JP6005958B2 - Light emitting device and manufacturing method thereof - Google Patents

Light emitting device and manufacturing method thereof Download PDF

Info

Publication number
JP6005958B2
JP6005958B2 JP2012061848A JP2012061848A JP6005958B2 JP 6005958 B2 JP6005958 B2 JP 6005958B2 JP 2012061848 A JP2012061848 A JP 2012061848A JP 2012061848 A JP2012061848 A JP 2012061848A JP 6005958 B2 JP6005958 B2 JP 6005958B2
Authority
JP
Japan
Prior art keywords
phosphor particles
wavelength conversion
light
light emitting
conversion layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012061848A
Other languages
Japanese (ja)
Other versions
JP2013197259A (en
Inventor
坂本 博信
博信 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2012061848A priority Critical patent/JP6005958B2/en
Publication of JP2013197259A publication Critical patent/JP2013197259A/en
Application granted granted Critical
Publication of JP6005958B2 publication Critical patent/JP6005958B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Device Packages (AREA)

Description

本発明は、発光素子を形成する半導体層上に複数の蛍光体粒子を含む波長変換層を有する発光装置及びその製造方法に関する。   The present invention relates to a light emitting device having a wavelength conversion layer containing a plurality of phosphor particles on a semiconductor layer forming a light emitting element, and a method for manufacturing the same.

発光ダイオード等の発光素子を構成する半導体層上に複数の蛍光体粒子を含む樹脂層からなる波長変換層を形成し、半導体層からの光の一部を波長変換層中の蛍光体粒子で異なる波長の光に変換し、蛍光体粒子による変換後の光を半導体層からの波長変換層を通過する光と混合して放出する発光装置が知られている。   A wavelength conversion layer composed of a resin layer containing a plurality of phosphor particles is formed on a semiconductor layer that constitutes a light emitting element such as a light emitting diode, and a part of light from the semiconductor layer differs depending on the phosphor particles in the wavelength conversion layer. 2. Description of the Related Art A light emitting device that converts light into a wavelength and emits light after being converted by phosphor particles by mixing with light passing through a wavelength conversion layer from a semiconductor layer is known.

このような発光装置においては、一般に、波長変換層を形成するために半導体層の光放出側の主面上に蛍光体粒子を含む溶液をスプレーで塗布して硬化させ、更に、その蛍光体粒子間を埋めるためにガラスバインダ液をスプレーで塗布して硬化させることが行われている(特許文献1参照)。波長変換層中の蛍光体粒子は、半導体層からの入射光が波長変換されずそのまま出射される量が部分的に多くならないように半導体層の上面全てに亘って均一に分布されることが望ましい。そのため、例えば、特許文献1には発光素子の上方から蛍光体を含有した塗布液を霧状でかつ螺旋状に回転させながら吹き付けることが示されている。   In such a light emitting device, in general, in order to form a wavelength conversion layer, a solution containing phosphor particles is applied and cured on the main surface on the light emission side of the semiconductor layer by spraying, and the phosphor particles are further cured. In order to fill the gap, a glass binder solution is applied and cured by spraying (see Patent Document 1). It is desirable that the phosphor particles in the wavelength conversion layer are uniformly distributed over the entire upper surface of the semiconductor layer so that the amount of incident light from the semiconductor layer is not wavelength-converted and is emitted as it is. . Therefore, for example, Patent Document 1 shows that a coating liquid containing a phosphor is sprayed from above the light emitting element while rotating in a mist-like and spiral manner.

特開2004−088013号公報JP 2004-088013 A

しかしながら、かかる従来の発光装置においては、半導体層上面に均一に蛍光体粒子入り樹脂をスプレーで塗布すると、その際、螺旋状に塗布するなどの工夫が行われたとしても、蛍光体粒子が集まった部分と蛍光体粒子間に隙間ができた部分とが生じ、蛍光体粒子が一様に分布した波長変換層を形成することは困難である。そのため、半導体層から発せられた光が蛍光体粒子間の隙間をそのまま通過して出射されることが起きる。例えば、半導体層の発光色が青色であって、波長変換層の蛍光体粒子が青色光を黄色光に変換する場合には、青色光が蛍光体粒子間に隙間をそのまま通過して出射されると、部分的に青色光が発生し、発光装置から出射される光に色ムラが生じるという問題があった。   However, in such a conventional light emitting device, when the resin containing the phosphor particles is uniformly applied to the upper surface of the semiconductor layer by spraying, the phosphor particles are collected even if a device such as a spiral coating is applied. It is difficult to form a wavelength conversion layer in which the phosphor particles are uniformly distributed due to the occurrence of a gap and a portion having a gap between the phosphor particles. For this reason, the light emitted from the semiconductor layer is emitted through the gaps between the phosphor particles as they are. For example, when the emission color of the semiconductor layer is blue and the phosphor particles in the wavelength conversion layer convert blue light into yellow light, the blue light passes through the gaps between the phosphor particles and is emitted. Then, there is a problem that blue light is partially generated and color unevenness occurs in the light emitted from the light emitting device.

そこで、本発明の目的は、かかる点を鑑みてなされたものであり、波長変換層内に蛍光体粒子の隙間が存在しても色ムラを抑制することができる発光装置及びその製造方法を提供することである。   Accordingly, an object of the present invention has been made in view of the above points, and provides a light emitting device capable of suppressing color unevenness even when there is a gap between phosphor particles in the wavelength conversion layer, and a method for manufacturing the same. It is to be.

本発明の発光装置は、発光素子と、前記発光素子上に配置され、複数の蛍光体粒子を含む波長変換層と、を備える発光装置であって、前記複数の蛍光体粒子の一部は前記波長変換層の表面部に位置し、前記波長変換層は前記一部の蛍光体粒子に隣接した表面に窪みを有し、前記発光装置は前記窪み内に形成された光散乱層を有し、前記光散乱層を含む前記波長変換層の表面が平坦に形成されていることを特徴としている。
本発明の発光装置は、発光素子と、前記発光素子上に配置され、複数の蛍光体粒子を含む波長変換層と、を備える発光装置であって、前記複数の蛍光体粒子の一部は前記波長変換層の表面部に位置し、前記波長変換層は前記一部の蛍光体粒子に隣接した表面に窪みを有し、前記波長変換層は前記複数の蛍光体粒子の間を埋める透光性バインダを含み、前記発光装置を上方から観測した場合に、前記発光素子上面は、前記蛍光体粒子の存在しない上面露出領域を有し、前記発光装置は、前記上面露出領域において、前記透光性バインダが前記波長変換層の高さの半分から2/3の範囲の厚みを有することにより形成された前記窪み内に光散乱層を有し、前記透光性バインダには光散乱性の粒子が含まれておらず、前記上面露出領域上に前記光散乱層が重なるように配置され、前記一部の蛍光体粒子は前記波長変換層の突出表面部を形成することを特徴としている。
The light-emitting device of the present invention is a light-emitting device including a light-emitting element and a wavelength conversion layer that is disposed on the light-emitting element and includes a plurality of phosphor particles, wherein some of the plurality of phosphor particles are located in the surface portion of the wavelength conversion layer, the wavelength conversion layer has a depression in the surface adjacent the phosphor particles of said portion, the light emitting device will have a light scattering layer formed in said recess, The wavelength conversion layer including the light scattering layer has a flat surface .
The light-emitting device of the present invention is a light-emitting device including a light-emitting element and a wavelength conversion layer that is disposed on the light-emitting element and includes a plurality of phosphor particles, wherein some of the plurality of phosphor particles are Located on the surface portion of the wavelength conversion layer, the wavelength conversion layer has a dent on the surface adjacent to the part of the phosphor particles, and the wavelength conversion layer fills between the plurality of phosphor particles. When the light emitting device is observed from above including a binder, the upper surface of the light emitting element has an upper surface exposed region where the phosphor particles are not present, and the light emitting device has the light transmitting property in the upper surface exposed region. The binder has a light scattering layer in the recess formed by having a thickness in the range of half the height of the wavelength conversion layer to 2/3, and the light transmissive binder contains light scattering particles. Not included and the light diffused on the top exposed area. Are arranged such layers overlap, the phosphor particles of the part is characterized by forming the protruding surface portion of the wavelength conversion layer.

