JP6000884B2 - 演算増幅回路 - Google Patents

演算増幅回路 Download PDF

Info

Publication number
JP6000884B2
JP6000884B2 JP2013062028A JP2013062028A JP6000884B2 JP 6000884 B2 JP6000884 B2 JP 6000884B2 JP 2013062028 A JP2013062028 A JP 2013062028A JP 2013062028 A JP2013062028 A JP 2013062028A JP 6000884 B2 JP6000884 B2 JP 6000884B2
Authority
JP
Japan
Prior art keywords
current
circuit
operational amplifier
amplifier circuit
compensation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013062028A
Other languages
English (en)
Other versions
JP2014187605A (ja
Inventor
永田 洋一
洋一 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd, Citizen Watch Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP2013062028A priority Critical patent/JP6000884B2/ja
Publication of JP2014187605A publication Critical patent/JP2014187605A/ja
Application granted granted Critical
Publication of JP6000884B2 publication Critical patent/JP6000884B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Amplifiers (AREA)

Description

本発明は、バイポーラトランジスタを入力用素子とした差動入力段を備えた演算増幅回路(OPアンプ)に関するものであり、特にそのトランジスタの電流増幅率の変化を補償し周波数安定性を向上する構造に関するものである。
従来から、入力用素子にバイポーラトランジスタを用いた演算回路が提案されている。
特開平7−57026号公報(5頁、図4〜7)
特許文献1に記載の演算回路は乗算回路の例である。図4及び図5は、特許文献1に開示された内容を逸脱しない範囲で書き直した図面である。特に特許文献1では、バイポーラトランジスタとして、CMOSプロセスで形成できるバイポーラトランジスタを用いる例が挙げられている。図5はそのようなトランジスタをP型サブストレート上に形成したときの断面図である。図5のバイポーラトランジスタは、P型サブストレート501上にNウェルであるベース504を形成し、その領域の内側に高濃度のP型イオンを注入して形成したエミッタ503とラテラルコレクタ502を形成したPNPトランジスタである。
図4の演算回路40は、2組の差動回路を組み合わせた、ギルバートセルと呼ばれる乗算回路である。PNPトランジスタ406〜409で第1の入力信号Vxを処理し、PMOSトランジスタ402〜405で第2の入力信号Vyを処理することで、これらの入力信号を乗算した信号を出力する。
この演算回路40は、乗算機能を実現するためにバイポーラトランジスタの指数特性を応用したものであるが、一般にバイポーラトランジスタはMOSトランジスタ(MOSFET)と比較して1/f雑音が小さいため、低周波の信号増幅をする際の低雑音化にも有用であることが知られている。
このことから、演算増幅回路(OPアンプ)の差動入力段の入力用素子として、バイポーラトランジスタを用いることが容易に考えられる。差動入力段は、簡単には演算回路40のVy入力を無効とすることで実現できる。例えば、2つのPMOSトランジスタ404、405と2つのPNPトランジスタ408、409とを取り除き、さらに2つのPMOSトランジスタ402、403のソース−ドレイン間を短絡すればよい。この場合はPNPトランジスタ406、407が入力用素子となる。
一般に、演算増幅回路は、この差動入力段の後段にも負荷駆動用の出力段を接続し、2段以上の増幅段を有する。しかしながら、このようなトランジスタを演算増幅回路の入力段に用いようとすると、演算増幅回路の重要特性の一つである周波数安定性に問題が生じてしまう。
これの説明のため、増幅段を2段備えた演算増幅回路をモデル化したブロック図を図2に示す。また図3にこのような演算増幅回路の周波数応答特性の典型的な例を示す。
図2の演算増幅回路20は、第1番目の増幅段21と第2番目の増幅段22との2つの増幅段を直列に接続した増幅回路である。以降は簡略的に1段目21、2段目22と表す。
増幅段が複数ある場合は、いわゆるミラー補償の手法によって適切な位相余裕を得るような補償をするのが一般的である。具体的には、2段目22の入出力間に位相補償キャパシタ207を接続する。このように位相補償された演算増幅回路20において、帯域幅に相当するユニティゲイン周波数ωu(ゲイン交点)は、
ωu = gm1/Cc
で近似される。一方で、非主要極周波数ωpは、
ωp = gm2/Co
で近似される。ここでgm1は1段目21のトランスコンダクタンス201の値、gm2は2段目22のトランスコンダクタンス202の値、Ccは位相補償キャパシタ207の容量値、Coは演算増幅回路20が駆動する負荷キャパシタ206の容量値である。
