JP6009028B2 - Tire and manufacturing method thereof - Google Patents
Tire and manufacturing method thereof Download PDFInfo
- Publication number
- JP6009028B2 JP6009028B2 JP2015083543A JP2015083543A JP6009028B2 JP 6009028 B2 JP6009028 B2 JP 6009028B2 JP 2015083543 A JP2015083543 A JP 2015083543A JP 2015083543 A JP2015083543 A JP 2015083543A JP 6009028 B2 JP6009028 B2 JP 6009028B2
- Authority
- JP
- Japan
- Prior art keywords
- rubber
- laminated
- tire
- layer
- layers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 23
- 229920001971 elastomer Polymers 0.000 claims description 250
- 239000005060 rubber Substances 0.000 claims description 250
- 238000003475 lamination Methods 0.000 claims description 22
- 238000010030 laminating Methods 0.000 claims description 11
- 238000012790 confirmation Methods 0.000 claims description 7
- 239000000523 sample Substances 0.000 claims description 4
- 239000010410 layer Substances 0.000 description 88
- 208000010392 Bone Fractures Diseases 0.000 description 22
- 206010017076 Fracture Diseases 0.000 description 22
- 238000005096 rolling process Methods 0.000 description 18
- 238000000034 method Methods 0.000 description 17
- 230000015572 biosynthetic process Effects 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- 239000003795 chemical substances by application Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 238000011161 development Methods 0.000 description 4
- 230000001629 suppression Effects 0.000 description 4
- 238000013329 compounding Methods 0.000 description 3
- 238000007689 inspection Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000004073 vulcanization Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 229920002943 EPDM rubber Polymers 0.000 description 2
- 244000043261 Hevea brasiliensis Species 0.000 description 2
- 229920000459 Nitrile rubber Polymers 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 239000002977 biomimetic material Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 229920003052 natural elastomer Polymers 0.000 description 2
- 229920001194 natural rubber Polymers 0.000 description 2
- 229920001084 poly(chloroprene) Polymers 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- 229920003051 synthetic elastomer Polymers 0.000 description 2
- 239000005061 synthetic rubber Substances 0.000 description 2
- VHOQXEIFYTTXJU-UHFFFAOYSA-N Isobutylene-isoprene copolymer Chemical compound CC(C)=C.CC(=C)C=C VHOQXEIFYTTXJU-UHFFFAOYSA-N 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003712 anti-aging effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 235000012489 doughnuts Nutrition 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229920005555 halobutyl Polymers 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229920006247 high-performance elastomer Polymers 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 208000030175 lameness Diseases 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000004148 unit process Methods 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 235000014692 zinc oxide Nutrition 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/80—Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
- Y02T10/86—Optimisation of rolling resistance, e.g. weight reduction
Landscapes
- Tyre Moulding (AREA)
- Tires In General (AREA)
- Laminated Bodies (AREA)
Description
本発明は、真珠の殻構造を適用し、タイヤに転がり抵抗と耐摩耗性を両立させることが可能な積層ゴムを用いたタイヤ及びその製造方法に関し、特に、タイヤに転がり抵抗と耐摩耗性を両立させ、且つ、サイドゴムの耐クラック性と耐亀裂性とを両立させることが可能な積層ゴムを用いたタイヤ及びその製造方法に関する。 The present invention relates to a tire using a laminated rubber capable of achieving both rolling resistance and wear resistance by applying a pearl shell structure, and a method for manufacturing the same, and more particularly to rolling resistance and wear resistance of a tire. The present invention relates to a tire using a laminated rubber capable of achieving both compatibility and achieving both crack resistance and crack resistance of a side rubber, and a method for producing the same.
バイオミメティック材料学(Biomimetic Materials Science)という生物機能を模倣し有効に利用しようという基礎研究が盛んに行われ、産業用途への展開が図られつつある。例えば、真珠の殻は0.5μmの炭酸カルシウムシート(95%)と数nmのタンパク質シート(5%)からできたしなやかさと構造異方性をもつ精巧なナノ材料であるとの認識から出発する学問分野・技術分野である。今回、積層ゴム、特にタイヤのトレッドゴムに真珠の殻構造を適用し、即ち、弾性率が異なるミクロサイズ厚みのゴムを集積した真珠の殻構造を模倣したミクロ厚さのゴム積層構造(以下、適宜「ゴム真珠殻構造」と呼ぶ)を有する積層ゴム等の構造体を創出して、タイヤに転がり抵抗と耐摩耗性を両立させ、サイドゴムの耐クラック性と耐亀裂性とを両立させることが可能な積層ゴム及びその製造方法、該積層ゴムを用いたゴム積層体、並びに、該積層ゴム又は該ゴム積層体を用いたトレッド、サイドゴム、及びタイヤの開発を試みた。 Biomimetic materials science (Biomimetic Materials Science) has been actively researched to imitate and effectively use biological functions, and is being developed for industrial use. For example, the pearl shell starts with the recognition that it is a sophisticated nanomaterial with suppleness and structural anisotropy made of 0.5 μm calcium carbonate sheet (95%) and several nm protein sheet (5%). Academic and technical fields. This time, we applied a pearl shell structure to laminated rubber, especially tire tread rubber, that is, a micro-thick rubber laminated structure that mimics a pearl shell structure in which micro-sized rubbers with different elastic moduli are integrated (hereinafter, To create a structure such as laminated rubber having a suitable structure called “rubber pearl shell structure” to achieve both the rolling resistance and wear resistance of the tire, and the crack resistance and crack resistance of the side rubber. An attempt was made to develop a possible laminated rubber and a method for producing the same, a rubber laminate using the laminated rubber, and a tread, a side rubber, and a tire using the laminated rubber or the rubber laminate.
特に類似の思想を持つ従来技術はないが、マクロサイズの厚みで弾性率を変更させた技術としては、トレッド表面のみ硬化しWET性能を改良させたタイヤ(特許文献1参照)、複数の弾性率が異なるゴムに傾斜をもたせて配置した安全タイヤ(特許文献2参照)、トレッド最外層の弾性率が高いタイヤ(特許文献3参照)及びトレッド最外層のtanδが低いタイヤ(特許文献4参照)が開示されている。 Although there is no conventional technique with a similar idea in particular, as a technique for changing the elastic modulus with a macro-sized thickness, only a tread surface is cured to improve WET performance (see Patent Document 1), a plurality of elastic modulus Tires (see Patent Document 2) arranged with different slopes of rubber (see Patent Document 2), tires with a high elastic modulus in the outermost layer of the tread (see Patent Document 3), and tires with a low tan δ in the outermost layer of the tread (see Patent Document 4) It is disclosed.
