JP6014143B2 - Dry etching apparatus and dry etching method - Google Patents

Dry etching apparatus and dry etching method Download PDF

Info

Publication number
JP6014143B2
JP6014143B2 JP2014529150A JP2014529150A JP6014143B2 JP 6014143 B2 JP6014143 B2 JP 6014143B2 JP 2014529150 A JP2014529150 A JP 2014529150A JP 2014529150 A JP2014529150 A JP 2014529150A JP 6014143 B2 JP6014143 B2 JP 6014143B2
Authority
JP
Japan
Prior art keywords
substrate
dry etching
cooling gas
mounting surface
etching apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014529150A
Other languages
Japanese (ja)
Other versions
JPWO2014024216A1 (en
Inventor
甲二 埴原
甲二 埴原
敏夫 横内
敏夫 横内
満 小荒井
満 小荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Pioneer Micro Technology Corp
Original Assignee
Pioneer Corp
Pioneer Micro Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corp, Pioneer Micro Technology Corp filed Critical Pioneer Corp
Publication of JPWO2014024216A1 publication Critical patent/JPWO2014024216A1/en
Application granted granted Critical
Publication of JP6014143B2 publication Critical patent/JP6014143B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68735Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by edge profile or support profile

Description

本発明は、シリコンウェハー等の基板に対してドライエッチング処理を行うドライエッチング装置およびドライエッチング方法に関するものである。   The present invention relates to a dry etching apparatus and a dry etching method for performing a dry etching process on a substrate such as a silicon wafer.

従来、平坦な載置面を有し、シリコンウェハー等の基板に対してドライエッチング処理を行うドライエッチング装置が知られている(特許文献1参照)。この種のドライエッチング装置は、例えば、回転振動型ジャイロの製造プロセスに用いられている。   2. Description of the Related Art Conventionally, a dry etching apparatus that has a flat mounting surface and performs a dry etching process on a substrate such as a silicon wafer is known (see Patent Document 1). This type of dry etching apparatus is used, for example, in a manufacturing process of a rotary vibration gyro.

特開2011−187988号公報JP 2011-188798 A

ところで、エッチング処理を行う際、図8に示すように、平坦な載置面23に載置された基板Wの裏面に冷却ガスを導入するのが通常である。この場合、僅かながらも上方に突出した断面円弧状に変形した基板Wに対してエッチング処理が為されることになる(図8(a)参照)。このため、基板に対するエッチング方向が垂直にならず、エッチング方向にチルトが生じる(基板Wの表面から奥に向かうに連れて基板Wの径方向外側に傾く)ことになる(図8(b)参照)。なお、図8および図9の符号W1は、レジスト層(保護膜)を示す。   By the way, when performing an etching process, as shown in FIG. 8, it is normal to introduce | transduce cooling gas into the back surface of the board | substrate W mounted in the flat mounting surface 23. FIG. In this case, the etching process is performed on the substrate W which is slightly deformed into a circular arc shape protruding upward (see FIG. 8A). For this reason, the etching direction with respect to the substrate is not perpendicular, and the etching direction is tilted (inclined radially outward of the substrate W from the surface of the substrate W to the back) (see FIG. 8B). ). In addition, the code | symbol W1 of FIG. 8 and FIG. 9 shows a resist layer (protective film).

また、図9に示すように、ECR型や(電子サイクロトン共鳴:Electron Cycloton Resonance)ICP型(誘電結合方式:Inductive Coupling
Plasma)のようなリモートプラズマ方式のドライエッチング装置の場合、プラズマイオンの進行方向dが外側に拡がるため、基板Wの径よりも装置(プラズマ発生領域)が相当大きくない限り、基板Wの径方向外側にいくほど、平坦な載置面23に載置された基板Wに対してプラズマイオンが斜めに入射することになる。この場合、基板Wに対するエッチング方向が垂直にならず、チルトが生じる(基板Wの表面から奥に向かうに連れて基板Wの径方向外側に傾く)ことになる。しかも、このとき上記のように基板Wが上方に突出した断面円弧状であると、エッチング方向のチルト角が増大することになる。このように、基板Wの表面に対して精度良く垂直にエッチングすることは困難であった。
Further, as shown in FIG. 9, ECR type (Electron Cycloton Resonance) ICP type (Inductive Coupling: Inductive Coupling)
In the case of a remote plasma type dry etching apparatus such as Plasma), since the plasma ion traveling direction d spreads outward, the radial direction of the substrate W unless the apparatus (plasma generation region) is considerably larger than the diameter of the substrate W. As it goes outward, plasma ions are obliquely incident on the substrate W placed on the flat placement surface 23. In this case, the etching direction with respect to the substrate W does not become vertical, and tilt occurs (inclination toward the outside in the radial direction of the substrate W from the surface of the substrate W). In addition, when the substrate W has a circular arc shape protruding upward as described above, the tilt angle in the etching direction increases. As described above, it is difficult to perform etching perpendicular to the surface of the substrate W with high accuracy.