本発明の発光装置の製造方法は、発光素子上に複数の蛍光体粒子を有する塗布液を塗布して前記発光素子上に前記複数の蛍光体粒子を配置する第1の工程と、前記第1の工程後、前記複数の蛍光体粒子が配置された前記発光素子上に透光性バインダの溶液を塗布して前記発光素子上に前記複数の蛍光体粒子間を埋める前記透光性バインダを配置して前記複数の蛍光体粒子を含有する波長変換層を形成する第2の工程と、前記第2の工程後、前記波長変換層上に光散乱層を形成する第3の工程と、を含む発光装置の製造方法であって、前記複数の蛍光体粒子の一部は前記波長変換層の表面部に位置し、前記波長変換層は前記一部の蛍光体粒子に隣接した表面に前記透光性バインダの窪みを有し、前記第3の工程において前記窪み内に前記光散乱層が形成され、前記製造方法は、前記第3の工程後、前記光散乱層を含む前記波長変換層の表面を平坦化する第4の工程を含むことを特徴としている。
本発明の発光装置の製造方法は、発光素子上に複数の蛍光体粒子を有する塗布液を塗布して前記発光素子上に前記複数の蛍光体粒子を配置する第1の工程と、前記第1の工程後、前記複数の蛍光体粒子が配置された前記発光素子上に透光性バインダの溶液を塗布して前記発光素子上に前記複数の蛍光体粒子間を埋める前記透光性バインダを配置して前記複数の蛍光体粒子を含有する波長変換層を形成する第2の工程と、前記第2の工程後、前記波長変換層上に光散乱層を形成する第3の工程と、を含み、前記透光性バインダには光散乱性の粒子が含まれておらず、前記複数の蛍光体粒子の一部は前記波長変換層の表面部に位置し、前記波長変換層は前記一部の蛍光体粒子に隣接した表面に前記透光性バインダが前記波長変換層の高さの半分から2/3の範囲の厚みにすることにより形成された窪みを有し、前記一部の蛍光体粒子は前記波長変換層の突出表面部を形成し、前記第3の工程において、前記窪み内に前記光散乱層が形成されることを特徴としている。
The manufacturing method of the light-emitting device of the present invention includes a first step of applying a coating liquid having a plurality of phosphor particles on a light-emitting element and disposing the plurality of phosphor particles on the light-emitting element; After the step, the translucent binder is disposed on the light emitting element by applying a solution of the translucent binder on the light emitting element on which the plurality of phosphor particles are disposed. A second step of forming a wavelength conversion layer containing the plurality of phosphor particles, and a third step of forming a light scattering layer on the wavelength conversion layer after the second step. a method of manufacturing a non-emitting device, a part of the plurality of phosphor particles is located in the surface portion of the wavelength conversion layer, said wavelength conversion layer is the permeability to a surface adjacent the phosphor particles of said portion A light-sensitive binder indentation, and the light scattering in the indentation in the third step There is formed, the manufacturing method, after the third step, is characterized in that it comprises a fourth step of flattening the surface of the wavelength conversion layer including the light scattering layer.
The manufacturing method of the light-emitting device of the present invention includes a first step of applying a coating liquid having a plurality of phosphor particles on a light-emitting element and disposing the plurality of phosphor particles on the light-emitting element; After the step, the translucent binder is disposed on the light emitting element by applying a solution of the translucent binder on the light emitting element on which the plurality of phosphor particles are disposed. And a second step of forming a wavelength conversion layer containing the plurality of phosphor particles, and a third step of forming a light scattering layer on the wavelength conversion layer after the second step. The light-transmitting binder does not contain light scattering particles, a part of the plurality of phosphor particles is located on a surface portion of the wavelength conversion layer, and the wavelength conversion layer is the part of the wavelength conversion layer. Whether the translucent binder is half the height of the wavelength conversion layer on the surface adjacent to the phosphor particles. The phosphor particles have a depression formed by setting the thickness to a range of 2/3, and the part of the phosphor particles forms a protruding surface portion of the wavelength conversion layer. In the third step, the depression is formed in the depression. The light scattering layer is formed.

本発明の発光装置及びその製造方法によれば、波長変換層の表面の窪み内に散乱層が形成されているので、発光素子から波長変換層の表面部の一部の蛍光体粒子の隙間部分を通過してくる光を光散乱層で乱反射させることができ、乱反射した光の一部を蛍光体粒子に入射させて波長変換された光を出射させることができる。例えば、発光素子の発光色が青色であって、波長変換層の蛍光体粒子が青色光を黄色光に変換する場合に、一部の蛍光体粒子間の隙間の光散乱層が青色光を乱反射させて乱反射した青色光の一部が蛍光体粒子に入射して黄色光に変換される。その黄色光は乱反射してそのまま出射した青色光と混合されて白色光となる。よって、発光素子から出射された青色光がそのまま波長変換層を通過して発光装置から出射されることによる色ムラを抑制することができる。   According to the light emitting device and the method of manufacturing the same of the present invention, since the scattering layer is formed in the depression on the surface of the wavelength conversion layer, the gap portion between the phosphor particles on the surface portion of the wavelength conversion layer from the light emitting element. The light passing through the light scattering layer can be irregularly reflected by the light scattering layer, and part of the irregularly reflected light can be incident on the phosphor particles to emit the wavelength-converted light. For example, when the emission color of the light-emitting element is blue and the phosphor particles in the wavelength conversion layer convert blue light into yellow light, the light scattering layer in the gap between some phosphor particles diffuses blue light A part of the blue light irregularly reflected is incident on the phosphor particles and converted into yellow light. The yellow light is diffusely reflected and mixed with the blue light emitted as it is to become white light. Therefore, color unevenness caused by the blue light emitted from the light emitting element passing through the wavelength conversion layer as it is and emitted from the light emitting device can be suppressed.

本発明の実施例1の発光装置を示す断面図である。It is sectional drawing which shows the light-emitting device of Example 1 of this invention. 実施例1の発光装置の製造過程におけるスプレー噴射を示す図である。It is a figure which shows the spray injection in the manufacture process of the light-emitting device of Example 1. FIG. 実施例1の発光装置の製造方法を示す断面図である。6 is a cross-sectional view showing a method for manufacturing the light-emitting device of Example 1. FIG. 実施例1の発光装置の波長変換層における光経路を示す図である。3 is a diagram illustrating an optical path in a wavelength conversion layer of the light emitting device of Example 1. FIG. 従来の発光装置の波長変換層における光経路を示す図である。It is a figure which shows the optical path in the wavelength conversion layer of the conventional light-emitting device. 本発明の実施例2の発光装置を示す断面図である。It is sectional drawing which shows the light-emitting device of Example 2 of this invention. 実施例2の発光装置の製造方法を示す断面図である。6 is a cross-sectional view showing a method for manufacturing the light emitting device of Example 2. FIG. 実施例2の発光装置の波長変換層における光経路を示す図である。6 is a diagram illustrating an optical path in a wavelength conversion layer of a light emitting device according to Example 2. FIG. 本発明の実施例3の発光装置を示す断面図である。It is sectional drawing which shows the light-emitting device of Example 3 of this invention.

以下、本発明の実施例を図面を参照しつつ詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明の実施例1の発光装置の断面図を示している。この発光装置においては、基板10と半導体層11とからなる発光素子上に波長変換層13が形成されている。基板10はシリコン基板であり、基板10上にはGaN系のエピタキシャル層として形成された発光層を含む半導体層11が配置されている。発光素子はメタルボンディング型発光素子(発光ダイオード)であり、半導体層11は基板10と金属接合されている。また、半導体層11は本実施例では青色発光する。   FIG. 1 shows a cross-sectional view of a light emitting device of Example 1 of the present invention. In this light emitting device, a wavelength conversion layer 13 is formed on a light emitting element composed of a substrate 10 and a semiconductor layer 11. The substrate 10 is a silicon substrate, and a semiconductor layer 11 including a light emitting layer formed as a GaN-based epitaxial layer is disposed on the substrate 10. The light emitting element is a metal bonding type light emitting element (light emitting diode), and the semiconductor layer 11 is metal-bonded to the substrate 10. The semiconductor layer 11 emits blue light in this embodiment.

波長変換層13内には多数の蛍光体粒子14が分散されている。その蛍光体粒子14は半導体層11の発する光により励起され所定波長の蛍光を発する例えば、YAG蛍光体粒子である。蛍光体粒子14は本実施例では半導体層11の発する青色光により励起され黄色光を発する。蛍光体粒子14の平均粒径は15μmである。蛍光体粒子14はその周囲を透明接着剤15によって覆われている。また、蛍光体粒子14間の空隙はバインダ16によって埋められている。透明接着剤15及びバインダ16は半導体層11の発する光と共に、蛍光体粒子14が発する蛍光に対して透光性を有している。バインダ16は、無機ガラス系化合物(エチルシリケート)を用いているが、有機溶媒で低粘度に調整したジメチルシリコーン、フェニルシリコーン等の透明樹脂を用いることができ、更にはそれらの混合したものを用いても良い。バインダ16には光散乱材は含まれていない。波長変換層13内において蛍光体粒子14は分散されているが、蛍光体粒子14が集まって存在する部分が有る他、一部の蛍光体粒子14は波長変換層13の表面近傍に位置して波長変換層13の突出表面部を形成している。   A large number of phosphor particles 14 are dispersed in the wavelength conversion layer 13. The phosphor particles 14 are, for example, YAG phosphor particles that are excited by light emitted from the semiconductor layer 11 and emit fluorescence of a predetermined wavelength. In this embodiment, the phosphor particles 14 are excited by blue light emitted from the semiconductor layer 11 and emit yellow light. The average particle diameter of the phosphor particles 14 is 15 μm. The periphery of the phosphor particles 14 is covered with a transparent adhesive 15. Further, the gap between the phosphor particles 14 is filled with a binder 16. The transparent adhesive 15 and the binder 16 have translucency with respect to the fluorescence emitted from the phosphor particles 14 as well as the light emitted from the semiconductor layer 11. The binder 16 uses an inorganic glass-based compound (ethyl silicate), but can use a transparent resin such as dimethyl silicone and phenyl silicone adjusted to a low viscosity with an organic solvent, and further a mixture thereof. May be. The binder 16 does not contain a light scattering material. Although the phosphor particles 14 are dispersed in the wavelength conversion layer 13, there are portions where the phosphor particles 14 gather and exist, and some of the phosphor particles 14 are located near the surface of the wavelength conversion layer 13. A protruding surface portion of the wavelength conversion layer 13 is formed.

波長変換層13上には光散乱層17が形成されている。光散乱層17は光散乱材が分散されたガラスバインダ(シリコーン系の樹脂でも良い)からなる。光散乱材は例えば、1μm以下のアルミナ粒子であるが、100nm以上で2μm以下の粒径の光散乱性粒子を有すればよい。   A light scattering layer 17 is formed on the wavelength conversion layer 13. The light scattering layer 17 is made of a glass binder (a silicone resin may be used) in which a light scattering material is dispersed. The light scattering material is, for example, alumina particles having a size of 1 μm or less, but may have light scattering particles having a particle size of 100 nm to 2 μm.

光散乱層17の層厚は蛍光体粒子14の粒径より小さく、蛍光体粒子14の平均粒径の1/3の5μm以下である。波長変換層13の表面近傍に位置している蛍光体粒子14に隣接したバインダ16の表面、特に、波長変換層13の突出表面部を形成している蛍光体粒子14の間の隙間部分には窪み20が存在する。窪み20内は光散乱層17で埋められており、その層厚は厚い。一方、波長変換層13の突出表面部を形成している蛍光体粒子14上方の光散乱層17の層厚は薄く、例えば、2μm以下である。光散乱層17は、発光素子上面において蛍光体粒子が上方に存在しない領域の上方に重なるように配置されている。   The layer thickness of the light scattering layer 17 is smaller than the particle diameter of the phosphor particles 14 and is 5 μm or less, which is 1/3 of the average particle diameter of the phosphor particles 14. In the surface of the binder 16 adjacent to the phosphor particles 14 located in the vicinity of the surface of the wavelength conversion layer 13, particularly in the gap portion between the phosphor particles 14 forming the protruding surface portion of the wavelength conversion layer 13. There is a recess 20. The inside of the recess 20 is filled with the light scattering layer 17, and the layer thickness is thick. On the other hand, the thickness of the light scattering layer 17 above the phosphor particles 14 forming the protruding surface portion of the wavelength conversion layer 13 is thin, for example, 2 μm or less. The light scattering layer 17 is disposed on the upper surface of the light emitting element so as to overlap an area where the phosphor particles do not exist above.

蛍光体粒子14を含有する接着剤15、バインダ16、及び光散乱層17は、図2に示すように、スプレー21で液体の状態のものを、噴射して塗布し、それを乾燥することにより形成されたものである。スプレー21は噴射の際に図2に矢印22で示す方向(半導体層11の上面に平行な方向)に移動し、塗布量によっては往復移動する。スプレー21による噴射のために接着剤15、バインダ16、及び光散乱層17各々の材料はアルコール系、キシレン等の揮発性の有機溶剤によって液化されたもの(後述の蛍光体粒子含有液35、バインダ液36、及び光散乱材含有バインダ液37)が使用される。スプレー21
図3(a)〜(c)は図1の実施例1の発光装置の製造方法における接着剤15、バインダ16、及び光散乱層17各々の材料の塗布部分を示している。発光装置は図3(a)〜(c)の順に製造される。すなわち、蛍光体粒子含有液塗布工程(第1の工程)、バインダ液塗布工程(第2の工程)、及び光散乱材含有バインダ液塗布工程(第3の工程)がその順に実行される。
As shown in FIG. 2, the adhesive 15, the binder 16, and the light scattering layer 17 containing the phosphor particles 14 are sprayed and applied in a liquid state with a spray 21, and then dried. It is formed. The spray 21 moves in the direction indicated by the arrow 22 in FIG. 2 (direction parallel to the upper surface of the semiconductor layer 11) during spraying, and reciprocates depending on the coating amount. The materials of the adhesive 15, the binder 16, and the light scattering layer 17, which are liquefied by a volatile organic solvent such as alcohol or xylene for injection by the spray 21 (phosphor particle-containing liquid 35, binder described later, binder) Liquid 36 and light scattering material-containing binder liquid 37) are used. Spray 21
FIGS. 3A to 3C show the coated portions of the materials for the adhesive 15, the binder 16, and the light scattering layer 17 in the method for manufacturing the light emitting device of Example 1 of FIG. The light emitting device is manufactured in the order of FIGS. That is, the phosphor particle-containing liquid application process (first process), the binder liquid application process (second process), and the light scattering material-containing binder liquid application process (third process) are performed in that order.

なお、これらの工程の前に基板10に対応した基板材料と半導体層11に相当するエピタキシャル層とが金属接着層間の融着接合によって接合され、その基板材料が装置単位に分断される工程が存在し、基板10と、基板10上に形成された発光層を含む半導体層11とを備えた発光素子が得られているとする。   Before these steps, there is a step in which the substrate material corresponding to the substrate 10 and the epitaxial layer corresponding to the semiconductor layer 11 are bonded by fusion bonding between the metal bonding layers, and the substrate material is divided into device units. Then, it is assumed that a light emitting element including the substrate 10 and the semiconductor layer 11 including the light emitting layer formed on the substrate 10 is obtained.

蛍光体粒子含有液塗布工程では、図3(a)に示すように、装置単位で蛍光体粒子14を含んだ蛍光体粒子含有液35が塗布される。蛍光体粒子含有液35は、上記のスプレー21で半導体層11の上面に噴射される。蛍光体粒子含有液35の粘度は例えば、100mPa・sであるが、20〜500mPa・sの範囲内の値であれば良い。また、蛍光体粒子含有液35中の蛍光体粒子14の濃度は例えば、50wt%であるが、10〜80wt%であれば良い。噴射後、蛍光体粒子含有液35は硬化のために乾燥される。この蛍光体粒子含有液塗布工程で蛍光体粒子14が集中して存在する部分と、蛍光体粒子14が上方に重なった部分が生ずる。   In the phosphor particle-containing liquid application step, as shown in FIG. 3A, a phosphor particle-containing liquid 35 containing the phosphor particles 14 is applied on a device basis. The phosphor particle-containing liquid 35 is sprayed onto the upper surface of the semiconductor layer 11 by the spray 21 described above. The viscosity of the phosphor particle-containing liquid 35 is, for example, 100 mPa · s, but may be a value within the range of 20 to 500 mPa · s. The concentration of the phosphor particles 14 in the phosphor particle-containing liquid 35 is, for example, 50 wt%, but may be 10 to 80 wt%. After spraying, the phosphor particle-containing liquid 35 is dried for curing. In this phosphor particle-containing liquid coating step, a portion where the phosphor particles 14 are concentrated and a portion where the phosphor particles 14 overlap are generated.

バインダ液塗布工程では、図3(b)に示すように、硬化した蛍光体粒子含有液35、すなわち、接着剤15で囲まれた蛍光体粒子14間の空隙を埋めるようにバインダ液36がスプレー21で噴射によって塗布される。噴射後、バインダ液36は硬化のために乾燥される。この結果、半導体層11上に、蛍光体粒子14を含みかつその蛍光体粒子14間にバインダ16が充填された波長変換層13が形成される。このとき、蛍光体粒子14が上方に重なった部分により波長変換層13の突出表面部が形成され、その蛍光体粒子14間にはバインダ16の窪み20が生じる。   In the binder liquid coating step, as shown in FIG. 3B, the binder liquid 36 is sprayed so as to fill the voids between the cured phosphor particle-containing liquid 35, that is, the phosphor particles 14 surrounded by the adhesive 15. 21 is applied by spraying. After spraying, the binder liquid 36 is dried for curing. As a result, the wavelength conversion layer 13 that includes the phosphor particles 14 and is filled with the binder 16 between the phosphor particles 14 is formed on the semiconductor layer 11. At this time, a protruding surface portion of the wavelength conversion layer 13 is formed by a portion where the phosphor particles 14 overlap upward, and a depression 20 of the binder 16 is generated between the phosphor particles 14.

光散乱材含有バインダ液塗布工程では、図3(c)に示すように、硬化したバインダ液36、すなわち、バインダ16上に光散乱材含有バインダ液37がスプレー21で噴射によって塗布される。光散乱材含有バインダ液37の粘度は例えば、150mPa・sであるが、400mPa・s以下の値であれば良い。噴射後、光散乱材含有バインダ液37は硬化のために乾燥される。この結果、図1に示したように、波長変換層13上には光散乱層17が形成される。窪み20内では光散乱層17は厚く形成され、波長変換層13の突出表面部を形成している蛍光体粒子14上では光散乱層17は薄く形成される。   In the light scattering material-containing binder liquid application step, as shown in FIG. 3C, the light scattering material-containing binder liquid 37 is applied by spraying the spray 21 onto the cured binder liquid 36, that is, the binder 16. The viscosity of the light scattering material-containing binder liquid 37 is, for example, 150 mPa · s, but may be a value of 400 mPa · s or less. After jetting, the light scattering material-containing binder liquid 37 is dried for curing. As a result, as shown in FIG. 1, the light scattering layer 17 is formed on the wavelength conversion layer 13. The light scattering layer 17 is formed thick in the recess 20, and the light scattering layer 17 is formed thin on the phosphor particles 14 forming the protruding surface portion of the wavelength conversion layer 13.

光散乱層17の厚みは上記したように蛍光体粒子14の粒径よりも小さく、蛍光体粒子14の平均粒径の1/3の5μm以下であるが、波長変換層13の突出表面部を形成している蛍光体粒子14上はもっと薄く2μm以下となっている。これは光散乱材含有バインダ液37の粘度を150mPa・sのように低くなるように調整しているために、波長変換層13の突出表面部の蛍光体粒子14間の隙間部分には溜まりやすいが、波長変換層13の突出表面部の蛍光体粒子14上はそこから流れて溜まりにくいからである。   As described above, the thickness of the light scattering layer 17 is smaller than the particle diameter of the phosphor particles 14 and is 5 μm or less, which is 1/3 of the average particle diameter of the phosphor particles 14. The formed phosphor particles 14 are thinner and 2 μm or less. This is because the viscosity of the light scattering material-containing binder liquid 37 is adjusted to be as low as 150 mPa · s, so that it easily accumulates in the gaps between the phosphor particles 14 on the protruding surface portion of the wavelength conversion layer 13. However, it is because the phosphor particles 14 on the protruding surface portion of the wavelength conversion layer 13 flow from there and hardly accumulate.

また、蛍光体粒子14が集まっている部分のバインダ16の表面位置に比べて蛍光体粒子14の隙間部分のバインダ16は窪み20のように窪んでいる。そのため、スプレー21で光散乱材含有バインダ液37を波長変換層13上に噴射して塗布すると、窪み20内を光散乱材含有バインダ液37が埋め、突出表面部の蛍光体粒子14上では光散乱材含有バインダ液37は薄くなるか又は存在しない。よって、光散乱材含有バインダ液37が硬化した後の光散乱層17の層厚は蛍光体粒子14が存在しない位置、すなわち波長変換層13の突出表面部の蛍光体粒子14間の隙間部分の窪み20内では厚くなり、突出表面部の蛍光体粒子14上方の光散乱層17の層厚は薄くなる。窪み20内の光散乱層17の底位置(光散乱層17とバインダ16との界面位置)はそれらの蛍光体粒子14各々の最表面位置より低い位置である。   Further, the binder 16 in the gap portion of the phosphor particles 14 is recessed like a recess 20 compared to the surface position of the binder 16 in the portion where the phosphor particles 14 are gathered. Therefore, when the light scattering material-containing binder liquid 37 is sprayed onto the wavelength conversion layer 13 by the spray 21 and applied, the light scattering material-containing binder liquid 37 fills the recess 20 and light is emitted on the phosphor particles 14 on the protruding surface portion. The scattering material-containing binder liquid 37 is thinned or absent. Therefore, the thickness of the light scattering layer 17 after the light scattering material-containing binder liquid 37 is cured is a position where the phosphor particles 14 do not exist, that is, a gap portion between the phosphor particles 14 on the protruding surface portion of the wavelength conversion layer 13. The thickness is increased in the recess 20, and the thickness of the light scattering layer 17 above the phosphor particles 14 on the protruding surface portion is decreased. The bottom position of the light scattering layer 17 in the recess 20 (interface position between the light scattering layer 17 and the binder 16) is lower than the outermost surface position of each of the phosphor particles 14.

実施例1の発光装置においては、このように波長変換層13上に光散乱層17が形成されているので、図4に示すように、半導体層11から波長変換層13の突出表面部を形成している蛍光体粒子14の隙間部分を通過して散乱層17へ入射する比較的光出射角度の小さい(光出射角度0〜約±30度)の青色光(矢印A,B)は光散乱層17で乱反射する。乱反射した光の一部が、蛍光体粒子14に入射して、黄色光(矢印C)を出射する。なお、図4においては、散乱層17に入射した光は、あらゆる方向に乱反射されるが、本発明の説明容易化のために波長変換される光の光線を示している。また、出射角度0度は半導体層11の表面から垂直方向に出射する角度であり、出射方向が半導体層11の表面側に倒れてくるほど出射角度は大きくなる。   In the light emitting device of Example 1, since the light scattering layer 17 is formed on the wavelength conversion layer 13 in this way, a protruding surface portion of the wavelength conversion layer 13 is formed from the semiconductor layer 11 as shown in FIG. Blue light (arrows A and B) having a relatively small light exit angle (light exit angle 0 to about ± 30 degrees) that enters the scattering layer 17 through the gap portion of the phosphor particles 14 is scattered. Diffuse reflection occurs at the layer 17. Part of the irregularly reflected light enters the phosphor particles 14 and emits yellow light (arrow C). In FIG. 4, the light incident on the scattering layer 17 is irregularly reflected in all directions, but a light beam whose wavelength is converted is shown for easy explanation of the present invention. In addition, the emission angle of 0 degrees is an angle at which light is emitted from the surface of the semiconductor layer 11 in the vertical direction, and the emission angle increases as the emission direction falls toward the surface side of the semiconductor layer 11.

図5に示すように、光散乱層17が存在しない発光装置の場合には、半導体層11から波長変換層13の突出表面部を形成している蛍光体粒子14の隙間部分を通過してくる比較的光出射角度の小さい(光出射角度0〜約±30度)の青色光(矢印D)はそのまま出射される。このため、蛍光体粒子14の隙間部分を通過して、そのまま発光装置から出射される青色光により、発光装置において部分的に強い青色光が出射される色ムラを生じ、色度均一性が悪い。また、波長変換層13による白色化変換率が低下して、発光装置の明るさが低下する。   As shown in FIG. 5, in the case of a light emitting device in which the light scattering layer 17 does not exist, it passes from the semiconductor layer 11 through the gap portion of the phosphor particles 14 forming the protruding surface portion of the wavelength conversion layer 13. Blue light (arrow D) having a relatively small light emission angle (light emission angle 0 to about ± 30 degrees) is emitted as it is. For this reason, the blue light that passes through the gap portion of the phosphor particles 14 and is emitted as it is from the light emitting device causes color unevenness in which strong blue light is partially emitted from the light emitting device, resulting in poor chromaticity uniformity. . Moreover, the whitening conversion rate by the wavelength conversion layer 13 falls, and the brightness of a light-emitting device falls.

これに対し、実施例1の発光装置においては、半導体層11から波長変換層13の突出表面部を形成している蛍光体粒子14の隙間部分を通過してくる比較的光出射角度の小さい(光出射角度0〜約±30度)の青色光は、光散乱層17で乱反射して一部が蛍光体粒子14に入射して黄色光に変換させる。そのため、蛍光体粒子14の隙間部分を通過して、そのまま発光装置から出射される青色光は抑制され、部分的に黄色光に波長変換されるため、発光装置において部分的に強い青色光が出射される色ムラを抑制することができる。そして、波長変換層13による白色化変換率は、光散乱層のない図5の発光装置と比較して高くすることができる。なお、白色化変換率は、白色の光束lm/青色光の出力(mW)のことである。   On the other hand, in the light emitting device of Example 1, the light emission angle passing through the gap portion of the phosphor particles 14 forming the protruding surface portion of the wavelength conversion layer 13 from the semiconductor layer 11 is relatively small ( Blue light having a light emission angle of 0 to about ± 30 degrees is diffusely reflected by the light scattering layer 17 and partially enters the phosphor particles 14 to be converted into yellow light. Therefore, the blue light that passes through the gap portion of the phosphor particles 14 and is emitted from the light emitting device as it is is suppressed and partially wavelength-converted to yellow light. Color unevenness can be suppressed. And the whitening conversion rate by the wavelength conversion layer 13 can be made high compared with the light-emitting device of FIG. 5 without a light-scattering layer. The whitening conversion rate is the white light beam lm / blue light output (mW).

また、実施例1の発光装置においては、上記したようにバインダ16内には光散乱材が含まれていない。これは半導体層11の表面からの青色光が光散乱材に邪魔されずに蛍光体粒子14に直接当たり蛍光体粒子を効率よく励起するためである。バインダ16内に光散乱材が含まれると半導体層11の表面からの青色光は蛍光体粒子14に当たる前に光散乱材によって多重屈折し、光散乱材に当たるたびに青色光の強度が弱くなるため、蛍光体粒子の励起が弱くなり、発光装置の光束の低下や光度変化を引き起こす。   Further, in the light emitting device of Example 1, the light scattering material is not included in the binder 16 as described above. This is because the blue light from the surface of the semiconductor layer 11 directly hits the phosphor particles 14 without being disturbed by the light scattering material and excites the phosphor particles efficiently. If a light scattering material is included in the binder 16, the blue light from the surface of the semiconductor layer 11 is refracted by the light scattering material before hitting the phosphor particles 14, and the intensity of the blue light becomes weaker every time it hits the light scattering material. The excitation of the phosphor particles becomes weak, causing a decrease in luminous flux and a change in luminous intensity of the light emitting device.

更に、蛍光体粒子14自体は粒径が大きいほど波長変換効率が良いため蛍光体粒子14としては粒径が実施例1に示した平均粒径15μmのように比較的大きい粒子(10μm以上)を使用することが望まれている。一方、粒径が比較的大きい蛍光体粒子の場合には一般的に粒度分布が大きく、上記の蛍光体粒子含有液塗布工程におけるスプレー21の往復回数が少なくなってしまうために蛍光体粒子間の隙間が生じやすい。このことは半導体層11からの励起光が蛍光体粒子14に入射せずにそのまま波長変換層13から出射してしまい、色ムラを生じたり、波長変換効率が悪くなる。これに対処するために、実施例1の発光装置では、波長変換層13上に光散乱層17が形成されているので、半導体層11から波長変換層13の突出表面部を形成している蛍光体粒子14の隙間部分を通過してくる青色光(図4の矢印A,B)を光散乱層17で乱反射させることができる。そして乱反射した光の一部が、蛍光体粒子14に入射して、黄色光(矢印C)を出射する。よって、本実施例の発光装置によれば、比較的大なる粒径の蛍光体粒子14を含有する波長変換層13であっても、蛍光体粒子14間に隙間が生じてしまっても(発光素子上面に直上に蛍光体粒子14の存在しない領域が生じてしまっても)、当該隙間から蛍光体粒子14に入射せずに放出される光を抑制して、色ムラを抑制すると共に、波長変換効率の高い発光装置を提供することができる。   Further, since the phosphor particle 14 itself has a higher wavelength conversion efficiency as the particle size is larger, the phosphor particle 14 is a relatively large particle (10 μm or more) such as the average particle size of 15 μm shown in Example 1. It is desired to use it. On the other hand, in the case of phosphor particles having a relatively large particle size, the particle size distribution is generally large, and the number of reciprocations of the spray 21 in the phosphor particle-containing liquid coating process is reduced. A gap is likely to occur. This means that the excitation light from the semiconductor layer 11 does not enter the phosphor particles 14 and is emitted from the wavelength conversion layer 13 as it is, resulting in color unevenness and poor wavelength conversion efficiency. In order to cope with this, in the light emitting device of Example 1, since the light scattering layer 17 is formed on the wavelength conversion layer 13, the fluorescent light forming the protruding surface portion of the wavelength conversion layer 13 from the semiconductor layer 11. Blue light (arrows A and B in FIG. 4) passing through the gaps between the body particles 14 can be irregularly reflected by the light scattering layer 17. A part of the irregularly reflected light enters the phosphor particles 14 and emits yellow light (arrow C). Therefore, according to the light emitting device of this example, even if the wavelength conversion layer 13 contains the phosphor particles 14 having a relatively large particle diameter, even if a gap is generated between the phosphor particles 14 (light emission). Even if a region where the phosphor particles 14 do not exist is formed directly on the upper surface of the device), light emitted without entering the phosphor particles 14 from the gap is suppressed, color unevenness is suppressed, and wavelength A light-emitting device with high conversion efficiency can be provided.

なお、実施例1における蛍光体粒子含有液塗布工程、バインダ液塗布工程、及び光散乱材含有バインダ液塗布工程では、塗布液を霧状に噴射して吹き付けるスプレー方式を用いたが、スプレー方式以外にも、ジェットディスペンサー方式や静電塗装方式を用いることもできる。   In addition, in the phosphor particle-containing liquid coating process, the binder liquid coating process, and the light scattering material-containing binder liquid coating process in Example 1, a spray system in which the coating liquid is sprayed and sprayed in a mist form is used. In addition, a jet dispenser method or an electrostatic coating method can also be used.

図6は本発明の実施例2の発光装置の断面図を示している。この発光装置においては、基板10と半導体層11とからなる発光素子上に波長変換層13が形成され、波長変換層13上に光散乱層17が形成されていることは実施例1の発光層と同一である。実施例2の発光装置では、光散乱層17を含む波長変換層13の表面が、半導体層11の主面と平行となるように平坦化されている。   FIG. 6 shows a cross-sectional view of the light emitting device of Example 2 of the present invention. In this light emitting device, the wavelength conversion layer 13 is formed on the light emitting element composed of the substrate 10 and the semiconductor layer 11, and the light scattering layer 17 is formed on the wavelength conversion layer 13. Is the same. In the light emitting device of Example 2, the surface of the wavelength conversion layer 13 including the light scattering layer 17 is flattened so as to be parallel to the main surface of the semiconductor layer 11.

図7(a)〜(d)は図6の実施例2の発光装置の製造方法における蛍光体粒子含有液塗布工程(第1の工程)、バインダ液塗布工程(第2の工程)、光散乱材含有バインダ液塗布工程(第3の工程)及び平坦化工程(第4の工程)を示している。   7A to 7D show phosphor particle-containing liquid application step (first step), binder liquid application step (second step), and light scattering in the method of manufacturing the light emitting device of Example 2 in FIG. The material-containing binder liquid application step (third step) and the planarization step (fourth step) are shown.

蛍光体粒子含有液塗布工程、バインダ液塗布工程、光散乱材含有バインダ液塗布工程は図3(a)〜(c)の実施例1の各工程と同一である。ただし、実施例2のバインダ液塗布工程では、実施例1に比べてスプレー21によって噴射によって塗布されるバインダ液36が少ない。バインダ液36は図7(b)に示すように、波長変換層13の高さのほぼ2/3(半分から2/3の範囲)の位置まで塗布され、その後、硬化される。   The phosphor particle-containing liquid coating process, the binder liquid coating process, and the light scattering material-containing binder liquid coating process are the same as those in the first embodiment shown in FIGS. However, in the binder liquid application process of the second embodiment, less binder liquid 36 is applied by spraying with the spray 21 than in the first embodiment. As shown in FIG. 7B, the binder liquid 36 is applied to a position that is approximately 2/3 of the height of the wavelength conversion layer 13 (in the range from half to 2/3), and then cured.

光散乱材含有バインダ液塗布工程では図7(c)に示すように、硬化したバインダ液36、すなわち、バインダ16上に光散乱材含有バインダ液37がスプレー21で噴射によって塗布され、その後、硬化される。その光散乱材含有バインダ液37の塗布量は実施例1の場合より多く、バインダ16の層厚が薄くされた分だけ光散乱層17の層厚が厚くされている。   In the light scattering material-containing binder liquid application step, as shown in FIG. 7 (c), the cured binder liquid 36, that is, the light scattering material-containing binder liquid 37 is applied onto the binder 16 by spraying with a spray 21, and then cured. Is done. The coating amount of the light scattering material-containing binder liquid 37 is larger than that in the first embodiment, and the thickness of the light scattering layer 17 is increased by the amount that the thickness of the binder 16 is reduced.

平坦化工程では、グラインダーを用いて光散乱層17の表面を研削して平坦化することが行われる。例えば、光散乱層17まで形成された基板10を自転させ、回転したグラインダーの砥石をその光散乱層17の表面に向けて上から下降させ、所望の厚みになるまで研削する方法が実行される。図7(d)に示すように、光散乱層17だけでなく波長変換層13の突出表面部を形成している蛍光体粒子14やバインダ16も研削される。光散乱層17の層厚は蛍光体粒子14の平均粒径の半分以下となるまで研削される。また、蛍光体粒子14が研削された部分の表面には光散乱層17が存在しない。   In the planarization step, the surface of the light scattering layer 17 is ground and planarized using a grinder. For example, the substrate 10 formed up to the light scattering layer 17 is rotated, the grindstone of the rotated grinder is lowered from above toward the surface of the light scattering layer 17, and grinding is performed until a desired thickness is achieved. . As shown in FIG. 7D, not only the light scattering layer 17 but also the phosphor particles 14 and the binder 16 forming the protruding surface portion of the wavelength conversion layer 13 are ground. The light scattering layer 17 is ground until the thickness of the light scattering layer 17 becomes half or less of the average particle diameter of the phosphor particles 14. Further, the light scattering layer 17 does not exist on the surface of the portion where the phosphor particles 14 are ground.

実施例2の発光装置においては、実施例1と同様、蛍光体粒子14の隙間部分を通過してくる比較的光出射角度の小さい青色光E,Fは光散乱層17で乱反射して一部が蛍光体粒子14に入射して黄色光に変換されるため、そのまま発光装置から出射される青色光は抑制され、部分的に黄色光Gに波長変換されるため、発光装置において部分的に強い青色光が出射される色ムラを抑制することができる。そして、波長変換層13による白色化変換率は、光散乱層のない発光装置と比較して高くすることができる。   In the light emitting device of the second embodiment, as in the first embodiment, the blue light E and F having a relatively small light emission angle passing through the gap portion of the phosphor particles 14 is irregularly reflected by the light scattering layer 17 and partially Is incident on the phosphor particles 14 and converted into yellow light, so that the blue light emitted from the light emitting device is suppressed as it is and partly converted into yellow light G, so that it is partially strong in the light emitting device. Color unevenness in which blue light is emitted can be suppressed. And the whitening conversion rate by the wavelength conversion layer 13 can be made high compared with the light-emitting device without a light-scattering layer.

更に、実施例2の発光装置においては、不要な領域に形成された散乱層が平坦化により除去されているため、不要な領域に形成された散乱層での光散乱による出力低下を防止することができる。つまり、波長変換層13の表面側の蛍光体粒子14上の領域(図8におけるX領域)、波長変換層13の表面側の蛍光体粒子14の隙間部分のうち直下に蛍光体粒子14が存在している領域(図8におけるY領域)などの領域上に散乱層を配置しないことが好ましい。そのため、これら領域上に散乱層17を配置しない構成とすることにより、これら領域の上に散乱層17が配置された場合と比較して、不要な光散乱による光出力の低下を抑制し、白色化変化率を高めて、高出力の発光装置を提供することができる。   Furthermore, in the light emitting device of Example 2, since the scattering layer formed in the unnecessary region is removed by planarization, it is possible to prevent a reduction in output due to light scattering in the scattering layer formed in the unnecessary region. Can do. That is, the phosphor particles 14 are present directly below the region on the phosphor particles 14 on the surface side of the wavelength conversion layer 13 (the X region in FIG. 8) and the gap between the phosphor particles 14 on the surface side of the wavelength conversion layer 13. It is preferable not to dispose the scattering layer on a region such as a region (Y region in FIG. 8). Therefore, by adopting a configuration in which the scattering layer 17 is not disposed on these regions, a decrease in light output due to unnecessary light scattering is suppressed compared to the case where the scattering layer 17 is disposed on these regions, and the white color is reduced. It is possible to provide a high-power light-emitting device with an increased rate of change in chemical conversion.

また、実施例2の発光装置では、平坦化において、波長変換層13の厚み、光散乱層17の厚みを変化させることができ、つまり、透過光と波長変換光のバランスを調整して色調整することができるため、所望の色度の発光装置を提供することができる。   In the light emitting device of Example 2, the thickness of the wavelength conversion layer 13 and the thickness of the light scattering layer 17 can be changed in flattening, that is, color adjustment is performed by adjusting the balance between transmitted light and wavelength converted light. Therefore, a light-emitting device with desired chromaticity can be provided.

図9は本発明の実施例3の発光装置の断面図を示している。この発光装置においては、基板10と半導体層11とからなる発光素子上に波長変換層13が形成され、波長変換層13上に光散乱層17が形成されていることは実施例1の発光層と同一である。実施例3の発光装置では、バインダ16は波長変換層13の高さのほぼ2/3(半分から2/3の範囲)の厚さを有し、その分だけ波長変換層13の表面を突出させている蛍光体粒子14間の隙間部分では光散乱層17の層厚は厚い。蛍光体粒子14が表面に突出して存在する位置の上方の光散乱層17の層厚は薄く、例えば、2μm以下である。この実施例3の発光装置のその他の構成は実施例1と同様である。これにより、実施例1より深く散乱層17を形成することができるため、蛍光体粒子14の隙間部分を通過してくる比較的光出射角度の小さい光を、実施例1の散乱層17より多く散乱し、蛍光体粒子14に入射する確率を高めることができるので、白色化変化率を実施例1の発光装置より更に高めて、高出力の発光装置を提供することができる。   FIG. 9 shows a cross-sectional view of the light emitting device of Example 3 of the present invention. In this light emitting device, the wavelength conversion layer 13 is formed on the light emitting element composed of the substrate 10 and the semiconductor layer 11, and the light scattering layer 17 is formed on the wavelength conversion layer 13. Is the same. In the light emitting device of Example 3, the binder 16 has a thickness that is approximately 2/3 of the height of the wavelength conversion layer 13 (in the range of half to 2/3), and protrudes from the surface of the wavelength conversion layer 13 by that amount. The thickness of the light scattering layer 17 is thick in the gaps between the phosphor particles 14 that are being made. The layer thickness of the light scattering layer 17 above the position where the phosphor particles 14 protrude from the surface is thin, for example, 2 μm or less. Other configurations of the light emitting device of the third embodiment are the same as those of the first embodiment. Accordingly, since the scattering layer 17 can be formed deeper than in the first embodiment, more light having a relatively small light emission angle passing through the gap portion of the phosphor particles 14 is more than in the scattering layer 17 in the first embodiment. Since the probability of being scattered and entering the phosphor particles 14 can be increased, the whitening change rate can be further increased as compared with the light emitting device of Example 1, and a high output light emitting device can be provided.

なお、上記した蛍光体粒子及び光散乱材の粒子の粒径の測定法としてレーザ回折法を用いた。   The laser diffraction method was used as a method for measuring the particle diameters of the phosphor particles and the light scattering material particles described above.

また、上記した各実施例においては、半導体層11はメタルボンディング型発光素子としたが、本発明は他のフェイスアップタイプの発光素子にも適用することができる。また、半導体層11としては実施例に示したGaN系の発光ダイオードに限らず、AlGaAs系やZnO系の他の発光素子を用いることができる。   In each of the above embodiments, the semiconductor layer 11 is a metal bonding type light emitting element, but the present invention can also be applied to other face-up type light emitting elements. Further, the semiconductor layer 11 is not limited to the GaN-based light emitting diode shown in the embodiment, and other light emitting elements of AlGaAs or ZnO can be used.

10 基板
11 半導体層
13 波長変換層
14 蛍光体粒子
15 接着剤
16 バインダ
17 光散乱層
21 スプレー
35 蛍光体粒子含有液
36 バインダ液
37 光散乱材含有バインダ液
DESCRIPTION OF SYMBOLS 10 Substrate 11 Semiconductor layer 13 Wavelength conversion layer 14 Phosphor particle 15 Adhesive 16 Binder 17 Light scattering layer 21 Spray 35 Phosphor particle containing liquid 36 Binder liquid 37 Light scattering material containing binder liquid

Claims (7)

発光素子と、前記発光素子上に配置され、複数の蛍光体粒子を含む波長変換層と、を備える発光装置であって、
前記複数の蛍光体粒子の一部は前記波長変換層の表面部に位置し、前記波長変換層は前記一部の蛍光体粒子に隣接した表面に窪みを有し、
前記発光装置は前記窪み内に形成された光散乱層を有し、
前記光散乱層を含む前記波長変換層の表面が平坦に形成されていることを特徴とする発光装置。
A light emitting device comprising: a light emitting element; and a wavelength conversion layer disposed on the light emitting element and including a plurality of phosphor particles,
Some of the plurality of phosphor particles are located on the surface portion of the wavelength conversion layer, the wavelength conversion layer has a depression on the surface adjacent to the some phosphor particles,
The light emitting device will have a light scattering layer formed in said recess,
The light emitting device, wherein a surface of the wavelength conversion layer including the light scattering layer is formed flat .
発光素子と、前記発光素子上に配置され、複数の蛍光体粒子を含む波長変換層と、を備える発光装置であって、A light emitting device comprising: a light emitting element; and a wavelength conversion layer disposed on the light emitting element and including a plurality of phosphor particles,
前記複数の蛍光体粒子の一部は前記波長変換層の表面部に位置し、前記波長変換層は前記一部の蛍光体粒子に隣接した表面に窪みを有し、  Some of the plurality of phosphor particles are located on the surface portion of the wavelength conversion layer, the wavelength conversion layer has a depression on the surface adjacent to the some phosphor particles,
前記波長変換層は前記複数の蛍光体粒子の間を埋める透光性バインダを含み、  The wavelength conversion layer includes a translucent binder that fills between the plurality of phosphor particles,
前記発光装置を上方から観測した場合に、前記発光素子上面は、前記蛍光体粒子の存在しない上面露出領域を有し、  When the light emitting device is observed from above, the upper surface of the light emitting element has an upper surface exposed region where the phosphor particles do not exist,
前記発光装置は、前記上面露出領域において、前記透光性バインダが前記波長変換層の高さの半分から2/3の範囲の厚みを有することにより形成された前記窪み内に光散乱層を有し、  The light emitting device has a light scattering layer in the recess formed by the translucent binder having a thickness in the range of half to 2/3 of the height of the wavelength conversion layer in the upper surface exposed region. And
前記透光性バインダには光散乱性の粒子が含まれておらず、  The translucent binder does not contain light scattering particles,
前記上面露出領域上に前記光散乱層が重なるように配置され、前記一部の蛍光体粒子は前記波長変換層の突出表面部を形成することを特徴とする発光装置。  The light-emitting device, wherein the light scattering layer is disposed so as to overlap the upper surface exposed region, and the part of the phosphor particles forms a protruding surface portion of the wavelength conversion layer.
前記窪みは、前記突出表面部を形成している前記蛍光体粒子の間に位置することを特徴とする請求項2記載の発光装置。   The light emitting device according to claim 2, wherein the depression is located between the phosphor particles forming the protruding surface portion. 前記光散乱層の層厚は前記蛍光体粒子平均粒径以下であることを特徴とする請求項1ないし3のいずれか1記載の発光装置。 4. The light emitting device according to claim 1, wherein the thickness of the light scattering layer is equal to or less than an average particle diameter of the phosphor particles. 5. 前記蛍光体粒子の粒径は10μm以上であることを特徴とする請求項1ないしのいずれか1記載の発光装置。 The light emitting device as claimed in any one of claims 1 to 4, wherein the particle size of the phosphor particles is 10μm or more. 発光素子上に複数の蛍光体粒子を有する塗布液を塗布して前記発光素子上に前記複数の蛍光体粒子を配置する第1の工程と、
前記第1の工程後、前記複数の蛍光体粒子が配置された前記発光素子上に透光性バインダの溶液を塗布して前記発光素子上に前記複数の蛍光体粒子間を埋める前記透光性バインダを配置して前記複数の蛍光体粒子を含有する波長変換層を形成する第2の工程と、
前記第2の工程後、前記波長変換層上に光散乱層を形成する第3の工程と、を含む発光装置の製造方法であって、
前記複数の蛍光体粒子の一部は前記波長変換層の表面部に位置し、前記波長変換層は前記一部の蛍光体粒子に隣接した表面に前記透光性バインダの窪みを有し、
前記第3の工程において前記窪み内に前記光散乱層が形成され、
前記製造方法は、前記第3の工程後、前記光散乱層を含む前記波長変換層の表面を平坦化する第4の工程を含むことを特徴とする発光装置の製造方法。
A first step of applying a coating liquid having a plurality of phosphor particles on the light emitting element and disposing the plurality of phosphor particles on the light emitting element;
After the first step, a translucent binder solution is applied on the light emitting element on which the plurality of phosphor particles are arranged to fill the space between the plurality of phosphor particles on the light emitting element. A second step of forming a wavelength conversion layer containing a plurality of phosphor particles by arranging a binder;
After the second step, a third step of forming a light scattering layer to the wavelength conversion layer, the method for manufacturing a including the light emitting device,
A part of the plurality of phosphor particles is located on a surface portion of the wavelength conversion layer, the wavelength conversion layer has a depression of the translucent binder on a surface adjacent to the part of the phosphor particles,
In the third step, the light scattering layer is formed in the depression,
The manufacturing method includes a fourth step of flattening a surface of the wavelength conversion layer including the light scattering layer after the third step .
発光素子上に複数の蛍光体粒子を有する塗布液を塗布して前記発光素子上に前記複数の蛍光体粒子を配置する第1の工程と、A first step of applying a coating liquid having a plurality of phosphor particles on the light emitting element and disposing the plurality of phosphor particles on the light emitting element;
前記第1の工程後、前記複数の蛍光体粒子が配置された前記発光素子上に透光性バインダの溶液を塗布して前記発光素子上に前記複数の蛍光体粒子間を埋める前記透光性バインダを配置して前記複数の蛍光体粒子を含有する波長変換層を形成する第2の工程と、  After the first step, a translucent binder solution is applied on the light emitting element on which the plurality of phosphor particles are arranged to fill the space between the plurality of phosphor particles on the light emitting element. A second step of forming a wavelength conversion layer containing a plurality of phosphor particles by arranging a binder;
前記第2の工程後、前記波長変換層上に光散乱層を形成する第3の工程と、を含み、  After the second step, a third step of forming a light scattering layer on the wavelength conversion layer,
前記透光性バインダには光散乱性の粒子が含まれておらず、The translucent binder does not contain light scattering particles,
前記複数の蛍光体粒子の一部は前記波長変換層の表面部に位置し、前記波長変換層は前記一部の蛍光体粒子に隣接した表面に前記透光性バインダが前記波長変換層の高さの半分から2/3の範囲の厚みにすることにより形成された窪みを有し、前記一部の蛍光体粒子は前記波長変換層の突出表面部を形成し、  A part of the plurality of phosphor particles is located on a surface portion of the wavelength conversion layer, and the wavelength conversion layer is formed on the surface adjacent to the part of the phosphor particles, and the translucent binder is higher than the wavelength conversion layer. Having a recess formed by making the thickness in the range of half to 2/3, the some phosphor particles form a protruding surface portion of the wavelength conversion layer,
前記第3の工程において、前記窪み内に前記光散乱層が形成されることを特徴とする発光装置の製造方法。In the third step, the light scattering layer is formed in the depression, and the method for manufacturing a light emitting device.
JP2012061848A 2012-03-19 2012-03-19 Light emitting device and manufacturing method thereof Active JP6005958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012061848A JP6005958B2 (en) 2012-03-19 2012-03-19 Light emitting device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012061848A JP6005958B2 (en) 2012-03-19 2012-03-19 Light emitting device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013197259A JP2013197259A (en) 2013-09-30
JP6005958B2 true JP6005958B2 (en) 2016-10-12

Family

ID=49395866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012061848A Active JP6005958B2 (en) 2012-03-19 2012-03-19 Light emitting device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6005958B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6349973B2 (en) * 2014-05-30 2018-07-04 日亜化学工業株式会社 LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE MANUFACTURING METHOD
JP2016018960A (en) 2014-07-10 2016-02-01 エムテックスマート株式会社 Manufacturing method of led and led
CN108139520A (en) * 2015-09-29 2018-06-08 松下知识产权经营株式会社 Wavelength changing element and light-emitting device
WO2017147816A1 (en) * 2016-03-02 2017-09-08 Materion Corporation Optically enhanced light converter

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4450547B2 (en) * 2002-08-29 2010-04-14 日亜化学工業株式会社 Method for manufacturing light emitting device
JP4590905B2 (en) * 2003-10-31 2010-12-01 豊田合成株式会社 Light emitting element and light emitting device
EP2011164B1 (en) * 2006-04-24 2018-08-29 Cree, Inc. Side-view surface mount white led

Also Published As

Publication number Publication date
JP2013197259A (en) 2013-09-30

Similar Documents

Publication Publication Date Title
US9583682B2 (en) Light-emitting device and method of manufacturing the same
US9576941B2 (en) Light-emitting device and method of manufacturing the same
KR101892593B1 (en) A light emitting device and the manufacturing method
JP5736203B2 (en) Light emitting device
JP5647028B2 (en) Light emitting device and manufacturing method thereof
JP5572013B2 (en) Light emitting device and manufacturing method thereof
JP5883662B2 (en) Light emitting device
JP7080010B2 (en) Light emitting element and its manufacturing method
JP2013175531A (en) Light-emitting device
JP5539849B2 (en) Light emitting device and manufacturing method thereof
US8035122B2 (en) Light diffusion type light emitting diode
TW201729434A (en) Light-emitting element and the manufacturing method thereof
JP2007116131A (en) Led light emitting device
JP7235944B2 (en) Light-emitting device and method for manufacturing light-emitting device
JP2016162850A (en) Light-emitting device
JP6005958B2 (en) Light emitting device and manufacturing method thereof
JP2017152475A (en) Light-emitting device
JP5330855B2 (en) Semiconductor light emitting device
TWI741339B (en) Light emitting device and method of manufacturing the same
JP5853441B2 (en) Light emitting device
JP2023009160A (en) LED module with high near-field contrast ratio
JP5681532B2 (en) Light emitting device and manufacturing method thereof
JP2015026753A (en) Semiconductor light emitting device and manufacturing method of the same
JP5970215B2 (en) Light emitting device and manufacturing method thereof
JP2013168408A (en) Light-emitting device and manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160908

R150 Certificate of patent or registration of utility model

Ref document number: 6005958

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250