しかし、従来のマクロサイズの厚みで弾性率を変更させたタイヤ技術では、転がり抵抗と耐摩耗性の両立のために、素材原料そのものによるアプローチがほとんどだった(特許文献1〜4参照)。そして、材料制限があることにより、転がり抵抗と耐摩耗性の両立が難しかった。
However, in the conventional tire technology in which the elastic modulus is changed by the thickness of the macro size, the approach based on the raw material itself is mostly used to achieve both rolling resistance and wear resistance (see
本発明は上記問題に鑑みてなされたものであり、材料による制限を受けにくい、タイヤに転がり抵抗と耐摩耗性を両立させることが可能な積層ゴムを用いたタイヤ及びその製造方法を提供することを課題としている。 The present invention has been made in view of the above problems, and provides a tire using a laminated rubber that is not easily restricted by a material and that can achieve both rolling resistance and wear resistance, and a method for manufacturing the same. Is an issue.
本発明者らは、上記課題を解決すべく鋭意検討した結果、弾性率が異なる、厚さ(ゲージ)がミクロサイズのゴム層を積層することにより、タイヤに転がり抵抗と耐摩耗性を両立させることが可能な積層ゴムが得られることを見出し、本発明を完成させるに至った。 As a result of diligent studies to solve the above-mentioned problems, the present inventors achieve both rolling resistance and wear resistance on a tire by laminating rubber layers having different elastic moduli and different thicknesses (gauges). The present inventors have found that a laminated rubber capable of being obtained is obtained, and have completed the present invention.
すなわち、本発明のタイヤは、厚さが10μm〜500μmであるゴム層を3層以上重ねた積層ゴムを繰返し単位とし、該繰返し単位を複数有するゴム積層体を、トレッド及びサイドウォールに用いたタイヤであって、前記積層ゴムにおけるゴム層のうち、最も低弾性なゴム層の弾性率:最も高弾性なゴム層の弾性率の比が、1:2〜1:30であり、前記最も低弾性なゴム層と前記最も高弾性なゴム層が積層され、前記トレッドに用いた該ゴム積層体の積層方向がタイヤ幅方向であり、前記サイドウォールに用いた該ゴム積層体の積層方向がタイヤ幅方向であることを特徴とする。 That is, the tire according to the present invention is a tire in which a laminated rubber in which three or more rubber layers having a thickness of 10 μm to 500 μm are stacked is used as a repeating unit, and a rubber laminate having a plurality of the repeating units is used for a tread and a sidewall. The ratio of the elastic modulus of the rubber layer having the lowest elasticity to the elastic modulus of the rubber layer having the highest elasticity among the rubber layers in the laminated rubber is 1: 2 to 1:30, and the lowest elasticity. The rubber layer and the most elastic rubber layer are laminated, the lamination direction of the rubber laminate used for the tread is the tire width direction, and the lamination direction of the rubber laminate used for the sidewall is the tire width. It is a direction.
また、本発明のタイヤは、前記ゴム積層体が、前記積層ゴムにおけるゴム層のうち、弾性率が同じゴム層を複数有することが好ましく、ゴム種が同じゴム層を複数有することがより好ましい。 In the tire of the present invention, the rubber laminate preferably includes a plurality of rubber layers having the same elastic modulus among the rubber layers in the laminated rubber, and more preferably includes a plurality of rubber layers having the same rubber type.
本発明のタイヤの製造方法は、
本発明のタイヤを製造するタイヤの製造方法であって、
ゴム層を3層以上重ねる層重ねゴム形成工程と、
得られた層重ねゴムを、その層重ね方向に、各ゴム層の厚さが10μm〜500μmになるように薄層化する薄層化工程と、
前記薄層化した層重ねゴムを繰り返し単位とし、該繰返し単位を積層して、該繰返し単位を複数有する積層ゴムを作製する積層ゴム作製工程と、
該積層ゴムを用いて、サイドウォール及びトレッドを作製するサイドウォール及びトレッドの作製工程と、
を含むことを特徴とする。
また、本発明のタイヤの製造方法は、前記薄層化工程の後に、前記積層ゴムを、電子顕微鏡又は走査プローブ顕微鏡を用いて検査する確認工程をさらに含む、ことが好ましい。
The method for producing a tire of the present invention includes:
A tire manufacturing method for manufacturing the tire of the present invention, comprising:
A layered rubber forming step of stacking three or more rubber layers;
A thinning step of thinning the obtained layered rubber so that the thickness of each rubber layer is 10 μm to 500 μm in the layering direction;
A laminated rubber producing step of producing a laminated rubber having a plurality of repeating units by laminating the repeating units with the thin layered rubber layer as a repeating unit,
Using the laminated rubber, sidewall and tread production steps for producing sidewalls and treads;
It is characterized by including.
Moreover, it is preferable that the manufacturing method of the tire of this invention further includes the confirmation process which test | inspects the said laminated rubber using an electron microscope or a scanning probe microscope after the said thinning process.
本発明によれば、ゴム真珠殻構造、すなわち、弾性率が異なる、厚さ(ゲージ)がミクロサイズのゴム層を積層することにより、材料による制限を受けにくい、タイヤに転がり抵抗と耐摩耗性を両立させることが可能な積層ゴムを用いたタイヤ及びその製造方法を提供することができる。 According to the present invention, a rubber pearl shell structure, that is, a rubber layer having a different elastic modulus and a micro-sized thickness (gauge) is laminated, so that it is not easily restricted by the material. It is possible to provide a tire using a laminated rubber capable of achieving both of the above and a method for manufacturing the tire.
以下、本発明について詳細に説明する。
[積層ゴム]
本発明の積層ゴムは、厚さが10μm〜500μmであるゴム層を3層以上重ねたことを特徴とする。厚さが10μm〜500μmであるゴム層を3層以上重ねた積層ゴムは、真珠の殻構造を模倣したミクロ厚さのゴム真珠殻構造を構成することとなり、材料による制限を受けにくい高性能な積層ゴムを創出することができるからである。
Hereinafter, the present invention will be described in detail.
[Laminated rubber]
The laminated rubber of the present invention is characterized in that three or more rubber layers having a thickness of 10 μm to 500 μm are stacked. Laminated rubber with three or more layers of rubber layers with a thickness of 10 μm to 500 μm constitutes a micro-thick rubber pearl shell structure that mimics the pearl shell structure, and has high performance that is not easily restricted by the material. This is because laminated rubber can be created.
