more types.

遷移金属触媒の配合量は、使用する前記ポリエステル化合物や遷移金属触媒の種類及び所望の性能に応じて適宜設定でき、特に限定されない。酸素吸収性樹脂組成物の酸素吸収量の観点から、遷移金属触媒の配合量は、前記ポリエステル化合物100質量部に対し、遷移金属量として0.001〜10質量部であることが好ましく、より好ましくは0.002〜2質量部、さらに好ましくは0.005〜1質量部である。   The compounding quantity of a transition metal catalyst can be suitably set according to the kind and desired performance of the said polyester compound and transition metal catalyst to be used, and is not specifically limited. From the viewpoint of the oxygen absorption amount of the oxygen-absorbing resin composition, the blending amount of the transition metal catalyst is preferably 0.001 to 10 parts by mass as the transition metal amount, more preferably 100 parts by mass of the polyester compound. Is 0.002 to 2 parts by mass, more preferably 0.005 to 1 part by mass.

ポリエステル化合物及び遷移金属触媒は、公知の方法で混合する事が出来るが、好ましくは押出機により混練することにより、分散性の良い酸素吸収性樹脂組成物として使用することができる。また、酸素吸収性樹脂組成物には、本実施形態の効果を損なわない範囲で、乾燥剤、顔料、染料、酸化防止剤、スリップ剤、帯電防止剤、安定剤等の添加剤、炭酸カルシウム、クレー、マイカ、シリカ等の充填剤、消臭剤等を添加しても良いが、以上に示したものに限定されることなく、種々の材料を混合することができる。   The polyester compound and the transition metal catalyst can be mixed by a known method, but can be used as an oxygen-absorbing resin composition having good dispersibility, preferably by kneading with an extruder. Further, in the oxygen-absorbing resin composition, additives such as a desiccant, a pigment, a dye, an antioxidant, a slip agent, an antistatic agent, a stabilizer, etc., calcium carbonate, A filler such as clay, mica, and silica, a deodorant, and the like may be added, but various materials can be mixed without being limited to the above-described ones.

なお、本実施形態の酸素吸収性樹脂組成物は、酸素吸収反応を促進させるために、必要に応じて、さらにラジカル発生剤や光開始剤を含有していてもよい。ラジカル発生剤の具体例としては、各種のN−ヒドロキシイミド化合物が挙げられ、例えば、N−ヒドロキシコハクイミド、N−ヒドロキシマレイミド、N,N’−ジヒドロキシシクロヘキサンテトラカルボン酸ジイミド、N−ヒドロキシフタルイミド、N−ヒドロキシテトラクロロフタルイミド、N−ヒドロキシテトラブロモフタルイミド、N−ヒドロキシヘキサヒドロフタルイミド、3−スルホニル−N−ヒドロキシフタルイミド、3−メトキシカルボニル−N−ヒドロキシフタルイミド、3−メチル−N−ヒドロキシフタルイミド、3−ヒドロキシ−N−ヒドロキシフタルイミド、4−ニトロ−N−ヒドロキシフタルイミド、4−クロロ−N−ヒドロキシフタルイミド、4−メトキシ−N−ヒドロキシフタルイミド、4−ジメチルアミノ−N−ヒドロキシフタルイミド、4−カルボキシ−N−ヒドロキシヘキサヒドロフタルイミド、4−メチル−N−ヒドロキシヘキサヒドロフタルイミド、N−ヒドロキシヘット酸イミド、N−ヒドロキシハイミック酸イミド、N−ヒドロキシトリメリット酸イミド、N,N−ジヒドロキシピロメリット酸ジイミド等が挙げられるが、これらに特に限定されない。また、光開始剤の具体例としては、ベンゾフェノンとその誘導体、チアジン染料、金属ポルフィリン誘導体、アントラキノン誘導体等が挙げられるが、これらに特に限定されない。なお、これらのラジカル発生剤及び光開始剤は、1種を単独で或いは2種以上を組み合わせて用いることができる。   Note that the oxygen-absorbing resin composition of the present embodiment may further contain a radical generator or a photoinitiator as necessary in order to promote the oxygen absorption reaction. Specific examples of the radical generator include various N-hydroxyimide compounds such as N-hydroxysuccinimide, N-hydroxymaleimide, N, N′-dihydroxycyclohexanetetracarboxylic acid diimide, N-hydroxyphthalimide, N-hydroxytetrachlorophthalimide, N-hydroxytetrabromophthalimide, N-hydroxyhexahydrophthalimide, 3-sulfonyl-N-hydroxyphthalimide, 3-methoxycarbonyl-N-hydroxyphthalimide, 3-methyl-N-hydroxyphthalimide, 3 -Hydroxy-N-hydroxyphthalimide, 4-nitro-N-hydroxyphthalimide, 4-chloro-N-hydroxyphthalimide, 4-methoxy-N-hydroxyphthalimide, 4-dimethylamino -N-hydroxyphthalimide, 4-carboxy-N-hydroxyhexahydrophthalimide, 4-methyl-N-hydroxyhexahydrophthalimide, N-hydroxyhetic acid imide, N-hydroxyhymic acid imide, N-hydroxytrimellitic acid imide , N, N-dihydroxypyromellitic acid diimide and the like, but are not particularly limited thereto. Specific examples of the photoinitiator include, but are not limited to, benzophenone and its derivatives, thiazine dyes, metal porphyrin derivatives, anthraquinone derivatives, and the like. In addition, these radical generators and photoinitiators can be used individually by 1 type or in combination of 2 or more types.

また、本実施形態の酸素吸収性樹脂組成物は、本実施形態の目的を阻害しない範囲で他の熱可塑性樹脂と押出機で混練することも出来る。混練に用いられる熱可塑性樹脂としては、例えば、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン、線状超低密度ポリエチレン、ポリプロピレン、ポリ−1−ブテン、ポリ−4−メチル−1−ペンテン、あるいはエチレン、プロピレン、1−ブテン、4−メチル−1−ペンテン等のα−オレフィン同士のランダムまたはブロック共重合体等のポリオレフィン、無水マレイン酸グラフトポリエチレンや無水マレイン酸グラフトポリプロピレン等の酸変性ポリオレフィン、エチレン−酢酸ビニル共重合体、エチレン−ビニルアルコール共重合体、エチレン−塩化ビニル共重合体、エチレン−(メタ)アクリル酸共重合体やそのイオン架橋物(アイオノマー)、エチレン−メタクリル酸メチル共重合体等のエチレン−ビニル化合物共重合体、ポリスチレン、アクリロニトリル−スチレン共重合体、α−メチルスチレン−スチレン共重合体等のスチレン系樹脂、ポリアクリル酸メチル、ポリメタクリル酸メチル等のポリビニル化合物、ナイロン6、ナイロン66、ナイロン610、ナイロン12、ポリメタキシリレンアジパミド(MXD6)等のポリアミド、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリエチレンナフタレート(PEN)、グリコール変性ポリエチレンテレフタレート(PETG)、ポリエチレンサクシネート(PES)、ポリブチレンサクシネート(PBS)、ポリ乳酸、ポリグリコール酸、ポリカプロラクトン、ポリヒドロキシアルカノエート等のポリエステル、ポリカーボネート、ポリエチレンオキサイド等のポリエーテル等あるいはこれらの混合物等が挙げられる。   In addition, the oxygen-absorbing resin composition of the present embodiment can be kneaded with another thermoplastic resin and an extruder as long as the purpose of the present embodiment is not impaired. Examples of the thermoplastic resin used for kneading include low density polyethylene, medium density polyethylene, high density polyethylene, linear low density polyethylene, linear ultra low density polyethylene, polypropylene, poly-1-butene, and poly-4-methyl. -1-pentene, polyolefins such as random or block copolymers of α-olefins such as ethylene, propylene, 1-butene, 4-methyl-1-pentene, maleic anhydride grafted polyethylene, maleic anhydride grafted polypropylene, etc. Acid-modified polyolefin, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, ethylene-vinyl chloride copolymer, ethylene- (meth) acrylic acid copolymer and its ionic cross-linked product (ionomer), ethylene- Methyl methacrylate copolymer, etc. Styrene resins such as ethylene-vinyl compound copolymers, polystyrene, acrylonitrile-styrene copolymers, α-methylstyrene-styrene copolymers, polyvinyl compounds such as polymethyl acrylate and polymethyl methacrylate, nylon 6, nylon 66, nylon 610, nylon 12, polyamide such as polymetaxylylene adipamide (MXD6), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polyethylene naphthalate (PEN), glycol Modified polyethylene terephthalate (PETG), polyethylene succinate (PES), polybutylene succinate (PBS), polylactic acid, polyglycolic acid, polycaprolactone, polyhydroxyalkano Polyester over preparative like, polycarbonate, polyether, or mixtures thereof, such as polyethylene oxide.

酸素吸収層(層A)の厚みは、酸素吸収性能を有し、医療用多層成形容器に要求される諸物性を確保するという観点から、1〜1000μmとすることが好ましく、より好ましくは50〜900μmであり、更に好ましくは100〜800μmである。   The thickness of the oxygen absorbing layer (layer A) is preferably from 1 to 1000 μm, more preferably from 50 to 1000 μm, from the viewpoint of having oxygen absorbing performance and ensuring various physical properties required for the medical multilayer molded container. It is 900 micrometers, More preferably, it is 100-800 micrometers.

[熱可塑性樹脂を含有する樹脂層(層B)]
本実施形態の熱可塑性樹脂を含有する樹脂層(層B)は、熱可塑性樹脂を含有する層である。層Bにおける熱可塑性樹脂の含有率は特に限定されないが、層Bの総量に対する熱可塑性樹脂の含有率が、70〜100質量%であることが好ましく、80〜100質量%がより好ましく、90〜100質量%が特に好ましい。
[Resin layer containing thermoplastic resin (layer B)]
The resin layer (layer B) containing the thermoplastic resin of the present embodiment is a layer containing a thermoplastic resin. The content of the thermoplastic resin in the layer B is not particularly limited, but the content of the thermoplastic resin relative to the total amount of the layer B is preferably 70 to 100% by mass, more preferably 80 to 100% by mass, and 90 to 90%. 100% by mass is particularly preferred.

本実施形態の酸素吸収性医療用多層成形容器は、層Bを複数有していてもよく、複数の層Bの構成は互いに同一であっても異なっていてもよい。層Bの厚みは、用途に応じて適宜決定することができ、医療用多層成形容器に要求される諸物性を確保するという観点からは、好ましくは50〜10000μm、より好ましくは100〜7000μm、更に好ましくは300〜5000μmである。   The oxygen-absorbing medical multilayer molded container of the present embodiment may have a plurality of layers B, and the configurations of the plurality of layers B may be the same as or different from each other. The thickness of the layer B can be appropriately determined according to the use, and is preferably 50 to 10,000 μm, more preferably 100 to 7000 μm, and more preferably 100 to 7000 μm, from the viewpoint of securing various physical properties required for the medical multilayer molded container. Preferably it is 300-5000 micrometers.

本実施形態の熱可塑性樹脂には任意の熱可塑性樹脂を使用することができ、特に限定されない。例えば、ポリオレフィン、ポリエステル、ポリアミド、エチレン−ビニルアルコール共重合体、植物由来樹脂及び塩素系樹脂を挙げることができる。本実施形態において熱可塑性樹脂としては、これら樹脂からなる群から選ばれる少なくとも一種を含むことが好ましい。また、前記熱可塑性樹脂においては、本発明の前記ポリエステル化合物以外の熱可塑性樹脂の含有量が、50〜100質量%であることが好ましく、70〜100質量%がより好ましく、90〜100質量%が特に好ましい。   Arbitrary thermoplastic resins can be used for the thermoplastic resin of this embodiment, and it is not specifically limited. Examples thereof include polyolefins, polyesters, polyamides, ethylene-vinyl alcohol copolymers, plant-derived resins, and chlorinated resins. In the present embodiment, the thermoplastic resin preferably includes at least one selected from the group consisting of these resins. Moreover, in the said thermoplastic resin, it is preferable that content of thermoplastic resins other than the said polyester compound of this invention is 50-100 mass%, 70-100 mass% is more preferable, 90-100 mass% Is particularly preferred.

[ポリオレフィン]
ポリオレフィンの具体例としては、ポリエチレン(低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状(線状)低密度ポリエチレン)、ポリプロピレン、ポリブテン−1、ポリ−4−メチルペンテン−1、エチレンとα−オレフィンとの共重合体、プロピレンとα−オレフィン共重合体、エチレン−α,β−不飽和カルボン酸共重合体、エチレン−α,β−不飽和カルボン酸エステル共重合体等の公知の樹脂であり、好ましいのはノルボルネンもしくはテトラシクロドデセンまたはそれらの誘導体などのシクロオレフィン類開環重合体およびその水素添加物、ノルボルネンもしくはテトラシクロドデセンまたはその誘導体などのシクロオレフィンと、エチレンまたはプロピレンとの重合により分子鎖にシクロペンチル残基や置換シクロペンチル残基が挿入された共重合体である樹脂である。ここで、シクロオレフィンは単環式および多環式のものを含む。好ましいのは、熱可塑性ノルボルネン系樹脂または熱可塑性テトラシクロドデセン系樹脂である。熱可塑性ノルボルネン系樹脂としては、ノルボルネン系単量体の開環重合体、その水素添加物、ノルボルネン系単量体の付加型重合体、ノルボルネン系単量体とオレフィンの付加型重合体などが挙げられる。熱可塑性テトラシクロドデセン系樹脂としては、テトラシクロドデセン系単量体の開環重合体、その水素添加物、テトラシクロドデセン系単量体の付加型重合体、テトラシクロドデセン系単量体とオレフィンの付加型重合体などが挙げられる。熱可塑性ノルボルネン系樹脂は、例えば特開平3−14882号公報、特開平3−122137号公報、特開平4−63807号公報などに記載されている。
[Polyolefin]
Specific examples of polyolefin include polyethylene (low density polyethylene, medium density polyethylene, high density polyethylene, linear (linear) low density polyethylene), polypropylene, polybutene-1, poly-4-methylpentene-1, and ethylene. Copolymers with α-olefin, propylene and α-olefin copolymers, ethylene-α, β-unsaturated carboxylic acid copolymers, ethylene-α, β-unsaturated carboxylic acid ester copolymers, etc. Preferred are cycloolefins ring-opening polymers such as norbornene or tetracyclododecene or derivatives thereof and hydrogenated products thereof, cycloolefins such as norbornene or tetracyclododecene or derivatives thereof, and ethylene or propylene. And cyclopentyl residues in the molecular chain Conversion cyclopentyl residue is a resin which is a copolymer that is inserted. Here, the cycloolefin includes monocyclic and polycyclic ones. Preference is given to thermoplastic norbornene resins or thermoplastic tetracyclododecene resins. Examples of thermoplastic norbornene resins include ring-opening polymers of norbornene monomers, hydrogenated products thereof, addition polymers of norbornene monomers, addition polymers of norbornene monomers and olefins, and the like. It is done. Thermoplastic tetracyclododecene resins include ring-opening polymers of tetracyclododecene monomers, hydrogenated products thereof, addition polymers of tetracyclododecene monomers, tetracyclododecene monomers. And addition polymers of monomers and olefins. Thermoplastic norbornene resins are described in, for example, JP-A-3-14882, JP-A-3-122137, JP-A-4-63807, and the like.

特に好ましいのは、ノルボルネンとエチレン等のオレフィンを原料とした共重合体、およびテトラシクロドデセンとエチレン等のオレフィンを原料とした共重合体であるシクロオレフィンコポリマー(COC)、また、ノルボルネンを開環重合し、水素添加した重合物であるシクロオレフィンポリマー(COP)も好ましい。このようなCOCおよびCOPは例えば特開平5−300939号公報あるいは特開平5−317411号公報に記載されている。   Particularly preferred are copolymers of norbornene and olefins such as ethylene as raw materials, cycloolefin copolymer (COC) which is a copolymer of tetracyclododecene and olefins such as ethylene as raw materials, and norbornene. A cycloolefin polymer (COP) which is a polymer obtained by ring polymerization and hydrogenation is also preferable. Such COC and COP are described in, for example, JP-A-5-300939 or JP-A-5-317411.

COCは、例えば三井化学株式会社製、アペル(登録商標)として市販されており、またCOPは、例えば日本ゼオン株式会社製、ゼオネックス(登録商標)又はゼオノア(登録商標)や株式会社大協精工製、Daikyo Resin CZ(登録商標)として市販されている。   COC is commercially available, for example, as Mitsui Chemicals, Inc. (Appel (registered trademark)), and COP is, for example, manufactured by Nippon Zeon Co., Ltd., Zeonex (registered trademark) or Zeonore (registered trademark), or manufactured by Daikyo Seiko Co., Ltd. , Commercially available as Daikyo Resin CZ®.

COCおよびCOPは、耐熱性や耐光性などの化学的性質や耐薬品性はポリオレフィン樹脂としての特徴を示し、機械特性、溶融、流動特性、寸法精度などの物理的性質は非晶性樹脂としての特徴を示すことから最も好ましい材質である   COC and COP show chemical properties such as heat resistance and light resistance, and chemical resistance as a polyolefin resin, and physical properties such as mechanical properties, melting, flow properties, and dimensional accuracy are as non-crystalline resins. It is the most preferred material because of its characteristics

[ポリエステル]
ここで説明するポリエステルは、熱可塑性樹脂として用いることの出来るポリエステルであって、本実施形態のポリエステル化合物では無い。本実施形態において、ポリエステルとは、ジカルボン酸を含む多価カルボン酸およびこれらのエステル形成性誘導体から選ばれる一種又は二種以上とグリコールを含む多価アルコールから選ばれる一種又は二種以上とから成るもの、又はヒドロキシカルボン酸およびこれらのエステル形成性誘導体からなるもの、又は環状エステルからなるものをいう。エチレンテレフタレート系熱可塑性ポリエステルは、エステル反復単位の大部分、一般に70モル%以上をエチレンテレフタレート単位が占めるものであり、ガラス転移点(Tg)が50〜90℃、融点(Tm)が200〜275℃の範囲にあるものが好適である。エチレンテレフタレート系熱可塑性ポリエステルとしてポリエチレンテレフタレートが耐圧性、耐熱性、耐熱圧性等の点で特に優れているが、エチレンテレフタレート単位以外にイソフタル酸やナフタレンジカルボン酸等の二塩基酸とプロピレングリコール等のジオールからなるエステル単位の少量を含む共重合ポリエステルも使用できる。
[polyester]
The polyester described here is a polyester that can be used as a thermoplastic resin, and is not a polyester compound of the present embodiment. In the present embodiment, the polyester is composed of one or more selected from polycarboxylic acids containing dicarboxylic acids and ester-forming derivatives thereof, and one or more selected from polyhydric alcohols containing glycol. Or those composed of hydroxycarboxylic acids and their ester-forming derivatives, or those composed of cyclic esters. The ethylene terephthalate-based thermoplastic polyester is composed of an ethylene terephthalate unit in the majority of ester repeating units, generally 70 mol% or more, and has a glass transition point (Tg) of 50 to 90 ° C. and a melting point (Tm) of 200 to 275. Those in the range of ° C. are preferred. Polyethylene terephthalate is particularly excellent as an ethylene terephthalate thermoplastic polyester in terms of pressure resistance, heat resistance, heat pressure resistance, etc. In addition to ethylene terephthalate units, dibasic acids such as isophthalic acid and naphthalenedicarboxylic acid and diols such as propylene glycol Copolyesters containing a small amount of ester units consisting of can also be used.

ジカルボン酸としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、デカンジカルボン酸、ドデカンジカルボン酸、テトラデカンジカルボン酸、ヘキサデカンジカルボン酸、3−シクロブタンジカルボン酸、1,3−シクロペンタンジカルボン酸、1,2−シクロヘキサンジカルボン酸、1,3−シクロヘキサンジカルボン酸、1,4−シクロヘキサンジカルボン酸、2,5−ノルボルナンジカルボン酸、ダイマー酸等に例示される飽和脂肪族ジカルボン酸又はこれらのエステル形成性誘導体、フマル酸、マレイン酸、イタコン酸等に例示される不飽和脂肪族ジカルボン酸又はこれらのエステル形成性誘導体、オルソフタル酸、イソフタル酸、テレフタル酸、1,3−ナフタレンジカルボン酸、1,4−ナフタレンジカルボン酸、1,5−ナフタレンジカルボン酸、2,6−ナフタレンジカルボン酸、2,7−ナフタレンジカルボン酸、4,4’−ビフェニルジカルボン酸、4,4’−ビフェニルスルホンジカルボン酸、4,4’−ビフェニルエーテルジカルボン酸、1,2−ビス(フェノキシ)エタン−p,p’−ジカルボン酸、アントラセンジカルボン酸等に例示される芳香族ジカルボン酸又はこれらのエステル形成性誘導体、5−ナトリウムスルホイソフタル酸、2−ナトリウムスルホテレフタル酸、5−リチウムスルホイソフタル酸、2−リチウムスルホテレフタル酸、5−カリウムスルホイソフタル酸、2−カリウムスルホテレフタル酸等に例示される金属スルホネート基含有芳香族ジカルボン酸又はそれらの低級アルキルエステル誘導体等が挙げられる。   Examples of dicarboxylic acids include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, decanedicarboxylic acid, dodecanedicarboxylic acid, tetradecanedicarboxylic acid, hexadecanedicarboxylic acid, 3- Exemplified as cyclobutanedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 2,5-norbornanedicarboxylic acid, dimer acid, etc. Saturated aliphatic dicarboxylic acids or ester-forming derivatives thereof, unsaturated aliphatic dicarboxylic acids exemplified by fumaric acid, maleic acid, itaconic acid or the like, or ester-forming derivatives thereof, orthophthalic acid, isophthalic acid, terephthalic acid 1,3-na Taleenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 4,4′-biphenyldicarboxylic acid, 4,4′- Aromatic dicarboxylic acids exemplified by biphenylsulfone dicarboxylic acid, 4,4′-biphenyl ether dicarboxylic acid, 1,2-bis (phenoxy) ethane-p, p′-dicarboxylic acid, anthracene dicarboxylic acid, etc. or ester formation thereof Metal, exemplified by 5-sodium sulfoisophthalic acid, 2-sodium sulfoterephthalic acid, 5-lithium sulfoisophthalic acid, 2-lithium sulfoterephthalic acid, 5-potassium sulfoisophthalic acid, 2-potassium sulfoterephthalic acid, etc. Sulfonate group-containing aromatic dicarboxylic acid or Such lower alkyl esters thereof derivative.

上記のジカルボン酸のなかでも、特に、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸の使用が、得られるポリエステルの物理特性等の点で好ましく、必要に応じて他のジカルボン酸を共重合してもよい。   Among the above dicarboxylic acids, the use of terephthalic acid, isophthalic acid, and naphthalenedicarboxylic acid is particularly preferable in terms of the physical properties of the resulting polyester, and other dicarboxylic acids may be copolymerized as necessary. .

これらジカルボン酸以外の多価カルボン酸として、エタントリカルボン酸、プロパントリカルボン酸、ブタンテトラカルボン酸、ピロメリット酸、トリメリット酸、トリメシン酸、3,4,3’,4’−ビフェニルテトラカルボン酸、およびこれらのエステル形成性誘導体等が挙げられる。   As polyvalent carboxylic acids other than these dicarboxylic acids, ethanetricarboxylic acid, propanetricarboxylic acid, butanetetracarboxylic acid, pyromellitic acid, trimellitic acid, trimesic acid, 3,4,3 ′, 4′-biphenyltetracarboxylic acid, And ester-forming derivatives thereof.

グリコールとしてはエチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、ジエチレングリコール、トリエチレングリコール、1,2−ブチレングリコール、1,3−ブチレングリコール、2,3−ブチレングリコール、1,4−ブチレングリコール、1,5−ペンタンジオール、ネオペンチルグリコール、1,6−ヘキサンジオール、1,2−シクロヘキサンジオール、1,3−シクロヘキサンジオール、1,4−シクロヘキサンジオール、1,2−シクロヘキサンジメタノール、1,3−シクロヘキサンジメタノール、1,4−シクロヘキサンジメタノール、1,4−シクロヘキサンジエタノール、1,10−デカメチレングリコール、1,12−ドデカンジオール、ポリエチレングリコール、ポリトリメチレングリコール、ポリテトラメチレングリコール等に例示される脂肪族グリコール、ヒドロキノン、4,4’−ジヒドロキシビスフェノ−ル、1,4−ビス(β−ヒドロキシエトキシ)ベンゼン、1,4−ビス(β−ヒドロキシエトキシフェニル)スルホン、ビス(p−ヒドロキシフェニル)エーテル、ビス(p−ヒドロキシフェニル)スルホン、ビス(p−ヒドロキシフェニル)メタン、1,2−ビス(p−ヒドロキシフェニル)エタン、ビスフェノールA、ビスフェノールC、2,5−ナフタレンジオール、これらのグリコールにエチレンオキシドが付加されたグリコール等に例示される芳香族グリコールが挙げられる。   As glycols, ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, diethylene glycol, triethylene glycol, 1,2-butylene glycol, 1,3-butylene glycol, 2,3-butylene glycol, 1,4 -Butylene glycol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 1,2-cyclohexanediol, 1,3-cyclohexanediol, 1,4-cyclohexanediol, 1,2-cyclohexanedimethanol 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 1,4-cyclohexanediethanol, 1,10-decamethylene glycol, 1,12-dodecanediol, polyethylene glycol, polytrimethyl Aliphatic glycols exemplified by tylene glycol and polytetramethylene glycol, hydroquinone, 4,4′-dihydroxybisphenol, 1,4-bis (β-hydroxyethoxy) benzene, 1,4-bis (β- Hydroxyethoxyphenyl) sulfone, bis (p-hydroxyphenyl) ether, bis (p-hydroxyphenyl) sulfone, bis (p-hydroxyphenyl) methane, 1,2-bis (p-hydroxyphenyl) ethane, bisphenol A, bisphenol Examples thereof include aromatic glycols exemplified by C, 2,5-naphthalenediol, glycols obtained by adding ethylene oxide to these glycols, and the like.

上記のグリコールのなかでも、特に、エチレングリコール、1,3−プロピレングリコール、1,4−ブチレングリコール、1,4−シクロヘキサンジメタノールを主成分として使用することが好適である。これらグリコール以外の多価アルコールとして、トリメチロールメタン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、グリセロ−ル、ヘキサントリオール等が挙げられる。ヒドロキシカルボン酸としては、乳酸、クエン酸、リンゴ酸、酒石酸、ヒドロキシ酢酸、3−ヒドロキシ酪酸、p−ヒドロキシ安息香酸、p−(2−ヒドロキシエトキシ)安息香酸、4−ヒドロキシシクロヘキサンカルボン酸、又はこれらのエステル形成性誘導体等が挙げられる。   Among the above glycols, it is particularly preferable to use ethylene glycol, 1,3-propylene glycol, 1,4-butylene glycol, and 1,4-cyclohexanedimethanol as the main component. Examples of polyhydric alcohols other than these glycols include trimethylolmethane, trimethylolethane, trimethylolpropane, pentaerythritol, glycerol, hexanetriol, and the like. Examples of hydroxycarboxylic acids include lactic acid, citric acid, malic acid, tartaric acid, hydroxyacetic acid, 3-hydroxybutyric acid, p-hydroxybenzoic acid, p- (2-hydroxyethoxy) benzoic acid, 4-hydroxycyclohexanecarboxylic acid, or these And ester-forming derivatives thereof.

環状エステルとしては、ε−カプロラクトン、β−プロピオラクトン、β−メチル−β−プロピオラクトン、δ−バレロラクトン、グリコリド、ラクチド等が挙げられる。   Examples of the cyclic ester include ε-caprolactone, β-propiolactone, β-methyl-β-propiolactone, δ-valerolactone, glycolide, and lactide.

多価カルボン酸、ヒドロキシカルボン酸のエステル形成性誘導体としては、これらのアルキルエステル、酸クロライド、酸無水物等が例示される。   Examples of ester-forming derivatives of polyvalent carboxylic acids and hydroxycarboxylic acids include these alkyl esters, acid chlorides, acid anhydrides and the like.

本実施形態で用いられるポリエステルとしては、主たる酸成分がテレフタル酸またはそのエステル形成性誘導体もしくはナフタレンジカルボン酸またはそのエステル形成性誘導体であり、主たるグリコール成分がアルキレングリコールであるポリエステルが好ましい。   The polyester used in this embodiment is preferably a polyester in which the main acid component is terephthalic acid or an ester-forming derivative thereof or naphthalenedicarboxylic acid or an ester-forming derivative thereof, and the main glycol component is alkylene glycol.

主たる酸成分がテレフタル酸またはそのエステル形成性誘導体であるポリエステルとは、全酸成分に対してテレフタル酸またはそのエステル形成性誘導体を合計して70モル%以上含有するポリエステルであることが好ましく、より好ましくは80モル%以上含有するポリエステルであり、さらに好ましくは90モル%以上含有するポリエステルである。主たる酸成分がナフタレンジカルボン酸またはそのエステル形成性誘導体であるポリエステルも同様に、ナフタレンジカルボン酸またはそのエステル形成性誘導体を合計して70モル%以上含有するポリエステルであることが好ましく、より好ましくは80モル%以上含有するポリエステルであり、さらに好ましくは90モル%以上含有するポリエステルである。   The polyester in which the main acid component is terephthalic acid or an ester-forming derivative thereof is preferably a polyester containing 70 mol% or more of terephthalic acid or an ester-forming derivative thereof in total with respect to the total acid component. A polyester containing 80 mol% or more is preferable, and a polyester containing 90 mol% or more is more preferable. Similarly, the polyester in which the main acid component is naphthalenedicarboxylic acid or an ester-forming derivative thereof is also preferably a polyester containing 70 mol% or more of naphthalenedicarboxylic acid or an ester-forming derivative thereof, more preferably 80 Polyesters containing at least mol%, more preferably polyesters containing at least 90 mol%.

本実施形態で用いられるナフタレンジカルボン酸またはそのエステル形成性誘導体としては、上述のジカルボン酸類に例示した1,3−ナフタレンジカルボン酸、1,4−ナフタレンジカルボン酸、1,5−ナフタレンジカルボン酸、2,6−ナフタレンジカルボン酸、2,7−ナフタレンジカルボン酸、またはこれらのエステル形成性誘導体が好ましい。   Examples of the naphthalenedicarboxylic acid or ester-forming derivative thereof used in the present embodiment include 1,3-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, and the like exemplified in the above dicarboxylic acids. 1,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, or ester-forming derivatives thereof are preferred.

主たるグリコール成分がアルキレングリコールであるポリエステルとは、全グリコール成分に対してアルキレングリコールを合計して70モル%以上含有するポリエステルであることが好ましく、より好ましくは80モル%以上含有するポリエステルであり、さらに好ましくは90モル%以上含有するポリエステルである。ここで言うアルキレングリコールは、分子鎖中に置換基や脂環構造を含んでいてもよい。   The polyester whose main glycol component is an alkylene glycol is preferably a polyester containing 70 mol% or more of the total amount of alkylene glycol with respect to all glycol components, more preferably a polyester containing 80 mol% or more, More preferably, it is a polyester containing 90 mol% or more. The alkylene glycol here may contain a substituent or an alicyclic structure in the molecular chain.

上記テレフタル酸/エチレングリコール以外の共重合成分は、イソフタル酸、2,6−ナフタレンジカルボン酸、ジエチレングリコール、ネオペンチルグリコール、1,4−シクロヘキサンジメタノール、1,2−プロパンジオール、1,3−プロパンジオールおよび2−メチル−1,3−プロパンジオールからなる群より選ばれる少なくとも1種以上であることが、透明性と成形性とを両立する上で好ましく、特にイソフタル酸、ジエチレングリコール、ネオペンチルグリコール、1,4−シクロヘキサンジメタノールからなる群より選ばれる少なくとも1種以上であることがより好ましい。   The copolymer components other than the terephthalic acid / ethylene glycol are isophthalic acid, 2,6-naphthalenedicarboxylic acid, diethylene glycol, neopentyl glycol, 1,4-cyclohexanedimethanol, 1,2-propanediol, 1,3-propane. It is preferably at least one selected from the group consisting of diol and 2-methyl-1,3-propanediol in order to achieve both transparency and moldability, particularly isophthalic acid, diethylene glycol, neopentyl glycol, More preferably, it is at least one selected from the group consisting of 1,4-cyclohexanedimethanol.

本実施形態に用いられるポリエステルの好ましい一例は、主たる繰り返し単位がエチレンテレフタレートから構成されるポリエステルであり、より好ましくはエチレンテレフタレート単位を70モル%以上含む線状ポリエステルであり、さらに好ましくはエチレンテレフタレート単位を80モル%以上含む線状ポリエステルであり、特に好ましいのはエチレンテレフタレート単位を90モル%以上含む線状ポリエステルである。   A preferred example of the polyester used in this embodiment is a polyester in which the main repeating unit is composed of ethylene terephthalate, more preferably a linear polyester containing 70 mol% or more of ethylene terephthalate units, and still more preferably an ethylene terephthalate unit. Is a linear polyester containing 80 mol% or more, and particularly preferred is a linear polyester containing 90 mol% or more of ethylene terephthalate units.

また本実施形態に用いられるポリエステルの好ましい他の一例は、主たる繰り返し単位がエチレン−2,6−ナフタレートから構成されるポリエステルであり、より好ましくはエチレン−2,6−ナフタレート単位を70モル%以上含む線状ポリエステルであり、さらに好ましくはエチレン−2,6−ナフタレート単位を80モル%以上含む線状ポリエステルであり、特に好ましいのは、エチレン−2,6−ナフタレート単位を90モル%以上含む線状ポリエステルである。   Another preferred example of the polyester used in this embodiment is a polyester in which the main repeating unit is composed of ethylene-2,6-naphthalate, and more preferably 70 mol% or more of ethylene-2,6-naphthalate unit. A linear polyester containing 80 mol% or more of ethylene-2,6-naphthalate units, particularly preferably a linear polyester containing 90 mol% or more of ethylene-2,6-naphthalate units. Polyester.

また本実施形態に用いられるポリエステルの好ましいその他の例としては、プロピレンテレフタレート単位を70モル%以上含む線状ポリエステル、プロピレンナフタレート単位を70モル%以上含む線状ポリエステル、1,4−シクロヘキサンジメチレンテレフタレート単位を70モル%以上含む線状ポリエステル、ブチレンナフタレート単位を70モル%以上含む線状ポリエステル、またはブチレンテレフタレート単位を70モル%以上含む線状ポリエステルである。   Other preferred examples of the polyester used in this embodiment include linear polyesters containing 70 mol% or more of propylene terephthalate units, linear polyesters containing 70 mol% or more of propylene naphthalate units, and 1,4-cyclohexanedimethylene. A linear polyester containing 70 mol% or more of terephthalate units, a linear polyester containing 70 mol% or more of butylene naphthalate units, or a linear polyester containing 70 mol% or more of butylene terephthalate units.

特にポリエステル全体の組成として、テレフタル酸/イソフタル酸//エチレングリコールの組合せ、テレフタル酸//エチレングリコール/1,4−シクロヘキサンジメタノールの組合せ、テレフタル酸//エチレングリコール/ネオペンチルグリコールの組合せは透明性と成形性とを両立する上で好ましい。なお、当然ではあるが、エステル化(エステル交換)反応、重縮合反応中に、エチレングリコールの二量化により生じるジエチレングリコールを少量(5モル%以下)含んでもよいことは言うまでもない。   In particular, the composition of the whole polyester is a combination of terephthalic acid / isophthalic acid // ethylene glycol, terephthalic acid // ethylene glycol / 1,4-cyclohexanedimethanol, and terephthalic acid // ethylene glycol / neopentyl glycol. This is preferable in order to satisfy both the moldability and the moldability. Needless to say, a small amount (5 mol% or less) of diethylene glycol produced by dimerization of ethylene glycol may be included in the esterification (transesterification) reaction or polycondensation reaction.

また本実施形態に用いられるポリエステルの好ましいその他の例としては、グリコール酸やグリコール酸メチルの重縮合もしくは、グリコリドの開環重縮合にて得られるポリグリコール酸が挙げられる。このポリグリコール酸には、ラクチド等の他成分を共重合しても構わない。   Other preferred examples of the polyester used in this embodiment include polyglycolic acid obtained by polycondensation of glycolic acid or methyl glycolate or ring-opening polycondensation of glycolide. This polyglycolic acid may be copolymerized with other components such as lactide.

[ポリアミド]
本実施形態で使用するポリアミドは、ラクタムもしくはアミノカルボン酸から誘導される単位を主構成単位とするポリアミドや、脂肪族ジアミンと脂肪族ジカルボン酸とから誘導される単位を主構成単位とする脂肪族ポリアミド、脂肪族ジアミンと芳香族ジカルボン酸とから誘導される単位を主構成単位とする部分芳香族ポリアミド、芳香族ジアミンと脂肪族ジカルボン酸とから誘導される単位を主構成単位とする部分芳香族ポリアミド等が挙げられ、必要に応じて、主構成単位以外のモノマー単位を共重合してもよい。
[polyamide]
The polyamide used in the present embodiment is a polyamide having a unit derived from a lactam or an aminocarboxylic acid as a main constituent unit, or an aliphatic having a unit derived from an aliphatic diamine and an aliphatic dicarboxylic acid as a main constituent unit. Polyamide, Partially aromatic polyamide whose main constituent unit is a unit derived from aliphatic diamine and aromatic dicarboxylic acid, Partially aromatic whose main constituent unit is a unit derived from aromatic diamine and aliphatic dicarboxylic acid Examples thereof include polyamide, and a monomer unit other than the main structural unit may be copolymerized as necessary.

前記ラクタムもしくはアミノカルボン酸としては、ε−カプロラクタムやラウロラクタム等のラクタム類、アミノカプロン酸、アミノウンデカン酸等のアミノカルボン酸類、パラ−アミノメチル安息香酸のような芳香族アミノカルボン酸等が使用できる。   Examples of the lactam or aminocarboxylic acid include lactams such as ε-caprolactam and laurolactam, aminocarboxylic acids such as aminocaproic acid and aminoundecanoic acid, and aromatic aminocarboxylic acids such as para-aminomethylbenzoic acid. .

前記脂肪族ジアミンとしては、炭素数2〜12の脂肪族ジアミンあるいはその機能的誘導体が使用できる。さらに、脂環族のジアミンであってもよい。脂肪族ジアミンは直鎖状の脂肪族ジアミンであっても分岐を有する鎖状の脂肪族ジアミンであってもよい。このような直鎖状の脂肪族ジアミンの具体例としては、エチレンジアミン、1−メチルエチレンジアミン、1,3−プロピレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン等の脂肪族ジアミンが挙げられる。また、脂環族ジアミンの具体例としては、シクロヘキサンジアミン、1,3−ビス(アミノメチル)シクロヘキサン、1,4−ビス(アミノメチル)シクロヘキサン等が挙げられる。   As the aliphatic diamine, an aliphatic diamine having 2 to 12 carbon atoms or a functional derivative thereof can be used. Furthermore, an alicyclic diamine may be used. The aliphatic diamine may be a linear aliphatic diamine or a branched chain aliphatic diamine. Specific examples of such linear aliphatic diamines include ethylenediamine, 1-methylethylenediamine, 1,3-propylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, Examples include aliphatic diamines such as nonamethylenediamine, decamethylenediamine, undecamethylenediamine, and dodecamethylenediamine. Specific examples of the alicyclic diamine include cyclohexanediamine, 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, and the like.

また、前記脂肪族ジカルボン酸としては、直鎖状の脂肪族ジカルボン酸や脂環族ジカルボン酸が好ましく、さらに炭素数4〜12のアルキレン基を有する直鎖状脂肪族ジカルボン酸が特に好ましい。このような直鎖状脂肪族ジカルボン酸の例としては、アジピン酸、セバシン酸、マロン酸、コハク酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸、ウンデカン酸、ウンデカジオン酸、ドデカンジオン酸、ダイマー酸およびこれらの機能的誘導体等を挙げることができる。脂環族ジカルボン酸としては、1,4−シクロヘキサンジカルボン酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸等の脂環式ジカルボン酸が挙げられる。   Moreover, as said aliphatic dicarboxylic acid, linear aliphatic dicarboxylic acid and alicyclic dicarboxylic acid are preferable, and also linear aliphatic dicarboxylic acid which has a C4-C12 alkylene group is especially preferable. Examples of such linear aliphatic dicarboxylic acids include adipic acid, sebacic acid, malonic acid, succinic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, undecanoic acid, undecadioic acid, dodecanedioic acid, dimer Examples thereof include acids and functional derivatives thereof. Examples of the alicyclic dicarboxylic acid include alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, hexahydroterephthalic acid, and hexahydroisophthalic acid.

また、前記芳香族ジアミンとしては、メタキシリレンジアミン、パラキシリレンジアミン、パラ−ビス(2−アミノエチル)ベンゼン等が挙げられる。   Examples of the aromatic diamine include metaxylylenediamine, paraxylylenediamine, para-bis (2-aminoethyl) benzene, and the like.

また、前記芳香族ジカルボン酸としては、テレフタル酸、イソフタル酸、フタル酸、2,6−ナフタレンジカルボン酸、ジフェニル−4,4’−ジカルボン酸、ジフェノキシエタンジカルボン酸およびその機能的誘導体等が挙げられる。   Examples of the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, diphenyl-4,4′-dicarboxylic acid, diphenoxyethanedicarboxylic acid, and functional derivatives thereof. It is done.

具体的なポリアミドとしては、ポリアミド4、ポリアミド6、ポリアミド10、ポリアミド11、ポリアミド12、ポリアミド4,6、ポリアミド6,6、ポリアミド6,10、ポリアミド6T、ポリアミド9T、ポリアミド6IT、ポリメタキシリレンアジパミド(ポリアミドMXD6)、イソフタル酸共重合ポリメタキシリレンアジパミド(ポリアミドMXD6I)、ポリメタキシリレンセバカミド(ポリアミドMXD10)、ポリメタキシリレンドデカナミド(ポリアミドMXD12)、ポリ1,3−ビスアミノシクロヘキサンアジパミド(ポリアミドBAC6)、ポリパラキシリレンセバカミド(ポリアミドPXD10)等がある。より好ましいポリアミドとしては、ポリアミド6、ポリアミドMXD6、ポリアミドMXD6Iが挙げられる。   Specific polyamides include polyamide 4, polyamide 6, polyamide 10, polyamide 11, polyamide 12, polyamide 4, 6, polyamide 6, 6, polyamide 6, 10, polyamide 6T, polyamide 9T, polyamide 6IT, polymetaxylylene azide. Pamide (Polyamide MXD6), Isophthalic acid copolymer polymetaxylylene adipamide (Polyamide MXD6I), Polymetaxylylene sebamide (Polyamide MXD10), Polymetaxylylene decanamide (Polyamide MXD12), Poly 1,3-bis Examples include aminocyclohexane adipamide (polyamide BAC6) and polyparaxylylene sebacamide (polyamide PXD10). More preferable polyamides include polyamide 6, polyamide MXD6, and polyamide MXD6I.

また、前記ポリアミドの共重合成分として、少なくとも一つの末端アミノ基、もしくは末端カルボキシル基を有する数平均分子量が2000〜20000のポリエーテル、又は前記末端アミノ基を有するポリエーテルの有機カルボン酸塩、又は前記末端カルボキシル基を有するポリエーテルのアミノ塩を用いることもできる。具体的な例としては、ビス(アミノプロピル)ポリ(エチレンオキシド)(数平均分子量が2000〜20000のポリエチレングリコール)が挙げられる。   Further, as a copolymerization component of the polyamide, a polyether having at least one terminal amino group or a terminal carboxyl group and a number average molecular weight of 2000 to 20000, or an organic carboxylate of the polyether having the terminal amino group, or An amino salt of a polyether having a terminal carboxyl group can also be used. Specific examples include bis (aminopropyl) poly (ethylene oxide) (polyethylene glycol having a number average molecular weight of 2000 to 20000).

また、前記部分芳香族ポリアミドは、トリメリット酸、ピロメリット酸等の3塩基以上の多価カルボン酸から誘導される構成単位を実質的に線状である範囲内で含有していてもよい。   The partially aromatic polyamide may contain a structural unit derived from a polybasic carboxylic acid having 3 or more bases such as trimellitic acid and pyromellitic acid within a substantially linear range.

[エチレン−ビニルアルコール共重合体]
本実施形態で使用されるエチレンビニルアルコール共重合体としては、特に限定されないが、好ましくはエチレン含量15〜60モル%、更に好ましくは20〜55モル%、より好ましくは29〜44モル%であり、酢酸ビニル成分のケン化度が好ましくは90モル%以上、更に好ましくは95モル%以上のものである。
またエチレンビニルアルコール共重合体には、本実施形態の効果に悪影響を与えない範囲で、更に少量のプロピレン、イソブテン、α−オクテン、α−ドデセン、α−オクタデセン等のα−オレフィン、不飽和カルボン酸又はその塩、部分アルキルエステル、完全アルキルエステル、ニトリル、アミド、無水物、不飽和スルホン酸又はその塩等のコモノマーを含んでいてもよい。
[Ethylene-vinyl alcohol copolymer]
Although it does not specifically limit as an ethylene vinyl alcohol copolymer used by this embodiment, Preferably it is 15-60 mol%, More preferably, it is 20-55 mol%, More preferably, it is 29-44 mol%. The saponification degree of the vinyl acetate component is preferably 90 mol% or more, more preferably 95 mol% or more.
Further, the ethylene vinyl alcohol copolymer has a smaller amount of α-olefin such as propylene, isobutene, α-octene, α-dodecene, α-octadecene, unsaturated carboxylic acid, etc., as long as the effect of the present embodiment is not adversely affected. A comonomer such as an acid or a salt thereof, a partial alkyl ester, a complete alkyl ester, a nitrile, an amide, an anhydride, an unsaturated sulfonic acid or a salt thereof may be contained.

[植物由来樹脂]
本実施形態で使用される植物由来樹脂は、原料として植物由来物質を含む樹脂であれば良く、原料の植物由来物質は特に限定されない。具体例としては、脂肪族ポリエステル系生分解性樹脂が挙げられる。脂肪族ポリエステル系生分解性樹脂としては、例えば、ポリグリコール酸(PGA)、ポリ乳酸(PLA)等のポリ(α−ヒドロキシ酸);ポリブチレンサクシネート(PBS)、ポリエチレンサクシネート(PES)等のポリアルキレンアルカノエート等が挙げられる。
[Plant-derived resin]
The plant-derived resin used in the present embodiment is not particularly limited as long as it is a resin containing a plant-derived material as a raw material. Specific examples include aliphatic polyester-based biodegradable resins. Examples of the aliphatic polyester-based biodegradable resin include poly (α-hydroxy acids) such as polyglycolic acid (PGA) and polylactic acid (PLA); polybutylene succinate (PBS), polyethylene succinate (PES), and the like. And polyalkylene alkanoates.

[塩素系樹脂]
本実施形態で使用される塩素系樹脂は、構成単位に塩素を含む樹脂であれば良く、公知の樹脂を用いることが出来る。具体例としては、ポリ塩化ビニル、ポリ塩化ビニリデン、及び、これらと酢酸ビニル、マレイン酸誘導体、高級アルキルビニルエーテル等との共重合体を挙げることができる。
[Chlorine resin]
The chlorine-based resin used in the present embodiment may be a resin containing chlorine as a structural unit, and a known resin can be used. Specific examples include polyvinyl chloride, polyvinylidene chloride, and copolymers of these with vinyl acetate, maleic acid derivatives, higher alkyl vinyl ethers, and the like.

本実施形態の酸素吸収性医療用多層成形容器は、前記酸素吸収層(層A)及び熱可塑性樹脂を含有する樹脂層(層B)に加えて、所望する性能等に応じて任意の層を含んでいてもよい。そのような任意の層としては、例えば、接着層等が挙げられる。   In addition to the oxygen absorbing layer (layer A) and the resin layer containing the thermoplastic resin (layer B), the oxygen-absorbing medical multilayer molded container of the present embodiment has an optional layer depending on the desired performance and the like. May be included. Examples of such an arbitrary layer include an adhesive layer.

本実施形態の酸素吸収性医療用多層成形容器において、隣接する2つの層の間で実用的な層間接着強度が得られない場合には、当該2つの層の間に接着層(層AD)を設けることが好ましい。接着層は、接着性を有する熱可塑性樹脂を含むことが好ましい。接着性を有する熱可塑性樹脂としては、例えば、ポリエチレン又はポリプロピレン等のポリオレフィン系樹脂をアクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、フマル酸、イタコン酸等の不飽和カルボン酸で変性した酸変性ポリオレフィン樹脂、ポリエステル系ブロック共重合体を主成分とした、ポリエステル系熱可塑性エラストマーが挙げられる。接着層としては、接着性の観点から、層Bとして用いられている熱可塑性樹脂と同種の樹脂を変性したものを用いることが好ましい。接着層の厚みは、実用的な接着強度を発揮しつつ成形加工性を確保するという観点から、好ましくは2〜100μm、より好ましくは5〜90μm、更に好ましくは10〜80μmである。   In the oxygen-absorbing medical multilayer molded container of the present embodiment, when a practical interlayer adhesive strength cannot be obtained between two adjacent layers, an adhesive layer (layer AD) is provided between the two layers. It is preferable to provide it. The adhesive layer preferably contains a thermoplastic resin having adhesiveness. As the thermoplastic resin having adhesiveness, for example, an acid modification in which a polyolefin resin such as polyethylene or polypropylene is modified with an unsaturated carboxylic acid such as acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid, itaconic acid, etc. Examples thereof include polyester-based thermoplastic elastomers mainly composed of a polyolefin resin and a polyester-based block copolymer. As the adhesive layer, it is preferable to use a modified resin of the same type as the thermoplastic resin used as the layer B from the viewpoint of adhesiveness. The thickness of the adhesive layer is preferably 2 to 100 μm, more preferably 5 to 90 μm, and still more preferably 10 to 80 μm, from the viewpoint of ensuring molding processability while exhibiting practical adhesive strength.

本実施形態の酸素吸収性医療用多層成形容器の製造方法及び層構成については特に限定されず、通常の射出成形法により製造することができる。例えば、2台以上の射出機を備えた成形機及び射出用金型を用いて、層Aを構成する材料及び層Bを構成する材料をそれぞれの射出シリンダーから金型ホットランナーを通して、キャビティー内に射出して、射出用金型の形状に対応した医療用多層成形容器を製造することができる。また、先ず、層Bを構成する材料を射出シリンダーから射出し、次いで層Aを構成する材料を別の射出シリンダーから、層Bを構成する樹脂と同時に射出し、次に層Bを構成する樹脂を必要量射出してキャビティーを満たすことにより3層構造B/A/Bの医療用多層成形容器が製造できる。
また、先ず、層Bを構成する材料を射出し、次いで層Aを構成する材料を単独で射出し、最後に層Bを構成する材料を必要量射出して金型キャビティーを満たすことにより、5層構造B/A/B/A/Bの医療用多層成形容器が製造できる。
また、先ず、層B1を構成する材料を射出シリンダーから射出し、次いで層B2を構成する材料を別の射出シリンダーから、層B1を構成する樹脂と同時に射出し、次に層Aを構成する樹脂を層B1、層B2を構成する樹脂と同時に射出し、次に層B1を構成する樹脂を必要量射出してキャビティーを満たすことにより5層構造B1/B2/A/B2/B1の医療用多層成形容器が製造できる。
また、射出成形法ではないが、圧縮成形法により多層成形体を得てもよい。例えば、熱可塑性樹脂溶融物中に酸素吸収樹脂剤を設け、その溶融塊を雄型に供給するとともに、雌型により圧縮し、圧縮成形物を冷却固化することにより成形体を得られる。
得られた成形体の口頸部に耐熱性を与えるため、この段階で口頸部を熱処理により結晶化させてもよい。結晶化度は好ましくは30〜50%、より好ましくは35〜45%である。なお、結晶化は後述する二次加工を施した後に実施してもよい。
また押出成形、圧縮成形(シート成形、ブロー成形)等の成形手段によって所望の容器形状に成形してもよい。
該容器の形状は特に限定されるものではないが、例えば、バイアル、アンプル、プレフィルドシリンジ、真空採血管が挙げられる。
The manufacturing method and layer structure of the oxygen-absorbing medical multilayer molded container of the present embodiment are not particularly limited, and can be manufactured by a normal injection molding method. For example, using a molding machine equipped with two or more injection machines and an injection mold, the material constituting the layer A and the material constituting the layer B are passed from the respective injection cylinders through the mold hot runner into the cavity. The medical multilayer molded container corresponding to the shape of the injection mold can be manufactured. First, the material constituting the layer B is injected from the injection cylinder, then the material constituting the layer A is injected from another injection cylinder simultaneously with the resin constituting the layer B, and then the resin constituting the layer B By injecting a necessary amount of the solution to fill the cavity, a medical multilayer molded container having a three-layer structure B / A / B can be manufactured.
In addition, first, the material constituting the layer B is injected, then the material constituting the layer A is injected alone, and finally the material constituting the layer B is injected by a necessary amount to fill the mold cavity. A medical multilayer molded container having a five-layer structure B / A / B / A / B can be manufactured.
First, the material constituting the layer B1 is injected from the injection cylinder, then the material constituting the layer B2 is injected from another injection cylinder simultaneously with the resin constituting the layer B1, and then the resin constituting the layer A Is injected at the same time as the resin constituting the layer B1 and the layer B2, and then the necessary amount of the resin constituting the layer B1 is injected to fill the cavity, thereby medical treatment of the five-layer structure B1 / B2 / A / B2 / B1 Multi-layer molded containers can be manufactured.
Further, although not an injection molding method, a multilayer molded body may be obtained by a compression molding method. For example, a molded article can be obtained by providing an oxygen-absorbing resin agent in a thermoplastic resin melt, supplying the molten mass to a male mold, compressing the molten mass with a female mold, and cooling and solidifying the compression molded article.
In order to give heat resistance to the mouth and neck of the obtained molded body, the mouth and neck may be crystallized by heat treatment at this stage. The degree of crystallinity is preferably 30 to 50%, more preferably 35 to 45%. In addition, you may implement crystallization, after giving the secondary process mentioned later.
Moreover, you may shape | mold into a desired container shape by shaping | molding means, such as extrusion molding and compression molding (sheet molding, blow molding).
Although the shape of this container is not specifically limited, For example, a vial, an ampule, a prefilled syringe, and a vacuum blood collection tube are mentioned.

〔バイアル〕
本実施形態のバイアルの構成は、一般的なバイアルとなんら変わるものではなく、ボトル、ゴム栓、キャップから構成される。薬液をボトルに充填後、ゴム栓をして、更にその上からキャップを巻締めることで密閉して用いられる。前記ボトル部分が、本実施形態で用いられる酸素吸収性医療用多層成形容器であって、中間層の少なくとも一層が酸素吸収性樹脂組成物からなる酸素吸収層(層A)であり、最内層及び最外層が熱可塑性樹脂を含有する樹脂層(層B)である。
[Vial]
The configuration of the vial of this embodiment is not different from that of a general vial, and includes a bottle, a rubber stopper, and a cap. The bottle is filled with a chemical solution, sealed with a rubber stopper, and a cap is wound around the top. The bottle portion is an oxygen-absorbing medical multilayer molded container used in this embodiment, wherein at least one of the intermediate layers is an oxygen-absorbing layer (layer A) made of an oxygen-absorbing resin composition, The outermost layer is a resin layer (layer B) containing a thermoplastic resin.

本実施形態のバイアルのボトル部分の成形方法は射出ブロー成形、押出しブロー成形にて製造される。例として射出ブロー成形方法を以下に示す。
例えば、2台以上の射出機を備えた成形機及び射出用金型を用いて、層Aを構成する材料及び層Bを構成する材料をそれぞれの射出シリンダーから金型ホットランナーを通して、キャビティー内に射出して、射出用金型の形状に対応した多層成形体を製造することができる。また、先ず、層Bを構成する材料を射出シリンダーから射出し、次いで層Aを構成する材料を別の射出シリンダーから、層Bを構成する樹脂と同時に射出し、次に層Bを構成する樹脂を必要量射出してキャビティーを満たすことにより3層構造B/A/Bの成形体が製造できる。
また、先ず、層Bを構成する材料を射出し、次いで層Aを構成する材料を単独で射出し、最後に層Bを構成する材料を必要量射出して金型キャビティーを満たすことにより、5層構造B/A/B/A/Bの多層成形体が製造できる。
また、先ず、層B1を構成する材料を射出シリンダーから射出し、次いで層B2を構成する材料を別の射出シリンダーから、層B1を構成する樹脂と同時に射出し、次に層Aを構成する樹脂を層B1、層B2を構成する樹脂と同時に射出し、次に層B1を構成する樹脂を必要量射出してキャビティーを満たすことにより5層構造B1/B2/A/B2/B1の多層インジェクション成形体が製造できる。
射出ブロー成形では上記方法により得られた多層成形体をある程度加熱された状態を保ったまま最終形状金型(ブロー金型)に嵌め、空気を吹込み、膨らませて金型に密着させ、冷却固化させることでボトル状に成形することができる。
The method for molding the bottle portion of the vial of this embodiment is manufactured by injection blow molding or extrusion blow molding. As an example, an injection blow molding method is shown below.
For example, using a molding machine equipped with two or more injection machines and an injection mold, the material constituting the layer A and the material constituting the layer B are passed from the respective injection cylinders through the mold hot runner into the cavity. The multilayer molded body corresponding to the shape of the injection mold can be manufactured. First, the material constituting the layer B is injected from the injection cylinder, then the material constituting the layer A is injected from another injection cylinder simultaneously with the resin constituting the layer B, and then the resin constituting the layer B By injection of the required amount to fill the cavity, a three-layer structure B / A / B shaped body can be produced.
In addition, first, the material constituting the layer B is injected, then the material constituting the layer A is injected alone, and finally the material constituting the layer B is injected by a necessary amount to fill the mold cavity. A multilayer molded body having a five-layer structure B / A / B / A / B can be produced.
First, the material constituting the layer B1 is injected from the injection cylinder, then the material constituting the layer B2 is injected from another injection cylinder simultaneously with the resin constituting the layer B1, and then the resin constituting the layer A Is injected at the same time as the resin constituting the layers B1 and B2, and then the required quantity of the resin constituting the layer B1 is injected to fill the cavity, thereby providing a multi-layer injection of B1 / B2 / A / B2 / B1. A molded body can be produced.
In injection blow molding, the multilayer molded body obtained by the above method is fitted in the final shape mold (blow mold) while maintaining a certain degree of heating, blown in air, inflated and brought into close contact with the mold, and cooled and solidified. By making it, it can shape | mold in a bottle shape.

〔アンプル〕
本実施形態のアンプルの構成は、一般的なアンプルとなんら変わることなく、頸部を細くした小容器である。薬液を充填後、頸部の先を熔封する事で密閉して用いられる。前記がアンプル本発明で用いられる酸素吸収性医療用多層成形容器であって、中間層の少なくとも一層が酸素吸収性樹脂組成物からなる酸素吸収層(層A)であり、最内層、最外層が熱可塑性樹脂を含有する樹脂層(層B)である。本実施形態のアンプルの成形方法は射出ブロー成形、押出しブロー成形にて製造される。
〔ampoule〕
The configuration of the ampule according to the present embodiment is a small container having a narrow neck without changing from a general ampule. After filling with chemicals, it is used by sealing the tip of the neck. The above-mentioned ampule is an oxygen-absorbing medical multilayer molded container used in the present invention, wherein at least one of the intermediate layers is an oxygen-absorbing layer (layer A) made of an oxygen-absorbing resin composition, and the innermost layer and the outermost layer are It is a resin layer (layer B) containing a thermoplastic resin. The ampoule molding method of this embodiment is manufactured by injection blow molding or extrusion blow molding.

〔プレフィルドシリンジ〕
本実施形態のプレフィルドシリンジの構成は一般的なプレフィルドシリンジとなんら変わるものではなく、少なくとも薬液を充填する為のバレル、バレルの一端に注射針を接合する為の接合部及び使用時に薬液を押出す為のプランジャーから構成される。前記バレルが本発明で用いられる酸素吸収性医療用多層成形容器であって、中間層の少なくとも一層が酸素吸収性樹脂組成物からなる酸素吸収層(層A)であり、最内層、最外層が熱可塑性樹脂を含有する樹脂層(層B)である。
[Prefilled syringe]
The configuration of the prefilled syringe according to the present embodiment is not different from that of a general prefilled syringe. At least a barrel for filling a chemical, a joint for joining a syringe needle to one end of the barrel, and a chemical at the time of use are extruded. It consists of a plunger for the purpose. The barrel is an oxygen-absorbing medical multilayer molded container used in the present invention, wherein at least one of the intermediate layers is an oxygen-absorbing layer (layer A) made of an oxygen-absorbing resin composition, and the innermost layer and the outermost layer are It is a resin layer (layer B) containing a thermoplastic resin.

本発明のプレフィルドシリンジの成形方法は射出成形法にて製造される。多層成形体となるバレルは、先ず層Bを構成する樹脂をキャビティ内に一定量射出し、次いで層Aを構成する樹脂を一定量射出し、再び層Bを構成する樹脂を一定量射出することにより製造される。バレルと接合部は一体のものとして成形しても良いし、別々に成形した物を接合しても良い。接合部の先端は封をする必要があるが、その方法は接合部先端の樹脂を溶融状態に加熱、ペンチ等で挟み込んで融着させる等すればよい。   The molding method of the prefilled syringe of the present invention is manufactured by an injection molding method. The barrel that becomes the multilayer molded body first injects a certain amount of the resin constituting the layer B into the cavity, then injects a certain amount of the resin constituting the layer A, and again injects a certain amount of the resin constituting the layer B. Manufactured by. The barrel and the joint may be molded as an integral part, or separately molded products may be joined. The tip of the joint must be sealed, but the method may be to heat the resin at the tip of the joint to a molten state, sandwich it with pliers or the like, and fuse it.

容器の厚さは、使用目的や大きさによるが0.5〜20mm程度のものであればよい。また、厚さは均一であっても、厚さを変えたものであってもいずれでもよい。また表面(処理されない)に長期保存安定の目的で、別のガスバリア膜や遮光膜が形成されていてもよい。かかる膜およびその形成方法としては、特開2004−323058号公報に記載された方法などを採用できる。   The thickness of the container may be about 0.5 to 20 mm depending on the purpose of use and size. Moreover, even if thickness is uniform, what changed thickness may be sufficient. Further, another gas barrier film or a light shielding film may be formed on the surface (not treated) for the purpose of long-term storage stability. As such a film and a method for forming the film, a method described in JP-A-2004-323058 can be employed.

〔真空採血管〕
本実施形態の真空採血管の構成は、一般的な真空採血管となんら変わるものではなく、管状体および栓体から構成される。前記管状体が本実施形態で用いられる酸素吸収性医療用多層成形容器であって、中間層の少なくとも一層が酸素吸収性樹脂組成物からなる酸素吸収層(層A)であり、最内層及び最外層が熱可塑性樹脂を含有する樹脂層(層B)である。
[Vacuum blood collection tube]
The configuration of the vacuum blood collection tube of this embodiment is not different from that of a general vacuum blood collection tube, and is composed of a tubular body and a plug body. The tubular body is an oxygen-absorbing medical multilayer molded container used in this embodiment, wherein at least one of the intermediate layers is an oxygen-absorbing layer (layer A) made of an oxygen-absorbing resin composition, and the innermost layer and the innermost layer. The outer layer is a resin layer (layer B) containing a thermoplastic resin.

本実施形態の真空採血管の成形方法は射出成形法にて製造される。多層成形体となる管状体は、先ず層Bを構成する樹脂をキャビティ内に一定量射出し、次いで層Aを構成する樹脂を一定量射出し、再び層Bを構成する樹脂を一定量射出することにより製造される。   The vacuum blood collection tube forming method of the present embodiment is manufactured by an injection molding method. The tubular body that is a multilayer molded body first injects a certain amount of the resin constituting the layer B into the cavity, then injects a certain amount of the resin that constitutes the layer A, and again injects a certain amount of the resin that constitutes the layer B. It is manufactured by.

〔バイオ医薬〕
本実施形態の酸素吸収性医療用多層成形容器に充填するバイオ医薬としては特に制限はないが、本実施形態の効果の点から、タンパク医薬品、核酸医薬品等が挙げられ、具体的には各種モノクロナール抗体、各種ワクチン、インターフェロン、インスリン、成長ホルモン、エリスロポエチン、コロニー刺激因子、TPA、インターロイキン、血液凝固第VIII因子、血液凝固第IX因子、ナトリウム利尿ホルモン、ソマトメジン、グルカゴン、血清アルブミン、カルシトニン、成長ホルモン放出因子、消化酵素剤、炎症酵素剤、抗生物質、アンチセンス核酸、アンチジーン核酸、デコイ核酸、アプタマー、siRNA、microRNA等が挙げられる。これらのバイオ医薬を医療用多層容器に充填した場合、酸化による変質や、薬効の低下を抑制する事ができる。
[Biopharmaceutical]
The biopharmaceutical filled in the oxygen-absorbing medical multilayer molded container of the present embodiment is not particularly limited, but from the viewpoint of the effect of the present embodiment, protein pharmaceuticals, nucleic acid pharmaceuticals and the like can be mentioned. Narnal antibody, various vaccines, interferon, insulin, growth hormone, erythropoietin, colony stimulating factor, TPA, interleukin, blood coagulation factor VIII, blood coagulation factor IX, natriuretic hormone, somatomedin, glucagon, serum albumin, calcitonin, growth Examples include hormone releasing factors, digestive enzyme agents, inflammatory enzyme agents, antibiotics, antisense nucleic acids, antigene nucleic acids, decoy nucleic acids, aptamers, siRNA, and microRNA. When these biopharmaceuticals are filled in a medical multilayer container, it is possible to suppress deterioration due to oxidation and a decrease in medicinal efficacy.

また、これらの被保存物の充填前後に、被保存物に適した形で、医療多層容器や被保存物の殺菌を施すことができる。殺菌方法としては、100℃以下での熱水処理、100℃以上の加圧熱水処理、121℃以上の高温加熱処理等の加熱殺菌、紫外線、マイクロ波、ガンマ線等の電磁波殺菌、エチレンオキサイド等のガス処理、過酸化水素や次亜塩素酸等の薬剤殺菌等が挙げられる。   In addition, before and after filling these objects to be stored, the medical multilayer container and the objects to be stored can be sterilized in a form suitable for the objects to be stored. Sterilization methods include hot water treatment at 100 ° C. or lower, pressurized hot water treatment at 100 ° C. or higher, heat sterilization such as high temperature heat treatment at 121 ° C. or higher, electromagnetic wave sterilization of ultraviolet rays, microwaves, gamma rays, ethylene oxide, etc. Gas treatment, and chemical sterilization such as hydrogen peroxide and hypochlorous acid.

以下に実施例と比較例を用いて本発明をさらに詳しく説明するが、本発明はこれによって限定されるものではない。なお、特に記載が無い限り、NMR測定は室温で行った。なお、実施例ではバイアルを例に挙げているが、本願明細書に示したとおりアンプル、プレフィルドシリンジに対する要求特性はバイアルに対するものと同じである為、本発明がこれらの実施例によりその範囲を限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto. Unless otherwise specified, NMR measurements were performed at room temperature. In the examples, vials are used as examples. However, as shown in the present specification, the required characteristics for ampoules and prefilled syringes are the same as those for vials, and therefore the scope of the present invention is limited by these examples. Is not to be done.

[モノマー合成例]
内容積18Lのオートクレーブに、ナフタレン−2,6−ジカルボン酸ジメチル2.20kg、2−プロパノール11.0kg、5%パラジウムを活性炭に担持させた触媒350g(50wt%含水品)を仕込んだ。次いで、オートクレーブ内の空気を窒素と置換し、さらに窒素を水素と置換した後、オートクレーブ内の圧力が0.8MPaとなるまで水素を供給した。次に、撹拌機を起動し、回転速度を500rpmに調整し、30分かけて内温を100℃まで上げた後、さらに水素を供給し圧力を1MPaとした。その後、反応の進行による圧力低下に応じ、1MPaを維持するよう水素の供給を続けた。7時間後に圧力低下が無くなったので、オートクレーブを冷却し、未反応の残存水素を放出した後、オートクレーブから反応液を取り出した。反応液を濾過し、触媒を除去した後、分離濾液から2−プロパノールをエバポレーターで蒸発させた。得られた粗生成物に、2−プロパノールを4.40kg加え、再結晶により精製し、テトラリン−2,6−ジカルボン酸ジメチルを80%の収率で得た。尚、NMRの分析結果は下記の通りである。1H‐NMR(400MHz CDCl3)δ7.76-7.96(2H m)、7.15(1H d)、3.89(3H s)、3.70(3H s)、2.70-3.09(5H m)、1.80-1.95(1H m)。
[Monomer synthesis example]
An autoclave having an internal volume of 18 L was charged with 2.20 kg of dimethyl naphthalene-2,6-dicarboxylate, 11.0 kg of 2-propanol, and 350 g (50 wt% water-containing product) of 5% palladium supported on activated carbon. Next, after the air in the autoclave was replaced with nitrogen, and further nitrogen was replaced with hydrogen, hydrogen was supplied until the pressure in the autoclave reached 0.8 MPa. Next, the agitator was started, the rotation speed was adjusted to 500 rpm, the internal temperature was raised to 100 ° C. over 30 minutes, and hydrogen was further supplied to make the pressure 1 MPa. Thereafter, the supply of hydrogen was continued to maintain 1 MPa in accordance with the pressure drop due to the progress of the reaction. Since the pressure drop disappeared after 7 hours, the autoclave was cooled, unreacted residual hydrogen was released, and then the reaction solution was taken out from the autoclave. The reaction solution was filtered to remove the catalyst, and then 2-propanol was evaporated from the separated filtrate with an evaporator. To the obtained crude product, 4.40 kg of 2-propanol was added and purified by recrystallization to obtain dimethyl tetralin-2,6-dicarboxylate in a yield of 80%. The NMR analysis results are as follows. 1H-NMR (400 MHz CDCl 3 ) δ7.76-7.96 (2H m), 7.15 (1H d), 3.89 (3H s), 3.70 (3H s), 2.70-3.09 (5H m), 1.80-1.95 (1H m ).

[ポリマー製造例]
(製造例1)
充填塔式精留等、分縮器、全縮器、コールドトラップ、撹拌機、加熱装置および窒素導入管を備えたポリエステル樹脂製造装置に、モノマー合成例のテトラリン−2,6−ジカルボン酸ジメチル543g、1,4−ブタンジオール315g、テトラブチルチタネート0.171gを仕込み、窒素雰囲気下で230℃まで昇温してエステル交換反応を行った。ジカルボン酸成分の反応転化率を85%以上とした後、テトラブチルチタネート0.171gを添加し、昇温と減圧を徐々に行い、245℃、133Pa以下で重縮合を行い、ポリエステル化合物(1)を得た。
[Polymer production example]
(Production Example 1)
In a polyester resin production apparatus equipped with a fractionator, total condenser, cold trap, stirrer, heating device, and nitrogen introduction pipe, 543 g of dimethyl tetralin-2,6-dicarboxylate as a monomer synthesis example , 1,4-butanediol (315 g) and tetrabutyl titanate (0.171 g) were charged, and the temperature was raised to 230 ° C. in a nitrogen atmosphere to conduct a transesterification reaction. After setting the reaction conversion rate of the dicarboxylic acid component to 85% or more, 0.171 g of tetrabutyl titanate is added, the temperature is increased and the pressure is gradually reduced, polycondensation is performed at 245 ° C. and 133 Pa or less, and the polyester compound (1) Got.

得られたポリエステル化合物(1)の重量平均分子量と数平均分子量をGPC(ゲルパーミエーションクロマトグラフィー)により測定を行った結果、ポリスチレン換算の重量平均分子量は8.7×10、数平均分子量は3.1×10であった。ガラス転移温度と融点をDSCにより測定を行った結果、ガラス転移温度は36℃、融点は145℃であった。 As a result of measuring the weight average molecular weight and number average molecular weight of the obtained polyester compound (1) by GPC (gel permeation chromatography), the weight average molecular weight in terms of polystyrene was 8.7 × 10 4 , and the number average molecular weight was It was 3.1 × 10 4 . As a result of measuring the glass transition temperature and the melting point by DSC, the glass transition temperature was 36 ° C. and the melting point was 145 ° C.

(製造例2)
製造例1の1,4−ブタンジオールをエチレングリコールとし、その重量を217gとした以外は、製造例1と同様にしてポリエステル化合物(2)を合成した。ポリエステル化合物(2)のポリスチレン換算の重量平均分子量は8.5×10、数平均分子量は3.0×10、ガラス転移温度は67℃、融点は非晶性のため認められなかった。
(Production Example 2)
A polyester compound (2) was synthesized in the same manner as in Production Example 1 except that 1,4-butanediol of Production Example 1 was changed to ethylene glycol and its weight was changed to 217 g. The weight average molecular weight in terms of polystyrene of the polyester compound (2) was 8.5 × 10 4 , the number average molecular weight was 3.0 × 10 4 , the glass transition temperature was 67 ° C., and the melting point was not recognized because it was amorphous.

(製造例3)
製造例1の1,4−ブタンジオールを1,6−ヘキサンジオールとし、その重量を413gとした以外は、製造例1と同様にしてポリエステル化合物(3)を合成した。ポリエステル化合物(3)の重量平均分子量は8.9×10、数平均分子量は3.3×10、ガラス転移温度は16℃、融点は137℃であった。
(Production Example 3)
A polyester compound (3) was synthesized in the same manner as in Production Example 1 except that 1,4-butanediol in Production Example 1 was changed to 1,6-hexanediol and its weight was changed to 413 g. The weight average molecular weight of the polyester compound (3) was 8.9 × 10 4 , the number average molecular weight was 3.3 × 10 4 , the glass transition temperature was 16 ° C., and the melting point was 137 ° C.

(製造例4)
製造例1の1,4−ブタンジオール315gを1,4−ブタンジオール258gおよびエチレングリコール44gとした以外は、製造例1と同様にしてポリエステル化合物(4)を合成した。ポリエステル化合物(4)の重量平均分子量は1.1×10、数平均分子量は4.1×10、ガラス転移温度は39℃、融点は135℃であった。
(Production Example 4)
A polyester compound (4) was synthesized in the same manner as in Production Example 1 except that 315 g of 1,4-butanediol in Production Example 1 was changed to 258 g of 1,4-butanediol and 44 g of ethylene glycol. The weight average molecular weight of the polyester compound (4) was 1.1 × 10 5 , the number average molecular weight was 4.1 × 10 4 , the glass transition temperature was 39 ° C., and the melting point was 135 ° C.

[バイアルの製造] [Manufacture of vials]

下記の条件により、層Bを構成する材料を射出シリンダーから射出し、次いで層Aを構成する材料を別の射出シリンダーから、層Bを構成する樹脂と同時に射出し、次に層Aを構成する樹脂を必要量射出して射出金型内キャビティーを満たすことにより、B/A/Bの3層構成の射出成形体を得た後、射出成形体を所定の温度まで冷却し、ブロー金型へ移行した後にブロー成形を行うことでバイアル(ボトル部)を製造した。バイアルの総質量を24gとし、層Aの質量をバイアルの総質量の30質量%とした。層Bを構成する樹脂としてはシクロオレフィンコポリマー(Ticona GmbH製、商品名:TOPAS6013)を使用した。   Under the following conditions, the material constituting the layer B is injected from the injection cylinder, then the material constituting the layer A is injected from another injection cylinder at the same time as the resin constituting the layer B, and then the layer A is constituted. After injection of the required amount of resin to fill the cavity in the injection mold, an injection molded body having a three-layer structure of B / A / B is obtained, and then the injection molded body is cooled to a predetermined temperature, and a blow mold The vial (bottle part) was manufactured by performing blow molding after shifting to. The total mass of the vial was 24 g, and the mass of layer A was 30% by mass of the total mass of the vial. As the resin constituting the layer B, a cycloolefin copolymer (manufactured by Ticona GmbH, trade name: TOPAS6013) was used.

(バイアルの形状)
全長89mm、外径40mmφ、肉厚1.8mmとした。なお、バイアルの製造には、射出ブロー一体型成形機(UNILOY製、型式:IBS 85、4個取り)を使用した。
(バイアルの成形条件)
層A用の射出シリンダー温度:260℃
層B用の射出シリンダー温度:280℃
射出金型内樹脂流路温度:280℃
ブロー温度:150℃
ブロー金型冷却水温度:15℃
(Vial shape)
The total length was 89 mm, the outer diameter was 40 mmφ, and the wall thickness was 1.8 mm. For the manufacture of the vial, an injection blow integrated molding machine (manufactured by UNILOY, model: IBS 85, 4 pieces) was used.
(Vial molding conditions)
Injection cylinder temperature for layer A: 260 ° C
Injection cylinder temperature for layer B: 280 ° C
Resin channel temperature in injection mold: 280 ° C
Blow temperature: 150 ° C
Blow mold cooling water temperature: 15 ° C

[バイアルの性能評価]
実施例及び比較例で得られたバイアルの酸素透過率、成形後の外観、落下試験、溶出試験、バイオ医薬保存試験について、以下の方法で測定し評価した。
[Performance evaluation of vials]
The oxygen permeability of the vials obtained in Examples and Comparative Examples, appearance after molding, drop test, dissolution test, and biopharmaceutical storage test were measured and evaluated by the following methods.

(1)バイアルの酸素透過率(OTR)
23℃、成形体外部の相対湿度50%、内部の相対湿度100%の雰囲気下にて、測定開始から30日目の酸素透過率を測定した。測定は、酸素透過率測定装置(MOCON社製、商品名:OX−TRAN 2−21 ML)を使用した。測定値が低いほど酸素バリア性が良好であることを示す。なお測定の検出下限界は酸素透過率5×10−5mL/(0.21atm・day・package)である。
(1) Vials oxygen permeability (OTR)
The oxygen permeability on the 30th day from the start of measurement was measured in an atmosphere of 23 ° C., 50% relative humidity outside the molded body, and 100% relative humidity inside. For the measurement, an oxygen permeability measuring device (manufactured by MOCON, trade name: OX-TRAN 2-21 ML) was used. The lower the measured value, the better the oxygen barrier property. The lower limit of detection of the measurement is oxygen permeability 5 × 10 −5 mL / (0.21 atm · day · package).

(2)成形後の外観
成形後のバイアルの白化の有無を目視にて観察した。
(2) Appearance after molding The presence or absence of whitening of the vial after molding was visually observed.

(3)落下試験
バイアルを40℃、90%RH下にて1カ月保存した後、純水50mLを満杯充填し、ゴム栓及びアルミキャップにて密封した。この容器を2mの高さから落下させた時の、容器外観を調査した。
(3) Drop test After the vial was stored at 40 ° C. and 90% RH for 1 month, it was filled with 50 mL of pure water and sealed with a rubber stopper and an aluminum cap. The container appearance was examined when the container was dropped from a height of 2 m.

(4)溶出試験
バイアルを40℃、90%RH下にて1カ月保存した後、純水50mLを満杯充填し、ゴム栓及びアルミキャップにて密封した容器を40℃、60%RH下に4カ月保存し、その後、純水中のトータルカーボン量(以下、TOC)を測定した。
(TOC測定)
装置;株式会社島津製作所製 TOC-VCPH
燃焼炉温度;720℃
ガス・流量;高純度空気、TOC計部150mL/min
注入量;150μL
検出限界;1μg/mL
(4) Dissolution test After storing the vial at 40 ° C. and 90% RH for 1 month, a container filled with 50 mL of pure water and sealed with a rubber stopper and an aluminum cap was placed under 40 ° C. and 60% RH. After storing for months, the total amount of carbon (hereinafter referred to as TOC) in pure water was measured.
(TOC measurement)
Equipment: Shimadzu Corporation TOC-V CPH
Combustion furnace temperature: 720 ° C
Gas and flow rate: High purity air, TOC meter section 150mL / min
Injection volume: 150 μL
Detection limit: 1 μg / mL

(5)バイオ医薬保存試験
(結合比測定方法)
等温滴定型熱量計を用い、5μMの抗原溶液(BIOLOGICAL Industries Ltd.社製FGF1−Mouse)をセル側に充填し、抗体溶液を10μLずつセルに滴下しながら、25℃で結合比を測定した。
(保存試験)
バイアルに、50μMに調整した和光純薬工業株式会社製ANTI FGF1, Monoclonal Antibody (mAb1)を1cc充填し、8℃50%RH条件下で180日保存した。溶媒にはインビロジェン製リン酸バッファー(PBSpH7.4)を使用した。保存試験前及び180日保存後の抗体溶液の結合比を上記の方法で測定し、保存前後での抗体活性保持率を次の式で求めた。
抗体活性保持率(%)
=(180日保存後の抗体溶液の結合比/保存前の抗体溶液の結合比)×100
(5) Biopharmaceutical preservation test (binding ratio measurement method)
Using an isothermal titration calorimeter, a 5 μM antigen solution (FGF1-Mouse manufactured by Biologic Industries Ltd.) was filled on the cell side, and the binding ratio was measured at 25 ° C. while 10 μL of the antibody solution was dropped into the cell.
(Preservation test)
The vial was filled with 1 cc of ANTI FGF1, Monoclonal Antibody (mAb1) manufactured by Wako Pure Chemical Industries, Ltd. adjusted to 50 μM, and stored for 180 days under 8 ° C. and 50% RH conditions. As a solvent, Invitrogen phosphate buffer (PBS pH 7.4) was used. The binding ratio of the antibody solution before storage test and after storage for 180 days was measured by the above method, and the antibody activity retention before and after storage was determined by the following formula.
Antibody activity retention rate (%)
= (Binding ratio of antibody solution after storage for 180 days / Binding ratio of antibody solution before storage) × 100

(実施例1)
ポリエステル化合物(1)100質量部に対し、ステアリン酸コバルト(II)をコバルト量が0.02質量部となるようドライブレンドし、直径37mmのスクリューを2本有する2軸押出機に15kg/hの速度で上記材料を供給し、シリンダー温度220℃の条件にて溶融混練を行い、押出機ヘッドからストランドを押し出し、冷却後、ペレタイジングし、酸素吸収性樹脂組成物を得た。層Aを構成する樹脂として前記酸素吸収樹脂組成物を用い、バイアルを製造し性能評価を行った。結果を表1に示す。
Example 1
Polyester compound (1) is 100 parts by weight of cobalt stearate (II) dry blended so that the amount of cobalt is 0.02 parts by weight, and 15 kg / h in a twin screw extruder having two screws with a diameter of 37 mm. The above materials were supplied at a speed, melt kneaded under the condition of a cylinder temperature of 220 ° C., a strand was extruded from the extruder head, cooled, and pelletized to obtain an oxygen-absorbing resin composition. Using the oxygen-absorbing resin composition as the resin constituting the layer A, a vial was produced and performance evaluation was performed. The results are shown in Table 1.

(実施例2〜4)
ポリエステル化合物(1)を、表1に示すポリエステル化合物に変更したこと以外は実施例1と同様にしてバイアルを製造し性能評価を行った。結果を表1に示す。
(Examples 2 to 4)
A vial was produced in the same manner as in Example 1 except that the polyester compound (1) was changed to the polyester compound shown in Table 1, and performance evaluation was performed. The results are shown in Table 1.

(実施例5)
ポリエステル化合物(1)100質量部を、ポリエステル化合物(1)90質量部及びポリエステル化合物(2)10質量部をブレンドした樹脂組成物に変更した以外は実施例1と同様にしてバイアルを製造し性能評価を行った。結果を表1に示す。
(Example 5)
A vial was produced in the same manner as in Example 1 except that 100 parts by mass of the polyester compound (1) was changed to a resin composition obtained by blending 90 parts by mass of the polyester compound (1) and 10 parts by mass of the polyester compound (2). Evaluation was performed. The results are shown in Table 1.

(比較例1)
Ticona GmbH社製シクロオレフィンコポリマー(Ticona GmbH社製 TOPAS6013)を用いて実施例1と同形状の単層のバイアルを製造し性能評価を行った。結果を表1に示す。
(Comparative Example 1)
A single-layer vial having the same shape as in Example 1 was produced using a cycloolefin copolymer (Ticona GmbH, TOPAS 6013) manufactured by Ticona GmbH, and performance evaluation was performed. The results are shown in Table 1.

(比較例2)
ポリエステル化合物(1)をナイロンMXD6(三菱ガス化学株式会社製S7007)に変更し、ステアリン酸コバルト(II)の使用量をコバルト量として0.04質量部とし、シリンダー温度を280℃とした以外は、実施例1と同様にしてバイアルを製造し、性能評価を行った。結果を表1に示す。
(Comparative Example 2)
The polyester compound (1) is changed to nylon MXD6 (S7007 manufactured by Mitsubishi Gas Chemical Co., Ltd.), the amount of cobalt stearate (II) used is 0.04 parts by mass as the amount of cobalt, and the cylinder temperature is 280 ° C. A vial was produced in the same manner as in Example 1, and the performance was evaluated. The results are shown in Table 1.

Figure 0006015344
Figure 0006015344

実施例1〜5で得られた容器にバイオ医薬を保存した場合、長期保存後も良好な強度を維持し、容器から内容物への溶出量も低く、保存後の薬効の低下が抑えられていることが判る。   When biopharmaceuticals are stored in the containers obtained in Examples 1 to 5, good strength is maintained even after long-term storage, the amount of elution from the containers to the contents is low, and a decrease in medicinal efficacy after storage is suppressed. I know that.

Claims (4)

バイオ医薬を、ポリエステル化合物及び遷移金属触媒を含有する酸素吸収性樹脂組成物からなる酸素吸収層(層A)と、熱可塑性樹脂を含有する樹脂層(層B)を前記層Aの両側に積層した、少なくとも3層を含有する酸素吸収性医療用多層成形容器内に保存するバイオ医薬の保存方法であって、
前記ポリエステル化合物が、下記一般式(1)〜(4)
Figure 0006015344

(式中、Rは、それぞれ独立して、水素原子または一価の置換基を示し、一価の置換基は、ハロゲン原子、アルキル基、アルケニル基、アルキニル基、アリール基、複素環基、シアノ基、ヒドロキシ基、カルボキシル基、エステル基、アミド基、ニトロ基、アルコキシ基、アリールオキシ基、アシル基、アミノ基、メルカプト基、アルキルチオ基、アリールチオ基、複素環チオ基及びイミド基からなる群より選択される少なくとも1種であり、これらはさらに置換基を有していてもよい。mは0〜3、nは0〜7の整数を表し、テトラリン環のベンジル位に少なくとも1つ以上の水素原子が結合している。Xは芳香族炭化水素基、飽和または不飽和の脂環式炭化水素基、直鎖状または分岐状の飽和または不飽和の脂肪族炭化水素基及び複素環基からなる群から選ばれる少なくとも1つの基を含有する2価の基を表す。)
からなる群より選択される少なくとも1つのテトラリン環を有する構成単位を含有する、
バイオ医薬の保存方法。
The biopharmaceutical is laminated on both sides of the layer A with an oxygen-absorbing layer (layer A) comprising an oxygen-absorbing resin composition containing a polyester compound and a transition metal catalyst and a resin layer (layer B) containing a thermoplastic resin. A biopharmaceutical storage method for storing in an oxygen-absorbing medical multilayer molded container containing at least three layers,
The polyester compound is represented by the following general formulas (1) to (4).
Figure 0006015344

(In the formula, each R independently represents a hydrogen atom or a monovalent substituent, and the monovalent substituent is a halogen atom, alkyl group, alkenyl group, alkynyl group, aryl group, heterocyclic group, cyano group, A group consisting of a group, a hydroxy group, a carboxyl group, an ester group, an amide group, a nitro group, an alkoxy group, an aryloxy group, an acyl group, an amino group, a mercapto group, an alkylthio group, an arylthio group, a heterocyclic thio group, and an imide group At least one selected from the above, which may further have a substituent, m represents an integer of 0 to 3, n represents an integer of 0 to 7, and at least one hydrogen atom at the benzyl position of the tetralin ring. X is an aromatic hydrocarbon group, a saturated or unsaturated alicyclic hydrocarbon group, a linear or branched saturated or unsaturated aliphatic hydrocarbon group, and a heterocyclic ring. It represents a divalent group containing at least one group selected from the group consisting of.)
Containing a structural unit having at least one tetralin ring selected from the group consisting of:
Biopharmaceutical storage method.
前記遷移金属触媒が、マンガン、鉄、コバルト、ニッケルおよび銅からなる群より選択される少なくとも1種以上の遷移金属を含むものである、請求項1記載のバイオ医薬の保存方法。   The biopharmaceutical storage method according to claim 1, wherein the transition metal catalyst contains at least one transition metal selected from the group consisting of manganese, iron, cobalt, nickel and copper. 前記遷移金属触媒が、前記ポリエステル化合物100質量部に対し、遷移金属量として0.001〜10質量部含まれる、請求項1または2に記載のバイオ医薬の保存方法。   The biopharmaceutical storage method according to claim 1 or 2, wherein the transition metal catalyst is contained in an amount of 0.001 to 10 parts by mass as a transition metal amount with respect to 100 parts by mass of the polyester compound. 前記一般式(1)で表される構成単位が、下記式(5)〜(7)からなる群より選択される少なくとも1つである、請求項1〜3のいずれかに記載のバイオ医薬の保存方法。
Figure 0006015344
The biopharmaceutical according to any one of claims 1 to 3, wherein the structural unit represented by the general formula (1) is at least one selected from the group consisting of the following formulas (5) to (7). Preservation method.
Figure 0006015344
JP2012235409A 2011-11-25 2012-10-25 Biopharmaceutical storage method Active JP6015344B2 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP2012235409A JP6015344B2 (en) 2012-10-25 2012-10-25 Biopharmaceutical storage method
IN4745CHN2014 IN2014CN04745A (en) 2011-11-25 2012-11-22
EP12852006.1A EP2784120B1 (en) 2011-11-25 2012-11-22 Oxygen-absorbing resin composition, oxygen-absorbing molded body using same, and multilayer body, container, injection molded body and medical container each using oxygen-absorbing resin composition or oxygen-absorbing molded body
PT128520061T PT2784120T (en) 2011-11-25 2012-11-22 Oxygen-absorbing resin composition, oxygen-absorbing molded body using same, and multilayer body, container, injection molded body and medical container each using oxygen-absorbing resin composition or oxygen-absorbing molded body
KR1020147013872A KR101880332B1 (en) 2011-11-25 2012-11-22 Oxygen-absorbing resin composition, oxygen-absorbing molded body using same, and multilayer body, container, injection molded body and medical container each using oxygen-absorbing resin composition or oxygen-absorbing molded body
DK12852006.1T DK2784120T3 (en) 2011-11-25 2012-11-22 OXYGEN-ABSORBING RESIN COMPOSITION, OXYGEN-ABSORBING FORMED USE OF THE SAME, AND MULTIPLE BODIES, CONTAINERS, INJECTED BODIES AND MEDICINAL CONTAINERS, WHICH USES OXYGEN ORGANESE MEDICINE ORMS, OXYGEN ABOUT
ES12852006.1T ES2641259T3 (en) 2011-11-25 2012-11-22 Composition of oxygen absorption resin, molded body of oxygen absorption using the same and body, container, injection molded body and multi-layer medical container each using the composition of oxygen absorption resin or molded body of oxygen absorption
HUE12852006A HUE035345T2 (en) 2011-11-25 2012-11-22 Oxygen-absorbing resin composition, oxygen-absorbing molded body using same, and multilayer body, container, injection molded body and medical container each using oxygen-absorbing resin composition or oxygen-absorbing molded body
PCT/JP2012/080395 WO2013077436A1 (en) 2011-11-25 2012-11-22 Oxygen-absorbing resin composition, oxygen-absorbing molded body using same, and multilayer body, container, injection molded body and medical container each using oxygen-absorbing resin composition or oxygen-absorbing molded body
US14/360,078 US10035129B2 (en) 2011-11-25 2012-11-22 Oxygen-absorbing resin composition and oxygen-absorbing molded article using same and multilayer body, container, injection-molded article and medical container using these
CN201280057913.6A CN103958604B (en) 2011-11-25 2012-11-22 Oxygen-absorbing resin composition and use its oxygen uptake formed body and use their polylayer forest, container, injection molded article and container for medical use
PL12852006T PL2784120T3 (en) 2011-11-25 2012-11-22 Oxygen-absorbing resin composition, oxygen-absorbing molded body using same, and multilayer body, container, injection molded body and medical container each using oxygen-absorbing resin composition or oxygen-absorbing molded body
TW101143982A TWI568789B (en) 2011-11-25 2012-11-23 Oxygen absorbing resin composition and oxygen absorbing molded article using the same, and laminate, container, injection molded article and medical container using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012235409A JP6015344B2 (en) 2012-10-25 2012-10-25 Biopharmaceutical storage method

Publications (2)

Publication Number Publication Date
JP2014084154A JP2014084154A (en) 2014-05-12
JP6015344B2 true JP6015344B2 (en) 2016-10-26

Family

ID=50787583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012235409A Active JP6015344B2 (en) 2011-11-25 2012-10-25 Biopharmaceutical storage method

Country Status (1)

Country Link
JP (1) JP6015344B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07112949A (en) * 1993-10-15 1995-05-02 Kanegafuchi Chem Ind Co Ltd Bisphenols and polymer produced therefrom
JP3274032B2 (en) * 1994-11-02 2002-04-15 帝人株式会社 Copolymerized polyethylene naphthalate film
JPH11255913A (en) * 1998-03-10 1999-09-21 Teijin Ltd Biaxially oriented polyethylene 2,6-naphthalate film
JP2001105540A (en) * 1999-10-08 2001-04-17 Mitsubishi Gas Chem Co Inc Oxygen absorbent multi-layer body and packaging container
JP2006111718A (en) * 2004-10-14 2006-04-27 Mitsubishi Gas Chem Co Inc Polyester resin structure for heating use
JP4853169B2 (en) * 2006-08-10 2012-01-11 凸版印刷株式会社 Package
EP2095837B1 (en) * 2006-12-20 2013-07-17 Mitsubishi Gas Chemical Company, Inc. Prefilled syringe

Also Published As

Publication number Publication date
JP2014084154A (en) 2014-05-12

Similar Documents

Publication Publication Date Title
WO2014136918A1 (en) Oxygen-absorbing medical multiwall container and biopharmaceutical storage method
JP6102234B2 (en) Medical multi-layer container
JP6048742B2 (en) Oxygen-absorbing medical multilayer container
JP6015322B2 (en) Medical multi-layer container
JP6015344B2 (en) Biopharmaceutical storage method
JP6086220B2 (en) Biopharmaceutical storage method
JP5966852B2 (en) Prefilled syringe
JP6056439B2 (en) Prefilled syringe
JP6048743B2 (en) Oxygen-absorbing medical multilayer container
JP5935656B2 (en) Medical multi-layer container
JP6056440B2 (en) Biopharmaceutical storage method
JP6051896B2 (en) Biopharmaceutical storage method
JP6102229B2 (en) Medical multi-layer container
JP6015343B2 (en) Medical multi-layer container
JP2018135310A (en) Storage method of adrenalin-containing drug solution
JP6048746B2 (en) Oxygen-absorbing medical multilayer container
JP5935660B2 (en) Oxygen-absorbing multilayer injection molding
JP6094940B2 (en) Oxygen-absorbing prefilled syringe
JP2015048097A (en) Oxygen absorptive medical multilayer container
JP5962427B2 (en) How to store alcoholic beverages
JP5962425B2 (en) How to save soup
JP5962426B2 (en) Preservation method of liquid tea or pasty tea
JP6048175B2 (en) Medical multi-layer container
JP6020108B2 (en) Medical multi-layer container
JP2023177899A (en) Pre-filled syringe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160912

R151 Written notification of patent or utility model registration

Ref document number: 6015344

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151