JP6014574B2 - Determination of free lime in converter slag - Google Patents

Determination of free lime in converter slag Download PDF

Info

Publication number
JP6014574B2
JP6014574B2 JP2013247915A JP2013247915A JP6014574B2 JP 6014574 B2 JP6014574 B2 JP 6014574B2 JP 2013247915 A JP2013247915 A JP 2013247915A JP 2013247915 A JP2013247915 A JP 2013247915A JP 6014574 B2 JP6014574 B2 JP 6014574B2
Authority
JP
Japan
Prior art keywords
lime
converter slag
crystallized
precipitated
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013247915A
Other languages
Japanese (ja)
Other versions
JP2015105873A (en
Inventor
義幸 高屋
義幸 高屋
義弘 上川
義弘 上川
領太 杉谷
領太 杉谷
山本 充
充 山本
真沢 正人
正人 真沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2013247915A priority Critical patent/JP6014574B2/en
Publication of JP2015105873A publication Critical patent/JP2015105873A/en
Application granted granted Critical
Publication of JP6014574B2 publication Critical patent/JP6014574B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明は、転炉スラグの膨張性を評価する方法に係り、特に転炉スラグの膨張要因である遊離石灰の定量方法に関する。   The present invention relates to a method for evaluating the expansibility of converter slag, and more particularly to a method for determining free lime, which is an expansion factor of converter slag.

転炉スラグは、転炉を用いた製鋼工程で発生する鉄鋼スラグであり、硬質で高い嵩比重を有することから路盤材等の道路用材料に利用されている。
転炉スラグは、精錬時に添加される生石灰などを由来とする遊離石灰(f-CaO)を含んでいる。遊離石灰は、空気中の水分や雨水などに接触すると、(1)式に示す水和反応を起こし、体積が約2倍に膨張する。
CaO + HO → Ca(OH) (1)
従って、遊離石灰を多く含む転炉スラグをそのまま道路用材料として用いると、路面の亀裂や隆起といった問題を引き起こす。そのため、転炉スラグを道路用材料に使用する際は、通常、転炉スラグの蒸気エージング処理などを事前に行なって、遊離石灰の水和反応を完了させている。
Converter slag is steel slag generated in a steelmaking process using a converter, and is used for road materials such as roadbed materials because it is hard and has high bulk specific gravity.
The converter slag contains free lime (f-CaO) derived from quicklime added during refining. When free lime comes into contact with moisture or rainwater in the air, it causes a hydration reaction represented by the formula (1), and the volume expands about twice.
CaO + H 2 O → Ca (OH) 2 (1)
Therefore, if the converter slag containing a lot of free lime is used as it is as a road material, problems such as cracks and bumps on the road surface are caused. For this reason, when converter slag is used for road materials, steam aging treatment of converter slag is usually performed in advance to complete the hydration reaction of free lime.

蒸気エージング処理は、山積み状態のスラグに水蒸気を吹き込んで水和反応を促進させる方法であり、数日で遊離石灰の水和反応が完了する。例えば、特許文献1には、所定粒度に破砕された山積み状態の製鋼スラグに80〜100℃の水蒸気を吹き込み、大気中で48時間以上暴露することで、製鋼スラグ中の遊離石灰の水和反応が促進され、エージング処理を短期間に安定して行うことができると記載されている。   The steam aging treatment is a method in which steam is blown into a pile of slag to promote the hydration reaction, and the hydration reaction of free lime is completed within a few days. For example, Patent Document 1 discloses that hydration reaction of free lime in steelmaking slag by blowing steam at 80 to 100 ° C. into piled steelmaking slag crushed to a predetermined particle size and exposing it to the atmosphere for 48 hours or more. It is described that the aging process can be stably performed in a short time.

しかし、転炉による製鋼工程がバッチ処理であることから、転炉スラグは性状がバラツキやすく、また、精錬条件によって遊離石灰の含有量が大きく変化する。そのため、蒸気エージング処理は、必然的に安全側での操業を余儀なくされており、特許文献1に記載されている48時間曝露より長時間の処理を行っているのが現状である。   However, since the steelmaking process by the converter is a batch process, the properties of the converter slag are likely to vary, and the free lime content varies greatly depending on the refining conditions. For this reason, the steam aging process is inevitably forced to operate on the safe side, and the present situation is that a process longer than the 48-hour exposure described in Patent Document 1 is performed.

他方、転炉スラグに含まれている遊離石灰の含有量を迅速に検出できる方法が確立されれば、蒸気エージング処理前に遊離石灰の含有量を把握することにより蒸気エージング処理を最適化することが可能となりコストダウンが期待できる。そのため、転炉スラグに含まれている遊離石灰を定量化する様々な方法がこれまで提案されている。エチレングリコール法は、その中で最も広く知られている方法の一つである。   On the other hand, if a method capable of quickly detecting the content of free lime contained in converter slag is established, the steam aging treatment should be optimized by grasping the content of free lime before the steam aging treatment. It is possible to reduce costs. Therefore, various methods for quantifying free lime contained in converter slag have been proposed so far. The ethylene glycol method is one of the most widely known methods.

エチレングリコール法では、エチレングリコール試薬を用いて転炉スラグを所定温度で所定時間溶解し、溶解液中のカルシウムの含有率を測定する。溶解液中のカルシウムの含有率の測定には、中和滴定法や原子吸光分析法、導電率測定法が用いられる。注意すべき点として、エチレングリコール試薬へは酸化カルシウム(CaO)のほかに水酸化カルシウム(Ca(OH))も溶解する。水酸化カルシウムの含有率の測定には熱重量分析法が用いられる。非特許文献1には、「鉄鋼スラグ中のf-CaOおよびCa(OH)の定量方法(=エチレングリコール法)」及び「鉄鋼スラグ中のCa(OH)の定量方法(=熱重量分析法)」に関して、分析精度の向上を目指し、条件の見直しを図った分析法が記載されている。 In the ethylene glycol method, the converter slag is dissolved at a predetermined temperature for a predetermined time using an ethylene glycol reagent, and the content of calcium in the solution is measured. A neutralization titration method, an atomic absorption analysis method, or a conductivity measurement method is used to measure the calcium content in the solution. It should be noted that calcium hydroxide (Ca (OH) 2 ) is dissolved in the ethylene glycol reagent in addition to calcium oxide (CaO). Thermogravimetric analysis is used to measure the content of calcium hydroxide. Non-Patent Document 1 includes “a method for determining f-CaO and Ca (OH) 2 in steel slag (= ethylene glycol method)” and “a method for determining Ca (OH) 2 in steel slag (= thermogravimetric analysis). "Method)" describes an analysis method that aims to improve the accuracy of the analysis and has reviewed the conditions.