(ゴム層)
本発明のゴム層は、厚さ(ゲージ)が10μm〜500μmであることを特徴とする。層の材料としては、特に制限はない。10μm〜500μmの厚さ(ゲージ)に薄層化できる圧縮展性や加硫性などの加工性を有するためである。また、図1に示すように、厚みと共に弾性率を整えることで、摩耗に大きく関与する初期破壊核(Y1)の形成をより効果的に抑制でき、さらに転がり抵抗を低くできる。
なお、ゴム真珠殻構造の優れた性能や特性を効果的に発揮するためには、ゴム層を構成するゴム層間が共加硫していることが必須である。ここで、共加硫とは、ゴム層の間に加硫の硫黄−硫黄結合を有するしっかりした架橋結合を有していることを言う。
(Rubber layer)
The rubber layer of the present invention has a thickness (gauge) of 10 μm to 500 μm. There is no restriction | limiting in particular as a material of a layer. This is because it has processability such as compression malleability and vulcanizability that can be reduced to a thickness (gauge) of 10 μm to 500 μm. Further, as shown in FIG. 1, by adjusting the elastic modulus together with the thickness, the formation of initial fracture nuclei (Y 1 ) that is greatly involved in wear can be more effectively suppressed, and the rolling resistance can be further reduced.
In order to effectively exhibit the excellent performance and characteristics of the rubber pearl shell structure, it is essential that the rubber layers constituting the rubber layer are co-vulcanized. Here, the co-vulcanization means that the rubber layer has a firm cross-linked bond having a sulfur-sulfur bond of vulcanization.
(ゴム層の厚み)
本発明のゴム層の厚みとは上記積層ゴム中におけるゴム層の厚さ(1層の厚さ)を言い、タイヤ技術分野の専門用語では「ゲージ」と言う。通常のマクロサイズの厚み(ゲージは光学顕微鏡などで測定可能だが、本発明のゴム層の厚みは10μm〜500μmであり、電子顕微鏡、走査プローブ顕微鏡などのミクロ構造を測定できる装置を用いて計測することが好ましい。
本発明のゴム層の厚みは10μm〜500μmであり、より好適には50μm〜200μmである。10μm未満では、均等な厚みを形成させることが困難であり、500μm超えると耐摩擦性が低下してしまう。これは、初期破壊発生距離程度まで薄膜化したゴム層の厚み(ゲージ)によって、図1に示すように、摩耗に大きく関与する初期破壊核(Y1)の形成を効果的に抑制することができるからである。
(Rubber layer thickness)
The thickness of the rubber layer of the present invention means the thickness of the rubber layer in the laminated rubber (thickness of one layer), and is called “gauge” in the technical term of the tire technical field. Normal macro-sized thickness (gauge can be measured with an optical microscope, etc., but the rubber layer of the present invention has a thickness of 10 μm to 500 μm, and is measured using an apparatus capable of measuring a microstructure such as an electron microscope or a scanning probe microscope. It is preferable.
The thickness of the rubber layer of the present invention is 10 μm to 500 μm, more preferably 50 μm to 200 μm. If it is less than 10 μm, it is difficult to form a uniform thickness, and if it exceeds 500 μm, the friction resistance is lowered. This effectively suppresses the formation of initial fracture nuclei (Y 1 ) that greatly contribute to wear, as shown in FIG. 1, by the thickness (gauge) of the rubber layer thinned to the initial fracture occurrence distance. Because it can.
(ゴム層の弾性率)
本発明のゴム層の「弾性率」は、マクロ構造体の弾性率は通常の応力−ひずみ測定装置を用いて測定するが、ミクロサイズの1層1層のゴム層の弾性率はミクロサイズ測定に特化した応力−ひずみ測定装置を用いて測定する。ミクロサイズ測定アタッチメントを備えた応力−ひずみ測定装置や原子間力顕微鏡(AFM)などの走査プローブ顕微鏡などのミクロ構造体の応力とひずみを測定できる装置を用いて計測することが好ましい。
上記ゴム層のうち、弾性率が同じゴム層を複数有することが好ましく、また、ゴム種が同じゴム層を複数有することが好ましい。
さらに、最も低弾性なゴム層の弾性率:最も高弾性なゴム層の弾性率の比が1:2〜1:30であることがより好ましい。1:2未満だと耐摩耗性が改良されず、1:30より大きいと、均一な積層構造が形成されないからである。破壊核(Y1)形成の抑制、破壊核(Y1)進展(図1(a)参照)の緩和を効果的にするためであり、つまり、弾性率の大きく異なる2種以上のミクロサイズのゴム層を積層させることにより、積層ゴム表面乃至積層ゴム内部に発生した破壊核(Y1)の進展を弾性率の違うゴム層間で緩和することができ、破壊核(Y1)の進展を抑制することができる(図1(b−1)、(b−2)参照)からであり、また、弾性率の異なるミクロサイズのゴム層を積層させることで、積層ゴムのヒステリシスロスを低減できるからである。
(Elastic modulus of rubber layer)
The “elastic modulus” of the rubber layer of the present invention is measured using an ordinary stress-strain measuring device while the elastic modulus of the macro structure is measured, while the elastic modulus of a single rubber layer of micro size is measured by micro size. It is measured using a stress-strain measuring device specialized for the above. It is preferable to measure using a device capable of measuring the stress and strain of a microstructure such as a stress-strain measuring device equipped with a microsize measurement attachment or a scanning probe microscope such as an atomic force microscope (AFM).
Among the rubber layers, it is preferable to have a plurality of rubber layers having the same elastic modulus, and it is preferable to have a plurality of rubber layers having the same rubber type.
Furthermore, the ratio of the elastic modulus of the lowest elastic rubber layer to the elastic modulus of the highest elastic rubber layer is more preferably 1: 2 to 1:30. If it is less than 1: 2, the wear resistance is not improved, and if it is more than 1:30, a uniform laminated structure is not formed. Breaking nucleus (Y 1) formation suppressing the destruction nucleus (Y 1) progress is for the effective alleviation of (see FIG. 1 (a)), i.e., the larger of two or more different micro-sized modulus By laminating rubber layers, the progress of fracture nuclei (Y 1 ) generated on the surface of the laminated rubber or inside the laminated rubber can be relaxed between rubber layers with different elastic moduli, and the development of fracture nuclei (Y 1 ) is suppressed. (See FIGS. 1 (b-1) and (b-2)), and by laminating micro-sized rubber layers having different elastic moduli, the hysteresis loss of the laminated rubber can be reduced. It is.
