JP6000180B2 - Laser measurement method - Google Patents

Laser measurement method Download PDF

Info

Publication number
JP6000180B2
JP6000180B2 JP2013072709A JP2013072709A JP6000180B2 JP 6000180 B2 JP6000180 B2 JP 6000180B2 JP 2013072709 A JP2013072709 A JP 2013072709A JP 2013072709 A JP2013072709 A JP 2013072709A JP 6000180 B2 JP6000180 B2 JP 6000180B2
Authority
JP
Japan
Prior art keywords
laser
measurement
window frame
window
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013072709A
Other languages
Japanese (ja)
Other versions
JP2014196949A (en
Inventor
晋作 土橋
千幸人 塚原
友章 杉山
翼 宮▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2013072709A priority Critical patent/JP6000180B2/en
Publication of JP2014196949A publication Critical patent/JP2014196949A/en
Application granted granted Critical
Publication of JP6000180B2 publication Critical patent/JP6000180B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/08Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Nanotechnology (AREA)

Description

本発明は、レーザ計測装置に関するものである。   The present invention relates to a laser measuring device.

従来、例えばボイラプラント内のガス配管内のガス濃度を計測する方法として、半導体レーザ吸収法による方法が確立され、JIS化されている(JISB7993:非特許文献1)。   Conventionally, for example, as a method for measuring the gas concentration in a gas pipe in a boiler plant, a method based on a semiconductor laser absorption method has been established and JISized (JISB 7993: Non-Patent Document 1).

この半導体レーザ吸収法によるレーザ装置では、ガス配管(主煙道)からガスの一部を分岐したガスを導入するサンプル配管に対し、レーザ装置からレーザ光を照射し、被測定ガス(例えばアンモニア)の成分・濃度等を分析している。
例えば第1の検出器では、参照光(I0)を求め、第2の検出器ではサンプル配管内の透過した光の強度(I)を求め、透過率T=(I/I0)を求めており、この分析手法により、様々なガス成分濃度のオンライン分析が可能となってきている。
In this laser device using the semiconductor laser absorption method, a laser beam is irradiated from a laser device to a sample pipe that introduces a gas branched from a gas pipe (main flue), and a gas to be measured (for example, ammonia) The components / concentration etc. are analyzed.
For example, in the first detector, the reference light (I 0 ) is obtained, and in the second detector, the intensity (I) of the transmitted light in the sample pipe is obtained, and the transmittance T = (I / I 0 ) is obtained. This analysis method enables online analysis of various gas component concentrations.

JISB7993JISB7993

ところで、レーザ手段は、レーザ発振部とレーザ受光部とを用いているので、レーザ光を計測場に導入する場合、例えば石英等のレーザ導入及び導出用の石英窓を用いている。   By the way, since the laser means uses a laser oscillation unit and a laser light receiving unit, when introducing laser light into a measurement field, a quartz window for introducing and deriving a laser such as quartz is used.

また、計測対象であるボイラプラントのガス環境が煤塵等が存在して劣悪であるので、石英窓の内側から、例えば窒素ガス等を吹き付けるパージ手段が設置されている。しかしながら、このパージ手段は、煤塵が多く堆積する箇所では、大型のコンプレッサ等の設備がさらに必要となり、また計測箇所が多くなる場合には、計測に伴う副次的なコストが嵩む、という問題がある。   Moreover, since the gas environment of the boiler plant to be measured is inferior due to the presence of dust or the like, purge means for blowing, for example, nitrogen gas from the inside of the quartz window is installed. However, this purging means has a problem that a large-scale compressor or the like is further required in a place where a lot of soot accumulates, and if the number of measurement places increases, a secondary cost associated with the measurement increases. is there.

本発明は、前記問題に鑑み、パージ手段を用いることなくレーザの導入及び導出ができるレーザ計測装置及びレーザ計測方法を提供することを課題とする。 In view of the above problems, an object of the present invention is to provide a laser measuring apparatus and a laser measuring method capable of introducing and deriving a laser without using a purge means.

