JP6006127B2 - Optical scanning device - Google Patents

Optical scanning device Download PDF

Info

Publication number
JP6006127B2
JP6006127B2 JP2013014230A JP2013014230A JP6006127B2 JP 6006127 B2 JP6006127 B2 JP 6006127B2 JP 2013014230 A JP2013014230 A JP 2013014230A JP 2013014230 A JP2013014230 A JP 2013014230A JP 6006127 B2 JP6006127 B2 JP 6006127B2
Authority
JP
Japan
Prior art keywords
optical fiber
vibration
unit
scanning
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013014230A
Other languages
Japanese (ja)
Other versions
JP2014145899A (en
Inventor
雅史 山田
雅史 山田
矢島 浩義
浩義 矢島
藤原 真人
真人 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2013014230A priority Critical patent/JP6006127B2/en
Publication of JP2014145899A publication Critical patent/JP2014145899A/en
Application granted granted Critical
Publication of JP6006127B2 publication Critical patent/JP6006127B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Camera Bodies And Camera Details Or Accessories (AREA)
  • Exposure Control For Cameras (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Description

本発明は、光走査装置に関するものである。   The present invention relates to an optical scanning device.

例えば、医療用内視鏡や工業用内視鏡として、撮像ユニットにCCDやCMOS等の固体撮像素子を用いた電子内視鏡が知られている。しかし、電子内視鏡は、固体撮像素子が内視鏡先端部に配置されることから、内視鏡先端部の細径化に限界がある。そこで、電子内視鏡よりも内視鏡先端部の細径化が可能な内視鏡として、固体撮像素子を用いることなく、被観察物に光を照射する光ファイバの射出端部を高速で振動させて被観察物を走査することにより画像を取得する走査型内視鏡が提案されている(例えば、特許文献1参照)。   For example, as a medical endoscope or an industrial endoscope, an electronic endoscope using a solid-state imaging device such as a CCD or a CMOS as an imaging unit is known. However, the electronic endoscope has a limit in reducing the diameter of the endoscope distal end because the solid-state imaging device is disposed at the endoscope distal end. Therefore, as an endoscope in which the diameter of the endoscope tip can be made smaller than that of an electronic endoscope, the exit end of the optical fiber that irradiates light to the object to be observed is used at high speed without using a solid-state imaging device. There has been proposed a scanning endoscope that acquires an image by scanning an object to be observed by vibration (see, for example, Patent Document 1).

特許文献1に開示の走査型内視鏡は、光ファイバの射出端部に取り付けられた永久磁石と、永久磁石の周囲のハウジングの内壁に配置された4つのコイルとを備える。4つのコイルは、対向する一方の2つのコイルが光ファイバの射出端部をX軸方向に駆動するXコイルを構成し、他方の2つのコイルが光ファイバの射出端部をX軸方向と直交するY軸方向に駆動するYコイルを構成する。Xコイルには、光ファイバの射出端部及び永久磁石を含む被振動部の共振周波数に相当する周波数の電流が給電される。Yコイルには、共振周波数よりも低周波数の電流が給電される。これにより、光ファイバの射出端部及び永久磁石を含む被振動部が、X軸方向に共振周波数で高速に振動しながらY軸方向に低速で振動して、被観察物がラスタ走査される。   The scanning endoscope disclosed in Patent Document 1 includes a permanent magnet attached to an emission end portion of an optical fiber, and four coils arranged on an inner wall of a housing around the permanent magnet. The four coils constitute an X coil in which one of the two opposing coils drives the exit end of the optical fiber in the X-axis direction, and the other two coils orthogonally intersect the exit end of the optical fiber with the X-axis direction. A Y coil driven in the Y-axis direction is configured. The X coil is fed with a current having a frequency corresponding to the resonance frequency of the vibrating end including the exit end of the optical fiber and the permanent magnet. A current having a frequency lower than the resonance frequency is supplied to the Y coil. As a result, the vibrating portion including the emission end of the optical fiber and the permanent magnet vibrates at high speed at the resonance frequency in the X-axis direction and vibrates at low speed in the Y-axis direction, and the object to be observed is raster scanned.

特開2008−116922号公報JP 2008-116922 A

しかしながら、特許文献1に開示の構成においては、被振動部をX軸方向及びY軸方向に一定の振幅で振動させて被観察物をラスタ走査すると、被振動部の振動軌跡つまり被観察物への照射光の軌跡が、画像の取得走査範囲において、X軸方向及びY軸方向に必ずしも安定して直交せず、画像が歪む場合がある。その原因としては、被振動部がX軸方向やY軸方向に対称に構成されていなかったり、コイルが光ファイバに対して傾いていたり、していること等が想定される。このような現象は、ラスタ走査に限らず、スパイラル走査等の他の走査を行う場合にも同様に生じるものである。   However, in the configuration disclosed in Patent Document 1, when the object to be observed is raster-scanned with a constant amplitude in the X-axis direction and the Y-axis direction, the vibration locus of the object to be observed, that is, the object to be observed is detected. The trajectory of the irradiating light may not be stably orthogonal to the X-axis direction and the Y-axis direction in the image acquisition scanning range, and the image may be distorted. As the cause, it is assumed that the vibrating part is not configured symmetrically in the X-axis direction or the Y-axis direction, the coil is inclined with respect to the optical fiber, or the like. Such a phenomenon occurs not only in raster scanning but also in other scanning such as spiral scanning.

したがって、かかる点に鑑みてなされた本発明の目的は、簡単な構成で被振動部を所望の方向に正確に振動可能な光走査装置を提供することにある。   Accordingly, an object of the present invention made in view of such a point is to provide an optical scanning device capable of accurately vibrating a vibrating portion in a desired direction with a simple configuration.

上記目的を達成する本発明に係る光走査装置は、
光ファイバの射出端部を走査部により振動させながら、前記光ファイバから射出される光を物体に照射して前記物体を2次元走査する光走査装置であって、
前記光ファイバの前記射出端部を含む被振動部の振動特性を調整する振動調整部を備え
前記振動調整部は、前記被振動部の静止位置を、少なくとも前記光ファイバによる2次元走査面内で直交する方向の第1の軸又は第2の軸の軸回りに調整して、前記振動特性を調整するものである。
An optical scanning device according to the present invention for achieving the above object is
An optical scanning device that two-dimensionally scans the object by irradiating the object with light emitted from the optical fiber while vibrating the exit end of the optical fiber by a scanning unit,
A vibration adjustment unit that adjusts vibration characteristics of a portion to be vibrated including the exit end of the optical fiber ;
The vibration adjusting unit adjusts the stationary position of the vibration-receiving portion at least about the first axis or the second axis in the direction orthogonal to the two-dimensional scanning plane of the optical fiber, and the vibration characteristics Is to adjust .

前記走査部は、前記光ファイバの前記射出端部に設けられて該射出端部とともに前記被振動部を構成する永久磁石と、該永久磁石の周囲に配置された複数のコイルとを備えて構成することができる。   The scanning unit includes a permanent magnet that is provided at the exit end of the optical fiber and that forms the vibrated portion together with the exit end, and a plurality of coils that are disposed around the permanent magnet. can do.

さらに、上記目的を達成する本発明に係る光走査装置は、
光ファイバの射出端部を走査部により振動させながら、前記光ファイバから射出される光を物体に照射して前記物体を2次元走査する光走査装置であって、
前記光ファイバの前記射出端部を含む被振動部の振動特性を調整する振動調整部を備え、
前記走査部は、前記光ファイバの前記射出端部に設けられて該射出端部とともに前記被振動部を構成する永久磁石と、該永久磁石の周囲に配置された複数のコイルとを備え、
前記振動調整部は、前記被振動部の静止位置における前記永久磁石に対して、前記光ファイバによる2次元走査面内で直交する方向の第1の軸又は第2の軸上で、少なくとも1つの前記コイルの位置を調整して、前記振動特性を調整するものである
前記振動調整部は、前記コイルが形成された基板を前記第1の軸又は第2の軸方向にシフトまたは変位させて、前記コイルの位置を調整してもよい。
Furthermore, an optical scanning device according to the present invention that achieves the above object is provided as follows:
An optical scanning device that two-dimensionally scans the object by irradiating the object with light emitted from the optical fiber while vibrating the exit end of the optical fiber by a scanning unit,
A vibration adjustment unit that adjusts vibration characteristics of a portion to be vibrated including the exit end of the optical fiber;
The scanning unit includes a permanent magnet that is provided at the exit end of the optical fiber and that forms the vibrated portion together with the exit end, and a plurality of coils disposed around the permanent magnet,
The vibration adjusting unit has at least one on a first axis or a second axis in a direction orthogonal to the permanent magnet at a stationary position of the vibrating part in a two-dimensional scanning plane by the optical fiber . by adjusting the position of the coil and adjusts the vibrating characteristics.
The vibration adjustment unit may adjust the position of the coil by shifting or displacing the substrate on which the coil is formed in the first axis direction or the second axis direction.

本発明によれば、簡単な構成で被振動部を所望の方向に正確に振動可能な光走査装置を提供することができる。   According to the present invention, it is possible to provide an optical scanning device that can vibrate a vibrating part accurately in a desired direction with a simple configuration.

第1実施の形態に係る光走査装置の一例である光走査型内視鏡装置の概略構成を示すブロック図である。1 is a block diagram illustrating a schematic configuration of an optical scanning endoscope apparatus that is an example of an optical scanning apparatus according to a first embodiment. FIG. 図1の光走査型内視鏡本体を概略的に示す概観図である。FIG. 2 is an overview diagram schematically showing the optical scanning endoscope main body of FIG. 1. 図2の光走査型内視鏡本体の先端部の概略構成を示す図である。It is a figure which shows schematic structure of the front-end | tip part of the optical scanning endoscope main body of FIG. 図3の振動調整部の概略構成を示す図である。It is a figure which shows schematic structure of the vibration adjustment part of FIG. 第2実施の形態に係る光走査型内視鏡装置の振動調整部の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the vibration adjustment part of the optical scanning endoscope apparatus which concerns on 2nd Embodiment. 図5の角型チューブの展開図である。It is an expanded view of the square tube of FIG. 第3実施の形態に係る光走査型内視鏡装置の振動調整部の概略構成を示す図である。It is a figure which shows schematic structure of the vibration adjustment part of the optical scanning endoscope apparatus which concerns on 3rd Embodiment. 第4実施の形態に係る光走査型内視鏡装置の振動調整部の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the vibration adjustment part of the optical scanning endoscope apparatus which concerns on 4th Embodiment. 第4実施の形態の変形例を示す図である。It is a figure which shows the modification of 4th Embodiment.

以下、本発明の実施の形態について、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(第1実施の形態)
図1は、第1実施の形態に係る光走査装置の一例である光走査型内視鏡装置の概略構成を示すブロック図である。光走査型内視鏡装置10は、光走査型内視鏡本体20と、光源部30と、検出部40と、駆動電流生成部50と、制御部60と、表示部61と、入力部62とを含んで構成される。光源部30と光走査型内視鏡本体20との間は、例えばシングルモードファイバからなる照明用光ファイバ11により光学的に接続される。検出部40と光走査型内視鏡本体20との間は、例えばマルチモードファイバからなる検出用光ファイババンドル12により光学的に接続される。なお、光源部30、検出部40、駆動電流生成部50及び制御部60は、同一の筐体内に収納されていても良く、また、別々の筐体に収納されていても良い。
(First embodiment)
FIG. 1 is a block diagram illustrating a schematic configuration of an optical scanning endoscope apparatus that is an example of the optical scanning apparatus according to the first embodiment. The optical scanning endoscope apparatus 10 includes an optical scanning endoscope body 20, a light source unit 30, a detection unit 40, a drive current generation unit 50, a control unit 60, a display unit 61, and an input unit 62. It is comprised including. The light source unit 30 and the optical scanning endoscope body 20 are optically connected by an illumination optical fiber 11 made of, for example, a single mode fiber. The detection unit 40 and the optical scanning endoscope body 20 are optically connected by a detection optical fiber bundle 12 made of, for example, a multimode fiber. The light source unit 30, the detection unit 40, the drive current generation unit 50, and the control unit 60 may be housed in the same housing, or may be housed in separate housings.

光源部30は、例えば赤、緑及び青の三原色のCW(連続発振)レーザ光を射出する3つのレーザ光源からの光を合波して白色光として出射する。レーザ光源としては、例えばDPSSレーザ(半導体励起固体レーザ)やレーザダイオードを使用することができる。もちろん、光源部30の構成はこれに限られず、1つのレーザ光源を用いるものであっても、他の複数の光源を用いるものであっても良い。   The light source unit 30 combines light from three laser light sources that emit CW (continuous oscillation) laser light of, for example, three primary colors of red, green, and blue, and emits it as white light. As the laser light source, for example, a DPSS laser (semiconductor excitation solid-state laser) or a laser diode can be used. Of course, the configuration of the light source unit 30 is not limited to this, and a single laser light source or a plurality of other light sources may be used.

光走査型内視鏡本体20は、照明用光ファイバ11の射出端部を走査部21により振動させながら、光源部30から照明用光ファイバ11を経て射出される光を被観察物100に照射して被観察物100を2次元走査(本実施の形態ではラスタ走査)し、その走査により得られた信号光を集光して、検出用光ファイババンドル12を経て検出部40に伝送する。ここで、駆動電流生成部50は、制御部60からの制御に基づいて走査部21に対して配線ケーブル13を介して所要の振動電流を給電する。   The optical scanning endoscope main body 20 irradiates the observation object 100 with light emitted from the light source unit 30 through the illumination optical fiber 11 while vibrating the emission end of the illumination optical fiber 11 by the scanning unit 21. Then, the object to be observed 100 is two-dimensionally scanned (in this embodiment, raster scanning), and the signal light obtained by the scanning is condensed and transmitted to the detection unit 40 via the detection optical fiber bundle 12. Here, the drive current generation unit 50 supplies a required oscillating current to the scanning unit 21 via the wiring cable 13 based on the control from the control unit 60.

検出部40は、検出用光ファイババンドル12により伝送された信号光をスペクトル成分に分離して、分離した信号光を電気信号に光電変換する。制御部60は、光源部30、検出部40及び駆動電流生成部50を同期制御するとともに、検出部40により出力された電気信号を処理して、表示部61に画像を表示する。また、制御部60は、入力部62からの入力操作による入力信号に基づいて、走査速度や表示画像の明るさ等、種々の設定を行う。   The detection unit 40 separates the signal light transmitted by the detection optical fiber bundle 12 into spectral components, and photoelectrically converts the separated signal light into an electrical signal. The control unit 60 synchronously controls the light source unit 30, the detection unit 40, and the drive current generation unit 50, processes the electrical signal output by the detection unit 40, and displays an image on the display unit 61. In addition, the control unit 60 performs various settings such as the scanning speed and the brightness of the display image based on the input signal from the input operation from the input unit 62.

図2は、光走査型内視鏡本体20を概略的に示す概観図である。光走査型内視鏡本体20は、操作部22及び可撓性の挿入部23を備える。光源部30からの照明用光ファイバ11、検出部40からの検出用光ファイババンドル12、及び、駆動電流生成部50からの配線ケーブル13は、挿入部23の内部を通して先端部24(図2に破線で示す部分)まで導かれている。先端部24は、操作部22により湾曲操作される。   FIG. 2 is a schematic view schematically showing the optical scanning endoscope body 20. The optical scanning endoscope body 20 includes an operation unit 22 and a flexible insertion unit 23. The illumination optical fiber 11 from the light source 30, the detection optical fiber bundle 12 from the detection unit 40, and the wiring cable 13 from the drive current generation unit 50 pass through the inside of the insertion unit 23 to the tip 24 (see FIG. 2). (The portion indicated by a broken line). The distal end portion 24 is bent by the operation portion 22.

図3(a)及び(b)は、図2の光走査型内視鏡本体20の先端部24の概略構成を示すもので、図3(a)は断面図で、図3(b)は部分拡大斜視図である。先端部24には、走査部21、投影用レンズ25a、25b及び図示しない検出用レンズ(図示せず)が設けられているとともに、照明用光ファイバ11及び検出用光ファイババンドル12が延在している。   3 (a) and 3 (b) show a schematic configuration of the distal end portion 24 of the optical scanning endoscope main body 20 of FIG. 2, FIG. 3 (a) is a cross-sectional view, and FIG. It is a partial expansion perspective view. The distal end portion 24 is provided with a scanning portion 21, projection lenses 25a and 25b, and a detection lens (not shown) (not shown), and the illumination optical fiber 11 and the detection optical fiber bundle 12 extend. ing.

走査部21は、角型チューブ26、コイル27a〜27d及び永久磁石28を含んで構成される。角型チューブ26は、先端部24の中心軸線に沿って長手方向に延びる中空の四角柱状のチューブである。角型チューブ26の後端部は、振動調整部70に固定される。振動調整部70は、支持部材29を介して挿入部23内に固定される。なお、角型チューブ26に代えて、円筒状や他の形状のチューブを用いても良い。   The scanning unit 21 includes a square tube 26, coils 27 a to 27 d, and a permanent magnet 28. The square tube 26 is a hollow square columnar tube that extends in the longitudinal direction along the central axis of the distal end portion 24. The rear end portion of the square tube 26 is fixed to the vibration adjusting unit 70. The vibration adjustment unit 70 is fixed in the insertion unit 23 via the support member 29. In addition, instead of the square tube 26, a tube having a cylindrical shape or another shape may be used.

照明用光ファイバ11は、射出端部がフェルール等の保持部材11bを介して振動調整部70に支持される。つまり、照明用光ファイバ11は、保持部材11bから突出する射出端部が一定の範囲で振動可能に振動調整部70に支持される。一方、検出用光ファイババンドル12は、先端部24の外周部を通るように配置されている。   The illumination optical fiber 11 is supported by the vibration adjusting unit 70 at the exit end via a holding member 11b such as a ferrule. That is, the illumination optical fiber 11 is supported by the vibration adjusting unit 70 so that the exit end protruding from the holding member 11b can vibrate within a certain range. On the other hand, the detection optical fiber bundle 12 is disposed so as to pass through the outer peripheral portion of the distal end portion 24.

投影用レンズ25a、25b及び検出用レンズは、先端部24の先端面近傍に配置される。投影用レンズ25a、25bは、照明用光ファイバ11の射出端面11aから射出されたレーザ光が、被観察物100上にほぼ集光するように構成されている。また、検出用レンズは、被観察物100上に集光されたレーザ光が、被観察物100により反射、散乱、屈折等をした光(被観察物100と相互作用した光)又は蛍光等を検出光として取り込み、検出用レンズの後に配置された検出用光ファイババンドル12に集光、結合させるように配置される。なお、投影用レンズは、2枚構成に限られず、1枚や他の複数枚のレンズにより構成されても良い。   The projection lenses 25 a and 25 b and the detection lens are disposed in the vicinity of the distal end surface of the distal end portion 24. The projection lenses 25 a and 25 b are configured so that the laser light emitted from the emission end face 11 a of the illumination optical fiber 11 is substantially condensed on the object to be observed 100. In addition, the detection lens emits light (light interacting with the object to be observed 100), fluorescence, or the like that is reflected, scattered, or refracted by the object to be observed 100 from the laser light collected on the object to be observed 100. It is taken in as detection light and arranged so as to be condensed and coupled to the detection optical fiber bundle 12 arranged after the detection lens. Note that the projection lens is not limited to a two-lens configuration, and may be composed of one lens or a plurality of other lenses.

照明用光ファイバ11の支持部11bと射出端面11aとの間の一部には、照明用光ファイバ11の軸方向に着磁された永久磁石28(磁性体)が配置される。永久磁石28は、照明用光ファイバ11の軸方向に形成された貫通孔を有し、照明用光ファイバ11が貫通孔を通った状態で、照明用光ファイバ11に接着固定されている。また、角型チューブ26の永久磁石28の一方の極と対向する部分には、螺旋状にプリントされたコイル27a〜27dが配置されている。コイル27a及びコイル27cは角型チューブ26の一方の対向する面に配置され、コイル27b及びコイル27dは角型チューブ26の他方の対向する面に配置される。コイル27a及びコイル27cの中心を結ぶ線と、コイル27b及びコイル27dの中心を結ぶ線とは、角型チューブ26のほぼ中心軸線付近で直交する。   A permanent magnet 28 (magnetic material) magnetized in the axial direction of the illumination optical fiber 11 is disposed in a part between the support portion 11b of the illumination optical fiber 11 and the exit end face 11a. The permanent magnet 28 has a through hole formed in the axial direction of the illumination optical fiber 11, and is bonded and fixed to the illumination optical fiber 11 with the illumination optical fiber 11 passing through the through hole. In addition, coils 27 a to 27 d printed in a spiral shape are arranged at a portion of the square tube 26 facing the one pole of the permanent magnet 28. The coil 27a and the coil 27c are disposed on one opposing surface of the rectangular tube 26, and the coil 27b and the coil 27d are disposed on the other opposing surface of the rectangular tube 26. The line connecting the centers of the coils 27 a and 27 c and the line connecting the centers of the coils 27 b and 27 d are orthogonal to each other in the vicinity of the substantially central axis of the square tube 26.

駆動電流生成部50からの配線ケーブル13は、挿入部23の内部を通ってコイル27a〜27dに接続される。配線ケーブル13は、例えば2対のケーブルを有する。コイル27a及びコイル27cは、一方の対のケーブルに同一方向の磁場が発生するように直列又は並列に接続される。コイル27a及びコイル27cには、例えば照明用光ファイバ11の射出端部及び永久磁石28を含む被振動部の共振周波数に相当する周波数の電流が給電される。また、コイル27b及びコイル27dは、他方の対のケーブルに同一方向の磁場が発生するように直列又は並列に接続される。コイル27b及びコイル27dには、被振動部の共振周波数に相当する周波数よりも低い周波数の電流が給電される。   The wiring cable 13 from the drive current generation unit 50 passes through the insertion unit 23 and is connected to the coils 27a to 27d. The wiring cable 13 has, for example, two pairs of cables. The coil 27a and the coil 27c are connected in series or in parallel so that a magnetic field in the same direction is generated in one pair of cables. The coil 27a and the coil 27c are supplied with a current having a frequency corresponding to the resonance frequency of the vibrating portion including the emission end of the illumination optical fiber 11 and the permanent magnet 28, for example. The coil 27b and the coil 27d are connected in series or in parallel so that a magnetic field in the same direction is generated in the other pair of cables. The coil 27b and the coil 27d are fed with a current having a frequency lower than the frequency corresponding to the resonance frequency of the vibration part.

これにより、角型チューブ26には、コイル27a及びコイル27cの中心を結ぶ線の方向(例えば、X軸方向)に偏向磁場が発生するとともに、コイル27b及びコイル27dの中心を結ぶ線の方向(例えば、Y軸方向)に偏向磁場が発生する。そして、X軸方向の偏向磁場及びY軸方向の偏向磁場と永久磁石28の磁束との相互作用により、照明用光ファイバ11の射出端部が各磁場強度の時間的変化に応じて振動して、被観察物100が照明用光ファイバ11を経て射出される光によりラスタ走査される。   Thereby, a deflection magnetic field is generated in the square tube 26 in the direction of the line connecting the centers of the coils 27a and 27c (for example, the X-axis direction), and the direction of the line connecting the centers of the coils 27b and 27d ( For example, a deflection magnetic field is generated in the Y-axis direction). Then, due to the interaction between the deflection magnetic field in the X-axis direction and the deflection magnetic field in the Y-axis direction and the magnetic flux of the permanent magnet 28, the exit end of the illumination optical fiber 11 vibrates according to the temporal change of each magnetic field strength. The object to be observed 100 is raster-scanned by light emitted through the illumination optical fiber 11.

本実施の形態では、振動調整部70により、照明用光ファイバ11の保持部材11aから突出する射出端部及び永久磁石28を含む被振動部の振動特性が調整可能に構成される。以下、図4(a)〜(c)に示す模式図を参照して、振動調整部70の構成について説明する。   In the present embodiment, the vibration adjusting unit 70 is configured to be able to adjust the vibration characteristics of the vibration-receiving portion including the emission end portion protruding from the holding member 11 a of the illumination optical fiber 11 and the permanent magnet 28. Hereinafter, the configuration of the vibration adjusting unit 70 will be described with reference to the schematic diagrams shown in FIGS.

図4(a)及び(b)は、振動調整部70を一部切り欠いて示す側面図及び平面図である。図4(c)は、振動調整部70を照明用光ファイバ11の射出端面11a側から見た図である。振動調整部70は、断面四角形状の硬質の筒状部材71、ヨー方向調整ネジ72、ピッチ方向調整ネジ73、弾性部材74を含んで構成される。ヨー方向調整ネジ72は、X軸方向に延在するように筒状部材71に螺合される。ピッチ方向調整ネジ73は、筒状部材71の軸方向において、ヨー方向調整ネジ72とは異なる位置においてY軸方向に延在するように筒状部材71に螺合される。弾性部材74は、保持部材11bをヨー方向調整ネジ72及びピッチ方向調整ネジ73のそれぞれの先端に押圧するように、保持部材11bと筒状部材71の内壁面との間に配置される。   4A and 4B are a side view and a plan view, respectively, showing the vibration adjusting unit 70 with a part cut away. FIG. 4C is a view of the vibration adjusting unit 70 as viewed from the emission end face 11 a side of the illumination optical fiber 11. The vibration adjusting unit 70 includes a rigid cylindrical member 71 having a square cross section, a yaw direction adjusting screw 72, a pitch direction adjusting screw 73, and an elastic member 74. The yaw direction adjusting screw 72 is screwed to the cylindrical member 71 so as to extend in the X-axis direction. The pitch direction adjusting screw 73 is screwed into the cylindrical member 71 so as to extend in the Y axis direction at a position different from the yaw direction adjusting screw 72 in the axial direction of the cylindrical member 71. The elastic member 74 is disposed between the holding member 11 b and the inner wall surface of the cylindrical member 71 so as to press the holding member 11 b against the respective tips of the yaw direction adjusting screw 72 and the pitch direction adjusting screw 73.

図4(a)〜(c)に示す振動調整部70によると、被振動部の静止状態において、ヨー方向調整ネジ72を回転させて、ヨー方向調整ネジ72の筒状部材71内への進入量を変化させると、その進入量の変化に応じて、保持部材11bは、ピッチ方向調整ネジ73の軸回り、すなわちY軸回りに回動する。同様に、ピッチ方向調整ネジ73を回転させて、ピッチ方向調整ネジ73の筒状部材71内への進入量を変化させると、その進入量の変化に応じて、保持部材11bは、ヨー方向調整ネジ72の軸回り、すなわちX軸回りに回動する。これにより、被振動部の静止位置を、照明用光ファイバ11による2次元走査面内で直交するX軸回り(ピッチ又はチルト方向)及びY軸回り(ヨー方向)に調整できるので、この静止位置を振動開始位置とする被振動部の振動特性を調整することが可能となる。   According to the vibration adjusting unit 70 shown in FIGS. 4A to 4C, the yaw direction adjusting screw 72 is rotated and the yaw direction adjusting screw 72 enters the cylindrical member 71 in a stationary state of the vibrating portion. When the amount is changed, the holding member 11b rotates around the axis of the pitch direction adjusting screw 73, that is, around the Y axis in accordance with the change in the amount of approach. Similarly, when the pitch direction adjustment screw 73 is rotated to change the amount of the pitch direction adjustment screw 73 entering the cylindrical member 71, the holding member 11b adjusts the yaw direction according to the change in the amount of entry. It rotates around the axis of the screw 72, that is, around the X axis. Thereby, the stationary position of the vibrating part can be adjusted around the X axis (pitch or tilt direction) and Y axis (yaw direction) orthogonal to each other in the two-dimensional scanning plane by the illumination optical fiber 11. It is possible to adjust the vibration characteristics of the portion to be vibrated with the vibration start position.

したがって、ヨー方向調整ネジ72及びピッチ方向調整ネジ73により被振動部の静止位置を調整する簡単な構成で、被振動部の振動軌跡つまり被観察物100への照射光の軌跡が、画像の取得走査範囲において、X軸方向及びY軸方向に安定して直交するように、被振動部の振動特性を調整することが可能となる。なお、被振動部の振動特性の調整は、例えば、照明用光ファイバ11を光走査型内視鏡本体20に組み込むのに先立って、検査装置等を用いて画像を走査して行われる。そして、調整後は、調整状態が固定されて、光走査型内視鏡本体20に組み込まれる。   Therefore, with a simple configuration in which the stationary position of the vibration part is adjusted by the yaw direction adjustment screw 72 and the pitch direction adjustment screw 73, the vibration trajectory of the vibration part, that is, the trajectory of the irradiation light to the object 100 is acquired. In the scanning range, it is possible to adjust the vibration characteristics of the vibrating part so as to be stably orthogonal to the X-axis direction and the Y-axis direction. Note that the adjustment of the vibration characteristics of the portion to be vibrated is performed, for example, by scanning an image using an inspection apparatus or the like prior to incorporating the illumination optical fiber 11 into the optical scanning endoscope body 20. After the adjustment, the adjustment state is fixed and incorporated in the optical scanning endoscope body 20.

以下、本発明の他の実施の形態について説明する。なお、以下の説明において、第1実施の形態で説明した構成要素と同一作用をなす構成要素には同一参照符号を付して説明を省略する。   Hereinafter, other embodiments of the present invention will be described. In the following description, components having the same functions as those described in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

(第2実施の形態)
図5は、第2実施の形態に係る光走査型内視鏡装置の振動調整部の概略構成を示す斜視図である。本実施の形態において、角型チューブ26は筒状部材80内に収納して配置される。角型チューブ26は、図6に展開図を示すように、ポリイミド等の可撓性シート81上に、コイル27a〜27dがそれぞれ形成されて所定の間隔で搭載されたシリコン基板82a〜82dを有し、シリコン基板82a〜82dが角型チューブ26の各面を構成するように、可撓性シート81の部分で湾曲されて筒状部材80内に収納される。なお、照明用光ファイバ11の保持部材11aは、支持部材29に固定される。
(Second Embodiment)
FIG. 5 is a perspective view illustrating a schematic configuration of a vibration adjustment unit of the optical scanning endoscope apparatus according to the second embodiment. In the present embodiment, the rectangular tube 26 is housed and arranged in the cylindrical member 80. As shown in a development view in FIG. 6, the square tube 26 has silicon substrates 82a to 82d on which coils 27a to 27d are respectively formed and mounted at predetermined intervals on a flexible sheet 81 such as polyimide. Then, the silicon substrates 82 a to 82 d are curved at the portion of the flexible sheet 81 and accommodated in the cylindrical member 80 so that each surface of the square tube 26 is formed. The holding member 11 a of the illumination optical fiber 11 is fixed to the support member 29.

本実施の形態に係る振動調整部90は、筒状部材80の後端部に、コイル27aが形成されたシリコン基板82aに当接するように螺合された調整ネジ91と、コイル27bが形成されたシリコン基板82bに当接するように螺合された調整ネジ92とを有する。なお、筒状部材80の調整ネジ91、92の螺合部は、好ましくは、調整後に調整ネジ91、92の頭部が埋設できるように凹状に形成される。   In the vibration adjustment unit 90 according to the present embodiment, an adjustment screw 91 and a coil 27b are formed at the rear end of the cylindrical member 80 so as to be in contact with the silicon substrate 82a on which the coil 27a is formed. And an adjustment screw 92 screwed to come into contact with the silicon substrate 82b. The screwed portions of the adjustment screws 91 and 92 of the cylindrical member 80 are preferably formed in a concave shape so that the heads of the adjustment screws 91 and 92 can be embedded after adjustment.

シリコン基板82aは、両側の可撓性シート81の曲げ弾性力により調整ネジ91の先端に当接する。同様に、シリコン基板82bは両側の可撓性シート81の曲げ弾性力により調整ネジ92の先端に当接する。したがって、被振動部の静止状態において、調整ネジ91を回転させて、筒状部材80内への進入量を変化させると、その進入量の変化に応じて、シリコン基板82aがX軸方向にシフトあるいはヨー方向に変位する。また、調整ネジ92を回転させて、筒状部材80内への進入量を変化させると、その進入量の変化に応じて、シリコン基板82bがY軸方向にシフトあるいはピッチ方向に変位する。これにより、被振動部の静止位置での永久磁石28とコイル27a、27bとの相対位置を調整して偏向磁場の方向を調整できるので、第1実施の形態の場合と同様に、静止位置を振動開始位置とする被振動部の振動特性を調整することが可能となる。   The silicon substrate 82 a comes into contact with the tip of the adjustment screw 91 by the bending elastic force of the flexible sheets 81 on both sides. Similarly, the silicon substrate 82b comes into contact with the tip of the adjustment screw 92 by the bending elastic force of the flexible sheets 81 on both sides. Therefore, when the adjustment screw 91 is rotated and the amount of entry into the cylindrical member 80 is changed while the vibration part is stationary, the silicon substrate 82a is shifted in the X-axis direction in accordance with the change in the amount of entry. Or, it is displaced in the yaw direction. When the adjustment screw 92 is rotated to change the amount of entry into the cylindrical member 80, the silicon substrate 82b is shifted in the Y-axis direction or displaced in the pitch direction in accordance with the change in the amount of entry. As a result, the direction of the deflection magnetic field can be adjusted by adjusting the relative position of the permanent magnet 28 and the coils 27a and 27b at the stationary position of the vibration part, so that the stationary position is set as in the case of the first embodiment. It is possible to adjust the vibration characteristics of the portion to be vibrated as the vibration start position.

このように、本実施の形態においても、調整ネジ91、92により永久磁石28とコイル27a、27bとの相対位置を調整する簡単な構成で、被振動部の振動軌跡つまり被観察物100への照射光の軌跡が、画像の取得走査範囲において、X軸方向及びY軸方向に安定して直交するように、被振動部の振動特性を調整することが可能となる。なお、上述した被振動部の振動特性の調整は、第1実施の形態の場合と同様に、例えば照明用光ファイバ11を光走査型内視鏡本体20に組み込むのに先立って、検査装置等を用いて画像を走査して行われる。そして、調整後は、調整状態が固定されて、光走査型内視鏡本体20に組み込まれる。   As described above, also in the present embodiment, the vibration locus of the portion to be vibrated, that is, the object to be observed 100 is adjusted with a simple configuration in which the relative positions of the permanent magnet 28 and the coils 27a and 27b are adjusted by the adjusting screws 91 and 92. It is possible to adjust the vibration characteristics of the vibrating portion so that the irradiation light trajectory is stably orthogonal to the X-axis direction and the Y-axis direction in the image acquisition scanning range. In addition, the adjustment of the vibration characteristics of the above-described vibrating portion is performed in the same manner as in the first embodiment, for example, before the illumination optical fiber 11 is incorporated into the optical scanning endoscope body 20, an inspection apparatus or the like. This is done by scanning the image using. After the adjustment, the adjustment state is fixed and incorporated in the optical scanning endoscope body 20.

(第3実施の形態)
図7(a)及び(b)は、第3実施の形態に係る光走査型内視鏡装置の振動調整部の概略構成を示すもので、図7(a)は被振動部の断面図、図7(b)は被振動部の拡大斜視図である。本実施の形態に係る振動調整部は、永久磁石28の周面の一部に形成された切り欠き部28aを有する。切り欠き部28aは、例えば照明用光ファイバ11の延在方向に沿って形成される。なお、照明用光ファイバ11の保持部材11aは、支持部材29に固定される。
(Third embodiment)
FIGS. 7A and 7B show a schematic configuration of the vibration adjustment unit of the optical scanning endoscope apparatus according to the third embodiment, and FIG. 7A is a cross-sectional view of the vibration part. FIG. 7B is an enlarged perspective view of the vibration part. The vibration adjusting unit according to the present embodiment has a notch 28 a formed in a part of the peripheral surface of the permanent magnet 28. The notch 28a is formed along the extending direction of the illumination optical fiber 11, for example. The holding member 11 a of the illumination optical fiber 11 is fixed to the support member 29.

照明用光ファイバ11は、光走査型内視鏡本体20に組み込むのに先立って、例えば検査装置等を用いて、図7(b)に示すように、永久磁石28を回転させて切り欠き部28aの向きを調整しながら、画像の走査結果に基づいてX軸方向及びY軸方向の振動軌跡が調整される。そして、永久磁石28の切り欠き部28aの向きの調整後は、その調整状態が固定されて、光走査型内視鏡本体20に組み込まれる。   Prior to incorporation into the optical scanning endoscope body 20, the illumination optical fiber 11 is rotated by rotating the permanent magnet 28 using, for example, an inspection apparatus or the like, as shown in FIG. 7B. While adjusting the direction of 28a, vibration trajectories in the X-axis direction and the Y-axis direction are adjusted based on the scanning result of the image. Then, after the adjustment of the orientation of the notch portion 28 a of the permanent magnet 28, the adjusted state is fixed and incorporated in the optical scanning endoscope body 20.

したがって、本実施の形態においても、簡単な構成で、被振動部の振動軌跡つまり被観察物100への照射光の軌跡が、画像の取得走査範囲において、X軸方向及びY軸方向に安定して直交するように、被振動部の振動特性を調整することが可能となる。   Therefore, also in this embodiment, with a simple configuration, the vibration trajectory of the portion to be vibrated, that is, the trajectory of the irradiation light on the object 100 is stabilized in the X-axis direction and the Y-axis direction in the image acquisition scanning range. It is possible to adjust the vibration characteristics of the portion to be vibrated so as to be orthogonal to each other.

(第4実施の形態)
図8は、第4実施の形態に係る光走査型内視鏡装置の振動調整部の概略構成を示す斜視図である。本実施の形態に係る振動調整部は、永久磁石28の周面の一部に形成された傷部28bを有する。つまり、振動調整部は、被振動部の質量を、永久磁石28の一部に傷部28bを形成することにより調整して、被振動部の振動特性を調整する。なお、図示しないが照明用光ファイバ11の保持部材11aは、支持部材29に固定される。
(Fourth embodiment)
FIG. 8 is a perspective view illustrating a schematic configuration of a vibration adjustment unit of the optical scanning endoscope apparatus according to the fourth embodiment. The vibration adjustment unit according to the present embodiment has a scratched part 28 b formed on a part of the peripheral surface of the permanent magnet 28. In other words, the vibration adjusting unit adjusts the vibration characteristics of the vibrating part by adjusting the mass of the vibrating part by forming the scratched part 28 b in a part of the permanent magnet 28. Although not shown, the holding member 11 a of the illumination optical fiber 11 is fixed to the support member 29.

傷部28bは、例えば照明用光ファイバ11を光走査型内視鏡本体20に組み込むのに先立って、検査装置等を用いて画像を走査して得た結果に基づいて、例えばYAGレーザ等のレーザ光の照射によって形成される。そして、調整後、照明用光ファイバ11は光走査型内視鏡本体20に組み込まれる。   The wound portion 28b is formed on the basis of a result obtained by scanning an image using an inspection device or the like before the illumination optical fiber 11 is incorporated into the optical scanning endoscope body 20, for example, such as a YAG laser. It is formed by laser light irradiation. Then, after the adjustment, the illumination optical fiber 11 is incorporated into the optical scanning endoscope body 20.

このように、本実施の形態においては、振動調整部が、被振動部の質量を調整するように、永久磁石28の一部に形成された傷部28bによって構成されるので、簡単な構成で、被振動部の振動軌跡つまり被観察物100への照射光の軌跡が、画像の取得走査範囲において、X軸方向及びY軸方向に安定して直交するように、被振動部の振動特性を調整することが可能となる。 As described above, in the present embodiment, the vibration adjustment unit is configured by the scratched part 28b formed in a part of the permanent magnet 28 so as to adjust the mass of the vibrating part. The vibration characteristics of the oscillating portion, that is, the trajectory of the irradiation light on the object 100 to be observed, are stably orthogonal to the X axis direction and the Y axis direction in the image acquisition scanning range. It becomes possible to adjust.

なお、被振動部の質量を調整する振動調整部は、例えば図9に示すように、永久磁石28の周面の一部に、接着剤や半田ボール等の質量体28cを付着させて構成することもできる。 In addition, the vibration adjustment part which adjusts the mass of a to-be-vibrated part adheres mass bodies 28c, such as an adhesive agent and a solder ball, to a part of surrounding surface of the permanent magnet 28, as shown, for example in FIG. You can also.

本発明は、上記実施の形態にのみ限定されるものではなく、幾多の変形又は変更が可能である。例えば、第1実施の形態においては、被振動部をX軸回り及びY軸回りに調整可能としたが、いずれか一方の軸回りにのみ調整可能に構成してもよい。同様に、第2実施の形態においても、一つのコイルと永久磁石との相対位置のみを調整可能に構成してもよい。   The present invention is not limited to the above-described embodiments, and many variations or modifications are possible. For example, in the first embodiment, the vibration part can be adjusted around the X axis and the Y axis, but may be configured to be adjustable only around one of the axes. Similarly, in the second embodiment, only the relative position between one coil and the permanent magnet may be adjustable.

また、被観察物の2次元走査の態様は、ラスタ走査に限らず、スパイラル走査等の他の走査を行うように、被振動部を振動させてもよい。また、走査部は、永久磁石とコイルとを用いる電磁駆動方式に限らず、例えば被振動部にピエゾ素子を取り付けてピエゾ素子の変形により被振動部を振動させる圧電駆動方式やその他の駆動方式としてもよい。さらに、本発明は光走査型内視鏡装置に限らず、他の走査型観察装置や観察機能を有しないレーザ加工等の走査装置に適用することもできる。   In addition, the two-dimensional scanning mode of the object to be observed is not limited to raster scanning, and the vibration target may be vibrated so as to perform other scanning such as spiral scanning. In addition, the scanning unit is not limited to an electromagnetic driving method using a permanent magnet and a coil. For example, a piezoelectric driving method in which a piezo element is attached to a vibrating portion and the vibrating portion is vibrated by deformation of the piezo element, or other driving methods. Also good. Furthermore, the present invention can be applied not only to the optical scanning endoscope apparatus but also to other scanning observation apparatuses and scanning apparatuses such as laser processing that do not have an observation function.

10 光走査型内視鏡装置
20 光走査型内視鏡本体
11 照明用光ファイバ
11a 射出端面
11b 保持部材
12 検出用光ファイババンドル
13 配線ケーブル
21 走査部
22 操作部
23 挿入部
24 先端部
25a、25b 投影用レンズ
26 角型チューブ
27a〜27d コイル
28 永久磁石
28a 切り欠き部
28b 傷部
28c 質量体
29 支持部材
30 光源部
40 検出部
50 駆動電流生成部
60 制御部
61 表示部
62 入力部
70、90 振動調整部
100 被観察物
DESCRIPTION OF SYMBOLS 10 Optical scanning endoscope apparatus 20 Optical scanning endoscope main body 11 Illumination optical fiber 11a Ejection end surface 11b Holding member 12 Detection optical fiber bundle 13 Wiring cable 21 Scanning part 22 Operation part 23 Insertion part 24 Tip part 25a, 25b Projection lens 26 Square tube 27a to 27d Coil 28 Permanent magnet 28a Notch 28b Scratched portion 28c Mass body 29 Support member 30 Light source unit 40 Detection unit 50 Drive current generation unit 60 Control unit 61 Display unit 62 Input unit 70, 90 vibration adjusting portion 100 object to be observed

Claims (4)

光ファイバの射出端部を走査部により振動させながら、前記光ファイバから射出される光を物体に照射して前記物体を2次元走査する光走査装置であって、
前記光ファイバの前記射出端部を含む被振動部の振動特性を調整する振動調整部を備え
前記振動調整部は、前記被振動部の静止位置を、少なくとも前記光ファイバによる2次元走査面内で直交する方向の第1の軸又は第2の軸の軸回りに調整して、前記振動特性を調整する光走査装置。
An optical scanning device that two-dimensionally scans the object by irradiating the object with light emitted from the optical fiber while vibrating the exit end of the optical fiber by a scanning unit,
A vibration adjustment unit that adjusts vibration characteristics of a portion to be vibrated including the exit end of the optical fiber ;
The vibration adjusting unit adjusts the stationary position of the vibration-receiving portion at least about the first axis or the second axis in the direction orthogonal to the two-dimensional scanning plane of the optical fiber, and the vibration characteristics Adjusting optical scanning device.
前記走査部は、前記光ファイバの前記射出端部に設けられて該射出端部とともに前記被振動部を構成する永久磁石と、該永久磁石の周囲に配置された複数のコイルとを備える、請求項1に記載の光走査装置。   The scanning unit includes a permanent magnet that is provided at the exit end of the optical fiber and forms the vibration part together with the exit end, and a plurality of coils arranged around the permanent magnet. Item 4. The optical scanning device according to Item 1. 光ファイバの射出端部を走査部により振動させながら、前記光ファイバから射出される光を物体に照射して前記物体を2次元走査する光走査装置であって、
前記光ファイバの前記射出端部を含む被振動部の振動特性を調整する振動調整部を備え、
前記走査部は、前記光ファイバの前記射出端部に設けられて該射出端部とともに前記被振動部を構成する永久磁石と、該永久磁石の周囲に配置された複数のコイルとを備え、
前記振動調整部は、前記被振動部の静止位置における前記永久磁石に対して、前記光ファイバによる2次元走査面内で直交する方向の第1の軸又は第2の軸上で、少なくとも1つの前記コイルの位置を調整して、前記振動特性を調整する光走査装置。
An optical scanning device that two-dimensionally scans the object by irradiating the object with light emitted from the optical fiber while vibrating the exit end of the optical fiber by a scanning unit,
A vibration adjustment unit that adjusts vibration characteristics of a portion to be vibrated including the exit end of the optical fiber;
The scanning unit includes a permanent magnet that is provided at the exit end of the optical fiber and that forms the vibrated portion together with the exit end, and a plurality of coils disposed around the permanent magnet,
The vibration adjusting unit has at least one on a first axis or a second axis in a direction orthogonal to the permanent magnet at a stationary position of the vibrating part in a two-dimensional scanning plane by the optical fiber . by adjusting the position of the coil, the optical scanning device that adjust the vibration characteristics.
前記振動調整部は、前記コイルが形成された基板を前記第1の軸又は第2の軸方向にシフトまたは変位させて、前記コイルの位置を調整する請求項3に記載の光走査装置。4. The optical scanning device according to claim 3, wherein the vibration adjustment unit adjusts the position of the coil by shifting or displacing the substrate on which the coil is formed in the first axis direction or the second axis direction. 5.
JP2013014230A 2013-01-29 2013-01-29 Optical scanning device Active JP6006127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013014230A JP6006127B2 (en) 2013-01-29 2013-01-29 Optical scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013014230A JP6006127B2 (en) 2013-01-29 2013-01-29 Optical scanning device

Publications (2)

Publication Number Publication Date
JP2014145899A JP2014145899A (en) 2014-08-14
JP6006127B2 true JP6006127B2 (en) 2016-10-12

Family

ID=51426206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013014230A Active JP6006127B2 (en) 2013-01-29 2013-01-29 Optical scanning device

Country Status (1)

Country Link
JP (1) JP6006127B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017085855A1 (en) * 2015-11-20 2017-05-26 オリンパス株式会社 Optical fiber scanner, scanning illuminating device, and scanning observation device
US12078813B2 (en) 2019-12-13 2024-09-03 Hamamatsu Photonics K.K. Light source module
JP7405695B2 (en) * 2019-12-13 2023-12-26 浜松ホトニクス株式会社 light source module

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10393608B4 (en) * 2002-10-30 2022-06-09 Optiscan Pty Ltd. Scanning method and device, confocal fiber optic endoscope, microscope or endomicroscope with a scanning device, and fiber optic endoscope, microscope or endomicroscope with a scanning device
WO2006032106A1 (en) * 2004-09-24 2006-03-30 Optiscan Pty Ltd Tuning-fork-type scanning apparatus with a counterweight
DE102006046925A1 (en) * 2006-09-28 2008-04-03 Jenlab Gmbh Method for laser endoscopy e.g. for medical work and for semiconductor processing, requires laser pulse for producing multi-photon processes as target ionization
WO2009013663A2 (en) * 2007-07-20 2009-01-29 Koninklijke Philips Electronics N.V. Fiber-optic scanner

Also Published As

Publication number Publication date
JP2014145899A (en) 2014-08-14

Similar Documents

Publication Publication Date Title
JP6057743B2 (en) Optical scanning device
JP5883683B2 (en) Optical scanning endoscope
JP6086674B2 (en) Optical scanning device
JP6438221B2 (en) Optical scanning actuator and optical scanning device
WO2014119288A1 (en) Optical scanning observation device
US10502947B2 (en) Optical fiber scanning apparatus and optical scanning type endoscope
JP6226730B2 (en) Optical scanning device and optical scanning observation device
JP6071591B2 (en) Optical scanning endoscope
WO2016079769A1 (en) Actuator for optical scanning and optical scanning device
JP6006127B2 (en) Optical scanning device
JP2014198089A (en) Scanning endoscope
JP6422872B2 (en) Optical scanning device
JP6006039B2 (en) Optical scanning observation device
WO2016116963A1 (en) Optical scanning method and optical scanning device
US20170065156A1 (en) Scanning-type endoscope
JP2016009012A (en) Optical scanning actuator, optical scanner, and method of manufacturing optical scanning actuator
JP2015139537A (en) Optical scanning endoscope
US20180252910A1 (en) Optical fiber scanner, illumination device, and observation device
US11061222B2 (en) Optical fiber scanning apparatus and endoscope
JP6071590B2 (en) Optical scanning unit, optical scanning observation device, and optical scanning display device
WO2016116962A1 (en) Optical scanning method and optical scanning device
US10928628B2 (en) Optical fiber scanning apparatus and endoscope
JP2015128548A (en) Optical scanning endoscope
JP2018105970A (en) Optical fiber scanner, endoscope, and manufacturing method for optical fiber scanner
JP2015128549A (en) Optical scanning endoscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160908

R151 Written notification of patent or utility model registration

Ref document number: 6006127

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250