特開昭61−101441号公報JP-A-61-101441

「鉄鋼スラグ中フリーCaOのキャラクタリゼーション技術の標準化」、一般社団法人 日本鉄鋼協会 分析技術部会、平成25年3月、p.88−94“Standardization of characterization technology for free CaO in steel slag”, Analytical Technology Subcommittee, Japan Iron and Steel Association, March 2013, p. 88-94

転炉スラグに含まれている遊離石灰は、その生成挙動から、以下の3種類に大きく分類される。
(a)未滓化石灰:精錬時に添加される生石灰の一部が未溶解状態でスラグに残存した遊離石灰である。褐色の粒子状を呈しており目視で確認できる。
(b)晶出石灰:精錬時に一旦溶融し、スラグが冷却されて各種鉱物が生成する過程の末期に余剰分の石灰として生成する遊離石灰である。各種鉱物相が生成する過程の末期に生成するため、他の鉱物相の隙間を埋めるような形状である。
(c)析出石灰:高塩基度の溶融スラグが冷却する過程において、1700℃〜1400℃域で生成した長柱形のトリカルシウムシリケイト(3CaO−SiO)が1300℃以下で分解したときにダイカルシウムシリケイト(2CaO−SiO)と共に生成する遊離石灰である。長柱形の鉱物相内に縞状に生成する。
Free lime contained in converter slag is roughly classified into the following three types based on the generation behavior.
(A) Undegraded lime: Free lime in which a portion of quicklime added during refining remains in the slag in an undissolved state. It is in the form of brown particles and can be confirmed visually.
(B) Crystallized lime: Free lime that is melted once during refining and is produced as excess lime at the end of the process in which various minerals are produced by cooling the slag. Since it is formed at the end of the process in which various mineral phases are formed, it has a shape that fills the gap between other mineral phases.
(C) precipitation of lime: in the course of molten slag of high basicity cools the die when the 1700 ° C. to 1400 tricalcium silicate long columnar generated in ° C. zone (3CaO-SiO 2) was decomposed at 1300 ° C. or less it is a free lime to produce with calcium silicate (2CaO-SiO 2). It forms in stripes in the long columnar mineral phase.

これら3種類の遊離石灰は、転炉スラグ中の存在箇所や存在形態から、転炉スラグの水和膨張に及ぼす影響がそれぞれ異なる。例えば、晶出石灰と析出石灰は結晶同士の間や結晶の内部に存在していることから含有量次第で転炉スラグの膨張へ寄与し、長期的な膨張挙動を示す。
従って、転炉スラグの膨張挙動を正確に把握するためには、転炉スラグに含まれている未滓化石灰、晶出石灰、及び析出石灰がそれぞれどの程度含まれているか把握することが重要となる。
These three types of free lime have different effects on the hydration expansion of converter slag from the location and form of converter slag. For example, crystallized lime and precipitated lime are present between the crystals and inside the crystal, and therefore contribute to the expansion of the converter slag depending on the content, and exhibit long-term expansion behavior.
Therefore, in order to accurately grasp the expansion behavior of converter slag, it is important to understand how much uncontained lime, crystallized lime, and precipitated lime are contained in the converter slag. It becomes.

しかしながら、先に挙げたエチレングリコール法は、未滓化石灰、晶出石灰、及び析出石灰を区別せずに合算値として処理するため、転炉スラグの膨張挙動を正確に把握することが難しい。例えば、酸化カルシウムの値が同じ転炉スラグであっても、一方は未滓化石灰が主体であり、もう一方は晶出石灰と析出石灰が主体であれば、両者は異なる膨張挙動を示す。   However, the ethylene glycol method mentioned above treats unexpansion lime, crystallized lime, and precipitated lime as a combined value without distinction, so it is difficult to accurately grasp the expansion behavior of the converter slag. For example, even if the converter slag has the same value of calcium oxide, if one is mainly composed of undegraded lime and the other is mainly composed of crystallized lime and precipitated lime, both exhibit different expansion behaviors.

本発明はかかる事情に鑑みてなされたもので、転炉スラグの膨張挙動を正確に評価して蒸気エージング処理の最適化を図るため、転炉スラグに含まれている未滓化石灰、晶出石灰、及び析出石灰の各含有率を把握することが可能な、転炉スラグ中の遊離石灰の定量方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and in order to accurately evaluate the expansion behavior of the converter slag and optimize the steam aging treatment, uncontained lime, crystallization contained in the converter slag It aims at providing the fixed_quantity | quantitative_assay method of the free lime in converter slag which can grasp | ascertain each content rate of lime and precipitated lime.

上記目的を達成するため、本発明は、転炉スラグに含まれる遊離石灰を未滓化石灰、晶出石灰、及び析出石灰に分類して前記各石灰の含有率を算出する方法であって、以下の工程を備えている。
(1)転炉スラグ粒子を含有する試料片を作製する。
(2)前記試料片中の転炉スラグ粒子を第1の倍率で顕微鏡観察して第1の観察視野を撮影する。
(3)前記第2の工程で撮影した前記第1の観察視野の画像に第1の升目幅を有する方眼線を付して、晶出石灰及び/又は析出石灰を含む相が占める升目の数と、未滓化石灰の相が占める升目の数と、前記転炉スラグ粒子が占める升目の数とを測定し、前記各相が前記転炉スラグ粒子に占める面積比率(含有率)を算出する。
(4)前記晶出石灰及び/又は析出石灰を含む相を、前記第1の倍率より高い倍率を有する第2の倍率で顕微鏡観察して第2の観察視野を撮影する。
(5)前記第4の工程で撮影した前記第2の観察視野の画像に、前記第1の升目幅より目の細かな第2の升目幅を有する方眼線を付して、晶出石灰が占める升目の数と、析出石灰が占める升目の数と、前記第2の観察視野が占める升目の数とを測定し、晶出石灰と析出石灰がそれぞれ前記第2の観察視野に占める面積比率を算出する。
(6)晶出石灰と析出石灰がそれぞれ前記第2の観察視野に占める面積比率と、前記晶出石灰及び/又は析出石灰を含む相が前記転炉スラグ粒子に占める面積比率とを掛け合わせて、前記転炉スラグ粒子に対して晶出石灰と析出石灰がそれぞれ占める面積比率(含有率)を算出する。
In order to achieve the above object, the present invention is a method for calculating the content of each lime by classifying free lime contained in the converter slag into uncontained lime, crystallized lime, and precipitated lime, The following steps are provided.
(1) A sample piece containing converter slag particles is prepared.
(2) The converter slag particles in the sample piece are observed with a microscope at a first magnification to photograph a first observation field.
(3) The number of cells occupied by the phase containing crystallized lime and / or precipitated lime by attaching a grid line having the first cell width to the image of the first observation visual field taken in the second step And measuring the number of squares occupied by the phase of undehydrated lime and the number of squares occupied by the converter slag particles, and calculating the area ratio (content ratio) of the phases occupied by the converter slag particles. .
(4) The phase containing the crystallized lime and / or precipitated lime is observed with a microscope at a second magnification having a magnification higher than the first magnification, and a second observation visual field is photographed.
(5) A grid line having a second grid width finer than the first grid width is attached to the image of the second observation visual field photographed in the fourth step, and crystallized lime is formed. The number of squares occupied, the number of squares occupied by precipitated lime, and the number of squares occupied by the second observation visual field are measured, and the area ratio of crystallized lime and precipitated lime in the second observation visual field is determined. calculate.
(6) Multiplying the area ratio of crystallized lime and precipitated lime in the second observation field, respectively, and the area ratio of the phase containing the crystallized lime and / or precipitated lime in the converter slag particles Then, the area ratio (content ratio) occupied by crystallized lime and precipitated lime with respect to the converter slag particles is calculated.

本発明は、転炉スラグ粒子の観察視野画像に目の粗い升目幅を有する方眼線を付して各相の面積比率を算出する前工程と、晶出石灰及び/又は析出石灰を含む相に目の細かな升目幅を有する方眼線を付して晶出石灰と析出石灰の面積比率を算出する後工程とから大略構成される。
先ず、転炉スラグ粒子を撮影した低倍率の観察視野画像に目の粗い升目幅を有する方眼線を付して、晶出石灰及び/又は析出石灰を含む相と未滓化石灰の相がそれぞれ転炉スラグ粒子に占める面積比率を算出する。次いで、晶出石灰及び/又は析出石灰を含む相を撮影した高倍率の観察視野画像に目の細かな升目幅を有する方眼線を付して、転炉スラグ粒子に対して晶出石灰と析出石灰がそれぞれ占める面積比率を算出する。
The present invention provides a pre-process for calculating the area ratio of each phase by attaching a grid line having a coarse mesh width to the observation visual field image of converter slag particles, and a phase containing crystallized lime and / or precipitated lime. This is generally composed of a post-process for calculating the area ratio of crystallized lime and precipitated lime with a grid line having a fine mesh width.
First, a low-magnification observation visual field image obtained by photographing converter slag particles is attached with a grid line having a coarse mesh width, and a phase containing crystallized lime and / or precipitated lime and a phase of undehydrated lime are respectively present. The area ratio of the converter slag particles is calculated. Next, a high-magnification observation visual field image of a phase containing crystallized lime and / or precipitated lime is attached with a grid line having a fine mesh width, and crystallized lime and precipitates on converter slag particles The area ratio which each lime occupies is calculated.

本発明では、未滓化石灰と、未滓化石灰に比べて鉱物相の大きさが小さな晶出石灰及び析出石灰とを効率的に測定するため、顕微鏡観察時の倍率は低倍率(第1の倍率)と高倍率(第2の倍率)の2種類としている。各倍率は、使用する顕微鏡の解像度にもよるが、第1の倍率は50倍程度、第2の倍率は200倍程度が適している。   In the present invention, unmagnified lime and crystallized lime and precipitated lime having a small mineral phase compared to unhatched lime are efficiently measured. ) And high magnification (second magnification). Although each magnification depends on the resolution of the microscope to be used, the first magnification is about 50 times and the second magnification is about 200 times.

また、本発明に係る転炉スラグ中の遊離石灰の定量方法では、前記第1の升目幅が0.3mm〜0.5mm、前記第2の升目幅が10μm〜15μmであることを好適とする。   Moreover, in the determination method of the free lime in the converter slag according to the present invention, it is preferable that the first mesh width is 0.3 mm to 0.5 mm and the second mesh width is 10 μm to 15 μm. .

第1の倍率を50倍程度とした場合、第1の升目幅が0.3mm未満であると、相に含まれる升目の数が多くなり過ぎて測定が煩雑となる一方、第1の升目幅が0.5mm超であると、升目が粗すぎて各相の実形状との誤差が大きくなり過ぎる。
また、第2の倍率を200倍程度とした場合、第2の升目幅が10μm未満であると、晶出石灰及び析出石灰に含まれる升目の数が多くなり過ぎて測定が煩雑となる一方、第2の升目幅が15μm超であると、升目が粗すぎて晶出石灰及び析出石灰の実形状との誤差が大きくなり過ぎる。
When the first magnification is about 50 times, if the first cell width is less than 0.3 mm, the number of cells included in the phase becomes too large and the measurement becomes complicated, while the first cell width If it exceeds 0.5 mm, the mesh is too rough and the error from the actual shape of each phase becomes too large.
In addition, when the second magnification is about 200 times, if the second mesh width is less than 10 μm, the number of meshes contained in the crystallized lime and the precipitated lime becomes too large, and the measurement becomes complicated. If the second mesh width is more than 15 μm, the mesh is too coarse and the error from the actual shapes of crystallized lime and precipitated lime becomes too large.

本発明に係る転炉スラグ中の遊離石灰の定量方法によれば、転炉スラグに含まれている未滓化石灰、晶出石灰、及び析出石灰の各含有率を検出することができるので、転炉スラグの膨張挙動を正確に評価して蒸気エージング処理の最適化を図ることが可能となる。   According to the method for quantifying free lime in the converter slag according to the present invention, it is possible to detect the respective contents of uncontained lime, crystallized lime, and precipitated lime contained in the converter slag. The steam aging process can be optimized by accurately evaluating the expansion behavior of the converter slag.

本発明の一実施の形態に係る転炉スラグ中の遊離石灰の定量方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the determination method of the free lime in the converter slag which concerns on one embodiment of this invention. 試料片の作製手順を示した模式図である。It is the schematic diagram which showed the preparation procedures of the sample piece. 試料片の顕微鏡観察面の模式図である。It is a schematic diagram of the microscope observation surface of a sample piece. (A)は試料片中の転炉スラグ粒子を第1の倍率で撮影した画像の模式図、(B)は当該画像に0.3mm〜0.5mmの升目幅を有する方眼線を付した画像の模式図である。(A) is a schematic view of an image obtained by photographing converter slag particles in a sample piece at a first magnification, and (B) is an image obtained by attaching a grid line having a grid width of 0.3 mm to 0.5 mm to the image. FIG. (A)は晶出石灰及び/又は析出石灰を含む相を第2の倍率で撮影した観察視野画像の模式図、(B)は当該観察視野画像に10μm〜15μmの升目幅を有する方眼線を付した画像の模式図である。(A) is a schematic diagram of an observation visual field image obtained by imaging a phase containing crystallized lime and / or precipitated lime at a second magnification, and (B) is a grid line having a grid width of 10 μm to 15 μm in the observation visual field image. It is a schematic diagram of the attached image.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態について説明し、本発明の理解に供する。   Next, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention.

図1のフローチャートを参照しながら、本発明の一実施の形態に係る転炉スラグ中の遊離石灰の定量方法の手順について説明する。   With reference to the flowchart of FIG. 1, a procedure of a method for quantifying free lime in converter slag according to an embodiment of the present invention will be described.

[STEP−1]
転炉スラグ粒子を含有する試料片を作製する(ST1)。試料片の作成手順は以下の通りである。
(1)粒径5mm〜30mm程度の転炉スラグ粒子10を切断する(図2参照)。
(2)切断された転炉スラグ粒子10と樹脂11(例えばエポキシ樹脂)を真空容器に入れて真空引きし、転炉スラグ粒子10に樹脂11を含浸させる。
(3)樹脂11が染み込んだ転炉スラグ粒子10を円筒状の型13の中に入れ、樹脂11を型13の中に流し込む(図2参照)。その際、転炉スラグ粒子10の切断面が下側になるように、型13内に転炉スラグ粒子10を配置する。
(4)常温硬化させた試料片12を型13から取り外す。
(5)試料片12の顕微鏡観察面(転炉スラグ粒子10の切断面側の面)を、研磨紙で粗研磨した後、ダイアモンドペーストで仕上げ研磨する。試料片12の顕微鏡観察面を図3に示す。
[STEP-1]
A sample piece containing converter slag particles is prepared (ST1). The procedure for preparing the sample piece is as follows.
(1) The converter slag particles 10 having a particle size of about 5 mm to 30 mm are cut (see FIG. 2).
(2) The cut converter slag particles 10 and the resin 11 (for example, epoxy resin) are put in a vacuum vessel and evacuated to impregnate the converter slag particles 10 with the resin 11.
(3) The converter slag particles 10 infiltrated with the resin 11 are placed in a cylindrical mold 13 and the resin 11 is poured into the mold 13 (see FIG. 2). At that time, the converter slag particles 10 are arranged in the mold 13 so that the cut surface of the converter slag particles 10 is on the lower side.
(4) Remove the specimen 12 cured at room temperature from the mold 13.
(5) The microscope observation surface of the sample piece 12 (the surface on the cut surface side of the converter slag particles 10) is roughly polished with abrasive paper and then finish-polished with diamond paste. The microscope observation surface of the sample piece 12 is shown in FIG.

[STEP−2]
試料片中の転炉スラグ粒子10を第1の倍率(例えば50倍)で顕微鏡観察して観察視野(第1の観察視野)を撮影する(ST2)。その際、転炉スラグ粒子10の全景が観察視野に含まれるようにする。
[STEP−3]
第1の倍率で撮影した観察視野画像をパーソナルコンピュータに取り込み、画像編集ソフトウェア上で、0.3mm〜0.5mm四方(第1の升目幅)の方眼15を観察視野画像に重ねる(図4参照)。そして、0.3mm〜0.5mm四方の方眼15を重ねた観察視野画像について、転炉スラグ粒子10に含まれる各鉱物相の特徴を踏まえ、以下に示す5種類の相に分類する(ST3)。
[STEP-2]
The converter slag particles 10 in the sample piece are observed with a microscope at a first magnification (for example, 50 times) to photograph an observation field (first observation field) (ST2). At that time, the entire view of the converter slag particles 10 is included in the observation visual field.
[STEP-3]
An observation visual field image photographed at the first magnification is taken into a personal computer, and a grid 15 having a size of 0.3 mm to 0.5 mm square (first grid width) is superimposed on the observation visual field image on the image editing software (see FIG. 4). ). And about the observation visual field image which overlapped 0.3 mm-0.5 mm square grid 15, based on the characteristic of each mineral phase contained in converter slag particle 10, it classifies into the following five types of phases (ST3). .

(a)晶出石灰と析出石灰を含まない相:マグネシオウスタイトやダイカルシウムシリケイトなどの膨張性の無い鉱物相が明瞭に出ており、晶出石灰及び析出石灰を含んでいない。MgO系介在物やメタルを含んでいてもよく、膨張性は無い。
(b)晶出石灰及び/又は析出石灰を含む相:マグネシオウスタイトやダイカルシウムシリケイトなどの膨張性の無い鉱物相と共に、晶出石灰及び/又は析出石灰が含まれている。晶出石灰と析出石灰の濃度次第では転炉スラグの膨張性に寄与する。
(c)結晶が不明瞭な相:急冷によって結晶が十分に成長せず固化した相である。鉱物同士の境界が不鮮明で、デンドライト成長(初晶)も見られる。膨張性は無い。
(d)未滓化石灰の相:未溶解のまま残存した未滓化石灰の相である。室内放置により速やかに水和反応が進む。膨張性を有している。
(e)気孔の相:転炉スラグ内の気孔である。
(A) Phase not containing crystallized lime and precipitated lime: Mineral phases with no expansibility such as magnesia wustite and dicalcium silicate appear clearly and do not contain crystallized lime and precipitated lime. It may contain MgO-based inclusions and metals and is not expandable.
(B) Phase containing crystallized lime and / or precipitated lime: Crystallized lime and / or precipitated lime is included together with a non-expandable mineral phase such as magnesia wustite or dicalcium silicate. Depending on the concentration of crystallized lime and precipitated lime, it contributes to the expansibility of converter slag.
(C) Phase in which the crystal is unclear: a phase in which the crystal is not sufficiently grown by solidification and solidified. The boundary between minerals is unclear, and dendrite growth (primary crystals) is also seen. There is no expansibility.
(D) Undehydrated lime phase: Undehydrated lime phase remaining undissolved. Hydration proceeds promptly when left indoors. Has expandability.
(E) Pore phase: Pore in converter slag.

第1の倍率で撮影した転炉スラグ粒子10の画像を図4(A)に、当該画像に0.3mm〜0.5mmの升目幅を有する方眼線を付した画像を図4(B)に示す。図中の符号20は晶出石灰及び/又は析出石灰を含む相、符号21は未滓化石灰の相、符号22は晶出石灰と析出石灰を含まない相である。なお、この転炉スラグ粒子10は、結晶が不明瞭な相と気孔の相を含んでいない。   An image of the converter slag particles 10 taken at the first magnification is shown in FIG. 4A, and an image obtained by adding grid lines having a grid width of 0.3 mm to 0.5 mm to the image is shown in FIG. 4B. Show. In the figure, reference numeral 20 is a phase containing crystallized lime and / or precipitated lime, reference numeral 21 is a phase of undehydrated lime, and reference numeral 22 is a phase not containing crystallized lime and precipitated lime. The converter slag particles 10 do not contain a phase in which crystals are unclear and a phase of pores.

[STEP−4]
晶出石灰及び/又は析出石灰を含む相20が占める升目の数と、未滓化石灰の相21が占める升目の数と、転炉スラグ粒子10が占める升目の数とを測定し、各相が転炉スラグ粒子10に占める面積比率(含有率)を算出する(ST4)。
[STEP-4]
The number of grids occupied by the phase 20 containing crystallized lime and / or precipitated lime, the number of grids occupied by the phase 21 of un-hatched lime, and the number of grids occupied by the converter slag particles 10 are measured, and each phase is measured. Calculates the area ratio (content ratio) of the converter slag particles 10 (ST4).

[STEP−5]
晶出石灰及び/又は析出石灰を含む相20を、第1の倍率より高い倍率を有する第2の倍率(例えば200倍)で顕微鏡観察して観察視野(第2の観察視野)を撮影する(ST5)。撮影視野数は、晶出石灰及び/又は析出石灰を含む相20が観察された転炉スラグ粒子10一個につき10視野程度とする。晶出石灰及び/又は析出石灰を含む相20を第2の倍率で撮影した観察視野画像を図5(A)に示す。同図において、符号25は晶出石灰、符号26は析出石灰、符号27はマグネシオウスタイトやダイカルシウムシリケイトなどの鉱物相である。
[STEP-5]
The phase 20 containing crystallized lime and / or precipitated lime is microscopically observed at a second magnification (for example, 200 times) having a magnification higher than the first magnification to photograph an observation field (second observation field) ( ST5). The number of field of view is about 10 per one converter slag particle 10 in which the phase 20 containing crystallized lime and / or precipitated lime is observed. An observation visual field image obtained by photographing the phase 20 containing crystallized lime and / or precipitated lime at the second magnification is shown in FIG. In the figure, reference numeral 25 denotes crystallized lime, reference numeral 26 denotes precipitated lime, and reference numeral 27 denotes a mineral phase such as magnesiowite or dicalcium silicate.

[STEP−6]
第2の倍率で撮影した全観察視野画像をパーソナルコンピュータに取り込み、画像編集ソフトウェア上で、各観察視野画像に10μm〜15μm四方(第2の升目幅)の方眼16を重ねる(図5(B)参照)。そして、10μm〜15μm四方の方眼16を重ねた各観察視野画像について、晶出石灰25が占める升目の数と、析出石灰26が占める升目の数と、観察視野が占める升目の数とを測定し、晶出石灰25と析出石灰26がそれぞれ観察視野に占める面積比率を求め、各観察視野について得られた面積比率の平均値を算出する(ST6)。
[STEP-6]
The entire observation visual field image photographed at the second magnification is taken into a personal computer, and a grid 16 of 10 μm to 15 μm square (second grid width) is superimposed on each observation visual field image on the image editing software (FIG. 5B). reference). And about each observation visual field image which piled up 10 micrometers-15 micrometers square grid 16, the number of cells which crystallized lime 25 occupies, the number of cells which precipitation lime 26 occupies, and the number of cells which observation field occupies are measured. Then, the area ratios of the crystallized lime 25 and the precipitated lime 26 in the observation visual field are obtained, and the average value of the area ratios obtained for each observation visual field is calculated (ST6).

[STEP−7]
晶出石灰25と析出石灰26がそれぞれ観察視野に占める面積比率と、晶出石灰及び/又は析出石灰を含む相20が転炉スラグ粒子10に占める面積比率とを掛け合わせて、転炉スラグ粒子10に対して晶出石灰25と析出石灰26がそれぞれ占める面積比率(含有率)を算出する(ST7)。
[STEP-7]
The converter slag particles are obtained by multiplying the area ratio of the crystallized lime 25 and the precipitated lime 26 in the observation field by the area ratio of the phase 20 containing the crystallized lime and / or precipitated lime in the converter slag particles 10. The area ratio (content ratio) occupied by the crystallized lime 25 and the precipitated lime 26 with respect to 10 is calculated (ST7).

本実施の形態に係る転炉スラグ中の遊離石灰の定量方法によれば、転炉スラグに含まれている遊離石灰を未滓化石灰、晶出石灰、及び析出石灰に分類して各石灰の含有率を検出することができるので、転炉スラグの膨張挙動を正確に評価して蒸気エージング処理の最適化を図ることが可能となる。
例えば、未滓化石灰を一定量以上含んでいる転炉スラグは、蒸気エージング処理の対象外、もしくは蒸気エージング期間を短縮し、晶出石灰や析出石灰を多く含んでいる転炉スラグは、長期的な膨張を示す可能性を見極めたうえで、膨張性が高いものは道路用材料として使用しない、即ち、蒸気エージング処理を行わないといった判断を事前に下すことが可能となる。
According to the method for quantifying free lime in converter slag according to the present embodiment, the free lime contained in converter slag is classified into uncontained lime, crystallized lime, and precipitated lime, and Since the content rate can be detected, it is possible to accurately evaluate the expansion behavior of the converter slag and optimize the steam aging treatment.
For example, converter slag containing a certain amount or more of undecomposed lime is not subject to steam aging treatment, or the steam aging period is shortened, and converter slag containing a large amount of crystallized lime and precipitated lime is long-term It is possible to determine in advance that a material having high expansibility is not used as a road material, that is, a steam aging treatment is not performed.

以上、本発明の一実施の形態について説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。   Although one embodiment of the present invention has been described above, the present invention is not limited to the configuration described in the above-described embodiment, and is within the scope of matters described in the claims. Other possible embodiments and modifications are also included.

転炉スラグ粒子には、転炉から排滓されて受滓鍋で運搬され、放流場で冷却された後、地金回収及び粒度調整を行うプラント(処理量:約1000ton、処理時間:約5時間)から排出されたものを使用した。その際、サンプルに偏りがないようにするため、1時間おきに5kg〜10kgのサンプルを5回採取した。採取した転炉スラグ粒子の粒径は5mm〜30mmである。   The converter slag particles are discharged from the converter, transported in a receiving pan, cooled in the discharge field, and then recovered in metal and adjusted in particle size (processing amount: about 1000 tons, processing time: about 5 What was discharged from time) was used. At that time, in order to prevent the sample from being biased, samples of 5 kg to 10 kg were taken 5 times every 1 hour. The particle diameter of the collected converter slag particles is 5 mm to 30 mm.

JIS Z8815「ふるい分け試験方法通則」に則り、採取した転炉スラグ粒子を円すい四分法にて縮分し、1回のサンプル採取につき1個の試料片を作製した。試料片の直径は32mm、試料片1個当たり転炉スラグ粒子を4粒埋め込んだ(図3参照)。   In accordance with JIS Z8815 “General Rules for Screening Test Method”, the collected converter slag particles were reduced by the conical quadrant method, and one sample piece was produced for each sample collection. The sample piece had a diameter of 32 mm, and four converter slag particles were embedded per sample piece (see FIG. 3).

試料片の転炉スラグ粒子を50倍の倍率で顕微鏡観察して観察視野を撮影した。撮影範囲は転炉スラグ粒子の全景とした。次いで、撮影した観察視野画像をパーソナルコンピュータに取り込み、画像編集ソフトウェア上で、撮影した観察視野画像に0.5mm四方の方眼を重ね、前述した5つの相に分類した。
そして、分類した各相について升目の数を測定し、各相の面積比率を算出した。その結果を表1に示す。表中の個数は升目の数を示している。
The converter slag particles of the sample pieces were observed with a microscope at a magnification of 50 times, and an observation field was photographed. The shooting range was a full view of the converter slag particles. Next, the captured observation visual field image was taken into a personal computer, and a 0.5 mm square was superimposed on the captured observation visual field image on the image editing software, and classified into the five phases described above.
And the number of cells was measured about each classified phase, and the area ratio of each phase was computed. The results are shown in Table 1. The number in the table indicates the number of cells.

Figure 0006014574
Figure 0006014574

同表に示すように、本試験に採用した転炉スラグ粒子は、0.5mm四方の升目が全体で7255個あり、晶出石灰と析出石灰を含まない相、晶出石灰及び/又は析出石灰を含む相、結晶が不明瞭な相、未滓化石灰の相、気孔の相の升目数は順に、346個、3658個、2615個、65個、571個、面積比率は順に、4.77%、50.4%、36.0%、0.90%、7.87%であった。   As shown in the table, the converter slag particles employed in this test have 7255 0.5 mm squares in total, a phase not containing crystallized lime and precipitated lime, crystallized lime and / or precipitated lime. , 3658, 2615, 65, 571 and the area ratio are 4.77 in this order. %, 50.4%, 36.0%, 0.90%, and 7.87%.

次に、晶出石灰及び/又は析出石灰を含む相を200倍の倍率で顕微鏡観察して観察視野を撮影した。撮影視野数は、晶出石灰及び/又は析出石灰を含む相を含む転炉スラグ粒子一個につき約10視野とした。次いで、撮影した全観察視野画像をパーソナルコンピュータに取り込み、画像編集ソフトウェア上で、撮影した各観察視野画像に13μm四方の方眼を重ね、晶出石灰と析出石灰の各面積比率を13μm四方の升目の数から求め、得られた晶出石灰と析出石灰の各面積比率について10視野の平均値を算出した。
そして、その平均値と、50倍画像より得られた晶出石灰及び/又は析出石灰を含む相の面積比率とを掛け合わせ、転炉スラグ粒子に対する晶出石灰と析出石灰の各面積比率を算出した。算出結果を表2に示す。なお、同表において、晶出石灰及び析出石灰の左側の列は、晶出石灰と析出石灰がそれぞれ観察視野に占める面積比率を表し、右側の列は、晶出石灰及び/又は析出石灰を含む相の升目の数に左側の列の面積比率を掛けて、0.5mm四方の方眼当たりの晶出石灰と析出石灰の升目数に換算したものである。
Next, the phase containing crystallized lime and / or precipitated lime was observed with a microscope at a magnification of 200 times, and an observation visual field was photographed. The number of field of view was about 10 per one converter slag particle including a phase containing crystallized lime and / or precipitated lime. Next, the captured entire observation visual field image is taken into a personal computer, and on the image editing software, a 13 μm square is superimposed on each captured observation visual field image, and each area ratio of crystallized lime and precipitated lime is set to a 13 μm square grid. It calculated | required from number and the average value of 10 visual fields was computed about each area ratio of the obtained crystallization lime and precipitation lime.
Then, the average value is multiplied by the area ratio of the phase containing crystallized lime and / or precipitated lime obtained from the 50 times image to calculate each area ratio of crystallized lime and precipitated lime with respect to the converter slag particles. did. Table 2 shows the calculation results. In the table, the left column of crystallized lime and precipitated lime represents the area ratio of crystallized lime and precipitated lime in the observation field, and the right column includes crystallized lime and / or precipitated lime. The number of phase cells is multiplied by the area ratio of the left column, and converted to the number of crystallized lime and precipitated lime per 0.5 mm square.

Figure 0006014574
Figure 0006014574

同表に示すように、20個の転炉スラグ粒子のうちの10個に晶出石灰及び/又は析出石灰が確認され、0.5mm四方の方眼換算で、晶出石灰の升目数が134個、析出石灰の升目数が389個、転炉スラグ粒子に対する面積比率は、晶出石灰が1.86%、析出石灰が5.34%となった。   As shown in the table, crystallized lime and / or precipitated lime was confirmed in 10 of the 20 converter slag particles, and the number of grids of crystallized lime was 134 in terms of a 0.5 mm square. The number of grids of precipitated lime was 389, and the area ratio to converter slag particles was 1.86% for crystallized lime and 5.34% for precipitated lime.

以上の操作より、転炉スラグに含まれる未滓化石灰と晶出石灰と析出石灰を面積比率でそれぞれ定量化した。本実施例より得られた各鉱物相の面積比率は、晶出石灰と析出石灰を含まない相が4.8%、晶出石灰及び/又は析出石灰を含む相が50.4%で、うち晶出石灰が1.86%、析出石灰が5.34%となり、結晶が不明瞭な相が36.0%、未滓化石灰の相が0.90%、気孔の相が7.87%であった。   From the above operation, the unsaturated lime, the crystallized lime and the precipitated lime contained in the converter slag were each quantified by the area ratio. The area ratio of each mineral phase obtained from this example is 4.8% for a phase not containing crystallized lime and precipitated lime, and 50.4% for a phase containing crystallized lime and / or precipitated lime, 1.86% crystallized lime, 5.34% precipitated lime, 36.0% phase with unclear crystal, 0.90% undehydrated lime phase, 7.87% pore phase Met.

10:転炉スラグ粒子、11:樹脂、12:試料片、13:型、15、16:方眼、20:晶出石灰及び/又は析出石灰を含む相、21:未滓化石灰の相、22:晶出石灰と析出石灰を含まない相、25:晶出石灰、26:析出石灰、27:鉱物相 10: Converter slag particles, 11: Resin, 12: Sample piece, 13: Mold, 15, 16: Grid, 20: Phase containing crystallized lime and / or precipitated lime, 21: Phase of unfoamed lime, 22 : Phase not containing crystallized lime and precipitated lime, 25: crystallized lime, 26: precipitated lime, 27: mineral phase

Claims (2)

転炉スラグに含まれる遊離石灰を未滓化石灰、晶出石灰、及び析出石灰に分類して前記各石灰の含有率を算出する方法であって、
転炉スラグ粒子を含有する試料片を作製する第1の工程と、
前記試料片中の転炉スラグ粒子を第1の倍率で顕微鏡観察して第1の観察視野を撮影する第2の工程と、
前記第2の工程で撮影した前記第1の観察視野の画像に第1の升目幅を有する方眼線を付して、晶出石灰及び/又は析出石灰を含む相が占める升目の数と、未滓化石灰の相が占める升目の数と、前記転炉スラグ粒子が占める升目の数とを測定し、前記各相が前記転炉スラグ粒子に占める面積比率を算出する第3の工程と、
前記晶出石灰及び/又は析出石灰を含む相を、前記第1の倍率より高い倍率を有する第2の倍率で顕微鏡観察して第2の観察視野を撮影する第4の工程と、
前記第4の工程で撮影した前記第2の観察視野の画像に、前記第1の升目幅より目の細かな第2の升目幅を有する方眼線を付して、晶出石灰が占める升目の数と、析出石灰が占める升目の数と、前記第2の観察視野が占める升目の数とを測定し、晶出石灰と析出石灰がそれぞれ前記第2の観察視野に占める面積比率を算出する第5の工程と、
晶出石灰と析出石灰がそれぞれ前記第2の観察視野に占める面積比率と、前記晶出石灰及び/又は析出石灰を含む相が前記転炉スラグ粒子に占める面積比率とを掛け合わせて、前記転炉スラグ粒子に対して晶出石灰と析出石灰がそれぞれ占める面積比率を算出する第6の工程とを備えることを特徴とする転炉スラグ中の遊離石灰の定量方法。
It is a method of classifying free lime contained in converter slag into unzaturated lime, crystallized lime, and precipitated lime, and calculating the content of each lime,
A first step of producing a sample piece containing converter slag particles;
A second step of observing the converter slag particles in the sample piece under a microscope at a first magnification and photographing the first observation field;
A grid line having a first grid width is attached to the image of the first observation visual field taken in the second step, and the number of grids occupied by the phase containing crystallized lime and / or precipitated lime is not A third step of measuring the number of squares occupied by the phase of hatched lime and the number of squares occupied by the converter slag particles, and calculating the area ratio of each phase in the converter slag particles;
A fourth step of observing the phase containing the crystallized lime and / or precipitated lime with a second magnification having a magnification higher than the first magnification and photographing a second observation field;
A grid having a second grid width finer than the first grid width is attached to the image of the second observation visual field taken in the fourth step, and the grids occupied by crystallized lime The number, the number of grids occupied by the precipitated lime, and the number of grids occupied by the second observation visual field are measured, and the area ratio of the crystallized lime and the precipitated lime in the second observation visual field is calculated. 5 steps,
The ratio of the area occupied by crystallized lime and precipitated lime in the second observation visual field is multiplied by the area ratio occupied by the phase including the crystallized lime and / or precipitated lime in the converter slag particles, and A sixth method for calculating an area ratio of crystallized lime and precipitated lime with respect to the furnace slag particles, and a method for quantifying free lime in converter slag.
請求項1記載の転炉スラグ中の遊離石灰の定量方法において、前記第1の升目幅が0.3mm〜0.5mm、前記第2の升目幅が10μm〜15μmであることを特徴とする転炉スラグ中の遊離石灰の定量方法。   2. The method for determining free lime in converter slag according to claim 1, wherein the first mesh width is 0.3 mm to 0.5 mm, and the second mesh width is 10 μm to 15 μm. A method for quantifying free lime in furnace slag.
JP2013247915A 2013-11-29 2013-11-29 Determination of free lime in converter slag Active JP6014574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013247915A JP6014574B2 (en) 2013-11-29 2013-11-29 Determination of free lime in converter slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013247915A JP6014574B2 (en) 2013-11-29 2013-11-29 Determination of free lime in converter slag

Publications (2)

Publication Number Publication Date
JP2015105873A JP2015105873A (en) 2015-06-08
JP6014574B2 true JP6014574B2 (en) 2016-10-25

Family

ID=53436058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013247915A Active JP6014574B2 (en) 2013-11-29 2013-11-29 Determination of free lime in converter slag

Country Status (1)

Country Link
JP (1) JP6014574B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11326217B1 (en) * 2020-11-10 2022-05-10 University Of Science And Technology Beijing Method and system for predicting addition amount of slagging lime during LF refining, and LF refining method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7323747B2 (en) 2019-07-04 2023-08-09 濱田重工株式会社 Method for evaluating hydration expansion behavior of steelmaking slag and steam aging apparatus

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4776088A (en) * 1987-11-12 1988-10-11 The United States Of America As Represented By The United States Department Of Energy Placement accuracy gauge for electrical components and method of using same
JP2636641B2 (en) * 1992-07-20 1997-07-30 住友金属工業株式会社 Converter slag reforming
JPH07232940A (en) * 1994-02-17 1995-09-05 Sumitomo Metal Ind Ltd Method for deciding rapid expansion of converter slag
JP3467940B2 (en) * 1995-11-22 2003-11-17 東レ株式会社 Composite membrane, method of making and using the same
JP3575160B2 (en) * 1996-04-01 2004-10-13 Jfeスチール株式会社 Converter slag excellent in expansion resistance and collapse resistance and method for producing the same
JP2000111546A (en) * 1998-09-30 2000-04-21 Nippon Steel Corp Method and instrument for decarburization inspection
JP4969866B2 (en) * 2006-02-15 2012-07-04 新日本製鐵株式会社 Slag containing phosphorus-concentrated phase and method for producing the same
JP2012233650A (en) * 2011-05-06 2012-11-29 Tohoku Univ Phosphorus separation method for steel-making slag and phosphorus separation apparatus for steel-making slag

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11326217B1 (en) * 2020-11-10 2022-05-10 University Of Science And Technology Beijing Method and system for predicting addition amount of slagging lime during LF refining, and LF refining method

Also Published As

Publication number Publication date
JP2015105873A (en) 2015-06-08

Similar Documents

Publication Publication Date Title
Haha et al. Quantification of the degree of reaction of fly ash
Deschner et al. Quantification of fly ash in hydrated, blended Portland cement pastes by backscattered electron imaging
Buj et al. Effect of heavy metals and water content on the strength of magnesium phosphate cements
Brand et al. Dissolution rate spectra of β-dicalcium silicate in water of varying activity
Du et al. Preparation and characteristics of steam-autoclaved bricks produced from electrolytic manganese solid waste
JP6462405B2 (en) Method for predicting activity index of fly ash and method for producing fly ash mixed cement
Guan et al. Pilot scale preparation of α-calcium sulfate hemihydrate from FGD gypsum in Ca–K–Mg aqueous solution under atmospheric pressure
Marcotte Characterization of chloride-induced corrosion products that form in steel-reinforced cementitious materials
JP6014574B2 (en) Determination of free lime in converter slag
Stutzman Microscopy of clinker and hydraulic cements
Singh et al. Characterization of Indian fly ashes using different experimental techniques
AU2020247842A1 (en) Methods for recovering a target metal from iron or steel slag using at least one of a carbothermic reduction process and a pyro-hydrometallurgical process
JP6437306B2 (en) High fluid fly ash discrimination method and fly ash mixed cement manufacturing method
Muthu et al. Degradation of carbonated reactive MgO-based concrete exposed to nitric acid
Cui et al. Effects of Ca (OH) 2 on the early hydration, macro-performance and environmental risks of the calcined phosphogypsum
JP6142760B2 (en) Strength prediction method for modified soil
Zhu et al. Recycling of calcium fluoride sludge as ceramic material using low temperature sintering technology
WO2020170467A1 (en) Cement composition for high temperature environments and concrete for high temperature environments
JP2011133412A (en) Method for estimating chemical composition of binder in cement-based hardened body
WO2020194671A1 (en) Cement composition for plastering and mortar for plastering
Scrivener The microstructure of anhydrous cement and its effect on hydration
JP2007309841A (en) Method of determining quantitatively magnesium sulfate in oxide inorganic material
TWI441797B (en) A flue dust of an aluminum smelting aggregate manufacturing methods
KR101285328B1 (en) Measurement method for chloride in concrete using the x-ray diffraction method
Yingsamphancharoen et al. The influence of aluminum dross on mechanical and corrosion properties of cement paste: PART I

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160926

R150 Certificate of patent or registration of utility model

Ref document number: 6014574

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250