JP6012094B2 - Continuous current interrupting device and arc horn device - Google Patents

Continuous current interrupting device and arc horn device Download PDF

Info

Publication number
JP6012094B2
JP6012094B2 JP2012074549A JP2012074549A JP6012094B2 JP 6012094 B2 JP6012094 B2 JP 6012094B2 JP 2012074549 A JP2012074549 A JP 2012074549A JP 2012074549 A JP2012074549 A JP 2012074549A JP 6012094 B2 JP6012094 B2 JP 6012094B2
Authority
JP
Japan
Prior art keywords
diameter
diameter portion
outlet
electrode
inner diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012074549A
Other languages
Japanese (ja)
Other versions
JP2013206718A (en
Inventor
祐治 戸部
祐治 戸部
智康 表
智康 表
憲一郎 野村
憲一郎 野村
野村 英司
英司 野村
聡也 大高
聡也 大高
幹正 岩田
幹正 岩田
正士 天川
正士 天川
実 上原
実 上原
健太郎 上村
健太郎 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Kansai Electric Power Co Inc
Original Assignee
Central Research Institute of Electric Power Industry
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry, Kansai Electric Power Co Inc filed Critical Central Research Institute of Electric Power Industry
Priority to JP2012074549A priority Critical patent/JP6012094B2/en
Publication of JP2013206718A publication Critical patent/JP2013206718A/en
Application granted granted Critical
Publication of JP6012094B2 publication Critical patent/JP6012094B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Insulators (AREA)
  • Circuit Breakers (AREA)

Description

この発明は、続流遮断装置及びアークホーン装置に関する。   The present invention relates to a continuity interruption device and an arc horn device.

電線を鉄塔等に張設する碍子装置には、雷等による閃絡や、その後の続流アークによって碍子が破損したり、電線が溶断したりするのを防止する目的でアークホーンが取り付けられる。すなわち、アークホーンは、続流アークの発弧点を電線以外のところに移すとともに、続流アークを碍子から離すことによって電線や碍子を保護するものである。   An arc horn is attached to an insulator device that stretches an electric wire on a steel tower or the like in order to prevent the insulator from being damaged by a flash of lightning or the like and the subsequent continuation arc or the electric wire from being blown out. That is, the arc horn protects the electric wire and the insulator by moving the starting point of the follower arc to a place other than the electric wire and separating the follower arc from the insulator.

アークホーンは、一般に、碍子装置の接地側と線側とに配設されるが、接地側に配設されたアークホーンと線側に配設されたアークホーンとの間で閃絡すると、その後の続流によって遮断器が動作し、停止事故(停電)や瞬時電圧低下となって、電力供給に支障をきたすことになる。そこで、以前から、アークホーンに対して、続流を遮断する続流遮断装置を取り付けることが行われてきた(例えば特許文献1参照)。   The arc horn is generally disposed on the ground side and the wire side of the insulator device. However, if the arc horn is disposed between the arc horn disposed on the ground side and the arc horn disposed on the wire side, The circuit breaker operates due to the continuation of the current, resulting in a stop accident (power failure) and an instantaneous voltage drop, which hinders power supply. Therefore, a continuity interrupting device that interrupts the continuity has been attached to the arc horn for some time (see, for example, Patent Document 1).

続流遮断装置は、例えば、接地側アークホーンの先端部に絶縁性筒体を付設することで構成されており、雷撃時のアークホーンの閃絡が絶縁性筒体を通して起こった際に、アーク熱によって絶縁性筒体内に発生した高圧ガスを噴射することで、続流を絶縁性筒体内で遮断するようにしている。   The continuity interrupting device is configured, for example, by attaching an insulating cylinder to the tip of the ground-side arc horn, and when the arc horn flashes during lightning strikes through the insulating cylinder, the arc By injecting high-pressure gas generated in the insulating cylinder by heat, the follow-up flow is blocked in the insulating cylinder.

特開2010−34084号公報JP 2010-34084 A

ところで、上記特許文献1に記載の続流遮断装置においては、絶縁性筒体の内径寸法をアークホーン側と出口側とで異ならせた形態、具体的には、出口側の内径寸法を、アークホーン側(奥側)の内径寸法より大とすることで、続流アーク発生時における絶縁性筒体内の電流密度を低減させ、ガス流の閉塞を抑制することで遮断性能の向上を図っていた。   By the way, in the continuous current interrupting device described in Patent Document 1, the inner diameter dimension of the insulating cylinder is made different between the arc horn side and the outlet side. By making it larger than the inner diameter dimension on the horn side (back side), the current density in the insulating cylinder during the wake arc generation was reduced, and the blocking performance was improved by suppressing the blockage of the gas flow. .

しかしながら、特許文献1の続流遮断装置は、遮断性能の向上に効果のある含水処理を施していながらも続流の遮断に時間を要している等、依然として改良の余地があった。   However, the continuity interruption device of Patent Document 1 still has room for improvement, such as taking time for interruption of the continuity while performing a water-containing treatment effective in improving the interruption performance.

そこで、この発明は、上記課題を解決するためになされたものであって、続流の遮断を短時間で行うことができ、続流に起因する停止事故(停電)や瞬時電圧低下の発生を一層抑制することができる続流遮断装置及びアークホーン装置の提供を目的とする。   Accordingly, the present invention has been made to solve the above-described problems, and can interrupt the continuation in a short time, and can cause a stop accident (power failure) or instantaneous voltage drop due to the continuation. It is an object of the present invention to provide a continuity blocking device and an arc horn device that can be further suppressed.

上記課題を解決するため、本発明の続流遮断装置は、基端部側に電極先端部11aが挿入固定される絶縁性筒体2を備えた続流遮断装置であって、上記絶縁性筒体2は、電極側小径部7と、この電極側小径部7の先端側に連接されて絶縁性筒体2の先端面9に開口する出口側大径部8とを有する通孔3が開設されており、出口側大径部8の内径寸法d2は、続流アークによって通孔3内に生じるガス流を適正膨張させることが可能な適正膨張径dc以下で、且つ上記適正膨張径dcと電極側小径部7の内径寸法d1との平均値dm以上とされていることを特徴としている。   In order to solve the above-mentioned problem, the continuity blocking device of the present invention is a continuity blocking device provided with an insulating cylinder 2 in which an electrode distal end portion 11a is inserted and fixed on the base end side, and the insulating tube The body 2 has a through-hole 3 having an electrode-side small-diameter portion 7 and an outlet-side large-diameter portion 8 that is connected to the distal end side of the electrode-side small diameter portion 7 and opens to the distal end surface 9 of the insulating cylinder 2. The inner diameter d2 of the outlet-side large-diameter portion 8 is equal to or less than the appropriate expansion diameter dc that can appropriately expand the gas flow generated in the through-hole 3 by the wake arc, and the appropriate expansion diameter dc. It is characterized by being set to an average value dm or more with the inner diameter dimension d1 of the electrode-side small diameter portion 7.

具体的に、適正膨張径dcに対する出口側大径部8の内径寸法d2の比が0.6〜1.0とされている。   Specifically, the ratio of the inner diameter dimension d2 of the outlet-side large-diameter portion 8 to the appropriate expansion diameter dc is set to 0.6 to 1.0.

また、適正膨張径dcは、出口側大径部8の内径寸法d2を仮の値とした通孔3の続流アーク発生時の電極側小径部7の圧力を算出した後、
(a)算出された圧力を、式1に入力し、出口側大径部8の内径寸法d2を算出する手順と、
(b)電極側小径部7の内径寸法d1を一定に、出口側大径部8の内径寸法d2を算出値とした通孔3の続流アーク発生時の電極側小径部7の圧力を算出する手順とを、
電極側小径部7の圧力値が収束するまで繰り返すことで得られた出口側大径部8の内径寸法d2であることを特徴としている。
(Ae:出口側大径部の断面積、A:電極側小径部の断面積、Pd:出口側大径部の圧力、P0:電極側小径部の圧力、γ:比熱比)
Moreover, after calculating the pressure of the electrode side small diameter part 7 at the time of the wake arc generation of the through-hole 3, the appropriate expansion diameter dc is calculated using the inner diameter dimension d2 of the outlet side large diameter part 8 as a temporary value.
(A) A procedure for inputting the calculated pressure into Equation 1 and calculating an inner diameter d2 of the outlet-side large-diameter portion 8;
(B) The pressure of the electrode-side small-diameter portion 7 at the time of occurrence of a wake arc in the through-hole 3 is calculated with the inner-diameter size d1 of the electrode-side small-diameter portion 7 being constant and the inner-diameter size d2 of the outlet-side large-diameter portion 8 being calculated. And the procedure to
The inner diameter dimension d2 of the outlet-side large-diameter portion 8 obtained by repeating until the pressure value of the electrode-side small-diameter portion 7 converges is characterized.
(Ae: sectional area of the outlet side large diameter part, A: sectional area of the electrode side small diameter part, Pd: pressure at the outlet side large diameter part, P0: pressure at the electrode side small diameter part, γ: specific heat ratio)

また、アークホーン装置10が上記続流遮断装置1を備えている。   Further, the arc horn device 10 includes the continuity interruption device 1.

この発明の続流遮断装置によれば、出口側大径部の内径寸法を、続流アークによって通孔内に生じるガス流を適正膨張させることが可能な適正膨張径以下で、且つ適正膨張径と電極側小径部の内径寸法との平均値以上としている、すなわち、出口側大径部の内径寸法をガス放出に最適な値としていることから、ガス流の閉塞を確実に解消することができる。また、ガス流速の向上を図ることができることから、より短時間での続流の遮断を実現することができる。具体的に、適正膨張径に対する出口側大径部の内径寸法の比を0.6〜1.0とすれば続流の遮断に好適な通孔形状とすることができる。   According to the continuity interrupting device of the present invention, the inner diameter dimension of the outlet-side large-diameter portion is equal to or less than the appropriate expansion diameter capable of appropriately expanding the gas flow generated in the through hole by the wake arc, and the appropriate expansion diameter. Since the inner diameter dimension of the outlet side large diameter portion is set to an optimum value for gas discharge, the blockage of the gas flow can be reliably eliminated . In addition, since the gas flow rate can be improved, the continuity can be interrupted in a shorter time. Specifically, if the ratio of the inner diameter dimension of the outlet-side large-diameter portion to the appropriate expansion diameter is 0.6 to 1.0, a through-hole shape suitable for blocking the continuity can be obtained.

また、アークホーン装置に上記続流遮断装置を設けることにより、アークホーンに生じた続流を遮断することができ、続流に起因する停止事故(停電)や瞬時電圧低下の発生を抑制することができる。   In addition, by providing the above-mentioned continuity interruption device in the arc horn device, the continuity generated in the arc horn can be interrupted, and the occurrence of a stop accident (power failure) or instantaneous voltage drop due to the continuity can be suppressed. Can do.

この発明の続流遮断装置を示す断面図である。It is sectional drawing which shows the continuous flow interruption | blocking apparatus of this invention. 続流遮断装置の碍子装置への取付状態を示す簡略図である。It is a simplification figure which shows the attachment state to the insulator apparatus of a continuity interruption apparatus. 異なる実施形態の続流遮断装置を示す断面図である。It is sectional drawing which shows the subsequent flow interruption | blocking apparatus of different embodiment.

次に、この発明の続流遮断装置の実施形態を図面に基づいて詳細に説明する。図1は、この発明の続流遮断装置1の要所断面図を示しているが、この続流遮断装置1は絶縁性筒体2を備えている。また、この絶縁性筒体2は、図2に示すように、接地側アークホーン11と線側アークホーン12等で構成されるアークホーン装置10の接地側アークホーン11に取り付けられる。   Next, an embodiment of a continuity blocking device of the present invention will be described in detail based on the drawings. FIG. 1 shows a cross-sectional view of a main part of a continuity interrupting device 1 according to the present invention. The continuity interrupting device 1 includes an insulating cylinder 2. Further, as shown in FIG. 2, the insulating cylindrical body 2 is attached to the ground side arc horn 11 of the arc horn apparatus 10 including a ground side arc horn 11 and a line side arc horn 12.

絶縁性筒体2は、図1に示すように、その通孔3が、基端側のネジ孔4と、中間部の小径部5と、先端側の大径部6とを備えている。そして、ネジ孔4に、接地側アークホーン11の先端部(電極先端部)11aのネジ部が螺着されることにより、電極先端部11aが絶縁性筒体2の基端部側に挿入固定されることになる。   As shown in FIG. 1, the insulative cylinder 2 has a through hole 3 including a screw hole 4 on the base end side, a small diameter portion 5 on the intermediate portion, and a large diameter portion 6 on the distal end side. Then, by screwing the screw portion of the tip portion (electrode tip portion) 11 a of the ground side arc horn 11 into the screw hole 4, the electrode tip portion 11 a is inserted and fixed to the base end portion side of the insulating cylinder 2. Will be.

そして、電極先端部11aが連結された状態では、通孔3の小径部5に、電極先端部11aの先端縁部が突入状となる電極側小径部7が構成され、通孔3の大径部6に、電極側小径部7に連接されて絶縁性筒体2の先端面9に開口する出口側大径部8が構成される。   In the state in which the electrode tip portion 11 a is connected, the small diameter portion 5 of the through hole 3 is configured with the electrode side small diameter portion 7 in which the tip edge portion of the electrode tip portion 11 a has a protruding shape, and the large diameter of the through hole 3. An outlet-side large-diameter portion 8 that is connected to the electrode-side small-diameter portion 7 and opens at the distal end surface 9 of the insulating cylinder 2 is formed in the portion 6.

絶縁性筒体2は、例えば6ナイロン等のポリアミド樹脂が使用されており、雷撃時のアークホーンの閃絡が絶縁性筒体2を通して起こった際に、アーク熱によって絶縁性筒体2の内壁を溶発(アブレーション)させ、溶発に伴って生じる高圧ガスを、出口側大径部8から外部へと噴射することで、続流を絶縁性筒体2内で遮断するようにしている。   For example, polyamide resin such as nylon 6 is used for the insulating cylinder 2, and when the arc horn flashes during the lightning strike through the insulating cylinder 2, the inner wall of the insulating cylinder 2 is caused by arc heat. The high pressure gas generated by the ablation is jetted from the outlet side large diameter portion 8 to the outside, so that the continuity is blocked in the insulating cylinder 2.

なお、本発明は、出口側大径部8の内径寸法d2を、遮断性能を向上させるに最適な値とするところに特徴がある。具体的には、出口側大径部8の内径寸法d2を、続流アークによって通孔3内に生じる高圧ガスのガス流を適正膨張させることが可能な適正膨張径dcに基づいて決定するところに特徴がある。なお、適正膨張とは、出口における圧力が出口近傍の雰囲気圧力と等しくなる現象をいう。以下、出口側大径部8の内径寸法d2の決定方法について詳細に説明する。   The present invention is characterized in that the inner diameter dimension d2 of the outlet-side large-diameter portion 8 is set to an optimum value for improving the blocking performance. Specifically, the inner diameter d2 of the outlet-side large-diameter portion 8 is determined based on an appropriate expansion diameter dc that can appropriately expand the gas flow of the high-pressure gas generated in the through-hole 3 by the continuous arc. There is a feature. Note that proper expansion refers to a phenomenon in which the pressure at the outlet becomes equal to the atmospheric pressure in the vicinity of the outlet. Hereinafter, a method for determining the inner diameter d2 of the outlet-side large-diameter portion 8 will be described in detail.

出口側大径部8の内径寸法d2を決定するにあたって、まず、仮定の通孔形状を決定する。この際、電極側小径部7の内径寸法d1と、電極側小径部7の長さ寸法L1と、出口側大径部8の長さ寸法L2は実際の寸法を用い、出口側大径部8の内径寸法d2のみ仮定の値を用いる。なお、出口側大径部8の内径寸法d2の仮定値としては、例えば、電極側小径部7の内径寸法d1の1.5倍の値を用いる。   In determining the inner diameter d2 of the outlet-side large-diameter portion 8, first, an assumed through hole shape is determined. At this time, the inner diameter dimension d1 of the electrode-side small diameter portion 7, the length dimension L1 of the electrode-side small diameter section 7, and the length dimension L2 of the outlet-side large diameter section 8 are actual dimensions, and the outlet-side large diameter section 8 is used. Only the inner diameter dimension d2 is assumed. As the assumed value of the inner diameter dimension d2 of the outlet side large diameter portion 8, for example, a value 1.5 times the inner diameter dimension d1 of the electrode side small diameter section 7 is used.

次に、仮定の通孔形状を備えた絶縁性筒体2の続流アーク発生時における電極側小径部7の圧力をCFD(Computational Fluid Dynamics)解析により算出(推定)する。具体的には、仮定の通孔形状と、続流アーク発生時のアークパワーと、アークパワーの付加位置と、ガス物性値と、材料比重等とを入力条件としてCFD解析を行い、出口側大径部8と外部との境界におけるガス圧力が大気圧(約0.1MPa)となる場合の電極側小径部7の圧力を算出する。   Next, the pressure of the electrode-side small-diameter portion 7 when the continuation arc is generated in the insulating cylindrical body 2 having the assumed through hole shape is calculated (estimated) by CFD (Computational Fluid Dynamics) analysis. Specifically, CFD analysis is performed using the assumed hole shape, arc power at the time of wake arc generation, arc power addition position, gas property value, material specific gravity, etc. as input conditions, The pressure of the electrode-side small diameter portion 7 when the gas pressure at the boundary between the diameter portion 8 and the outside becomes atmospheric pressure (about 0.1 MPa) is calculated.

その後、(a)算出された電極側小径部7の圧力をラバルノズルの設計式である式1に入力し、出口側大径部8の内径寸法d2を算出する。なお、式1のγは比熱比であって、熱流体解析で求めた定常比熱、質量密度を基に式2から算出した値を用いる。また、Pdは大気圧である。また、式1の大径部断面積Aeを直径に変換することにより出口側大径部8の内径寸法d2を求める。   Thereafter, (a) the calculated pressure of the electrode-side small-diameter portion 7 is input to Equation 1, which is a design equation of the Laval nozzle, and the inner diameter dimension d2 of the outlet-side large-diameter portion 8 is calculated. Note that γ in Equation 1 is a specific heat ratio, and a value calculated from Equation 2 based on the steady specific heat and mass density obtained by thermal fluid analysis is used. Pd is atmospheric pressure. Further, the inner diameter d2 of the outlet-side large-diameter portion 8 is obtained by converting the large-diameter cross-sectional area Ae of Formula 1 into a diameter.

(Ae:出口側大径部の断面積、A:電極側小径部の断面積、Pd:出口側大径部の圧力、P0:電極側小径部の圧力、γ:比熱比) (Ae: sectional area of the outlet side large diameter part, A: sectional area of the electrode side small diameter part, Pd: pressure at the outlet side large diameter part, P0: pressure at the electrode side small diameter part, γ: specific heat ratio)

(γ:比熱比、P:ガス圧力、Cp:定常比熱、ρ:ガス密度、T:ガス温度) (Γ: specific heat ratio, P: gas pressure, Cp: steady specific heat, ρ: gas density, T: gas temperature)

次に、(b)電極側小径部7の内径寸法d1を一定としたまま、出口側大径部8の内径寸法d2を上記式1の算出値とした通孔形状で、上記と同様の条件でCFD解析を行い、電極側小径部7の圧力を算出(推定)する。   Next, (b) a through hole shape in which the inner diameter dimension d2 of the outlet-side large-diameter portion 8 is the calculated value of the above equation 1 while the inner-diameter dimension d1 of the electrode-side small-diameter section 7 is kept constant, the same conditions as above CFD analysis is performed to calculate (estimate) the pressure of the electrode-side small diameter portion 7.

そして、上記(a)(b)の手順を、電極側小径部7の圧力が収束するまで(算出された圧力値とその直前に算出された圧力値とが略等しくなるまで)繰り返すことで得られた出口側大径部8の内径寸法d2が適正膨張径dcであり、この適正膨張径dcを、出口側大径部8の内径寸法d2として採用している。   Then, the above procedures (a) and (b) are repeated until the pressure of the electrode-side small diameter portion 7 converges (until the calculated pressure value and the pressure value calculated immediately before are substantially equal). The inner diameter dimension d2 of the outlet-side large diameter portion 8 is the appropriate expansion diameter dc, and this proper expansion diameter dc is adopted as the inner diameter dimension d2 of the outlet-side large diameter portion 8.

なお、本発明の絶縁性筒体2のうち、表1〜表4に示すものにおいては、通孔形状が、電極側小径部7と出口側大径部8との連設部において段差を生じる段付状とされ、また、電極側小径部7と出口側大径部8は、それぞれが始端から終端まで径を変えることなく直線状とされている。すなわち、テーパ部を有しておらず、互いに径の異なる孔同士を、軸心を合わせて繋げた形態とされている。そのため、実際のラバルノズルとはその形状が大きく相違しており、また、出口側大径部8の容積も、実際のラバルノズルより大とされた状態となる。   In addition, in the insulating cylindrical body 2 of the present invention, in the ones shown in Tables 1 to 4, the shape of the through hole causes a step in the connecting portion between the electrode side small diameter portion 7 and the outlet side large diameter portion 8. Each of the electrode side small diameter portion 7 and the outlet side large diameter portion 8 is linear without changing its diameter from the start end to the end end. That is, it does not have a taper part, but it is set as the form which connected the holes from which diameters mutually differ in alignment with an axis. Therefore, the shape is greatly different from that of an actual Laval nozzle, and the volume of the outlet-side large diameter portion 8 is also made larger than that of the actual Laval nozzle.

そこで、実際のラバルノズルと容積を凡そ同じくするため、上記適正膨張径dcと、電極側小径部7の内径寸法d1との平均値dmを、出口側大径部8の内径寸法d2として採用している。すなわち、本発明においては、出口側大径部8の内径寸法d2を、適正膨張径dcから平均値dmの範囲で設定している。   Therefore, in order to make the volume substantially the same as the actual Laval nozzle, the average value dm of the appropriate expansion diameter dc and the inner diameter dimension d1 of the electrode-side small diameter section 7 is adopted as the inner diameter dimension d2 of the outlet-side large diameter section 8. Yes. That is, in the present invention, the inner diameter d2 of the outlet-side large-diameter portion 8 is set in the range from the appropriate expansion diameter dc to the average value dm.

[実施例]
以下、電極側小径部7の内径寸法d1が6mm、電極側小径部7の長さ寸法L1が134mm、出口側大径部8の長さ寸法L2が166mm、電極小径部7と出口側大径部8とからなる遮断部の長さLが300mmとされた通孔3の適正膨張径dcの算出手順、及び、適正膨張径dcを基に設定された内径寸法d2での短絡電流遮断試験結果について詳細に説明する。
[Example]
Hereinafter, the inner diameter dimension d1 of the electrode side small diameter portion 7 is 6 mm, the length dimension L1 of the electrode side small diameter portion 7 is 134 mm, the length dimension L2 of the outlet side large diameter portion 8 is 166 mm, the electrode small diameter portion 7 and the outlet side large diameter. The calculation procedure of the appropriate expansion diameter dc of the through-hole 3 in which the length L of the interruption portion composed of the portion 8 is 300 mm, and the short-circuit current interruption test result at the inner diameter dimension d2 set based on the appropriate expansion diameter dc Will be described in detail.

まず、上記数値を基に仮定の通孔形状を設定する。なお、出口側大径部8の内径寸法d2を除き、電極側小径部7の内径寸法d1、電極側小径部7の長さ寸法L1、出口側大径部8の長さ寸法L2は実際の寸法を用いる。また、出口側大径部8の内径寸法d2の仮の値として、電極側小径部7の内径寸法d1の1.5倍の値(6×1.5=9mm)を使用した。   First, an assumed through hole shape is set based on the above numerical values. Except for the inner diameter d2 of the outlet side large diameter portion 8, the inner diameter dimension d1 of the electrode side small diameter portion 7, the length dimension L1 of the electrode side small diameter portion 7, and the length dimension L2 of the outlet side large diameter portion 8 are actually Use dimensions. In addition, a value (6 × 1.5 = 9 mm) that is 1.5 times the inner diameter dimension d1 of the electrode-side small diameter portion 7 was used as a provisional value of the inner diameter dimension d2 of the outlet-side large diameter section 8.

次に、上記設定した仮定の通孔形状と、アークパワーとして10MW、アークパワーの付加位置として出口側大径部8、ガス物性値として空気の物性値、材料比重として6ナイロンの比重である1.14g/cm、比熱比γとして1.2を入力条件として、続流アーク発生時の通孔3の内部状態をCFD解析により解析し、電極側小径部7の圧力を算出した。なお、アークパワーの10MWは、電力系統での続流を想定したもの、具体的には10kA印加時を想定したものである。 Next, the assumed hole shape set above, 10 MW as the arc power, the outlet side large diameter portion 8 as the arc power addition position, the air physical property value as the gas physical property value, and the specific gravity of 6 nylon as the material specific gravity 1 .14 g / cm 3 , specific heat ratio γ of 1.2 as input conditions, the internal state of through-hole 3 at the time of wake arc generation was analyzed by CFD analysis, and the pressure at electrode-side small diameter portion 7 was calculated. Note that the arc power of 10 MW assumes a continuation in the power system, specifically, assumes 10 kA applied.

その後、上記(a)(b)の手順を、電極側小径部7の圧力が収束するまで行い、その圧力を式1に入力することで、適正膨張径dcとして19mmを得た。   Then, the procedure of said (a) and (b) was performed until the pressure of the electrode side small diameter part 7 converged, and 19 mm was obtained as an appropriate expansion diameter dc by inputting the pressure into Formula 1.

また、出口側大径部8の容積を、実際のラバルノズルと容積を凡そ同じくするため、適正膨張径dcと、電極側小径部7の内径寸法d1との平均値dm((19+6)/2=12.5→13mm)を得た。   Further, in order to make the volume of the outlet side large diameter portion 8 substantially the same as the actual Laval nozzle, the average value dm ((19 + 6) / 2 = the appropriate expansion diameter dc and the inner diameter dimension d1 of the electrode side small diameter portion 7). 12.5 → 13 mm).

表1に、上記通孔3において、出口側大径部8の内径寸法d2を適正膨張径dcとしたもの(No,3)、また平均値dmとしたもの(No,2)の短絡電流遮断試験結果を示す。なお、比較対象として、出口側大径部8の内径寸法d2を上記算定で用いた仮定値としたもの(No,1)、また、適正膨張径dcの算出過程初期(収束以前)での出口側大径部8の内径寸法d2を用いたもの(No,4)を併記している。   Table 1 shows that in the above-described through-hole 3, the short-circuit current interruption of the inner diameter d2 of the outlet-side large-diameter portion 8 with the appropriate expansion diameter dc (No, 3) and the average value dm (No, 2) The test results are shown. For comparison, the inner diameter dimension d2 of the outlet-side large-diameter portion 8 is assumed to be an assumed value used in the above calculation (No, 1), and the outlet at the initial stage (before convergence) of calculating the appropriate expansion diameter dc The one using the inner diameter d2 of the side large diameter portion 8 (No, 4) is also shown.

なお、試験条件としては、単相直接試験であり、試験周波数を50Hzとし、試験電圧を69.7kVとし、試験電流を5、10kA(直流成分は零)とし、通電時間を0.08秒(4Hz)とし、過渡回復電圧を波高値138kV、上昇率0.75kV/μsとし、発弧方式を直径0.2mmの銅線による溶断発弧とした。   The test conditions are a single-phase direct test, the test frequency is 50 Hz, the test voltage is 69.7 kV, the test current is 5, 10 kA (DC component is zero), and the energization time is 0.08 seconds ( 4 Hz), the transient recovery voltage was a peak value of 138 kV, the rate of increase was 0.75 kV / μs, and the arcing method was blown arc with a copper wire having a diameter of 0.2 mm.

表1に示すように、内径寸法d2として適正膨張径dcを用いたNo,3においては、5kAで0.5サイクル、10kAで1.5サイクルでの遮断に成功しており、10kAでアーク移行を生じているNo,1やNo,4に比べて遮断性能が向上しているといえる。また、内径寸法d2として平均値dmを用いたNo,2においては、5kA、10kAともに0.5サイクルで遮断に成功しており、No1,No4に比べて格段に遮断性能が向上しているといえる。なお、アーク移行とは、続流を遮断しようとする働きによって通孔3外にアークが移行する状態を示し、遮断失敗とは、通孔3内で続流を遮断できない状態を示している。   As shown in Table 1, in No. 3 using the appropriate expansion diameter dc as the inner diameter dimension d2, the interruption was successful in 5 cycles at 0.5 k at 5 kA and 1.5 cycles at 10 kA, and arc transfer at 10 kA. It can be said that the blocking performance is improved as compared with No, 1 and No, 4 which cause Further, in No, 2 using the average value dm as the inner diameter dimension d2, both 5 kA and 10 kA succeeded in shutting down in 0.5 cycles, and the shutting performance is greatly improved compared to No1 and No4. I can say that. The arc transition indicates a state where the arc moves outside the through hole 3 due to the action of interrupting the continuity, and the interruption failure indicates a state where the continuity cannot be interrupted in the through hole 3.

次に、遮断部長さ寸法Lが225mmとされている場合の短絡電流遮断試験結果について説明する。   Next, a short circuit current interruption test result when the interruption portion length dimension L is 225 mm will be described.

遮断部長さ寸法Lを225mmとし、電極側小径部7の長さ寸法L1を101mm、出口側大径部8の長さ寸法L2を124mmとする他は、上記方法に則っている。なお、表2におけるNo,7が内径寸法d2を適正膨張径dcとしたもの、No,6が内径寸法d2を平均値dmとしたものである。また、No,5が内径寸法d2を仮定値としたもの、No,8が内径寸法d2を収束以前での内径寸法としたものである。   The above method is followed except that the blocking portion length L is 225 mm, the length L1 of the electrode side small diameter portion 7 is 101 mm, and the length L2 of the outlet side large diameter portion 8 is 124 mm. In Table 2, No. 7 indicates that the inner diameter dimension d2 is the appropriate expansion diameter dc, and No. 6 indicates that the inner diameter dimension d2 is the average value dm. In addition, No. 5 has an inner diameter dimension d2 as an assumed value, and No. 8 has an inner diameter dimension d2 as an inner diameter dimension before convergence.

表2に示すように、内径寸法d2を適正膨張径dcとしたNo,7は、5kAで1サイクル、10kAで3サイクルでの遮断に成功しており、10kAでアーク移行の生じたNo,5や、10kAで遮断に失敗しているNo,8に比べて遮断性能が向上しているといえる。また、内径寸法d2を平均値dmとしたNo,6では、5kA、10kAともに0.5サイクルで遮断に成功しており、No,5やNo,8に比べて格段に遮断性能が向上しているといえる。   As shown in Table 2, No. 7 with the inner diameter d2 being the appropriate expansion diameter dc was successfully interrupted in 5 cycles for 1 cycle at 5 kA and 3 cycles at 10 kA, and No, 5 in which arc transfer occurred at 10 kA. Or, it can be said that the blocking performance is improved as compared with No. 8, which has failed to block at 10 kA. Moreover, in No.6 which made the inside diameter dimension d2 the average value dm, both 5kA and 10kA succeeded in interruption | blocking in 0.5 cycle, and interruption | blocking performance improved remarkably compared with No.5 and No.8. It can be said that.

このように、ラバルノズルの設計式に基づいて、出口側大径部8の内径寸法d2を決定することにより、遮断性能の向上を図ることができることがわかる。なお、内径寸法d2を適正膨張径dcに基づいて設定したNo,2、No,3、No,6、No,7は、適正膨張径dcに対する内径寸法d2の比(d2/dc)が約0.6〜約1.0であり、特に良好な結果が得られたNo,2、No,6の内径寸法d2では約0.6〜約0.7であることがわかる。No,2やNo,6が特に良好な結果となった理由としては、電極側小径部7と出口側大径部8との連設部に生じた段差が、No,3やNo,7に比べて小さくなり、段差に起因する乱流を抑えることができたためであると考えられる。なお、出口側大径部8の内径寸法d2に対する電極側小径部7の内径寸法d1の比(d1/d2)は、No,2、No,3、No,6、No,7では約0.3〜約0.5であり、No,2、No,3では、約0.4〜約0.5とされている。   Thus, it can be seen that the blocking performance can be improved by determining the inner diameter dimension d2 of the outlet-side large-diameter portion 8 based on the design formula of the Laval nozzle. In No, 2, No, 3, No. 6, No. 7, and No. 7 in which the inner diameter dimension d2 is set based on the appropriate expansion diameter dc, the ratio (d2 / dc) of the inner diameter dimension d2 to the appropriate expansion diameter dc is about 0. It can be seen that the inner diameter d2 of No. 2, No. 6 and No. 6 with particularly good results is about 0.6 to about 0.7. The reason why No, 2 and No, 6 were particularly good is that the step formed in the connecting portion between the electrode side small diameter portion 7 and the outlet side large diameter portion 8 is No. 3, 3 or No, 7. This is considered to be because the turbulence caused by the difference in level was suppressed. The ratio (d1 / d2) of the inner diameter dimension d1 of the electrode-side small diameter section 7 to the inner diameter dimension d2 of the outlet-side large diameter section 8 is about 0 for No, 2, No, 3, No, 6, No, 7. 3 to about 0.5, and in No, 2, No, 3, about 0.4 to about 0.5.

次に、電極側小径部7の内径寸法d1を8mmとした場合についての短絡電流遮断試験結果について説明する。   Next, a short-circuit current interruption test result when the inner diameter dimension d1 of the electrode-side small diameter portion 7 is 8 mm will be described.

電極側小径部7の内径寸法d1を8mmとした他は、上記方法に則って内径寸法d2を決定している。なお、表3におけるNo,11及びNo,16が内径寸法d2を適正膨張径dcとしたものであり、No,10及びNo,14が内径寸法d2を平均値dmとしたものである。また、No,9及びNo,13が内径寸法d2を仮定値としたもの、No,12及びNo,17が内径寸法d2を収束以前での内径寸法としたものである。   The inner diameter dimension d2 is determined in accordance with the above method except that the inner diameter dimension d1 of the electrode side small diameter portion 7 is set to 8 mm. In Table 3, No, 11 and No, 16 are those in which the inner diameter dimension d2 is the appropriate expansion diameter dc, and No, 10, and No, 14 are those in which the inner diameter dimension d2 is the average value dm. Further, No, 9 and No, 13 are assumed to have an inner diameter dimension d2, and No, 12, and No, 17 are inner diameter dimensions d2 to be an inner diameter dimension before convergence.

表3に示すように、適正膨張径dc以下(表3における比率、内径寸法d2/適正膨張径dcが1以下)とされているものにおいて、概ね良好な結果が出ているといえる。なお、No,10においては、10kAでの遮断に失敗しているが、5kAにおいて1.5サイクルでの遮断に成功しており、5kAを遮断するのに2サイクル要しているNo,9に比べて遮断性能が向上しているといえる。また、No,16においては、5kA、10kAともに遮断に失敗しているが、10kAはアーク移行による失敗であるため、移行経路を妨げることができれば遮断することができるものと推測される。   As shown in Table 3, it can be said that generally good results have been obtained when the appropriate expansion diameter dc or less (the ratio in Table 3 and the internal diameter d2 / appropriate expansion diameter dc is 1 or less). In No, 10, the blocking at 10 kA failed, but the blocking at 1.5 k was successful at 5 kA, and 2 cycles were required to block 5 kA. It can be said that the shut-off performance is improved as compared with that. In No. 16, both 5 kA and 10 kA have failed to be cut off, but since 10 kA is a failure due to arc transfer, it can be estimated that the transfer path can be blocked if it can be obstructed.

なお、電極側小径部7の内径寸法d1が8mmで、遮断部長さ寸法Lが225mmとされたもの(No,13〜No,17)については、適正膨張径dcと平均値dmとの間にNo,15を設けているが、No,15が最も良好な結果を示していることがわかる。なお、No,15の内径寸法d2は、適正膨張径dcに対して約0.8倍とされており、この結果を鑑みると、適正膨張径dcに対する出口側大径部8の内径寸法d2の比(d2/dc)を約0.6〜約1.0とすることで良好な結果が得られ、約0.6〜約0.8とすることでより良好な結果が得られるものと推測される。また、出口側大径部8の内径寸法d2に対する電極側小径部7の内径寸法d1の比(d1/d2)が、約0.3〜約0.5とされているNo,11、No,14、No,15で良好な結果が得られていることがわかる。   In the case where the inner diameter dimension d1 of the electrode-side small-diameter portion 7 is 8 mm and the blocking portion length dimension L is 225 mm (No, 13 to No, 17), between the appropriate expansion diameter dc and the average value dm No. 15 is provided, but it can be seen that No. 15 shows the best result. The inner diameter d2 of No. 15 is about 0.8 times the appropriate expansion diameter dc. In view of this result, the inner diameter dimension d2 of the outlet-side large diameter portion 8 with respect to the appropriate expansion diameter dc A good result can be obtained by setting the ratio (d2 / dc) to about 0.6 to about 1.0, and a better result can be obtained by setting the ratio (d2 / dc) to about 0.6 to about 0.8. Is done. Further, the ratio (d1 / d2) of the inner diameter dimension d1 of the electrode-side small diameter section 7 to the inner diameter dimension d2 of the outlet-side large diameter section 8 is about 0.3 to about 0.5, No, 11, No, It can be seen that good results were obtained with No. 14 and No. 15.

次に、電極側小径部7の内径寸法d1を16mmとした場合の短絡電流遮断試験結果について表4に示す。   Next, Table 4 shows the short-circuit current interruption test results when the inner diameter d1 of the electrode-side small diameter portion 7 is 16 mm.

電極側小径部7の内径寸法d1を16mmとした他は、上記方法に則って内径寸法d2を決定している。なお、表4におけるNo,20が内径寸法d2を適正膨張径dcとしたものであり、No,19が内径寸法d2を平均値dmとしたものである。また、No,18が内径寸法d2を仮定値としたもの、No,21が内径寸法d2を収束以前での内径寸法としたものである。   The inner diameter dimension d2 is determined according to the above method except that the inner diameter dimension d1 of the electrode side small diameter portion 7 is set to 16 mm. In Table 4, No. 20 indicates that the inner diameter dimension d2 is the appropriate expansion diameter dc, and No. 19 indicates that the inner diameter dimension d2 is the average value dm. Further, No. 18 has an inner diameter dimension d2 as an assumed value, and No, 21 has an inner diameter dimension d2 as an inner diameter dimension before convergence.

表4に示すように、適正膨張径dc以下(表4において比率、内径寸法d2/適正膨張径dcが1以下)とされているものにおいて、概ね良好な結果が出ているといえる。特に、内径寸法d2を適性膨張径dcとしたNo,20においては、唯一10kAを遮断しており、遮断性能が向上しているといえる。   As shown in Table 4, it can be said that generally good results have been obtained for those having an appropriate expansion diameter dc or less (ratio, inner diameter dimension d2 / appropriate expansion diameter dc is 1 or less in Table 4). In particular, in No, 20, where the inner diameter dimension d2 is the appropriate expansion diameter dc, only 10 kA is blocked, and it can be said that the blocking performance is improved.

次に、通孔3の形状を、図3に示すように、ラバルノズル形状に近似させた場合、具体的には、出口側大径部8の電極側小径部7側端部を電極側小径部7の内径寸法d1と略等しくし、出口側大径部8の先端面9側の開口部を適正膨張径dcとし、2点を直線で結ぶことで先端面9に向かって末広がりなテーパ状とした場合の短絡電流遮断試験結果について説明する。   Next, when the shape of the through hole 3 is approximated to a Laval nozzle shape as shown in FIG. 3, specifically, the electrode side small diameter portion 7 side end portion of the outlet side large diameter portion 8 is the electrode side small diameter portion. 7, the opening on the distal end surface 9 side of the outlet-side large-diameter portion 8 is set to an appropriate expansion diameter dc, and the two points are connected by a straight line so as to be tapered toward the distal end surface 9. The result of the short-circuit current interruption test in the case of having been performed will be described.

CFD解析にあたって、通孔3のモデル形状を段付状からテーパ状に変更した他は、上記方法に則って内径寸法d2を決定している。なお、表5におけるNo,22、No,23はいずれも内径寸法d2を適正膨張径dcとしたものである。   In the CFD analysis, the inner diameter dimension d2 is determined according to the above method except that the model shape of the through hole 3 is changed from a stepped shape to a tapered shape. In Table 5, No, 22, No, and 23 all have an inner diameter d2 of an appropriate expansion diameter dc.

表5に示すように、通孔3をラバルノズル形状に近似させて形成するとともに、内径寸法d2を適正膨張径dcとすることで、良好な結果を得られることがわかる。なお、通孔形状をラバルノズル形状に近似させると、通孔形状を段付状とした場合に比べて、ガス流速を向上させることができる。   As shown in Table 5, it can be seen that a good result can be obtained by forming the through hole 3 in the shape of a Laval nozzle and setting the inner diameter dimension d2 to an appropriate expansion diameter dc. If the through hole shape is approximated to the Laval nozzle shape, the gas flow rate can be improved as compared with the case where the through hole shape is a stepped shape.

以上、実施例で示したように、本発明の続流遮断装置1においては、出口側大径部8の内径寸法d2を、ラバルノズルの設計式に基づいて決定している、すなわち、出口側大径部8の内径寸法d2を、続流アークによって通孔3内に生じるガス流を適正膨張させることが可能な適正膨張径dc以下で、且つ適正膨張径dcと電極側小径部7の内径寸法d1との平均値dm以上としている、すなわち、出口側大径部8の内径寸法d2をガス放出に最適な値としていることから、ガス流の閉塞を解消することができる。また、ガス流速の向上を図ることができることから、より短時間での続流の遮断を実現することができる。   As described above, in the continuity interrupting device 1 according to the present invention, the inner diameter d2 of the outlet-side large-diameter portion 8 is determined based on the design formula of the Laval nozzle, that is, the outlet-side large The inner diameter dimension d2 of the diameter portion 8 is equal to or smaller than the appropriate expansion diameter dc capable of appropriately expanding the gas flow generated in the through-hole 3 by the follower arc, and the appropriate expansion diameter dc and the inner diameter dimension of the electrode-side small diameter portion 7 are. Since the average value dm of d1 is not less than the average value dm, that is, the inner diameter dimension d2 of the outlet-side large-diameter portion 8 is an optimum value for gas discharge, the blockage of the gas flow can be eliminated. In addition, since the gas flow rate can be improved, the continuity can be interrupted in a shorter time.

特に、適正膨張径dcに対する出口側大径部8の内径寸法d2の比を、約0.6〜約1.0とすることによって良好な遮断性能を備えた続流遮断装置1とすることができる。従って、本発明の続流遮断装置1をアークホーン装置10に取り付ければ、より短時間での続流の遮断を実現することができる。   In particular, by setting the ratio of the inner diameter dimension d2 of the outlet-side large-diameter portion 8 to the appropriate expansion diameter dc to be about 0.6 to about 1.0, the continuity interruption device 1 having good interruption performance can be obtained. it can. Therefore, if the continuity interruption device 1 of the present invention is attached to the arc horn device 10, the continuity interruption can be realized in a shorter time.

以上に、この発明の具体的な実施形態について説明したが、この発明は上記実施形態に限定されるものではなく、この発明の範囲内で種々変更して実施することが可能である。例えば、上記実施例においては、接地側アークホーン11に続流遮断装置1を設けていたが、線側アークホーン12に設けても良いし、双方のアークホーンに続流遮断装置1を設けても良い。また、通孔形状をラバルノズル形状としても良い。   Although specific embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the present invention. For example, in the above embodiment, the continuity interruption device 1 is provided on the ground side arc horn 11, but it may be provided on the line side arc horn 12, or the continuity interruption device 1 may be provided on both arc horns. Also good. The through hole shape may be a Laval nozzle shape.

1・・続流遮断装置、2・・絶縁性筒体、3・・通孔、7・・電極側小径部、8・・出口側大径部、11a・・電極先端部、d1・・電極側小径部の内径寸法、d2・・出口側大径部の内径寸法、dc・・適正膨張径、dm・・平均値   1 .... Continuous current blocking device, 2 .... Insulating cylinder, 3 .... Through hole, 7 .... Electrode side small diameter part, 8 .... Exit side large diameter part, 11a ... Electrode tip part, d1, ... electrode Inner diameter of the small diameter part on the side, d2 .. Inner diameter of the large diameter part on the outlet side, dc ..Appropriate expansion diameter, dm.

Claims (4)

基端部側に電極先端部(11a)が挿入固定される絶縁性筒体(2)を備えた続流遮断装置であって、上記絶縁性筒体(2)は、電極側小径部(7)と、この電極側小径部(7)の先端側に連接されて絶縁性筒体(2)の先端面(9)に開口する出口側大径部(8)とを有する通孔(3)が開設されており、出口側大径部(8)の内径寸法(d2)は、続流アークによって通孔(3)内に生じるガス流を適正膨張させることが可能な適正膨張径(dc)以下で、且つ上記適正膨張径(dc)と電極側小径部(7)の内径寸法(d1)との平均値(dm)以上とされていることを特徴とする続流遮断装置。   A continuity blocking device provided with an insulating cylinder (2) into which an electrode tip (11a) is inserted and fixed on the base end side, wherein the insulating cylinder (2) includes an electrode-side small diameter portion (7). ) And an outlet-side large-diameter portion (8) connected to the distal end side of the electrode-side small-diameter portion (7) and opening at the distal end surface (9) of the insulating cylinder (2) (3) Is established, and the inner diameter dimension (d2) of the outlet-side large-diameter portion (8) has an appropriate expansion diameter (dc) capable of appropriately expanding the gas flow generated in the through-hole (3) by the continuation arc. A continuity interrupting device characterized by being equal to or greater than an average value (dm) of the appropriate expansion diameter (dc) and the inner diameter dimension (d1) of the electrode-side small diameter portion (7). 上記適正膨張径(dc)に対する出口側大径部(8)の内径寸法(d2)の比が0.6〜1.0とされていることを特徴とする請求項1に記載の続流遮断装置。   2. The continuity cutoff according to claim 1, wherein a ratio of an inner diameter dimension (d2) of the outlet-side large-diameter portion (8) to the appropriate expansion diameter (dc) is 0.6 to 1.0. apparatus. 上記適正膨張径(dc)は、出口側大径部(8)の内径寸法(d2)を仮の値とした通孔(3)の続流アーク発生時の出口側大径部と外部との境界におけるガス圧力が大気圧となる場合の電極側小径部(7)の圧力を算出した後、
(a)算出された圧力を、式1に入力し、出口側大径部(8)の内径寸法(d2)を算出する手順と、
(b)電極側小径部(7)の内径寸法(d1)を一定に、出口側大径部(8)の内径寸法(d2)を算出値とした通孔(3)の続流アーク発生時の電極側小径部(7)の圧力を算出する手順とを、
電極側小径部(7)の圧力値が収束するまで繰り返すことで得られた出口側大径部(8)の内径寸法(d2)であることを特徴とする請求項1又は2に記載の続流遮断装置。
The appropriate expansion diameter (dc) is a value between the outlet-side large-diameter portion and the outside when the wake arc is generated in the through-hole (3), where the inner-diameter dimension (d2) of the outlet-side large-diameter portion (8) is a temporary value . After calculating the pressure of the electrode side small diameter portion (7) when the gas pressure at the boundary is atmospheric pressure,
(A) A procedure for inputting the calculated pressure into Equation 1 and calculating an inner diameter dimension (d2) of the outlet-side large-diameter portion (8);
(B) When a follow-up arc is generated in the through hole (3) with the inner diameter dimension (d1) of the electrode-side small diameter section (7) being constant and the inner diameter dimension (d2) of the outlet-side large diameter section (8) being calculated. Calculating the pressure of the electrode side small diameter portion (7) of
The continuation according to claim 1 or 2, wherein the inner diameter dimension (d2) of the outlet-side large-diameter portion (8) obtained by repeating until the pressure value of the electrode-side small-diameter portion (7) converges. Flow breaker.
請求項1乃至3のいずれかに記載の続流遮断装置を備えたことを特徴とするアークホーン装置。   An arc horn device comprising the continuity blocking device according to any one of claims 1 to 3.
JP2012074549A 2012-03-28 2012-03-28 Continuous current interrupting device and arc horn device Active JP6012094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012074549A JP6012094B2 (en) 2012-03-28 2012-03-28 Continuous current interrupting device and arc horn device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012074549A JP6012094B2 (en) 2012-03-28 2012-03-28 Continuous current interrupting device and arc horn device

Publications (2)

Publication Number Publication Date
JP2013206718A JP2013206718A (en) 2013-10-07
JP6012094B2 true JP6012094B2 (en) 2016-10-25

Family

ID=49525599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012074549A Active JP6012094B2 (en) 2012-03-28 2012-03-28 Continuous current interrupting device and arc horn device

Country Status (1)

Country Link
JP (1) JP6012094B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6355490B2 (en) * 2014-09-02 2018-07-11 関西電力株式会社 Continuous current interrupting device and arc horn device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010034084A (en) * 2009-11-16 2010-02-12 Kansai Electric Power Co Inc:The Follow current breaker and arc horn device

Also Published As

Publication number Publication date
JP2013206718A (en) 2013-10-07

Similar Documents

Publication Publication Date Title
CN103730834B (en) Jet-propelled parallel connection clearance device
CN108063366B (en) Multi-chamber clearance lightning protection device blows arc structure
KR20150003396A (en) Gas circuit breaker
CN203056371U (en) Jet-propelled parallel gap device
JP6012094B2 (en) Continuous current interrupting device and arc horn device
CN211405000U (en) Low-voltage system early-discharge recoil arc-extinguishing device
CN107742559B (en) Zigzag synchronous compression arc extinguishing lightning protection device with parallel arrangement of arc extinguishing channels
CN107578864A (en) A kind of tortuous synchronous compression arc extinguishing lightning protection device with four side injection channels
CN110996489B (en) Plasma spraying device
CN109578233B (en) Ablation type pulse plasma propeller based on multi-anode electrode structure
CN204391493U (en) A kind ofly release thunder device for built on stilts electric line
JPS61188825A (en) Buffer type gas breaker
CN107705941A (en) For the arc-blowing device on electric power circuit insulator class electrical equipment
WO2015147703A3 (en) Method for producing thermal and electrical energy and device for implementing said method
CN208835451U (en) A kind of double hemisphere T-type ceramic discharge tubes
JP6355490B2 (en) Continuous current interrupting device and arc horn device
CN109716476B (en) Gas-insulated high-voltage switching device with improved main nozzle
EP3433869B1 (en) Electrical circuit breaker device
CN207218002U (en) A kind of shirt rim provided with arc extinguishing path
CN207149329U (en) A kind of tortuous synchronous compression arc extinguishing lightning protection device of parallel arrangement arc extinguishing passage
CN108923263A (en) A kind of variable discharging gap apparatus of automatic arc extinguishing
CN110731037A (en) Lightning arrester with plenum chamber
JP4441704B2 (en) Continuous current interrupting device and arc horn device
CN111834901B (en) Multistage back-flushing arc extinguishing method and system
JP4399718B2 (en) Continuous current interrupting device and arc horn device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20131121

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140221

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160229

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160916

R150 Certificate of patent or registration of utility model

Ref document number: 6012094

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250