上述した課題を解決するための本発明のの発明は、レーザ走光部からのレーザ光を測定場に導入するレーザ導入手段と、導入された前記レーザ光を前記測定場より、レーザ受光部側へ導出するレーザ導出手段とを具備してなり、前記測定場内が負圧であると共に、前記レーザ導入手段及び前記レーザ導出手段が、前記レーザ光を透過するレーザ光透過窓と、前記レーザ光透過窓を支持する窓枠と、前記窓枠を所定間隔の隙間を有して前記測定場の壁面に取付ける取付フランジとを有するレーザ計測装置を用いたレーザ計測方法であって、前記窓枠に煤塵が堆積した場合に、前記窓枠の前記隙間の間隔を前記所定間隔より大きくして外気の流入量を増大して前記煤塵を除去する工程を含むことを特徴とするレーザ計測方法にある。 A first invention of the present invention for solving the above-described problem is a laser introducing means for introducing laser light from a laser beam running section into a measurement field, and a laser receiving section for introducing the introduced laser light from the measurement field. A laser lead-out means for leading to the side, wherein the measurement field has a negative pressure, and the laser introduction means and the laser lead-out means transmit a laser beam through which the laser light is transmitted, and the laser light A laser measurement method using a laser measurement device having a window frame that supports a transmission window and an attachment flange that attaches the window frame to a wall surface of the measurement field with a gap of a predetermined interval. In the laser measurement method, the method includes a step of removing the soot by increasing the inflow amount of outside air by setting the interval of the gap of the window frame larger than the predetermined interval when the soot is accumulated.

本発明によれば、窓枠と取付フランジとの間に隙間を設けることにより、負圧状態の測定場内に、隙間を介して外部から外気が流入する。この結果、外気が隙間を通過する流入流れを形成し、この流入流れにより、排ガスが石英窓の内面側へ流入することが妨げられ、この結果石英窓の内面汚れが発生することが解消される。   According to the present invention, by providing a gap between the window frame and the mounting flange, outside air flows into the negative pressure measurement field from the outside through the gap. As a result, the outside air forms an inflow flow that passes through the gap, and the inflow flow prevents the exhaust gas from flowing into the inner surface side of the quartz window, thereby eliminating the occurrence of contamination on the inner surface of the quartz window. .

図1は、実施例1に係るレーザ計測装置の概略図である。FIG. 1 is a schematic diagram of a laser measurement apparatus according to the first embodiment. 図2は、実施例2に係るレーザ計測装置の概略図である。FIG. 2 is a schematic diagram of a laser measurement apparatus according to the second embodiment.

以下に添付図面を参照して、本発明の好適な実施例を詳細に説明する。なお、この実施例により本発明が限定されるものではなく、また、実施例が複数ある場合には、各実施例を組み合わせて構成するものも含むものである。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In addition, this invention is not limited by this Example, Moreover, when there exists multiple Example, what comprises combining each Example is also included.

図1は、実施例1に係るレーザ計測装置の概略図である。
図1に示すように、本実施例に係るレーザ計測装置10Aは、レーザ走光部11からのレーザ光12を測定場である煙道13に導入するレーザ導入手段14と、導入されたレーザ光12を煙道13より、レーザ受光部15側へ導出するレーザ導出手段16とを具備してなり、煙道13内が負圧であると共に、レーザ導入手段14及びレーザ導出手段16が、レーザ光12を透過するレーザ光透過窓である石英窓21と、該石英窓21を支持する窓枠22と、窓枠22を所定間隔の隙間23を有して測定場である煙道13の壁面に取付手段であるボルト25を用いて取付ける取付フランジ24とを有するものである。
FIG. 1 is a schematic diagram of a laser measurement apparatus according to the first embodiment.
As shown in FIG. 1, a laser measuring apparatus 10A according to the present embodiment includes a laser introducing means 14 for introducing a laser beam 12 from a laser traveling light section 11 into a flue 13 as a measurement field, and an introduced laser beam 12 And a laser deriving means 16 for deriving the light from the flue 13 to the laser light receiving unit 15 side. The inside of the flue 13 has a negative pressure, and the laser introducing means 14 and the laser deriving means 16 are provided with the laser beam 12. A quartz window 21 that is a laser beam transmitting window, a window frame 22 that supports the quartz window 21, and a window frame 22 that is attached to a wall surface of a flue 13 that is a measurement site with a gap 23 at a predetermined interval. It has the attachment flange 24 attached using the volt | bolt 25 which is a means.

窓枠22と取付フランジ24との間に隙間23を設けることにより、煙道13内部が負圧状態であるので、外気26は外部から煙道13内に流入する。
この結果、外気26が隙間23を通過する流入流れを形成する。
この流入流れにより、排ガス19が石英窓21の内面側へ流入することが妨げられ、この結果石英窓21の内面汚れが発生することが解消される。
By providing the gap 23 between the window frame 22 and the mounting flange 24, the inside of the flue 13 is in a negative pressure state, so the outside air 26 flows into the flue 13 from the outside.
As a result, the outside air 26 forms an inflow flow that passes through the gap 23.
This inflow flow prevents the exhaust gas 19 from flowing into the inner surface side of the quartz window 21, and as a result, the occurrence of contamination on the inner surface of the quartz window 21 is eliminated.

ここで、煙道13内の内圧が負圧(例えば200mmAq)の場合における、外気が隙間23を通過する流速は、5〜30m/s程度(好適には10〜15m/s)となる。また、計測場である煙道13内の負圧の範囲として、50〜500mmAq程度とするのが好ましい。   Here, when the internal pressure in the flue 13 is a negative pressure (for example, 200 mmAq), the flow rate of outside air passing through the gap 23 is about 5 to 30 m / s (preferably 10 to 15 m / s). Moreover, it is preferable to set it as about 50-500 mmAq as a range of the negative pressure in the flue 13 which is a measurement field.

この結果、本発明によれば、石英窓21の窓汚れが防止される。従来は、窓汚れ防止のために、大量の窒素パージを行うために大型のコンプレッサ等を有するガスパージ手段の設置が必要であったが、この設置を省略することができ、計測コストの低減を図ることができる。   As a result, according to the present invention, window contamination of the quartz window 21 is prevented. Conventionally, it has been necessary to install a gas purging means having a large compressor or the like in order to perform a large amount of nitrogen purging in order to prevent window contamination, but this installation can be omitted and the measurement cost can be reduced. be able to.

また、長期間に亙る計測では、パージ手段による窒素パージを行っても、微細な粉塵の付着により窓の透過率の低下があったが、本発明によれば、この透過率の低下も防止することができる。   In addition, in the measurement over a long period of time, even when nitrogen purging by the purging means is performed, the transmittance of the window is reduced due to the adhesion of fine dust, but according to the present invention, this decrease in the transmittance is also prevented. be able to.

ここで、外気26の流入量の調整は、隙間23の間隔を調整することで適宜変更することができる。
例えば隙間23の間隔を大きくすると、外気26の流入量が大となる。これに対し、隙間23の間隔を小さくすると、外気26の流入量が小となる。
特に、石英窓21の内側の窓枠22のコーナ部22aに、煤塵が堆積した場合には、隙間23の間隔を大きくして、外気26の流入量を大として、堆積した煤塵を除去するようにしてもよい。
Here, the adjustment of the inflow amount of the outside air 26 can be changed as appropriate by adjusting the gap 23.
For example, when the gap 23 is increased, the inflow amount of the outside air 26 is increased. On the other hand, when the gap 23 is made smaller, the inflow amount of the outside air 26 becomes smaller.
In particular, when dust accumulates on the corner portion 22a of the window frame 22 inside the quartz window 21, the gap 23 is increased to increase the inflow amount of the outside air 26 so as to remove the accumulated dust. It may be.

本発明のレーザ計測装置10Aの設置は、例えば脱硝装置の煙道の後流側において、リークアンモニアを計測する際のレーザ計測に適用することができるが、脱硝装置のみならず、負圧環境下のガス成分のレーザ計測一般に適用することができる。   The installation of the laser measuring device 10A of the present invention can be applied to laser measurement when measuring leaked ammonia, for example, on the downstream side of the flue of the denitration device. It can be applied to general laser measurement of gas components.

ここで、レーザ計測において、例えばアンモニア(NH3)濃度を計測するには、半導体レーザ(半導体素子:InGaAsを例示することができる。波長:1.5μm、出力:1mW程度のものを例示することができる。)を用いることができる。
また、窒素酸化物(NOx)を計測する場合には、量子カスケードレーザ(半導体素子:InGaAs/InAlAsを例示することができる。波長:5〜6μm、出力:1mW程度のものを例示することができる。)を用いることができる。
Here, in laser measurement, for example, in order to measure ammonia (NH 3 ) concentration, a semiconductor laser (semiconductor element: InGaAs can be exemplified. Wavelength: 1.5 μm, output: about 1 mW is exemplified. Can be used).
Further, when measuring nitrogen oxide (NOx), a quantum cascade laser (semiconductor element: InGaAs / InAlAs can be exemplified. Wavelength: 5 to 6 μm, output: about 1 mW can be exemplified. .) Can be used.

また、アンモニア以外のガス成分として、SO2(酸化硫黄)を計測する場合には、量子カスケードレーザ(波長:7.0〜7.5μmを例示することができる。)を用いることができる。さらに、ガス成分として、メタン(CH4)を計測する場合には、半導体レーザ(半導体素子:InGaAsを例示することができる。波長:1.6μm、出力:1mW程度のものを例示することができる。)を用いることができる。 Moreover, as a gas component other than ammonia, when measuring the SO 2 (sulfur dioxide) is a quantum cascade laser: can be used (wavelength 7.0~7.5μm can be exemplified.). Further, when methane (CH 4 ) is measured as a gas component, a semiconductor laser (semiconductor element: InGaAs can be exemplified. Wavelength: 1.6 μm, output: about 1 mW can be exemplified. .) Can be used.

また、赤外分光領域で計測しているが、本発明はこれに限定されず、可視・紫外領域での分光計測にも適用できる。   Further, although the measurement is performed in the infrared spectral region, the present invention is not limited to this, and can be applied to the spectral measurement in the visible / ultraviolet region.

図2は、実施例2に係るレーザ計測装置の概略図である。なお、実施例1のレーザ計測装置の構成と同一部材については、同一符号を付してその説明は省略する。
図2に示すように、本実施例に係るレーザ計測装置10Bは、図1に示す実施例1のレーザ計測装置10Aにおいて、さらにレーザ導入手段14と、レーザ導出手段16とを、各々覆うと共に、一部にフィルタ31を有するカバー32を設置するようにしている。なお、図中、符号33はカバー32を固定する固定ボルトを図示する。
FIG. 2 is a schematic diagram of a laser measurement apparatus according to the second embodiment. The same members as those of the laser measuring apparatus according to the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
As shown in FIG. 2, the laser measurement apparatus 10B according to the present embodiment further covers the laser introduction means 14 and the laser lead-out means 16 in the laser measurement apparatus 10A according to the first embodiment shown in FIG. A cover 32 having a filter 31 is partially installed. In the figure, reference numeral 33 denotes a fixing bolt for fixing the cover 32.

このカバー32を設置し、カバー32の一部に設けたフィルタ31を介して外気26を導入するので、外気26の汚れを除去し、清浄な外気26を煙道13内に導入することができる。   Since the cover 32 is installed and the outside air 26 is introduced through the filter 31 provided in a part of the cover 32, the dirt of the outside air 26 can be removed and the clean outside air 26 can be introduced into the flue 13. .

また、複数のレーザ導入手段14を一つのカバー32で覆うようにしてもよい。   Further, a plurality of laser introducing means 14 may be covered with one cover 32.

10A、10B レーザ計測装置
11 レーザ走光部
12 レーザ光
13 煙道
14 レーザ導入手段
15 レーザ受光部
16 レーザ導出手段
21 石英窓
22 窓枠
23 隙間
24 取付フランジ


DESCRIPTION OF SYMBOLS 10A, 10B Laser measuring device 11 Laser running part 12 Laser light 13 Flue 14 Laser introduction means 15 Laser light receiving part 16 Laser extraction means 21 Quartz window 22 Window frame 23 Gap 24 Mounting flange


Claims (1)

レーザ送光部からのレーザ光を測定場に導入するレーザ導入手段と、
導入された前記レーザ光を前記測定場より、レーザ受光部側へ導出するレーザ導出手段とを具備してなり、
前記測定場内が負圧であると共に、
前記レーザ導入手段及び前記レーザ導出手段が、
前記レーザ光を透過するレーザ光透過窓と、
前記レーザ光透過窓を支持する窓枠と、
前記窓枠を所定間隔の隙間を有して前記測定場の壁面に取付ける取付フランジとを有するレーザ計測装置を用いたレーザ計測方法であって、
前記窓枠に煤塵が堆積した場合に、前記窓枠の前記隙間の間隔を前記所定間隔より大きくして外気の流入量を増大して前記煤塵を除去する工程を含むことを特徴とするレーザ計測方法。
Laser introducing means for introducing laser light from the laser transmitting section into the measurement field;
A laser deriving unit for deriving the introduced laser beam from the measurement field to the laser light receiving unit side;
The inside of the measurement field is negative pressure,
The laser introducing means and the laser derivation means are
A laser light transmission window that transmits the laser light;
A window frame that supports the laser light transmitting window;
A laser measurement method using a laser measurement device having a mounting flange for attaching the window frame to a wall surface of the measurement field with a gap of a predetermined interval,
And a step of removing the dust by increasing the inflow amount of outside air by setting the gap interval of the window frame larger than the predetermined interval when the dust is accumulated on the window frame. Method.
JP2013072709A 2013-03-29 2013-03-29 Laser measurement method Active JP6000180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013072709A JP6000180B2 (en) 2013-03-29 2013-03-29 Laser measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013072709A JP6000180B2 (en) 2013-03-29 2013-03-29 Laser measurement method

Publications (2)

Publication Number Publication Date
JP2014196949A JP2014196949A (en) 2014-10-16
JP6000180B2 true JP6000180B2 (en) 2016-09-28

Family

ID=52357842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013072709A Active JP6000180B2 (en) 2013-03-29 2013-03-29 Laser measurement method

Country Status (1)

Country Link
JP (1) JP6000180B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5314939B2 (en) * 1974-03-18 1978-05-20
JPS57154034A (en) * 1981-03-19 1982-09-22 Tech Res & Dev Inst Of Japan Def Agency Method for measuring electromagnetic wave shielding ability by suspended fine particle
US4443072A (en) * 1982-04-05 1984-04-17 The United States Of America As Represented By The United States Department Of Energy Purged window apparatus utilizing heated purge gas
JP2000111475A (en) * 1998-10-06 2000-04-21 Ishikawajima Harima Heavy Ind Co Ltd Smoke density measuring apparatus
JP2004264146A (en) * 2003-02-28 2004-09-24 Horiba Ltd Optical device and analyzer having simple functions for preventing contamination and for correction
JP2011002232A (en) * 2009-06-16 2011-01-06 Kyoto Electron Mfg Co Ltd Light transmission type analyzer

Also Published As

Publication number Publication date
JP2014196949A (en) 2014-10-16

Similar Documents

Publication Publication Date Title
JP6033999B2 (en) System and apparatus for monitoring and control of selective catalytic reduction process
JP2013101067A (en) Gas concentration measuring apparatus
JP6561587B2 (en) Analytical apparatus and exhaust gas treatment system
JP2009270917A (en) Mounting structure of laser type gas analysis meter
CA2755565C (en) Apparatus for continuous in situ monitoring of elemental mercury vapour, and method of using same
US8895318B2 (en) Ammonia compound concentration measuring device and ammonia compound concentration measuring method
US20090229250A1 (en) Exhaust gas analyzer and exhaust gas analyzing method
JP5752067B2 (en) Exhaust gas sampling device
JP2012137429A (en) Laser measuring device
WO2012115149A1 (en) Signal processing device and laser measurement device
JP5383369B2 (en) Gas analyzer
CN107271365A (en) A kind of device of on-line determination the escaping of ammonia in situ
JP6000180B2 (en) Laser measurement method
JP6076800B2 (en) Laser measuring apparatus and laser measuring method
JP5038923B2 (en) Exhaust gas analyzer
JP5325091B2 (en) Gas component measuring apparatus and gas component analyzing method
Fulk et al. Amine aerosol characterization by phase doppler interferometry
JP2011002232A (en) Light transmission type analyzer
US20220128459A1 (en) Method for measuring the concentration of gaseous species in a biogas
JP5563132B2 (en) Gas analyzer
JP2012173176A (en) Signal processor and laser measurement device
US10156517B2 (en) N2O analysis device and analysis method
Gu et al. Sub-ppm NH3 sensor for control of de-nitrification process using diode laser spectroscopy
WO2023063136A1 (en) Gas analysis device, gas analysis method, and program for gas analysis device
Wiegleb et al. Emission Measurement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141217

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20150206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160603

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160830

R150 Certificate of patent or registration of utility model

Ref document number: 6000180

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350