JP6009362B2 - Wastewater treatment method - Google Patents

Wastewater treatment method Download PDF

Info

Publication number
JP6009362B2
JP6009362B2 JP2013005790A JP2013005790A JP6009362B2 JP 6009362 B2 JP6009362 B2 JP 6009362B2 JP 2013005790 A JP2013005790 A JP 2013005790A JP 2013005790 A JP2013005790 A JP 2013005790A JP 6009362 B2 JP6009362 B2 JP 6009362B2
Authority
JP
Japan
Prior art keywords
tank
semi
reaction tank
treated water
batch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013005790A
Other languages
Japanese (ja)
Other versions
JP2014136188A (en
Inventor
太一 山本
太一 山本
長谷部 吉昭
吉昭 長谷部
江口 正浩
正浩 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2013005790A priority Critical patent/JP6009362B2/en
Publication of JP2014136188A publication Critical patent/JP2014136188A/en
Application granted granted Critical
Publication of JP6009362B2 publication Critical patent/JP6009362B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

本発明は、排水中の処理対象物質を微生物により生物学的に処理する排水処理方法に関する。   The present invention relates to a wastewater treatment method in which a substance to be treated in wastewater is biologically treated with microorganisms.

従来、生物学的排水処理には、フロックと呼ばれる微生物の集合体を活用した活性汚泥法が用いられてきた。しかし、活性汚泥法では、沈殿池でフロックと処理水を分離する際、フロックの沈降速度が遅いために沈殿池の表面積を非常に大きくしなければならないという問題点を有する場合がある。また、活性汚泥法の処理速度は、槽内の汚泥濃度に依存しており、汚泥濃度を高めることで処理速度を増加させることができるが、汚泥濃度を3000〜5000mg/L以上に増加させようとすると、バルキングなどの固液分離障害が発生し、処理を維持することができなくなる場合がある。したがって、従来の活性汚泥法のBOD処理速度は、0.5〜0.8kg/m/day程度である。 Conventionally, an activated sludge method using an aggregate of microorganisms called floc has been used for biological wastewater treatment. However, the activated sludge method may have a problem that when the floc is separated from the treated water in the sedimentation basin, the surface area of the sedimentation basin must be very large because the sedimentation speed of the floc is slow. The treatment rate of the activated sludge method depends on the sludge concentration in the tank, and the treatment rate can be increased by increasing the sludge concentration, but the sludge concentration will be increased to 3000 to 5000 mg / L or more. Then, solid-liquid separation troubles such as bulking may occur, and the processing may not be maintained. Therefore, the BOD processing speed of the conventional activated sludge method is about 0.5 to 0.8 kg / m 3 / day.

嫌気性生物処理では、グラニュールと呼ばれる微生物が緻密に集合し粒状となった集合体を活用することが一般的である。グラニュールは非常に沈降速度が速く、微生物が緻密に集合しているため、処理槽内の汚泥濃度を高くすることができ、排水の高速処理を実現することが可能である。しかし、嫌気性生物処理は、好気性処理(活性汚泥法)に比べて処理対象の排水種が限られていることや、処理水温を30〜35℃に維持する必要がある等の問題点を有する場合がある。また、嫌気性生物処理単独では、処理水の水質が悪く、河川等へ放流する場合には、別途活性汚泥法等の好気性処理を実施することが必要となる場合もある。   In anaerobic biological treatment, it is common to use aggregates in which microorganisms called granules are gathered densely and become granular. Granules have a very fast sedimentation rate, and microorganisms gather densely, so that the sludge concentration in the treatment tank can be increased and high-speed wastewater treatment can be realized. However, the anaerobic biological treatment has problems such as the fact that the wastewater species to be treated is limited compared to the aerobic treatment (activated sludge method) and that the treated water temperature needs to be maintained at 30 to 35 ° C. May have. In addition, when the anaerobic biological treatment alone is poor in the quality of the treated water, it may be necessary to separately perform an aerobic treatment such as an activated sludge method when discharged into a river or the like.

近年、排水を間欠的に反応槽に流入させる半回分式処理装置を用いて処理を行い、さらに汚泥の沈殿時間を非常に短縮することで、好気性の活性汚泥でもグラニュールを形成できることが明らかとなってきた(例えば、特許文献1〜4参照)。なお、半回分式処理装置では、1つの反応槽で(1)排水の流入、(2)処理対象物質の生物処理、(3)生物汚泥の沈降、(4)処理水の排出といった4つの工程を経ることによって処理が行われる。   In recent years, it is clear that treatment can be performed even with aerobic activated sludge by performing treatment using a semi-batch treatment device that allows wastewater to flow into the reaction tank intermittently, and further reducing the sludge settling time. (For example, see Patent Documents 1 to 4). In the semi-batch treatment system, four steps are carried out in one reaction tank: (1) inflow of wastewater, (2) biological treatment of the material to be treated, (3) sedimentation of biological sludge, (4) discharge of treated water. The process is performed by going through.

上記のようにグラニュール化させることで、高速処理を達成できるが、半回分式処理装置を大規模排水処理設備に用いる場合には、巨大な排水貯留槽を設置しなければならない場合がある。そこで、排水を連続的に流入させて処理する連続式処理装置と、好気性グラニュールを供給する半回分式処理装置と、を設置し、半回分式処理装置から好気性グラニュールを供給することで、システム全体をグラニュール化する処理方法が提案されている(例えば、特許文献5参照)。この方法を用いることで、沈殿池を小型化でき、且つBOD処理速度を1.5〜3.0kg/m/dayにすることが可能となる。 By granulating as described above, high-speed treatment can be achieved. However, when a semi-batch type treatment device is used for a large-scale wastewater treatment facility, it may be necessary to install a huge wastewater storage tank. Therefore, a continuous processing device that continuously treats wastewater by flowing in and a semi-batch processing device that supplies aerobic granules are installed, and aerobic granules are supplied from the semi-batch processing device. Thus, a processing method for granulating the entire system has been proposed (for example, see Patent Document 5). By using this method, the sedimentation basin can be reduced in size, and the BOD treatment rate can be 1.5 to 3.0 kg / m 3 / day.

国際公開第2004/024638号International Publication No. 2004/024638 特開2008−212878号公報JP 2008-212878 A 特開2009−18263号公報JP 2009-18263 A 特開2009−18264号公報JP 2009-18264 A 特開2007−136367号公報JP 2007-136367 A

本発明の目的は、連続式生物処理と半回分式生物処理とを併用する系において、連続式生物処理により処理された処理水のSS濃度の増加を抑えることができる排水処理方法を提供することである。   An object of the present invention is to provide a wastewater treatment method capable of suppressing an increase in the SS concentration of treated water treated by continuous biological treatment in a system using both continuous biological treatment and semi-batch biological treatment. It is.

本発明の排水処理方法は、排水を連続式反応槽に連続的に流入させながら、排水中の処理対象物質を微生物汚泥により生物学的に処理し、前記連続式反応槽から排出された処理水から微生物汚泥を固液分離槽にて分離する連続式生物処理工程と、排水を流入させる流入工程、排水中の処理対象物質を微生物汚泥により生物学的に処理する生物処理工程、前記微生物汚泥を沈降させる沈降工程、処理水を排出させる排出工程を半回分式反応槽にて繰り返して行う半回分式生物処理工程と、前記沈降した半回分式反応槽内の微生物汚泥を前記連続式反応槽に供給する汚泥供給工程と、を備え、前記排出工程において前記半回分式反応槽から排出された処理水の平均SS濃度が100mg/L以下の場合、前記処理水の排出先を前記連続式反応槽の系外及び前記固液分離槽の系外とし、前記排出工程において前記半回分式反応槽から排出された処理水の平均SS濃度が100mg/L超の場合、前記処理水の排出先を前記連続式反応槽の系内及び前記固液分離槽の系内のうち少なくともいずれか一方とする。 In the wastewater treatment method of the present invention, the treated water discharged from the continuous reaction tank is treated biologically with microbial sludge while the wastewater is continuously flowing into the continuous reaction tank. A continuous biological treatment process for separating microbial sludge from a solid-liquid separation tank, an inflow process for inflowing wastewater, a biological treatment process for biologically treating a target substance in the wastewater with microbial sludge, and the microbial sludge A semi-batch biological treatment process in which a sedimentation process for sedimentation and a discharge process for discharging treated water are repeated in a semi-batch reaction tank, and the microbial sludge in the settled semi-batch reaction tank in the continuous reaction tank. A sludge supply step to supply, and when the average SS concentration of the treated water discharged from the semi-batch reaction tank in the discharge step is 100 mg / L or less, the discharge destination of the treated water is the continuous reaction tank of When the average SS concentration of treated water discharged from the semi-batch reaction tank in the discharge step is more than 100 mg / L, the discharge destination of the treated water is the continuous type. At least one of the reaction tank system and the solid-liquid separation tank system.