(積層ゴムの積層方向)
図3に示したように、本発明の積層ゴム(1)の「積層方向」とは、積層ゴム(1)を構成するゴム層(3)の積み重なる方向を言い、具体的には、ゴム層(3)の層面方向(B−B’、C−C’)と垂直に交わる方向(A−A’)を言う。
例えば、図3(a−1)に示す直方体形状の積層ゴム(1)においては、積層ゴム(1)の積層方向は、層面(2)の奥行き方向(B−B’)及び高さ方向(C−C’)と垂直に交わるA−A’で示す方向(水平方向)である。また、図3(a−2)に示す直方体形状の積層ゴム(1)においては、積層ゴム(1)の積層方向は、層面(2)の奥行き方向(B−B’)及び水平方向(C−C’)と垂直に交わるA−A’で示す方向(鉛直方向)である。
また、図3(b−1)、(b−2)には、積層ゴム(1)がタイヤなどのドーナツ形状ないし円筒体を構成する場合を示した。図3(b−1)では、積層ゴム(1)の積層方向は、層面(2)の奥行き方向(B−B’)及び高さ方向(C−C’)と垂直に交わるA−A’で示す円筒体の幅方向(タイヤにあっては、「タイヤ幅方向」)である。また、図3(b−2)では、積層ゴム(1)の積層方向は、ゴム層面(2)の周面方向(B−B’)及び幅方向(C−C’)と垂直に交わるA−A’で示す円筒体の径方向(タイヤにあっては、「タイヤ径方向」)である。
上記積層ゴム(1)の積層方向(A−A’)が、垂直方向又は円筒体の幅方向、タイヤにあっては、「タイヤ幅方向」であることが好ましい(図3(b−1)参照)。例えばタイヤのトレッドに用いられた場合、ミクロに積層された積層ゴム(1)が路面のミクロ突起(X)の突き上げ等によって発生する衝撃力等を緩和し、摩耗の初期破壊核(Y1)の形成及び進展を効果的に抑制するからである(図1(b−1)参照)。また、上記積層ゴム(1)の積層方向(A−A’)が、水平方向又は円筒体の径方向、タイヤにあっては、「タイヤ径方向」であることが好ましい(図3(b−2)参照)。例えばタイヤのトレッドに用いられた場合、ミクロに積層された積層ゴム(1)が路面のミクロ突起(X)によって発生する衝撃力等を緩和し、摩耗の初期破壊核(Y1)の形成及び進展を効果的に抑制するからである(図1(b−2)参照)。
(Lamination direction of laminated rubber)
As shown in FIG. 3, the “lamination direction” of the laminated rubber (1) of the present invention refers to the direction in which the rubber layers (3) constituting the laminated rubber (1) are stacked, specifically, the rubber layer. This refers to the direction (AA ′) perpendicular to the layer surface direction (BB ′, CC ′) of (3).
For example, in the rectangular parallelepiped laminated rubber (1) shown in FIG. 3 (a-1), the lamination direction of the laminated rubber (1) is the depth direction (BB ′) and the height direction of the layer surface (2) ( CC ′) is a direction (horizontal direction) indicated by AA ′ perpendicularly. In addition, in the rectangular parallelepiped laminated rubber (1) shown in FIG. 3 (a-2), the laminated rubber (1) is laminated in the depth direction (BB ′) and the horizontal direction (C) of the layer surface (2). -C ') is a direction (vertical direction) indicated by AA' perpendicularly.
FIGS. 3B-1 and 3B-2 show the case where the laminated rubber (1) forms a donut shape or a cylindrical body such as a tire. In FIG.3 (b-1), the lamination | stacking direction of laminated rubber (1) intersects perpendicularly with the depth direction (BB ') and height direction (CC') of a layer surface (2). Is the width direction of the cylindrical body (in the tire, “tire width direction”). Moreover, in FIG.3 (b-2), the lamination | stacking direction of laminated rubber (1) intersects perpendicularly with the circumferential direction (BB ') and width direction (CC') of rubber layer surface (2). It is the radial direction of the cylindrical body indicated by -A ′ (“tire radial direction” for a tire).
The lamination direction (AA ′) of the laminated rubber (1) is preferably the vertical direction or the width direction of the cylindrical body, and “tire width direction” in the tire (FIG. 3 (b-1)). reference). For example, when used in a tire tread, the laminated rubber (1) laminated microscopically mitigates the impact force generated by the push-up of the microprotrusions (X) on the road surface, and the initial fracture nucleus (Y 1 ) of wear. This is because the formation and progress of the film are effectively suppressed (see FIG. 1B-1). Further, the laminating direction (AA ′) of the laminated rubber (1) is preferably the horizontal direction or the radial direction of the cylindrical body, or “tire radial direction” in the case of the tire (FIG. 3B-b). 2)). For example, when used in a tire tread, the laminated rubber (1) laminated microscopically reduces the impact force generated by the microprotrusions (X) on the road surface, thereby forming the initial fracture nuclei (Y 1 ) of wear and This is because the progress is effectively suppressed (see FIG. 1B-2).
(ゴム成分)
本発明の積層ゴムに用いるゴム成分は、特に制限はなく、例えば、天然ゴム(NR)及び合成ゴムを含むことができる。合成ゴムとして、具体的には、ポリイソプレンゴム(IR)、スチレン−ブタジエン共重合体ゴム(SBR)、ポリブタジエンゴム(BR)、エチレン−プロピレン−ジエンゴム(EPDM)、クロロプレンゴム(CR)、イソブチレンイソプレンゴム(IIR)、ハロゲン化ブチルゴム、アクリロニリトル−ブタジエンゴム(NBR)等が挙げられる。また、上記ゴム成分としては、未変性ゴム及び変性ゴムのいずれを用いてもよい。
(Rubber component)
The rubber component used in the laminated rubber of the present invention is not particularly limited, and can include, for example, natural rubber (NR) and synthetic rubber. Specific synthetic rubbers include polyisoprene rubber (IR), styrene-butadiene copolymer rubber (SBR), polybutadiene rubber (BR), ethylene-propylene-diene rubber (EPDM), chloroprene rubber (CR), isobutylene isoprene. Examples thereof include rubber (IIR), halogenated butyl rubber, acrylonitrile-butadiene rubber (NBR), and the like. Further, as the rubber component, any of unmodified rubber and modified rubber may be used.
(配合剤)
本発明の積層ゴム又はゴム積層体に用いるゴム組成物には、上記ゴム成分の他に、ゴム工業界で通常使用される配合剤、例えば、充填剤、老化防止剤、軟化剤、シランカップリング剤、ステアリン酸、亜鉛華、加硫促進剤、加硫剤等を、本発明の目的を害しない範囲内で適宜選択して配合することができる。これら配合剤としては、市販品を好適に使用することができる。本発明の積層ゴム又はゴム積層体に用いるゴム組成物は、上記ゴム成分に、必要に応じて適宜選択した各種配合剤を配合して、混練り、熱入れ、押出等することにより製造することができる。
(Combination agent)
The rubber composition used in the laminated rubber or rubber laminate of the present invention contains, in addition to the above rubber components, compounding agents commonly used in the rubber industry, such as fillers, anti-aging agents, softeners, and silane couplings. An agent, stearic acid, zinc white, a vulcanization accelerator, a vulcanizing agent, and the like can be appropriately selected and blended within a range that does not impair the object of the present invention. As these compounding agents, commercially available products can be suitably used. The rubber composition used in the laminated rubber or rubber laminate of the present invention is produced by blending the rubber component with various compounding agents appropriately selected as necessary, kneading, heating, extruding, etc. Can do.