そして、上記の回転振動型ジャイロのエッチングプロセスにおいて、基板のエッチング方向にチルトが生じると、細長形状に形成される検出バネや駆動バネの断面が平行四辺形状に形成されてしまう。この場合、特に駆動バネの断面が平行四辺形状に形成されると、検出錘にコリオリ力とは別の振動(直角成分誤差)を発生させることになり、角速度の検出に悪影響(ノイズ)を及ぼしていた。   In the etching process of the rotational vibration type gyro described above, when a tilt occurs in the etching direction of the substrate, the cross section of the elongated detection spring and the drive spring is formed in a parallelogram shape. In this case, especially when the cross section of the drive spring is formed in a parallelogram shape, the detection weight generates a vibration (right-angle component error) different from the Coriolis force, which adversely affects the detection of angular velocity (noise). It was.

本発明は、基板の表面に対して精度良く垂直にエッチングすることができるドライエッチング装置およびドライエッチング方法を提供することを目的とする。   An object of the present invention is to provide a dry etching apparatus and a dry etching method capable of performing etching perpendicularly with high accuracy to the surface of a substrate.

本発明のドライエッチング装置は、下方に凹んだ形状に形成された載置面、および基板の裏面と載置面との間隙に冷却ガスを導入する冷却ガス導入流路、を有し、ドライエッチング処理が為される基板を静電吸着する静電吸着部と、プラズマイオンが生成されるプラズマ生成室、および静電吸着部が収容された処理室、を有するチャンバーと、基板が平坦または下方に凹んだ断面円弧状となるように、間隙における冷却ガスの圧力を制御する制御部と、を備えたことを特徴とする。 The dry etching apparatus of the present invention has a mounting surface formed in a downwardly recessed shape, and a cooling gas introduction channel for introducing a cooling gas into the gap between the back surface of the substrate and the mounting surface. A chamber having an electrostatic adsorption unit that electrostatically adsorbs a substrate to be processed, a plasma generation chamber in which plasma ions are generated, and a processing chamber in which the electrostatic adsorption unit is accommodated, and the substrate is flat or downward And a controller that controls the pressure of the cooling gas in the gap so as to have a concave arcuate cross section .

本発明のドライエッチング方法は、下方に凹んだ形状に形成された載置面、および基板の裏面と載置面との間隙に冷却ガスを導入する冷却ガス導入流路、を有し、基板を静電吸着する静電吸着部と、プラズマイオンが生成されるプラズマ生成室、および静電吸着部が収容された処理室、を有するチャンバーと、を備えたドライエッチング装置において、間隙における冷却ガスの圧力を制御し、平坦または下方に凹んだ断面円弧状となった基板に対し、ドライエッチング処理を行うことを特徴とする。 The dry etching method of the present invention has a mounting surface formed in a downwardly recessed shape, and a cooling gas introduction channel for introducing a cooling gas into the gap between the back surface of the substrate and the mounting surface. In a dry etching apparatus including an electrostatic adsorption unit that performs electrostatic adsorption, a plasma generation chamber in which plasma ions are generated, and a processing chamber in which the electrostatic adsorption unit is accommodated, a cooling gas in a gap It is characterized in that the pressure is controlled and a dry etching process is performed on a substrate that is flat or has a circular arc shape that is recessed downward.

この構成によれば、下方に凹んだ載置面に対して基板を静電吸着することで、静電吸着された基板を、平坦または下方に凹んだ断面円弧状(球冠状)とすることが可能になる。このため、プラズマイオンの進行方向が平行に揃っている場合には、静電吸着された基板を平坦な形状とすることで、基板の全域で基板に対するエッチング方向を垂直にすることができる。また、プラズマイオンの進行方向が外側に拡がる場合には、静電吸着された基板を下方に凹んだ断面円弧状とすることで、基板の全域で基板に対するエッチング方向を垂直にすることが可能となる。したがって、基板の表面に対して精度良く垂直にエッチングすることができる。
また、この構成によれば、基板を冷却するために、基板の裏面と載置面との間隙に冷却ガスを導入する場合、当該間隙における冷却ガスの圧力を制御することで、基板が平坦または下方に凹んだ断面円弧状となるようにすることができる。すなわち、載置面に静電吸着された基板を平坦にしたい場合には、当該間隙における冷却ガスの圧力を比較的大きな値に制御すればよい。他方、載置面に静電吸着された基板を下方に凹んだ断面円弧状にしたい場合には、当該間隙における冷却ガスの圧力を比較的小さな値に制御すればよい。
According to this configuration, by electrostatically attracting the substrate to the mounting surface that is recessed downward, the electrostatically attracted substrate can be flat or have a circular arc section (spherical crown shape) that is recessed downward. It becomes possible. For this reason, when the traveling directions of the plasma ions are aligned in parallel, the etching direction with respect to the substrate can be made perpendicular to the entire area of the substrate by making the electrostatically attracted substrate flat. In addition, when the plasma ion travels outward, the electrostatically adsorbed substrate has a cross-sectional arc shape that is recessed downward, so that the etching direction with respect to the substrate can be made vertical throughout the substrate. Become. Therefore, it is possible to perform etching perpendicular to the surface of the substrate with high accuracy.
Further, according to this configuration, when cooling gas is introduced into the gap between the back surface of the substrate and the mounting surface in order to cool the substrate, the substrate is flattened by controlling the pressure of the cooling gas in the gap. It can be made to have a circular arc shape that is recessed downward. That is, when it is desired to flatten the substrate electrostatically attracted to the mounting surface, the cooling gas pressure in the gap may be controlled to a relatively large value. On the other hand, when it is desired to make the substrate electrostatically attracted to the mounting surface into a circular arc shape with a downward recess, the pressure of the cooling gas in the gap may be controlled to a relatively small value.

この場合、載置面が、球冠状の凹面で構成されていることが好ましい。   In this case, it is preferable that the mounting surface is formed of a spherical crown-shaped concave surface.

この構成によれば、載置面が、底面が平坦な凹部と、段部を介してその周辺に連なる平坦部とから成り、平坦部で基板に接する場合に比べ、基板全体において載置面との距離が近くなる。このため、基板を適切に静電吸着することができる。
なお、載置面が球冠状の凹面で構成されているとは、載置面の全体が球冠状の凹面で構成されているものに限らず、例えば、載置面の周縁に平坦部を形成したものや、周縁部を座ぐり加工したものなどを含む概念である。
According to this configuration, the mounting surface includes a concave portion having a flat bottom surface and a flat portion connected to the periphery thereof via a step portion. The distance becomes closer. For this reason, a board | substrate can be electrostatically adsorbed appropriately.
Note that the placement surface is constituted by a spherical crown-shaped concave surface is not limited to the entire placement surface being constituted by a spherical crown-shaped concave surface, for example, a flat portion is formed on the periphery of the placement surface. It is a concept that includes the one that has been processed or the peripheral edge of which is countersunk.

本発明の一実施形態に係るドライエッチング装置の構成を示す図である。It is a figure which shows the structure of the dry etching apparatus which concerns on one Embodiment of this invention. ドライエッチング装置の静電チャックおよび冷却ガス導入部の構成を示す図である。It is a figure which shows the structure of the electrostatic chuck and cooling gas introducing | transducing part of a dry etching apparatus. ドライエッチング装置において、基板裏側間隙における冷却ガスの圧力を比較的大きな値に制御することで、載置面に対して静電吸着された基板を平坦にした状態を示す図である。In a dry etching apparatus, it is a figure which shows the state which made the board | substrate electrostatically adsorbed with respect to the mounting surface flat by controlling the pressure of the cooling gas in a board | substrate back side gap to a comparatively big value. ドライエッチング装置において、基板裏側間隙における冷却ガスの圧力を比較的小さな値に制御することで、載置面に対して静電吸着された基板を下方に凹んだ断面円弧状にした状態を示す図である。The figure which shows the state which made the board | substrate electrostatically adsorbed with respect to the mounting surface into the circular arc shape dented below by controlling the pressure of the cooling gas in the back side gap | interval in a dry etching apparatus to a comparatively small value. It is. 基板の凹み量を説明するための図である。It is a figure for demonstrating the amount of dents of a board | substrate. 静電チャックの載置面の変形例を示す図である。It is a figure which shows the modification of the mounting surface of an electrostatic chuck. 基板に対してドライエッチング装置によりドライエッチング処理が為されて製造された回転振動型ジャイロを示す図であって、(a)はその平面図、(b)はその断面図である。It is a figure which shows the rotational vibration type gyro manufactured by performing the dry etching process with respect to a board | substrate with a dry etching apparatus, (a) is the top view, (b) is the sectional drawing. 従来技術に係るドライエッチング装置において、上方に突出した断面円弧状の基板に対してエッチング処理が為されることを示す図である。FIG. 5 is a diagram showing that an etching process is performed on a substrate having an arcuate cross section protruding upward in a dry etching apparatus according to a conventional technique. 従来技術に係るドライエッチング装置において、プラズマイオンの進行方向が外側に拡がる場合に、平坦な基板に対してエッチング処理が為されることを示す図である。In the dry etching apparatus which concerns on a prior art, it is a figure which shows that an etching process is performed with respect to a flat board | substrate, when the advancing direction of plasma ion spreads outside.

以下、添付の図面を参照しながら、本発明の一実施形態について説明する。図1に示すように、本実施形態に係るドライエッチング装置1は、ECR型のものであって、上部のプラズマ生成室11aおよび下部の処理室11bから成るチャンバー11と、プラズマ生成室11aの周囲に設けられたコイル12と、処理室11bの内部に収容され、エッチング対象となるシリコンウェハー等の基板Wを静電吸着する静電チャック13と、静電チャック13を介して基板Wの裏面側に冷却ガスを導入する冷却ガス導入部14(図2参照)とを備えている。   Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings. As shown in FIG. 1, the dry etching apparatus 1 according to the present embodiment is of an ECR type, and includes a chamber 11 including an upper plasma generation chamber 11a and a lower processing chamber 11b, and the periphery of the plasma generation chamber 11a. The electrostatic chuck 13 that electrostatically attracts the substrate W such as a silicon wafer to be etched, and the back side of the substrate W via the electrostatic chuck 13. And a cooling gas introduction part 14 (see FIG. 2) for introducing the cooling gas into the apparatus.

コイル12は、ECR条件を満たす磁束密度(B=87.5mT)の磁場をプラズマ生成室11aに形成する。また、プラズマ生成室11aの上壁には、導波管15を介して、ECR条件を満たす周波数のマイクロ波(2.45GHz)を発生させるマイクロ波発信器(図示省略)が接続されている。   The coil 12 forms a magnetic field having a magnetic flux density (B = 87.5 mT) that satisfies the ECR condition in the plasma generation chamber 11a. Further, a microwave transmitter (not shown) that generates microwaves (2.45 GHz) having a frequency that satisfies the ECR condition is connected to the upper wall of the plasma generation chamber 11a via the waveguide 15.

静電チャック13には、マッチング回路(図示省略)を介してRF(Radio Frequency)バイアス用の高周波電源16が接続されている。また、プラズマ生成室11aの上部には、反応性ガス(例えばフッ素系のガス)を供給するガス供給ノズル17が接続されている。さらに、処理室11bの下部には、排気口18を介して真空ポンプ(図示省略)が接続されている。なお、静電チャック13および冷却ガス導入部14については後述する。   A high frequency power supply 16 for RF (Radio Frequency) bias is connected to the electrostatic chuck 13 via a matching circuit (not shown). A gas supply nozzle 17 for supplying a reactive gas (for example, a fluorine-based gas) is connected to the upper part of the plasma generation chamber 11a. Further, a vacuum pump (not shown) is connected to the lower portion of the processing chamber 11b through an exhaust port 18. The electrostatic chuck 13 and the cooling gas introduction unit 14 will be described later.

ここで、ドライエッチング装置1の動作について簡単に説明する。まず、エッチング対象の基板Wを静電チャック13にセットする。プラズマ生成室11aと処理室11bの内部を真空排気した後、ガス供給ノズル17からプラズマ生成室11a内へ反応性ガスを供給する。続いて、コイル12に通電して、プラズマ生成室11a内に磁場を形成する。このとき、導波管15よりマイクロ波をプラズマ生成室11aに供給すると、電子サイクロトロン共鳴が起こり、これにより加速された電子によってプラズマ生成室11a内の反応性ガスが電離し、プラズマイオンが生成される。   Here, the operation of the dry etching apparatus 1 will be briefly described. First, the substrate W to be etched is set on the electrostatic chuck 13. After the insides of the plasma generation chamber 11a and the processing chamber 11b are evacuated, a reactive gas is supplied from the gas supply nozzle 17 into the plasma generation chamber 11a. Subsequently, the coil 12 is energized to form a magnetic field in the plasma generation chamber 11a. At this time, when a microwave is supplied from the waveguide 15 to the plasma generation chamber 11a, electron cyclotron resonance occurs, and the reactive gas in the plasma generation chamber 11a is ionized by the accelerated electrons, thereby generating plasma ions. The

プラズマ生成室11a内で生成したプラズマイオンは、高周波電源16から基板WにRFバイアスを印加することにより、処理室11bに引き込まれて基板Wの表面に入射し、基板Wにエッチング処理が為される。このエッチング処理は、冷却ガス導入部14により基板Wを冷却しながら行われる。   Plasma ions generated in the plasma generation chamber 11a are drawn into the processing chamber 11b and applied to the surface of the substrate W by applying an RF bias from the high frequency power supply 16 to the substrate W, and the substrate W is etched. The This etching process is performed while cooling the substrate W by the cooling gas introduction unit 14.

次に、図2を参照して、静電チャック13および冷却ガス導入部14について説明する。静電チャック13は、円板状に形成され冷却機能を有する金属板21と、金属板21の上に接合された円板状の誘電体層22と、誘電体層22内に埋設され、直流電源回路27に接続された内部電極24とを有している。また、誘電体層22の上面が、基板Wが載置される載置面23となっており、載置面23は、下方に僅かに凹んだ形状、すなわち、球冠状の凹面(断面円弧)で構成されている(図2等では凹み量を誇張して示している)。また、内部電極24も、載置面23に倣った形状(断面円弧)となっている。詳細は後述するが、載置面23に対して静電吸着された基板Wが、平坦または下方に凹んだ断面円弧状となるようになっている。   Next, the electrostatic chuck 13 and the cooling gas introduction unit 14 will be described with reference to FIG. The electrostatic chuck 13 is formed in a disk shape and has a cooling function, a disk-shaped dielectric layer 22 bonded on the metal plate 21, and embedded in the dielectric layer 22. And an internal electrode 24 connected to the power supply circuit 27. The upper surface of the dielectric layer 22 is a mounting surface 23 on which the substrate W is mounted. The mounting surface 23 is slightly recessed downward, that is, a spherical crown-shaped concave surface (circular arc). (In FIG. 2 etc., the dent amount is exaggerated). The internal electrode 24 also has a shape (cross-sectional arc) that follows the mounting surface 23. Although details will be described later, the substrate W electrostatically attracted to the mounting surface 23 is flat or has a cross-sectional arc shape recessed downward.

さらに、静電チャック13には、金属板21および誘電体層22を貫通して、冷却ガス導入部14に連なる冷却ガス導入孔25が形成されている。なお、本実施形態では、冷却ガス導入孔25を、金属板21および誘電体層22の中心に形成しているが、金属板21および誘電体層22の外周領域に複数個形成してもよく、中心と外周領域との双方に形成してもよい。   Further, the electrostatic chuck 13 is formed with a cooling gas introduction hole 25 that penetrates the metal plate 21 and the dielectric layer 22 and continues to the cooling gas introduction portion 14. In this embodiment, the cooling gas introduction holes 25 are formed at the centers of the metal plate 21 and the dielectric layer 22, but a plurality of cooling gas introduction holes 25 may be formed in the outer peripheral regions of the metal plate 21 and the dielectric layer 22. It may be formed in both the center and the outer peripheral region.

冷却ガス導入部14は、冷却ガスを貯留しているガス源31と、ガス源31と静電チャック13の冷却ガス導入孔25とを接続するガス導入管32と、ガス導入管32に介設されたマスフローコントローラー33および圧力計34とを備えている。そして、ガス源31に貯留された冷却ガスが、ガス導入管32および冷却ガス導入孔25を通って、静電チャック13に静電吸着された基板Wの裏面と載置面23との間隙である基板裏側間隙26に導入される。なお、冷却ガスとしては、ヘリウムなどの不活性ガスを好適に用いることができる。   The cooling gas introduction unit 14 includes a gas source 31 storing a cooling gas, a gas introduction pipe 32 connecting the gas source 31 and the cooling gas introduction hole 25 of the electrostatic chuck 13, and an intervening gas introduction pipe 32. The mass flow controller 33 and the pressure gauge 34 are provided. Then, the cooling gas stored in the gas source 31 passes through the gas introduction pipe 32 and the cooling gas introduction hole 25, and is at the gap between the back surface of the substrate W electrostatically attracted to the electrostatic chuck 13 and the placement surface 23. It is introduced into a certain substrate back side gap 26. Note that an inert gas such as helium can be suitably used as the cooling gas.

そして、圧力計34により検出された圧力値に基づいて、マスフローコントローラー33により冷却ガスの導入を断続的にON/OFFすることで、基板裏側間隙26における冷却ガスの圧力が所要の値で安定するように制御している。すなわち、所要の圧力値に達した後、基板裏側間隙26への冷却ガスの導入量と、基板裏側間隙26からの冷却ガスの流出量(漏れ量)とが等しくなるように制御する。なお、本実施形態では、基板裏側間隙26における冷却ガスの圧力を、導入する冷却ガスの流量により制御しているが、導入する冷却ガスの圧力により制御してもよい。この場合は、例えば、ガス導入管32に圧力調整バルブを介設するようにする。   Then, based on the pressure value detected by the pressure gauge 34, the introduction of the cooling gas is intermittently turned on / off by the mass flow controller 33, whereby the pressure of the cooling gas in the substrate back side gap 26 is stabilized at a required value. So that it is controlled. That is, after the required pressure value is reached, the amount of cooling gas introduced into the substrate back side gap 26 is controlled to be equal to the amount of cooling gas flowing out (leakage amount) from the substrate back side gap 26. In this embodiment, the pressure of the cooling gas in the substrate back side gap 26 is controlled by the flow rate of the introduced cooling gas, but may be controlled by the pressure of the introduced cooling gas. In this case, for example, a pressure adjusting valve is provided in the gas introduction pipe 32.

そして、基板裏側間隙26における冷却ガスの圧力を比較的大きな値に制御することで、図3に示すように、載置面23に対して静電吸着された基板Wを平坦にすることができる。このように、静電吸着された基板Wを平坦な形状とすることで、プラズマイオンの進行方向が平行に揃っている場合には、基板Wの全域で基板Wに対するエッチング方向を垂直にすることができる。   Then, by controlling the pressure of the cooling gas in the substrate back side gap 26 to a relatively large value, the substrate W electrostatically attracted to the placement surface 23 can be flattened as shown in FIG. . In this way, by making the electrostatically attracted substrate W flat, the etching direction with respect to the substrate W is made vertical in the entire region of the substrate W when the traveling directions of plasma ions are aligned in parallel. Can do.

一方、基板裏側間隙26における冷却ガスの圧力が比較的小さくなるように制御することで、図4に示すように、載置面23に対して静電吸着された基板Wを下方に凹んだ断面円弧状に変形させることができる。このように、静電吸着された基板Wを下方に凹んだ断面円弧状とすることで、プラズマイオンの進行方向が外側に拡がる場合にも、基板Wの全域で基板Wに対するエッチング方向を垂直にすることができる。   On the other hand, by controlling the pressure of the cooling gas in the substrate back side gap 26 to be relatively small, as shown in FIG. 4, a cross section in which the substrate W electrostatically attracted to the mounting surface 23 is recessed downward. It can be deformed into an arc shape. In this way, by making the electrostatically attracted substrate W into a circular arc shape that is recessed downward, the etching direction with respect to the substrate W is made vertical in the entire region of the substrate W even when the plasma ion travels outward. can do.

ここで、基板Wの凹み量ΔHは、以下のθが十分に小さいとき、次のように近似できる(図5参照)。
ΔH=πrθ/360
r:基板Wの半径
θ:プラズマイオンの進行方向の広がり角度[度]
例えば、6インチウェハー(r=75mm)の基板Wを用い、θ=1度である場合、ΔH=654μmとなる。そのため、基板Wの凹み量ΔHが、654μmとなるように、基板裏側間隙26の圧力を制御すればよいことになる。また、この場合、静電チャック13の載置面23を、ΔH=654μm分の基板Wの凹み量を許容する形状に形成しておく。
Here, when the following θ is sufficiently small, the dent amount ΔH of the substrate W can be approximated as follows (see FIG. 5).
ΔH = πrθ / 360
r: radius of the substrate W θ: spread angle in the direction of travel of plasma ions [degrees]
For example, when a 6-inch wafer (r = 75 mm) substrate W is used and θ = 1 degree, ΔH = 654 μm. Therefore, the pressure in the substrate back side gap 26 may be controlled so that the amount of depression ΔH of the substrate W becomes 654 μm. In this case, the mounting surface 23 of the electrostatic chuck 13 is formed in a shape that allows the amount of recess of the substrate W by ΔH = 654 μm.

なお、本実施形態では、載置面23を、球冠状の凹面(断面円弧)で構成したが、図6に示すように、静電チャック13の載置面23の周縁に、平坦部23aを形成したものでもよく(図6(a)参照)、この平坦部23aで基板Wに接するようにしてもよい(図6(b)参照)。また、載置面23の周縁に、座ぐり加工した座ぐり部23bを設け、さらにその外縁に平坦部23aを形成したものでもよい(図6(c)参照)。   In the present embodiment, the mounting surface 23 is configured by a spherical crown-shaped concave surface (circular arc). However, as shown in FIG. 6, a flat portion 23 a is provided on the periphery of the mounting surface 23 of the electrostatic chuck 13. It may be formed (see FIG. 6A) or may be in contact with the substrate W at the flat portion 23a (see FIG. 6B). Further, a counterbore portion 23b that is counterbored may be provided on the periphery of the mounting surface 23, and a flat portion 23a may be formed on the outer edge thereof (see FIG. 6C).

さらに、載置面23を、球冠状の凹面ではなく、底面が平坦な浅い凹部23cと、段部を介してその周辺に連なる平坦部23aとで構成し、この平坦部23aで基板Wに接するようにしてもよい(図6(d)参照)。もっとも、本実施形態のように、載置面23を、球冠状の凹面で構成することで、基板W全体において載置面23との距離が近くなるため、基板Wを適切に静電吸着することができる。   Furthermore, the mounting surface 23 is not a spherical crown-shaped concave surface, but is constituted by a shallow concave portion 23c having a flat bottom surface and a flat portion 23a connected to the periphery thereof through a step portion, and is in contact with the substrate W by the flat portion 23a. You may make it (refer FIG.6 (d)). However, as in the present embodiment, the placement surface 23 is formed of a spherical crown-shaped concave surface, so that the distance from the placement surface 23 is reduced in the entire substrate W, so that the substrate W is appropriately electrostatically adsorbed. be able to.

以上のように、本実施形態のドライエッチング装置1によれば、下方に凹んだ載置面23に対して基板Wを静電吸着することで、静電吸着された基板Wを、上方に突出した断面円弧状でなく、平坦または下方に凹んだ断面円弧状とすることが可能になる。このため、基板Wの表面に対して精度良く垂直にエッチングすることができる。   As described above, according to the dry etching apparatus 1 of the present embodiment, the electrostatically attracted substrate W is protruded upward by electrostatically attracting the substrate W to the mounting surface 23 recessed downward. Instead of the circular arc shape, the cross-sectional arc shape can be flat or recessed downward. For this reason, the etching can be performed perpendicularly to the surface of the substrate W with high accuracy.

なお、本実施形態では、ドライエッチング装置1として、ECR型のものを例に挙げて説明したが、これに限定されるものではなく、ICP型などのリモートプラズマ方式のものを好適に用いることができる。リモートプラズマ方式のドライエッチング装置1では、基板Wから離れた位置(プラズマ生成室11a)でプラズマを発生させ、そこからプラズマイオンを基板Wに向けて引き込むものである。このため、リモートプラズマ方式では、プラズマイオンの進行方向が外側に拡がりやすくなるが、本実施形態のドライエッチング装置1によれば、上記のように、プラズマイオンの進行方向が外側に拡がる場合にも、基板Wの全域で基板Wに対するエッチング方向を垂直にすることができる。   In the present embodiment, the dry etching apparatus 1 has been described by taking an ECR type as an example, but the dry etching apparatus 1 is not limited to this, and an ICP type or the like of a remote plasma system is preferably used. it can. In the remote plasma dry etching apparatus 1, plasma is generated at a position (plasma generation chamber 11 a) away from the substrate W, and plasma ions are drawn toward the substrate W therefrom. For this reason, in the remote plasma method, the traveling direction of plasma ions tends to spread outward, but according to the dry etching apparatus 1 of the present embodiment, as described above, even when the traveling direction of plasma ions spreads outward. The etching direction with respect to the substrate W can be made vertical throughout the substrate W.

そして、本実施形態のドライエッチング装置1は、例えば、図7に示す回転振動型ジャイロ100の製造プロセスに好適に用いることができる。回転振動型ジャイロ100は、基板W(シリコンウェハー)にリリース形成された環状の駆動錘101と、駆動錘101の内側に同心円状に配設された円板状の検出錘102と、基板W上に突設され、駆動錘101および検出錘102を支持するアンカー103と、アンカー103と検出錘102との間に掛け渡され、振動する検出錘102のヒンジとして機能する検出バネ104と、駆動錘101および検出錘102の間に掛け渡されると共に、駆動錘101の回転振動を吸収しコリオリ力のみを検出錘102に伝達する駆動バネ105とを備えている。   And the dry etching apparatus 1 of this embodiment can be used suitably for the manufacturing process of the rotational vibration gyroscope 100 shown in FIG. 7, for example. The rotational vibration type gyro 100 includes an annular driving weight 101 formed on a substrate W (silicon wafer), a disc-shaped detection weight 102 disposed concentrically inside the driving weight 101, and a substrate W. An anchor 103 that supports the driving weight 101 and the detection weight 102, a detection spring 104 that spans between the anchor 103 and the detection weight 102, and functions as a hinge of the detection weight 102 that vibrates, and a driving weight 101 and a detection weight 102, and a drive spring 105 that absorbs rotational vibration of the drive weight 101 and transmits only the Coriolis force to the detection weight 102.

回転振動型ジャイロ100は、駆動錘101をその重心を通るZ軸周りに回転振動させて、Z軸に直交する軸周りに角速度が加わったときに発生したコリオリ力により検出錘102を搖動させ、この搖動による静電容量の変化から当該角速度を検出するようになっている。そして、これらの駆動錘101、検出錘102、検出バネ104および駆動バネ105等は、基板Wに対する何段階にも亘るエッチングプロセスを経てリリース形成される。   The rotational vibration gyro 100 rotates and vibrates the driving weight 101 around the Z axis passing through the center of gravity, and swings the detection weight 102 by the Coriolis force generated when an angular velocity is applied around an axis orthogonal to the Z axis. The angular velocity is detected from the change in capacitance due to this peristaltic movement. Then, the drive weight 101, the detection weight 102, the detection spring 104, the drive spring 105, and the like are released and formed through an etching process for the substrate W in several stages.

回転振動型ジャイロ100のエッチングプロセスにおいて、基板Wに対するエッチング方向にチルトが生じると、細長形状に形成される検出バネ104および駆動バネ105の断面が平行四辺形状に形成されてしまう。この場合、特に駆動バネ105の断面が平行四辺形状に形成されると、検出錘102にコリオリ力とは別の振動(直角成分誤差)を発生させることになり、角速度の検出に悪影響を及ぼすことになる。この点、本実施形態のドライエッチング装置1によれば、基板Wの表面に対して精度良く垂直にエッチングすることができるため、駆動バネ105等を精度良く断面矩形に形成することができる。したがって、精度良く角速度を検出することができる回転振動型ジャイロ100を製造することができる。
なお、ドライエッチング装置1は、回転振動型ジャイロ100以外にも、他のMEMS(Micro Electro Mechanical Systems)デバイスや半導体デバイスの製造プロセスに好適に用いることができる。
In the etching process of the rotational vibration gyro 100, when a tilt occurs in the etching direction with respect to the substrate W, the cross section of the detection spring 104 and the drive spring 105 formed in an elongated shape is formed in a parallelogram shape. In this case, in particular, when the cross section of the drive spring 105 is formed in a parallelogram shape, the detection weight 102 is caused to vibrate different from the Coriolis force (right angle component error), which adversely affects the detection of the angular velocity. become. In this respect, according to the dry etching apparatus 1 of the present embodiment, since the etching can be performed perpendicularly to the surface of the substrate W with high accuracy, the drive spring 105 and the like can be formed with a rectangular cross section with high accuracy. Therefore, it is possible to manufacture the rotational vibration gyro 100 that can accurately detect the angular velocity.
The dry etching apparatus 1 can be suitably used for manufacturing processes of other MEMS (Micro Electro Mechanical Systems) devices and semiconductor devices besides the rotational vibration gyroscope 100.

1:ドライエッチング装置、13:静電チャック、14:冷却ガス導入部、23:載置面、26:基板裏側間隙、33:マスフローコントローラー、34:圧力計、W:基板   1: dry etching apparatus, 13: electrostatic chuck, 14: cooling gas introduction section, 23: mounting surface, 26: substrate back side gap, 33: mass flow controller, 34: pressure gauge, W: substrate

Claims (3)

下方に凹んだ形状に形成された載置面、および基板の裏面と前記載置面との間隙に冷却ガスを導入する冷却ガス導入流路、を有し、ドライエッチング処理が為される前記基板を静電吸着する静電吸着部と、
プラズマイオンが生成されるプラズマ生成室、および前記静電吸着部が収容された処理室、を有するチャンバーと、
前記基板が平坦または下方に凹んだ断面円弧状となるように、前記間隙における前記冷却ガスの圧力を制御する制御部と、
を備えたことを特徴とするドライエッチング装置。
The substrate having a mounting surface formed in a downwardly recessed shape, and a cooling gas introduction channel for introducing a cooling gas into a gap between the back surface of the substrate and the mounting surface, and is subjected to dry etching processing An electrostatic adsorption part that electrostatically adsorbs,
A chamber having a plasma generation chamber in which plasma ions are generated, and a processing chamber in which the electrostatic adsorption unit is accommodated;
A control unit for controlling the pressure of the cooling gas in the gap so that the substrate is flat or has a circular arc shape recessed downwards;
Dry etching apparatus comprising the.
前記載置面が、球冠状の凹面で構成されていることを特徴とする請求項1に記載のドライエッチング装置。 The dry etching apparatus according to claim 1, wherein the mounting surface is formed of a spherical crown-shaped concave surface. 下方に凹んだ形状に形成された載置面、および基板の裏面と前記載置面との間隙に冷却ガスを導入する冷却ガス導入流路、を有し、前記基板を静電吸着する静電吸着部と、
プラズマイオンが生成されるプラズマ生成室、および前記静電吸着部が収容された処理室、を有するチャンバーと、を備えたドライエッチング装置において、
前記間隙における前記冷却ガスの圧力を制御し、平坦または下方に凹んだ断面円弧状となった前記基板に対し、ドライエッチング処理を行うことを特徴とするドライエッチング方法。
An electrostatic surface for electrostatically adsorbing the substrate , comprising a mounting surface formed in a downwardly recessed shape, and a cooling gas introduction channel for introducing a cooling gas into the gap between the back surface of the substrate and the mounting surface. An adsorbing part;
In a dry etching apparatus comprising: a plasma generation chamber in which plasma ions are generated; and a chamber having a processing chamber in which the electrostatic adsorption unit is accommodated.
The pressure of the cooling gas to control, to the substrate that has a cross section arcuate recessed flat or downward, dry etching method and performing dry etching process in the gap.
JP2014529150A 2012-08-06 2012-08-06 Dry etching apparatus and dry etching method Active JP6014143B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/004982 WO2014024216A1 (en) 2012-08-06 2012-08-06 Dry etching device and dry etching method

Publications (2)

Publication Number Publication Date
JPWO2014024216A1 JPWO2014024216A1 (en) 2016-07-21
JP6014143B2 true JP6014143B2 (en) 2016-10-25

Family

ID=50067508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014529150A Active JP6014143B2 (en) 2012-08-06 2012-08-06 Dry etching apparatus and dry etching method

Country Status (2)

Country Link
JP (1) JP6014143B2 (en)
WO (1) WO2014024216A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111517274B (en) * 2020-04-29 2022-03-29 中国科学院光电技术研究所 High-precision etching transfer method for micro-nano structure pattern on curved surface substrate

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08330403A (en) * 1995-05-30 1996-12-13 Sumitomo Metal Ind Ltd Electrostatic chuck
JP3753525B2 (en) * 1997-11-28 2006-03-08 宮城沖電気株式会社 Sputtering method
JP2000340546A (en) * 1999-05-31 2000-12-08 Matsushita Electric Ind Co Ltd Plasma treatment device and method
EP1184894B1 (en) * 2000-08-29 2007-11-21 Qimonda Dresden GmbH & Co. oHG Method of operating a susceptor for semiconductor wafers
JP2002329777A (en) * 2001-05-07 2002-11-15 Tokyo Electron Ltd Method of plasma processing and substrate retainer
JP2011054910A (en) * 2009-09-04 2011-03-17 Asahi Glass Co Ltd Plasma processing device
JP5628507B2 (en) * 2009-10-20 2014-11-19 東京エレクトロン株式会社 Sample stage and microwave plasma processing equipment
JP2011204709A (en) * 2010-03-24 2011-10-13 Hitachi High-Technologies Corp Plasma processing apparatus

Also Published As

Publication number Publication date
JPWO2014024216A1 (en) 2016-07-21
WO2014024216A1 (en) 2014-02-13

Similar Documents

Publication Publication Date Title
JP5102706B2 (en) Baffle plate and substrate processing apparatus
JP6204869B2 (en) Plasma processing apparatus and plasma processing method
US10546720B2 (en) Ion beam processing device
JP5233092B2 (en) Mounting table for plasma processing apparatus and plasma processing apparatus
JP5202050B2 (en) Shower head and substrate processing apparatus
US8083891B2 (en) Plasma processing apparatus and the upper electrode unit
US10170284B2 (en) Plasma processing method and plasma processing apparatus
KR102424818B1 (en) Plasma processing apparatus and focus ring
KR20200051494A (en) Placing table, positioning method of edge ring and substrate processing apparatus
JP5503503B2 (en) Plasma processing equipment
JP2009239014A (en) Electrode structure and substrate processing device
JP2019110028A (en) Plasma processing apparatus
JP6014143B2 (en) Dry etching apparatus and dry etching method
US11056370B2 (en) Method for processing workpiece
WO2020116248A1 (en) Plasma processing device
TWI571921B (en) ICP plasma processing chamber and its gas injection device, silicon hole etching method
KR20210070912A (en) Edge ring and substrate processing apparatus
JP6462072B2 (en) Plasma processing apparatus and plasma processing method
TWI816448B (en) Recycling method of interior wall components
KR100510076B1 (en) Plasma Etching Apparatus
US20150294839A1 (en) Plasma processing apparatus and plasma processing method
KR20210125434A (en) Edge ring, stage and substrate processing apparatus
KR20240014491A (en) Methods for generating magnetic fields during semiconductor processing
JP2007134428A (en) Dry-etching method and its equipment

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160923

R150 Certificate of patent or registration of utility model

Ref document number: 6014143

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250