JP6007094B2 - Polishing liquid composition for sapphire plate - Google Patents

Polishing liquid composition for sapphire plate Download PDF

Info

Publication number
JP6007094B2
JP6007094B2 JP2012275988A JP2012275988A JP6007094B2 JP 6007094 B2 JP6007094 B2 JP 6007094B2 JP 2012275988 A JP2012275988 A JP 2012275988A JP 2012275988 A JP2012275988 A JP 2012275988A JP 6007094 B2 JP6007094 B2 JP 6007094B2
Authority
JP
Japan
Prior art keywords
polishing
sapphire
sio
composition
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012275988A
Other languages
Japanese (ja)
Other versions
JP2014120676A (en
Inventor
浩司 細川
浩司 細川
陽彦 土居
陽彦 土居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2012275988A priority Critical patent/JP6007094B2/en
Publication of JP2014120676A publication Critical patent/JP2014120676A/en
Application granted granted Critical
Publication of JP6007094B2 publication Critical patent/JP6007094B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、サファイア板用研磨液組成物及びそれを用いたサイファイア板の製造方法に関する。   The present invention relates to a polishing liquid composition for a sapphire plate and a method for producing a scifi plate using the same.

人工サファイア板は、集積回路基盤、赤外線探知用レンズ、時計等に用いられるサファイアガラス等のさまざまな用途に用いられている。特に、LED照明の急速な普及に伴い、その基板材料として利用されるサファイア基板の需要が急増している。LEDは、サファイア基板上に窒化ガリウム(GaN)層をエピタキシャル成長させた後、更に発光層を積層させることにより製造されており、故に、サファイア基板の表面平滑性がLEDの性能に大きく影響する。   Artificial sapphire plates are used in various applications such as sapphire glass used in integrated circuit boards, infrared detection lenses, watches, and the like. In particular, with the rapid spread of LED lighting, the demand for a sapphire substrate used as the substrate material is rapidly increasing. An LED is manufactured by epitaxially growing a gallium nitride (GaN) layer on a sapphire substrate, and further laminating a light emitting layer. Therefore, the surface smoothness of the sapphire substrate greatly affects the performance of the LED.

サファイア基板の表面平滑性を満足させるために、コロイダルシリカを含む研磨液組成物を用いた精密研磨が行われている。例えば、特許文献1には、研磨液組成物のpHを制御してシリカ粒子と基板とのゼータ電位を反対符号にすることにより、研磨速度が向上することが開示されている。特許文献2には、アルカノールアミン化合物とパーフルオロアルキル基を有するフッ素系化合物の少なくとも1方、シリカ粒子、及び水を含有する研磨液組成物が開示されている。また、特許文献3には、サファイア基板用の研磨液組成物ではなく、シリコンウェーハ上に形成された酸化膜の表面を研磨するための研磨液組成物であるが、シリカ粒子と、化学式M2O・nSiO2(但し、MはLi,Na,K,Rb,Csから選ばれる1種または2種以上のアルカリ金属、n=1.0〜3.8)で表される可溶性金属珪酸塩とを含んでなる研磨液組成物が開示されている。 In order to satisfy the surface smoothness of the sapphire substrate, precision polishing using a polishing liquid composition containing colloidal silica is performed. For example, Patent Document 1 discloses that the polishing rate is improved by controlling the pH of the polishing composition to make the zeta potentials of the silica particles and the substrate have opposite signs. Patent Document 2 discloses a polishing composition containing at least one of an alkanolamine compound and a fluorine-based compound having a perfluoroalkyl group, silica particles, and water. Further, Patent Document 3, instead of the polishing composition for a sapphire substrate, is a polishing composition for polishing the surface of the oxide film formed on a silicon wafer, a silica particle, the chemical formula M 2 A soluble metal silicate represented by O.nSiO 2 (wherein M is one or more alkali metals selected from Li, Na, K, Rb, and Cs, n = 1.0 to 3.8) A polishing composition comprising: is disclosed.

特開2011−211178号公報JP 2011-2111178 A 特開2009−297818号公報JP 2009-297818 A 特開2003−100670号公報JP 2003-100670 A

しかし、いずれの従来技術でも、サファイア基板等のサファイア板の研磨速度は不十分であり、サファイア板の生産性が低い。   However, in any conventional technique, the polishing rate of a sapphire plate such as a sapphire substrate is insufficient, and the productivity of the sapphire plate is low.

本発明は、研磨速度が高く、サファイア板の生産性向上を可能とする、サファイア板用研磨液組成物、及びそれを用いたサファイア板の製造方法並びにサファイア板の研磨方法を提供する。   The present invention provides a polishing composition for a sapphire plate, a method for producing a sapphire plate using the same, and a method for polishing a sapphire plate, which have a high polishing rate and enable productivity improvement of the sapphire plate.

本発明のサファイア板用研磨液組成物は、シリカ粒子(成分A)と、珪酸塩(成分B)と、水系媒体(成分C)とを含み、前記珪酸塩(成分B)は、無水酸化物換算組成M2O・nSiO2において、Mはアルカリ金属であり、nは3.9以上10以下であり、前記シリカ粒子のSiO2換算濃度(a)と前記珪酸塩のSiO2換算濃度(b)の比(前記SiO2換算濃度(b)/前記SiO2換算濃度(a))が、0.001以上0.05以下である。 The polishing composition for sapphire plates of the present invention contains silica particles (component A), silicate (component B), and an aqueous medium (component C), and the silicate (component B) is an anhydrous oxide. In the converted composition M 2 O · nSiO 2 , M is an alkali metal, n is 3.9 to 10, and the SiO 2 equivalent concentration (a) of the silica particles and the SiO 2 equivalent concentration (b ) Ratio (the SiO 2 equivalent concentration (b) / the SiO 2 equivalent concentration (a)) is 0.001 or more and 0.05 or less.

本発明のサファイア板の製造方法は、本発明のサファイア板用研磨液組成物を用いて被研磨サファイア板を研磨する工程を含む。   The manufacturing method of the sapphire board of this invention includes the process of grind | polishing a to-be-polished sapphire board using the polishing liquid composition for sapphire boards of this invention.

本発明のサファイア板の研磨方法は、本発明のサファイア板用研磨液組成物を用いて被研磨サファイア板を研磨する工程を含む。   The polishing method for a sapphire plate of the present invention includes a step of polishing the polished sapphire plate using the polishing liquid composition for sapphire plate of the present invention.

本発明によれば、研磨速度が高く、サファイア板の生産性向上を可能とする、サファイア板用研磨液組成物、及びそれを用いたサファイア板の製造方法並びにサファイア板の研磨方法を提供できる。   According to the present invention, it is possible to provide a polishing liquid composition for a sapphire plate, a method for producing a sapphire plate using the same, and a method for polishing a sapphire plate, which have a high polishing rate and can improve the productivity of the sapphire plate.

図1は、添加剤のSiO2/Na2Oモル比と研磨速度との関係を示したグラフFIG. 1 is a graph showing the relationship between the SiO 2 / Na 2 O molar ratio of the additive and the polishing rate.

本発明は、シリカ粒子(成分A)と、水(成分C)とを含むサファイア板用研磨液組成物において、さらに、特定の組成の珪酸塩(成分B)が含まれ、前記シリカ粒子のSiO2換算濃度(a)と前記珪酸塩のSiO2換算濃度(b)の比(前記SiO2換算濃度(b)/前記SiO2換算濃度(a))が、0.001〜0.05であることにより、研磨速度が向上するという知見に基づく。特定の組成の珪酸塩(成分B)は、無水酸化物換算組成M2O・nSiO2において、Mがアルカリ金属であり、n=3.9〜10である。 In the polishing composition for a sapphire plate containing silica particles (component A) and water (component C), the present invention further includes a silicate (component B) having a specific composition, and the SiO of the silica particles. 2 concentration in terms (a) and the ratio of the SiO 2 concentration in terms of silicate (b) (the terms of SiO 2 concentration (b) / the SiO 2 concentration in terms (a)) is, is from 0.001 to 0.05 This is based on the knowledge that the polishing rate is improved. In the silicate (component B) having a specific composition, M is an alkali metal and n = 3.9 to 10 in the anhydrous oxide equivalent composition M 2 O · nSiO 2 .

特定の組成の珪酸塩(成分B)の添加、及び(前記SiO2換算濃度(b)/前記SiO2換算濃度(a))が0.001〜0.05であることにより研磨速度が向上する理由は定かではないが、以下のように推察される。 The addition of a silicate (component B) having a specific composition and (the SiO 2 equivalent concentration (b) / the SiO 2 equivalent concentration (a)) of 0.001 to 0.05 improve the polishing rate. The reason is not clear, but it is guessed as follows.

サファイア板がシリカ粒子(砥粒)に研磨される機構として、サファイア板とシリカ粒子とのミクロな接触界面でのメカノケミカル反応が提唱されている(表面科学、22巻、187ページ(2001年))。サファイア板とシリカ粒子とのミクロ接触界面では、局所的な高温状態となっており、サファイア板(α−アルミナ)が水酸化アルミニウム化合物やアルミン酸化合物へとアルカリ加水分解され、サファイア板が研磨されていると推察される。このような状態は、研磨液組成物中のシリカ粒子(成分A)のSiO2換算濃度(a)と研磨液組成物中の珪酸塩(成分B)のSiO2換算濃度(b)の比(SiO2換算濃度(b)/前記SiO2換算濃度(a))が、0.001〜0.05である場合に効率的に発現していると推察される。更に、珪酸塩のSiO2/M2O(ただし、Mは、アルカリ金属)のモル比(n)が大きいほどSi−O−Siのネットワーク構造が発達していることが知られている。n=3.9以上の珪酸塩は、珪酸塩のネットワーク構造が十分発達しているため、サファイア板の前記アルカリ加水分解物との反応により生成したアルミノ珪酸塩の構造安定性は高く、アルミノ珪酸塩は安定に存在可能であると考えられる。一方、珪酸塩のSiO2/M2Oモル比(n)が小さいほど、珪酸塩の末端シラノラート(Si−O-)が増える。珪酸塩のモル比(n)が10以下であると、その末端シラノラートを介して、珪酸塩がサファイア板のアルカリ加水分解物と反応して、効率的にアルカリ加水分解物が消費される。以上のことから、サファイア板のアルカリ加水分解反応は促進され、よって研磨速度が向上したと推察される。但し、本発明はこれらの推定に限定されるものではない。 As a mechanism by which the sapphire plate is polished by silica particles (abrasive grains), a mechanochemical reaction at the micro-contact interface between the sapphire plate and the silica particles has been proposed (Surface Science, Vol. 22, p. 187 (2001)). ). The microcontact interface between the sapphire plate and the silica particles is in a locally high temperature state, and the sapphire plate (α-alumina) is alkali-hydrolyzed into an aluminum hydroxide compound or an aluminate compound, and the sapphire plate is polished. It is inferred that Such a state is the ratio of the SiO 2 equivalent concentration (a) of the silica particles (component A) in the polishing liquid composition to the SiO 2 equivalent concentration (b) of the silicate (component B) in the polishing liquid composition ( It is assumed that the SiO 2 equivalent concentration (b) / the SiO 2 equivalent concentration (a)) is efficiently expressed when the concentration is 0.001 to 0.05. Furthermore, it is known that the Si—O—Si network structure is developed as the molar ratio (n) of SiO 2 / M 2 O (where M is an alkali metal) of the silicate is large. Since the silicate network structure is sufficiently developed for silicates with n = 3.9 or more, the structural stability of the aluminosilicate produced by the reaction of the sapphire plate with the alkaline hydrolyzate is high. It is considered that the salt can exist stably. On the other hand, the smaller the SiO 2 / M 2 O molar ratio (n) of the silicate, the higher the terminal silanolate (Si—O ) of the silicate. When the molar ratio (n) of the silicate is 10 or less, the silicate reacts with the alkali hydrolyzate of the sapphire plate via the terminal silanolate, and the alkali hydrolyzate is efficiently consumed. From the above, it is speculated that the alkali hydrolysis reaction of the sapphire plate was promoted, and thus the polishing rate was improved. However, the present invention is not limited to these estimations.

<シリカ粒子(成分A)>
本発明のサファイア板用研磨液組成物(以下「本発明の研磨液組成物」と略称する場合もある。)に含まれるシリカ粒子は、砥粒として作用する。シリカ粒子としては、コロイダルシリカ、フュームドシリカ等が挙げられるが、研磨後の基板表面の平滑性向上の観点から、コロイダルシリカがより好ましい。
<Silica particles (component A)>
The silica particles contained in the polishing liquid composition for sapphire plates of the present invention (hereinafter sometimes abbreviated as “the polishing liquid composition of the present invention”) act as abrasive grains. Examples of the silica particles include colloidal silica and fumed silica. Colloidal silica is more preferable from the viewpoint of improving the smoothness of the substrate surface after polishing.

シリカ粒子の使用形態としては、操作性の観点からスラリー状が好ましい。本発明の研磨液組成物に含まれる砥粒がコロイダルシリカである場合、製造容易性および経済性の観点から、コロイダルシリカは、水ガラスやアルコキシシランの加水分解物から得たものであることが好ましく、水ガラスから得たものであることがより好ましい。水ガラスから得られるシリカ粒子は、従来から公知の方法によって作製できる。   The use form of the silica particles is preferably a slurry from the viewpoint of operability. When the abrasive grains contained in the polishing composition of the present invention is colloidal silica, from the viewpoint of ease of production and economy, the colloidal silica may be obtained from a hydrolyzate of water glass or alkoxysilane. Preferably, it is obtained from water glass. Silica particles obtained from water glass can be produced by a conventionally known method.

シリカ粒子(成分A)は、シリカ粒子表面をシランカップリング剤などで表面処理されたシリカ粒子であってもよいが、研磨速度向上の観点から、表面処理されていないシリカ粒子が好ましい。シリカ粒子には、AlやZrなどのSi以外の無機元素が含まれていても良いが、研磨速度向上の観点から、固形分の主成分がSiO2であると好ましく、無水酸化物換算でSiO2が90質量%以上であると好ましく、95質量%以上であるとより好ましく、99質量%以上であると更に好ましい。 The silica particles (component A) may be silica particles whose surface is treated with a silane coupling agent or the like, but silica particles that are not surface-treated are preferable from the viewpoint of improving the polishing rate. The silica particles may contain inorganic elements other than Si, such as Al and Zr, but from the viewpoint of improving the polishing rate, the main component of the solid content is preferably SiO 2 , and SiO 2 in terms of anhydrous oxide. 2 is preferably 90% by mass or more, more preferably 95% by mass or more, and further preferably 99% by mass or more.

本発明の研磨液組成物に含まれるシリカ粒子(成分A)の平均一次粒子径は、研磨後の基板表面の平滑性向上の観点から、300nm以下が好ましく、100nm以下がより好ましく、50nm以下が更に好ましく、研磨速度向上の観点から、10nm以上が好ましく、15nm以上がより好ましく、20nm以上が更に好ましい。尚、本発明の研磨液組成物に含まれるシリカ粒子(成分A)の平均一次粒子径は、窒素吸着法(BET法)により求められる比表面積Sをもとに、シリカ粒子を真球と仮定して直径(円相当径)を算出する方法で決定される。算出方法は以下の手順で行う。   From the viewpoint of improving the smoothness of the substrate surface after polishing, the average primary particle diameter of the silica particles (component A) contained in the polishing composition of the present invention is preferably 300 nm or less, more preferably 100 nm or less, and 50 nm or less. More preferably, from the viewpoint of improving the polishing rate, it is preferably 10 nm or more, more preferably 15 nm or more, and further preferably 20 nm or more. The average primary particle diameter of the silica particles (component A) contained in the polishing composition of the present invention is assumed to be true spheres based on the specific surface area S determined by the nitrogen adsorption method (BET method). Thus, the diameter (equivalent circle diameter) is determined by a method. The calculation method is as follows.

シリカ粒子の直径をD(cm)、密度をρ(g/cm3)、全粒子個数をn(個)とすると、全粒子表面積はnπD2、その質量はρnπD3/6であるから、単位質量当たりの表面積を意味するBET法の比表面積Sは次の(1)式で表される。
S(m2/g)={nπD2}/{ρnπD3/6}=6×10-4/{ρ×D}(1)
(1)式より、粒子の直径Dは、D(cm)=6×10-4/{ρ×S}(2)
となり、シリカ粒子の場合、その密度ρを2.2(g/cm3)とすると、次の(3)式より、シリカ粒子の直径Dが求められる。
D(nm)=6×103/{2.2×S}=2727/S(3)
The diameter of the silica particles D (cm), a density ρ (g / cm 3), when the total number of particles and n (number), the total particle surface area EnupaiD 2, because its mass is ρnπD 3/6, the unit The specific surface area S of the BET method which means the surface area per mass is expressed by the following formula (1).
S (m 2 / g) = {nπD 2} / {ρnπD 3/6} = 6 × 10 -4 / {ρ × D} (1)
From the equation (1), the diameter D of the particle is D (cm) = 6 × 10 −4 / {ρ × S} (2)
In the case of silica particles, when the density ρ is 2.2 (g / cm 3 ), the diameter D of the silica particles can be obtained from the following equation (3).
D (nm) = 6 × 10 3 /{2.2×S}=2727/S(3)

本発明の研磨液組成物に含まれるシリカ粒子(成分A)の粒子形状は、球状、金平糖型、会合型等いずれでもよいが、研磨後の基板表面の平滑性及び研磨速度向上の観点から、球状又は金平糖型が好ましく、球状がより好ましい。   The particle shape of the silica particles (component A) contained in the polishing liquid composition of the present invention may be any of a spherical shape, a gold flat sugar type, an association type, and the like, but from the viewpoint of improving the smoothness of the substrate surface after polishing and improving the polishing rate, A spherical or confetti type is preferred, and a spherical shape is more preferred.