ここで1段目21のトランスコンダクタンス201(gm1)は、上記のような差動入力段では入力用素子のトランスコンダクタンスgmそのものに等しい。
一般に、バイポーラトランジスタのトランスコンダクタンスgmは、
gm = IC/VT
で表される。ここでICはコレクタ電流であり、VTはいわゆる熱電圧である。また、トランジスタのベース接地の電流増幅率αは、コレクタ電流ICとエミッタ電流IEとの比、すなわち
α = IC/IE
で表される。トランスコンダクタンスgmは電流増幅率αに比例することが明らかである。以降、本願で述べる電流増幅率とは、このベース接地の電流増幅率であり、エミッタ接地の電流増幅率(IC/IB)とは異なる。
ところが、標準バイポーラプロセスで製造されるラテラルPNPトランジスタのような性能の低いバイポーラトランジスタは、この電流増幅率αの値が小さいことが知られており、さらに製造誤差による値の変化も大きい。
一方、標準CMOSプロセスで形成できる、特許文献1に示されたようなバイポーラトランジスタも、図5に示すように、ラテラルコレクタ502から流れ出るコレクタ電流ICだけでなく、寄生コレクタとして振舞うサブストレート501へも寄生コレクタ電流IC´が流れるため、実質的な増幅動作に寄与するコレクタ電流ICは、エミッタ電流IEに比べるとだいぶ小さい。すなわち、電流増幅率αの値は1より小さく、かつその値は製造プロセスや周囲温度などによって容易に変化してしまう。
電流増幅率αが変化すると、仮にエミッタ電流IEが一定であってもコレクタ電流ICは変化するので、トランスコンダクタンスgmも変化する。よって、演算増幅回路のユニティゲイン周波数ωuも変化してしまう。
例えば、電流増幅率αが典型的な値である場合に、図3に示したゲイン特性gaとなるように設計すると、電流増幅率αが増大する方向へ変化した場合は、1段目21のトランスコンダクタンス201(gm1)が大きくなるため、ゲイン特性gbとなり、位相余裕が図3に示したθ(b)のように減少する。位相余裕が十分でない場合は帰還率が大きいときに容易に発振してしまうという問題が生じる。
仮に電流増幅率αの変化幅が予測できるとして、最大でもゲイン特性gaにしかならないように設計できたとしても、電流増幅率αが減少する方向へ変化した場合は、1段目21のトランスコンダクタンス201(gm1)が小さくなるため、ゲイン特性gcとなり、位相余裕はθ(c)のように改善するものの、帯域幅がωu(c)のように減少するという別の問題が生じる。回避策として、極周波数ωpを十分大きくしておく方法もあるが、そのためには2段目22のトランスコンダクタンス202(gm2)を大きくしなければならず、結果として出力段での消費電力が極めて大きくなってしまう。
このように、ユニティゲイン周波数ωuが変化してしまうような演算増幅回路の最適設計は非常に困難であると言える。
本発明は上記課題を解決し、周波数安定性や帯域幅を損なうことなく、低雑音な演算増幅回路を提供することを目的とする。
本発明の演算増幅回路は、以下の構成を採用する。
複数の増幅段を有し、第1番目の前記増幅段の入力用素子をバイポーラトランジスタで構成する演算増幅回路であって、
その入力用素子と同一の電気特性を有するバイポーラトランジスタで構成する補償用素子を有する補償電流発生回路を備え、
その補償電流発生回路は、補償用素子を基に入力用素子のベース接地電流増幅率αに反比例する補償電流を生成し、
その補償電流に応じたバイアス電流により第1番目の増幅段をバイアスすることで、帯域幅が一定となることを特徴とする。
本発明の演算増幅回路は、バイポーラトランジスタである入力用素子と同じ電気特性を有する補償用素子を用いて、電流増幅率αに反比例する補償電流を生成する。演算増幅回路の第1番目の増幅段である差動入力段を、この補償電流をもとにした電流でバイアスすることで、差動入力段のトランスコンダクタンスgm1を一定に制御する。これにより、電流増幅率αに変化が生じても演算増幅回路のユニティゲイン周波数ωuを一定に制御でき、安定な周波数応答特性が実現できる。
補償電流発生回路は、補償電流が周囲の絶対温度には比例するよう生成するようにしてもよい。
このような演算増幅回路によれば、この補償電流を絶対温度に比例させるように制御することで、バイポーラトランジスタである入力用素子のトランスコンダクタンスgmが絶対温度Tに反比例する影響も補償することができる。すなわち、本発明の演算増幅回路は、周囲温度の変化が演算増幅回路の周波数応答特性に与える影響も打ち消すことができる。
第2番目以降の増幅段は、第1番目の増幅段とは独立にバイアスされるMOSFET回路で構成するようにしてもよい。
このような演算増幅回路によれば、トランジスタの電流増幅率補償動作により生じる第1番目の増幅段のバイアス状態の変化がその後段の増幅段に影響しないように、第1番目とそれ以降の増幅段とを独立してバイアスすることで、第1番目より後段を全てMOS素子で構成することが可能となる。このため、ディジタル回路との親和性が高く設計自由度の高いCMOS回路との混載が容易となる。
本発明の演算増幅回路によれば、入力用素子であるバイポーラトランジスタの電流増幅率の製造誤差や、周囲温度の変化などによる影響を動的に補償できる。
したがって、周波数安定性や帯域幅、消費電力といった性能を損なうことなく低雑音な演算増幅回路を実現することが可能になる。この補償動作は動的になされるため、異なる半導体製造プロセスへの移植性が高いという効果も有する。
本発明の実施形態である演算増幅回路の構成を説明する回路図である。 増幅段を2段有する演算増幅回路をモデル化したブロック図である。 演算増幅回路の伝達関数の周波数応答特性を説明する線図である。 特許文献1に示したバイポーラトランジスタを入力段に用いた演算回路を説明する回路図である。 標準CMOSプロセスで製造できるバイポーラトランジスタの構造を説明する断面図である。
以下、図面を用いて本発明の演算増幅回路を実現するための最良の形態について説明する。
[全体構成説明:図1、図5]
まず、図1と図5とを用いて演算増幅回路の全体構成について説明する。
演算増幅回路10は、差動入力段回路11と、出力段回路12とで構成した、増幅段が2段構成の演算増幅回路である。そしてさらに、差動入力段回路11の電気特性を補償する補償電流発生回路14を備えている。
差動入力段回路11は、電源V+側のテール電流源をPMOSトランジスタ101で構成し、入力用素子102及び103を電気特性の揃ったPNPトランジスタで構成し、負荷用素子をNMOSトランジスタ104及び105で構成し、さらにカスコード回路を接続した差動増幅回路である。入力用素子102、103には、図5に示した標準CMOSプロセスで製造できるバイポーラトランジスタを用いる。
差動入力段回路11は、PMOSトランジスタ121、122、123、124とで電源V+側のカスコード回路を形成し、NMOSトランジスタ125、126、127、128とで電源V−側のカスコード回路を形成する。これらのカスコード回路に挟まれるようにバイアス回路131、132を接続する。
バイアス回路131、132は、続いて接続する出力段回路12をソース接地増幅回路としてAB級バイアスするものである。これらのバイアス回路は一般的なので、詳細な構成説明は省略する。演算増幅回路10に含まれる増幅段としてはここまでが第1番目の増幅段に相当する。以降、この増幅段も簡略的に1段目と表す。
NMOSトランジスタ104、127はそのドレインを共通とし、NMOSトランジスタ105、128もそのドレインを共通とすることで、差動入力段回路11をいわゆる折り返しカスコード増幅回路の構成としている。
なお、PMOSトランジスタ123、124とNMOSトランジスタ125、126、127、128とは、良く知られたMOSトランジスタのバイアス回路(図示せず)でゲ
ート電位をバイアスすることでカスコード回路として機能させることができる。
出力段回路12は増幅機能を有する出力バッファである。演算増幅回路10に含まれる増幅回路としてはこれが2段目の増幅段に相当する。
出力段回路12は、PMOSトランジスタ133とNMOSトランジスタ134とで、相補型のソース接地増幅回路によって構成する。これらのトランジスタのドレインは共通であり、演算増幅回路10の出力端子OUTとなっている。トランジスタ133、134のそれぞれのゲート−ドレイン間には、キャパシタ135、136をそれぞれ接続することでいわゆるミラーキャパシタとし、位相補償効果が得られるようにしている。
さらなる構成要素である補償電流発生回路14は、PNPトランジスタである補償用素子142と、絶対温度Tに比例する電流(いわゆるPTAT電流)を生成する回路とで構成した、補償電流Ixを生成する回路である。
PTAT回路140は、ここに流れるPTAT電流を基準電流I0としたとき、この基準電流I0が補償電流Ixに電流増幅率αを乗じた電流値と等しくなるように動作する構成とする。この乗算機能を実現するために、補償電流発生回路14では、縦積み状に接続したPMOSトランジスタ141と、PNPトランジスタである補償用素子142と、NMOSトランジスタ143とを備えている。
NMOSトランジスタ144とPMOSトランジスタ145とPMOSトランジスタ146とによるカレントミラー経路は、PTAT回路140に流れる電流が、補償電流Ixに電流増幅率αを乗じた基準電流I0と等しくなるようにするためものである。すなわち、NMOSトランジスタ143に流れる電流のコピー電流をPMOSトランジスタ146から流し出し、PTAT回路140に供給する。補償電流Ixは補償用素子142のエミッタ電流であり、基準電流I0は補償用素子142のコレクタ電流と等しくなることから、基準電流I0は補償電流Ixに電流増幅率αを乗じた値になることは定義から明らかである。
補償電流Ixは、PMOSトランジスタ141に流れる電流であり、この補償電流Ixの定数倍コピー電流がPMOSトランジスタ101のドレイン電流、すなわち差動入力段回路11のテール電流となるように構成する。PMOSトランジスタ141、101はカレントミラーの構成であり、コピー電流を発生させるためにゲート電圧VB1を共通にする。
また基準電流I0は、NMOSトランジスタ143に流れる電流に等しく、この基準電流I0の定数倍コピー電流がNMOSトランジスタ104、105のドレイン電流、すなわち2つの入力用素子102、103のコレクタをバイアスするように構成する。NMOSトランジスタ143、104、105もカレントミラーの構成であり、コピー電流を発生させるためにゲート電圧VB2を共通にする。この構成により、NMOSトランジスタ104、105は、差動入力段回路11のテール電流をちょうどα/2倍した電流をそれぞれ引き抜くことが可能となる。
補償用素子142のベースはコモン端子COMとしている。これは、2つの入力用素子102、103に接続する入力信号の同相レベルの信号を、同じインピーダンスを介して印加するための端子である。これにより、補償用素子142が2つの入力用素子102、103に近い電気的状態にすることができ、補償電流発生回路14の補償動作の精度を向上することが可能となる。典型的な例では、コモン端子COMを信号グラウンドレベルに固定する。
なお、補償用素子142には、電圧−電流特性などの電気特性が入力用素子102、103と全て等しい素子を用いる。簡単には、平面形状的に同じで、かつ不純物濃度や注入深さの同じ素子を、近接した位置に形成することで電気特性が揃った素子を得ることが出来る。これは周知のパターンレイアウト手法で実現することが可能である。
PTAT回路140自体は、基準抵抗151、抵抗152、153と、PNPトランジスタ154、155と、差動アンプ156とで構成する。このPTAT回路140は、2つのダイオードに異なる電流密度で電流を流したときに発生する順方向電圧差が絶対温度Tに比例する性質を応用した回路である。ここではダイオードとして、ダイオード接続したPNPトランジスタ154、155を用い、かつその電流密度に差をつけるためにエミッタ面積が異なる構成としている。基準抵抗151はその電圧差を検出するためのものである。
差動アンプ156は、PNPトランジスタ155と、これよりエミッタ面積が大きいPNPトランジスタ154とに等しい電流を流すために必要な補償電流Ixを発生するようPMOSトランジスタ141のゲートをドライブし、PTAT回路140が機能するためのフィードバック系を形成できるように接続する。
[全体動作説明:図1、図3]
次に、図1と図3とを用いて演算増幅回路の動作について説明する。
演算増幅回路10に電源を投入すると、PTAT回路140はフィードバックがかかって安定状態となる。この安定状態では、絶対温度Tに比例する基準電流I0がPMOSトランジスタ146に流れる。
基準抵抗151の抵抗値をR1とすると、PTAT回路140に電流供給するPMOSトランジスタ145に流れるドレイン電流、すなわち基準電流I0は次のように表すことができる。
I0 = VT・Ln(n)/R1
ここでnはPNPトランジスタ154と155とのエミッタ面積比であり、Lnは自然対数関数である。VTはいわゆる熱電圧で、絶対温度に比例するものであるため、すなわち基準電流I0は絶対温度Tに比例する。
ところが、基準電流I0は補償電流Ixに電流増幅率αを乗じた電流値になっている。言い換えると、補償電流Ixは周囲の絶対温度Tに比例し、電流増幅率αに反比例する電流になっている。つまり
Ix ∝ T/α
である。
このように補償電流発生回路14で生成された補償電流Ixをコピーした電流が差動入力段回路11のテール電流となる。このテール電流は入力用素子102、103に電流を供給するものである。差動入力段回路11のトランスコンダクタンスgm1は、入力用素子102、103のトランスコンダクタンスgmそのものであるので、
gm1 = IC/VT
= α・IE/VT
∝ α・Ix/T
となり、先に述べた補償電流Ixの関係から、差動入力段回路11のトランスコンダクタンスgm1は周囲温度や電流増幅率αに依存しないよう制御されることが分かる。
差動入力段回路11のトランスコンダクタンスgm1が周囲温度や電流増幅率αに依存しなければ、演算増幅回路10のユニティゲイン周波数ωuも周囲温度や電流増幅率αによらず一定となる。
上述の差動入力段回路11の補償動作によって、2つの入力用素子102、103のエミッタへバイアスされる電流は電流増幅率αによって変化するが、コレクタ電流は電流増幅率αに非依存となるようにバイアスされる。このバイアス電流はちょうどNMOSトランジスタ104、105によって引き抜かれるため、入力信号の変化によって生じる電流信号成分のみが、続くカスコード回路に送られる。カスコード回路及び出力段回路12は差動入力段回路11とは独立にバイアスしているので、出力段回路12の動作点は変化せず、そのトランスコンダクタンスgm2は一定である。よって、従来の演算増幅回路と同様に、演算増幅回路10の出力端子へ接続される負荷キャパシタ206の値Coが固定であれば極周波数ωpは変化しない。
したがって、ユニティゲイン周波数ωuと極周波数ωpとの比は一定となるので、演算増幅回路10の周波数安定性を保証できるように設計することが可能となる。これは図3でいえば、ゲイン特性gaに示した特性が電流増幅率αの変化に関係なく常に得られることに相当する。
しかも、差動入力段回路11の入力用素子102、103にはバイポーラトランジスタを用いているため、演算増幅回路10の入力換算雑音は小さい。特に1/f雑音成分はMOSトランジスタと比較して極めて小さく、低周波の信号を増幅するような用途に適するという効果は維持されることは明らかである。
以上までの説明から分かるように、本発明の演算増幅回路によれば、周波数安定性や帯域幅を損なうことなく、低雑音な演算増幅回路を実現することが可能になる。
なお、上記までに説明した本発明の実施の形態では、標準CMOSプロセスで形成できるバイポーラトランジスタを入力用素子に用いることとしたが、これには限定されない。例えば、標準バイポーラプロセスで形成できるが性能が十分でない、ラテラルPNPトランジスタのような素子を入力用素子として用いる場合などでも同様に応用することができる。
なお、上記の本発明の実施の形態では、図1に示すように基準電流I0および補償電流Ixが絶対温度に比例するような構成としたが、これには限定されない。
差動入力段回路11のトランスコンダクタンスgm1は、周囲温度と、入力用素子102及び103又は補償用素子142の電流増幅率αとに依存する。しかし、周囲温度の変化が僅かな環境であれば、トランスコンダクタンスgm1は温度の影響を無視してよく、PTAT回路140は不要となる。そのような場合は、PTAT回路140の部分を単純な定電流源として動作するような回路に置き換えることが可能である。
本発明の演算増幅回路は1/f雑音が低いため、低周波の微小アナログ信号を増幅することが可能である。例えば、角速度センサや圧力センサといった、微小信号を検出するような用途に好適である。
10 演算増幅回路
11 差動入力段回路
12 出力段回路
14 補償電流発生回路
20 演算増幅回路
40 演算回路
50 バイポーラトランジスタ
102、103 入力用素子
140 PTAT回路
142 補償用素子