(積層ゴムの製造方法)
本発明の積層ゴムの製造方法(図2参照)は、ゴム層を3層以上重ね、得られた層重ねゴムを、その層重ね方向に、各ゴム層の厚さが10μm〜500μmになるように薄層化することが好ましい。
また、より一般化した製造方法では、aを自然数からなる工程繰返し終了の設定回数、xを自然数からなる工程の引数、nxを自然数からなる第x工程でのゴム層の層重ね枚数、txを第x工程でのゴム層nx枚の厚み、αxを1未満の正の数からなる第x工程での積層体の薄層化率とするとき、第x単位工程が、ゴム層をnx枚重ね、厚みtxの第x層重ね体とする第x層重ね工程、該第x層重ね体を薄層化して全体の厚みをtx・αxの第x積層ゴムとする第x薄層化工程、電子顕微鏡で該第x積層ゴムを検査する第x確認工程を具えており、工程の引数をxから1つ増やしてx+1として、前記検査に合格した前記第x積層ゴムを出発のゴム層として、第x+1積層工程から第x+1確認工程までの第x+1単位工程を繰返し、工程の引数が1からaに達するまで繰返し実施することが好ましい。
(Method for producing laminated rubber)
In the method for producing a laminated rubber according to the present invention (see FIG. 2), three or more rubber layers are stacked, and the obtained layered rubber is laminated in the layer stacking direction so that each rubber layer has a thickness of 10 μm to 500 μm. It is preferable to make it thinner.
Further, in a more generalized manufacturing method, the layer stack height of the rubber layer in the x step comprising setting the number of steps repeat end comprising: a natural number, the argument of steps consisting of natural number x, the n x from a natural number, t rubber layer n x sheets of thickness in the x step the x, when a thin layer of the laminated body in the x step consisting of several positive than the
具体的には、例えば、1mm厚のゴムシート10枚を重ね、厚み10mmの第1層重ね体とする第1層重ね工程、該第1層重ね体を薄層化して全体の厚みを1mmの第1積層ゴムとする第1薄層化工程、電子顕微鏡で該第1積層ゴムを検査する第1確認工程、該検査に合格した第1積層ゴムを5枚重ね、厚み5mmの第2層重ね体とする第2層重ね工程、該第2層重ね体を薄層化して全体の厚みを1mmの第2積層ゴムとする第2薄層化工程、電子顕微鏡で該第2積層ゴムを検査する第2確認工程、を具えることが好ましい(これはa=2、n1=10、t1=10mm、α1=1/10、n2=5、t2=5mm、α2=1/5の場合である)。
ゴム層の有する薄層化加工性(展性、圧縮性)を利用して、層重ね工程と薄層化工程を繰り返すことで所定厚み(ゲージ)のゴム層を重ねた積層ゴムを好適に製造できる。
Specifically, for example, a first layer stacking process in which ten 1 mm thick rubber sheets are stacked to form a 10 mm thick first layer stack, the first layer stack is thinned to a total thickness of 1 mm. A first thinning step for forming a first laminated rubber, a first confirmation step for inspecting the first laminated rubber with an electron microscope, five first laminated rubbers that pass the inspection, and a second layer having a thickness of 5 mm. A second layer stacking step for forming a body, a second layer stacking step for thinning the second layer stack to form a second laminated rubber having a total thickness of 1 mm, and inspecting the second laminated rubber with an electron microscope It is preferable to include a second confirmation step (this is a = 2, n 1 = 10, t 1 = 10 mm, α 1 = 1/10, n 2 = 5, t 2 = 5 mm, α 2 = 1 / 5).
By using the thinning processability (extensibility, compressibility) of the rubber layer, it is possible to suitably manufacture laminated rubber with a rubber layer of a predetermined thickness (gauge) by repeating the layering process and the thinning process. it can.
(ゴム積層体)
本発明のゴム積層体は、上記積層ゴムを繰返し単位とし、該繰返し単位を複数有することを特徴とする。該繰返し単位を複数有することにより、真珠の殻構造を模倣したミクロなゴム真珠殻構造をより細密に構成することとなり、材料による制限を受けにくい高性能なゴム積層体を製造することができるからである。
また、上記ゴム積層体の製造方法は、複数の上記積層ゴムを層重ねし、一体化することにより行う。該積層ゴムの層面が未加硫状態ないし半加硫状態にあり、加硫一体化することが好ましく、また、トレッドやタイヤ等にさらに組み込む場合には、層面が未加硫状態ないし半加硫状態の複数該積層ゴムを層面が未加硫状態ないし半加硫状態のままで一体化することが好ましい。
(Rubber laminate)
The rubber laminate of the present invention is characterized in that the laminated rubber is a repeating unit and a plurality of repeating units are included. By having a plurality of such repeating units, a micro rubber pearl shell structure imitating the pearl shell structure will be constructed more finely, and a high-performance rubber laminate that is not easily restricted by the material can be produced. It is.
Moreover, the manufacturing method of the said rubber laminated body is performed by laminating | stacking and integrating the said some laminated rubber. The layer surface of the laminated rubber is in an unvulcanized state or semi-vulcanized state, and is preferably vulcanized and integrated, and when further incorporated in a tread, a tire or the like, the layer surface is unvulcanized or semi-vulcanized. It is preferable that a plurality of the laminated rubbers in a state are integrated with the layer surface remaining in an unvulcanized state or a semi-vulcanized state.
(積層ゴムの繰返し単位)
本発明のゴム積層体は、上記積層ゴムを繰返し単位とし、該繰返し単位を複数有することが好ましい。
(Repeated unit of laminated rubber)
The rubber laminate of the present invention preferably includes the above laminated rubber as a repeating unit and a plurality of the repeating units.
(トレッド)
本発明のトレッドは、上記積層ゴム又は上記ゴム積層体を含むことが好ましく(上記積層体がトレッドの一部でもよい)、また、上記積層ゴム又は上記ゴム積層体からなることが好ましい(上記積層体がトレッド全体でもよい)。上記ゴム積層体のみで該トレッドの全体が構成されていることがより好ましい。以下に説明するゴム真珠構造を採用していることから、タイヤに用いる場合、タイヤとしての転がり抵抗と耐摩耗性を高次元で両立できる。
(tread)
The tread of the present invention preferably includes the laminated rubber or the rubber laminated body (the laminated body may be a part of the tread), and preferably includes the laminated rubber or the rubber laminated body (the laminated layer). The body may be the whole tread). More preferably, the entire tread is composed of only the rubber laminate. Since the rubber pearl structure described below is employed, when used in a tire, both rolling resistance and wear resistance as a tire can be achieved at a high level.
(摩耗メカニズム)
図1(a)に示すように、車両進行方向Zに走行しているタイヤ、特にそのトレッド(T)について、その摩耗メカニズムに着目すると、路面のミクロ突起(X)等による路面からの入力を受けトレッド表面に破壊核(Y1)が形成される。該破壊核(Y1)が進展していくことにより、ゴムが脱離していく。このゴム脱離により摩耗が進んでいく。この摩耗メカニズムによれば、初期破壊核(Y1)の形成を抑制することが耐摩耗性向上に効果的であると見えてきた。
(Abrasion mechanism)
As shown in FIG. 1 (a), when attention is paid to the wear mechanism of a tire traveling in the vehicle traveling direction Z, particularly its tread (T), input from the road surface by the micro-projections (X) of the road surface and the like. A fracture nucleus (Y 1 ) is formed on the surface of the receiving tread. As the fracture nuclei (Y 1 ) progress, the rubber is detached. The wear progresses due to this rubber detachment. According to this wear mechanism, it has been seen that suppressing the formation of initial fracture nuclei (Y 1 ) is effective in improving wear resistance.
(ゴム真珠殻構造による性能向上メカニズム)
そこで、図1(b−1)、(b−2)に示すように、ゴム真珠殻構造、つまり、弾性率の大きく異なる2種以上のゴム層(2)を積層させ、かつ各ゴム層の厚み(ゲージ)を初期破壊発生距離程度まで薄膜化させる構造を有する積層ゴム(1)を用いることにより、路面からの入力に対し発生した破壊核(Y1)の進展を弾性率の違うゴム間で緩和することができ、破壊核(Y1)の進展を抑制することができ、耐摩耗性を効果的に向上させることができることを見出した。
また、弾性率の異なるゴム層(2)を積層させることで、該積層ゴムを含むトレッド(T)のトータルでのヒステリシスロスを低減でき、タイヤとしての転がり抵抗を低くすることが可能となることを見出した。
(Performance improvement mechanism by rubber pearl shell structure)
Therefore, as shown in FIGS. 1 (b-1) and (b-2), a rubber pearl shell structure, that is, two or more kinds of rubber layers (2) having greatly different elastic moduli are laminated, and each rubber layer By using laminated rubber (1) with a structure that reduces the thickness (gauge) to the initial fracture occurrence distance, the progress of fracture nuclei (Y 1 ) generated by the input from the road surface is changed between rubbers with different elastic moduli. It has been found that the development of fracture nuclei (Y 1 ) can be suppressed and the wear resistance can be effectively improved.
Further, by laminating rubber layers (2) having different elastic moduli, it is possible to reduce the total hysteresis loss of the tread (T) including the laminated rubber, and to reduce the rolling resistance as a tire. I found.
(タイヤ)
本発明のタイヤは、上記積層ゴム又は上記ゴム積層体を用いたことが好ましい。タイヤとしての転がり抵抗と耐摩耗性を高次元で両立できるからである。なお、本発明のタイヤは、上記積層ゴム又は上記ゴム積層体をタイヤ部材のいずれかに用いる以外特に制限は無く、常法に従って製造することができる。また、本発明のタイヤは、上記トレッドを具えることが好ましい。タイヤとしての転がり抵抗と耐摩耗性をより高次元で両立できるからである。また、該タイヤに充填する気体としては、通常の或いは酸素分圧を調整した空気の他、窒素、アルゴン、ヘリウム等の不活性ガスを用いることができる。
上述の摩耗メカニズムから理解されるように、上記積層ゴム又は上記ゴム積層体の有する積層ゴムの積層方向がタイヤ幅方向であることが好ましく、この場合、上記タイヤが路面のミクロ突起に接しミクロな突き上げ力等を受けたときに、タイヤ幅方向に積層されたミクロなゴム真珠殻構造によって、摩耗の初期破壊核(Y1)の形成や破壊核(Y1)の進展を効果的に抑制するからである(図1参照)。また、上記積層ゴム又は上記ゴム積層体の有する積層ゴムの積層方向がタイヤ径方向であることが好ましく、この場合、上記タイヤが路面のミクロ突起に接したときに、タイヤ径方向に積層されたミクロなゴム真珠殻構造によって、摩耗の初期破壊核(Y1)の形成や破壊核(Y1)の進展を効果的に抑制するからである(図1参照)。このため、上記タイヤは、転がり抵抗と耐摩耗性を高次元で両立できる。
また、図4に示すサイドゴム構成(タイヤ幅方向(ゴム積層体の延在方向と垂直方向)の積層)の方が、図5に示すサイドゴム構成(タイヤ径方向(ゴム積層体の延在方向)の積層)よりも耐クラック性に優れる。
(tire)
The tire of the present invention preferably uses the laminated rubber or the rubber laminated body. This is because rolling resistance and wear resistance as a tire can be achieved at a high level. The tire of the present invention is not particularly limited except that the laminated rubber or the rubber laminated body is used for any of the tire members, and can be produced according to a conventional method. Moreover, it is preferable that the tire of the present invention includes the tread. This is because rolling resistance and wear resistance as a tire can be achieved at a higher level. Moreover, as gas with which this tire is filled, inert gas, such as nitrogen, argon, helium other than normal or the air which adjusted oxygen partial pressure, can be used.
As understood from the above-mentioned wear mechanism, the lamination direction of the laminated rubber or the laminated rubber of the rubber laminate is preferably the tire width direction. In this case, the tire is in contact with the micro projections on the road surface and is microscopic. When subjected to push-up force, the formation of initial fracture nuclei (Y 1 ) and the development of fracture nuclei (Y 1 ) are effectively suppressed by the micro rubber pearl shell structure laminated in the tire width direction. (See FIG. 1). Further, the lamination direction of the laminated rubber or the laminated rubber of the rubber laminate is preferably the tire radial direction. In this case, the laminated rubber is laminated in the tire radial direction when the tire is in contact with the micro projections on the road surface. This is because the micro rubber pearl shell structure effectively suppresses the formation of the initial fracture nuclei (Y 1 ) of wear and the development of fracture nuclei (Y 1 ) (see FIG. 1). For this reason, the tire can achieve both rolling resistance and wear resistance at a high level.
Further, the side rubber configuration shown in FIG. 4 (lamination in the tire width direction (direction perpendicular to the extending direction of the rubber laminate)) is the side rubber configuration shown in FIG. 5 (tire radial direction (extending direction of the rubber laminate)). It is superior in crack resistance to the laminate of
なお、上述したところは、この発明の実施形態の一部を示したにすぎず、この発明の趣旨を逸脱しない限り、これらの構成を相互に組み合わせたり、種々の変更を加えたりすることができる。 Note that the above description shows only a part of the embodiment of the present invention, and these configurations can be combined with each other or various modifications can be made without departing from the gist of the present invention. .
以下、本発明について、実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、本明細書において、実施例3,4は、それぞれ、参考例3,4であるものとする。
[実施例1〜4]
EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples. In this specification, Examples 3 and 4 are Reference Examples 3 and 4, respectively.
[Examples 1 to 4]
[製造方法]
次に、この発明に従う積層ゴムを製造し、該積層ゴムを用いたタイヤを試作し性能評価
を行ったので、以下に説明する。
1mm厚又は0.5mm厚のゴムシート10枚を重ねた厚み10mm又は5mm厚の第1積層体を形成する第1積層体形成工程、該第1積層体を薄層化して全体の厚みを1mm又は0.5mmの第1積層ゴムとする(1層の厚みを100μm又は50μmとする)第1薄層化工程、この薄層化加工性を利用して、積層体形成工程と薄層化工程を繰り返して、所定厚みのゴム層を重ねた積層ゴムを作製し、該積層ゴムの多層構造を有するトレッドゴムとして用いて、195/65R15サイズのタイヤを製造した。
ここで、実施例1及び2については、積層方向をタイヤ幅方向とし、実施例3及び4については、積層方向をタイヤ径方向とした。
[Production method]
Next, a laminated rubber according to the present invention was manufactured, a tire using the laminated rubber was prototyped, and performance evaluation was performed, which will be described below.
A first laminated body forming step of forming a first laminated body having a thickness of 10 mm or 5 mm by laminating 10 rubber sheets having a thickness of 1 mm or 0.5 mm, a total thickness of 1 mm by thinning the first laminated body Alternatively, a first laminated rubber having a thickness of 0.5 mm (a thickness of one layer is set to 100 μm or 50 μm), and a laminated body forming process and a thinning process using this thinning processability By repeating the above, a laminated rubber having a rubber layer having a predetermined thickness was produced, and a tire of 195 / 65R15 size was produced as a tread rubber having a multilayer structure of the laminated rubber.
Here, for Examples 1 and 2, the stacking direction was the tire width direction, and for Examples 3 and 4, the stacking direction was the tire radial direction.
実施例1〜4の試験体は、内部損失(tanδ)が0.47であり、貯蔵弾性率(E′)が1.91×107である第1ゴムと、内部損失(tanδ)が0.081であり、貯蔵弾性率(E′)が5.75×106である第2ゴムとが交互に積層されることにより構成されている。 The specimens of Examples 1 to 4 have a first rubber having an internal loss (tan δ) of 0.47 and a storage elastic modulus (E ′) of 1.91 × 10 7 , and an internal loss (tan δ) of 0. 0.081 and the second rubber having a storage elastic modulus (E ′) of 5.75 × 10 6 is laminated alternately.
[比較例1]
比較例1の試験体は、内部損失(tanδ)が0.47であり、貯蔵弾性率(E′)が1.91×107である第1ゴムの一層構造により構成されている。
[Comparative Example 1]
The test body of Comparative Example 1 has a single-layer structure of the first rubber having an internal loss (tan δ) of 0.47 and a storage elastic modulus (E ′) of 1.91 × 10 7 .
これら試験体に対して以下の項目の評価を行った。 The following items were evaluated for these specimens.
[評価方法]
(動的損失係数(tanδ))
東洋精機株式会社製の粘弾性スペクトロメータを用い、5%伸長させた状態で、動的な歪み1%、周波数52Hzの条件により、室温(25℃)で、動的損失係数(tanδ)を測定した。
[Evaluation method]
(Dynamic loss factor (tan δ))
Using a viscoelastic spectrometer manufactured by Toyo Seiki Co., Ltd., measuring the dynamic loss factor (tan δ) at room temperature (25 ° C) under the condition of 5% elongation and dynamic strain of 1% and frequency of 52Hz. did.
(転がり抵抗)
各ゴム組成物に基づいてトレッド部を形成したタイヤ(195/65R15)を作製した実施例及び比較例において、スチール平滑面を有する外形1707.6mm、幅350mmの回転ドラムを用い、4500N(460kg)の荷重の作用下で、80km/hの速度で回転させた時の惰行性をもって測定し、評価した。測定値数値が大きいほど、転がり抵抗は小さい(低燃費性)であることを示し、比較例1を100として、指数表示した。
(Rolling resistance)
In Examples and Comparative Examples in which tires (195 / 65R15) having a tread portion formed based on each rubber composition were produced, a rotating drum having an outer diameter of 1707.6 mm having a steel smooth surface and a width of 350 mm was used, and 4500 N (460 kg). It was measured and evaluated with the lameness when rotated at a speed of 80 km / h under the action of a load of. The larger the measured value, the smaller the rolling resistance (low fuel consumption), and the index was displayed with Comparative Example 1 as 100.
(耐摩耗性)
各タイヤにおいて、ランボーン型摩擦試験機(株式会社上島製作所製)を用い、スリップ率が25%の摩耗量で表し、また、測定温度は室温とした。指数が大きいほど、耐摩耗量は良好であり、比較例1を100として、指数表示した。
(Abrasion resistance)
In each tire, a Lambone-type friction tester (manufactured by Ueshima Seisakusho Co., Ltd.) was used, and the slip rate was expressed as an amount of wear of 25%, and the measurement temperature was room temperature. The larger the index, the better the wear resistance, and the index was displayed with Comparative Example 1 as 100.
[検査方法]
(顕微鏡による積層構造の確認)
株式会社キーエンス製の走査型電子顕微鏡(SEM)を用いて、積層構造の確認を行った。
[Inspection method]
(Confirmation of laminated structure by microscope)
The laminated structure was confirmed using a scanning electron microscope (SEM) manufactured by Keyence Corporation.
(弾性率測定)
東洋精機株式会社製の粘弾性スペクトロメータ(動的粘弾性測定機)を用い、動的な歪み1%、周波数52Hzの条件により、室温(25℃)で、動的弾性率(E’)を測定した。
(Elastic modulus measurement)
Using a viscoelasticity spectrometer (dynamic viscoelasticity measuring machine) manufactured by Toyo Seiki Co., Ltd., the dynamic elastic modulus (E ′) is calculated at room temperature (25 ° C.) under the conditions of
表1に示す結果から、実施例1〜4のゴム真珠殻構造のミクロサイズのゴム積層構造を有する試験体は、従来例の、ゴム真珠殻構造を有さない試験体に比べて、転がり抵抗及び耐摩耗性が大幅に向上し、転がり抵抗及び耐摩耗性が両立していることが分かる。 From the results shown in Table 1, the test specimens having the rubber pearl shell structure micro-sized rubber laminated structures of Examples 1 to 4 are more resistant to rolling than the conventional specimens having no rubber pearl shell structure. In addition, it can be seen that the wear resistance is greatly improved, and both rolling resistance and wear resistance are compatible.
ゴム真珠殻構造を適用することで、タイヤに転がり抵抗と耐摩耗性を両立させることが可能な積層ゴムを用いたタイヤ及びその製造方法を提供することが可能になった。 By applying the rubber pearl shell structure, it has become possible to provide a tire using a laminated rubber capable of achieving both rolling resistance and wear resistance and a method for manufacturing the tire.
1.積層ゴム
2.ゴム層
3.ゴム層の層面
T トレッド
X ミクロ突起
Y 初期破壊核の形成領域及びその進展領域
Y1 初期破壊核及びその進展した破壊核
Z 車両進行方向
A−A’ 積層ゴムの積層方向
B−B’ ゴム層の層面方向の1つ
C−C’ ゴム層の層面方向の1つ
1.
Claims (5)
前記積層ゴムにおけるゴム層のうち、最も低弾性なゴム層の弾性率:最も高弾性なゴム層の弾性率の比が、1:2〜1:30であり、前記最も低弾性なゴム層と前記最も高弾性なゴム層が積層され、
前記トレッドに用いた該ゴム積層体の積層方向がタイヤ幅方向であり、
前記サイドウォールに用いた該ゴム積層体の積層方向がタイヤ幅方向であることを特徴とするタイヤ。 A tire in which a laminated rubber obtained by laminating three or more rubber layers having a thickness of 10 μm to 500 μm is used as a repeating unit, and a rubber laminate having a plurality of the repeating units is used for a tread and a sidewall,
Among the rubber layers in the laminated rubber, the ratio of the elastic modulus of the lowest elastic rubber layer: the elastic modulus of the highest elastic rubber layer is 1: 2 to 1:30, and the lowest elastic rubber layer The most elastic rubber layer is laminated,
The lamination direction of the rubber laminate used for the tread is the tire width direction,
A tire characterized in that a lamination direction of the rubber laminate used for the sidewall is a tire width direction.
ゴム層を3層以上重ねる層重ねゴム形成工程と、
得られた層重ねゴムを、その層重ね方向に、各ゴム層の厚さが10μm〜500μmになるように薄層化する薄層化工程と、
前記薄層化した層重ねゴムを繰り返し単位とし、該繰返し単位を積層して、該繰返し単位を複数有する積層ゴムを作製する積層ゴム作製工程と、
該積層ゴムを用いて、サイドウォール及びトレッドを作製するサイドウォール及びトレッドの作製工程と、を含むことを特徴とするタイヤの製造方法。 A tire manufacturing method for manufacturing the tire according to any one of claims 1 to 3,
A layered rubber forming step of stacking three or more rubber layers;
A thinning step of thinning the obtained layered rubber so that the thickness of each rubber layer is 10 μm to 500 μm in the layering direction;
A laminated rubber producing step of producing a laminated rubber having a plurality of repeating units by laminating the repeating units with the thin layered rubber layer as a repeating unit,
A method for producing a tire, comprising: producing a sidewall and a tread using the laminated rubber.
前記積層ゴムを、電子顕微鏡又は走査プローブ顕微鏡を用いて検査する確認工程をさらに含む、ことを特徴とする請求項4に記載のタイヤの製造方法。 After the thinning step,
The tire manufacturing method according to claim 4, further comprising a confirmation step of inspecting the laminated rubber using an electron microscope or a scanning probe microscope.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015083543A JP6009028B2 (en) | 2015-04-15 | 2015-04-15 | Tire and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015083543A JP6009028B2 (en) | 2015-04-15 | 2015-04-15 | Tire and manufacturing method thereof |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011014544A Division JP5734679B2 (en) | 2011-01-26 | 2011-01-26 | Laminated rubber and method for producing the same, rubber laminate using the laminated rubber, and tread, side rubber and tire using the laminated rubber or the rubber laminated body |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015155301A JP2015155301A (en) | 2015-08-27 |
JP6009028B2 true JP6009028B2 (en) | 2016-10-19 |
Family
ID=54774906
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015083543A Expired - Fee Related JP6009028B2 (en) | 2015-04-15 | 2015-04-15 | Tire and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6009028B2 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5843262B2 (en) * | 1977-05-30 | 1983-09-26 | ザ ゼネラルタイヤ アンド ラバ− カンパニ− | How to make a laminated pneumatic tire |
US5866265A (en) * | 1996-03-08 | 1999-02-02 | The Goodyear Tire & Rubber Company | Rubber article having a surface design for high abrasion resistance |
JP2001206012A (en) * | 2000-01-28 | 2001-07-31 | Bridgestone Corp | Pneumatic tire for heavy load |
JP5734679B2 (en) * | 2011-01-26 | 2015-06-17 | 株式会社ブリヂストン | Laminated rubber and method for producing the same, rubber laminate using the laminated rubber, and tread, side rubber and tire using the laminated rubber or the rubber laminated body |
-
2015
- 2015-04-15 JP JP2015083543A patent/JP6009028B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2015155301A (en) | 2015-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4286319B1 (en) | Pneumatic tire | |
JP5044516B2 (en) | Rubber composition for inner liner and tire having inner liner comprising the same | |
JP5734679B2 (en) | Laminated rubber and method for producing the same, rubber laminate using the laminated rubber, and tread, side rubber and tire using the laminated rubber or the rubber laminated body | |
JP2012521320A (en) | Tire tread block composition | |
JP2012513518A (en) | Tire parts that do not come into contact with air based on natural rubber, reinforcing fillers and dihydrazide | |
WO2007063831A1 (en) | Run flat tire | |
JP5608982B2 (en) | Rubber composition for tire | |
JP2010174231A (en) | Rubber composition for tire | |
JP6247591B2 (en) | Rubber composition, inner liner, sealant and pneumatic tire | |
JP2003306579A (en) | Rubber composition for inner liner and tire | |
JP2004276699A (en) | Pneumatic tire | |
JP5130651B2 (en) | Rubber composition and pneumatic tire | |
JP6009028B2 (en) | Tire and manufacturing method thereof | |
JP6369277B2 (en) | Pneumatic tire | |
JP4012160B2 (en) | Rubber composition for base tread and pneumatic tire | |
JP2006281744A (en) | Manufacturing method of pneumatic tire, and pneumatic tire obtained by the same | |
JP2007326559A (en) | Run flat tire | |
WO2016143667A1 (en) | Rubber composition, and pneumatic tire using same | |
JP5736239B2 (en) | tire | |
JP2005290024A (en) | Rubber composition and pneumatic tire for heavy load using the same | |
JP6511467B2 (en) | Rubber compound for tire parts having high oxygen permeability | |
JP5947496B2 (en) | Pneumatic radial tire | |
JP2019077809A (en) | Rubber composition for tire, and pneumatic tire | |
JP2017105868A (en) | Rubber composition for tire, manufacturing method of rubber composition for tire, and pneumatic tire | |
JP2009119907A (en) | Rubber composition and pneumatic tire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160107 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160119 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160309 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160816 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160913 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6009028 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |