JP6004433B2 - Method for producing gel-forming compound and molecular assembly thereof - Google Patents

Method for producing gel-forming compound and molecular assembly thereof Download PDF

Info

Publication number
JP6004433B2
JP6004433B2 JP2012255944A JP2012255944A JP6004433B2 JP 6004433 B2 JP6004433 B2 JP 6004433B2 JP 2012255944 A JP2012255944 A JP 2012255944A JP 2012255944 A JP2012255944 A JP 2012255944A JP 6004433 B2 JP6004433 B2 JP 6004433B2
Authority
JP
Japan
Prior art keywords
gel
molecular
compound
forming compound
molecular assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012255944A
Other languages
Japanese (ja)
Other versions
JP2014101473A (en
Inventor
松澤 洋子
洋子 松澤
あづさ 加藤
あづさ 加藤
陽久 秋山
陽久 秋山
吉田 勝
勝 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2012255944A priority Critical patent/JP6004433B2/en
Publication of JP2014101473A publication Critical patent/JP2014101473A/en
Application granted granted Critical
Publication of JP6004433B2 publication Critical patent/JP6004433B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、溶媒の種類によって分子が分散し、また、分子集合体を形成すること(ゾル/ゲル転移)によって蛍光波長を変化させることのできる新規化合物、及び当該化合物の分散状態を変化させることによって蛍光波長を変化させる方法に関するものである。   The present invention relates to a novel compound capable of changing the fluorescence wavelength by dispersing molecules depending on the type of solvent and forming a molecular assembly (sol / gel transition), and changing the dispersion state of the compound. This relates to a method for changing the fluorescence wavelength.

有機低分子が水素結合やvan der Waals相互作用などの非共有結合により会合体を形成して分子集合体となり溶媒を取り込んでゲル化する有機低分子ゲル化剤は、環境や特定の刺激により上記非共有結合を可逆的に切断/再結合することができ、それに伴いゾル/ゲル相転移現象を示す。ゲル化剤の組織化に機能の発現を伴う場合は、ゲル化剤の組織化を制御することにより、その機能を可逆的にon/off制御することが可能であり、このようなゲル化剤には、環境や刺激に応答するセンサーとしての利用が期待される。
このような、組織化により機能を可逆的に変化させる分子系として、近年、組織化によって「蛍光挙動(波長や強度)を可逆的に変化させることのできる分子系」が知られている。これまでに、スチルベン誘導体(非特許文献1)、カルバゾール誘導体(非特許文献2)、フェナンスロリン誘導体(非特許文献3)、トリフェニルベンゼン誘導体(非特許文献4)等について、有機溶媒中で形成する組織体が、分子単独の場合と比べると蛍光強度が強まることが報告されている。
しかしながら、これらの分子系は有機溶媒系においてのみ適用可能であり、水系溶媒には適応できない。その理由は、用いる分子が水系の溶媒に不溶であるためである。機能材料の応用において工業的な視点から考慮すると、環境に負荷を与えない水溶液系においてこのような機能を発現する分子系が望ましいが、これまで、水溶液系で分子の分散(ゾル)/分子集合体形成(ゲル)の転移により蛍光挙動が変化する分子系の報告例はない。
Organic low-molecular gelling agents that form organic aggregates by forming non-covalent bonds such as hydrogen bonds and van der Waals interactions to form molecular aggregates and take in the solvent to gel, are described above depending on the environment and specific stimuli. Non-covalent bonds can be reversibly cleaved / recombined, resulting in a sol / gel phase transition phenomenon. If the organization of the gelling agent is accompanied by the expression of the function, it is possible to reversibly turn on / off the function by controlling the organization of the gelling agent. Is expected to be used as a sensor that responds to the environment and stimuli.
As such a molecular system whose function is reversibly changed by organization, a “molecular system capable of reversibly changing fluorescence behavior (wavelength and intensity)” by organization is known in recent years. So far, stilbene derivatives (Non-Patent Document 1), carbazole derivatives (Non-Patent Document 2), phenanthroline derivatives (Non-Patent Document 3), triphenylbenzene derivatives (Non-Patent Document 4), etc., in organic solvents. It has been reported that the fluorescence intensity intensifies as compared to the case where the formed tissue is a molecule alone.
However, these molecular systems are applicable only in organic solvent systems and cannot be adapted to aqueous solvents. The reason is that the molecules used are insoluble in aqueous solvents. Considering from an industrial point of view in the application of functional materials, molecular systems that exhibit such functions in aqueous solutions that do not impact the environment are desirable, but until now, molecular dispersion (sol) / molecular assembly in aqueous solutions There are no reports of molecular systems in which fluorescence behavior changes due to transition of body formation (gel).

中村徹等、特許第4579111号(登録日:2010.9.3)Toru Nakamura et al., Patent No. 4579111 (Registration date: 2010.9.3)

B-K.An,et al.,J.Am.Chem.Soc.,2004,126,10232-10233.B-K.An, et al., J.Am.Chem.Soc., 2004, 126, 10232-10233. X.Yang,et al.,Chem.Commun.,2008,453-455.X. Yang, et al., Chem. Commun., 2008, 453-455. K.Sugiyasu,et al.,Org.Biomol.Chem.,2003,1,895-899.K. Sugiyasu, et al., Org. Biomol. Chem., 2003, 1, 895-899. C.Bao,et al.,Chem.Eur.J.,2006,12,3287-3294.C. Bao, et al., Chem. Eur. J., 2006, 12, 3287-3294. Y.Matsuzawa,et al.,Adv.Funct.Mater.,2007,17,1507-1514.Y. Matsuzawa, et al., Adv. Funct. Mater., 2007, 17, 1507-1514. Y.Hayashi,et al.,J.Photochem.Photobiol.,A,2002,149,199-206.Y. Hayashi, et al., J. Photochem. Photobiol., A, 2002, 149, 199-206.

本発明は、工業的な操作性を考慮し、水溶液系において分子の分散(ゾル)/分子集合体形成(ゲル)の転移により蛍光挙動が変化するハイドロゲル材料、およびその蛍光挙動の制御方法を提供することを課題とする。   In view of industrial operability, the present invention provides a hydrogel material whose fluorescence behavior changes due to the transition of molecular dispersion (sol) / molecular aggregate formation (gel) in an aqueous solution system, and a method for controlling the fluorescence behavior. The issue is to provide.

本発明者らは、これまでの分子集合体に関する知見(非特許文献5、特許文献1)をもとに、水系溶媒においても展開可能であり、なおかつ、蛍光挙動をつかさどる部位と組織化をつかさどる部位が明確に区別され、組織化により蛍光波長が変化する分子系を確立した。
具体的には、本発明の分子集合体は、図1に示すように、組織化をつかさどる部位と蛍光挙動にかかる部位が分子内で明確に分かれて構成された分子からなる。蛍光挙動にかかる部位は目的(たとえば、発光波長など)に応じて適宜変更することが可能である。組織化をつかさどる部位はオリゴペプチドによって構成されており、分子間水素結合を形成することにより組織化する。組織化させるためには水や親水性有機溶媒(ジメチルスルホキシドやジメチルホルムアミド等)、またはそれらの混合物を用いる。
今回、本発明者らは特にシアノビフェニル基に着目し、図2に示す化合物1の分子を設計した。シアノビフェニル基は会合体を形成することにより、長波長シフトした蛍光を発することが知られている(非特許文献6)が、シアノビフェニル基そのものには自発的に会合体を形成する性質はない。本発明者らは、本発明者らがこれまでに見出している(非特許文献5、特許文献1)組織化するユニット(オリゴペプチド基)をシアノビフェニル基に結合することで、会合体形成を促した。
The present inventors are able to develop even in aqueous solvents based on the knowledge about the molecular assembly so far (Non-Patent Document 5 and Patent Document 1), and also control the site and organization that control the fluorescence behavior. A molecular system was established in which the sites were clearly distinguished and the fluorescence wavelength changed with organization.
Specifically, as shown in FIG. 1, the molecular assembly of the present invention is composed of molecules in which a site responsible for organization and a site related to fluorescence behavior are clearly separated in the molecule. The part related to the fluorescence behavior can be appropriately changed according to the purpose (for example, emission wavelength). The site responsible for organization is constituted by oligopeptides, which are organized by forming intermolecular hydrogen bonds. For organization, water, a hydrophilic organic solvent (such as dimethyl sulfoxide or dimethylformamide), or a mixture thereof is used.
The inventors of the present invention designed the molecule of Compound 1 shown in FIG. 2 by paying particular attention to the cyanobiphenyl group. The cyanobiphenyl group is known to emit long wavelength-shifted fluorescence by forming an aggregate (Non-patent Document 6), but the cyanobiphenyl group itself does not have the property of spontaneously forming an aggregate. . The inventors of the present invention have previously found (Non-patent Documents 5 and 1), and the unit (oligopeptide group) to be organized is bonded to a cyanobiphenyl group to form an aggregate. Urged.

すなわち、この出願によれば、以下の発明が提供される。
〈1〉以下の一般式で表される、シアノビフェニル基とペプチド基からなる組織化ユニットを化学結合してなるゲル生成化合物、又はその塩。

Figure 0006004433
[上記一般式中、R1は炭素数4以下のアルキル基、R2は水素原子又は炭素数4以下のアルキル基、mは0又は1〜10の自然数、nは2〜10の自然数、*はその炭素がRもしくはS体(該炭素がアミノ酸残基に属する場合にはLもしくはD体)に対応する光学活性エナンチオマーを示す]
〈2〉〈1〉に記載のゲル生成化合物又はその塩から選ばれた少なくとも1種の化合物又はその塩を有効成分とする、ゾル−ゲル相互間の相転移性機能材。
〈3〉〈1〉に記載のゲル生成化合物分子から形成され、それぞれの分子の組織化をつかさどる部位であるペプチド基同士が相互に並列し、それにより、それぞれの分子の蛍光挙動にかかる部位であるシアノビフェニル基同士も相互に並列した構造を備える分子集合体。
〈4〉数十nmの繊維状組織体であることを特徴とする、〈3〉に記載の分子集合体。
〈5〉〈1〉に記載のゲル生成化合物又はその塩を親水性溶媒中に分散させて、可視光域で蛍光を発生するゾル分散液を作成し、当該分散液に水を加えることにより、可視光域で、より長波長側にシフトした蛍光を発生する当該化合物の分子集合体ゲルを形成させることを特徴とする、〈3〉に記載のゲル生成化合物の分子集合体の製造方法。
〈6〉親水性溶媒が、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、1,4-ジオキサン、テトラヒドロフラン、メタノールおよびエタノールのいずれかであることを特徴とする、〈5〉に記載の分子集合体の製造方法。 That is, according to this application, the following invention is provided.
<1> A gel-forming compound represented by the following general formula, or a salt thereof, formed by chemically bonding an organized unit consisting of a cyanobiphenyl group and a peptide group.
Figure 0006004433
[In the above general formula, R 1 is an alkyl group having 4 or less carbon atoms, R 2 is a hydrogen atom or an alkyl group having 4 or less carbon atoms, m is a natural number of 0 or 1 to 10, n is a natural number of 2 to 10, * Is an optically active enantiomer whose carbon corresponds to R or S form (or L or D form when the carbon belongs to an amino acid residue)]
<2> A sol-gel phase-transition functional material containing at least one compound selected from the gel-forming compound or salt thereof according to <1> or a salt thereof as an active ingredient.
<3> Peptide groups, which are formed from the gel-forming compound molecules described in <1> and are responsible for the organization of each molecule, are arranged in parallel with each other. A molecular assembly with a structure in which some cyanobiphenyl groups are parallel to each other.
<4> The molecular assembly according to <3>, which is a fibrous organization of several tens of nm.
<5> Dispersing the gel-forming compound or salt thereof according to <1> in a hydrophilic solvent, creating a sol dispersion that generates fluorescence in the visible light region, and adding water to the dispersion, The method for producing a molecular aggregate of a gel-forming compound according to <3>, wherein a molecular aggregate gel of the compound that generates fluorescence shifted to a longer wavelength side in the visible light region is formed.
<6> Production of molecular assembly according to <5>, wherein the hydrophilic solvent is any one of dimethyl sulfoxide, dimethylformamide, dimethylacetamide, 1,4-dioxane, tetrahydrofuran, methanol and ethanol Method.

本発明の化合物は、水系の溶媒において、溶媒の種類を変えることにより、溶媒中の分子の分散状態を、分子が溶媒中に分散したゾル状態から分子集合体が形成されたゲル状態に変化させることができ、また、当該分散状態の変化に伴い、当該分子が発光する蛍光の波長を長波長側にシフトさせることができる。
本発明によれば、今まで、粘性の変化等マクロな現象でしか捉えられなかった、水系溶媒中の分子の分散状態、すなわち、分散(ゾル)および分子集合体形成(ゲル)の挙動を視覚的にとらえることができ、これにより局所的な組織化の崩壊・形成をも観察することができる。(イメージ:図1)
本発明のゲル状の分子集合体は、外部からの刺激、例えば熱が加わることにより、ゾル状の分散液に可逆的に変化し、それに伴って蛍光の波長も短波長側にシフトする。この性質を利用して、本発明の化合物は、水系溶媒中の分散物として、例えば熱センサーなどに利用することができる。
The compound of the present invention changes the dispersion state of molecules in a solvent from a sol state in which molecules are dispersed in a solvent to a gel state in which molecular aggregates are formed by changing the type of solvent in an aqueous solvent. In addition, as the dispersion state changes, the wavelength of fluorescence emitted by the molecule can be shifted to the longer wavelength side.
According to the present invention, the dispersion state of molecules in an aqueous solvent, that is, the behavior of dispersion (sol) and molecular aggregate formation (gel), which has been captured only by macroscopic phenomena such as changes in viscosity until now, has been visually observed. Therefore, local disruption and formation of organization can be observed. (Image: Fig. 1)
The gel-like molecular assembly of the present invention reversibly changes to a sol-like dispersion upon application of external stimulus, for example, heat, and the fluorescence wavelength is also shifted to the short wavelength side. Utilizing this property, the compound of the present invention can be used as a dispersion in an aqueous solvent, for example, for a heat sensor.

組織化により蛍光発光が変化する分子系のイメージ図。An image of a molecular system in which fluorescence emission changes due to organization. 化合物1の合成スキーム。Synthesis scheme of Compound 1. 化合物1のゲル化の様子を示す写真図(化合物1(1mg)をジメチルスルホキシド200μl、水800μlでゲル化)。A photograph showing the gelation of Compound 1 (Compound 1 (1 mg) is gelled with 200 μl of dimethyl sulfoxide and 800 μl of water). 化合物1のゲル(a)とゾル(b)における、アミドの伸縮振動領域の赤外吸収スペクトル。Infrared absorption spectrum of stretching vibration region of amide in gel (a) and sol (b) of Compound 1. 化合物1の分子集合体(キセロゲル)のSEM写真図。The SEM photograph figure of the molecular aggregate (xerogel) of compound 1. 化合物1の蛍光スペクトル(化合物1のジメチルスルホキシド溶液(実線)、化合物1のジメチルスルホキシド200μl/水800μlのゲル(点線)。励起波長320 nm)。Fluorescence spectrum of Compound 1 (dimethyl sulfoxide solution of Compound 1 (solid line), dimethyl sulfoxide of Compound 1 200 μl / 800 μl of water gel (dotted line), excitation wavelength 320 nm). 化合物1の蛍光発光の様子を示す写真図(右:化合物1のジメチルスルホキシド200μl/水800μlのゲル、左:化合物1のジメチルスルホキシド溶液。励起波長320 nm)。Photograph showing the state of fluorescence emission of Compound 1 (Right: Gel of 200 μl of dimethyl sulfoxide of Compound 1/800 μl of water, Left: Solution of dimethyl sulfoxide of Compound 1. Excitation wavelength: 320 nm).

(1)化合物1の合成
図2に示すスキームに従い、化合物1を合成した。
4-シアノ-4’-ヒドロキシビフェニル(5.06g)、K2CO3(7.25g)、ブロモ酢酸エチル(4.17g)を脱水ジメチルホルムアミド(5mL)に溶解し(三口フラスコ使用)、窒素雰囲気化で撹拌しながら120℃に加熱した。そのまま120℃で3時間加熱したあと、当該ジメチルホルムアミド溶液をイオン交換水中(100mL)に投入し、30分程撹拌した。析出した白色沈殿物を吸引濾過により濾別した。回収した白色固体を精製の目的で再びイオン交換水(100mL)に投入して撹拌を行い、吸引濾過により濾別した。得られた白色固体をクロロホルム(150mL)に溶解し分液漏斗に移し、超純水(200mL)で2回洗浄した。その後クロロホルム溶液に無水硫酸ナトリウムを適量投入し撹拌することで残留する水を取り除いた。続いてクロロホルムを減圧除去し、得られたオイル状残渣にヘキサン(100mL)を加え撹拌した。ヘキサン溶液中に生じた白色固体を吸引濾過により回収した。4gの中間体1を得た。
中間体1(4.00g)に酢酸(80mL)と少量のトシル酸を加え、130℃で12時間加熱した。その後室温で静置したあと、超純水を少しずつ加え白色沈殿を生成させた。吸引濾過により回収した白色沈殿(3.29g)を、ヘキサン(50mL)とジクロロメタン(2.5mL)に分散させ、撹拌することにより精製した。回収した白色固体を減圧乾燥させ、2.6gの中間体2を得た。
t-ブチルオキシカルボニル-(L-バリン)3-ベンジルエステル(1.7g)を酢酸エチル(50mL)に溶解し、4N-塩化水素/酢酸エチル(60mL)を加え、4時間撹拌した。減圧下で溶媒を完全に留去し、得られた白色沈殿にジエチルエーテルを加えよく洗浄し、白色固体の中間体3(1.2g)を得た。
中間体2(0.3g)と1-ヒドロキシベンゾトリアゾール(HOBt)を乾燥DMF(10mL)に溶解し、-5℃でかきまぜながら、1-エチル3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(WSC)を含むジクロロメタン溶液を加えた。1時間後、中間体3(0.57g)を含むジクロロメタン溶液とトリエチルアミンを加え、徐々に室温に戻しながら一昼夜撹拌した。
反応溶液を10%クエン酸水溶液、水、4%炭酸水素ナトリウム水溶液、水で各2回ずつ洗浄し、有機層を無水硫酸ナトリウムで乾燥した。減圧下で溶媒を完全に留去し、粗生成物を得た。シリカゲルカラムクロマトグラフィー(展開溶媒クロロホルム)で単離精製し中間体4(0.46g)を得た。
中間体4(1.5g)をDMF(100mL)に溶解し、触媒として5%パラジウム/炭素を0.24g加え、接触水素還元を行った。6時間後、触媒としてセライトを用いて濾過した後、溶媒を減圧留去し白色固体を得た。得られた白色固体をシリカゲルカラムクロマトグラフィー(展開溶媒クロロホルム:エタノール=4:1)で精製したあと、得られた固体をエーテル中で撹拌し、化合物1を単離精製した(1.0g)。
白色粉末。
1H NMR (DMSO-d6) d:0.70-1.05(m,18H,CH(CH3)2),1.90-2.09(m,3H,CH(CH3)2),4.00-4.10(m,1H,N-CH-CO),4.20-4.29(m,1H,N-CH-CO),4.31-4.35(m,1H,N-CH-CO),4.59-4.70(m,2H,O-CH2-CO),7.05(d,2H,Ar-H),7.72-7.99(m,6H,Ar-H).
Anal.Calcd for C30H38N4O6:C,65.44;H,6.96;N,10.17%.
Found:C,65.75;H,7.04;N,9.91%.
(1) Synthesis of Compound 1 Compound 1 was synthesized according to the scheme shown in FIG.
4-Cyano-4'-hydroxybiphenyl (5.06 g), K 2 CO 3 (7.25 g), ethyl bromoacetate (4.17 g) are dissolved in dehydrated dimethylformamide (5 mL) (using a three-necked flask) Heat to 120 ° C. with stirring. After heating at 120 ° C. for 3 hours, the dimethylformamide solution was poured into ion-exchanged water (100 mL) and stirred for about 30 minutes. The precipitated white precipitate was separated by suction filtration. The collected white solid was again added to ion-exchanged water (100 mL) for the purpose of purification, stirred, and filtered by suction filtration. The obtained white solid was dissolved in chloroform (150 mL), transferred to a separatory funnel, and washed twice with ultrapure water (200 mL). Thereafter, an appropriate amount of anhydrous sodium sulfate was added to the chloroform solution and stirred to remove residual water. Subsequently, chloroform was removed under reduced pressure, and hexane (100 mL) was added to the resulting oily residue and stirred. A white solid produced in the hexane solution was collected by suction filtration. 4 g of intermediate 1 was obtained.
Acetic acid (80 mL) and a small amount of tosylic acid were added to Intermediate 1 (4.00 g) and heated at 130 ° C. for 12 hours. Thereafter, after standing at room temperature, ultrapure water was added little by little to form a white precipitate. The white precipitate (3.29 g) collected by suction filtration was purified by dispersing in hexane (50 mL) and dichloromethane (2.5 mL) and stirring. The collected white solid was dried under reduced pressure to obtain 2.6 g of Intermediate 2.
t-Butyloxycarbonyl- (L-valine) 3 -benzyl ester (1.7 g) was dissolved in ethyl acetate (50 mL), 4N-hydrogen chloride / ethyl acetate (60 mL) was added, and the mixture was stirred for 4 hours. The solvent was completely distilled off under reduced pressure, diethyl ether was added to the resulting white precipitate and washed well to obtain a white solid intermediate 3 (1.2 g).
Intermediate 2 (0.3 g) and 1-hydroxybenzotriazole (HOBt) are dissolved in dry DMF (10 mL) and stirred at -5 ° C. while stirring with 1-ethyl 3- (3-dimethylaminopropyl) carbodiimide hydrochloride (WSC). ) Containing dichloromethane solution was added. After 1 hour, a dichloromethane solution containing intermediate 3 (0.57 g) and triethylamine were added, and the mixture was stirred overnight while gradually returning to room temperature.
The reaction solution was washed twice with 10% aqueous citric acid solution, water, 4% aqueous sodium hydrogen carbonate solution and water, and the organic layer was dried over anhydrous sodium sulfate. The solvent was completely distilled off under reduced pressure to obtain a crude product. It was isolated and purified by silica gel column chromatography (developing solvent chloroform) to obtain Intermediate 4 (0.46 g).
Intermediate 4 (1.5 g) was dissolved in DMF (100 mL), 0.24 g of 5% palladium / carbon was added as a catalyst, and catalytic hydrogen reduction was performed. After 6 hours, filtration was performed using Celite as a catalyst, and then the solvent was distilled off under reduced pressure to obtain a white solid. The obtained white solid was purified by silica gel column chromatography (developing solvent chloroform: ethanol = 4: 1), and then the obtained solid was stirred in ether to isolate and purify Compound 1 (1.0 g).
White powder.
1H NMR (DMSO-d6) d: 0.70-1.05 (m, 18H, CH (CH3) 2), 1.90-2.09 (m, 3H, CH (CH3) 2), 4.00-4.10 (m, 1H, N-CH -CO), 4.20-4.29 (m, 1H, N-CH-CO), 4.31-4.35 (m, 1H, N-CH-CO), 4.59-4.70 (m, 2H, O-CH2-CO), 7.05 (d, 2H, Ar-H), 7.72-7.99 (m, 6H, Ar-H).
Anal. Calcd for C30H38N4O6: C, 65.44; H, 6.96; N, 10.17%.
Found: C, 65.75; H, 7.04; N, 9.91%.

(2)分子集合体の作製
分子集合体は、化合物1の組織化をつかさどる部位に水素結合を形成させることにより(図1参照)作成することができる。すなわち、水素結合しやすいような溶媒条件を用いて作成する。
(1)で得られた化合物1を1mg秤量し、200μlのジメチルスルホキシドに加熱・溶解し、さらに水800μlを加えた。特に加熱の必要もなく良好な分子集合体を形成し、さらにこの分子集合体は溶媒を取り込んでゲルを形成した(図3)。
同様の実験を、各種の溶媒および混合溶媒を用いて行った。その結果を、表1に示す。
(2) Preparation of molecular assembly A molecular assembly can be prepared by forming a hydrogen bond at a site that controls the organization of compound 1 (see FIG. 1). That is, it is created using solvent conditions that facilitate hydrogen bonding.
1 mg of the compound 1 obtained in (1) was weighed, heated and dissolved in 200 μl of dimethyl sulfoxide, and further 800 μl of water was added. In particular, a good molecular assembly was formed without the need for heating, and this molecular assembly incorporated a solvent to form a gel (FIG. 3).
Similar experiments were performed using various solvents and mixed solvents. The results are shown in Table 1.

Figure 0006004433
以上の結果から、このようにして化合物1のゲルを形成させることができる溶媒としては、ジメチルスルホキシド/水の他に、ジメチルホルムアミド/水、ジメチルアセトアミド/水、1,4-ジオキサン/水、テトラヒドロフラン/水、メタノール/水、エタノール/水を挙げることができる。
Figure 0006004433
From the above results, the solvent capable of forming the gel of Compound 1 in this way is not only dimethyl sulfoxide / water but also dimethylformamide / water, dimethylacetamide / water, 1,4-dioxane / water, tetrahydrofuran / Water, methanol / water, ethanol / water.

(3)分子集合体の解析
(2)で得られたゲル中における分子集合体の形成について、赤外吸収スペクトル測定を行うことで同定した。(1)で得られた化合物1を1mg、200μlのジメチルスルホキシド-d6に溶解し、さらに重水800μlを加えてゲル化させた。このゲル化生成物の赤外吸収スペクトルを図4の(a)に示す。また、(1)で得られた化合物1を1mg、1mlのジメチルスルホキシド-d6に溶解し、得られたゾル溶液の赤外吸収スペクトルを測定した結果を、図4の(b)に示す。ゲルではアミド領域のピークが低波数側にシフトしており、このことから、化合物1のオリゴペプチド間に相補的な水素結合が形成されていることが示唆された。さらに、ゲル化生成物から作製したキセロゲルのFE-SEM観察を行ったところ、幅が数10ナノメートルの繊維状組織体が形成されていることがわかった。(図5)。
(3) Analysis of molecular assembly
The formation of molecular aggregates in the gel obtained in (2) was identified by measuring infrared absorption spectra. The compound 1 obtained in (1) was dissolved in 1 mg, 200 μl of dimethylsulfoxide-d6, and further gelled with 800 μl of heavy water. The infrared absorption spectrum of this gelled product is shown in FIG. Moreover, the compound 1 obtained in (1) was dissolved in 1 mg and 1 ml of dimethyl sulfoxide-d6, and the result of measuring the infrared absorption spectrum of the obtained sol solution is shown in FIG. In the gel, the peak of the amide region was shifted to the lower wavenumber side, which suggested that complementary hydrogen bonds were formed between the oligopeptides of Compound 1. Furthermore, when FE-SEM observation of the xerogel produced from the gelled product was performed, it was found that a fibrous structure having a width of several tens of nanometers was formed. (Figure 5).

(4)化合物1の分子分散体と分子集合体の蛍光挙動
(1)で得られた化合物1が溶けた状態(ゾル、ジメチルスルホキシド溶液)と分子集合体(ゲル、ジメチルスルホキシド/水=1/9混合溶液系)の蛍光スペクトル測定を行った(励起波長は320nm)。化合物1は、ゲル化することでより可視領域に蛍光がシフトし、視認性が増すことがわかった。蛍光スペクトルの測定結果を図6に示す。また、化合物1の分子分散体と分子集合体が蛍光を発している様子を図7に示す。
(4) Fluorescence behavior of molecular dispersion and molecular assembly of Compound 1
The fluorescence spectrum of the compound 1 obtained in (1) (sol, dimethyl sulfoxide solution) and molecular assembly (gel, dimethyl sulfoxide / water = 1/9 mixed solution system) were measured (excitation wavelength was 320nm). It turned out that the fluorescence shifts to the visible region more and the visibility of the compound 1 increases by gelling. The measurement result of the fluorescence spectrum is shown in FIG. FIG. 7 shows a state in which the molecular dispersion and molecular assembly of Compound 1 emit fluorescence.

本発明は、光学材料、粘性材料、マイクロカプセル、センサー、医療技術、電気製品、測定機器等の技術分野に応用可能である。   The present invention is applicable to technical fields such as optical materials, viscous materials, microcapsules, sensors, medical technologies, electrical products, and measuring instruments.

Claims (6)

以下の一般式で表される、シアノビフェニル基とペプチド基からなる組織化ユニットを化学結合してなるゲル生成化合物、又はその塩。
Figure 0006004433
[上記一般式中、R1は炭素数4以下のアルキル基、R2は水素原子又は炭素数4以下のアルキル基、mは0又は1〜10の自然数、nは2〜10の自然数、*はその炭素がRもしくはS体(該炭素がアミノ酸残基に属する場合にはLもしくはD体)に対応する光学活性エナンチオマーを示す]
A gel-forming compound represented by the following general formula, or a salt thereof, formed by chemically bonding an organized unit consisting of a cyanobiphenyl group and a peptide group.
Figure 0006004433
[In the above general formula, R 1 is an alkyl group having 4 or less carbon atoms, R 2 is a hydrogen atom or an alkyl group having 4 or less carbon atoms, m is a natural number of 0 or 1 to 10, n is a natural number of 2 to 10, * Is an optically active enantiomer whose carbon corresponds to R or S form (or L or D form when the carbon belongs to an amino acid residue)]
請求項1に記載のゲル生成化合物又はその塩から選ばれた少なくとも1種の化合物又はその塩を有効成分とする、ゾル−ゲル相互間の相転移性機能材。 A phase-transition functional material between sol-gel, comprising at least one compound selected from the gel-forming compound or salt thereof according to claim 1 or a salt thereof as an active ingredient. 請求項1に記載のゲル生成化合物分子から形成され、それぞれの分子の組織化をつかさどる部位であるペプチド基同士が相互に並列し、それにより、それぞれの分子の蛍光挙動にかかる部位であるシアノビフェニル基同士も相互に並列した構造を備える分子集合体。 Peptide groups which are formed from the gel-forming compound molecules according to claim 1 and which are sites responsible for the organization of each molecule are arranged in parallel with each other, whereby cyanobiphenyl which is a site related to the fluorescence behavior of each molecule A molecular assembly with structures in which groups are parallel to each other. 数十nmの繊維状組織体であることを特徴とする、請求項3に記載の分子集合体。 The molecular assembly according to claim 3, wherein the molecular assembly is a fibrous organization of several tens of nm. 請求項1に記載のゲル生成化合物又はその塩を親水性溶媒中に分散させて、可視光域で蛍光を発生するゾル分散液を作成し、当該分散液に水を加えることにより、可視光域でより長波長側にシフトした蛍光を発生する当該化合物の分子集合体ゲルを形成させることを特徴とする、請求項3に記載のゲル生成化合物の分子集合体の製造方法。 The gel-forming compound according to claim 1 or a salt thereof is dispersed in a hydrophilic solvent to prepare a sol dispersion that emits fluorescence in the visible light region, and water is added to the dispersion to obtain a visible light region. The method for producing a molecular aggregate of a gel-forming compound according to claim 3, wherein a molecular aggregate gel of the compound that generates fluorescence shifted to a longer wavelength side is formed. 親水性溶媒が、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、1,4-ジオキサン、テトラヒドロフラン、メタノールおよびエタノールのいずれかであることを特徴とする、請求項5に記載の分子集合体の製造方法。 6. The method for producing a molecular assembly according to claim 5, wherein the hydrophilic solvent is any one of dimethyl sulfoxide, dimethylformamide, dimethylacetamide, 1,4-dioxane, tetrahydrofuran, methanol and ethanol.
JP2012255944A 2012-11-22 2012-11-22 Method for producing gel-forming compound and molecular assembly thereof Active JP6004433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012255944A JP6004433B2 (en) 2012-11-22 2012-11-22 Method for producing gel-forming compound and molecular assembly thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012255944A JP6004433B2 (en) 2012-11-22 2012-11-22 Method for producing gel-forming compound and molecular assembly thereof

Publications (2)

Publication Number Publication Date
JP2014101473A JP2014101473A (en) 2014-06-05
JP6004433B2 true JP6004433B2 (en) 2016-10-05

Family

ID=51024273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012255944A Active JP6004433B2 (en) 2012-11-22 2012-11-22 Method for producing gel-forming compound and molecular assembly thereof

Country Status (1)

Country Link
JP (1) JP6004433B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3994477B2 (en) * 1997-06-30 2007-10-17 Jsr株式会社 Liquid crystal gel
JP4579111B2 (en) * 2005-09-07 2010-11-10 独立行政法人産業技術総合研究所 Phase transition functional material between sol-gel and method for controlling phase transition
JP5587290B2 (en) * 2009-03-16 2014-09-10 日産化学工業株式会社 Spray substrate made of low molecular weight gelling agent

Also Published As

Publication number Publication date
JP2014101473A (en) 2014-06-05

Similar Documents

Publication Publication Date Title
Suzuki et al. New low-molecular weight gelators based on l-valine and l-isoleucine with various terminal groups
Geng et al. Low-molecular-weight organo-and hydrogelators based on cyclo (L-Lys-L-Glu)
Suzuki et al. Supramolecular hydrogels and organogels based on novel L-valine and L-isoleucine amphiphiles
JP2009506194A (en) Stabilization of organogels and hydrogels by azido-alkyne [3 + 2] cycloaddition
BRPI0721051A2 (en) CATALYTIC COMPLEXES BASED ON RUTENUM AND USING THESE COMPLEX FOR OLEPHINE METHASE
Samai et al. Amino acid based low-molecular-weight tris (bis-amido) organogelators
Arribat et al. Phospholyl (borane) amino acids and peptides: stereoselective synthesis and fluorescent properties with large Stokes shift
US20030203206A1 (en) Mesoporous silica having controlled-release on-off control function, production method thereof and method using same
CN110352186B (en) Acrylamide photoinitiator
Geng et al. Ultrasound-induced gelation of fluorenyl-9-methoxycarbonyl-l-lysine (fluorenyl-9-methoxycarbonyl)-OH and its dipeptide derivatives showing very low minimum gelation concentrations
JP6004433B2 (en) Method for producing gel-forming compound and molecular assembly thereof
Lei et al. Unusual aggregation arrangement of Eu-containing polyoxometalate hybrid in a protic ionic liquid with improved luminescence property
Kaur et al. Enzyme-Induced Supramolecular Order in Pyrene Dipeptide Hydrogels for the Development of an Efficient Energy-Transfer Template
JP7241097B2 (en) Terbium-containing ultra-bright-emitting lanthanide nanoparticles with longer excited-state lifetimes
JP5388097B2 (en) Liquid crystal material, liquid crystal material film, coating material, and liquid crystal material film manufacturing method
KR101602752B1 (en) Urea compound, self-assembly of urea compounds, organogel containing self-assembly, and method for producing organogel
JP6462587B2 (en) Near-infrared quencher
JP2007320902A (en) Chlorophyll nanoparticle and method for producing the same
JP3693979B2 (en) Hydrogelators and hydrogels comprising glycoside amino acid derivatives
CN102911346A (en) Water-soluble conjugate asymmetric small molecular of which main chain contains oligomeric phenylene ethynylene and synthesis and application thereof
Singh et al. Hybrid hydrogels derived from renewable resources as a smart stimuli responsive soft material for drug delivery applications
Yamanaka et al. Synthesis and estimation of gelation ability of C3-symmetry tris-urea compounds
JP4590611B2 (en) Diacetylene amide compounds
Tan et al. Gelation of a Pentapeptide in Alcohols
Shinde et al. Synthesis and Investigation of Backbone Modified Squaramide Dipeptide Self-Assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160831

R150 Certificate of patent or registration of utility model

Ref document number: 6004433

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250