本発明の研磨液組成物中のシリカ粒子(成分A)の濃度は、研磨速度向上の観点から、SiO2換算濃度(a)で、1質量%以上が好ましく、5質量%以上がより好ましく、10質量%以上が更に好ましく、15質量%以上が更により好ましい。また、本発明の研磨液組成物中のシリカ粒子(成分A)の濃度は、研磨液組成物のコスト低減及び保存安定性の向上の観点から、50質量%以下が好ましく、40質量%以下がより好ましく、35質量%以下が更に好ましく、30質量%以下が更により好ましい。 The concentration of the silica particles (component A) in the polishing liquid composition of the present invention is preferably 1% by mass or more, more preferably 5% by mass or more in terms of SiO 2 conversion concentration (a), from the viewpoint of improving the polishing rate. 10 mass% or more is still more preferable, and 15 mass% or more is still more preferable. Further, the concentration of the silica particles (component A) in the polishing liquid composition of the present invention is preferably 50% by mass or less, and preferably 40% by mass or less, from the viewpoint of cost reduction and storage stability improvement of the polishing liquid composition. More preferably, 35% by mass or less is further preferable, and 30% by mass or less is even more preferable.

<珪酸塩(成分B)>
本発明の研磨液組成物に含まれる珪酸塩(成分B)の組成は、無水酸化物換算組成M2O・nSiO2において、Mがアルカリ金属であるが、研磨速度向上及びコスト低減の観点から、Mは、Na及びKのうちの少なくとも1種のアルカリ金属好ましく、Naがより好ましい。
<Silicate (component B)>
The composition of the silicate (component B) contained in the polishing liquid composition of the present invention is an anhydrous oxide equivalent composition M 2 O · nSiO 2 , where M is an alkali metal, but from the viewpoint of improving the polishing rate and reducing the cost. , M is preferably at least one alkali metal of Na and K, more preferably Na.

本発明の研磨液組成物に含まれる珪酸塩(成分B)の組成は、研磨速度向上の観点から無水酸化物換算組成M2O・nSiO2において、nは3.9以上10以下であるが、同様の観点から、4.0以上が好ましく、また、6以下が好ましく、5以下がより好ましく、4.5以下が更に好ましい。なお、珪酸塩(成分B)の組成は、滴定法、原子吸光分析、誘導結合プラズマ発光(ICP)分析、蛍光X線分析等の常法により求めることができ、例えば、珪酸ソーダの場合、JIS−K1408の方法により求めることができる。 The composition of the silicate (component B) contained in the polishing composition of the present invention is n is 3.9 or more and 10 or less in the anhydrous oxide equivalent composition M 2 O · nSiO 2 from the viewpoint of improving the polishing rate. From the same viewpoint, 4.0 or more is preferable, 6 or less is preferable, 5 or less is more preferable, and 4.5 or less is still more preferable. The composition of silicate (component B) can be determined by conventional methods such as titration, atomic absorption analysis, inductively coupled plasma emission (ICP) analysis, and fluorescent X-ray analysis. For example, in the case of sodium silicate, JIS It can be determined by the method of -K1408.

本発明の研磨液組成物中の珪酸塩(B)の濃度は、研磨速度向上の観点から、SiO2換算濃度(b)で、0.01質量%以上が好ましく、0.05質量%以上がより好ましく、0.1質量%以上が更に好ましく、0.2質量%以上が更により好ましい。また、本発明の研磨液組成物中の珪酸塩(B)の濃度は、研磨速度向上及び研磨液組成物の保存安定性向上の観点から、SiO2換算濃度(b)で、1質量%以下が好ましく、0.8質量%以下がより好ましく、0.5質量%以下が更に好ましく、0.3質量%以下が更により好ましく、0.25質量%以下が更により好ましい。 From the viewpoint of improving the polishing rate, the concentration of the silicate (B) in the polishing composition of the present invention is preferably SiO 2 equivalent concentration (b), preferably 0.01% by mass or more, and 0.05% by mass or more. More preferably, 0.1% by mass or more is further preferable, and 0.2% by mass or more is even more preferable. The concentration of the silicate (B) in the polishing composition of the present invention is 1% by mass or less in terms of SiO 2 concentration (b) from the viewpoint of improving the polishing rate and improving the storage stability of the polishing composition. Is preferably 0.8% by mass or less, more preferably 0.5% by mass or less, still more preferably 0.3% by mass or less, and even more preferably 0.25% by mass or less.

本発明の研磨液組成物中のシリカ粒子(成分A)に対する珪酸塩(成分B)の濃度比は、研磨速度向上の観点から、SiO2換算濃度比(SiO2換算濃度(b)/SiO2換算濃度(a))で、0.001以上であり、0.002以上が好ましく、0.005以上がより好ましく、0.01以上が更に好ましい。また、本発明の研磨液組成物中のシリカ粒子(成分A)に対する珪酸塩(成分B)の濃度比は、研磨速度向上及び研磨液組成物の保存安定性向上の観点から、SiO2換算濃度比(SiO2換算濃度(b)/SiO2換算濃度(a))で、0.05以下であり、0.04以下が好ましく、0.03以下がより好ましく、0.02以下が更に好ましい。 The concentration ratio of the silicate (component B) to the silica particles (component A) in the polishing liquid composition of the present invention is the SiO 2 equivalent concentration ratio (SiO 2 equivalent concentration (b) / SiO 2 ) from the viewpoint of improving the polishing rate. The converted concentration (a)) is 0.001 or more, preferably 0.002 or more, more preferably 0.005 or more, and still more preferably 0.01 or more. The concentration ratio of the silicate (component B) to the silica particles (component A) in the polishing liquid composition of the present invention is a SiO 2 equivalent concentration from the viewpoint of improving the polishing rate and improving the storage stability of the polishing liquid composition. The ratio (SiO 2 equivalent concentration (b) / SiO 2 equivalent concentration (a)) is 0.05 or less, preferably 0.04 or less, more preferably 0.03 or less, and still more preferably 0.02 or less.

<水系媒体(成分C)>
本発明の研磨液組成物に含まれる水系媒体(成分C)としては、イオン交換水や超純水等の水、又は水と溶媒との混合媒体等が挙げられ、上記溶媒としては、水と混合可能な溶媒(例えば、エタノール等のアルコール)が好ましい。水系媒体としては、なかでも、イオン交換水又は超純水がより好ましく、超純水が更に好ましい。本発明の成分Cが、水と溶媒との混合媒体である場合、成分Cである混合媒体全体に対する水の割合は、特に限定されるわけではないが、経済性の観点から、95質量%以上が好ましく、98質量%以上がより好ましく、実質的に100質量%が更に好ましく、100質量%が更により好ましい。
<Aqueous medium (component C)>
Examples of the aqueous medium (component C) contained in the polishing liquid composition of the present invention include water such as ion-exchanged water and ultrapure water, or a mixed medium of water and a solvent. Examples of the solvent include water and A miscible solvent (for example, an alcohol such as ethanol) is preferred. As the aqueous medium, ion-exchanged water or ultrapure water is more preferable, and ultrapure water is more preferable. When Component C of the present invention is a mixed medium of water and a solvent, the ratio of water to the entire mixed medium as Component C is not particularly limited, but is 95% by mass or more from the viewpoint of economy. Is preferable, 98 mass% or more is more preferable, substantially 100 mass% is still more preferable, and 100 mass% is still more preferable.

本発明の研磨液組成物における水系媒体の含有量は、特に限定されるわけではなく、成分A、成分B及び後述する任意成分の残余であってよい。   The content of the aqueous medium in the polishing liquid composition of the present invention is not particularly limited, and may be the remainder of Component A, Component B, and optional components described below.

本発明の研磨液組成物の25℃におけるpHは、サファイア板のアルカリ加水分解が進行して研磨速度を向上させる観点から、8以上が好ましく、9以上がより好ましく、9.5以上が更に好ましく、9.8以上がより更に好ましい。また、本発明の研磨液組成物の25℃におけるpHは、シリカ粒子(成分A)のアルカリ溶解を抑制して、シリカ粒子を砥粒としてサファイア板に十分作用させて研磨速度を向上させる観点から、11以下が好ましく、10.5以下がより好ましく、10.4以下が更に好ましく、10.3以下がより更に好ましい。   The pH at 25 ° C. of the polishing composition of the present invention is preferably 8 or more, more preferably 9 or more, and still more preferably 9.5 or more, from the viewpoint of improving the polishing rate by proceeding with alkaline hydrolysis of the sapphire plate. 9.8 or more is even more preferable. In addition, the pH at 25 ° C. of the polishing composition of the present invention is from the viewpoint of suppressing the alkali dissolution of silica particles (component A) and sufficiently acting on the sapphire plate with the silica particles as abrasive grains. 11 or less, preferably 10.5 or less, more preferably 10.4 or less, and still more preferably 10.3 or less.

本発明の研磨液組成物は、その使用用途応じて、従来から公知の任意成分を更に含んでいてもよい。本発明の研磨液組成物が、例えば、半導体素子等の電子部品用サファイア基板用研磨液組成物(例えば、LED用サファイア基板用研磨液組成物)である場合は、本発明の研磨液組成物は、界面活性剤、防錆剤、分散剤、pH調整剤等を更に含んでいてもよい。   The polishing liquid composition of the present invention may further contain conventionally known optional components depending on the use application. When the polishing liquid composition of the present invention is, for example, a polishing liquid composition for sapphire substrates for electronic components such as semiconductor elements (for example, a polishing liquid composition for sapphire substrates for LEDs), the polishing liquid composition of the present invention. May further contain a surfactant, a rust inhibitor, a dispersant, a pH adjuster and the like.

[研磨液組成物の調製方法]
本発明の研磨液組成物は、各成分を公知の方法で混合することにより、調製することができる。研磨液組成物は、経済性の観点から、通常、濃縮液として製造され、これを使用時に希釈する場合が多い。前記研磨液組成物は、そのまま使用してもよいし、濃縮液であれば希釈して使用すればよい。濃縮液を希釈する場合、その希釈倍率は、特に制限されず、前記濃縮液における各成分の濃度(研磨材の含有量等)や研磨条件等に応じて適宜決定できる。
[Method for preparing polishing liquid composition]
The polishing liquid composition of this invention can be prepared by mixing each component by a well-known method. The polishing composition is usually produced as a concentrated solution from the viewpoint of economy, and it is often diluted at the time of use. The polishing composition may be used as it is, or diluted if it is a concentrated solution. When diluting the concentrate, the dilution ratio is not particularly limited, and can be appropriately determined according to the concentration of each component in the concentrate (abrasive content, etc.), polishing conditions, and the like.

次に、本発明の研磨液組成物を用いた、本発明のサファイア板の製造方法の一例、及び本発明のサファイア板の研磨方法の一例について説明する。   Next, an example of the manufacturing method of the sapphire board of this invention using the polishing liquid composition of this invention and an example of the polishing method of the sapphire board of this invention are demonstrated.

[被研磨基板]
本発明のサファイア板の製造方法および本発明のサファイア板の研磨方法における研磨対象の形状について特に制限はなく、例えば、ディスク状、プレート状、スラブ状、プリズム状等の平面部を有する形状のみならず、レンズ等の曲面部を有する形状であってもよい。また、前記研磨対象は、集積回路基盤、赤外線探知用レンズ、時計等に用いられるサファイアガラス、LED用サファイア基板等さまざまであるが、本発明の研磨液組成物は、中でも、高い平滑性が要求される半導体素子等の電子部品用サファイア基板、さらには、LED用サファイア基板の製造方法の研磨工程で使用される研磨液組成物として適している。
[Polished substrate]
There is no particular limitation on the shape of the object to be polished in the method for producing a sapphire plate of the present invention and the method for polishing a sapphire plate of the present invention, and for example, only a shape having a flat portion such as a disk shape, a plate shape, a slab shape, or a prism shape. Instead, a shape having a curved surface portion such as a lens may be used. Further, the polishing target is various such as an integrated circuit board, an infrared detection lens, a sapphire glass used for a watch, a sapphire substrate for LED, etc., and the polishing composition of the present invention requires high smoothness among others. It is suitable as a polishing liquid composition used in a polishing step of a method for producing a sapphire substrate for electronic parts such as a semiconductor device, and further a sapphire substrate for LED.

故に、本発明のサファイア板の製造方法の一例は、半導体素子等の電子部品用サファイア基板の製造方法であって、本発明のサファイア板用研磨液組成物を用いて被研磨サファイア基板を研磨する工程を含む。また、本発明のサファイア板の研磨方法一例は、半導体素子等の電子部品用サファイア基板の研磨方法であって、本発明のサファイア板用研磨液組成物を用いて被研磨サファイア基板を研磨する工程を含む。   Therefore, an example of the method for producing a sapphire plate of the present invention is a method for producing a sapphire substrate for an electronic component such as a semiconductor element, and the sapphire substrate for polishing is polished using the polishing composition for sapphire plate of the present invention. Process. An example of the method for polishing a sapphire plate of the present invention is a method for polishing a sapphire substrate for electronic components such as a semiconductor element, and the step of polishing a sapphire substrate to be polished using the polishing composition for sapphire plate of the present invention. including.

前記被研磨サファイア基板を研磨する工程は、サファイア単結晶インゴットを薄円板状にスライスして得たウェーハを平面化する第一研磨工程(粗研磨工程)と粗研磨されたウェーハをエッチングした後、ウェーハ表面を鏡面化する第二研磨工程(仕上げ研磨)に分かれるが、本発明の研磨液組成物は、第一研磨工程および第二研磨工程のいずれにも使用できる。しかし、本発明の研磨液組成物は、サファイア基板の表面平滑性および生産性の観点から、第二研磨工程に使用するのが好ましい。   The step of polishing the sapphire substrate is a first polishing step (rough polishing step) for planarizing a wafer obtained by slicing a sapphire single crystal ingot into a thin disc shape, and after etching the rough polished wafer. The polishing composition of the present invention can be used for both the first polishing step and the second polishing step, although it is divided into a second polishing step (finish polishing) for mirror-finishing the wafer surface. However, the polishing composition of the present invention is preferably used in the second polishing step from the viewpoint of surface smoothness and productivity of the sapphire substrate.

本発明のサファイア板の製造方法の一例(「本発明の製造方法の一例」と略称する場合もある。)及び本発明のサファイア板の研磨方法の一例(「本発明の研磨方法の一例」と略称する場合もある。)で用いる研磨装置としては、特に制限はなく、被研磨基板(被研磨サファイア板)を保持する冶具(キャリア:アラミド製等)と研磨布(研磨パッド)とを備える研磨装置を用いることができ、両面研磨装置及び片面研磨装置のいずれであってもよい。   An example of the manufacturing method of the sapphire plate of the present invention (sometimes abbreviated as “an example of the manufacturing method of the present invention”) and an example of the polishing method of the sapphire plate of the present invention (“an example of the polishing method of the present invention”) There are no particular limitations on the polishing apparatus used in the above), and there is no particular limitation. Polishing provided with a jig (carrier: made of aramid, etc.) for holding the substrate to be polished (polished sapphire plate) and a polishing cloth (polishing pad). An apparatus can be used, and either a double-side polishing apparatus or a single-side polishing apparatus may be used.

前記研磨パッドは、特に制限されず、従来公知のものが使用できる。研磨パッドの材質としては、有機高分子等が挙げられ、前記有機高分子としては、ポリウレタン等が挙げられる。前記研磨パッドの形状は、不織布状が好ましい。例えば、不織布研磨パッドとしてSUBA800(ニッタハース製)が好適に用いられる。   The polishing pad is not particularly limited, and a conventionally known polishing pad can be used. Examples of the material for the polishing pad include organic polymers, and examples of the organic polymer include polyurethane. The shape of the polishing pad is preferably a nonwoven fabric. For example, SUBA800 (manufactured by Nitta Haas) is suitably used as the nonwoven fabric polishing pad.

該研磨装置を用いる研磨方法の具体例としては、被研磨基板(被研磨サファイア基板等の被研磨サファイア板)をキャリアで保持し研磨パッドを貼り付けた研磨定盤で挟み込み、本発明の研磨液組成物を研磨パッドと被研磨サファイア板との間に供給し、所定の圧力の下で研磨定盤及び/又は被研磨サファイア板を動かすことにより、本発明の研磨液組成物を被研磨サファイア板に接触させながら研磨する研磨方法が挙げられる。   As a specific example of the polishing method using the polishing apparatus, a polishing substrate of the present invention is sandwiched between polishing substrates that hold a substrate to be polished (a sapphire plate to be polished such as a sapphire substrate to be polished) with a carrier and a polishing pad is attached. The composition is supplied between the polishing pad and the sapphire plate to be polished, and the polishing surface plate and / or the sapphire plate to be polished is moved under a predetermined pressure, so that the polishing liquid composition of the present invention is polished. A polishing method in which polishing is performed while contacting the substrate.

本発明の製造方法の一例及び研磨方法一例における研磨荷重は、研磨速度向上の観点から、50g/cm2以上が好ましく、100g/cm2以上がより好ましく、150g/cm2以上が更に好ましく、180g/cm2以上が更により好ましい。また、前記研磨荷重は、装置、パッドなどの耐久性を考慮すると、400g/cm2以下が好ましく、300g/cm2以下がより好ましく、250g/cm2以下が更に好ましく、200g/cm2以下が更により好ましい。前記研磨荷重の調整は、定盤や基板等への空気圧や重りの負荷によって行うことができる。研磨荷重は、研磨時に被研磨サファイア板の研磨面に加えられる定盤の圧力を意味する。 One example and a polishing load in the polishing process an example of a manufacturing method of the present invention, from the viewpoint of increasing the polishing rate, 50 g / cm 2 or more is preferable, 100 g / cm 2 or more, and more preferably from 150 g / cm 2 or more, 180 g Even more preferable is / cm 2 or more. Further, the polishing load, device, considering the durability, such as pad, preferably 400 g / cm 2 or less, more preferably 300 g / cm 2 or less, more preferably 250 g / cm 2 or less, 200 g / cm 2 or less Even more preferred. The polishing load can be adjusted by applying air pressure or weight to the surface plate or the substrate. The polishing load means the pressure of the surface plate applied to the polishing surface of the polished sapphire plate during polishing.

本発明の研磨液組成物の供給方法は、予め研磨液組成物の構成成分が十分に混合された状態で研磨パッドと被研磨サファイア板の間にポンプ等で供給する方法、研磨の直前の供給ライン内等で混合して供給する方法、シリカスラリーと珪酸塩を溶解した水溶液とを別々に研磨装置に供給する方法等を用いることができる。研磨速度向上の観点および装置負荷低減の観点から、予め研磨液組成物の構成成分が十分に混合された状態で、研磨液組成物を、研磨パッドと被研磨サファイア板の間にポンプ等で供給する方法が好ましい。   The method of supplying the polishing liquid composition of the present invention is a method of supplying a polishing pad between a polishing pad and a sapphire plate to be polished by a pump or the like in a state where the constituents of the polishing liquid composition are sufficiently mixed in advance. For example, a method in which the slurry is mixed and supplied, a method in which the silica slurry and the aqueous solution in which the silicate is dissolved are separately supplied to the polishing apparatus, and the like can be used. A method of supplying a polishing liquid composition between a polishing pad and a sapphire plate to be polished with a pump or the like in a state where constituents of the polishing liquid composition are sufficiently mixed in advance from the viewpoint of improving the polishing rate and reducing the load on the apparatus Is preferred.

研磨液組成物の供給速度は、コスト低減の観点から、被研磨サファイア板1cm2あたり10mL/分以下が好ましく、5mL/分以下がより好ましく、1mL/分以下が更に好ましい。また、前記供給速度は、研磨速度向上の観点から、被研磨サファイア板1cm2あたり0.01mL/分以上が好ましく、0.1mL/分以上がより好ましく、0.5mL/分以上が更に好ましい。 The supply rate of the polishing composition is preferably 10 mL / min or less, preferably 5 mL / min or less, more preferably 1 mL / min or less, from 1 cm 2 of the polished sapphire plate from the viewpoint of cost reduction. The supply rate is preferably 0.01 mL / min or more, more preferably 0.1 mL / min or more, and further preferably 0.5 mL / min or more from 1 cm 2 of the polished sapphire plate from the viewpoint of improving the polishing rate.

本発明の製造方法の一例及び本発明の研磨方法の一例では、本発明の研磨液組成物を用いているので、被研磨サファイア板の研磨速度が速く、サファイア板の生産性を高めることができる。   In one example of the production method of the present invention and one example of the polishing method of the present invention, since the polishing liquid composition of the present invention is used, the polishing rate of the polished sapphire plate is high, and the productivity of the sapphire plate can be increased. .

本発明は、更に以下<1>〜<19>を開示する。   The present invention further discloses the following <1> to <19>.

<1>
シリカ粒子(成分A)と、珪酸塩(成分B)と、水系媒体(成分C)とを含み、
前記珪酸塩(成分B)は、無水酸化物換算組成M2O・nSiO2において、Mはアルカリ金属であり、nは3.9以上10以下であり、
前記シリカ粒子のSiO2換算濃度(a)と前記珪酸塩のSiO2換算濃度(b)の比(前記SiO2換算濃度(b)/前記SiO2換算濃度(a))が、0.001以上0.05以下である、サファイア板用研磨液組成物。
<2>
前記珪酸塩(成分B)は、無水酸化物換算組成M2O・nSiO2において、好ましくは4.0以上であり、また、好ましくは6以下、より好ましくは5以下、更に好ましくは4.5以下である、前記<1>に記載のサファイア板用研磨液組成物。
<3>
前記シリカ粒子のSiO2換算濃度(a)と前記珪酸塩のSiO2換算濃度(b)の比(前記SiO2換算濃度(b)/前記SiO2換算濃度(a))は、好ましくは、0.002以上、より好ましくは0.005以上、更に好ましくは0.01以上であり、また、好ましくは0.04以下、より好ましくは0.03以下、更に好ましは0.02以下である、前記<1>又は<2>に記載のサファイア板用研磨液組成物。
<4>
前記Mは、好ましくはNa及びKのうちの少なくとも1種のアルカリ金属であり、より好ましくはNaである、前記<1>〜<3>のいずれかに記載のサファイア板用研磨液組成物。
<5>
前記サファイア板用研磨液組成物中の前記珪酸塩(成分B)の濃度は、SiO2換算濃度(b)で、好ましくは0.01質量%以上、より好ましは0.05質量%以上、更に好ましは0.1質量%以上、更により好ましくは0.2質量%以上であり、また、好ましくは1質量%以下、より好ましくは0.8質量%以下、更により好ましくは0.5質量%以下、更により好ましくは0.3質量%以下、更により好ましくは0.25質量%以下である、前記<1>〜<4>のいずれかに記載のサファイア板用研磨液組成物。
<6>
前記シリカ粒子は、好ましくはコロイダルシリカである、前記<1>〜<5>のいずれかに記載のサファイア板用研磨液組成物。
<7>
前記シリカ粒子中のSiの含有量は、無水酸化物(SiO2)換算で、好ましくは90質量%以上、より好ましくは95質量%以上、更に好ましくは99質量%以上である、前記<1>〜<6>のいずれかに記載のサファイア板用研磨液組成物。
<8>
前記シリカ粒子の平均一次粒子径は、好ましくは300nm以下、より好ましくは100nm以下、更に好ましくは50nm以下であり、また、好ましくは10nm以上、より好ましくは15nm以上、更に好ましくは20nm以上である、前記<1>〜<7>のいずれかに記載のサファイア板用研磨液組成物。
<9>
前記サファイア板用研磨液組成物中のシリカ粒子(成分A)の濃度は、SiO2換算濃度(a)で、好ましくは1質量%以上、より好ましくは5質量%以上、更に好ましくは10質量%以上、更により好ましくは15質量%以上であり、また、好ましくは50質量%以下、より好ましくは40質量%以下、更に好ましくは35質量%以下、更により好ましくは30質量%以下である、前記<1>〜<8>のいずれかに記載のサファイア板用研磨液組成物。
<10>
25℃におけるpHが、好ましくは8以上11以下である、前記<1>〜<9>のいずれかに記載のサファイア板用研磨液組成物。
<11>
25℃におけるpHが、より好ましくは9以上、更に好ましくは9.5以上、更により好ましくは9.8以上であり、より好ましくは11以下、更に好ましくは10.5以下、更により好ましくは10.4以下、更により好ましくは10.3以下である、前記<10>に記載のサファイア板用研磨液組成物。
<12>
前記サファイア板は、電子部品用サファイア基板である、前記<1>〜<11>のいずれかに記載のサファイア板用研磨液組成物。
<13>
前記電子部品用サファイア基板は、LED用サファイア基板である、前記<12>に記載のサファイア板用研磨液組成物。
<14>
前記<1>〜<11>のいずれかに記載のサファイア板用研磨液組成物を用いて被研磨サファイア板を研磨する工程を含む、サファイア板の製造方法。
<15>
被研磨サファイア板は、被研磨電子部品用サファイア基板である、前記<14>に記載のサファイア板の製造方法。
<16>
前記被研磨電子部品用サファイア基板は、被研磨LED用サファイア基板である、前記<15>に記載のサファイア板の製造方法。
<17>
前記<1>〜<11>のいずれかに記載のサファイア板用研磨液組成物を用いて被研磨サファイア板を研磨する工程を含む、サファイア板の研磨方法。
<18>
被研磨サファイア板は、被研磨電子部品用サファイア基板である、前記<17>に記載のサファイア板の研磨方法。
<19>
前記被研磨電子部品用サファイア基板は、被研磨LED用サファイア基板である、前記<18>に記載のサファイア板の研磨方法。
<1>
Silica particles (component A), silicate (component B), and aqueous medium (component C),
In the anhydrous oxide equivalent composition M 2 O · nSiO 2 , the silicate (component B) is an alkali metal, and n is 3.9 or more and 10 or less,
Wherein the ratio of the SiO 2 concentration in terms (a) and in terms of SiO 2 concentration of the silicate silica particles (b) (the terms of SiO 2 concentration (b) / the SiO 2 concentration in terms (a)) is 0.001 or more Polishing liquid composition for sapphire plates which is 0.05 or less.
<2>
The silicate (component B) is preferably 4.0 or more, preferably 6 or less, more preferably 5 or less, still more preferably 4.5 in the anhydrous oxide equivalent composition M 2 O · nSiO 2 . The polishing composition for sapphire plates according to <1>, which is the following.
<3>
SiO 2 concentration in terms (a) and the ratio (the SiO 2 concentration in terms (b) / the SiO 2 concentration in terms (a)) of the SiO 2 concentration in terms of silicate (b) of the silica particles is preferably 0 0.002 or more, more preferably 0.005 or more, still more preferably 0.01 or more, and preferably 0.04 or less, more preferably 0.03 or less, and further preferably 0.02 or less. The polishing liquid composition for sapphire plates according to <1> or <2>.
<4>
The polishing composition for a sapphire plate according to any one of <1> to <3>, wherein M is preferably at least one alkali metal of Na and K, more preferably Na.
<5>
The concentration of the silicate (component B) in the polishing liquid composition for sapphire plate is SiO 2 equivalent concentration (b), preferably 0.01% by mass or more, more preferably 0.05% by mass or more. More preferably, it is 0.1% by mass or more, still more preferably 0.2% by mass or more, preferably 1% by mass or less, more preferably 0.8% by mass or less, and still more preferably 0.5% by mass. The polishing composition for a sapphire plate according to any one of <1> to <4>, wherein the polishing composition is at most mass%, more preferably at most 0.3 mass%, even more preferably at most 0.25 mass%.
<6>
The polishing composition for a sapphire plate according to any one of <1> to <5>, wherein the silica particles are preferably colloidal silica.
<7>
<1> The content of Si in the silica particles is preferably 90% by mass or more, more preferably 95% by mass or more, and further preferably 99% by mass or more, in terms of anhydrous oxide (SiO 2 ). The polishing liquid composition for sapphire plates in any one of-<6>.
<8>
The average primary particle diameter of the silica particles is preferably 300 nm or less, more preferably 100 nm or less, further preferably 50 nm or less, preferably 10 nm or more, more preferably 15 nm or more, and further preferably 20 nm or more. The polishing composition for sapphire plates according to any one of <1> to <7>.
<9>
The concentration of the silica particles (component A) in the polishing liquid composition for sapphire plate is SiO 2 equivalent concentration (a), preferably 1% by mass or more, more preferably 5% by mass or more, and still more preferably 10% by mass. Or more, more preferably 15% by mass or more, preferably 50% by mass or less, more preferably 40% by mass or less, still more preferably 35% by mass or less, still more preferably 30% by mass or less, The polishing liquid composition for sapphire plates in any one of <1>-<8>.
<10>
The polishing composition for sapphire plates according to any one of <1> to <9>, wherein the pH at 25 ° C. is preferably 8 or more and 11 or less.
<11>
The pH at 25 ° C. is more preferably 9 or more, still more preferably 9.5 or more, still more preferably 9.8 or more, more preferably 11 or less, still more preferably 10.5 or less, and even more preferably 10 4 or less, and even more preferably 10.3 or less, the polishing composition for sapphire plates according to <10>.
<12>
The said sapphire board is a polishing liquid composition for sapphire boards in any one of said <1>-<11> which is a sapphire board for electronic components.
<13>
The said sapphire substrate for electronic components is a polishing liquid composition for sapphire plates as described in said <12> which is a sapphire substrate for LED.
<14>
The manufacturing method of a sapphire board including the process of grind | polishing a to-be-polished sapphire board using the polishing liquid composition for sapphire boards in any one of said <1>-<11>.
<15>
A to-be-polished sapphire board is a manufacturing method of the sapphire board as described in said <14> which is a to-be-polished sapphire substrate for electronic components.
<16>
The method for producing a sapphire plate according to <15>, wherein the sapphire substrate for polished electronic component is a sapphire substrate for LED to be polished.
<17>
The polishing method of a sapphire board including the process of grind | polishing a to-be-polished sapphire board using the polishing liquid composition for sapphire boards in any one of said <1>-<11>.
<18>
The method for polishing a sapphire plate according to <17>, wherein the sapphire plate to be polished is a sapphire substrate for an electronic component to be polished.
<19>
The method for polishing a sapphire plate according to <18>, wherein the sapphire substrate for electronic component to be polished is a sapphire substrate for LED to be polished.

以下、実施例により本発明の一例をより具体的に説明する。   Hereinafter, an example of the present invention will be described more specifically with reference to examples.

<実施例1>
室温、撹拌下、コロイダルシリカ水分散液(SiO2=40質量%、Na2O=0.4質量%、平均一次粒子径22nm、日揮触媒化成製)500gに4号珪酸ソーダ水溶液(SiO2=23.4質量%、Na2O=6.0質量%、n=4.0(カタログ値)、大阪珪曹製)10.7gを滴下し、更に水(超純水)500gで希釈することにより研磨液組成物を製造した。研磨液組成物中のコロイダルシリカのSiO2換算濃度(a)に対する、研磨液組成物中の4号珪酸ソーダのSiO2換算濃度(b)の比(SiO2換算濃度(b)/SiO2換算濃度(a))は0.0125であった。
<Example 1>
Under stirring at room temperature, colloidal silica aqueous dispersion (SiO 2 = 40 mass%, Na 2 O = 0.4 mass%, average primary particle diameter 22 nm, manufactured by JGC Catalysts & Chemicals) 500 g No. 4 sodium silicate aqueous solution (SiO 2 = 13.4 g of 23.4% by mass, Na 2 O = 6.0% by mass, n = 4.0 (catalog value), made by Osaka Silica) is added dropwise, and further diluted with 500 g of water (ultra pure water). Thus, a polishing composition was produced. Ratio of SiO 2 equivalent concentration (b) of No. 4 sodium silicate in the polishing composition to the SiO 2 equivalent concentration (a) of the colloidal silica in the polishing composition (SiO 2 equivalent concentration (b) / SiO 2 equivalent) The concentration (a)) was 0.0125.

<実施例2>
実施例1において、4号珪酸ソーダ水溶液(n=4.0)の代わりにn=4.5の珪酸ソーダ水溶液(SiO2=21.6質量%、Na2O=5.0質量%、n=4.5(カタログ値)、大阪珪曹製)11.6gを用いたこと以外は、実施例1と同様にして研磨液組成物を製造した。研磨液組成物中のコロイダルシリカのSiO2換算濃度(a)に対する、研磨液組成物中の4.5号珪酸ソーダのSiO2換算濃度(b)の比(SiO2換算濃度(b)/SiO2換算濃度(a))は0.0125であった。
<Example 2>
In Example 1, instead of No. 4 sodium silicate aqueous solution (n = 4.0), n = 4.5 sodium silicate aqueous solution (SiO 2 = 21.6 mass%, Na 2 O = 5.0 mass%, n = 4.5 (catalog value), manufactured by Osaka Silica Co., Ltd. A polishing composition was produced in the same manner as in Example 1 except that 11.6 g was used. Ratio of SiO 2 equivalent concentration (b) of No. 4.5 sodium silicate in the polishing composition to the SiO 2 equivalent concentration (a) of the colloidal silica in the polishing composition (SiO 2 equivalent concentration (b) / SiO 2 2 conversion density | concentration (a)) was 0.0125.

<実施例3>
実施例1において、4号珪酸ソーダ水溶液の使用量を2.1gとしたこと以外は、実施例1と同様にして研磨液組成物を製造した。研磨液組成物中のコロイダルシリカのSiO2換算濃度(a)に対する、研磨液組成物中の4号珪酸ソーダのSiO2換算濃度(b)の比(SiO2換算濃度(b)/SiO2換算濃度(a))は0.0025であった。
<Example 3>
In Example 1, a polishing composition was produced in the same manner as in Example 1 except that the amount of No. 4 sodium silicate aqueous solution used was 2.1 g. Ratio of SiO 2 equivalent concentration (b) of No. 4 sodium silicate in the polishing composition to the SiO 2 equivalent concentration (a) of the colloidal silica in the polishing composition (SiO 2 equivalent concentration (b) / SiO 2 equivalent) The concentration (a)) was 0.0025.

<比較例1>
実施例1において、4号珪酸ソーダを添加しなかったこと以外は、実施例1と同様にして研磨液組成物を製造した。
<Comparative Example 1>
In Example 1, a polishing composition was produced in the same manner as in Example 1 except that No. 4 sodium silicate was not added.

<比較例2>
実施例1において、4号珪酸ソーダ水溶液(n=4.0)の代わりに3号珪酸ソーダ水溶液(SiO2=28.7質量%、Na2O=9.2質量%、n=3.2(カタログ値)、大阪珪曹製)8.7gを用いたこと以外は、実施例1と同様にして研磨液組成物を製造した。研磨液組成物中のコロイダルシリカのSiO2換算濃度(a)に対する、研磨液組成物中の3号珪酸ソーダのSiO2換算濃度(b)の比(SiO2換算濃度(b)/SiO2換算濃度(a))は0.0125であった。
<Comparative example 2>
In Example 1, instead of No. 4 sodium silicate aqueous solution (n = 4.0), No. 3 sodium silicate aqueous solution (SiO 2 = 28.7 mass%, Na 2 O = 9.2 mass%, n = 3.2) A polishing composition was produced in the same manner as in Example 1 except that 8.7 g (catalog value), made by Osaka Silica) was used. Ratio of SiO 2 equivalent concentration (b) of No. 3 sodium silicate in the polishing composition to the SiO 2 equivalent concentration (a) of colloidal silica in the polishing composition (SiO 2 equivalent concentration (b) / SiO 2 equivalent) The concentration (a)) was 0.0125.

<比較例3>
実施例1において、4号珪酸ソーダ水溶液(n=4.0)の代わりに2号珪酸ソーダ水溶液(SiO2=28.6質量%、Na2O=11.7質量%、n=2.5(カタログ値)、大阪珪曹製)8.7gを用いたこと以外は、実施例1と同様にして研磨液組成物を製造した。研磨液組成物中のコロイダルシリカのSiO2換算濃度(a)に対する、研磨液組成物中の2号珪酸ソーダのSiO2換算濃度(b)の比(SiO2換算濃度(b)/SiO2換算濃度(a))は0.0125であった。
<Comparative Example 3>
In Example 1, in place of No. 4 sodium silicate aqueous solution (n = 4.0), No. 2 sodium silicate aqueous solution (SiO 2 = 28.6 mass%, Na 2 O = 11.7 mass%, n = 2.5) A polishing composition was produced in the same manner as in Example 1 except that 8.7 g (catalog value), made by Osaka Silica) was used. Ratio of SiO 2 equivalent concentration (b) of No. 2 sodium silicate in the polishing composition to the SiO 2 equivalent concentration (a) of colloidal silica in the polishing composition (SiO 2 equivalent concentration (b) / SiO 2 equivalent) The concentration (a)) was 0.0125.

<比較例4>
実施例1において、4号珪酸ソーダ水溶液(n=4.0)の代わりにコロイダルシリカ水分散液(カタロイドSI−550W、SiO2=20質量%、Na2O=0.8質量%、n=26(カタログ値)、日揮触媒化成製)12.5gを用いたこと以外は、実施例1と同様にして研磨液組成物を製造した。研磨液組成物中のコロイダルシリカ(SiO2=40質量%、Na2O=0.4質量%、平均一次粒子径22nm、日揮触媒化成製)のSiO2換算濃度(a)に対する、研磨液組成物中のコロイダルシリカ(カタロイドSI−550W、SiO2=20質量%、Na2O=0.8質量%、n=26、日揮触媒化成製)のSiO2換算濃度(b)の比(SiO2換算濃度(b)/SiO2換算濃度(a))は0.0125であった。
<Comparative example 4>
In Example 1, instead of No. 4 sodium silicate aqueous solution (n = 4.0), colloidal silica aqueous dispersion (cataloid SI-550W, SiO 2 = 20 mass%, Na 2 O = 0.8 mass%, n = A polishing composition was produced in the same manner as in Example 1 except that 12.5 g (26 (catalog value), JGC Catalysts & Chemicals) was used. Colloidal silica polishing composition (SiO 2 = 40 wt%, Na 2 O = 0.4 wt%, average primary particle diameter of 22 nm, JGC manufactured by Shokubai Kasei) for SiO 2 concentration in terms of (a), polishing composition Ratio of SiO 2 equivalent concentration (b) of colloidal silica (cataloid SI-550W, SiO 2 = 20 mass%, Na 2 O = 0.8 mass%, n = 26, manufactured by JGC Catalysts & Chemicals) in the product (SiO 2 The converted concentration (b) / SiO 2 converted concentration (a)) was 0.0125.

<シリカ粒子の平均一次粒子径の測定方法>
シリカ粒子の平均一次粒子径(nm)は、BET(窒素吸着)法によって算出される比表面積S(m2/g)を用いて下記式で算出した。
平均一次粒子径(nm)=2727/S
<Measuring method of average primary particle diameter of silica particles>
The average primary particle diameter (nm) of the silica particles was calculated by the following formula using the specific surface area S (m 2 / g) calculated by the BET (nitrogen adsorption) method.
Average primary particle diameter (nm) = 2727 / S

シリカ粒子の比表面積は、下記の[前処理]をした後、測定サンプル約0.1gを測定セルに小数点以下4桁まで精量し、比表面積の測定直前に110℃の雰囲気下で30分間乾燥した後、比表面積測定装置(マイクロメリティック自動比表面積測定装置 フローソーブIII2305、島津製作所製)を用いて窒素吸着法(BET法)により測定した。   The specific surface area of the silica particles is subjected to the following [pretreatment], and then about 0.1 g of a measurement sample is accurately weighed to 4 digits after the decimal point in a measurement cell, and immediately under the measurement at a specific temperature of 110 ° C. for 30 minutes. After drying, the surface area was measured by a nitrogen adsorption method (BET method) using a specific surface area measuring device (Micromeritic automatic specific surface area measuring device Flowsorb III 2305, manufactured by Shimadzu Corporation).

[前処理]
(a)スラリー状の研磨材を硝酸水溶液でpH2.5±0.1に調整する。
(b)pH2.5±0.1に調整されたスラリー状の研磨材をシャーレにとり150℃の熱風乾燥機内で1時間乾燥させる。
(c)乾燥後、得られた試料をメノウ乳鉢で細かく粉砕する。
(d)粉砕された試料を40℃のイオン交換水に懸濁させ、孔径1μmのメンブランフィルターで濾過する。
(e)フィルター上の濾過物を20gのイオン交換水(40℃)で5回洗浄する。
(f)濾過物が付着したフィルターをシャーレにとり、110℃の雰囲気下で4時間乾燥させる。
(g)乾燥した濾過物(砥粒)をフィルター屑が混入しないようにとり、乳鉢で細かく粉砕して測定サンプルを得た。
[Preprocessing]
(A) The slurry-like abrasive is adjusted to pH 2.5 ± 0.1 with an aqueous nitric acid solution.
(B) A slurry-like abrasive adjusted to pH 2.5 ± 0.1 is placed in a petri dish and dried in a hot air dryer at 150 ° C. for 1 hour.
(C) After drying, the obtained sample is finely ground in an agate mortar.
(D) The pulverized sample is suspended in ion exchange water at 40 ° C. and filtered through a membrane filter having a pore size of 1 μm.
(E) The filtrate on the filter is washed 5 times with 20 g of ion exchange water (40 ° C.).
(F) The filter with the filtrate attached is taken in a petri dish and dried in an atmosphere of 110 ° C. for 4 hours.
(G) The dried filtrate (abrasive grains) was taken so as not to be mixed with filter waste, and finely pulverized with a mortar to obtain a measurement sample.

<研磨液組成物のpH測定>
pHメーター(東亜電波工業社製、HM−30G)を用い、25℃にて研磨液組成物のpHを測定した。
<Measurement of pH of polishing composition>
The pH of the polishing composition was measured at 25 ° C. using a pH meter (manufactured by Toa Denpa Kogyo Co., Ltd., HM-30G).

<研磨評価>
2インチのサファイア基板(c面)に対して下記の研磨条件で、15分間、研磨を行った。そして、サファイア基板の研磨前後の重量変化を求め、サファイア密度(3.98g/cm3)、サファイア基板面積(20.3cm2)から研磨速度(μm/h)を算出し、表1および図1に示した。尚、サファイア基板を、下記の研磨条件で研磨した後、超純水に浸漬し、次いで、流水(超純水)で洗い流し、乾燥させた。また、図1では、SiO2換算濃度比(SiO2換算濃度(b)/SiO2換算濃度(a))が同じ値(0.0125)である、実施例1、2、比較例2〜4についてプロットした。
<Polishing evaluation>
The 2-inch sapphire substrate (c surface) was polished for 15 minutes under the following polishing conditions. Then, the weight change before and after polishing of the sapphire substrate was obtained, and the polishing rate (μm / h) was calculated from the sapphire density (3.98 g / cm 3 ) and the sapphire substrate area (20.3 cm 2 ). It was shown to. The sapphire substrate was polished under the following polishing conditions, then immersed in ultrapure water, then rinsed with running water (ultrapure water) and dried. In FIG. 1, Examples 1 and 2 and Comparative Examples 2 to 4 in which the SiO 2 equivalent concentration ratio (SiO 2 equivalent concentration (b) / SiO 2 equivalent concentration (a)) is the same value (0.0125). Was plotted.

(研磨条件)
片面研磨機(テクノライズ製TR15M−TRK1、定盤径38cm)
不織布研磨パッド(ニッタハース製SUBA800)
研磨荷重189g/cm2
定盤回転数120rpm
キャリア回転数120rpm
研磨液流量15mL/min(掛け流し)
(Polishing conditions)
Single-side polishing machine (TR15M-TRK1, made by Technolize, platen diameter 38cm)
Nonwoven polishing pad (Nitta Haas SUBA800)
Polishing load 189g / cm 2
Plate rotation speed 120rpm
Carrier rotation speed 120rpm
Polishing fluid flow rate 15mL / min (flowing)

Figure 0006007094
Figure 0006007094

表1及び図1に示されるように、無水酸化物換算組成M2O・nSiO2において、Mがアルカリ金属であり、n(モル比(SiO2/Na2O))が3.9〜10である、珪酸塩が研磨液組成物に含まれ、SiO2換算濃度比(SiO2換算濃度(b)/SiO2換算濃度(a))が0.001〜0.05の範囲内の値であると、珪酸塩を含まないか、又はnが上記数値範囲(3.9〜10)外である場合よりも、研磨速度が速いことが確認できた。 As shown in Table 1 and FIG. 1, in the anhydrous oxide equivalent composition M 2 O · nSiO 2 , M is an alkali metal, and n (molar ratio (SiO 2 / Na 2 O)) is 3.9 to 10 The silicate is contained in the polishing composition, and the SiO 2 equivalent concentration ratio (SiO 2 equivalent concentration (b) / SiO 2 equivalent concentration (a)) is a value within the range of 0.001 to 0.05. When it exists, it has confirmed that a polishing rate was quicker than the case where a silicate is not included or n is outside the said numerical range (3.9-10).

以上説明したとおり、本発明の研磨液組成物を用いた被研磨サファイア板の研磨において、研磨速度が速い。したがって、本発明の研磨液組成物を用いれば、電子部品用サファイア基板等のサファイア板の生産性が向上する。   As explained above, in the polishing of the polished sapphire plate using the polishing composition of the present invention, the polishing rate is fast. Therefore, if the polishing liquid composition of this invention is used, productivity of sapphire plates, such as a sapphire board for electronic components, will improve.

Claims (5)

シリカ粒子(成分A)と、珪酸塩(成分B)と、水系媒体(成分C)とを含み、
前記珪酸塩(成分B)は、無水酸化物換算組成M2O・nSiO2において、Mはアルカリ金属であり、nは3.9以上10以下であり、
前記シリカ粒子のSiO2換算濃度(a)と前記珪酸塩のSiO2換算濃度(b)の比(前記SiO2換算濃度(b)/前記SiO2換算濃度(a))が、0.001以上0.05以下である、サファイア板用研磨液組成物。
Silica particles (component A), silicate (component B), and aqueous medium (component C),
In the anhydrous oxide equivalent composition M 2 O · nSiO 2 , the silicate (component B) is an alkali metal, and n is 3.9 or more and 10 or less,
Wherein the ratio of the SiO 2 concentration in terms (a) and in terms of SiO 2 concentration of the silicate silica particles (b) (the terms of SiO 2 concentration (b) / the SiO 2 concentration in terms (a)) is 0.001 or more Polishing liquid composition for sapphire plates which is 0.05 or less.
25℃におけるpHが8以上11以下である、請求項1に記載のサファイア板用研磨液組成物。   The polishing composition for sapphire plates according to claim 1, wherein the pH at 25 ° C is 8 or more and 11 or less. 前記シリカ粒子のSiO2換算濃度(a)が1質量%以上50質量%以下、前記珪酸塩(B)のSiO2換算濃度(b)が0.01質量%以上1質量%質量%以下である、請求項1又は2に記載のサファイア板用研磨液組成物。 The SiO 2 equivalent concentration (a) of the silica particles is 1% by mass or more and 50% by mass or less, and the SiO 2 equivalent concentration (b) of the silicate (B) is 0.01% by mass or more and 1% by mass or less. The polishing composition for sapphire plates according to claim 1 or 2. 請求項1〜3のいずれかの項に記載のサファイア板用研磨液組成物を用いて被研磨サファイア板を研磨する工程を含む、サファイア板の製造方法。   The manufacturing method of a sapphire board including the process of grind | polishing a to-be-polished sapphire board using the polishing liquid composition for sapphire boards in any one of Claims 1-3. 請求項1〜3のいずれかの項に記載のサファイア板用研磨液組成物を用いて被研磨サファイア板を研磨する工程を含む、サファイア板の研磨方法。   The polishing method of a sapphire board including the process of grind | polishing a to-be-polished sapphire board using the polishing liquid composition for sapphire boards in any one of Claims 1-3.
JP2012275988A 2012-12-18 2012-12-18 Polishing liquid composition for sapphire plate Active JP6007094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012275988A JP6007094B2 (en) 2012-12-18 2012-12-18 Polishing liquid composition for sapphire plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012275988A JP6007094B2 (en) 2012-12-18 2012-12-18 Polishing liquid composition for sapphire plate

Publications (2)

Publication Number Publication Date
JP2014120676A JP2014120676A (en) 2014-06-30
JP6007094B2 true JP6007094B2 (en) 2016-10-12

Family

ID=51175257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012275988A Active JP6007094B2 (en) 2012-12-18 2012-12-18 Polishing liquid composition for sapphire plate

Country Status (1)

Country Link
JP (1) JP6007094B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160060487A1 (en) * 2014-08-29 2016-03-03 Cabot Microelectronics Corporation Composition and method for polishing a sapphire surface

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY133700A (en) * 1996-05-15 2007-11-30 Kobe Steel Ltd Polishing fluid composition and polishing method
JP3521614B2 (en) * 1996-05-15 2004-04-19 株式会社神戸製鋼所 Polishing liquid composition for silicon
JP2002338951A (en) * 2001-05-18 2002-11-27 Nippon Chem Ind Co Ltd Hydrothermally treated colloidal silica for polishing agent
JP4008219B2 (en) * 2001-09-27 2007-11-14 触媒化成工業株式会社 Abrasive
US20070117497A1 (en) * 2005-11-22 2007-05-24 Cabot Microelectronics Corporation Friction reducing aid for CMP
JP5098483B2 (en) * 2007-07-25 2012-12-12 住友金属鉱山株式会社 Polishing method of sapphire substrate

Also Published As

Publication number Publication date
JP2014120676A (en) 2014-06-30

Similar Documents

Publication Publication Date Title
KR101371870B1 (en) Silicon carbide polishing method utilizing water-soluble oxidizers
KR101281879B1 (en) Silicon carbide polishing method utilizing water-soluble oxidizers
CN102190962B (en) Polishing composition and utilize the finishing method of said composition
JP5972860B2 (en) Polishing composition
CN107987732B (en) Polishing solution for sapphire plane polishing and preparation method thereof
CN104835731A (en) Quick polishing method for large-dimension 4H,6H-SiC wafer
JP6223786B2 (en) Polishing liquid composition for hard and brittle materials
CN104745146A (en) Nano-composite abrasive particle sol containing cerium-doped silicon dioxide, polishing agent and preparation method thereof
WO2013008751A1 (en) Method for producing ceramic composite for photoconversion
CN104877633A (en) Magnesium-element-doped silicon dioxide sol compound abrasive grains, polishing solution and preparation method thereof
JP6560155B2 (en) Polishing agent for synthetic quartz glass substrate and method for polishing synthetic quartz glass substrate
JP2017190363A (en) Polishing liquid composition for sapphire plate
Wang et al. Effect of a pH regulator on sapphire substrate CMP
JP6393231B2 (en) Polishing agent for synthetic quartz glass substrate and method for polishing synthetic quartz glass substrate
JP6007094B2 (en) Polishing liquid composition for sapphire plate
KR20120073327A (en) Chemical-mechanical polishing liquid, and semiconductor substrate manufacturing method and polishing method using said polishing liquid
WO2019207926A1 (en) Polishing agent for synthetic quartz glass substrates, method for producing same, and method for polishing synthetic quartz glass substrate
WO2016060113A1 (en) Polishing liquid composition for sapphire plate
JP4291665B2 (en) Abrasive composition for siliceous material and polishing method using the same
JP2013227168A (en) Colloidal silica having silica particle with unevenness on the surface, method for manufacturing the same, and polishing material using the same
JP2017197670A (en) Polishing liquid for sapphire, stock solution, and polishing method
JP6561680B2 (en) Polishing liquid for sapphire, storage liquid, and polishing method
WO2016033417A1 (en) Composition and method for polishing a sapphire surface
KR102660018B1 (en) Abrasive for synthetic quartz glass substrate, manufacturing method thereof, and polishing method for synthetic quartz glass substrate
JP6524799B2 (en) Polishing solution for sapphire, storage solution and polishing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160912

R151 Written notification of patent or utility model registration

Ref document number: 6007094

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250