Claims (3)

  1. 複数の増幅段を有し、第1番目の前記増幅段の入力用素子をバイポーラトランジスタで構成する演算増幅回路であって、
    前記入力用素子と同一の電気特性を有するバイポーラトランジスタで構成する補償用素子を有する補償電流発生回路を備え、
    前記補償電流発生回路は、前記補償用素子を基に前記入力用素子のベース接地電流増幅率αに反比例する補償電流を生成し、
    前記補償電流に応じたバイアス電流により第1番目の前記増幅段をバイアスすることで、帯域幅が一定となることを特徴とする演算増幅回路。
  2. 前記補償電流発生回路は、前記補償電流が周囲の絶対温度には比例するよう生成する
    ことを特徴とする請求項1に記載の演算増幅回路。
  3. 第2番目以降の前記増幅段は、第1番目の前記増幅段とは独立にバイアスされるMOSFET回路で構成する
    ことを特徴とする請求項1又は2に記載の演算増幅回路。
JP2013062028A 2013-03-25 2013-03-25 演算増幅回路 Expired - Fee Related JP6000884B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013062028A JP6000884B2 (ja) 2013-03-25 2013-03-25 演算増幅回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013062028A JP6000884B2 (ja) 2013-03-25 2013-03-25 演算増幅回路

Publications (2)

Publication Number Publication Date
JP2014187605A JP2014187605A (ja) 2014-10-02
JP6000884B2 true JP6000884B2 (ja) 2016-10-05

Family

ID=51834702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013062028A Expired - Fee Related JP6000884B2 (ja) 2013-03-25 2013-03-25 演算増幅回路

Country Status (1)

Country Link
JP (1) JP6000884B2 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63263824A (ja) * 1987-04-21 1988-10-31 Nec Corp 振幅変換回路
US5646518A (en) * 1994-11-18 1997-07-08 Lucent Technologies Inc. PTAT current source
JP4114255B2 (ja) * 1998-12-07 2008-07-09 ソニー株式会社 増幅装置
JP4901703B2 (ja) * 2007-11-28 2012-03-21 株式会社東芝 温度補償回路

Also Published As

Publication number Publication date
JP2014187605A (ja) 2014-10-02

Similar Documents

Publication Publication Date Title
JP6347497B2 (ja) 広範な入力電流レンジを伴うトランスインピーダンス増幅器のための装置及び方法
US4958133A (en) CMOS complementary self-biased differential amplifier with rail-to-rail common-mode input-voltage range
US6437645B1 (en) Slew rate boost circuitry and method
JP3875392B2 (ja) 演算増幅器
EP2652872B1 (en) Current mirror and high-compliance single-stage amplifier
JP2007049233A (ja) 定電流回路
JP2006141014A (ja) 共通モードフィードバック回路を具備したトランスコンダクタンス増幅器、及びトランスコンダクタンス増幅器の動作方法
US9407221B2 (en) Differential amplifier circuit
US20100148857A1 (en) Methods and apparatus for low-voltage bias current and bias voltage generation
US20050184805A1 (en) Differential amplifier circuit
US9941850B1 (en) Fully differential operational amplifier
US7408410B2 (en) Apparatus for biasing a complementary metal-oxide semiconductor differential amplifier
JP2005151460A (ja) Am中間周波可変利得増幅回路、可変利得増幅回路及びその半導体集積回路
US6788143B1 (en) Cascode stage for an operational amplifier
US7834693B2 (en) Amplifying circuit
JP2007143162A (ja) 増幅器回路、及び増幅器回路を内蔵するシステム
US20080284489A1 (en) Transconductor and mixer with high linearity
US7315210B2 (en) Differential operational amplifier
JP6000884B2 (ja) 演算増幅回路
US20180059707A1 (en) Proportional to Absolute Temperature Reference Circuit and a Voltage Reference Circuit
US7170337B2 (en) Low voltage wide ratio current mirror
JPH07249946A (ja) Ab級プッシュプル駆動回路、その駆動方法及びこれを用いたab級電子回路
US20150002222A1 (en) Combined input stage for transconductance amplifier having gain linearity over increased input voltage range
KR100668455B1 (ko) 가변 이득 증폭기
US7852157B2 (en) Differential amplifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160831

R150 Certificate of patent or registration of utility model

Ref document number: 6000884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees