JP6001330B2 - Inner peripheral surface shape of casing of axial flow compressor - Google Patents

Inner peripheral surface shape of casing of axial flow compressor Download PDF

Info

Publication number
JP6001330B2
JP6001330B2 JP2012119420A JP2012119420A JP6001330B2 JP 6001330 B2 JP6001330 B2 JP 6001330B2 JP 2012119420 A JP2012119420 A JP 2012119420A JP 2012119420 A JP2012119420 A JP 2012119420A JP 6001330 B2 JP6001330 B2 JP 6001330B2
Authority
JP
Japan
Prior art keywords
casing
vane
inner peripheral
peripheral surface
concave portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012119420A
Other languages
Japanese (ja)
Other versions
JP2012251549A (en
Inventor
園田 豊隆
豊隆 園田
有馬 敏幸
敏幸 有馬
ジャイルズ・エンディコット
マーコス・オルフォファー
ベンハード・センドホッフ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Publication of JP2012251549A publication Critical patent/JP2012251549A/en
Application granted granted Critical
Publication of JP6001330B2 publication Critical patent/JP6001330B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/522Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
    • F04D29/526Details of the casing section radially opposing blade tips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/16Arrangement of bearings; Supporting or mounting bearings in casings
    • F01D25/162Bearing supports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • F01D5/142Shape, i.e. outer, aerodynamic form of the blades of successive rotor or stator blade-rows
    • F01D5/143Contour of the outer or inner working fluid flow path wall, i.e. shroud or hub contour
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • F01D5/145Means for influencing boundary layers or secondary circulations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/542Bladed diffusers
    • F04D29/544Blade shapes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/36Application in turbines specially adapted for the fan of turbofan engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Geometry (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

本発明は、軸流型コンプレッサのロータの下流側に放射状に配置されたステータのベーンの外周を囲むケーシングの内周面形状に関する。   The present invention relates to the shape of the inner peripheral surface of a casing that surrounds the outer periphery of a vane of a stator that is radially arranged on the downstream side of a rotor of an axial-flow compressor.

ターボファンエンジンのファンステータの外周を囲むファンケーシングの内周面(チップ側の周面)の形状は、シャフトを中心とする概略円筒状に形成されており、その母線(シャフトを通る平面とファンケーシングの内周面とが交差する線)の形状は、多くの場合直線である。またターボファンエンジンのファンステータのステータベーンは、衝撃波損失の低減や騒音の低減を図るために、ハブ側からチップ側に向けて後方にスイープ(後退)している場合がある。   The shape of the inner peripheral surface (chip-side peripheral surface) of the fan casing that surrounds the outer periphery of the fan stator of the turbofan engine is formed in a substantially cylindrical shape centering on the shaft. The shape of the line that intersects the inner peripheral surface of the casing is often a straight line. Further, the stator vanes of the fan stator of the turbofan engine may be swept backward from the hub side toward the tip side in order to reduce shock wave loss and noise.

下記特許文献1には、タービンのインレットガイドベーン(ステータベーン)の外周を囲むファンケーシングの内周面の母線形状が、上流側において径方向内側に向かう外周凸部Cv2、Cv4と、下流側において径方向外側に向かう外周凹部Cc2、Cc4とを備えることで、チップ側からハブ側に向かう径方向内向きの二次流れを抑制して圧力損失を低減するものが記載されている。   In Patent Document 1 below, the bus bar shape of the inner peripheral surface of the fan casing surrounding the outer periphery of the inlet guide vane (stator vane) of the turbine has outer peripheral convex portions Cv2 and Cv4 directed radially inward on the upstream side, and on the downstream side. It is described that the outer peripheral recesses Cc2 and Cc4 directed radially outward are provided to suppress the pressure flow by suppressing the secondary flow radially inward from the tip side toward the hub side.

また下記特許文献2には、ガスタービンエンジンの圧縮機の静翼のの外周を囲むケーシングの内周面の母線形状が径方向外側に向かう窪み18を備えることで、静翼の背面側(負圧面側)の流速を低下させて剥離を抑制し、圧力損失を低減するものが記載されている。   Further, in Patent Document 2 described below, the bus bar shape of the inner peripheral surface of the casing surrounding the outer periphery of the stationary blade of the compressor of the gas turbine engine is provided with a recess 18 directed radially outward, so that the rear side of the stationary blade (negative It is described that the flow velocity on the pressure side is reduced to suppress separation and reduce pressure loss.

特開2008−274926号公報JP 2008-274926 A 特開平7−247996号公報Japanese Patent Laid-Open No. 7-247996

ところで、特にハブ側からチップ側に向けて後方にスイープしたファンステータのステータベーンでは、ハブ側のエンドウオールの近傍でステータベーンの正圧面側から負圧面側に向かう周方向の静圧勾配が翼列の後半部で大きくなることや、ステータベーンの負圧面におけるハブ側からチップ側に向かう等静圧ラインが主流に対して斜めになることにより、ステータベーンの表面におけるハブ側からチップ側に向かう低運動量流体の移動が加速されて圧力損失が大きくなるという問題があった。   By the way, especially in the stator vane of the fan stator swept rearward from the hub side toward the tip side, the circumferential static pressure gradient from the pressure surface side to the suction surface side of the stator vane is near the hub side end wall. It becomes larger in the latter half of the row, and the isostatic pressure line from the hub side to the tip side on the negative pressure surface of the stator vane is inclined with respect to the main stream, so that the hub side on the stator vane surface goes to the tip side. There is a problem that the pressure loss increases due to acceleration of the movement of the low momentum fluid.

本発明は前述の事情に鑑みてなされたもので、軸流型コンプレッサのステータのベーンのハブ側からチップ側に向かう低運動量流体の移動を抑制して圧力損失を低減することを目的とする。   The present invention has been made in view of the above-described circumstances, and an object thereof is to reduce the pressure loss by suppressing the movement of the low momentum fluid from the vane hub side of the stator of the axial flow type compressor toward the tip side.

上記目的を達成するために、請求項1に記載された発明によれば、軸流型コンプレッサのロータの後方に放射状に配置されたステータのベーンの外周を囲むケーシングの内周面形状であって、前記ケーシングの母線が、前記ベーンの前縁よりも前方位置から後縁よりも後方位置に亙って径方向外側に窪む凹部領域を備え、該凹部領域は、前側の第1凹部と、後側の第2凹部と、前記第1凹部の前方に連続する第1凸部と、前記凹部領域の前後方向中間位置において径方向内側に膨らむ第2凸部と、前記第2凹部の後方に連続する第3凸部とで構成され、前記第2凸部が前記ベーンの後縁を超えて膨らんでおり、前記第2凹部が前記ベーンの後縁の後方から窪み始めていることを特徴とする軸流型コンプレッサのケーシングの内周面形状が提案される。 In order to achieve the above object, according to the first aspect of the present invention, there is provided an inner peripheral surface shape of a casing surrounding an outer periphery of a stator vane radially disposed behind a rotor of an axial compressor. , generatrix of the casing, the front edge with a recess region recessed radially outward over a position behind the trailing edge from the forward position than, the recessed region of said vane includes a first recess of the front side, A rear second concave portion, a first convex portion that continues in front of the first concave portion, a second convex portion that swells radially inward at an intermediate position in the front-rear direction of the concave portion region, and a rear side of the second concave portion. The second convex portion bulges beyond the trailing edge of the vane, and the second concave portion starts to be recessed from the rear of the trailing edge of the vane. Proposed the inner peripheral surface shape of the casing of the axial compressor It is.

また請求項に記載された発明によれば、請求項の構成に加えて、前記第1凸部、前記第1凹部、前記第2凸部、前記第2凹部および前記第3凸部は滑らかに連続することを特徴とする軸流型コンプレッサのケーシングの内周面形状が提案される。 According to the invention described in claim 2 , in addition to the configuration of claim 1 , the first convex portion, the first concave portion, the second convex portion, the second concave portion, and the third convex portion are A shape of the inner peripheral surface of the casing of the axial-flow compressor characterized by being smoothly continuous is proposed.

また請求項に記載された発明によれば、請求項1または請求項2の構成に加えて、前記ベーンは、ハブ側端部に対してチップ側端部が後方に向けてスイープすることを特徴とする軸流型コンプレッサのケーシングの内周面形状が提案される。
が提案される。
According to the invention described in claim 3 , in addition to the configuration of claim 1 or claim 2 , the vane sweeps the tip side end portion backward with respect to the hub side end portion. A characteristic axial shape of the casing of the axial compressor is proposed.
Is proposed.

尚、実施の形態のファンロータ15は本発明のロータに対応し、実施の形態のファンステータ16は本発明のステータに対応し、実施の形態のステータベーン23は本発明のベーンに対応する。 Incidentally, in response to the rotor of the fan rotor 15 is the invention of the embodiment corresponds to the stator of the fan stator 16 according to the present invention of the embodiment, the stator vanes 23 of the embodiment to correspond to the vane of the present invention The

上記構成によれば、軸流型コンプレッサのロータの後方に配置されたステータのベーンの外周を囲むケーシングの母線が、ベーンの前縁よりも前方位置から後縁よりも後方位置に亙って径方向外側に窪む凹部領域と、凹部領域の前後方向中間位置において径方向内側に膨らむ第2部とを備えるので、第2部よりも前側の凹部領域によりベーンの表面における径方向の静圧分布を改善し、かつ第2部よりも後側の凹部領域によりチップ側の静圧を増加させることで、ハブ側からチップ側に向かう低運動量流体の移動を抑制して圧力損失を低減することができる。 According to the above configuration, the bus bar of the casing surrounding the outer periphery of the vane of the stator disposed behind the rotor of the axial flow compressor has a diameter extending from the front position to the rear position from the rear edge to the rear edge. a recess region recessed towards the outside, so and a second convex portion bulging radially inwardly in the longitudinal direction intermediate position of the concave region, the recessed area of the by the second convex portion remote front radial direction of the surface of the vane improves static pressure distribution, and by increasing the static pressure of the chip side by the recess region of the second projecting portion by remote rear, pressure loss by suppressing the movement of the low momentum fluid directed from the hub side to the tip side Can be reduced.

また凹部領域は、前側の第1凹部と、後側の第2凹部と、第1凹部の前方に連続する第1凸部と、凹部領域の前後方向中間位置において径方向内側に膨らむ第2凸部と、凸部領域を構成する第2凸部と、第2凹部の後方に連続する第3凸部とを備えて滑らかに連続するので、ケーシングの内周面に沿う気流の流れがスムーズになる。   The concave region includes a first concave portion on the front side, a second concave portion on the rear side, a first convex portion that continues in front of the first concave portion, and a second convex that bulges radially inward at an intermediate position in the front-rear direction of the concave portion area. Part, a second convex part constituting the convex part region, and a third convex part continuing behind the second concave part and smoothly continuing, so that the flow of airflow along the inner peripheral surface of the casing is smooth Become.

しかもベーンはハブ側端部に対してチップ側端部が後方に向けてスイープするので、衝撃波損失の低減や騒音の低減を図ることができる。ベーンの前記スイープによって低運動量流体がハブ側端部からチップ側端部に移動し易くなるが、本発明のケーシングの内周面形状によって前記低運動量流体の移動が効果的に抑制される。   In addition, since the vane sweeps the tip side end portion toward the rear with respect to the hub side end portion, it is possible to reduce shock wave loss and noise. Although the low-momentum fluid easily moves from the hub-side end portion to the tip-side end portion by the sweep of the vane, the movement of the low-momentum fluid is effectively suppressed by the inner peripheral surface shape of the casing of the present invention.

ターボファンエンジンの全体構造を示す模式図。The schematic diagram which shows the whole structure of a turbofan engine. 図1の2部拡大図。FIG. 2 is an enlarged view of part 2 of FIG. 1. 図2の3−3線断面図。FIG. 図3の4Aおよび4B方向矢視図。4A and 4B direction arrow view of FIG. ステータベーンのウエイクの状態を示す図。The figure which shows the state of the wake of a stator vane. ステータベーンの負圧面に沿う流線を示す図。The figure which shows the streamline along the negative pressure surface of a stator vane. 質量流量の変化に伴う全圧力損失の変化を示すグラフ。The graph which shows the change of the total pressure loss accompanying the change of mass flow rate. ステータベーンのスパン方向に沿う全圧力損失の分布を示すグラフ。The graph which shows distribution of the total pressure loss along the span direction of a stator vane.

以下、図1〜図8に基づいて本発明の実施の形態を説明する。尚、本明細書において、気流の流れ方向上流側および下流側をそれぞれ前方および後方と定義し、軸線Lを中心とする径方向内側および径方向外側をそれぞれハブ側およびチップ側と定義する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. In the present specification, the upstream side and the downstream side in the airflow direction are defined as the front and the rear, respectively, and the radially inner side and the radially outer side around the axis L are defined as the hub side and the tip side, respectively.

図1に示すように、航空用のターボファンエンジンEは、軸線Lを中心とする回転体である概略円筒状のアウターケーシング11およびインナーケーシング12を備える。アウターケーシング11およびインナーケーシング12の内部には、軸線L上に位置する低圧シャフト13と、その外周に相対回転自在に嵌合する高圧シャフト14とが同軸に配置される。   As shown in FIG. 1, the turbofan engine E for aviation includes a substantially cylindrical outer casing 11 and an inner casing 12 that are rotating bodies having an axis L as a center. Inside the outer casing 11 and the inner casing 12, a low-pressure shaft 13 positioned on the axis L and a high-pressure shaft 14 fitted to the outer periphery of the low-pressure shaft 13 are arranged coaxially.

低圧シャフト13の前端にはファンロータ15が設けられており、ファンロータ15の後方にはファンステータ16が設けられる。アウターケーシング11の前部はファンケーシング17の外側部分17Aを構成しており、ファンロータ15のチップ側はファンケーシング17の外側部分17Aの内周面に臨んでいる。またファンステータ16のチップ側はファンケーシング17の外側部分17Aの内周面に固定されるととももに、ファンステータ16のハブ側はファンケーシング17の内側部分17Bの外周面に固定される。   A fan rotor 15 is provided at the front end of the low pressure shaft 13, and a fan stator 16 is provided behind the fan rotor 15. The front portion of the outer casing 11 constitutes an outer portion 17A of the fan casing 17, and the tip side of the fan rotor 15 faces the inner peripheral surface of the outer portion 17A of the fan casing 17. Further, the chip side of the fan stator 16 is fixed to the inner peripheral surface of the outer portion 17A of the fan casing 17, and the hub side of the fan stator 16 is fixed to the outer peripheral surface of the inner portion 17B of the fan casing 17.

ファンステータ16の後方の低圧シャフト13には低圧コンプレッサ18が設けられ、低圧シャフト13の後端には低圧タービン19が設けられる。また高圧シャフト14の前端には低圧コンプレッサ18の後方に臨む高圧コンプレッサ20が設けられ、高圧シャフト14の後端には低圧タービン19の前方に臨む高圧タービン21が設けられる。そして高圧コンプレッサ20および高圧タービン21の間に複数の燃焼室22が配置される。   A low pressure compressor 18 is provided on the low pressure shaft 13 behind the fan stator 16, and a low pressure turbine 19 is provided on the rear end of the low pressure shaft 13. A high pressure compressor 20 facing the rear of the low pressure compressor 18 is provided at the front end of the high pressure shaft 14, and a high pressure turbine 21 facing the front of the low pressure turbine 19 is provided at the rear end of the high pressure shaft 14. A plurality of combustion chambers 22 are arranged between the high-pressure compressor 20 and the high-pressure turbine 21.

よって低圧シャフト13と共に回転するファンロータ15によって圧縮された空気はファンステータ16によって整流された後、その一部はアウターケーシング11およびインナーケーシング12の間に形成されたバイパスダクト24を通って後方に排出され、残部はインナーケーシング12の内部に供給され、低圧シャフト13と共に回転する低圧コンプレッサ18および高圧シャフト14と共に回転する高圧コンプレッサ20により圧縮された後、燃焼室22で燃料と混合されて燃焼に供される。燃焼室22から出た燃焼ガスは、高圧タービン21を通過して高圧シャフト14を駆動し、更に低圧タービン19を通過して低圧シャフト13を駆動した後にインナーケーシング12の後端から後方に排出され、バイパスダクト24を通過した空気と合流する。   Therefore, after the air compressed by the fan rotor 15 rotating with the low-pressure shaft 13 is rectified by the fan stator 16, a part of the air passes rearward through the bypass duct 24 formed between the outer casing 11 and the inner casing 12. The discharged portion is supplied into the inner casing 12 and compressed by a low-pressure compressor 18 that rotates with the low-pressure shaft 13 and a high-pressure compressor 20 that rotates with the high-pressure shaft 14, and then mixed with fuel in the combustion chamber 22 for combustion. Provided. Combustion gas exiting from the combustion chamber 22 passes through the high-pressure turbine 21 to drive the high-pressure shaft 14, passes through the low-pressure turbine 19 and drives the low-pressure shaft 13, and then is discharged rearward from the rear end of the inner casing 12. The air that has passed through the bypass duct 24 merges.

図2は、ファンケーシング17の外側部分17Aおよび内側部分17B間に配置されたファンステータ16のステータベーン23を示すものである。ステータベーン23は、径方向内側のハブ側端部23cがファンケーシング17の内側部分17Bの外周面に接続され、径方向外側のチップ側端部23dがファンケーシング17の外側部分17Aの内周面に接続される。ステータベーン23の前縁23aおよび後縁23bは、ハブ側端部23cに対してチップ側端部23dが後方に偏倚するようにスイープしており、従ってステータベーン23の1/4コードライン23eもハブ側に対してチップ側が後方に偏倚するようにスイープしている。これにより、ステータベーン23の表面を流れる気流の流速のコード方向の成分を減少させることで、臨界マッハ数を増加させて衝撃波の発生を遅らせ、衝撃波損失の低減や騒音の低減を図ることができる。   FIG. 2 shows the stator vane 23 of the fan stator 16 disposed between the outer portion 17A and the inner portion 17B of the fan casing 17. The stator vane 23 has a radially inner hub side end 23c connected to the outer peripheral surface of the inner portion 17B of the fan casing 17, and a radially outer tip side end 23d of the inner side surface of the outer portion 17A of the fan casing 17. Connected to. The front edge 23a and the rear edge 23b of the stator vane 23 are swept so that the tip side end 23d is biased rearward with respect to the hub side end 23c. Therefore, the quarter code line 23e of the stator vane 23 is also The tip side is swept so as to be biased backward with respect to the hub side. Thereby, by reducing the code direction component of the flow velocity of the airflow flowing on the surface of the stator vane 23, the critical Mach number can be increased to delay the generation of the shock wave, and the shock wave loss and noise can be reduced. .

本発明は、ステータベーン23のチップ側端部23dの近傍のファンケーシング17の外側部分17Aの内周面形状に特徴を有するものである。ファンケーシング17は基本的に軸線Lを中心とする回転体である略円筒状の部材であるため、ファンケーシング17の内周面の形状は母線(軸線Lを通る平面との交線)の形状によって表される。   The present invention is characterized by the shape of the inner peripheral surface of the outer portion 17A of the fan casing 17 in the vicinity of the tip side end 23d of the stator vane 23. Since the fan casing 17 is basically a substantially cylindrical member that is a rotating body centered on the axis L, the shape of the inner peripheral surface of the fan casing 17 is the shape of a generatrix (intersection with a plane passing through the axis L). Represented by

ステータベーン23のチップ側端部23dが接続されるファンケーシング17の外側部分17Aの内周面の前記母線の形状は、前縁23aよりも前方位置から後縁23bよりも後方位置に亙って、基本的に径方向外側に窪む凹部領域31を備える。凹部領域31は、ステータベーン23のチップ側端部23dの前縁23aよりも僅かに前方から後縁23bよりも僅かに前方の間に位置する第1凹部32と、ステータベーン23の後縁23bよりも後方に位置する第2凹部33と、後縁23bの僅かに前方において第1、第2凹部32、33を接続するように径方向内側に膨らむ第2凸部35と、第1凹部32の前端をファンケーシング17の外側部分17Aの内周面に接続する第1凸部34と、第2凹部33の後端をファンケーシング17の外側部分17Aの内周面に接続する第3凸部36とで構成される。即ち、凹部領域31は、前方から後方に向かって第1凸部34、第1凹部32、第2凸部35、第2凹部33および第3凸部36を滑らかに接続して構成される。第1凸部34、第1凹部32、第2凸部35、第2凹部33および第3凸部36の接続部の位置は、母線の曲率の方向が切り換わる変曲点となる。   The shape of the bus bar on the inner peripheral surface of the outer portion 17A of the fan casing 17 to which the chip side end 23d of the stator vane 23 is connected extends from the front position to the rear edge 23b from the front position to the front edge 23a. Basically, a concave region 31 that is recessed radially outward is provided. The recessed region 31 includes a first recessed portion 32 positioned slightly in front of the front edge 23a of the tip side end portion 23d of the stator vane 23 and slightly in front of the rear edge 23b, and a rear edge 23b of the stator vane 23. A second concave portion 33 that is located further rearward, a second convex portion 35 that bulges radially inward so as to connect the first and second concave portions 32 and 33 slightly in front of the rear edge 23b, and a first concave portion 32. The first convex portion 34 connecting the front end of the second concave portion 33 to the inner peripheral surface of the outer portion 17A of the fan casing 17, and the third convex portion connecting the rear end of the second concave portion 33 to the inner peripheral surface of the outer portion 17A of the fan casing 17. 36. That is, the recessed area 31 is configured by smoothly connecting the first convex part 34, the first concave part 32, the second convex part 35, the second concave part 33, and the third convex part 36 from the front to the rear. The position of the connecting portion of the first convex portion 34, the first concave portion 32, the second convex portion 35, the second concave portion 33, and the third convex portion 36 becomes an inflection point at which the direction of the curvature of the bus bar is switched.

尚、図2における鎖線は、比較例のファンケーシング17の内周面およびインナーケーシング12の外周面の形状を示している。   2 indicate the shapes of the inner peripheral surface of the fan casing 17 and the outer peripheral surface of the inner casing 12 of the comparative example.

図3および図4はステータベーン23の周囲の静圧分布を示すもので、図3は図2の3−3線断面(ステータベーン23のチップ側端部23d)における静圧分布、図4は図3の4Aおよび4B方向矢視に対応するステータベーン23の負圧面(背面)の静圧分布を示している。図3および図4において、色の濃い部分(網掛けが密な部分)ほど高圧であり、色の薄い部分(網掛けが疎な部分)ほど低圧であることを示している。   3 and 4 show the static pressure distribution around the stator vane 23. FIG. 3 shows the static pressure distribution at the section 3-3 in FIG. 2 (chip side end 23d of the stator vane 23). The static pressure distribution of the suction surface (back surface) of the stator vane 23 corresponding to the 4A and 4B direction arrows of FIG. 3 is shown. In FIGS. 3 and 4, it is shown that the darker portion (the shaded portion is denser) has a higher pressure, and the lighter portion (the shaded portion is lesser shaded) has a lower pressure.

実施の形態によれば、ステータベーン23のチップ側端部23dが接続されるファンケーシング17の外側部分17Aの内周面に第1、第2凹部32、33が形成されているため、それら第1、第2凹部32、33に沿って流れる気流の流速が低下することで静圧が増加する。   According to the embodiment, the first and second recesses 32 and 33 are formed on the inner peripheral surface of the outer portion 17A of the fan casing 17 to which the tip side end portion 23d of the stator vane 23 is connected. The static pressure increases as the flow velocity of the airflow flowing along the first and second recesses 32 and 33 decreases.

図3〜図5において比較例および実施の形態を参照すると明らかなように、実施の形態はファンケーシング17の第1凹部32の作用により、ステータベーン23の正圧面の静圧が比較例に対して増加していることが分かる(図3参照)。更に、実施の形態はファンケーシング17の第2凹部33の作用により、ステータベーン23の後縁23bよりも後方位置での静圧が比較例に対して増加していることが分かる(図4参照)。   As apparent from the comparison example and the embodiment in FIGS. 3 to 5, in the embodiment, the static pressure on the pressure surface of the stator vane 23 is higher than that of the comparison example due to the action of the first recess 32 of the fan casing 17. (See FIG. 3). Furthermore, in the embodiment, it can be seen that the static pressure at the rear position of the rear edge 23b of the stator vane 23 is increased with respect to the comparative example by the action of the second recess 33 of the fan casing 17 (see FIG. 4). ).

また図4から明らかなように、実施の形態はファンケーシング17の第1凹部32の作用により、ステータベーン23の負圧面に沿う等静圧ラインが比較例よりも起立している。即ち、実施の形態では等静圧ラインが概ね径方向に整列しているのに対し、比較例では等静圧ラインの径方向外側が後方に後退しており、従って等静圧ラインの径方向内側領域(図中下側)が高圧になって等静圧ラインの径方向外側領域(図中上側)が低圧になる静圧分布が形成されてしまい、ステータベーン23のハブ側端部23cからチップ側端部23dに向かう二次流れが誘発されることになる。一方、実施の形態では等静圧ラインが殆ど後退角を持たないため、前記二次流れは殆ど誘発されることはない。   As is clear from FIG. 4, in the embodiment, the isostatic line along the negative pressure surface of the stator vane 23 stands up from the comparative example by the action of the first recess 32 of the fan casing 17. That is, in the embodiment, the isostatic pressure lines are generally aligned in the radial direction, whereas in the comparative example, the radially outer side of the isostatic pressure line is retracted rearward, and accordingly, the radial direction of the isostatic pressure line is A static pressure distribution is formed in which the inner region (lower side in the figure) becomes high pressure and the radially outer region (upper side in the figure) of the isostatic pressure line becomes low pressure, and the hub side end portion 23c of the stator vane 23 starts. A secondary flow toward the tip side end portion 23d is induced. On the other hand, in the embodiment, since the isostatic line has almost no receding angle, the secondary flow is hardly induced.

ところで、ファンステータ16の前方に位置するファンロータ15のロータハブは前方から後方に向かってコーン状に直径が拡大しているため、ファンステータ16のステータベーン23を通過する気流に径方向内側から径方向外側に向かう二次流れが誘発され易くなり、しかもステータベーン23がスイープしている場合には気流がハブ側からチップ側に流れ易くなって二次流れが更に強くなる。このように、ステータベーン23に沿って径方向内側から径方向外側に向かう二次流れが発生すると、図5の比較例に示すように、ステータベーン23のハブ側端部23cにおいて発生した低運動量のウエイク(伴流)が径方向外側に広がり易くなってファンステータ16における圧力損失が増加する問題がある。   By the way, the rotor hub of the fan rotor 15 located in front of the fan stator 16 has a cone-like diameter increasing from the front to the rear, so that the airflow passing through the stator vane 23 of the fan stator 16 is increased in diameter from the inner side in the radial direction. A secondary flow toward the outside in the direction is easily induced, and when the stator vane 23 is swept, the air flow easily flows from the hub side to the tip side, and the secondary flow is further strengthened. As described above, when a secondary flow is generated along the stator vane 23 from the radially inner side to the radially outer side, the low momentum generated at the hub side end 23c of the stator vane 23 as shown in the comparative example of FIG. There is a problem that the pressure loss in the fan stator 16 increases because the wake (wake) tends to spread outward in the radial direction.

しかしながら、実施の形態によれば、ファンケーシング17の第1凹部32の作用により、ステータベーン23の負圧面に沿う等静圧ラインを起立させてハブ側からチップ側に向かう二次流れを抑制するとともに、ファンケーシング17の第2凹部33の作用により、ステータベーン23のチップ側端部23dの後縁23bよりも後方位置での静圧を増加させてハブ側からチップ側に向かう二次流れを抑制することで、図5の実施の形態に示すように、低運動量のウエイクが広がる領域を最小限に抑えて圧力損失を低減することができる。   However, according to the embodiment, the action of the first recess 32 of the fan casing 17 raises the isostatic line along the negative pressure surface of the stator vane 23 to suppress the secondary flow from the hub side toward the tip side. At the same time, due to the action of the second recess 33 of the fan casing 17, the secondary flow from the hub side toward the chip side is increased by increasing the static pressure at the rear position from the rear edge 23 b of the chip side end 23 d of the stator vane 23. By suppressing, as shown in the embodiment of FIG. 5, the pressure loss can be reduced by minimizing the region where the low-momentum wake spreads.

図6はステータベーン23の負圧面に沿う気流の流線を示すもので、比較例ではステータベーン23のハブ側端部23cに沿って前縁23aに流入した気流が、後縁23bで径方向外側に大きく偏倚してハブ側のウエイク領域Whが大きくなっているが、実施の形態ではハブ側からチップ側に向かう二次流れが抑制されることでハブ側のウエイク領域Whが縮小していることが分かる。尚、ファンケーシング17の第2凹部33の作用でステータベーン23のチップ側端部23dの後縁23bよりも後方位置での静圧が増加することで、チップ側からハブ側に向かう二次流れが発生するため、実施の形態のチップ側のウエイク領域Wtが比較例よりも若干大きくなっているが、全体的にはウエイク領域を小さくして圧力損失を低減することができる。   FIG. 6 shows streamlines of the airflow along the suction surface of the stator vane 23. In the comparative example, the airflow flowing into the front edge 23a along the hub side end portion 23c of the stator vane 23 is radial in the rear edge 23b. The wake area Wh on the hub side is greatly biased to the outside, but in the embodiment, the secondary flow from the hub side to the chip side is suppressed, so that the wake area Wh on the hub side is reduced. I understand that. The secondary flow from the tip side toward the hub side is caused by the action of the second recess 33 of the fan casing 17 to increase the static pressure at the rear position of the rear edge 23b of the tip side end portion 23d of the stator vane 23. Therefore, the wake area Wt on the chip side of the embodiment is slightly larger than that of the comparative example, but overall, the wake area can be reduced to reduce pressure loss.

図7は質量流量率を変化させたときの全圧力損失の変化を示すグラフであって、図示した範囲の質量流量率において、実施の形態の全圧力損失が比較例の全圧力損失を20%程度下回っていることが分かる。   FIG. 7 is a graph showing changes in the total pressure loss when the mass flow rate is changed, and in the illustrated mass flow rate, the total pressure loss of the embodiment is 20% of the total pressure loss of the comparative example. It can be seen that it is less than.

図8は質量流量率=1.0のときのステータベーン23のスパン方向に沿う全圧力損失の分布を示すグラフであって、チップ側の一部の領域(スパン方向の80%〜90%の領域)で実施の形態はチップ側のウエイク領域Wtが大きくなるために比較例に比べて全圧力損失が増加しているが、他の領域では実施の形態の全圧力損失が比較例の全圧力損失よりも小さくなることが分かる。   FIG. 8 is a graph showing the distribution of the total pressure loss along the span direction of the stator vane 23 when the mass flow rate is 1.0, and is a partial region on the chip side (80% to 90% in the span direction). In the embodiment, the tip side wake region Wt becomes larger, so that the total pressure loss is increased compared to the comparative example. In other regions, the total pressure loss of the embodiment is the total pressure of the comparative example. It turns out that it becomes smaller than a loss.

以上、本発明の実施の形態を説明したが、本発明は上記実施の形態に限定されるものではなく、特許請求の範囲に記載された本発明を逸脱することなく種々の設計変更を行うことが可能である。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various design changes can be made without departing from the present invention described in the claims. Is possible.

例えば、実施の形態では本発明を航空用のターボファンエンジンEのファンケーシング17に適用しているが、本発明は航空用以外の任意の用途のターボファンエンジンに対して適用することができるだけでなく、任意の用途の軸流型のコンプレッサのケーシングに対しても適用することができる。   For example, in the embodiment, the present invention is applied to the fan casing 17 of the turbofan engine E for aviation, but the present invention can only be applied to a turbofan engine for any use other than aviation. In addition, the present invention can be applied to an axial flow type compressor casing for any application.

また実施の形態のステータベーン23はスイープしているが、本発明はスイープしていないステータベーンに対しても適用することができる。   Moreover, although the stator vane 23 of the embodiment is swept, the present invention can also be applied to a stator vane that is not swept.

15 ファンロータ(ロータ)
16 ファンステータ(ステータ)
17 ケーシング
23 ステータベーン(ベーン)
23a 前縁
23b 後縁
23c ハブ側端部
23d チップ側端部
31 凹部領域
32 第1凹部
33 第2凹部
34 第1凸部
35 第2凸部(凸部領域)
36 第3凸部
15 Fan rotor (rotor)
16 Fan stator (stator)
17 Casing 23 Stator vane (vane)
23a Front edge 23b Rear edge 23c Hub side end 23d Chip side end 31 Recess area 32 First recess 33 Second recess 34 First protrusion 35 Second protrusion (convex area)
36 3rd convex part

Claims (3)

軸流型コンプレッサのロータ(15)の後方に放射状に配置されたステータ(16)のベーン(23)の外周を囲むケーシング(17)の内周面形状であって、
前記ケーシング(17)の母線が、前記ベーン(23)の前縁(23a)よりも前方位置から後縁(23b)よりも後方位置に亙って径方向外側に窪む凹部領域(31)を備え、該凹部領域(31)は、前側の第1凹部(32)と、後側の第2凹部(33)と、前記第1凹部(32)の前方に連続する第1凸部(34)と、前記凹部領域(31)の前後方向中間位置において径方向内側に膨らむ第2凸部(35)と、前記第2凹部(33)の後方に連続する第3凸部(36)とで構成され、
前記第2凸部(35)が前記ベーン(23)の後縁(23b)を超えて膨らんでおり、前記第2凹部(33)が前記ベーン(23)の後縁(23b)の後方から窪み始めていることを特徴とする軸流型コンプレッサのケーシングの内周面形状。
The inner peripheral surface shape of the casing (17) surrounding the outer periphery of the vane (23) of the stator (16) arranged radially behind the rotor (15) of the axial compressor,
A concave region (31) in which the bus bar of the casing (17) is recessed radially outward from the front position to the rear edge (23b) from the front edge (23a) of the vane (23). The concave region (31) includes a front first concave portion (32), a rear second concave portion (33), and a first convex portion (34) continuous in front of the first concave portion (32). And a second convex portion (35) that swells radially inward at the intermediate position in the front-rear direction of the concave portion region (31), and a third convex portion (36) that continues to the rear of the second concave portion (33). And
The second convex portion (35) bulges beyond the rear edge (23b) of the vane (23), and the second concave portion (33) is recessed from the rear of the rear edge (23b) of the vane (23). The shape of the inner peripheral surface of the casing of the axial-flow compressor characterized by starting .
前記第1凸部(34)、前記第1凹部(32)、前記第2凸部(35)、前記第2凹部(33)および前記第3凸部(36)は滑らかに連続することを特徴とする、請求項に記載の軸流型コンプレッサのケーシングの内周面形状。 The first convex portion (34), the first concave portion (32), the second convex portion (35), the second concave portion (33), and the third convex portion (36) are smoothly continuous. The shape of the inner peripheral surface of the casing of the axial flow compressor according to claim 1 . 前記ベーン(23)は、ハブ側端部(23c)に対してチップ側端部(23d)が後方に向けてスイープすることを特徴とする、請求項1または請求項に記載の軸流型コンプレッサのケーシングの内周面形状。
The axial flow type according to claim 1 or 2 , wherein the vane (23) has a tip side end portion (23d) sweeping backward with respect to the hub side end portion (23c). The inner peripheral shape of the compressor casing.
JP2012119420A 2011-05-31 2012-05-25 Inner peripheral surface shape of casing of axial flow compressor Expired - Fee Related JP6001330B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011076804.1 2011-05-31
DE102011076804.1A DE102011076804B4 (en) 2011-05-31 2011-05-31 Inner peripheral surface shape of a fan housing of an axial compressor

Publications (2)

Publication Number Publication Date
JP2012251549A JP2012251549A (en) 2012-12-20
JP6001330B2 true JP6001330B2 (en) 2016-10-05

Family

ID=47173182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012119420A Expired - Fee Related JP6001330B2 (en) 2011-05-31 2012-05-25 Inner peripheral surface shape of casing of axial flow compressor

Country Status (3)

Country Link
US (1) US20120315136A1 (en)
JP (1) JP6001330B2 (en)
DE (1) DE102011076804B4 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130116685A (en) * 2012-04-16 2013-10-24 삼성전자주식회사 Photographing apparatus of recognizing type of external device, method for the same, and the external device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201420011D0 (en) * 2014-11-11 2014-12-24 Rolls Royce Plc Gas turbine engine
GB201420010D0 (en) * 2014-11-11 2014-12-24 Rolls Royce Plc Gas turbine engine
DE102014225689A1 (en) * 2014-12-12 2016-07-14 MTU Aero Engines AG Turbomachine with annulus extension and bucket
EP3032032B1 (en) * 2014-12-12 2019-06-12 MTU Aero Engines GmbH Outlet guide vanes and turbofan with outlet guide vanes
GB2544526B (en) * 2015-11-20 2019-09-18 Rolls Royce Plc Gas turbine engine
US10519976B2 (en) * 2017-01-09 2019-12-31 Rolls-Royce Corporation Fluid diodes with ridges to control boundary layer in axial compressor stator vane
KR101974739B1 (en) * 2017-09-27 2019-05-02 두산중공업 주식회사 Gas turbine
US10920599B2 (en) * 2019-01-31 2021-02-16 Raytheon Technologies Corporation Contoured endwall for a gas turbine engine
DE102020209586A1 (en) * 2020-07-30 2022-02-03 MTU Aero Engines AG GUIDE VANE FOR A FLOW MACHINE

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE579989C (en) * 1933-07-04 Karl Roeder Dr Ing No-head blading for axially loaded steam or gas turbines
DE216525C (en) *
US2846137A (en) * 1955-06-03 1958-08-05 Gen Electric Construction for axial-flow turbomachinery
US2978865A (en) * 1956-02-06 1961-04-11 Curtiss Wright Corp Turbo fan exhaust mixing device
US2880574A (en) * 1956-05-18 1959-04-07 Curtiss Wright Corp By-pass turbo jet engine construction
US3048376A (en) * 1958-04-09 1962-08-07 Curtiss Wright Corp Fluid mixing apparatus
US4226084A (en) * 1970-07-24 1980-10-07 General Motors Corporation Ducted fan engine exhaust mixer
US4054030A (en) * 1976-04-29 1977-10-18 General Motors Corporation Variable cycle gas turbine engine
US5184459A (en) * 1990-05-29 1993-02-09 The United States Of America As Represented By The Secretary Of The Air Force Variable vane valve in a gas turbine
US5397215A (en) * 1993-06-14 1995-03-14 United Technologies Corporation Flow directing assembly for the compression section of a rotary machine
JPH07247996A (en) 1994-03-11 1995-09-26 Ishikawajima Harima Heavy Ind Co Ltd Passage form of compressor
EP0799973B1 (en) * 1996-04-01 2002-07-03 Alstom Wall contour for an axial turbomachine
DE19650656C1 (en) 1996-12-06 1998-06-10 Mtu Muenchen Gmbh Turbo machine with transonic compressor stage
JPH10184304A (en) * 1996-12-27 1998-07-14 Toshiba Corp Turbine nozzle and turbine moving blade of axial flow turbine
EP0943784A1 (en) * 1998-03-19 1999-09-22 Asea Brown Boveri AG Contoured channel for an axial turbomachine
DE10233033A1 (en) 2002-07-20 2004-01-29 Rolls-Royce Deutschland Ltd & Co Kg Fluid flow machine with excessive rotor-stator contraction ratio
US7874794B2 (en) 2006-03-21 2011-01-25 General Electric Company Blade row for a rotary machine and method of fabricating same
DE102007020025A1 (en) * 2007-04-27 2008-10-30 Honda Motor Co., Ltd. Shape of a gas channel in an axial flow gas turbine engine
GB0905729D0 (en) * 2009-04-03 2009-05-20 Rolls Royce Plc Stator vane assembly

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130116685A (en) * 2012-04-16 2013-10-24 삼성전자주식회사 Photographing apparatus of recognizing type of external device, method for the same, and the external device
KR101964380B1 (en) * 2012-04-16 2019-07-31 후아웨이 테크놀러지 컴퍼니 리미티드 Photographing apparatus of recognizing type of external device, method for the same, and the external device

Also Published As

Publication number Publication date
JP2012251549A (en) 2012-12-20
DE102011076804B4 (en) 2019-04-25
US20120315136A1 (en) 2012-12-13
DE102011076804A1 (en) 2012-12-06

Similar Documents

Publication Publication Date Title
JP6001330B2 (en) Inner peripheral surface shape of casing of axial flow compressor
JP6060145B2 (en) High camber compressor rotor blade
JP6047141B2 (en) High camber stator vane
JP6025269B2 (en) Compressor airfoil with tip angle
JP4923073B2 (en) Transonic wing
JP6421091B2 (en) Axial flow compressor, gas turbine including the same, and stationary blade of axial flow compressor
US8807951B2 (en) Gas turbine engine airfoil
US8186962B2 (en) Fan rotating blade for turbofan engine
JP6109197B2 (en) Radial turbine blade
US7547187B2 (en) Axial turbine
JP4691002B2 (en) Mixed flow turbine or radial turbine
JP6025961B2 (en) Turbine blade
JP6468414B2 (en) Compressor vane, axial compressor, and gas turbine
WO2006080386A1 (en) Turbofan engine
US9957973B2 (en) Blade with an S-shaped profile for an axial turbomachine compressor
EP3159504B1 (en) Radial-inflow type axial turbine and turbocharger
EP2554793B1 (en) Inter-turbine ducts with guide vanes of a gas turbine engine
CN104837726A (en) Propeller blade for turbomachine
EP2672064A1 (en) Turbine engine and aerodynamic element of turbine engine
JP2019007478A (en) Rotor blade tip
JP2012082826A (en) Turbine bucket shroud tail
EP2578815A2 (en) Exhaust gas diffuser
RU2460905C2 (en) Axial-flow fan or compressor impeller and fan of bypass fanjet incorporating said impeller
JP4974006B2 (en) Turbofan engine
JP2013245680A (en) Turbine and method for reducing shock loss in turbine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160229

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160901

R150 Certificate of patent or registration of utility model

Ref document number: 6001330

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees