JP6014619B2 - Optical line switching device and optical line switching method - Google Patents

Optical line switching device and optical line switching method Download PDF

Info

Publication number
JP6014619B2
JP6014619B2 JP2014045487A JP2014045487A JP6014619B2 JP 6014619 B2 JP6014619 B2 JP 6014619B2 JP 2014045487 A JP2014045487 A JP 2014045487A JP 2014045487 A JP2014045487 A JP 2014045487A JP 6014619 B2 JP6014619 B2 JP 6014619B2
Authority
JP
Japan
Prior art keywords
optical
optical line
olt
probe
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014045487A
Other languages
Japanese (ja)
Other versions
JP2015169830A (en
Inventor
友裕 川野
友裕 川野
誠 真保
誠 真保
廣田 栄伸
栄伸 廣田
清倉 孝規
孝規 清倉
真鍋 哲也
哲也 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2014045487A priority Critical patent/JP6014619B2/en
Publication of JP2015169830A publication Critical patent/JP2015169830A/en
Application granted granted Critical
Publication of JP6014619B2 publication Critical patent/JP6014619B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、光通信線路の支障移転工事等において線路切替を行う際に適用されるもので、現用の光ファイバの側方に迂回線路用のプローブを固定し増幅器を組み合わせることで、光通信線路を切り替える光線路切替装置及び光線路切替方法に関する。   INDUSTRIAL APPLICABILITY The present invention is applied when switching a line in a troubled transfer work of an optical communication line, etc., and an optical communication line is fixed by fixing a probe for a detour path on the side of an existing optical fiber and combining an amplifier. The present invention relates to an optical line switching device and an optical line switching method.

光ファイバケーブルによる光線路を使用する光通信システムにあっては、現用光線路を切断・新線路に接続するという線路切替工事が行われている。すでに提案されている光線路切替技術として、借用時間および切替工事期間の短縮を目指した光ファイバケーブル切替接続システムである(例えば、特許文献1参照)。   In an optical communication system using an optical line using an optical fiber cable, a line switching work is performed in which a working optical line is cut and connected to a new line. As an optical line switching technique that has already been proposed, an optical fiber cable switching connection system aimed at shortening the borrowing time and the switching work period (see, for example, Patent Document 1).

しかしながら、上記提案による技術は光回線終端装置(ONU(Optical Network Unit))からの上り光を受ける際、非常に微弱な信号であることからシステムが不安定であることが懸念される。   However, there is a concern that the system proposed by the technique proposed above is unstable when receiving upstream light from an optical network unit (ONU (Optical Network Unit)) because it is a very weak signal.

特開2012−252099号公報JP 2012-252099 A

本発明は、既設光ファイバとプローブ光ファイバとの間で十分な光結合効率を得ることができ、より安定な光線路切替装置及び光線路切替方法を提供することを目的とする。   An object of the present invention is to provide a more stable optical line switching device and optical line switching method that can obtain sufficient optical coupling efficiency between an existing optical fiber and a probe optical fiber.

上記目的を達成するために本発明に係る光線路切替装置は、光回線終端装置(ONU)と第1の光加入者線終端装置(OLT)との間で光信号を通信する既設の光線路を、新たな第2のOLTを接続する新たな光線路に切り替える光線路切替装置であって、前記既設の光線路から光信号を漏洩させ、前記既設の光線路の全光信号が放射される限界曲げ半径より大きい曲げ半径を有する第1の曲げ部と、前記第1の曲げ部より前記第1のOLT側に位置し、前記第1の曲げ部に比して急峻な第2の曲げ部と、前記第1のOLTまたは前記第2のOLTを接続し前記既設の光線路を迂回する迂回用光線路に一端が接続され、他端が前記第1の曲げ部の最大曲率となる位置に結合され、前記ONUからの上り光信号を受光可能な第1のプローブと、一端が前記迂回用線路に接続され、他端が前記第2の曲げ部の最大曲率となる位置に結合し、前記第1のOLTまたは前記第2のOLTからの下り光信号を当該第2の曲げ部に出射可能な第2のプローブとを備えるようにしたものである。   In order to achieve the above object, an optical line switching apparatus according to the present invention is an existing optical line that communicates optical signals between an optical line terminator (ONU) and a first optical subscriber line terminator (OLT). Is an optical line switching device for switching to a new optical line connecting a new second OLT, leaking an optical signal from the existing optical line, and all the optical signals of the existing optical line are radiated A first bend having a bend radius greater than a limit bend radius; and a second bend located on the first OLT side of the first bend and steeper than the first bend And one end of the first OLT or the second OLT connected to the detouring optical path that bypasses the existing optical path, and the other end is at a position where the maximum curvature of the first bent portion is reached. A first probe coupled to receive an upstream optical signal from the ONU; One end is connected to the detour line, and the other end is coupled to a position where the second bending portion has the maximum curvature, and the downstream optical signal from the first OLT or the second OLT is received by the second OLT. And a second probe capable of emitting light at the bent portion.

この構成によれば、既設の光線路に2箇所の曲げ部を形成し、2箇所の曲げ部のうちONU側の曲げ部の曲げ半径を、既設の光線路の全光信号が放射される限界曲げ半径より大きい曲げ半径とし、第1または第2のOLT側に位置する曲げ部を急峻とし、第1の曲げ部の最大曲率となる位置に第1のプローブを結合し、第2の曲げ部の最大曲率となる位置に第2のプローブを結合することにより、従来1カ所であった既設の光線路とプローブとの間の光信号入出力点について、既設の光線路からプローブへの光信号出力点とプローブから既設の光線路への光信号入力点に分離することで、短瞬断切替器に適用する場合であっても、既設の光線路とプローブとの間で十分な光結合効率が得られる。また、ONU側に緩やかな曲げ部を形成することで、ONUからの微弱な光信号を高効率で迂回光線路に結合でき、より安定した光線路切替工事が可能となる。さらに、既設の光線路を通過していた上り光信号は、急峻な曲げ部によって十分に遮断され信号の混信の影響を低減できる。   According to this configuration, two bends are formed in the existing optical line, and the bending radius of the bent part on the ONU side of the two bends is set to be a limit at which all the optical signals of the existing optical line are radiated. The bending radius is larger than the bending radius, the bending portion located on the first or second OLT side is steep, the first probe is coupled to the position where the maximum curvature of the first bending portion is obtained, and the second bending portion By connecting the second probe to a position where the maximum curvature of the optical signal is obtained, an optical signal from the existing optical line to the probe is obtained at an optical signal input / output point between the existing optical line and the probe, which has been conventionally one place. By separating the output point and the optical signal input point from the probe to the existing optical line, sufficient optical coupling efficiency between the existing optical line and the probe, even when applied to a short break switch Is obtained. Further, by forming a gentle bend on the ONU side, a weak optical signal from the ONU can be coupled to the detour optical line with high efficiency, and a more stable optical line switching work can be performed. Furthermore, the upstream optical signal that has passed through the existing optical line is sufficiently blocked by the steep bent portion, and the influence of signal interference can be reduced.

また、本発明に係る光線路切替装置の一観点は以下のような態様を備える。
第1の態様は、前記第1のプローブで受光した上り光信号を、前記迂回用光線路を伝送するために必要な信号レベルに増幅する第1の増幅器と、前記第1のOLTまたは前記第2のOLTからの下り光信号を、前記第2のプローブが前記第2の曲げ部に出射するために必要な信号レベルに増幅する第2の増幅器と、前記上り光信号および前記下り光信号を合波もしくは分波するWDMカプラとをさらに具備する。
One aspect of the optical line switching device according to the present invention includes the following aspects.
The first aspect includes a first amplifier that amplifies an upstream optical signal received by the first probe to a signal level necessary for transmitting the detour optical line, and the first OLT or the first OLT. A second amplifier that amplifies the downstream optical signal from the second OLT to a signal level necessary for the second probe to emit the second optical signal to the second bent portion, and the upstream optical signal and the downstream optical signal. And a WDM coupler for multiplexing or demultiplexing.

第1の態様によれば、緩やかな曲げ部によって出力された上り光信号が第1のプローブによって取り出され、第1の増幅器によって直ちに迂回用光線路を伝送するために必要な信号レベルに増幅される。また、急峻な曲げ部で入力される下り光信号は、第2の増幅器で十分に増幅されるので、緩やかな曲げ部での損失を差し引いてもONUで受光が可能となる。   According to the first aspect, the upstream optical signal output by the gentle bending portion is extracted by the first probe, and is immediately amplified to a signal level necessary for transmitting the detour optical line by the first amplifier. The Further, since the downstream optical signal input at the steep bent portion is sufficiently amplified by the second amplifier, the ONU can receive light even if the loss at the gentle bent portion is subtracted.

第2の態様は、前記第1または第2のプローブと前記既設の光線路の前記第1または前記第2の曲げ部との結合効率を上げるために、前記第1または第2のプローブとして、集光性を有するプローブ、レンズファイバ、及び前記既設の光線路との結合側に集光レンズを有するプローブのいずれか1つを用いる。
第2の態様によれば、第1または第2のプローブと既設の光線路の第1または第2の曲げ部との結合効率を上げることができる。
In order to increase the coupling efficiency between the first or second probe and the first or second bent portion of the existing optical line, the second aspect is as the first or second probe, Any one of a probe having a condensing property, a lens fiber, and a probe having a condensing lens on the coupling side with the existing optical line is used.
According to the 2nd aspect, the coupling efficiency of the 1st or 2nd probe and the 1st or 2nd bending part of the existing optical line can be raised.

第3の態様は、前記第1または第2の増幅器は、電気信号の信号レベルを増幅する電気信号用増幅器、光ファイバ増幅器及び半導体増幅器のいずれか1つである。   In a third aspect, the first or second amplifier is any one of an electric signal amplifier, an optical fiber amplifier, and a semiconductor amplifier that amplifies the signal level of the electric signal.

第4の態様は、前記第1のプローブの受光端のコア径をd1、前記第2のプローブの出射端のコア径をd2、前記既設の光線路のコア径をd0とする場合に、前記第1のプローブの受光端のコア径d1を前記既設の光線路のコア径d0以上とするとともに、前記第2のプローブの出射端のコア径d2を前記既設の光線路のコア径d0以下とする。
第4の態様によると、光線路切替装置全体の集光力を向上できる。
In a fourth aspect, when the core diameter of the light receiving end of the first probe is d1, the core diameter of the exit end of the second probe is d2, and the core diameter of the existing optical line is d0, The core diameter d1 of the light receiving end of the first probe is set to be equal to or larger than the core diameter d0 of the existing optical line, and the core diameter d2 of the emitting end of the second probe is set to be equal to or smaller than the core diameter d0 of the existing optical line. To do.
According to the 4th aspect, the condensing power of the whole optical line switching apparatus can be improved.

第5の態様は、前記第1のプローブは、前記コア径d1より大きいコア径のプローブである。
第5の態様によると、受光結合効率をさらに上げることができる。
In a fifth aspect, the first probe is a probe having a core diameter larger than the core diameter d1.
According to the fifth aspect, the light receiving coupling efficiency can be further increased.

上記目的を達成するために本発明に係る光線路切替方法は、光回線終端装置(ONU)と第1の光加入者線終端装置(OLT)との間で光信号を通信する既設の光線路を、新たな第2のOLTを接続する新たな光線路に切り替える光線路切替方法であって、前記既設の光線路に、前記既設の光線路から光信号を漏洩させ、前記既設の光線路の全光信号が放射される限界曲げ半径より大きい曲げ半径を有する第1の曲げ部を形成し、前記第1の曲げ部より前記第1のOLT側に位置し、前記第1の曲げ部に比して急峻な第2の曲げ部を形成し、前記第1の曲げ部の最大曲率となる位置に、前記ONUからの上り光信号を受光可能な第1のプローブの一端を結合させ、前記第1のプローブの他端を、前記第1のOLTまたは前記第2のOLTを接続する前記既設の光線路を迂回する迂回用光線路に接続し、前記第2の曲げ部の最大曲率となる位置に、前記第1のOLTまたは前記第2のOLTからの下り光信号を当該第2の曲げ部に出射可能な第2のプローブの一端を結合させ、前記第2のプローブの他端を、前記迂回用線路に接続するようにしたものである。   In order to achieve the above object, an optical line switching method according to the present invention includes an existing optical line that communicates optical signals between an optical line terminator (ONU) and a first optical subscriber line terminator (OLT). Is an optical line switching method for switching to a new optical line that connects a new second OLT, in which an optical signal is leaked from the existing optical line to the existing optical line, Forming a first bend having a bend radius larger than a limit bend radius from which all optical signals are emitted, and being located on the first OLT side from the first bend, compared to the first bend; Then, a steep second bent portion is formed, and one end of the first probe capable of receiving the upstream optical signal from the ONU is coupled to the position where the maximum curvature of the first bent portion is obtained, and the first Connect the other end of one probe to the first OLT or the second OLT. The downstream optical signal from the first OLT or the second OLT is connected to a detour optical path that detours the existing optical line, and the first OLT or the second OLT is placed at a position where the maximum curvature of the second bent portion is reached. One end of the second probe capable of emitting light is coupled to the second bent portion, and the other end of the second probe is connected to the detour line.

本発明により、ONUからの微弱な信号を高効率で迂回光線路に結合させることで、より安定した光線路切替工事が可能となる。また、光回線における短瞬断切替システムの光結合効率を向上させることが可能となる。   According to the present invention, a weak signal from the ONU is coupled to the detour optical line with high efficiency, thereby enabling more stable optical line switching work. Moreover, it becomes possible to improve the optical coupling efficiency of the short interruption switching system in an optical line.

本発明の第1の実施形態として、光側方入出技術を用いたOLT切替手順を示す図。The figure which shows the OLT switching procedure using the optical side entrance / exit technique as the 1st Embodiment of this invention. 同じく、光側方入出技術を用いたOLT切替手順を示す図。Similarly, the figure which shows the OLT switching procedure using the optical side entrance / exit technique. 同じく、光側方入出技術を用いたOLT切替手順を示す図。Similarly, the figure which shows the OLT switching procedure using the optical side entrance / exit technique. 同じく、光側方入出技術を用いたOLT切替手順を示す図。Similarly, the figure which shows the OLT switching procedure using the optical side entrance / exit technique. 本発明の第2の実施形態として、旧OLTの試験ポートに接続された迂回光線路を示す図。The figure which shows the detour optical path | route connected to the test port of old OLT as the 2nd Embodiment of this invention. 本発明の第3の実施形態として、結合効率の波長依存性を示す図。The figure which shows the wavelength dependence of coupling efficiency as the 3rd Embodiment of this invention. 本発明の第4の実施形態として、緩やかな曲げと急峻な曲げを用いた光側方入出力技術による光線路切替装置のブロック構成図。The block lineblock diagram of the optical line switching device by the optical side input-output technology using gentle bending and steep bending as a 4th embodiment of the present invention. 上記第4の実施形態において、S字型光側方入出力部を説明するための図。The figure for demonstrating the S-shaped optical side input / output part in the said 4th Embodiment. 本発明の第5の実施形態として、曲げの定義を説明するための図。The figure for demonstrating the definition of a bending as the 5th Embodiment of this invention. 上記第5の実施形態において、波長1550nmにおける曲げ損失および結合損失の曲げ半径および曲げ角度依存性を示す図。The figure which shows the bending radius and bending angle dependence of the bending loss and the coupling loss in wavelength 1550nm in the said 5th Embodiment. 上記第5の実施形態において、波長1310nmにおける曲げ損失および結合損失の曲げ半径および曲げ角度依存性を示す図。The figure which shows the bending radius and bending angle dependence of the bending loss and the coupling loss in wavelength 1310nm in the said 5th Embodiment. 上記第5の実施形態において、破断確率の曲げ半径依存性を示す図。The figure which shows the bending radius dependence of the fracture | rupture probability in the said 5th Embodiment. 本発明の第7の実施形態における増幅器の構成例を示す図。The figure which shows the structural example of the amplifier in the 7th Embodiment of this invention. 本発明の第8の実施形態における増幅器の構成例を示す図。The figure which shows the structural example of the amplifier in the 8th Embodiment of this invention. 本発明の第9の実施形態における増幅器の構成例を示す図。The figure which shows the structural example of the amplifier in the 9th Embodiment of this invention. 本発明の第11の実施形態における下り光用のプローブの構成の一例を示す図。The figure which shows an example of a structure of the probe for downstream light in the 11th Embodiment of this invention. 上記第11の実施形態における下り光用のプローブの構成の他の例を示す図。The figure which shows the other example of a structure of the probe for downstream light in the said 11th Embodiment. 上記第11の実施形態における上り光用のプローブの構成の一例を示す図。The figure which shows an example of a structure of the probe for upstream light in the said 11th Embodiment. 上記第11の実施形態における上り光用のプローブの構成の他の例を示す図。The figure which shows the other example of a structure of the probe for upstream light in the said 11th Embodiment.

本発明に係る実施形態を説明するに先立ち、光ファイバ側方入出力技術について説明する。   Prior to describing an embodiment according to the present invention, an optical fiber side input / output technique will be described.

光ファイバ側方入出力技術は、既設光ファイバに曲げを与え、その曲げ部に側面から別の光ファイバ(プローブ光ファイバ)を突き当て、光信号を入出力させる技術であり、漏洩光モニタや、心線対照用の試験光入射、光回線の経路変更に係る短瞬断切替システムなどへの適用が検討されている。この場合、既設光ファイバを円筒状剛体(ブロック1)とブロック1の円筒形状に対応する凹曲面を有する透明剛体(ブロック2)との間に挟み込み、現用光ファイバからブロック2の凹曲面に放射される光信号をブロック2内に配設されるプローブファイバで受光する側方入出力装置などが提案されている。   Optical fiber side input / output technology is a technology to bend an existing optical fiber and abut another optical fiber (probe optical fiber) from the side to the bent part to input / output an optical signal. Application to test light incident for core wire contrast, short break switching system related to path change of optical line, and the like are being studied. In this case, the existing optical fiber is sandwiched between a cylindrical rigid body (block 1) and a transparent rigid body (block 2) having a concave curved surface corresponding to the cylindrical shape of block 1, and is emitted from the working optical fiber to the concave curved surface of block 2. A side input / output device for receiving a received optical signal with a probe fiber disposed in the block 2 has been proposed.

ところで、近年では、短瞬断切替器などへの適用において、既設光ファイバとプローブ光ファイバとの間で十分な光結合効率を得るようにする対策が強く望まれている。   By the way, in recent years, a countermeasure for obtaining sufficient optical coupling efficiency between an existing optical fiber and a probe optical fiber is strongly desired in application to a short break switch.

そこで、本発明は、従来1カ所であった既設光ファイバとプローブ光ファイバ間の光信号入出力点について、既設光ファイバからプローブ光ファイバへの光信号出力点と、プローブ光ファイバから既設光ファイバへの光信号入力点に分離することで、短瞬断切替器などに適用する場合であっても、既設光ファイバとプローブ光ファイバとの間で十分な光結合効率を得るようにしたものである。
上記の光ファイバ側方入出力技術に基づき、以下に本発明の実施形態について説明する。
Therefore, the present invention relates to an optical signal input / output point between the existing optical fiber and the probe optical fiber, which has conventionally been one place, an optical signal output point from the existing optical fiber to the probe optical fiber, By separating the optical signal input point to the optical signal input point, it is possible to obtain sufficient optical coupling efficiency between the existing optical fiber and the probe optical fiber even when applied to a short break switch. is there.
Based on the above optical fiber side input / output technology, embodiments of the present invention will be described below.

(第1の実施形態)
図1乃至図4は、光側方入出力技術を用いた光加入者線終端装置(OLT(Optical Line Terminal))の切り替え、及び、OLTの切り替えに必要な新規光線路設置工事の手順を示す。
(First embodiment)
FIG. 1 to FIG. 4 show the procedure of optical subscriber line termination equipment (OLT (Optical Line Terminal)) switching using optical side input / output technology and new optical line installation work necessary for OLT switching. .

まず、工事前に、工事者は局舎2のOLT(旧OLT)21とONU1が試験ポート22及び光ケーブル#1で接続されていることを、従来技術を用いて確認する(図1(1))。つぎに、切り替えたい局舎3のOLT(新OLT)31、迂回光線路#2および新規光線路#3を用意する(図1(2))。また、工事者は、迂回光線路#2の両端を光線路切替装置10と局舎3の新OLT31の試験ポート32に接続し、光線路切替装置10を現用光線路#1の切替点に設置する。さらに、工事者は、移し替える前のOLT(旧OLT)21と移し替えたいOLT(新OLT)31の光信号の同期を合わせる。   First, before the construction, the construction worker confirms that the OLT (former OLT) 21 and the ONU 1 of the station 2 are connected by the test port 22 and the optical cable # 1 using the conventional technology (FIG. 1 (1)). ). Next, the OLT (new OLT) 31 of the station 3 to be switched, the detour optical line # 2, and the new optical line # 3 are prepared (FIG. 1 (2)). In addition, the builder connects both ends of the detour optical line # 2 to the optical line switching device 10 and the test port 32 of the new OLT 31 in the station 3, and installs the optical line switching device 10 at the switching point of the working optical line # 1. To do. Further, the construction engineer synchronizes the optical signals of the OLT (old OLT) 21 before the transfer and the OLT (new OLT) 31 to be transferred.

続いて、工事者は、光線路切替装置10において現用光線路#1の光ファイバを曲げる(図2(1))。この光ファイバ曲げにより、旧OLT21からの信号は曲げ部で損失が生じるため、遮断される。同時に、現用光線路#1の光ファイバ曲げ部に光線路切替装置10のプローブから光信号が入出力されることで、新OLT31とONU1との通信が開始される。このとき、曲げ部での光信号強度が低減するため、光線路切替装置10に波長1.31、1.49、1.55μmに対応した増幅器をあらかじめ設置することで、新OLT31とONU1との通信が安定して行われる。   Subsequently, the worker bends the optical fiber of the working optical line # 1 in the optical line switching device 10 (FIG. 2 (1)). Due to the bending of the optical fiber, the signal from the old OLT 21 is cut off because a loss occurs at the bent portion. At the same time, communication between the new OLT 31 and the ONU 1 is started by inputting / outputting an optical signal from the probe of the optical line switching device 10 to the optical fiber bending portion of the working optical line # 1. At this time, since the optical signal intensity at the bent portion is reduced, an amplifier corresponding to wavelengths 1.31, 1.49, 1.55 μm is installed in the optical line switching device 10 in advance, so that communication between the new OLT 31 and the ONU 1 is stabilized. Done.

つぎに、工事者は、新OLT31からの通信を確認後、旧OLT21の信号を停止する(図2(2))。   Next, after confirming communication from the new OLT 31, the construction worker stops the signal of the old OLT 21 (FIG. 2 (2)).

工事者は、その後、新規光線路#3と現用光線路#1とを接続する(図3(1))。このとき、新OLT31とONU1との通信は迂回光線路#2によって行われているためお客様への通信サービスは継続されており、現用光線路#1と新規光線路#3との接続は通常の工事で実施可能である。   The installer then connects the new optical line # 3 and the working optical line # 1 (FIG. 3 (1)). At this time, since the communication between the new OLT 31 and the ONU 1 is performed by the bypass optical line # 2, the communication service to the customer is continued, and the connection between the working optical line # 1 and the new optical line # 3 is normal. It can be implemented by construction.

つぎに、工事者は、光線路切替装置10における光ファイバ曲げを開放することで、迂回光線路#3経由の信号を取り除き、かつ新OLT31とONU1との通信が新規光線路#3によって開始され、OLT21,31の収容替えが完了する(図3(2))。   Next, the contractor removes the signal via the detour optical line # 3 by opening the optical fiber bend in the optical line switching device 10, and communication between the new OLT 31 and the ONU 1 is started by the new optical line # 3. , OLT 21, 31 is completely replaced (FIG. 3 (2)).

最後に、工事者は、光線路切替装置10、迂回光線路#2および旧OLT21を撤去し工事を完了する(図4)。   Finally, the builder removes the optical line switching device 10, the detour optical line # 2, and the old OLT 21 to complete the construction (FIG. 4).

以上、工事者により光線路切替装置10を用いた光線路切替工事を行うことで、お客様へのサービス断時間は、光ファイバの曲げ動作時および曲げ開放時に発生する瞬断で済むことが分かる。   As described above, it is understood that the service interruption time to the customer can be a momentary interruption that occurs when the optical fiber is bent and when the bending is released by performing the optical line switching work using the optical line switching device 10 by the worker.

(第2の実施形態)
上記第1の実施形態で示された迂回光線路#2は、図5で示すように旧OLT21の試験ポート22に接続して準備してもよい。
(Second Embodiment)
The detour optical line # 2 shown in the first embodiment may be prepared by connecting to the test port 22 of the old OLT 21 as shown in FIG.

この場合、工事者は、迂回光線路#2の両端を光線路切替装置10と局舎2の旧OLT21の試験ポート22に接続し、光線路切替装置10を現用光線路#1の切替点に設置する。さらに、工事者は、移し替える前のOLT(旧OLT)21と移し替えたいOLT(新OLT)31の光信号の同期を合わせる。   In this case, the builder connects both ends of the bypass optical line # 2 to the optical line switching device 10 and the test port 22 of the old OLT 21 of the station 2, and the optical line switching device 10 is used as a switching point of the working optical line # 1. Install. Further, the construction engineer synchronizes the optical signals of the OLT (old OLT) 21 before the transfer and the OLT (new OLT) 31 to be transferred.

続いて、工事者は、光線路切替装置10において現用光線路#1の光ファイバを曲げる。この光ファイバ曲げにより、旧OLT21からの信号は曲げ部で損失が生じるため、遮断される。同時に、現用光線路#1の光ファイバ曲げ部に光線路切替装置10の迂回光線路#2のプローブから光信号が入出力されることで、旧OLT21とONU1との通信が継続される。このとき、曲げ部での光信号強度が低減するため、光線路切替装置10に波長1.31、1.49、1.55μmに対応した増幅器をあらかじめ設置することで、迂回光線路#2経由で旧OLT21とONU1との通信が安定して行われる。   Subsequently, the worker bends the optical fiber of the working optical line # 1 in the optical line switching device 10. Due to the bending of the optical fiber, the signal from the old OLT 21 is cut off because a loss occurs at the bent portion. At the same time, communication between the old OLT 21 and the ONU 1 is continued by inputting / outputting an optical signal from the probe of the detour optical line # 2 of the optical line switching device 10 to the optical fiber bending part of the working optical line # 1. At this time, since the optical signal intensity at the bent portion is reduced, an amplifier corresponding to wavelengths 1.31, 1.49, and 1.55 μm is installed in the optical line switching device 10 in advance, so that the old OLT 21 and the ONU 1 are routed via the detour optical line # 2. Communication with is performed stably.

工事者は、その後、新規光線路#3と現用光線路#1とを接続する。このとき、旧OLT21とONU1との通信は迂回光線路#2によって行われているためお客様への通信サービスは継続されており、現用光線路#1と新規光線路#3との接続は通常の工事で実施可能である。   The installer then connects the new optical line # 3 and the working optical line # 1. At this time, since the communication between the old OLT 21 and the ONU 1 is performed by the bypass optical line # 2, the communication service to the customer is continued, and the connection between the working optical line # 1 and the new optical line # 3 is normal. It can be implemented by construction.

つぎに、工事者は、光線路切替装置10における光ファイバ曲げを開放することで、迂回光線路#3経由の信号を取り除き、かつ新OLT31とONU1との通信が新規光線路#3によって開始され、OLT21,31の収容替えが完了する。   Next, the contractor removes the signal via the detour optical line # 3 by opening the optical fiber bend in the optical line switching device 10, and communication between the new OLT 31 and the ONU 1 is started by the new optical line # 3. , OLT 21 and 31 are completely accommodated.

最後に、工事者は、光線路切替装置10、迂回光線路#2および旧OLT21を撤去し工事を完了する。   Finally, the builder removes the optical line switching device 10, the detour optical line # 2, and the old OLT 21 to complete the construction.

(第3の実施形態)
図6は、通信光の波長依存性の傾向を示すものである。図6において、横軸は通信光の波長を示し、縦軸は結合効率を示す。
(Third embodiment)
FIG. 6 shows the trend of wavelength dependence of communication light. In FIG. 6, the horizontal axis indicates the wavelength of communication light, and the vertical axis indicates the coupling efficiency.

曲げた光ファイバからの通信光の漏洩量は通信光の波長に依存している。現行の通信で用いられる1.31μm、1.49μm、1.55μmの中で、短波長側の1.31μmは最も光が漏れにくく、結合効率が得られにくい。一方、長波長側の1.55μmは漏れやすいため、結合効率は大きい。   The amount of communication light leaked from the bent optical fiber depends on the wavelength of the communication light. Of the 1.31 μm, 1.49 μm, and 1.55 μm used in current communications, 1.31 μm on the short wavelength side has the least light leakage, and coupling efficiency is difficult to obtain. On the other hand, since 1.55 μm on the long wavelength side is likely to leak, the coupling efficiency is large.

増幅器の性能を鑑みて、漏れにくい波長1.31μmを所望の強度まで増幅可能であれば、1か所のみでの光ファイバ曲げによる切替工事ができる。また増幅器のゲインが不足する場合について、波長1.31μmの弱い光強度を補償する装置および方法を第4の実施形態で述べる。   In view of the performance of the amplifier, if it is possible to amplify a wavelength of 1.31 μm, which is difficult to leak, to a desired intensity, switching work by bending the optical fiber at only one place can be performed. In the fourth embodiment, an apparatus and method for compensating for weak light intensity with a wavelength of 1.31 μm when the amplifier gain is insufficient will be described.

(第4の実施形態)
図7は、当該光線路切替装置10の構成を示す。当該光線路切替装置10は、現用光線路#1の光ファイバを緩やかに曲げる曲げ部11と、緩やかな曲げ部11から漏洩する光を受光するための上り光用プローブ14と、受光した上り光を増幅するための増幅器16と、現用光線路#1の光ファイバを急峻に曲げる曲げ部12と、急峻な曲げ部12で下り光を入射するための下り光用プローブ13と、下り光を増幅するための増幅器15と、上り光および下り光を合波もしくは分波するための波長分割多重(WDM)カプラ17から構成される。現用光線路#1は当該光線路切替装置10よってただ曲げられるのみであり、迂回光線路#2はWDMカプラ17に接続される。
(Fourth embodiment)
FIG. 7 shows a configuration of the optical line switching device 10. The optical line switching device 10 includes a bending portion 11 that gently bends the optical fiber of the working optical line # 1, an upstream light probe 14 that receives light leaking from the gentle bending portion 11, and the received upstream light. An amplifying device 16, a bending portion 12 for sharply bending the optical fiber of the working optical line # 1, a downstream light probe 13 for entering downstream light at the steep bending portion 12, and amplifying the downstream light And a wavelength division multiplexing (WDM) coupler 17 for multiplexing or demultiplexing upstream light and downstream light. The working optical line # 1 is merely bent by the optical line switching device 10, and the bypass optical line # 2 is connected to the WDM coupler 17.

当該光線路切替装置10の曲げ部は、たとえば図8に示すように、光学ガラス材に下り光用プローブ13を埋め込み、緩やかな曲げと急峻曲げを要するS字型曲げ凸部41と光学ガラス材に上り光用プローブ14を埋め込み、緩やかな曲げと急峻曲げを要するS字型曲げ凹部42から構成され、当該S字型曲げ凸部41と当該S字型曲げ凹部42によって光ファイバを押し曲げるS字型光側方入出力部によって構成される曲げ部40である。   For example, as shown in FIG. 8, the bending portion of the optical line switching apparatus 10 includes an S-shaped bending convex portion 41 and an optical glass material in which a downstream light probe 13 is embedded in an optical glass material and requires gentle bending and steep bending. S-shaped bending concave portion 42 that needs to bend gently and steeply is embedded, and the optical fiber is pushed and bent by the S-shaped bending convex portion 41 and the S-shaped bending concave portion 42. It is the bending part 40 comprised by a character-shaped optical side input / output part.

図7における緩やかな曲げ部11と急峻な曲げ部12の特徴について述べる。緩やかな曲げ部11について、当該曲げ部11で漏洩する上り光の強度が緩やかな曲げ用の増幅器16の最低受光感度を満たし、かつ新OLT31側から入射された下り光の強度がONU1の最低受光感度を満たすような曲げ部である。つぎに、急峻な曲げ部12について当該曲げ部12は光ファイバが破壊されない程度の急峻さである。   The characteristics of the gentle bend 11 and the steep bend 12 in FIG. 7 will be described. For the gentle bending portion 11, the intensity of the upstream light leaking from the bending portion 11 satisfies the minimum light receiving sensitivity of the bending amplifier 16, and the downstream light incident from the new OLT 31 side has the minimum light receiving intensity of ONU1. It is a bent part that satisfies the sensitivity. Next, with respect to the steep bent portion 12, the bent portion 12 has such a steep degree that the optical fiber is not broken.

(第5の実施形態)
(2つの曲げについて詳細)
第4の実施形態の2つの曲げ部11,12について、具体的な数値の一例を第5の実施形態に示す。曲げ部11,12は、図9に示すように、曲げ半径Rと曲げ角度θによって定義される。また、曲げのきつさについて、上記Rとθが大きいほど曲げのきつさは小さく、Rとθが小さいほど曲げのきつさは大きい。
(Fifth embodiment)
(Details about two bends)
An example of specific numerical values for the two bent portions 11 and 12 of the fourth embodiment is shown in the fifth embodiment. As shown in FIG. 9, the bending portions 11 and 12 are defined by a bending radius R and a bending angle θ. Further, regarding the tightness of bending, the larger the R and θ, the smaller the bending strength, and the smaller R and θ, the larger the bending strength.

図10は、たとえば、波長1550nmの曲げ損失および結合損失の曲げ半径および曲げ角度依存性を示す。図10において、横軸は波長1550nmにおける曲げ損失を示し、横軸は波長1550nmにおける結合損失を示す。   FIG. 10 shows, for example, the bending radius and bending angle dependence of bending loss and coupling loss at a wavelength of 1550 nm. In FIG. 10, the horizontal axis represents the bending loss at a wavelength of 1550 nm, and the horizontal axis represents the coupling loss at a wavelength of 1550 nm.

同様に、図11は、波長1310nmの曲げ損失および結合損失の曲げ半径および曲げ角度依存性を示す。図10において、横軸は波長1310nmにおける曲げ損失を示し、横軸は波長1310nmにおける結合損失を示す。   Similarly, FIG. 11 shows the bending radius and bending angle dependence of bending loss and coupling loss at a wavelength of 1310 nm. In FIG. 10, the horizontal axis represents bending loss at a wavelength of 1310 nm, and the horizontal axis represents coupling loss at a wavelength of 1310 nm.

たとえば、OLT21,31からの下り光(波長1550nm)において、当該光線路切替装置10の増幅器15,16によって増幅された光強度が20dBm、当該光線路切替装置10の急峻な曲げ部12における結合効率が−20dB、スプリッタ分岐損失が10dB、ONU1の最小受光感度が−12dBmであるとき、緩やかな曲げ部11で許容される曲げ損失は2dBであり、図10よりたとえば(R,θ)が(3mm、150°)であればよい。   For example, in the downstream light (wavelength 1550 nm) from the OLTs 21 and 31, the light intensity amplified by the amplifiers 15 and 16 of the optical line switching device 10 is 20 dBm, and the coupling efficiency in the steep bend 12 of the optical line switching device 10 Is -20 dB, the splitter branching loss is 10 dB, and the minimum light receiving sensitivity of the ONU 1 is -12 dBm, the bending loss allowed in the gentle bending portion 11 is 2 dB. From FIG. 10, for example, (R, θ) is (3 mm). 150 °).

また、その緩やかな曲げ部11において漏洩するONU1からの上り光(波長1310nm)において、ONU1からの上り光強度が−1dBm、当該光線路切替装置10の増幅器16の最小受光感度が−33dBm、スプリッタ分岐損失が10dBであるとき、当該光線路切替装置10の緩やかな曲げ部11における結合効率は−22dB以上でなければならない。したがって、図11よりたとえば(R,θ)が(3mm、150°)であればよい。   Further, in the upstream light (wavelength 1310 nm) leaking from the ONU 1 leaking at the gentle bent portion 11, the upstream light intensity from the ONU 1 is −1 dBm, the minimum light receiving sensitivity of the amplifier 16 of the optical line switching device 10 is −33 dBm, and the splitter. When the branching loss is 10 dB, the coupling efficiency in the gentle bending portion 11 of the optical line switching device 10 must be −22 dB or more. Therefore, from FIG. 11, for example, (R, θ) may be (3 mm, 150 °).

以上のように、緩やかな曲げ部11の曲げきつさにおいて、その上限は下り光の曲げ損失によって、また下限は上り光の結合効率によって制限される。   As described above, in the bending strength of the gentle bending portion 11, the upper limit is limited by the bending loss of downstream light, and the lower limit is limited by the coupling efficiency of upstream light.

また、図12は、光ファイバの破断確率における曲げ半径依存性を示す。図12において、横軸は光ファイバの曲げ半径を示し、縦軸は光ファイバの破断確率及び結合効率を示す。当該光線路切替装置10で曲げられる光ファイバの許容される破断確率が10−6以上であるとき、たとえば、Rは1.7mm以上であればよい。また、上記光学特性において当該光線路切替装置10の急峻な曲げ部12での必要とされる結合効率が−20dB、下り光のONU1への遮断損失(曲げ損失に相当)が−30dBであるとき、図10よりたとえば(R,θ)が(2mm、90°)であればよい。 FIG. 12 shows the dependence of the optical fiber breakage probability on the bending radius. In FIG. 12, the horizontal axis represents the bending radius of the optical fiber, and the vertical axis represents the breaking probability and coupling efficiency of the optical fiber. When the allowable breaking probability of the optical fiber bent by the optical line switching device 10 is 10 −6 or more, for example, R may be 1.7 mm or more. Further, in the above optical characteristics, when the required coupling efficiency at the steep bending portion 12 of the optical line switching device 10 is −20 dB, and the downstream light blocking loss (corresponding to the bending loss) to the ONU 1 is −30 dB. From FIG. 10, for example, (R, θ) may be (2 mm, 90 °).

以上のように、急峻な曲げ部12の曲げのきつさにおいて、その上限は光ファイバの破断確率によって、また下限は結合効率および遮断損失によって制限される。   As described above, in the bending stiffness of the steep bent portion 12, the upper limit is limited by the breaking probability of the optical fiber, and the lower limit is limited by the coupling efficiency and the cutoff loss.

(第6の実施形態)
(2つの曲げ位置について)
図7における2つの曲げ位置ついて述べる。曲げ位置は、旧OLT21側を基準に急峻な曲げ部12と緩やかな曲げ部11を形成する必要がある。ONU1側にある緩やかな曲げ部11をR、OLT21側にある急峻な曲げ部12をRとすると、
1≧R2
となる。
(Sixth embodiment)
(About two bending positions)
The two bending positions in FIG. 7 will be described. As for the bending position, it is necessary to form a steep bent portion 12 and a gentle bent portion 11 on the basis of the old OLT 21 side. If the gentle bend 11 on the ONU 1 side is R 1 and the steep bend 12 on the OLT 21 side is R 2 ,
R 1 ≧ R 2
It becomes.

また、現用光線路#1の全光信号が放射される曲げ半径をRlimとすると、
1>Rlim
となる。
Also, let R lim be the bending radius at which all the optical signals of the working optical line # 1 are radiated
R 1 > R lim
It becomes.

以上により、光の出力部と入力部を分離することができる。緩やかな曲げ部11によって、出力された上り光は結合効率の高い上り光用プローブ14によって取り出され増幅器16によって直ちに迂回光線路#2での信号強度を十分なものにする。また、現用光線路#1を通過していた上り光は急峻な曲げ部12によって十分に遮断され信号の混信の影響を低減させる。急峻な曲げ部12で入力される下り光は、直前で十分に増幅されており緩やかな曲げ部11での損失を差し引いてもONU1で受光が可能となる。   As described above, the light output section and the input section can be separated. Due to the gentle bending portion 11, the output upstream light is extracted by the upstream light probe 14 having high coupling efficiency, and the signal intensity in the detour optical line # 2 is immediately made sufficient by the amplifier 16. Further, the upstream light that has passed through the working optical line # 1 is sufficiently blocked by the steep bend 12 to reduce the influence of signal interference. Downstream light input at the steep bent portion 12 is sufficiently amplified immediately before, and can be received by the ONU 1 even if a loss at the gentle bent portion 11 is subtracted.

当該位置が逆であると、新OLT31側から入射した下り光の強度がONU1の最低受光感度を満たさない。   If the position is reversed, the intensity of downstream light incident from the new OLT 31 side does not satisfy the minimum light receiving sensitivity of the ONU 1.

(第7の実施形態)
(増幅器の構成)
図13は、上り光用の増幅器16の構成の例を示す。なお、図13において、プローブ51は図7の上り光用プローブ14に相当し、増幅器52は図7の増幅器16に相当する。まず、プローブ51に結合された漏洩光は、PD521で受光され電気信号に変換される。つぎに、増幅部522は、電気信号を所定振幅レベル増幅する。増幅部522の出力信号は、LD523で光の信号に再度変換されてOLT31側に送信される。また、下り光用の増幅器15の構成は上り光用の増幅器16の構成と同じでよくOLT31側から送信される光が増幅されればよい。
(Seventh embodiment)
(Configuration of amplifier)
FIG. 13 shows an example of the configuration of the upstream light amplifier 16. In FIG. 13, the probe 51 corresponds to the upstream light probe 14 in FIG. 7, and the amplifier 52 corresponds to the amplifier 16 in FIG. First, the leaked light coupled to the probe 51 is received by the PD 521 and converted into an electrical signal. Next, the amplification unit 522 amplifies the electric signal by a predetermined amplitude level. The output signal of the amplifying unit 522 is converted again into an optical signal by the LD 523 and transmitted to the OLT 31 side. Further, the configuration of the downstream light amplifier 15 may be the same as that of the upstream light amplifier 16, and it is sufficient that the light transmitted from the OLT 31 side is amplified.

(第8の実施形態)
上記第7の実施形態に記載の増幅器は、例えば図14に示すように光ファイバ増幅器を用いてもよい。なお、図14において、プローブ61は図7の上り光用プローブ14に相当し、増幅器62は図7の増幅器16に相当する。
(Eighth embodiment)
As the amplifier described in the seventh embodiment, for example, an optical fiber amplifier may be used as shown in FIG. In FIG. 14, a probe 61 corresponds to the upstream light probe 14 in FIG. 7, and an amplifier 62 corresponds to the amplifier 16 in FIG.

まず、プローブ61に結合された漏洩光は、光受け部621で受光され、光合波器623にて発光素子622から発光される光と混合される。光合波器623の出力光は、増幅部624にてOLT31に送信するために必要な出力レベルの出力光に増幅され、光送り部625によりOLT31側に送信される。   First, the leaked light coupled to the probe 61 is received by the light receiving unit 621 and mixed with the light emitted from the light emitting element 622 by the optical multiplexer 623. The output light of the optical multiplexer 623 is amplified to output light of an output level necessary for transmission to the OLT 31 by the amplification unit 624 and transmitted to the OLT 31 side by the light sending unit 625.

また、下り光用の増幅器15の構成は上り光用の増幅器16の構成と同じでよくOLT31側から送信される光が増幅されればよい。   Further, the configuration of the downstream light amplifier 15 may be the same as that of the upstream light amplifier 16, and it is sufficient that the light transmitted from the OLT 31 side is amplified.

(第9の実施形態)
第7の実施形態に記載の増幅器は、例えば図15に示すように半導体増幅器を用いてもよい。なお、図15において、プローブ71は図7の上り光用プローブ14に相当し、増幅器72は図7の増幅器16に相当する。
(Ninth embodiment)
As the amplifier described in the seventh embodiment, for example, a semiconductor amplifier may be used as shown in FIG. In FIG. 15, a probe 71 corresponds to the upstream light probe 14 in FIG. 7, and an amplifier 72 corresponds to the amplifier 16 in FIG.

まず、プローブ71に結合された漏洩光は、増幅器72の半導体素子721で受光され電気信号に変換される。つぎに、半導体素子721は、電気信号を所定振幅レベル増幅し、増幅した電気信号を光の信号に再度変換してOLT31側に送信する。また、下り光用の増幅器15の構成は上り光用の増幅器16の構成と同じでよくOLT31側から送信される光が増幅されればよい。   First, the leaked light coupled to the probe 71 is received by the semiconductor element 721 of the amplifier 72 and converted into an electrical signal. Next, the semiconductor element 721 amplifies the electric signal by a predetermined amplitude level, converts the amplified electric signal again into an optical signal, and transmits the optical signal to the OLT 31 side. Further, the configuration of the downstream light amplifier 15 may be the same as that of the upstream light amplifier 16, and it is sufficient that the light transmitted from the OLT 31 side is amplified.

(第10の実施形態)
第7の実施形態に記載の増幅器は、例えばOLT31からの下り光用の場合、WDMカプラ17で1490nmと1550nmの波長を分波し、それぞれ第7の実施形態あるいは第8の実施形態あるいは第9の実施形態に記載の増幅器を用いてもよい。下り光用プローブ13から急峻な曲げ部12に波長1490nm、1550nmの下り光信号を結合させる場合、結合時に光信号が低下するため、増幅器15により光信号の強度を上げることで、光信号の減衰分を補うことができる。
(Tenth embodiment)
For example, in the case of the downstream light from the OLT 31, the amplifier described in the seventh embodiment demultiplexes wavelengths of 1490 nm and 1550 nm by the WDM coupler 17, and the seventh embodiment, the eighth embodiment, or the ninth embodiment, respectively. The amplifier described in the embodiment may be used. When a downstream optical signal having wavelengths of 1490 nm and 1550 nm is coupled from the downstream optical probe 13 to the steep bent portion 12, the optical signal is reduced at the time of coupling. Therefore, the optical signal is attenuated by increasing the intensity of the optical signal by the amplifier 15. You can make up for the minute.

(第11の実施形態)
(プローブの特徴)
ONU1からの上り光用プローブ14について述べる。図16に示すように、放射状に漏れる上り光を、大口径コアファイバ81で受けて増幅器82に信号を送る。ここで用いる大口径コアファイバ81は、たとえば市販のGIファイバや更に大きな径のファイバを用いる。そのコア径をdとすると、たとえばdは50μmや62.5μm、200μmである。通常用いられる上り光用プローブ14は、シングルモードファイバであり、例えばコア径が10μmである。また、当該プローブは、図17に示すように集光レンズ91を用いてもよい。
(Eleventh embodiment)
(Characteristics of the probe)
The upstream light probe 14 from the ONU 1 will be described. As shown in FIG. 16, upstream light leaking radially is received by a large-diameter core fiber 81 and a signal is sent to an amplifier 82. As the large-diameter core fiber 81 used here, for example, a commercially available GI fiber or a fiber having a larger diameter is used. When the core diameter is d, for example, d is 50 μm, 62.5 μm, or 200 μm. The normally used upstream light probe 14 is a single mode fiber, and has a core diameter of 10 μm, for example. Further, the probe may use a condensing lens 91 as shown in FIG.

つぎに、下り光用プローブ13について述べる。図18に示すように、光を絞って曲げた光ファイバのコアに光が結合できるようにGRINレンズファイバ1001を用いる。用いるGRINレンズファイバ1001のビームウェスト直径2ωは、たとえば17μm以上35μm以下であると、ONU1で受光するための結合効率を得ることができる。 Next, the downstream light probe 13 will be described. As shown in FIG. 18, a GRIN lens fiber 1001 is used so that light can be coupled to the core of the optical fiber bent by narrowing the light. When the beam waist diameter 2ω 0 of the GRIN lens fiber 1001 to be used is, for example, 17 μm or more and 35 μm or less, the coupling efficiency for receiving light by the ONU 1 can be obtained.

また、当該GRINレンズファイバ1001は、図19に示すように集光レンズ2001を用いてもよい。このようにすることで、GRINレンズファイバ1001と急峻な曲げ部12との結合効率を上げることができる。   Further, the GRIN lens fiber 1001 may use a condenser lens 2001 as shown in FIG. By doing so, the coupling efficiency between the GRIN lens fiber 1001 and the steep bent portion 12 can be increased.

(上記第1乃至第11の実施形態による作用効果)
上記各実施形態によれば、既設の現用光線路#1に2箇所の曲げ部11、12を形成し、2箇所の曲げ部のうちONU1側の曲げ部11の曲げ半径を、現用光線路#1の全光信号が放射される限界曲げ半径より大きい曲げ半径とし、旧OLT21側に位置する曲げ部12を急峻とし、曲げ部11の最大曲率となる位置に上り光用プローブ14を結合し、曲げ部12の最大曲率となる位置に下り光用プローブ13を結合するようにしている。
(Operational effects of the first to eleventh embodiments)
According to each of the above embodiments, the two bent portions 11 and 12 are formed in the existing working optical line # 1, and the bending radius of the bent portion 11 on the ONU1 side among the two bent portions is set to the working optical line # 1. A bending radius larger than the limit bending radius from which all the optical signals of 1 are emitted, the bending portion 12 located on the old OLT 21 side is steep, and the upstream light probe 14 is coupled to a position where the bending portion 11 has the maximum curvature, The downstream light probe 13 is coupled to a position where the bending portion 12 has the maximum curvature.

すなわち、従来1カ所であった現用光線路#1とプローブとの間の光信号入出力点について、現用光線路#1から上り光用プローブ14への光信号出力点と下り光用プローブ13から現用光線路#1への光信号入力点に分離することで、短瞬断切替器に適用する場合であっても、現用光線路#1と下り光用プローブ13及び上り光用プローブ14との間で十分な光結合効率が得られる。   That is, with respect to the optical signal input / output point between the working optical line # 1 and the probe, which has conventionally been one place, the optical signal output point from the working optical line # 1 to the upstream optical probe 14 and the downstream optical probe 13 Even if it is applied to a short interruption switch by separating the optical signal input point to the working optical line # 1, the working optical line # 1, the downstream light probe 13, and the upstream light probe 14 are connected. Sufficient optical coupling efficiency can be obtained.

また、ONU1側に緩やかな曲げ部11を形成することで、ONU1からの微弱な光信号を高効率で迂回光線路#2に結合でき、より安定した光線路切替工事が可能となる。さらに、現用光線路#1を通過していた上り光信号は、急峻な曲げ部12によって十分に遮断され信号の混信の影響を低減できる。   In addition, by forming the gentle bent portion 11 on the ONU 1 side, a weak optical signal from the ONU 1 can be coupled to the bypass optical line # 2 with high efficiency, and a more stable optical line switching work can be performed. Furthermore, the upstream optical signal that has passed through the working optical line # 1 is sufficiently blocked by the steep bend portion 12, and the influence of signal interference can be reduced.

(その他の実施形態)
上記第1乃至第10の実施形態において、上り光用プローブ14の受光端のコア径をd1、下り光用プローブ13の出射端のコア径をd2、現用光線路#1のコア径をd0とする場合に、上り光用プローブ14の受光端のコア径d1を現用光線路#1のコア径d0以上とするとともに、下り光用プローブ13の出射端のコア径d2を現用光線路#1のコア径d0以下とするようにしてもよい。ここでは、上り光用プローブ14に、シングルモードファイバが用いられる。
このようにすることで、光線路切替装置10全体の集光力を向上できる。
(Other embodiments)
In the first to tenth embodiments, the core diameter of the light receiving end of the upstream light probe 14 is d1, the core diameter of the outgoing end of the downstream light probe 13 is d2, and the core diameter of the working optical line # 1 is d0. In this case, the core diameter d1 of the light receiving end of the upstream light probe 14 is set to be equal to or larger than the core diameter d0 of the working optical line # 1, and the core diameter d2 of the emitting end of the downstream light probe 13 is set to that of the working optical line # 1. You may make it set it as core diameter d0 or less. Here, a single mode fiber is used for the upstream light probe 14.
By doing in this way, the condensing power of the whole optical line switching apparatus 10 can be improved.

要するにこの発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態に亘る構成要素を適宜組み合せてもよい。   In short, the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine suitably the component covering different embodiment.

1…ONU、2,3…局舎、10…光線路切替装置、11,12…曲げ部、13…下り光用プローブ、14…上り光用プローブ、15,16…増幅器、17…WDMカプラ、21,31…OLT、22,32…試験ポート、40…曲げ部、41…S字型曲げ凸部、42…S字型曲げ凹部、51…プローブ、52…増幅器、61…プローブ、62…増幅器、71…プローブ、72…増幅器、81…大口径コアファイバ、82…増幅器、91…集光レンズ、521…PD、522…増幅部、523…LD、621…光受け部、622…発光素子、623…光合波器、625…光送り部、721…半導体素子、1001…GRINレンズファイバ、2001…集光レンズ。   DESCRIPTION OF SYMBOLS 1 ... ONU, 2, 3 ... Station, 10 ... Optical-line switching apparatus, 11, 12 ... Bending part, 13 ... Downlink probe, 14 ... Uplink probe, 15, 16 ... Amplifier, 17 ... WDM coupler, 21, 31 ... OLT, 22, 32 ... test port, 40 ... bent part, 41 ... S-shaped bent convex part, 42 ... S-shaped bent concave part, 51 ... probe, 52 ... amplifier, 61 ... probe, 62 ... amplifier 71 ... probe 72 ... amplifier 81 ... large diameter core fiber 82 ... amplifier 91 ... condensing lens 521 ... PD 522 ... amplifier unit 523 ... LD 621 ... light receiving unit 622 ... light emitting element 623... Optical multiplexer, 625... Optical sending part, 721... Semiconductor element, 1001... GRIN lens fiber, 2001.

Claims (8)

光回線終端装置(ONU)と第1の光加入者線終端装置(OLT)との間で光信号を通信する既設の光線路を、新たな第2のOLTを接続する新たな光線路に切り替える光線路切替装置であって、
前記既設の光線路から光信号を漏洩させ、前記既設の光線路の全光信号が放射される限界曲げ半径より大きい曲げ半径を有する第1の曲げ部と、
前記第1の曲げ部より前記第1のOLT側に位置し、前記第1の曲げ部に比して急峻な第2の曲げ部と、
前記第1のOLTまたは前記第2のOLTを接続し前記既設の光線路を迂回する迂回用光線路に一端が接続され、他端が前記第1の曲げ部の最大曲率となる位置に結合され、前記ONUからの上り光信号を受光可能な第1のプローブと、
一端が前記迂回用線路に接続され、他端が前記第2の曲げ部の最大曲率となる位置に結合され、前記第1のOLTまたは前記第2のOLTからの下り光信号を当該第2の曲げ部に出射可能な第2のプローブとを具備することを特徴とする光線路切替装置。
The existing optical line that communicates optical signals between the optical line terminator (ONU) and the first optical subscriber line terminator (OLT) is switched to a new optical line that connects the new second OLT. An optical line switching device,
A first bent portion having a bending radius larger than a limit bending radius at which an optical signal is leaked from the existing optical line and all the optical signals of the existing optical line are emitted;
A second bend located on the first OLT side of the first bend and steeper than the first bend;
One end is connected to the detour optical line that connects the first OLT or the second OLT and bypasses the existing optical line, and the other end is coupled to a position where the maximum curvature of the first bent portion is obtained. A first probe capable of receiving an upstream optical signal from the ONU;
One end is connected to the detour line, the other end is coupled to a position where the second bending portion has the maximum curvature, and the downstream optical signal from the first OLT or the second OLT is transmitted to the second OLT. An optical line switching device comprising: a second probe capable of emitting light to the bent portion.
前記第1のプローブで受光した上り光信号を、前記迂回用光線路を伝送するために必要な信号レベルに増幅する第1の増幅器と、
前記第1のOLTまたは前記第2のOLTからの下り光信号を、前記第2のプローブが前記第2の曲げ部に出射するために必要な信号レベルに増幅する第2の増幅器と、
前記上り光信号および前記下り光信号を合波もしくは分波する波長分割多重(WDM)カプラとをさらに具備することを特徴とする請求項1に記載の光線路切替装置。
A first amplifier that amplifies the upstream optical signal received by the first probe to a signal level necessary to transmit the detour optical line;
A second amplifier for amplifying a downstream optical signal from the first OLT or the second OLT to a signal level necessary for the second probe to emit the second bent portion to the second bent portion;
2. The optical line switching apparatus according to claim 1, further comprising a wavelength division multiplexing (WDM) coupler for multiplexing or demultiplexing the upstream optical signal and the downstream optical signal.
前記第2の曲げ部は、前記第1の曲げ部より光学的に曲げ損失が大きくなる急峻曲げであることを特徴とする請求項1または2に記載の光線路切替装置。   3. The optical line switching device according to claim 1, wherein the second bent portion is a steep bend in which a bending loss is optically larger than that of the first bent portion. 前記第1または第2のプローブと前記既設の光線路の前記第1または第2の曲げ部との結合効率を上げるために、前記第1または第2のプローブとして、集光性を有するプローブ、レンズファイバ、及び前記既設の光線路との結合側に集光レンズを有するプローブのいずれか1つを用いることを特徴とする請求項1乃至3のいずれか1項に記載の光線路切替装置。   In order to increase the coupling efficiency between the first or second probe and the first or second bent portion of the existing optical line, the first or second probe has a light collecting property, 4. The optical line switching device according to claim 1, wherein any one of a lens fiber and a probe having a condensing lens on a coupling side with the existing optical line is used. 5. 前記第1または第2の増幅器は、電気信号の信号レベルを増幅する電気信号用増幅器、光ファイバ増幅器及び半導体増幅器のいずれか1つであることを特徴とする請求項2乃至4のいずれか1項に記載の光線路切替装置。   The first or second amplifier is any one of an electric signal amplifier, an optical fiber amplifier, and a semiconductor amplifier that amplifies a signal level of an electric signal. The optical line switching device according to item. 前記第1のプローブの受光端のコア径をd1、前記第2のプローブの出射端のコア径をd2、前記既設の光線路のコア径をd0とする場合に、前記第1のプローブの受光端のコア径d1を前記既設の光線路のコア径d0以上とするとともに、前記第2のプローブの出射端のコア径d2を前記既設の光線路のコア径d0以下とすることを特徴とする請求項1乃至5のいずれか1項に記載の光線路切替装置。   When the core diameter of the light receiving end of the first probe is d1, the core diameter of the emitting end of the second probe is d2, and the core diameter of the existing optical line is d0, the light receiving of the first probe is received. The core diameter d1 at the end is made larger than the core diameter d0 of the existing optical line, and the core diameter d2 at the emission end of the second probe is made smaller than the core diameter d0 of the existing optical line. The optical line switching apparatus of any one of Claims 1 thru | or 5. 前記第1のプローブは、前記コア径d1より大きいコア径のプローブであることを特徴とする請求項6に記載の光線路切替装置。   The optical line switching device according to claim 6, wherein the first probe is a probe having a core diameter larger than the core diameter d1. 光回線終端装置(ONU)と第1の光加入者線終端装置(OLT)との間で光信号を通信する既設の光線路を、新たな第2のOLTを接続する新たな光線路に切り替える光線路切替方法であって、
前記既設の光線路に、前記既設の光線路から光信号を漏洩させ、前記既設の光線路の全光信号が放射される限界曲げ半径より大きい曲げ半径を有する第1の曲げ部を形成し、
前記第1の曲げ部より前記第1のOLT側に位置し、前記第1の曲げ部に比して急峻な第2の曲げ部を形成し、
前記第1の曲げ部の最大曲率となる位置に、前記ONUからの上り光信号を受光可能な第1のプローブの一端を結合させ、
前記第1のプローブの他端を、前記第1のOLTまたは前記第2のOLTを接続する前記既設の光線路を迂回する迂回用光線路に接続し、
前記第2の曲げ部の最大曲率となる位置に、前記第1のOLTまたは前記第2のOLTからの下り光信号を当該第2の曲げ部に出射可能な第2のプローブの一端を結合させ、
前記第2のプローブの他端を、前記迂回用線路に接続することを特徴とする光線路切替方法。
The existing optical line that communicates optical signals between the optical line terminator (ONU) and the first optical subscriber line terminator (OLT) is switched to a new optical line that connects the new second OLT. An optical line switching method,
Leaking an optical signal from the existing optical line to the existing optical line, and forming a first bending portion having a bending radius larger than a limit bending radius at which all the optical signals of the existing optical line are radiated;
A second bend that is located closer to the first OLT than the first bend and is sharper than the first bend;
One end of the first probe capable of receiving the upstream optical signal from the ONU is coupled to the position where the maximum curvature of the first bending portion is obtained,
The other end of the first probe is connected to a detour optical path that bypasses the existing optical path connecting the first OLT or the second OLT,
One end of a second probe capable of emitting a downstream optical signal from the first OLT or the second OLT to the second bent portion is coupled to the position where the maximum curvature of the second bent portion is obtained. ,
An optical line switching method, wherein the other end of the second probe is connected to the detour line.
JP2014045487A 2014-03-07 2014-03-07 Optical line switching device and optical line switching method Active JP6014619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014045487A JP6014619B2 (en) 2014-03-07 2014-03-07 Optical line switching device and optical line switching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014045487A JP6014619B2 (en) 2014-03-07 2014-03-07 Optical line switching device and optical line switching method

Publications (2)

Publication Number Publication Date
JP2015169830A JP2015169830A (en) 2015-09-28
JP6014619B2 true JP6014619B2 (en) 2016-10-25

Family

ID=54202599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014045487A Active JP6014619B2 (en) 2014-03-07 2014-03-07 Optical line switching device and optical line switching method

Country Status (1)

Country Link
JP (1) JP6014619B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6755215B2 (en) * 2016-10-03 2020-09-16 住友電気工業株式会社 Optical line switching device
WO2023223505A1 (en) * 2022-05-19 2023-11-23 日本電信電話株式会社 Optical fiber changeover method and optical communication device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6177019A (en) * 1984-09-21 1986-04-19 Nippon Telegr & Teleph Corp <Ntt> Method and device for switching optical fiber cable without momentary disconnection
JP2008076830A (en) * 2006-09-22 2008-04-03 Fujifilm Corp Optical fiber module
JP5642499B2 (en) * 2010-10-26 2014-12-17 中国電力株式会社 Optical fiber identification device
JP5856823B2 (en) * 2011-11-25 2016-02-10 日本電信電話株式会社 Optical fiber coupling method

Also Published As

Publication number Publication date
JP2015169830A (en) 2015-09-28

Similar Documents

Publication Publication Date Title
US11101885B2 (en) Supervisory signal paths for an optical transport system
TWI406526B (en) Signal switching module for optical network monitoring and fault locating
US10924182B2 (en) Integrated optical switching and splitting for troubleshooting in optical networks
CN109075857B (en) Signal loopback circuit and signal loopback method
JP5945491B2 (en) Optical communication line switching device and optical communication line switching method using the switching device
US20240097397A1 (en) Optical amplification device, optical transmission system, and optical amplification method
JP2016516218A (en) Optical branch assembly, passive optical network, and optical transmission method
JP5167321B2 (en) Optical communication system and connection state determination method
JP6014619B2 (en) Optical line switching device and optical line switching method
JP2015132775A (en) Light-receiving device for communication monitor and leakage light acquisition method thereof
JP2006235112A (en) Optical transmission path
JP2015129804A (en) Optical fiber lateral input-output device and optical communication switching system
CN104009794A (en) Method and apparatus for detecting fault in optical fiber of passive optical network
Fujiwara et al. Field trial of 79.5-dB loss budget, 100-km reach 10G-EPON system using ALC burst-mode SOAs and EDC
JP6363548B2 (en) Fiber side light input / output device and optical axis adjustment method
JPWO2003098292A1 (en) Signal blocking device, optical connector and optical fiber type coupler
Montalvo et al. WDM-PON preventive optical monitoring system with colourless reflectors
US11362753B2 (en) Optical node device
KR101794986B1 (en) System of Passive Optical Network using multi-mode optical cable
JP5058075B2 (en) PON broadcasting method
JP4430045B2 (en) Method of adding wavelength used in optical wavelength division multiplexing network
WO2023161976A1 (en) Optical transmission system, transmission method of optical transmission system, and communication device
JP2016109614A (en) Light receiving device for monitoring coated optical fiber and monitoring method of the same
CN104038280A (en) Fiber fault detection system and method of passive optical network
Aozasa et al. Single-mode hole-assisted fiber cord for highly reliable optical fiber distribution facilities in central office

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160926

R150 Certificate of patent or registration of utility model

Ref document number: 6014619

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150