本発明の排水処理方法は、排水を連続式反応槽に連続的に流入させながら、排水中の処理対象物質を微生物汚泥により生物学的に処理し、前記連続式反応槽から排出された処理水から微生物汚泥を固液分離槽にて分離する連続式生物処理工程と、排水を流入させる流入工程、排水中の処理対象物質を微生物汚泥により生物学的に処理する生物処理工程、前記微生物汚泥を沈降させる沈降工程、処理水を排出させる排出工程を半回分式反応槽にて繰り返して行う半回分式生物処理工程と、前記沈降した半回分式反応槽内の微生物汚泥を前記連続式反応槽に供給する汚泥供給工程と、を備え、前記排出工程では、前記排出工程時間を前期と後期に分割し、後期の時間の割合を全時間の1/2以上として、前期の間は、前記処理水の排出先を前記連続式反応槽の系内及び前記固液分離槽の系内のうち少なくともいずれか一方とし、後期の間は、前記処理水の排出先を前記連続式反応槽の系外及び前記固液分離槽の系外とする。 In the wastewater treatment method of the present invention, the treated water discharged from the continuous reaction tank is treated biologically with microbial sludge while the wastewater is continuously flowing into the continuous reaction tank. A continuous biological treatment process for separating microbial sludge from a solid-liquid separation tank, an inflow process for inflowing wastewater, a biological treatment process for biologically treating a target substance in the wastewater with microbial sludge, and the microbial sludge A semi-batch biological treatment process in which a sedimentation process for sedimentation and a discharge process for discharging treated water are repeated in a semi-batch reaction tank, and the microbial sludge in the settled semi-batch reaction tank in the continuous reaction tank. A sludge supply process to supply, wherein in the discharge process, the discharge process time is divided into the first and second periods, and the ratio of the second period is set to ½ or more of the total time. The destination In the system of the reaction tank and at least one of the system of the solid-liquid separation tank, during the latter period, the treated water discharge destination is outside the system of the continuous reaction tank and the solid-liquid separation tank. Out of the system.

本発明の排水処理方法は、排水を連続式反応槽に連続的に流入させながら、排水中の処理対象物質を微生物汚泥により生物学的に処理し、前記連続式反応槽から排出された処理水から微生物汚泥を固液分離槽にて分離する連続式生物処理工程と、排水を流入させる流入工程、排水中の処理対象物質を微生物汚泥により生物学的に処理する生物処理工程、前記微生物汚泥を沈降させる沈降工程、処理水を排出させる排出工程を半回分式反応槽にて繰り返して行う半回分式生物処理工程と、前記沈降した半回分式反応槽内の微生物汚泥を前記連続式反応槽に供給する汚泥供給工程と、を備え、前記半回分式反応槽の汚泥のSVI5(Sludge Volume Index 5)が50以上〜80以下に達するまでを前記半回分式生物処理の立ち上げ期間とし、前記半回分式生物処理の立ち上げ期間の間は、前記処理水の排出先を前記連続式反応槽の系内及び前記固液分離槽の系内のうち少なくともいずれか一方とし、前記半回分式生物処理の立ち上げ期間経過後は、前記処理水の排出先を前記連続式反応槽の系外及び前記固液分離槽の系外とする。 In the wastewater treatment method of the present invention, the treated water discharged from the continuous reaction tank is treated biologically with microbial sludge while the wastewater is continuously flowing into the continuous reaction tank. A continuous biological treatment process for separating microbial sludge from a solid-liquid separation tank, an inflow process for inflowing wastewater, a biological treatment process for biologically treating a target substance in the wastewater with microbial sludge, and the microbial sludge A semi-batch biological treatment process in which a sedimentation process for sedimentation and a discharge process for discharging treated water are repeated in a semi-batch reaction tank, and the microbial sludge in the settled semi-batch reaction tank in the continuous reaction tank. A semi-batch biological treatment start-up period until the SVI5 (Sludge Volume Index 5) of the sludge in the semi-batch reaction tank reaches 50 to 80. Batch During the start-up period of the biological treatment, the treated water is discharged to at least one of the continuous reaction tank system and the solid-liquid separation tank system, and the semi-batch biological treatment is started. After the elapse of the raising period, the treated water is discharged outside the continuous reaction tank and the solid-liquid separation tank.

本発明によれば、連続式生物処理と半回分式生物処理とを併用する系において、連続式生物処理により処理された処理水のSS濃度の増加を抑えることができる排水処理方法を提供することができる。   According to the present invention, there is provided a wastewater treatment method capable of suppressing an increase in the SS concentration of treated water treated by continuous biological treatment in a system using both continuous biological treatment and semi-batch biological treatment. Can do.

本実施形態に係る排水処理システムの構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of the waste water treatment system which concerns on this embodiment. 本実施形態に係る排水処理システムの構成の他の一例を示す模式図である。It is a schematic diagram which shows another example of a structure of the waste water treatment system which concerns on this embodiment. 沈殿池から排出された処理水SS濃度の経時変化を示す図である。It is a figure which shows the time-dependent change of the treated water SS density | concentration discharged | emitted from the sedimentation basin. 半回分式槽から排出された処理水SS濃度の経時変化を示す図である。It is a figure which shows the time-dependent change of the treated water SS density | concentration discharged | emitted from the semi-batch type tank.

以下、本発明の実施の形態について説明する。なお、本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。   Embodiments of the present invention will be described below. This embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.

図1は、本実施形態に係る排水処理システムの構成の一例を示す模式図である。図1に示す排水処理システム1は、排水貯留槽10、排水流入ライン12,28、半回分式生物処理反応槽14、処理水排出ライン16、汚泥排出ライン18、処理水槽20、連続式生物処理反応槽24、沈殿槽26、一次処理水排出ライン30、処理水排出ライン32、汚泥返送ライン34、を備える。本明細書において、「連続式」とは、回分式に対する方式であり、半回分式のように、排水の流入、生物処理、汚泥の沈降、処理水の排出を一つの反応槽で行う半回分式処理と区別されるものである。また、本実施形態において、連続式は、連続して反応槽に排水を投入して運転する方式に限定されるものではなく、ダイヤフラムポンプ等の往復運動のような原理を利用したポンプにより、反応槽に排水を供給して運転する方式等であってもよいし、反応槽の前段に原水槽を設置し、その原水槽の水位に応じてポンプの稼動−停止を制御(水位が高い場合にはポンプを稼動、水位が低い場合にはポンプを停止)して、反応槽に排水を供給する模擬連続通水方式等であってもよい。   FIG. 1 is a schematic diagram illustrating an example of a configuration of a wastewater treatment system according to the present embodiment. The waste water treatment system 1 shown in FIG. 1 includes a waste water storage tank 10, waste water inflow lines 12, 28, semi-batch biological treatment reaction tank 14, treated water discharge line 16, sludge discharge line 18, treated water tank 20, continuous biological treatment. A reaction tank 24, a settling tank 26, a primary treated water discharge line 30, a treated water discharge line 32, and a sludge return line 34 are provided. In this specification, the “continuous type” is a method for the batch type, and like the semi-batch type, the inflow of wastewater, biological treatment, sedimentation of sludge, and discharge of treated water are performed in a single reaction tank. It is distinguished from formula processing. Further, in the present embodiment, the continuous type is not limited to a method in which drainage is continuously poured into the reaction tank and is operated, but the reaction is performed by a pump using a principle such as a reciprocating motion such as a diaphragm pump. The system may be operated by supplying wastewater to the tank, or a raw water tank is installed in front of the reaction tank, and the pump operation is controlled according to the water level of the raw water tank (when the water level is high). May be a simulated continuous water supply system that operates the pump and stops the pump when the water level is low) to supply waste water to the reaction tank.

半回分式生物処理反応槽14内には、排水を攪拌するための攪拌機(不図示)を備えることが望ましい。攪拌機は、例えば、モータの駆動により、モータに取り付けられたシャフトが回転し、シャフトの回転と共にシャフトの先端に取り付けられた攪拌羽根が回転する構造である。なお、攪拌機は、半回分式生物処理反応槽14内の排水を攪拌できる構造であれば上記に制限されるものではなく、例えば、好気性条件で生物処理を実施する際に用いられる曝気装置等でもよい。曝気装置の曝気により、槽内の排水を攪拌することが可能となる。   The semi-batch biological treatment reaction tank 14 is desirably provided with a stirrer (not shown) for stirring the waste water. The stirrer has a structure in which, for example, a shaft attached to the motor rotates by driving the motor, and a stirring blade attached to the tip of the shaft rotates with the rotation of the shaft. The stirrer is not limited to the above as long as the waste water in the semi-batch biological treatment reaction tank 14 can be stirred. For example, an aeration apparatus used when biological treatment is performed under aerobic conditions. But you can. By aeration of the aeration apparatus, it becomes possible to agitate the waste water in the tank.

排水流入ライン12の一端は排水貯留槽10に接続され、他端は半回分式生物処理反応槽14に接続されている。処理水排出ライン16の一端は、半回分式生物処理反応槽14に接続され、他端は処理水槽20に接続されている。排水流入ライン28の一端は排水貯留槽10に接続され、他端は、連続式生物処理反応槽24に接続され、一次処理水排出ライン30の一端は連続式生物処理反応槽24に接続され、他端は沈殿槽26に接続され、処理水排出ライン32の一端は、沈殿槽26に接続され、他端は、処理水槽20に接続され、汚泥返送ライン34の一端は、沈殿槽26に接続され、他端は連続式生物処理反応槽24に接続されている。また、汚泥排出ライン18の一端が半回分式生物処理反応槽14に接続され、他端は連続式生物処理反応槽24に接続されている。なお、以下、半回分式生物処理反応槽14を半回分式槽14、連続式生物処理反応槽24を連続式槽24と呼ぶ場合がある。なお、汚泥排出ライン18の接続点は、半回分式生物処理反応槽14から汚泥を引き抜くのに適した場所であれば何れでもよい。なお、各ラインには、排水や汚泥等の送液のためのポンプ等が設置されていることが望ましい。   One end of the drainage inflow line 12 is connected to the drainage storage tank 10, and the other end is connected to the semi-batch biological treatment reaction tank 14. One end of the treated water discharge line 16 is connected to the semi-batch biological treatment reaction tank 14, and the other end is connected to the treated water tank 20. One end of the drainage inflow line 28 is connected to the drainage storage tank 10, the other end is connected to the continuous biological treatment reaction tank 24, and one end of the primary treated water discharge line 30 is connected to the continuous biological treatment reaction tank 24, The other end is connected to the settling tank 26, one end of the treated water discharge line 32 is connected to the settling tank 26, the other end is connected to the treated water tank 20, and one end of the sludge return line 34 is connected to the settling tank 26. The other end is connected to the continuous biological treatment reaction tank 24. One end of the sludge discharge line 18 is connected to the semi-batch biological treatment reaction tank 14, and the other end is connected to the continuous biological treatment reaction tank 24. Hereinafter, the semi-batch biological treatment reaction tank 14 may be referred to as a semi-batch tank 14 and the continuous biological treatment reaction tank 24 may be referred to as a continuous tank 24. In addition, the connection point of the sludge discharge line 18 may be any place that is suitable for extracting the sludge from the semi-batch biological treatment reaction tank 14. In addition, it is desirable that each line is provided with a pump for feeding liquid such as drainage and sludge.

以下に、図1に示す排水処理システム1の動作について説明する。   Below, operation | movement of the waste water treatment system 1 shown in FIG. 1 is demonstrated.

まず、処理対象物質を含む排水は、半回分式生物処理反応槽14や連続式生物処理反応槽24に供給される前に、排水貯留槽10に溜められ、排水の水質安定化を行うことが好ましい。この際、排水中に固形物が含まれている場合には、スクリーン等によって、固形物を取り除いておくことが望ましい。また、排水貯留槽10では排水の均一化を行うため、攪拌装置(機械攪拌、空気攪拌等)を設置することが望ましい。   First, the waste water containing the treatment target substance is stored in the waste water storage tank 10 before being supplied to the semi-batch biological treatment reaction tank 14 or the continuous biological treatment reaction tank 24, and the water quality of the waste water is stabilized. preferable. At this time, when solid matter is contained in the waste water, it is desirable to remove the solid matter with a screen or the like. Moreover, in the waste water storage tank 10, in order to make the waste water uniform, it is desirable to install a stirring device (mechanical stirring, air stirring, etc.).

排水貯留槽10内の排水の一部は、排水流入ライン12から半回分式槽14に間欠的に流入し、残りは、排水流入ライン28から連続式槽24に連続的に流入する。半回分式槽14では、(1)排水の流入、(2)排水中の処理対象物質を微生物汚泥により生物学的に処理する生物処理、(3)汚泥の沈降、(4)生物処理により得られる処理水の排出の4つの工程が繰り返し行われる。具体的には、半回分式生物処理反応槽14内に滞留している微生物汚泥と半回分式生物処理反応槽14に流入した排水中の処理対象物質とが接触し、処理対象物質が分解され処理される。生物処理後、半回分式生物処理反応槽14内の微生物汚泥を沈降させる。微生物汚泥(グラニュール化した汚泥も含む。以下同じ)の沈降後、微生物汚泥は半回分式槽14から引き抜かれ、汚泥排出ライン18から連続式槽24に供給されると共に、本実施形態では、半回分式槽14の処理水(上澄水)が処理水排出ライン16から処理水槽20に供給される。すなわち、本実施形態では、半回分式槽14から排出された処理水の排出先を連続式槽24の系外、沈殿槽26の系外としている。   Part of the wastewater in the drainage storage tank 10 intermittently flows into the semi-batch tank 14 from the drainage inflow line 12, and the rest continuously flows into the continuous tank 24 from the drainage inflow line 28. The semi-batch tank 14 is obtained by (1) inflow of wastewater, (2) biological treatment in which the target substance in the wastewater is biologically treated with microbial sludge, (3) sedimentation of sludge, and (4) biological treatment. The four steps of discharging the treated water are repeated. Specifically, the microbial sludge staying in the semi-batch biological treatment reaction tank 14 comes into contact with the treatment target substance in the wastewater flowing into the semi-batch biological treatment reaction tank 14, and the treatment target substance is decomposed. It is processed. After the biological treatment, the microbial sludge in the semi-batch biological treatment reaction tank 14 is allowed to settle. After sedimentation of microbial sludge (including granulated sludge; the same applies hereinafter), the microbial sludge is withdrawn from the semi-batch tank 14 and supplied to the continuous tank 24 from the sludge discharge line 18. The treated water (supernatant water) of the semi-batch tank 14 is supplied from the treated water discharge line 16 to the treated water tank 20. That is, in this embodiment, the discharge destination of the treated water discharged from the semi-batch tank 14 is outside the system of the continuous tank 24 and the system of the precipitation tank 26.

連続式槽24には、汚泥排出ライン18及び汚泥返送ライン34から微生物汚泥(グラニュール化した汚泥も含む)が供給され、例えば、好気条件下で(曝気装置等による曝気処理)、且つ供給された微生物汚泥(グラニュール化した汚泥も含む)等が共存した状態で、例えば、排水中の有機物が二酸化炭素にまで酸化処理される。本実施形態では、上記のような標準活性汚泥法による生物処理だけでなく、AO(Anaerobic−Anoxic Process)やAO(Anaerobic−Oxic Process)等の栄養塩除去型システム(無酸素処理槽や嫌気処理槽を設置するシステム)、オキシデーションディッチ法、ステップ流入型多段活性汚泥法等のシステムによる生物処理も可能である。 Microbial sludge (including granulated sludge) is supplied to the continuous tank 24 from the sludge discharge line 18 and the sludge return line 34, for example, under aerobic conditions (aeration treatment by an aeration apparatus or the like) and supply In the state where the microbial sludge (including granulated sludge) etc. coexisted, for example, the organic matter in the wastewater is oxidized to carbon dioxide. In the present embodiment, not only biological treatment by the standard activated sludge method as described above, but also a nutrient removal system (an oxygen-free treatment tank or the like) such as A 2 O (Anaerobic-Anoxic Process) or AO (Anaerobic-Oxic Process). Biological treatment by systems such as an anaerobic treatment tank), oxidation ditch method, step-inflow type multi-stage activated sludge method, etc. is also possible.

連続式槽24内で生物処理された一次処理水は、微生物汚泥(グラニュール汚泥も含む)と共に一次処理水排出ライン30を通り、沈殿槽26に流入する。沈殿槽26内では、一次処理水から微生物汚泥(グラニュール汚泥も含む)が沈降分離される。そして、微生物汚泥(グラニュール汚泥も含む)が分離された排水は、処理水として処理水排出ライン32から排出され、処理水槽20に供給される。また、微生物汚泥(グラニュール汚泥も含む)は、汚泥返送ライン34から連続式槽24に返送される。   The primary treated water biologically treated in the continuous tank 24 passes through the primary treated water discharge line 30 together with microbial sludge (including granule sludge) and flows into the settling tank 26. In the sedimentation tank 26, microbial sludge (including granule sludge) is settled and separated from the primary treated water. The waste water from which microbial sludge (including granule sludge) is separated is discharged from the treated water discharge line 32 as treated water and supplied to the treated water tank 20. Microbial sludge (including granule sludge) is returned to the continuous tank 24 from the sludge return line 34.

本実施形態では、このようにして排水処理が行われるが、通常、半回分式槽14における処理水の排出工程では、約15分程度の短時間に多量の処理水の排出を行うため、処理水の排出先を連続式槽24や沈殿槽26とすると、沈殿槽26の表面積負荷が一時的に大きくなり、沈殿槽26から排出される処理水にSSが流出して、処理水中のSS濃度が上昇する危険性がある。そこで、本実施形態では、前述したように、半回分式槽14の微生物汚泥については連続式槽24に供給するが、半回分式槽14から排出された処理水の排出先については連続式槽24の系外及び沈殿槽26の系外へ排出させている。これにより、沈殿槽26の表面積負荷の一時的な上昇を抑制することができるため、沈殿槽26から排出される処理水にSSが流出して、処理水中のSS濃度の上昇を抑制することができる。ここで、連続式槽24の系外及び沈殿槽26の系外とは、連続式槽24、沈殿槽26に処理水が供給されることのない箇所を指しており、本実施形態では、例えば、処理水槽20等が挙げられる。   In the present embodiment, the waste water treatment is performed in this way. Usually, in the treatment water discharge step in the semi-batch tank 14, a large amount of the treatment water is discharged in a short time of about 15 minutes. When the water discharge destination is the continuous tank 24 or the precipitation tank 26, the surface area load of the precipitation tank 26 temporarily increases, SS flows out into the treated water discharged from the precipitation tank 26, and the SS concentration in the treated water There is a risk of rising. Therefore, in this embodiment, as described above, the microbial sludge of the semi-batch tank 14 is supplied to the continuous tank 24, but the destination of the treated water discharged from the semi-batch tank 14 is the continuous tank. 24 out of the system and out of the settling tank 26. Thereby, since the temporary rise of the surface area load of the sedimentation tank 26 can be suppressed, SS flows out into the treated water discharged from the sedimentation tank 26, thereby suppressing an increase in the SS concentration in the treated water. it can. Here, the out-of-system tank 24 and the out-of-settling tank 26 point to a location where treated water is not supplied to the continuous-type tank 24 and the settling tank 26. In this embodiment, for example, , Treated water tank 20 and the like.

図2は、本実施形態に係る排水処理システムの構成の他の一例を示す模式図である。図2に示す排水処理システム2において、図1に示す排水処理システム1と同様の構成については同一の符号を付し、その説明を省略する。図2に示す排水処理システム2は、処理水供給ライン36、電磁弁38、SS濃度計40を備えるものである。処理水供給ライン36の一端は処理水排出ライン16に接続され、他端は連続式槽24に接続されている。なお、処理水供給ライン36の他端は連続式槽24の系内及び沈殿槽26の系内のうち少なくともいずれか一方に接続されていればよく、例えば、排水流入ライン28、一次処理水排出ライン30、又は沈殿槽26等に接続されてもよい。すなわち、連続式槽24の系内及び沈殿槽26の系内とは、連続式槽24、沈殿槽26に処理水が供給される箇所を指している。また、処理水供給ライン36の他端に一時貯留槽やpH調整槽などの槽を設けて、半回分式槽14の処理水を一時的に貯留した後、連続式槽24、沈殿槽26に供給してもよい。   FIG. 2 is a schematic diagram illustrating another example of the configuration of the wastewater treatment system according to the present embodiment. In the waste water treatment system 2 shown in FIG. 2, the same reference numerals are given to the same components as those in the waste water treatment system 1 shown in FIG. 1, and the description thereof is omitted. The waste water treatment system 2 shown in FIG. 2 includes a treated water supply line 36, a solenoid valve 38, and an SS densitometer 40. One end of the treated water supply line 36 is connected to the treated water discharge line 16, and the other end is connected to the continuous tank 24. The other end of the treated water supply line 36 may be connected to at least one of the system of the continuous tank 24 and the system of the settling tank 26. For example, the drainage inflow line 28, the primary treated water discharge You may connect to the line 30 or the sedimentation tank 26 grade | etc.,. That is, the inside of the continuous tank 24 and the inside of the settling tank 26 refer to a place where treated water is supplied to the continuous tank 24 and the settling tank 26. Further, a tank such as a temporary storage tank or a pH adjustment tank is provided at the other end of the treated water supply line 36 to temporarily store the treated water in the semi-batch tank 14, and then the continuous tank 24 and the sedimentation tank 26. You may supply.

処理水排出ライン16と処理水供給ライン36との接続点には電磁弁38が設置され、電磁弁38より上流側の処理水排出ライン16にはSS濃度計40が設置されている。電磁弁38とSS濃度計40とは電気的に接続されている。電磁弁38は、SS濃度計40の測定値に基づいて、処理水が流れる経路を処理水排出ライン16側、又は処理水供給ライン36側に切り換えるものである。SS濃度計40は、処理水中のSS濃度を測定することができるものであれば特に制限されるものではなく、例えば、MLSS計や濁度計等が挙げられる。   A solenoid valve 38 is installed at the connection point between the treated water discharge line 16 and the treated water supply line 36, and an SS concentration meter 40 is installed in the treated water discharge line 16 upstream of the solenoid valve 38. The solenoid valve 38 and the SS densitometer 40 are electrically connected. The electromagnetic valve 38 switches the path through which the treated water flows to the treated water discharge line 16 side or the treated water supply line 36 side based on the measurement value of the SS densitometer 40. The SS densitometer 40 is not particularly limited as long as it can measure the SS concentration in the treated water, and examples thereof include an MLSS meter and a turbidimeter.

以下に、図2に示す排水処理システム2の動作について説明する。   Below, operation | movement of the waste water treatment system 2 shown in FIG. 2 is demonstrated.

排水貯留槽10内の排水の一部は、排水流入ライン12から半回分式槽14に間欠的に流入し、残りは、排水流入ライン28から連続式槽24に連続的に流入する。半回分式槽14内では、前述の通り、排水中の処理対象物質が分解処理された後、微生物汚泥(グラニュール化した汚泥も含む。以下同じ)を沈降させる。そして、微生物汚泥を半回分式槽14から引き抜き、汚泥排出ライン18から連続式槽24に供給すると共に、半回分式槽14の処理水(上澄水)を処理水排出ライン16から排出する。   Part of the wastewater in the drainage storage tank 10 intermittently flows into the semi-batch tank 14 from the drainage inflow line 12, and the rest continuously flows into the continuous tank 24 from the drainage inflow line 28. In the semi-batch tank 14, as described above, after the target substance in the wastewater is decomposed, microbial sludge (including granulated sludge; the same applies hereinafter) is allowed to settle. The microbial sludge is extracted from the semi-batch tank 14 and supplied to the continuous tank 24 from the sludge discharge line 18, and the treated water (supernatant water) of the semi-batch tank 14 is discharged from the treated water discharge line 16.

ここで、半回分式槽14における生物処理の立上げ時は、槽内汚泥が十分にグラニュール化していないため、沈降工程で全ての汚泥が沈みきる前に排出工程が開始され、一部の汚泥(SS)が処理水側へ流出して、処理水SS濃度が100〜4000mg/Lとなる場合がある。従って、半回分式槽14における排出工程前期のSS濃度の高い処理水(SS濃度100〜4000mg/L)の排出先を連続式槽24及び沈殿槽26の系内のうち少なくともいずれか一方とし、排出工程後期のSS濃度の低い処理水(SS濃度100mg/L以下)の排出先を連続式槽24の系外及び沈殿槽26の系外とすることが有効である。   Here, since the sludge in the tank is not sufficiently granulated at the start of biological treatment in the semi-batch tank 14, the discharge process is started before all of the sludge has settled in the sedimentation process. Sludge (SS) may flow out to the treated water side, and the treated water SS concentration may be 100 to 4000 mg / L. Therefore, the discharge destination of the SS concentration high treatment water (SS concentration 100 to 4000 mg / L) in the first half of the discharge process in the semi-batch tank 14 is at least one of the continuous tank 24 and the precipitation tank 26 in the system, It is effective to set the discharge destination of the treated water having a low SS concentration (SS concentration of 100 mg / L or less) in the latter stage of the discharge process outside the continuous tank 24 and the precipitation tank 26.

本実施形態では、処理水排出ライン16を通る処理水のSS濃度をSS濃度計40で測定し、測定データを電磁弁38に送信する。そして、SS濃度計40による測定データが100mg/Lを超える場合には、電磁弁38により処理水排出ライン16側の経路を閉じ、処理水供給ライン36側の経路を開放して、半回分式槽14から排出されたSS濃度の高い処理水を連続式槽24に供給する。また、SS濃度計40による測定データが100mg/L以下の場合には、電磁弁38により処理水供給ライン36側の経路を閉じ、処理水排出ライン16側の経路を開放して、半回分式槽14から排出されたSS濃度の低い処理水を処理水槽20に供給する。   In the present embodiment, the SS concentration of the treated water passing through the treated water discharge line 16 is measured by the SS densitometer 40 and the measurement data is transmitted to the electromagnetic valve 38. And when the measurement data by SS densitometer 40 exceeds 100 mg / L, the path | route by the side of the treated water discharge line 16 is closed by the solenoid valve 38, the path | route by the side of the treated water supply line 36 is opened, and it is a semi-batch type. Treated water having a high SS concentration discharged from the tank 14 is supplied to the continuous tank 24. When the measurement data by the SS densitometer 40 is 100 mg / L or less, the route on the treated water supply line 36 side is closed by the electromagnetic valve 38 and the route on the treated water discharge line 16 side is opened, so that the semi-batch method is used. The treated water having a low SS concentration discharged from the tank 14 is supplied to the treated water tank 20.

また、上記のような処理水の経路の切り換えを排出工程の時間で分割することも好ましい。排出工程の前期では、SS濃度の高い処理水が半回分式槽14から排出される場合があるからである。したがって、排出工程時間の全時間を前期と後期に分割し、前期の間は、半回分式槽14から排出された処理水の排出先を連続式槽24の系内及び沈殿槽26の系内のうち少なくともいずれか一方とし、後期の間は、半回分式槽14から排出された処理水の排出先を連続式槽24の系外及び沈殿槽26の系外とする。ここで、排出工程時間の後期の時間は、排出工程全時間の1/2以上に設定されることが好ましく、1/2以上2/3以下に設定(排出工程全時間の1/3を少なくとも前期の時間とする)することがより好ましい。このような排出工程の時間で処理水の経路を切り換えるには、電磁弁38等にタイマーを設置し、タイマーで設定した時間に基づいて処理水の経路を切り換えればよい。   Moreover, it is also preferable to divide the path of the treated water as described above by the time of the discharge process. This is because treated water with a high SS concentration may be discharged from the semi-batch tank 14 in the first half of the discharging step. Therefore, the entire time of the discharge process is divided into the first half and the second half, and during the first half, the discharge destination of the treated water discharged from the semi-batch tank 14 is set in the continuous tank 24 system and the precipitation tank 26 system. At least one of them, and during the latter period, the discharge destination of the treated water discharged from the semi-batch tank 14 is outside the system of the continuous tank 24 and the system of the precipitation tank 26. Here, the latter period of the discharge process time is preferably set to 1/2 or more of the total time of the discharge process, and is set to 1/2 or more and 2/3 or less (at least 1/3 of the total time of the discharge process is set) It is more preferable to use the time of the previous period. In order to switch the route of treated water during the time of such a discharge process, a timer may be installed in the solenoid valve 38 or the like, and the route of treated water may be switched based on the time set by the timer.

また、上記のような処理水の経路の切り換えを前記半回分式生物処理の立ち上げ期間の前後とすることも好ましい。すなわち、半回分式生物処理の立ち上げ期間は、半回分式槽14から排出された処理水の排出先を連続式槽24の系内及び沈殿槽26の系内のうち少なくともいずれか一方とし、半回分式生物処理の立ち上げ期間経過後は、半回分式槽14から排出された処理水の排出先を連続式槽24の系外及び沈殿槽26の系外とする。ここで、半回分式生物処理の立ち上げ期間は、上述のように処理水のSS濃度で規定することの他に、半回分式槽14内の汚泥のSVI5(Sludge Volume Index 5)等で規定してもよく、例えば、半回分式槽14内の汚泥のSVI5が50以上〜80以下の範囲に達するまでの期間を生物処理の立ち上げ期間としてもよい。半回分式槽14内の汚泥のSVI5は下記により測定される。まず、1Lの汚泥を1Lのメスシリンダーに投入し、攪拌した後、5分間静置した時の汚泥界面を測定する。そして、メスシリンダーにおける汚泥の占める体積率(%)を計算する。次に、汚泥のMLSS(mg/L)を測定する。これらを下記式に当てはめて、SVI5を算出する。
SVI5=汚泥の占める体積率×10,000/MLSS
In addition, it is preferable that the switching of the treatment water path as described above is performed before or after the start-up period of the semi-batch biological treatment. That is, in the start-up period of the semi-batch biological treatment, the discharge destination of the treated water discharged from the semi-batch tank 14 is at least one of the continuous tank 24 system and the precipitation tank 26 system, After the start-up period of the semi-batch biological treatment, the destination of the treated water discharged from the semi-batch tank 14 is set outside the continuous tank 24 and the precipitation tank 26. Here, the start-up period of the semi-batch biological treatment is prescribed by the SVI5 (Sludge Volume Index 5) of the sludge in the semi-batch tank 14 in addition to the SS concentration of the treated water as described above. For example, the period until the SVI5 of the sludge in the semi-batch tank 14 reaches the range of 50 to 80 may be set as the start-up period of the biological treatment. The SVI5 of the sludge in the semi-batch tank 14 is measured as follows. First, 1 L of sludge is put into a 1 L graduated cylinder, stirred, and then the sludge interface when allowed to stand for 5 minutes is measured. Then, the volume ratio (%) of sludge in the measuring cylinder is calculated. Next, MLSS (mg / L) of sludge is measured. By applying these to the following equation, SVI5 is calculated.
SVI5 = volume ratio occupied by sludge × 10,000 / MLSS

以下に、本実施形態の排水処理システム1,2を構成する各槽について詳述する。   Below, each tank which comprises the waste water treatment systems 1 and 2 of this embodiment is explained in full detail.

半回分式槽14内での生物処理反応は、嫌気(無酸素)条件のみ、好気条件のみ、嫌気(無酸素)−好気交互運転のいずれでもよい。しかし、汚泥の増殖速度が高くなる点、グラニュール形成速度が高くなる点からは好気条件を含む条件が好ましく、グラニュールを安定に形成できる点からは、嫌気(無酸素)条件を含む条件が好ましいため、嫌気(無酸素)−好気条件を含むような条件設定が望ましい。処理対象となる物質は、例えば、有機物、アンモニア性窒素、硝酸態窒素等の窒素含有物質等であり、有機物は微生物との接触により、二酸化炭素まで分解され、窒素含有物質等は微生物との接触により、窒素ガスにまで分解される。   The biological treatment reaction in the semi-batch tank 14 may be performed only under anaerobic (anoxic) conditions, only aerobic conditions, or anaerobic (anoxic) -aerobic alternating operation. However, conditions including aerobic conditions are preferable from the point of increasing sludge growth rate and granule formation rate, and conditions including anaerobic (anoxic) conditions from the viewpoint of stable formation of granules. Therefore, it is desirable to set conditions including anaerobic (anoxic) -aerobic conditions. Substances to be treated are, for example, organic substances, nitrogen-containing substances such as ammonia nitrogen, nitrate nitrogen, etc., and organic substances are decomposed to carbon dioxide by contact with microorganisms, and nitrogen-containing substances etc. are in contact with microorganisms. Is decomposed into nitrogen gas.

半回分式槽14では、例えば、排水BOD濃度が200〜1000mg/Lで、BOD負荷を1.5〜3.0kg/m/dayとする場合、排水流入時間15分、無酸素反応時間30分、好気反応時間60〜400分、汚泥沈降時間15分、処理水排出時間15分とし、1サイクルの合計時間を2.3〜8.0時間に設定することが望ましい。 In the semi-batch tank 14, for example, when the wastewater BOD concentration is 200 to 1000 mg / L and the BOD load is 1.5 to 3.0 kg / m 3 / day, the wastewater inflow time is 15 minutes, and the oxygen-free reaction time is 30. Minute, aerobic reaction time 60-400 minutes, sludge settling time 15 minutes, treated water discharge time 15 minutes, it is desirable to set the total time of one cycle to 2.3-8.0 hours.

半回分式槽14の排水流入率は20%以上80%以下とし、好ましくは40%以上60%以下とすることが好ましい。処理対象物質である有機物濃度が非常に高い状態(流入工程の直後、飽食状態)と有機物濃度が非常に低い状態(生物処理工程の終盤、飢餓状態)を汚泥が繰り返し経験することによって、汚泥のグラニュール化が進行すると考えられている。従って、グラニュールを形成する観点では排水流入率は出来るだけ高くとった方が良いが、その一方で、排水流入率を高くすればする程、流入ポンプの容量が大きくなりコスト高となるため、排水流入率は40%以上60%以下が好ましい。   The wastewater inflow rate of the semi-batch tank 14 is 20% to 80%, preferably 40% to 60%. As sludge repeatedly experiences a state in which the concentration of organic matter, which is the treatment target substance, is very high (immediately after the inflow process, a satiety state) and a state in which the organic matter concentration is very low (the end of the biological treatment process, starvation state), Granulation is thought to progress. Therefore, it is better to take the drainage inflow rate as high as possible from the viewpoint of forming granules, but on the other hand, the higher the drainage inflow rate, the larger the capacity of the inflow pump and the higher the cost. The drainage inflow rate is preferably 40% or more and 60% or less.

半回分式槽14内のpHは、一般的な微生物に適する6〜9、特に6.5〜7.5とすることが望ましい。pH値が前記範囲外となる場合は、酸、アルカリを添加してpHコントロールを実施することが好ましい。半回分式生物処理反応槽14内の溶存酸素(DO)は、好気条件では、0.5mg/L以上、特に1mg/L以上とすることが望ましい。   The pH in the semi-batch tank 14 is preferably 6 to 9, particularly 6.5 to 7.5, which is suitable for general microorganisms. When the pH value is out of the above range, it is preferable to carry out pH control by adding acid and alkali. The dissolved oxygen (DO) in the semi-batch biological treatment reaction tank 14 is preferably 0.5 mg / L or more, particularly 1 mg / L or more under aerobic conditions.

半回分式槽14は、概ね汚泥濃度が3000〜30000mg/L程度で運転されるが、汚泥の健全性(沈降性、活性等)を維持するためには、汚泥負荷を0.05〜0.60kg/MLSS/dayに保つことが好ましく、0.1〜0.5kg/MLSS/dayに保つことがより好ましいため、所定濃度よりも汚泥濃度が増加した場合には反応槽内より引き抜くことが必要となる。   The semi-batch tank 14 is generally operated at a sludge concentration of about 3000 to 30000 mg / L. In order to maintain the soundness (sedimentation, activity, etc.) of the sludge, the sludge load is set to 0.05 to 0.00. It is preferable to keep at 60 kg / MLSS / day, more preferably from 0.1 to 0.5 kg / MLSS / day, so if the sludge concentration increases above the predetermined concentration, it is necessary to pull it out from the reaction tank. It becomes.

連続式槽24は1槽でもよいし、2槽以上の多段処理としてもよいし、好気槽、嫌気槽及び無酸素槽を組み合わせた複合槽としてもよい。また、ポリウレタン、プラスチック、樹脂等の担体を連続式槽24に充填して、生物処理を行ってもよい。   The continuous tank 24 may be one tank, may be a multistage treatment of two or more tanks, or may be a combined tank combining an aerobic tank, an anaerobic tank, and an oxygen-free tank. Alternatively, biological treatment may be performed by filling the continuous tank 24 with a carrier such as polyurethane, plastic, or resin.

連続式槽24内のpHは、一般的な微生物に適する6〜9が好ましく、6.5〜7.5とすることがより好ましい。また、溶存酸素(DO)は、好気条件では、0.5mg/L以上、特に1mg/L以上とすることが望ましい。連続式槽24の滞留時間は特に制限されるものではないが、通常は4時間から24時間の間で設定することが好ましい。   The pH in the continuous tank 24 is preferably 6 to 9, which is suitable for general microorganisms, and more preferably 6.5 to 7.5. Further, it is desirable that the dissolved oxygen (DO) be 0.5 mg / L or more, particularly 1 mg / L or more under aerobic conditions. Although the residence time of the continuous tank 24 is not particularly limited, it is usually preferably set between 4 hours and 24 hours.

本実施形態において、処理水から微生物汚泥を分離する固液分離装置としては、沈殿槽26に限定されるものではなく、例えば、MBRのような膜分離装置、液体サイクロン、GSS等でもよい。   In the present embodiment, the solid-liquid separation device that separates the microbial sludge from the treated water is not limited to the sedimentation tank 26, and may be a membrane separation device such as MBR, a hydrocyclone, GSS, or the like.

半回分式槽14から抜き取られる微生物汚泥はグラニュール化した汚泥として得られ易い。そして、グラニュール汚泥を投入した排水処理システムでは、汚泥の沈降性を著しく改善することが可能となる。処理水から汚泥を分離する固液分離装置が沈殿槽26の場合には、沈殿槽26の線流速は0.6m/hr前後に設定されるが、グラニュールを投入した場合、線流速を1〜5m/hrに設定することが可能である。   The microbial sludge extracted from the semi-batch tank 14 is easily obtained as granulated sludge. And in the waste water treatment system which put the granular sludge, it becomes possible to improve the sedimentation property of sludge remarkably. When the solid-liquid separator that separates sludge from the treated water is the sedimentation tank 26, the linear flow rate of the sedimentation tank 26 is set to around 0.6 m / hr. However, when granule is charged, the linear flow rate is 1 It can be set to ˜5 m / hr.

しかしながら、排水処理システム2の固液分離が沈殿槽26のような重力沈降である場合、半回分式生物処理反応槽14からの急激な汚泥投入は、沈殿槽26における一時的な線流速の増加を引き起こし、汚泥が沈殿槽26から流出する場合がある。通常、沈殿槽26の汚泥界面は水深の1/2以下にあるため、汚泥の流出を防ぐ点で、1回あたりの汚泥供給量を沈殿槽26の容積の1/2以下とすることが好ましい。また、たとえば膜分離のような固液分離を採用した場合においても急激な汚泥投入は水位の上昇を招き、連続式槽24上部からの汚泥流出を引き起こす場合があるため、汚泥の供給量は上記範囲とすることが好ましい。また、固液分離の方式にかかわらず、連続式槽24の処理水量の急激な増加を防ぐ点で、半回分式槽14から連続式槽24への汚泥供給速度を、連続式槽24への原水の流入速度の1/20以上1/2以下とすることが好ましい。また、連続式槽24の処理水量の急激な増加を防ぐ点で、半回分式槽14から汚泥を供給している間、連続式槽24への排水流入速度を所定量低下、もしくは排水の流入を停止させることも好ましい。所定量とは、連続式槽24の処理水量の急激な増加を防ぐ範囲で適宜設定されるものである。   However, when the solid-liquid separation of the wastewater treatment system 2 is gravity sedimentation as in the sedimentation tank 26, rapid sludge input from the semi-batch biological treatment reaction tank 14 temporarily increases the linear flow velocity in the sedimentation tank 26. And sludge may flow out of the sedimentation tank 26. Usually, since the sludge interface of the sedimentation tank 26 is ½ or less of the water depth, the sludge supply amount per time is preferably ½ or less of the volume of the sedimentation tank 26 in order to prevent the sludge from flowing out. . In addition, even when solid-liquid separation such as membrane separation is employed, sudden sludge charging causes a rise in the water level and may cause sludge outflow from the upper part of the continuous tank 24. It is preferable to be in the range. Regardless of the solid-liquid separation method, the sludge supply rate from the semi-batch tank 14 to the continuous tank 24 is changed to the continuous tank 24 in order to prevent a rapid increase in the amount of treated water in the continuous tank 24. It is preferable to set it to 1/20 or less and 1/2 or less of the inflow rate of raw water. Moreover, while supplying the sludge from the semi-batch tank 14, the drainage inflow rate to the continuous tank 24 is reduced by a predetermined amount or the inflow of drainage in order to prevent a rapid increase in the amount of treated water in the continuous tank 24. It is also preferable to stop the operation. The predetermined amount is appropriately set within a range that prevents a rapid increase in the amount of treated water in the continuous tank 24.

半回分式槽14からの汚泥を連続式槽24で効率的に利用するためには、半回分式槽14の容積は、連続式槽24の容積に対して1/100〜1/3の範囲の大きさとすることが好ましく、1/20〜1/5の範囲の大きさとすることがより好ましい。また、半回分式槽14の処理水を連続式槽24の系内へ排出する場合、連続式槽24の容積に対する半回分式槽14の容積比率及び半回分式槽14の排水流入率によって、沈殿槽26における処理水のSS濃度の増加への影響度が異なるため、前記の容積比率及び排水流入率を考慮して沈殿槽26の線流速を設定する必要がある。例えば、容積比率が1/5で排水比率60%の場合、比較的沈殿槽26への影響度が大きいと考えられるため、沈殿槽26の線流速は1〜2m/hr程度に設定するのが好ましい。   In order to efficiently use the sludge from the semi-batch tank 14 in the continuous tank 24, the volume of the semi-batch tank 14 is in the range of 1/100 to 1/3 with respect to the volume of the continuous tank 24. Preferably, the size is in the range of 1/20 to 1/5. Moreover, when discharging the treated water of the semi-batch tank 14 into the system of the continuous tank 24, depending on the volume ratio of the semi-batch tank 14 to the volume of the continuous tank 24 and the drainage inflow rate of the semi-batch tank 14, Since the degree of influence on the increase in the SS concentration of treated water in the settling tank 26 is different, it is necessary to set the linear flow rate of the settling tank 26 in consideration of the volume ratio and the drainage inflow rate. For example, when the volume ratio is 1/5 and the drainage ratio is 60%, the degree of influence on the sedimentation tank 26 is considered to be relatively large. Therefore, the linear flow velocity of the sedimentation tank 26 is set to about 1 to 2 m / hr. preferable.

本実施形態の処理に適用する排水は、例えば、食品加工工場排水、化学工場排水、半導体工場排水、機械工場排水、下水、し尿、河川水等の生物分解性を有する物質(有機物)を含有する排水等である。また、生物難分解性を示す排水を処理する場合には、予め物理化学的処理を施し、生物分解性を有する物質に変換することによって処理が可能となる。食品加工工場排水などに含有されることが多い油脂分に関しては、グラニュールを含む汚泥に付着して悪影響を及ぼす可能性が高いため、半回分式生物処理反応槽14に流入させる前に、予め浮上分離、凝集加圧浮上装置、吸着装置等の既存の手法にて、油脂分をノルマルヘキサン抽出濃度で150mg/L以下程度まで除去しておくことが望ましい。   The wastewater applied to the treatment of the present embodiment contains biodegradable substances (organic matter) such as food processing factory wastewater, chemical factory wastewater, semiconductor factory wastewater, machine factory wastewater, sewage, human waste, river water, and the like. It is drainage. Moreover, when processing the wastewater which shows a biodegradability, it becomes possible by performing a physicochemical process beforehand and converting into the biodegradable substance. For oils and fats that are often contained in food processing factory effluent, etc., there is a high possibility that they will adhere to the sludge containing granules and have an adverse effect. It is desirable to remove fats and oils to a normal hexane extraction concentration of about 150 mg / L or less by existing methods such as flotation separation, coagulation pressure flotation device, adsorption device and the like.

微生物汚泥のグラニュール化には核が必要と考えられている。通常の排水にはこのような核となるような微粒子が含まれているので特に添加する必要はないが、核形成を促進させる点で、Fe2+、Fe3+、Ca2+、Mg2+等の水酸化物が形成されるようなイオンを排水に添加することが望ましい。 Nucleus is considered necessary for granulating microbial sludge. Since normal effluent contains such fine particles as nuclei, it is not particularly necessary to add them, but in terms of promoting nucleation, water such as Fe 2+ , Fe 3+ , Ca 2+ , Mg 2+, etc. It is desirable to add to the waste water ions that form oxides.

以下、実施例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail more concretely, this invention is not limited to a following example.

(実施例1)
容積72.5Lの連続式槽と、沈殿池表面積86.5cmの沈殿池と、容積7.25Lの半回分式槽を用いて、排水処理を実施した。処理水排出ラインの一端を半回分式槽に接続し、他端を連続式槽に接続した。連続式槽の排水流量を145L/日とし、半回分式槽の排水流入率を50%、排出工程時間を15分とした。半回分式槽における排出工程開始の5分前から5分ごとに、沈殿池から排出される処理水をサンプリングし、SS濃度を測定した。
Example 1
Waste water treatment was carried out using a continuous tank with a volume of 72.5 L, a sedimentation tank with a surface area of 86.5 cm 2 and a semi-batch tank with a volume of 7.25 L. One end of the treated water discharge line was connected to the semi-batch tank, and the other end was connected to the continuous tank. The drainage flow rate of the continuous tank was 145 L / day, the drainage inflow rate of the semi-batch tank was 50%, and the discharge process time was 15 minutes. The treated water discharged from the sedimentation basin was sampled every 5 minutes from 5 minutes before the start of the discharge process in the semi-batch tank, and the SS concentration was measured.

図3は、沈殿池から排出された処理水SS濃度の経時変化を示す図である。図3から分かるように、半回分式槽から連続式槽に処理水が流入するまでは、沈殿池から排出される処理水のSS濃度は50〜60mg/L程度であったが、半回分式槽から連続式槽に処理水が流入し始めると、処理水のSS濃度は500〜4500mg/Lまで上昇した。その後、半回分式槽から連続式槽への処理水の流入が終了すると、即座に沈殿池から排出される処理水のSS濃度は10mg/L以下まで低下した。以上のことから、半回分式槽から排出される処理水の排出先は、連続式槽の系外及び沈殿池の系外とすることが有効であるといえる。   FIG. 3 is a diagram showing the change with time of the concentration of the treated water SS discharged from the sedimentation basin. As can be seen from FIG. 3, the SS concentration of the treated water discharged from the sedimentation basin was about 50-60 mg / L until the treated water flowed from the semi-batch tank to the continuous tank, but the semi-batch type When the treated water began to flow from the tank into the continuous tank, the SS concentration of the treated water increased to 500-4500 mg / L. Thereafter, when the inflow of the treated water from the semi-batch tank to the continuous tank was completed, the SS concentration of the treated water immediately discharged from the sedimentation basin decreased to 10 mg / L or less. From the above, it can be said that it is effective that the treated water discharged from the semi-batch tank is outside the continuous tank and the settling tank.

(実施例2)
有効容積3.5Lの半回分式槽を用いて、排水処理を実施した。排水にはカツオエキス、ペプトンを主成分とした模擬排水を用い、BOD濃度が約1000mg/Lとなるように調整した。水温を20℃に調整し、また、塩酸と水酸化ナトリウムを用いて、模擬排水のpHを7.2に調整した。半回分式処理のサイクルタイムは流入時間10分、無酸素反応時間30分、好気反応時間670分、汚泥沈殿時間1分、処理水排出時間10分とした。半回分式槽から排出される処理水のSS濃度の経時変化を把握するため、排出工程開始から1分毎に処理水をサンプリングし、SS濃度を測定した。
(Example 2)
Waste water treatment was carried out using a semi-batch tank with an effective volume of 3.5 L. Simulated drainage mainly composed of skipjack extract and peptone was used as drainage, and the BOD concentration was adjusted to about 1000 mg / L. The water temperature was adjusted to 20 ° C., and the pH of the simulated waste water was adjusted to 7.2 using hydrochloric acid and sodium hydroxide. The cycle time of the semi-batch treatment was 10 minutes for the inflow, 30 minutes for the anaerobic reaction, 670 minutes for the aerobic reaction, 1 minute for the sludge settling time, and 10 minutes for the treated water discharge time. In order to grasp the change with time of the SS concentration of the treated water discharged from the semi-batch tank, the treated water was sampled every minute from the start of the discharging process, and the SS concentration was measured.

図4は、半回分式槽から排出された処理水SS濃度の経時変化を示す図である。図4から分かるように、処理水排出開始直後は約4000mg/Lの高濃度のSSが排出されているが、1分後には約140mg/Lまで大きく低下した。そして、処理水排出開始3分後には、SS濃度が放流可能なレベルの100mg/L以下となった。この結果から、半回分式槽から排出される処理水の排出先を時間で分割した場合、排出工程の全時間(10分)の少なくとも3分の1の時間(3分)を前期とし、その間は処理水を連続式槽や沈殿槽に供給することが好ましい。すなわち、残りの時間である排出工程の全時間の2/3を後期とし、その間は処理水を連続式槽の系外及び沈殿槽の系外へ排出することが好ましい。   FIG. 4 is a diagram showing the change with time of the concentration of the treated water SS discharged from the semi-batch tank. As can be seen from FIG. 4, a high concentration of SS of about 4000 mg / L was discharged immediately after the start of the treatment water discharge, but after 1 minute, it was greatly reduced to about 140 mg / L. And 3 minutes after the start of discharge of the treated water, the SS concentration became 100 mg / L or less which is a level at which discharge is possible. From this result, when the discharge destination of the treated water discharged from the semi-batch tank is divided by time, at least one third (3 minutes) of the total time (10 minutes) of the discharge process is set as the previous period. It is preferable to supply the treated water to a continuous tank or a precipitation tank. That is, it is preferable that 2/3 of the total time of the discharge process, which is the remaining time, be the latter period, and the treated water be discharged out of the continuous tank system and out of the precipitation tank system.

1,2 排水処理システム、10 排水貯留槽、12,28 排水流入ライン、14 半回分式生物処理反応槽(半回分式槽)、16 処理水排出ライン、18 汚泥排出ライン、20 処理水槽、24 連続式生物処理反応槽(連続式槽)、26 沈殿槽、30 一次処理水排出ライン、32 処理水排出ライン、34 汚泥返送ライン、36 処理水供給ライン、38 電磁弁、40 SS濃度計。   1, 2 Wastewater treatment system, 10 Wastewater storage tank, 12,28 Wastewater inflow line, 14 Semi-batch biological treatment reaction tank (semi-batch tank), 16 Treated water discharge line, 18 Sludge discharge line, 20 Treated water tank, 24 Continuous biological treatment reaction tank (continuous tank), 26 sedimentation tank, 30 primary treated water discharge line, 32 treated water discharge line, 34 sludge return line, 36 treated water supply line, 38 solenoid valve, 40 SS concentration meter.

Claims (3)

排水を連続式反応槽に連続的に流入させながら、排水中の処理対象物質を微生物汚泥により生物学的に処理し、前記連続式反応槽から排出された処理水から微生物汚泥を固液分離槽にて分離する連続式生物処理工程と、
排水を流入させる流入工程、排水中の処理対象物質を微生物汚泥により生物学的に処理する生物処理工程、前記微生物汚泥を沈降させる沈降工程、処理水を排出させる排出工程を半回分式反応槽にて繰り返して行う半回分式生物処理工程と、
前記沈降した半回分式反応槽内の微生物汚泥を前記連続式反応槽に供給する汚泥供給工程と、を備え、
前記排出工程において前記半回分式反応槽から排出された処理水の平均SS濃度が100mg/L以下の場合、前記処理水の排出先を前記連続式反応槽の系外及び前記固液分離槽の系外とし、前記排出工程において前記半回分式反応槽から排出された処理水の平均SS濃度が100mg/L超の場合、前記処理水の排出先を前記連続式反応槽の系内及び前記固液分離槽の系内のうち少なくともいずれか一方とすることを特徴とする排水処理方法。
While the wastewater is continuously flowed into the continuous reaction tank, the target substance in the wastewater is biologically treated with microbial sludge, and the microbial sludge is separated from the treated water discharged from the continuous reaction tank. A continuous biological treatment process separated by
The semi-batch reaction tank includes an inflow process for inflowing wastewater, a biological treatment process for biologically treating the target substance in the wastewater with microbial sludge, a settling process for settling the microbial sludge, and a discharge process for discharging treated water. A semi-batch biological treatment process that is repeatedly performed,
A sludge supply step of supplying the microbial sludge in the semi-batch reaction tank that has settled to the continuous reaction tank, and
When the average SS concentration of the treated water discharged from the semi-batch reaction tank in the discharge step is 100 mg / L or less, the discharge destination of the treated water is set outside the continuous reaction tank and the solid-liquid separation tank. When the average SS concentration of treated water discharged from the semi-batch reaction tank in the discharge step is more than 100 mg / L, the discharge destination of the treated water is set in the continuous reaction tank system and the solid reaction tank. A wastewater treatment method characterized by comprising at least one of the liquid separation tanks .
排水を連続式反応槽に連続的に流入させながら、排水中の処理対象物質を微生物汚泥により生物学的に処理し、前記連続式反応槽から排出された処理水から微生物汚泥を固液分離槽にて分離する連続式生物処理工程と、
排水を流入させる流入工程、排水中の処理対象物質を微生物汚泥により生物学的に処理する生物処理工程、前記微生物汚泥を沈降させる沈降工程、処理水を排出させる排出工程を半回分式反応槽にて繰り返して行う半回分式生物処理工程と、
前記沈降した半回分式反応槽内の微生物汚泥を前記連続式反応槽に供給する汚泥供給工程と、を備え、
前記排出工程では、前記排出工程時間を前期と後期に分割し、後期の時間の割合を全時間の1/2以上として、前期の間は、前記処理水の排出先を前記連続式反応槽の系内及び前記固液分離槽の系内のうち少なくともいずれか一方とし、後期の間は、前記処理水の排出先を前記連続式反応槽の系外及び前記固液分離槽の系外とすることを特徴とする排水処理方法。
While the wastewater is continuously flowed into the continuous reaction tank, the target substance in the wastewater is biologically treated with microbial sludge, and the microbial sludge is separated from the treated water discharged from the continuous reaction tank. A continuous biological treatment process separated by
The semi-batch reaction tank includes an inflow process for inflowing wastewater, a biological treatment process for biologically treating the target substance in the wastewater with microbial sludge, a settling process for settling the microbial sludge, and a discharge process for discharging treated water. A semi-batch biological treatment process that is repeatedly performed,
A sludge supply step of supplying the microbial sludge in the semi-batch reaction tank that has settled to the continuous reaction tank, and
In the discharge process, the discharge process time is divided into the first and second periods, the ratio of the second period is set to 1/2 or more of the total time, and during the first period, the treated water is discharged to the continuous reaction tank. At least one of the inside of the system and the system of the solid-liquid separation tank, and during the latter period, the discharge destination of the treated water is outside the system of the continuous reaction tank and the system of the solid-liquid separation tank A wastewater treatment method characterized by that.
排水を連続式反応槽に連続的に流入させながら、排水中の処理対象物質を微生物汚泥により生物学的に処理し、前記連続式反応槽から排出された処理水から微生物汚泥を固液分離槽にて分離する連続式生物処理工程と、
排水を流入させる流入工程、排水中の処理対象物質を微生物汚泥により生物学的に処理する生物処理工程、前記微生物汚泥を沈降させる沈降工程、処理水を排出させる排出工程を半回分式反応槽にて繰り返して行う半回分式生物処理工程と、
前記沈降した半回分式反応槽内の微生物汚泥を前記連続式反応槽に供給する汚泥供給工程と、を備え、
前記半回分式反応槽の汚泥のSVI5(Sludge Volume Index 5)が50以上〜80以下に達するまでを前記半回分式生物処理の立ち上げ期間とし、前記半回分式生物処理の立ち上げ期間の間は、前記処理水の排出先を前記連続式反応槽の系内及び前記固液分離槽の系内のうち少なくともいずれか一方とし、前記半回分式生物処理の立ち上げ期間経過後は、前記処理水の排出先を前記連続式反応槽の系外及び前記固液分離槽の系外とすることを特徴とする排水処理方法。
While the wastewater is continuously flowed into the continuous reaction tank, the target substance in the wastewater is biologically treated with microbial sludge, and the microbial sludge is separated from the treated water discharged from the continuous reaction tank. A continuous biological treatment process separated by
The semi-batch reaction tank includes an inflow process for inflowing wastewater, a biological treatment process for biologically treating the target substance in the wastewater with microbial sludge, a settling process for settling the microbial sludge, and a discharge process for discharging treated water. A semi-batch biological treatment process that is repeatedly performed,
A sludge supply step of supplying the microbial sludge in the semi-batch reaction tank that has settled to the continuous reaction tank, and
The semi-batch biological treatment is started up until the SVI5 (Sludge Volume Index 5) of the sludge in the semi-batch type reactor reaches 50 or more and 80 or less. The discharge destination of the treated water is at least one of the continuous reaction tank system and the solid-liquid separation tank system, and after the start-up period of the semi-batch biological treatment, A wastewater treatment method characterized in that water is discharged outside the continuous reaction tank and outside the solid-liquid separation tank .
JP2013005790A 2013-01-16 2013-01-16 Wastewater treatment method Active JP6009362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013005790A JP6009362B2 (en) 2013-01-16 2013-01-16 Wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013005790A JP6009362B2 (en) 2013-01-16 2013-01-16 Wastewater treatment method

Publications (2)

Publication Number Publication Date
JP2014136188A JP2014136188A (en) 2014-07-28
JP6009362B2 true JP6009362B2 (en) 2016-10-19

Family

ID=51414026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013005790A Active JP6009362B2 (en) 2013-01-16 2013-01-16 Wastewater treatment method

Country Status (1)

Country Link
JP (1) JP6009362B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201702607XA (en) * 2014-10-10 2017-04-27 Organo Corp Waste water treatment method and waste water treatment device
JP6480156B2 (en) * 2014-11-14 2019-03-06 オルガノ株式会社 Waste water treatment apparatus and waste water treatment method
JP6875059B2 (en) * 2014-10-10 2021-05-19 オルガノ株式会社 Wastewater treatment method and wastewater treatment equipment
JP6437794B2 (en) * 2014-11-11 2018-12-12 オルガノ株式会社 Waste water treatment apparatus and waste water treatment method
JP6605843B2 (en) * 2015-05-27 2019-11-13 オルガノ株式会社 Waste water treatment method and waste water treatment equipment
TWI693196B (en) * 2015-03-31 2020-05-11 日商奧璐佳瑙股份有限公司 Method of forming aerobic granules, device for forming aerobic granules, wastewater treatment method, and wastewater treatment device
JP6630054B2 (en) * 2015-03-31 2020-01-15 オルガノ株式会社 Wastewater treatment method and wastewater treatment device
JP2016193386A (en) * 2015-03-31 2016-11-17 オルガノ株式会社 Method for forming aerobic granule, apparatus for forming aerobic granule, wastewater treatment method, and wastewater treatment apparatus
JP6474301B2 (en) * 2015-03-31 2019-02-27 オルガノ株式会社 Dehydration method, wastewater treatment method, and wastewater treatment device
JP6609107B2 (en) * 2015-03-31 2019-11-20 オルガノ株式会社 Aerobic granule formation method, aerobic granule formation device, wastewater treatment method, and wastewater treatment device
JP6622093B2 (en) * 2016-01-12 2019-12-18 オルガノ株式会社 Granule formation method and waste water treatment method
JP6841831B2 (en) * 2016-01-15 2021-03-10 アクシン ウォーター テクノロジーズ インコーポレイテッドAxine Water Technologies Inc. Electrochemical cell for wastewater treatment with increased pollutant removal rate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0435796A (en) * 1990-05-31 1992-02-06 Meidensha Corp Activated sludge treating device
JP2008284427A (en) * 2007-05-15 2008-11-27 Sumitomo Heavy Industries Environment Co Ltd Apparatus and method for treating waste water

Also Published As

Publication number Publication date
JP2014136188A (en) 2014-07-28

Similar Documents

Publication Publication Date Title
JP6009362B2 (en) Wastewater treatment method
JP5963668B2 (en) Wastewater treatment method
CN107108291B (en) Method and apparatus for treating wastewater using external selection
EP3403996B1 (en) Granule-forming method and waste water treatment method
CN101980969A (en) Hybrid aerobic and anaerobic wastewater and sludge treatment systems and methods
JP6630054B2 (en) Wastewater treatment method and wastewater treatment device
JP4571065B2 (en) Granular microbial sludge generation method and granular microbial sludge generation apparatus
JP6626888B2 (en) Wastewater clarification method
JP6609107B2 (en) Aerobic granule formation method, aerobic granule formation device, wastewater treatment method, and wastewater treatment device
JP6474301B2 (en) Dehydration method, wastewater treatment method, and wastewater treatment device
JP5746853B2 (en) Waste water treatment apparatus and waste water treatment method
JP2016193386A (en) Method for forming aerobic granule, apparatus for forming aerobic granule, wastewater treatment method, and wastewater treatment apparatus
JP6605843B2 (en) Waste water treatment method and waste water treatment equipment
CN105073653A (en) Method and device for treating organic wastewater
JP6875059B2 (en) Wastewater treatment method and wastewater treatment equipment
WO2016056367A1 (en) Waste water treatment method and waste water treatment device
JP6548937B2 (en) Waste water treatment method and waste water treatment apparatus
JP7173718B2 (en) Wastewater treatment method and wastewater treatment equipment
JP6480156B2 (en) Waste water treatment apparatus and waste water treatment method
JP6613043B2 (en) Waste water treatment method and waste water treatment equipment
JP2016221491A (en) Organic wastewater treatment method and organic wastewater treatment equipment
Mansell et al. Aerobic Granular Sludge Piloting in Los Angeles County
CN117529453A (en) Method and apparatus for forming aerobic granules
JP2021030158A (en) Water treatment method and water treatment equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160914

R150 Certificate of patent or registration of utility model

Ref document number: 6009362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250