JP5998948B2 - Compound having bis (trifluoromethylsulfonyl) methyl group, process for producing the same, and use thereof as acid catalyst - Google Patents

Compound having bis (trifluoromethylsulfonyl) methyl group, process for producing the same, and use thereof as acid catalyst Download PDF

Info

Publication number
JP5998948B2
JP5998948B2 JP2013008581A JP2013008581A JP5998948B2 JP 5998948 B2 JP5998948 B2 JP 5998948B2 JP 2013008581 A JP2013008581 A JP 2013008581A JP 2013008581 A JP2013008581 A JP 2013008581A JP 5998948 B2 JP5998948 B2 JP 5998948B2
Authority
JP
Japan
Prior art keywords
group
formula
carbon atoms
reaction
bis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013008581A
Other languages
Japanese (ja)
Other versions
JP2014139148A (en
Inventor
光 矢内
光 矢内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2013008581A priority Critical patent/JP5998948B2/en
Publication of JP2014139148A publication Critical patent/JP2014139148A/en
Application granted granted Critical
Publication of JP5998948B2 publication Critical patent/JP5998948B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Furan Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、ビス(トリフルオロメチルスルホニル)メチル基[−CH(SOCF)基]を有する化合物とその製造方法に関する。さらに本発明は、当該化合物の酸触媒としての使用方法に関する。 The present invention relates to a compound having a bis (trifluoromethylsulfonyl) methyl group [—CH (SO 2 CF 3 ) 2 group] and a method for producing the same. Furthermore, the present invention relates to a method for using the compound as an acid catalyst.

従来の酸触媒、例えば発煙硫酸などのブレンステッド酸、塩化アルミニウムや四塩化チタンなどのルイス酸を使用する反応は、反応に化学量論量の触媒が必要となることがある、多量の廃棄物が生じることがある、反応溶媒が限定されることがあるなどの欠点があった。例えば、発煙硫酸によるベックマン転位反応や、塩化アルミニウムによるフリーデル・クラフツアシル化反応は触媒的には進行せず、生成物と触媒とが安定な付加物を生成するため、反応終了後に酸を中和または付加体を分解して生成物を取り出す必要があり、化学量論量の酸またはそれ以上の量の酸を消費している。   Reactions using conventional acid catalysts, such as Bronsted acids such as fuming sulfuric acid, Lewis acids such as aluminum chloride and titanium tetrachloride, require a stoichiometric amount of catalyst for the reaction. May occur, and the reaction solvent may be limited. For example, the Beckmann rearrangement reaction with fuming sulfuric acid and the Friedel-Crafts acylation reaction with aluminum chloride do not proceed catalytically, and the product and catalyst produce a stable adduct. It is necessary to decompose the sum or adduct to remove the product, which consumes a stoichiometric amount of acid or higher.

そのため、より環境調和性の高い合成プロセスへの変更を目的として、廃棄物の低減や反応効率の改善を目指し、固体酸触媒を用いた連続生産プロセスの構築や有機溶剤に溶けやすい有機金属錯体や有機酸触媒を使用した反応の開発がなされている。   Therefore, with the aim of changing to a more environmentally harmonious synthesis process, aiming to reduce waste and improve reaction efficiency, construction of continuous production processes using solid acid catalysts and organometallic complexes that are easily soluble in organic solvents Reactions using organic acid catalysts have been developed.

その中で、トリフルオロメチルスルホニル基(−SOCF基、略称:トリフリル基)で置換された有機酸は、特異な性質を示す化合物として知られている。トリフルオロメチルスルホニル基は、もっとも強い電子求引性基の一つとして知られており、トリフルオロメチルスルホニル基を2個含むビス(トリフルオロメチルスルホニル)メチル基[−CH(SOCF)基]は、トリフルオロメチルスルホニル部位の強い電子求引性によりHが解離しやすく、高い酸性を示す。例えば、ビス(トリフルオロメチルスルホニル)メタン[CH(SOCF);pKa(H2O)=−1](非特許文献1)およびフェニルビス(トリフルオロメチルスルホニル)メタン[PhCH(SOCF);pKa(MeCN)=7.83](非特許文献2)は酸化力のない強酸として知られている。 Among them, an organic acid substituted with a trifluoromethylsulfonyl group (—SO 2 CF 3 group, abbreviation: trifuryl group) is known as a compound exhibiting unique properties. The trifluoromethylsulfonyl group is known as one of the strongest electron withdrawing groups, and is a bis (trifluoromethylsulfonyl) methyl group [—CH (SO 2 CF 3 ) containing two trifluoromethylsulfonyl groups. [ Group 2 ] is highly acidic due to the strong electron withdrawing property of the trifluoromethylsulfonyl moiety, and exhibits high acidity. For example, bis (trifluoromethylsulfonyl) methane [CH 2 (SO 2 CF 3 ) 2; pK a (H 2 O) = - 1] ( Non-Patent Document 1) and phenyl bis (trifluoromethylsulfonyl) methane [PhCH (SO 2 CF 3) 2; pK a (MeCN) = 7.83] ( non-Patent Document 2) is known as strong acids without oxidizing power.

ビス(トリフルオロメチルスルホニル)基を有する化合物、酸触媒およびそれらの製造法が非特許文献3、非特許文献4、特許文献1、特許文献2に開示されている。   Non-patent document 3, Non-patent document 4, Patent document 1, and Patent document 2 disclose a compound having a bis (trifluoromethylsulfonyl) group, an acid catalyst, and a production method thereof.

非特許文献3には、オクタノール(C17OH)、トリフルオロメタンスルフィニルクロリド(CFSOCl)およびトリフルオロメタンスルホン酸無水物[(CFSO)O]を原料化合物とする、1,1−ビス(トリフルオロメチルスルホニル)オクタンの製造方法が記載されている。しかしながら、反応制御に手間のかかる多段階反応が、一般的でない活性試薬を用いて行われ、1,1−ビス(トリフルオロメチルスルホニル)オクタンが高収率で得られないという問題があった。 Non-Patent Document 3 includes octanol (C 8 H 17 OH), trifluoromethanesulfinyl chloride (CF 3 SOCl) and trifluoromethanesulfonic anhydride [(CF 3 SO 2 ) 2 O] as starting compounds, A process for the preparation of 1-bis (trifluoromethylsulfonyl) octane is described. However, a multi-step reaction that takes time and effort to control the reaction is performed using an uncommon active reagent, and there is a problem that 1,1-bis (trifluoromethylsulfonyl) octane cannot be obtained in a high yield.

また、非特許文献4には、脂肪族エポキシド化合物とビス(トリフルオロメチルスルホニル)メタンを反応させることからなる、脂肪族エポキシド化合物へのビス(トリフルオロメチルスルホニル)メチル基の導入法が記載されている。該脂肪族エポキシド化合物は、メチルマグネシウムクロリドから調製したGrignard試薬をエポキシドと反応させて、アルキル側鎖を延長させることで調製している。しかしながら、この方法は、分解性が高いエポキシドを原料化合物としている、Grignard試薬を用いた際の脱水条件が限定される、などの問題があり、必ずしも実用的であるとは言い難い。   Non-Patent Document 4 describes a method for introducing a bis (trifluoromethylsulfonyl) methyl group into an aliphatic epoxide compound, which comprises reacting an aliphatic epoxide compound with bis (trifluoromethylsulfonyl) methane. ing. The aliphatic epoxide compound is prepared by reacting a Grignard reagent prepared from methylmagnesium chloride with an epoxide to extend the alkyl side chain. However, this method has problems such as the use of epoxides having high degradability as a raw material compound and the dehydration conditions when using the Grignard reagent are limited, and it is not necessarily practical.

特許文献1には、高分子担持型触媒として、一般式[RCH(SO)(SO’)](Rは置換または非置換のアリール基を表し、RおよびR’は互いに独立してパーフルオロアルキル基を表す。)で表される高分子担持型アリールビス(パーフルオロアルキルスルホニル)メタンが開示されている。 In Patent Document 1, as a polymer-supported catalyst, the general formula [RCH (SO 2 R f ) (SO 2 R f ′)] (R represents a substituted or unsubstituted aryl group, and R f and R f ′ Represents a perfluoroalkyl group independently of each other), and polymer-supported arylbis (perfluoroalkylsulfonyl) methane represented by

しかしながら、高分子担持型アリールビス(パーフルオロアルキルスルホニル)メタンを得るには、原料化合物が活性の高いアリールハライドに限られる、トリフルオロメタンスルフィン酸塩、トリフルオロメタンスルホン酸無水物などの活性試薬を過剰に必要とする、低温・強塩基性条件下で多段階で複雑な合成経路を経る、などの問題があった。   However, in order to obtain polymer-supported arylbis (perfluoroalkylsulfonyl) methane, the active compound such as trifluoromethanesulfinate and trifluoromethanesulfonic acid anhydride, in which the raw material compound is limited to the highly active aryl halide, is excessive. There were problems such as requiring a complicated synthesis route in multiple steps under low temperature and strongly basic conditions.

これらのビス(トリフルオロメチルスルホニル)メチル基を有する化合物の製造における煩雑さや基質一般性の低さの改善を目的として、特許文献2には、温和な条件下、簡便に芳香族化合物へビス(トリフルオロメチルスルホニル)メチル基を導入する方法が開示されている。1,1,3,3−テトラキス(トリフルオロメチルスルホニル)プロパン[(CFSO)CHCHCH(SOCF)]を使用し、フェノール誘導体またはアニリン誘導体へ、ビス(トリフルオロメチルスルホニル)メチル基を導入する。本反応は、反応系中で1,1,3,3−テトラキス(トリフルオロメチルスルホニル)プロパンから発生する高活性なビス(トリフルオロメチルスルホニル)エチレン[(CFSO)C=CH]を利用することで、温和な条件下、収率よく、幅広い基質においてビス(トリフルオロメチルスルホニル)メチル基を有する化合物の製造が可能である。また、本製造法により得られたビス(トリフルオロメチルスルホニル)メチル基を有するフェノール誘導体は向山アルドール反応、エステル化反応において高い触媒活性を発現している。 For the purpose of improving the complexity of the production of compounds having these bis (trifluoromethylsulfonyl) methyl groups and the low generality of the substrate, Patent Document 2 describes that bis (( A method for introducing a trifluoromethylsulfonyl) methyl group is disclosed. 1,1,3,3-tetrakis (trifluoromethylsulfonyl) propane [(CF 3 SO 2 ) 2 CHCH 2 CH (SO 2 CF 3 ) 2 ] is used to convert the phenol derivative or aniline derivative to bis (trifluoro Methylsulfonyl) methyl group is introduced. In this reaction, highly active bis (trifluoromethylsulfonyl) ethylene [(CF 3 SO 2 ) 2 C═CH 2 generated from 1,1,3,3-tetrakis (trifluoromethylsulfonyl) propane in the reaction system. ], It is possible to produce a compound having a bis (trifluoromethylsulfonyl) methyl group in a wide range of substrates with a good yield under mild conditions. In addition, the phenol derivative having a bis (trifluoromethylsulfonyl) methyl group obtained by this production method expresses high catalytic activity in the Mukaiyama aldol reaction and esterification reaction.

しかしながら、1,1,3,3−テトラキス(トリフルオロメチルスルホニル)プロパンの製造には、ビス(トリフルオロメチルスルホニル)メタンを2モル当量使用し、また当該化合物を別途合成する必要がある。さらに、ビス(トリフルオロメチルスルホニル)エチレンが発生する際に、1モル当量のビス(トリフルオロメチルスルホニル)メタンが副生し、効率的でないという問題があった。   However, in the production of 1,1,3,3-tetrakis (trifluoromethylsulfonyl) propane, it is necessary to use 2 molar equivalents of bis (trifluoromethylsulfonyl) methane and to synthesize the compound separately. Further, when bis (trifluoromethylsulfonyl) ethylene is generated, there is a problem that 1 molar equivalent of bis (trifluoromethylsulfonyl) methane is by-produced and is not efficient.

このように、ビス(トリフルオロメチルスルホニル)メチル基を有する化合物は、高い酸性度を有し、酸触媒などに有用であるが、ビス(トリフルオロメチルスルホニル)メチル基を有する化合物の製造は、原料化合物の合成が容易でない、また多段階反応を必要とし、原料化合物と反応させる反応試薬が不安定であり過剰に用いなければならないなどの問題があった。   As described above, a compound having a bis (trifluoromethylsulfonyl) methyl group has high acidity and is useful for an acid catalyst or the like, but the production of a compound having a bis (trifluoromethylsulfonyl) methyl group is There was a problem that the synthesis of the raw material compound was not easy, a multi-step reaction was required, and the reaction reagent to be reacted with the raw material compound was unstable and had to be used excessively.

一方で、ビス(トリフルオロメチルスルホニル)メチル基に類似の構造を持った化合物の簡便な製造方法として、特許文献3〜5には、ビス(トリフルオロメチルスルホニル)エチレン化合物の製造方法が開示されている。その製造方法は、ビス(トリフルオロメチルスルホニル)メタンに対し、入手容易なアルデヒド化合物を縮合反応させることで、温和な条件下で収率よくビス(トリフルオロメチルスルホニル)エチレン化合物が得られる。この製造方法における、原料化合物は、芳香族アルデヒド、共役アルデヒド、アセトアルデヒドまたはパラホルムアルデヒドであり、以下のビス(パーフルオロアルキルスルホニル)エチレン化合物が合成されている。

Figure 0005998948
On the other hand, Patent Documents 3 to 5 disclose a method for producing a bis (trifluoromethylsulfonyl) ethylene compound as a simple method for producing a compound having a structure similar to a bis (trifluoromethylsulfonyl) methyl group. ing. In the production method, a bis (trifluoromethylsulfonyl) ethylene compound can be obtained in good yield under mild conditions by subjecting bis (trifluoromethylsulfonyl) methane to a condensation reaction with an easily available aldehyde compound. The raw material compound in this production method is an aromatic aldehyde, conjugated aldehyde, acetaldehyde or paraformaldehyde, and the following bis (perfluoroalkylsulfonyl) ethylene compound is synthesized.
Figure 0005998948

(上記化合物中、波線はE型またはZ型の結合を表し、Etはエチル基を表す。) (In the above compounds, the wavy line represents an E-type or Z-type bond, and Et represents an ethyl group.)

この製造方法は温和な条件下、入手が容易なアルデヒド化合物を、1〜2モル当量用いることでビス(トリフルオロメチルスルホニル)エチレン化合物を収率よく得ることができる。しかし、得られるビス(トリフルオロメチルスルホニル)エチレン化合物は酸性プロトンを有しておらず、酸触媒としての利用は難しい。   In this production method, a bis (trifluoromethylsulfonyl) ethylene compound can be obtained in good yield by using 1 to 2 molar equivalents of an easily available aldehyde compound under mild conditions. However, the resulting bis (trifluoromethylsulfonyl) ethylene compound does not have an acidic proton and is difficult to use as an acid catalyst.

A. R. Siedle et al., J. Am. Chem. Soc., 106, 1510-1511 (1984)A. R. Siedle et al., J. Am. Chem. Soc., 106, 1510-1511 (1984) I. Leito et al., J. Org. Chem., 63, 7868-7874 (1998)I. Leito et al., J. Org. Chem., 63, 7868-7874 (1998) H. Yamamoto and K. Ishihara et al., Bull. Chem. Soc. Jpn., 78, 1401-1410 (2005)H. Yamamoto and K. Ishihara et al., Bull. Chem. Soc. Jpn., 78, 1401-1410 (2005) R. J. Koshar and R. A. Mitsch, J. Org. Chem., 38, 3358-3363 (1973)R. J. Koshar and R. A. Mitsch, J. Org. Chem., 38, 3358-3363 (1973)

特開2002−338539号公報JP 2002-338539 A 特開2012−126688号公報JP 2012-126688 A 米国特許第3932526号U.S. Pat. No. 3,932,526 米国特許第3962346号U.S. Pat. No. 3,962,346 米国特許第4053519号US Pat. No. 4,053,519

高い酸触媒活性を有するビス(トリフルオロメチルスルホニル)メチル基を有する化合物およびその簡便な製造方法を提供する。   Provided are a compound having a bis (trifluoromethylsulfonyl) methyl group having high acid catalyst activity and a simple production method thereof.

本発明者らは上記課題を解決すべく鋭意検討を重ねた。その結果、ビス(トリフルオロメチルスルホニル)エチレン化合物を、ヒドリド還元剤を用いて還元することで、ビス(トリフルオロメチルスルホニル)メチル基を有する化合物を収率よく得られることを見出した。   The present inventors have intensively studied to solve the above problems. As a result, it was found that a compound having a bis (trifluoromethylsulfonyl) methyl group can be obtained in high yield by reducing the bis (trifluoromethylsulfonyl) ethylene compound using a hydride reducing agent.

さらに、当該ビス(トリフルオロメチルスルホニル)メチル基を有する化合物は、高い活性を有する酸触媒としての利用が可能であることを見出し、本発明を完成させた。   Furthermore, the present inventors have found that the compound having a bis (trifluoromethylsulfonyl) methyl group can be used as an acid catalyst having high activity, and completed the present invention.

すなわち、本発明は以下の通りである。   That is, the present invention is as follows.

[発明1]
式(1)

Figure 0005998948
[Invention 1]
Formula (1)
Figure 0005998948

[式(1)中、Aは1価の有機基を表す。]
で表される化合物をヒドリド還元剤と接触させて、式(2)

Figure 0005998948
[In Formula (1), A represents a monovalent organic group. ]
The compound represented by formula (2) is contacted with a hydride reducing agent.
Figure 0005998948

[式(2)中、Aは1価の有機基を表す。]
で表される化合物を得ることを特徴とする、式(2)で表される化合物の製造方法。
[In Formula (2), A represents a monovalent organic group. ]
A method for producing a compound represented by the formula (2), wherein the compound represented by the formula (2) is obtained.

[発明2]
Aが、式(3)

Figure 0005998948
[Invention 2]
A is the formula (3)
Figure 0005998948

[式(3)中、Arはアリール基、ヘテロアリール基、置換基を有するアリール基または置換基を有するヘテロアリール基を表す。nは0〜5の任意の整数を表す。]
で表される1価の有機基である、発明1の製造方法。
[In Formula (3), Ar represents an aryl group, a heteroaryl group, an aryl group having a substituent, or a heteroaryl group having a substituent. n represents an arbitrary integer of 0 to 5. ]
The manufacturing method of the invention 1 which is the monovalent organic group represented by these.

[発明3]
Aが、式(4)

Figure 0005998948
[Invention 3]
A is the formula (4)
Figure 0005998948

[式(4)中、Arは、アリール基、ヘテロアリール基、置換基を有するアリール基または置換基を有するヘテロアリール基を表す。]
で表される1価の有機基である、発明1または発明2の製造方法。
[In Formula (4), Ar represents an aryl group, a heteroaryl group, an aryl group having a substituent, or a heteroaryl group having a substituent. ]
The manufacturing method of the invention 1 or the invention 2 which is the monovalent organic group represented by these.

[発明4]
Aが、式(5)または(6)

Figure 0005998948
[Invention 4]
A is the formula (5) or (6)
Figure 0005998948

[式(5)または式(6)中、各R、各Rは、それぞれ独立に、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ニトロ基、スルホ基、シアノ基、炭素数1〜20の脂肪族炭化水素基または炭素数6〜20の芳香族炭化水素基を表す。
炭素数1〜20の脂肪族炭化水素基は、不飽和結合を含んでいてもよく、基中の任意の数の水素原子がフッ素原子、塩素原子、臭素原子、ヨウ素原子、ニトロ基、スルホ基、シアノ基に置換されていてもよい。
炭素数1〜20の脂肪族炭化水素基中の炭素原子の一部または炭素数6〜20の芳香族炭化水素基中の炭素原子の一部が、酸素原子または硫黄原子に置換されていてもよい。
炭素数1〜20の脂肪族炭化水素基または炭素数6〜20の芳香族炭化水素基は、基中に、カルボニル基またはスルホニル基を含んでいてもよい。
pは0〜5の任意の整数を表す。
qは0〜3の任意の整数を表す。]
で表される1価の有機基である、発明1〜発明3のいずれかの製造方法。
[In Formula (5) or Formula (6), each R 1 and each R 2 are each independently a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a nitro group, a sulfo group, a cyano group, 20 aliphatic hydrocarbon groups or C6-C20 aromatic hydrocarbon groups are represented.
The aliphatic hydrocarbon group having 1 to 20 carbon atoms may contain an unsaturated bond, and any number of hydrogen atoms in the group is a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a nitro group, or a sulfo group. The cyano group may be substituted.
Even if a part of carbon atoms in an aliphatic hydrocarbon group having 1 to 20 carbon atoms or a part of carbon atoms in an aromatic hydrocarbon group having 6 to 20 carbon atoms is substituted with an oxygen atom or a sulfur atom Good.
The aliphatic hydrocarbon group having 1 to 20 carbon atoms or the aromatic hydrocarbon group having 6 to 20 carbon atoms may include a carbonyl group or a sulfonyl group in the group.
p represents an arbitrary integer of 0 to 5.
q represents an arbitrary integer of 0 to 3. ]
The manufacturing method in any one of the invention 1 which is a monovalent organic group represented by these.

[発明5]
ヒドリド還元剤が、水素化ホウ素還元剤または水素化アルミニウム還元剤である、発明1〜4のいずれかの製造方法。
[Invention 5]
The manufacturing method in any one of invention 1-4 whose hydride reducing agent is a borohydride reducing agent or an aluminum hydride reducing agent.

[発明6]
水素化ホウ素還元剤が、ボラン錯体または水素化ホウ素金属である、発明5の製造方法。
[Invention 6]
The manufacturing method of the invention 5 whose borohydride reducing agent is a borane complex or a borohydride metal.

[発明7]
水素化ホウ素金属が、水素化ホウ素リチウム、水素化ホウ素ナトリウムまたは水素化ホウ素カリウムである、発明6の製造方法。
[Invention 7]
The production method of Invention 6, wherein the metal borohydride is lithium borohydride, sodium borohydride or potassium borohydride.

[発明8]
式(2)

Figure 0005998948
[Invention 8]
Formula (2)
Figure 0005998948

[式(2)中、Aは、式(5)または式(6)

Figure 0005998948
[In Formula (2), A represents Formula (5) or Formula (6)
Figure 0005998948

(式(5)または式(6)中、各R、各Rは、それぞれ独立に、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ニトロ基、スルホ基、シアノ基、炭素数1〜20の脂肪族炭化水素基または炭素数6〜20の芳香族炭化水素基を表す。
炭素数1〜20の脂肪族炭化水素基は、不飽和結合を含んでいてもよく、基中の任意の数の水素原子がフッ素原子、塩素原子、臭素原子、ヨウ素原子、ニトロ基、スルホ基、シアノ基に置換されていてもよい。
炭素数1〜20の脂肪族炭化水素基中の炭素原子の一部または炭素数6〜20の芳香族炭化水素基中の炭素原子の一部が、酸素原子または硫黄原子に置換されていてもよい。
炭素数1〜20の脂肪族炭化水素基または炭素数6〜20の芳香族炭化水素基は、基中に、カルボニル基またはスルホニル基を含んでいてもよい。
pは0〜5の任意の整数を表す。
qは0〜3の任意の整数を表す。)
で表される1価の有機基である。]
で表される化合物。
(In Formula (5) or Formula (6), each R 1 and each R 2 are each independently a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a nitro group, a sulfo group, a cyano group, or a C 1 -C 1 group. 20 aliphatic hydrocarbon groups or C6-C20 aromatic hydrocarbon groups are represented.
The aliphatic hydrocarbon group having 1 to 20 carbon atoms may contain an unsaturated bond, and any number of hydrogen atoms in the group is a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a nitro group, or a sulfo group. The cyano group may be substituted.
Even if a part of carbon atoms in an aliphatic hydrocarbon group having 1 to 20 carbon atoms or a part of carbon atoms in an aromatic hydrocarbon group having 6 to 20 carbon atoms is substituted with an oxygen atom or a sulfur atom Good.
The aliphatic hydrocarbon group having 1 to 20 carbon atoms or the aromatic hydrocarbon group having 6 to 20 carbon atoms may include a carbonyl group or a sulfonyl group in the group.
p represents an arbitrary integer of 0 to 5.
q represents an arbitrary integer of 0 to 3. )
The monovalent organic group represented by these. ]
A compound represented by

[発明9]
発明8の式(2)で表される化合物の、酸触媒としての使用方法。
[Invention 9]
The use method of the compound represented by Formula (2) of the invention 8 as an acid catalyst.

本発明の製造方法において、簡便な合成反応により、ビス(トリフルオロメチルスルホニル)メチル基を有する化合物が収率よく得られる。   In the production method of the present invention, a compound having a bis (trifluoromethylsulfonyl) methyl group can be obtained in a high yield by a simple synthesis reaction.

また、本製造法により得られるビス(トリフルオロメチルスルホニル)メチル基を有する化合物は、各種の反応において高い酸触媒活性を示す。
Moreover, the compound which has a bis (trifluoromethylsulfonyl) methyl group obtained by this manufacturing method shows high acid catalyst activity in various reaction.

以下の実施形態における各構成およびそれらの組み合わせなどは一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換およびその他の変更が可能である。また、本発明は実施形態によって限定されることはなく、特許請求の範囲によってのみ限定される。   Configurations and combinations thereof in the following embodiments are examples, and additions, omissions, substitutions, and other modifications of the configurations can be made without departing from the spirit of the present invention. Further, the present invention is not limited by the embodiments, and is limited only by the scope of the claims.


1.ビス(トリフルオロメチルスルホニル)メチル基を有する化合物

[ビス(トリフルオロメチルスルホニル)メチル基を有する化合物(2)]
本発明に係るビス(トリフルオロメチルスルホニル)メチル基を有する化合物は、式(2)

Figure 0005998948

1. Compound having bis (trifluoromethylsulfonyl) methyl group

[Compound (2) having bis (trifluoromethylsulfonyl) methyl group]
The compound having a bis (trifluoromethylsulfonyl) methyl group according to the present invention has the formula (2)
Figure 0005998948

[式(2)中、Aは1価の有機基である。]

で表される。
[In Formula (2), A is a monovalent organic group. ]

It is represented by

当該化合物は、式(1)

Figure 0005998948
The compound has the formula (1)
Figure 0005998948

[式(1)中、Aは1価の有機基である。]

で表されるビス(トリフルオロメチルスルホニル)エチレン化合物を、ヒドリド還元剤を用いて還元することで得られる。
[In Formula (1), A is a monovalent organic group. ]

It can be obtained by reducing a bis (trifluoromethylsulfonyl) ethylene compound represented by the formula below using a hydride reducing agent.

化合物(2)は、化合物の安定性、原料化合物の入手容易性の点から、化合物(2)中のAが、式(3)

Figure 0005998948
In the compound (2), A in the compound (2) is represented by the formula (3) from the viewpoint of the stability of the compound and the availability of the raw material compound.
Figure 0005998948

[式(3)中、Arは、アリール基、ヘテロアリール基、置換基を有するアリール基または置換基を有するヘテロアリール基を表す。nは0〜5の任意の整数を表す。]

で表される1価の有機基である化合物(7)

Figure 0005998948
[In Formula (3), Ar represents an aryl group, a heteroaryl group, an aryl group having a substituent, or a heteroaryl group having a substituent. n represents an arbitrary integer of 0 to 5. ]

(7) which is a monovalent organic group represented by
Figure 0005998948

[式(7)中、Ar、nは、それぞれ式(3)におけるAr、nと同義である。]

が好ましい。
[In Formula (7), Ar and n are synonymous with Ar and n in Formula (3), respectively. ]

Is preferred.

式(3)または式(7)において、「アリール基」とは、炭素数6〜60の芳香族炭化水素基を意味する。該芳香族炭化水素基は、単環であっても縮合環であってもよい。   In Formula (3) or Formula (7), the “aryl group” means an aromatic hydrocarbon group having 6 to 60 carbon atoms. The aromatic hydrocarbon group may be a single ring or a condensed ring.

「ヘテロアリール基」とは、酸素原子または硫黄原子から選択されるヘテロ原子を単数または複数含む、炭素数3〜60の5〜10員環系ヘテロ芳香環基を意味する。該ヘテロ芳香環基は、単環であっても縮合環であってもよい。   The “heteroaryl group” means a 5- to 10-membered heteroaromatic ring group having 3 to 60 carbon atoms and containing one or more heteroatoms selected from an oxygen atom or a sulfur atom. The heteroaromatic ring group may be a single ring or a condensed ring.

「置換基を有するアリール基」または「置換基を有するヘテロアリール基」の「置換基」とは、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ニトロ基、スルホ基、シアノ基、炭素数1〜20の脂肪族炭化水素基または炭素数6〜20の芳香族炭化水素基を意味する。   “Substituent” of “aryl group having substituent” or “heteroaryl group having substituent” is a fluorine atom, chlorine atom, bromine atom, iodine atom, nitro group, sulfo group, cyano group, carbon number 1 Means an aliphatic hydrocarbon group having -20 carbon atoms or an aromatic hydrocarbon group having 6-20 carbon atoms.

前記「置換基」は、単数でも複数でもよく、複数の場合には、それぞれ異なる置換基を有していてもよい。   The “substituent” may be singular or plural, and in the case of plural, each may have a different substituent.

前記炭素数1〜20の脂肪族炭化水素基は、不飽和結合を含んでいてもよく、基中の任意の数の水素原子がフッ素原子、塩素原子、臭素原子、ヨウ素原子、ニトロ基、スルホ基、シアノ基に置換されていてもよい。   The aliphatic hydrocarbon group having 1 to 20 carbon atoms may contain an unsaturated bond, and any number of hydrogen atoms in the group is a fluorine atom, chlorine atom, bromine atom, iodine atom, nitro group, sulfo group. Group and a cyano group may be substituted.

前記炭素数1〜20の脂肪族炭化水素基中の炭素原子の一部または前記炭素数6〜20の芳香族炭化水素基中の炭素原子の一部が、酸素原子または硫黄原子に置換されていてもよい。   A part of carbon atoms in the aliphatic hydrocarbon group having 1 to 20 carbon atoms or a part of carbon atoms in the aromatic hydrocarbon group having 6 to 20 carbon atoms is substituted with an oxygen atom or a sulfur atom. May be.

前記炭素数1〜20の脂肪族炭化水素基または前記炭素数6〜20の芳香族炭化水素基は、基中に、カルボニル基またはスルホニル基を含んでいてもよい。   The C1-C20 aliphatic hydrocarbon group or the C6-C20 aromatic hydrocarbon group may contain a carbonyl group or a sulfonyl group in the group.

「アリール基」または「ヘテロアリール基」を例示すると、フェニル基、ナフチル基、アントラセニル基、テトラセニル基、フェナントレニル基、ペリレニル基、フルオレニル基、インデニル基、フリル基、チエニル基、ベンゾフリル基、ベンゾチエニル基などが挙げられる。   Examples of "aryl group" or "heteroaryl group" include phenyl group, naphthyl group, anthracenyl group, tetracenyl group, phenanthrenyl group, perylenyl group, fluorenyl group, indenyl group, furyl group, thienyl group, benzofuryl group, benzothienyl group Etc.

炭素数1〜20の脂肪族炭化水素基または炭素数6〜20の芳香族炭化水素基を例示すると、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、へプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、イソプロピル基、イソブチル基、sec−ブチル基、tert−ブチル基、イソペンチル基、tert−ペンチル基、ネオペンチル基、2−ペンチル基、3−ペンチル基、2−ヘキシル基、tert−オクチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、1−アダマンチル基、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、ノニルオキシ基、デシルオキシ基、ウンデシルオキシ基、イソプロピルオキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基、シクロプロピルオキシ基、シクロブトキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロヘプチルオキシ基、2−シクロヘキシルエトキシ基、1−アダマンチルオキシ基、2−アダマンチルオキシ基、1−アダマンチルメチルオキシ基、2−(1−アダマンチル)エチルオキシ基、トリフルオロメトキシ基、アリルオキシ基、ベンジルオキシ基、フェノキシ基、1−ナフチルオキシ基、2−ナフチルオキシ基、メチルチオ基、エチルチオ基、プロピルチオ基、イソプロピルチオ基、ブチルチオ基、イソブチルチオ基、sec−ブチルチオ基、tert−ブチルチオ基、シクロプロピルチオ基、シクロブチルチオ基、シクロペンチルチオ基、シクロブチルチオ基、メチルスルホニル基、エチルスルホニル基、プロピルスルホニル基、ブチルスルホニル基、ペンチルスルホニル基、ヘキシルスルホニル基、ヘプチルスルホニル基、オクチルスルホニル基、ノニルスルホニル基、デシルスルホニル基、ウンデシルスルホニル基、ドデシルスルホニル基、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ピバロイル基、ヘキサノイル基、アクリロイル基、メタクリロイル基、クロトノイル基、イソクロトノイル基、ベンゾイル基、ナフトイル基、ホルミルオキシ基、アセチルオキシ基、プロピオニルオキシ基、ブチリルオキシ基、イソブチリルオキシ基、バレリルオキシ基、イソバレリルオキシ基、ピバロイルオキシ基、ヘキサノイルオキシ基、アクリロイルオキシ基、メタクリロイルオキシ基、クロトノイルオキシ基、イソクロトノイルオキシ基、ベンゾイルオキシ基、ナフトイルオキシ基、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル基、ブトキシカルボニル基、イソブトキシカルボニル基、sec−ブトキシカルボニル基、tert−ブトキシカルボニル基、アリルオキシカルボニル基、ベンジルオキシカルボニル基、フェノキシカルボニル基、1−ナフチルオキシカルボニル基、2−ナフチルオキシカルボニル基、フェニル基、インデニル基、ナフチル基、フルオレニル基、1−フェニルビニル基、2−フェニルビニル基、ビフェニル基、o−ターフェニル基、m−ターフェニル基、p−ターフェニル基、−CH=C(H)COCH基、−CH=C(H)CO基、−CH=C(H)CO基、−CH=C(H)COCH(CH)基、−CH=C(H)COC(CH)基などが挙げられる。 Examples of an aliphatic hydrocarbon group having 1 to 20 carbon atoms or an aromatic hydrocarbon group having 6 to 20 carbon atoms include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group Group, nonyl group, decyl group, undecyl group, dodecyl group, isopropyl group, isobutyl group, sec-butyl group, tert-butyl group, isopentyl group, tert-pentyl group, neopentyl group, 2-pentyl group, 3-pentyl group 2-hexyl group, tert-octyl group, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, 1-adamantyl group, methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, heptyl Oxy group, octyloxy group, nonyloxy group, decyloxy group, undecyl Xyl group, isopropyloxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, cyclopropyloxy group, cyclobutoxy group, cyclopentyloxy group, cyclohexyloxy group, cycloheptyloxy group, 2-cyclohexylethoxy group, 1- Adamantyloxy group, 2-adamantyloxy group, 1-adamantylmethyloxy group, 2- (1-adamantyl) ethyloxy group, trifluoromethoxy group, allyloxy group, benzyloxy group, phenoxy group, 1-naphthyloxy group, 2- Naphthyloxy, methylthio, ethylthio, propylthio, isopropylthio, butylthio, isobutylthio, sec-butylthio, tert-butylthio, cyclopropylthio, cyclobutylthio, cyclope Tylthio group, cyclobutylthio group, methylsulfonyl group, ethylsulfonyl group, propylsulfonyl group, butylsulfonyl group, pentylsulfonyl group, hexylsulfonyl group, heptylsulfonyl group, octylsulfonyl group, nonylsulfonyl group, decylsulfonyl group, undecyl Sulfonyl group, dodecylsulfonyl group, formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, pivaloyl group, hexanoyl group, acryloyl group, methacryloyl group, crotonoyl group, isocrotonoyl group, benzoyl group, naphthoyl group Group, formyloxy group, acetyloxy group, propionyloxy group, butyryloxy group, isobutyryloxy group, valeryloxy group, isovaleryloxy group, pivaloyloxy Group, hexanoyloxy group, acryloyloxy group, methacryloyloxy group, crotonoyloxy group, isocrotonoyloxy group, benzoyloxy group, naphthoyloxy group, methoxycarbonyl group, ethoxycarbonyl group, propoxycarbonyl group, isopropoxycarbonyl group Group, butoxycarbonyl group, isobutoxycarbonyl group, sec-butoxycarbonyl group, tert-butoxycarbonyl group, allyloxycarbonyl group, benzyloxycarbonyl group, phenoxycarbonyl group, 1-naphthyloxycarbonyl group, 2-naphthyloxycarbonyl group Phenyl group, indenyl group, naphthyl group, fluorenyl group, 1-phenylvinyl group, 2-phenylvinyl group, biphenyl group, o-terphenyl group, m-terphenyl group, p-ta Phenyl, -CH = C (H) CO 2 CH 3 group, -CH = C (H) CO 2 C 2 H 5 group, -CH = C (H) CO 2 C 3 H 7 group, -CH = C (H) CO 2 CH (CH 3) 2 group, -CH = C (H) CO 2 C (CH 3) such as 3 group can be mentioned.

化合物(7)は、対応する生成物の安定性の点から、化合物(1)中のAが、式(8)または式(9)

Figure 0005998948
In the compound (7), A in the compound (1) is represented by the formula (8) or the formula (9) from the viewpoint of the stability of the corresponding product.
Figure 0005998948

[式(8)または式(9)中、各R、各Rは、それぞれ独立に、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ニトロ基、スルホ基、シアノ基、炭素数1〜20の脂肪族炭化水素基または炭素数6〜20の芳香族炭化水素基を表す。
炭素数1〜20の脂肪族炭化水素基は、不飽和結合を含んでいてもよく、基中の任意の数の水素原子がフッ素原子、塩素原子、臭素原子、ヨウ素原子、ニトロ基、スルホ基、シアノ基に置換されていてもよい。
炭素数1〜20の脂肪族炭化水素基中の炭素原子の一部または炭素数6〜20の芳香族炭化水素基中の炭素原子の一部が、酸素原子または硫黄原子に置換されていてもよい。
炭素数1〜20の脂肪族炭化水素基または炭素数6〜20の芳香族炭化水素基は、基中に、カルボニル基またはスルホニル基を含んでいてもよい。
pは0〜5の任意の整数を表す。
qは0〜3の任意の整数を表す。
rは0〜5の任意の整数を表す。
sは0〜5の任意の整数を表す。]

で表される化合物が特に好ましい。
[In formula (8) or formula (9), each R 1 and each R 2 are each independently a fluorine atom, chlorine atom, bromine atom, iodine atom, nitro group, sulfo group, cyano group, 20 aliphatic hydrocarbon groups or C6-C20 aromatic hydrocarbon groups are represented.
The aliphatic hydrocarbon group having 1 to 20 carbon atoms may contain an unsaturated bond, and any number of hydrogen atoms in the group is a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a nitro group, or a sulfo group. The cyano group may be substituted.
Even if a part of carbon atoms in an aliphatic hydrocarbon group having 1 to 20 carbon atoms or a part of carbon atoms in an aromatic hydrocarbon group having 6 to 20 carbon atoms is substituted with an oxygen atom or a sulfur atom Good.
The aliphatic hydrocarbon group having 1 to 20 carbon atoms or the aromatic hydrocarbon group having 6 to 20 carbon atoms may include a carbonyl group or a sulfonyl group in the group.
p represents an arbitrary integer of 0 to 5.
q represents an arbitrary integer of 0 to 3.
r represents an arbitrary integer of 0 to 5.
s represents an arbitrary integer of 0 to 5. ]

Is particularly preferred.

具体的には、下記化合物が例示できる。

Figure 0005998948
Figure 0005998948
Specifically, the following compounds can be exemplified.
Figure 0005998948
Figure 0005998948

(上記化合物中、Etはエチル基を表し、t−Buはtert−ブチル基を表し、Phはフェニル基を表す。)

2.ビス(トリフルオロメチルスルホニル)エチレン化合物(1)

[ビス(トリフルオロメチルスルホニル)エチレン化合物(1)]
化合物(1)は、対応する生成物の安定性、原料化合物の入手容易性の点から、化合物(1)中のAが、式(3)

Figure 0005998948
(In the above compounds, Et represents an ethyl group, t-Bu represents a tert-butyl group, and Ph represents a phenyl group.)

2. Bis (trifluoromethylsulfonyl) ethylene compound (1)

[Bis (trifluoromethylsulfonyl) ethylene compound (1)]
In the compound (1), A in the compound (1) is represented by the formula (3) from the viewpoint of the stability of the corresponding product and the availability of the raw material compound.
Figure 0005998948

[式(3)中、Arは、アリール基、ヘテロアリール基、置換基を有するアリール基または置換基を有するヘテロアリール基を表す。nは0〜5の任意の整数を表す。]

で表される1価の有機基である化合物(10)

Figure 0005998948
[In Formula (3), Ar represents an aryl group, a heteroaryl group, an aryl group having a substituent, or a heteroaryl group having a substituent. n represents an arbitrary integer of 0 to 5. ]

(10) which is a monovalent organic group represented by
Figure 0005998948

[式(10)中、Ar、nは、それぞれ式(3)におけるAr、nと同義である。]

が好ましい。中でも、化合物の安定性の点から、化合物(1)中のAが式(11)または式(12)

Figure 0005998948
[In Formula (10), Ar and n are synonymous with Ar and n in Formula (3), respectively. ]

Is preferred. Among these, from the viewpoint of the stability of the compound, A in the compound (1) is represented by the formula (11) or the formula (12).
Figure 0005998948

[式(11)または式(12)中、各R、各Rは、それぞれ独立に、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ニトロ基、スルホ基、シアノ基、炭素数1〜20の脂肪族炭化水素基または炭素数6〜20の芳香族炭化水素基を表す。
炭素数1〜20の脂肪族炭化水素基は、不飽和結合を含んでいてもよく、基中の任意の数の水素原子がフッ素原子、塩素原子、臭素原子、ヨウ素原子、ニトロ基、スルホ基、シアノ基に置換されていてもよい。
炭素数1〜20の脂肪族炭化水素基中の炭素原子の一部または炭素数6〜20の芳香族炭化水素基中の炭素原子の一部が、酸素原子または硫黄原子に置換されていてもよい。
炭素数1〜20の脂肪族炭化水素基または炭素数6〜20の芳香族炭化水素基は、基中に、カルボニル基またはスルホニル基を含んでいてもよい。
pは0〜5の任意の整数を表す。
qは0〜3の任意の整数を表す。
rは0〜5の任意の整数を表す。
sは0〜5の任意の整数を表す。]

で表される化合物が特に好ましい。
[In formula (11) or formula (12), each R 1 and each R 2 are each independently a fluorine atom, chlorine atom, bromine atom, iodine atom, nitro group, sulfo group, cyano group, 20 aliphatic hydrocarbon groups or C6-C20 aromatic hydrocarbon groups are represented.
The aliphatic hydrocarbon group having 1 to 20 carbon atoms may contain an unsaturated bond, and any number of hydrogen atoms in the group is a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a nitro group, or a sulfo group. The cyano group may be substituted.
Even if a part of carbon atoms in an aliphatic hydrocarbon group having 1 to 20 carbon atoms or a part of carbon atoms in an aromatic hydrocarbon group having 6 to 20 carbon atoms is substituted with an oxygen atom or a sulfur atom Good.
The aliphatic hydrocarbon group having 1 to 20 carbon atoms or the aromatic hydrocarbon group having 6 to 20 carbon atoms may include a carbonyl group or a sulfonyl group in the group.
p represents an arbitrary integer of 0 to 5.
q represents an arbitrary integer of 0 to 3.
r represents an arbitrary integer of 0 to 5.
s represents an arbitrary integer of 0 to 5. ]

Is particularly preferred.

具体的には、下記化合物が例示できる。

Figure 0005998948
Figure 0005998948
Specifically, the following compounds can be exemplified.
Figure 0005998948
Figure 0005998948

(上記化合物中、Etはエチル基を表し、t−Buはtert−ブチル基を表し、Phはフェニル基を表す。)

[ビス(トリフルオロメチルスルホニル)エチレン化合物(1)の製造方法]
ビス(トリフルオロメチルスルホニル)エチレン化合物(1)は、公知の方法またはそれに準じた方法により得ることができる。例えば、式(13)で表されるアルデヒド化合物と式(14)で表されるビス(トリフルオロメチルスルホニル)メタンの縮合反応を行うことで得られる(特許文献3〜5参照)。

Figure 0005998948
(In the above compounds, Et represents an ethyl group, t-Bu represents a tert-butyl group, and Ph represents a phenyl group.)

[Method for Producing Bis (trifluoromethylsulfonyl) ethylene Compound (1)]
The bis (trifluoromethylsulfonyl) ethylene compound (1) can be obtained by a known method or a method analogous thereto. For example, it can be obtained by performing a condensation reaction of an aldehyde compound represented by formula (13) and bis (trifluoromethylsulfonyl) methane represented by formula (14) (see Patent Documents 3 to 5).
Figure 0005998948

[式(13)中、Aは、式(1)におけるAと同義である。]

化合物(13)は、例えば、以下の化合物を例示することができる。

Figure 0005998948
[In Formula (13), A is synonymous with A in Formula (1). ]

Examples of compound (13) include the following compounds.
Figure 0005998948

(上記化合物中、Etはエチル基を表し、t−Buはtert−ブチル基を表す。)

ビス(トリフルオロメチルスルホニル)エチレン化合物(1)の製造方法について簡単に説明する。まず、所定の反応容器内で、式(13)で表されるアルデヒド化合物と式(14)で表されるビス(トリフルオロメチルスルホニル)メタンを接触させて、所定時間、所定温度で反応させる。その後、所定の後処理を行うことで、ビス(トリフルオロメチルスルホニル)エチレン化合物(1)を得ることができる。
(In the above compounds, Et represents an ethyl group, and t-Bu represents a tert-butyl group.)

A method for producing the bis (trifluoromethylsulfonyl) ethylene compound (1) will be briefly described. First, an aldehyde compound represented by the formula (13) and bis (trifluoromethylsulfonyl) methane represented by the formula (14) are brought into contact with each other in a predetermined reaction vessel and reacted at a predetermined temperature for a predetermined time. Thereafter, the bis (trifluoromethylsulfonyl) ethylene compound (1) can be obtained by performing a predetermined post-treatment.

反応は溶媒を用いて行うことができる。   The reaction can be carried out using a solvent.

反応は攪拌して行うことができる。反応効率の点から、攪拌することが好ましい。   The reaction can be carried out with stirring. From the viewpoint of reaction efficiency, stirring is preferred.

また、窒素ガス、アルゴンガスなどの不活性ガスを流通させながら反応を行ってもよい。   Further, the reaction may be performed while circulating an inert gas such as nitrogen gas or argon gas.

反応に用いるアルデヒド化合物(13)とビス(トリフルオロメチルスルホニル)メタン(14)の使用量としては、ビス(トリフルオロメチルスルホニル)メタン(14)は、アルデヒド化合物(13)に対して、通常は、1倍モル〜10倍モルの範囲で反応に用いればよいが、この範囲外においても、反応に応じて当業者は適宜調整することができる。反応収率の点から、1倍モル〜3倍モルの範囲で反応に用いるのが好ましい。   The amount of aldehyde compound (13) and bis (trifluoromethylsulfonyl) methane (14) used in the reaction is usually bis (trifluoromethylsulfonyl) methane (14) relative to aldehyde compound (13). Although it may be used for the reaction in the range of 1-fold mole to 10-fold mole, those skilled in the art can appropriately adjust it outside this range depending on the reaction. From the viewpoint of reaction yield, it is preferably used for the reaction in the range of 1 to 3 moles.

反応容器は、特に制限は無く、反応時に使用する圧力に耐えるもの、反応に影響を与えない材質のものを使用することができる。反応は常圧でも加圧下でも良く、反応の種類により当業者が適宜調節することができる。   The reaction vessel is not particularly limited, and a reaction vessel that can withstand the pressure used during the reaction or a material that does not affect the reaction can be used. The reaction may be at normal pressure or under pressure, and can be appropriately adjusted by those skilled in the art depending on the type of reaction.

反応温度は0℃〜120℃が好適であり、反応溶媒の沸点、反応の進行に応じて前記温度範囲内で適宜調整できる。   The reaction temperature is preferably 0 ° C. to 120 ° C., and can be appropriately adjusted within the temperature range according to the boiling point of the reaction solvent and the progress of the reaction.

反応時間は、特に制限は無いが、通常は1分〜24時間の範囲で行えばよく、ガスクロマトグラフィー測定、液体クロマトグラフィー測定、核磁気共鳴スペクトル(NMRスペクトル)測定などの分析手段により反応の進行状況を追跡し、原料基質がほとんど消失した時点を終点とするのが好ましい。   The reaction time is not particularly limited, but it may be usually in the range of 1 minute to 24 hours. The reaction time may be measured by an analytical means such as gas chromatography measurement, liquid chromatography measurement, or nuclear magnetic resonance spectrum (NMR spectrum) measurement. It is preferable to follow the progress and set the end point when the raw material substrate has almost disappeared.

反応溶媒としては、反応に関与しないものであれば特に制限されず、脂肪族炭化水素類、芳香族炭化水素類、エーテル類、ハロゲン化炭化水素類、アルコール類、ケトン類、非プロトン性極性溶媒類などを使用することができる。具体的には、n−ペンタン、n−ヘキサン、n−ヘプタン、n−オクタン、ベンゼン、トルエン、キシレン、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン、ジクロロメタン、1,2−ジクロロエタン、クロロホルム、メタノール、エタノール、イソプロパノール、アセトン、メチルエチルケトン、アセトニトリル、N,N−ジメチルホルムアミド(略称:DMF)、ジメチルスルホキシド(略称:DMSO)、ヘキサメチルリン酸トリアミド(略称:HMPA)などが挙げられる。このうち、反応基質の溶解度、反応温度の点から1,2−ジクロロエタンが特に好ましい。   The reaction solvent is not particularly limited as long as it does not participate in the reaction, and aliphatic hydrocarbons, aromatic hydrocarbons, ethers, halogenated hydrocarbons, alcohols, ketones, aprotic polar solvents Can be used. Specifically, n-pentane, n-hexane, n-heptane, n-octane, benzene, toluene, xylene, diethyl ether, diisopropyl ether, tetrahydrofuran, dioxane, dichloromethane, 1,2-dichloroethane, chloroform, methanol, ethanol , Isopropanol, acetone, methyl ethyl ketone, acetonitrile, N, N-dimethylformamide (abbreviation: DMF), dimethyl sulfoxide (abbreviation: DMSO), hexamethylphosphoric triamide (abbreviation: HMPA), and the like. Of these, 1,2-dichloroethane is particularly preferred from the viewpoint of the solubility of the reaction substrate and the reaction temperature.

化合物(1)の精製は、一般的に有機合成で行われている精製方法を用いることができ、例えば、再結晶、蒸留、カラムクロマトグラフィーなどが挙げられる。これらの手段により、化合物(1)を得ることができる。   For purification of the compound (1), a purification method generally used in organic synthesis can be used, and examples thereof include recrystallization, distillation, column chromatography and the like. By these means, the compound (1) can be obtained.

また、化合物(1)は特別な精製操作を行うことなく、減圧条件下で反応に使用した溶媒を除いた後、次反応であるヒドリド還元剤を用いた還元反応の反応基質として用いてもよい。   In addition, compound (1) may be used as a reaction substrate for a reduction reaction using a hydride reducing agent, which is the next reaction, after removing the solvent used for the reaction under reduced pressure conditions without performing a special purification operation. .

蒸留を行う場合には、常圧(特に加圧または減圧しないときの圧力をいい、通常約0.1MPaである。本明細書において以下同じ。)でも良いが、減圧条件にすることが好ましい。蒸留塔の材質には制限がなく、ガラス製のもの、ステンレス製のもの、四フッ化エチレン樹脂、クロロトリフルオロエチレン樹脂、フッ化ビニリデン樹脂、PFA樹脂、ガラスなどを内部にライニングしたものなどを用いることができる。蒸留塔中には、充填剤を詰めることもできる。蒸留は減圧条件下で行うと、比較的低い温度で達成できるため、簡便であり好ましい。   When distillation is performed, the pressure may be normal pressure (in particular, the pressure when no pressure is applied or reduced, usually about 0.1 MPa. The same applies hereinafter), but preferably the pressure is reduced. There are no restrictions on the material of the distillation tower, and it is made of glass, stainless steel, tetrafluoroethylene resin, chlorotrifluoroethylene resin, vinylidene fluoride resin, PFA resin, glass, etc. Can be used. A filler can also be packed in the distillation column. Distillation is preferred because it can be accomplished at a relatively low temperature under reduced pressure.


3.ビス(トリフルオロメチルスルホニル)メチル基を有する化合物(2)の製造方法

本発明に係るビス(トリフルオロメチルスルホニル)メチル基を有する化合物(2)の製造方法について説明する。

Figure 0005998948

3. Method for producing compound (2) having bis (trifluoromethylsulfonyl) methyl group

A method for producing the compound (2) having a bis (trifluoromethylsulfonyl) methyl group according to the present invention will be described.
Figure 0005998948

まず、所定の反応容器内にビス(トリフルオロメチルスルホニル)エチレン化合物(1)を加え、その後、所定の温度において、ヒドリド還元剤を加え、所定時間、同温度または適宜調節した温度で反応させる。その後、所定の後処理を行うことで、ビス(トリフルオロメチルスルホニル)メチル基を有する化合物を得ることができる。   First, bis (trifluoromethylsulfonyl) ethylene compound (1) is added to a predetermined reaction vessel, and then a hydride reducing agent is added at a predetermined temperature, and the reaction is performed at the same temperature or an appropriately adjusted temperature for a predetermined time. Thereafter, a compound having a bis (trifluoromethylsulfonyl) methyl group can be obtained by performing a predetermined post-treatment.

ビス(トリフルオロメチルスルホニル)エチレン化合物(1)とヒドリド還元剤を加える順序は逆にすることも可能である。すなわち、所定の反応容器内にヒドリド還元剤を加え、その後、所定の温度において、ビス(トリフルオロメチルスルホニル)エチレン化合物(1)を加え、同温度または適宜調節した温度で反応させ、その後、所定の後処理を行うことでも、ビス(トリフルオロメチルスルホニル)メチル基を有する化合物を得ることができる。   The order of adding the bis (trifluoromethylsulfonyl) ethylene compound (1) and the hydride reducing agent can be reversed. That is, a hydride reducing agent is added to a predetermined reaction vessel, and then a bis (trifluoromethylsulfonyl) ethylene compound (1) is added at a predetermined temperature, followed by reaction at the same temperature or an appropriately adjusted temperature. A compound having a bis (trifluoromethylsulfonyl) methyl group can also be obtained by performing post-treatment.

反応は溶媒を用いて行うことができる。ビス(トリフルオロメチルスルホニル)エチレン化合物(1)とヒドリド還元剤の両方が固体である場合には、溶媒を用いることが好ましい。溶媒を用いる場合には、ビス(トリフルオロメチルスルホニル)エチレン化合物(1)および/またはヒドリド還元剤を溶媒により溶解させた後に、反応に用いることが好ましい。   The reaction can be carried out using a solvent. When both the bis (trifluoromethylsulfonyl) ethylene compound (1) and the hydride reducing agent are solid, it is preferable to use a solvent. In the case of using a solvent, it is preferable that the bis (trifluoromethylsulfonyl) ethylene compound (1) and / or the hydride reducing agent is dissolved in the solvent and then used for the reaction.

反応は攪拌して行うことができる。反応効率の点から、攪拌することが好ましい。   The reaction can be carried out with stirring. From the viewpoint of reaction efficiency, stirring is preferred.

また、窒素ガス、アルゴンガスなどの不活性ガスを流通させながら反応を行ってもよい。   Further, the reaction may be performed while circulating an inert gas such as nitrogen gas or argon gas.

反応に用いるビス(トリフルオロメチルスルホニル)エチレン化合物(1)とヒドリド還元剤の使用量としては、ビス(トリフルオロメチルスルホニル)エチレン化合物(1)に対して、ヒドリド還元剤は、通常は、1倍モル〜10倍モルの範囲で反応に用いればよく、反応収率の点から、2倍モル〜3倍モルの範囲で反応に用いるのが好ましい。   The amount of the bis (trifluoromethylsulfonyl) ethylene compound (1) and hydride reducing agent used in the reaction is usually 1% relative to the bis (trifluoromethylsulfonyl) ethylene compound (1). What is necessary is just to use for reaction in the range of double mole-10 times mole, and it is preferable to use for reaction in the range of 2 times mole-3 times mole from the point of reaction yield.

反応容器は、特に制限は無く、反応時に使用する圧力に耐えるもの、反応に影響を与えない材質のものを使用することができる。反応は常圧でも加圧下でも良く、反応の種類により当業者が適宜調節することができる。   The reaction vessel is not particularly limited, and a reaction vessel that can withstand the pressure used during the reaction or a material that does not affect the reaction can be used. The reaction may be at normal pressure or under pressure, and can be appropriately adjusted by those skilled in the art depending on the type of reaction.

反応温度は、室温(特に加熱または冷却しない雰囲気温度をいい、通常約15℃〜30℃である。本明細書において以下同じ。)以下が好ましく、−150℃〜+10℃がさらに好ましく、約−78℃で行うことが特に好ましい。また、反応の進行に応じて−150℃〜室温の範囲内で適宜調整できる。   The reaction temperature is preferably room temperature (in particular, an atmospheric temperature not heated or cooled, usually about 15 ° C. to 30 ° C., the same applies hereinafter), more preferably −150 ° C. to + 10 ° C., and more preferably about − It is particularly preferable to carry out at 78 ° C. Moreover, it can adjust suitably in the range of -150 degreeC-room temperature according to progress of reaction.

反応時間は、特に制限は無いが、通常は1分〜24時間の範囲で行えばよく、ガスクロマトグラフィー測定、液体クロマトグラフィー測定、核磁気共鳴スペクトル(NMRスペクトル)測定などの分析手段により反応の進行状況を追跡し、原料基質がほとんど消失した時点を終点とするのが好ましい。   The reaction time is not particularly limited, but it may be usually in the range of 1 minute to 24 hours. The reaction time may be measured by an analytical means such as gas chromatography measurement, liquid chromatography measurement, or nuclear magnetic resonance spectrum (NMR spectrum) measurement. It is preferable to follow the progress and set the end point when the raw material substrate has almost disappeared.

ヒドリド還元剤とは、化合物の還元を求核的な水素供与により行う試薬を意味する。   A hydride reducing agent means a reagent that reduces a compound by nucleophilic hydrogen donation.

本発明においてヒドリド還元剤は、具体的には、水素化ホウ素還元剤、水素化アルミニウム還元剤などが挙げられる。   Specific examples of the hydride reducing agent in the present invention include a borohydride reducing agent and an aluminum hydride reducing agent.

水素化ホウ素還元剤は、例えば、ジボラン、ボラン錯体、水素化ホウ素金属などが挙げられる。   Examples of the borohydride reducing agent include diborane, borane complex, borohydride metal, and the like.

ボラン錯体は、具体的には、ボラン−N,N−ジメチルアニリン錯体、ボラン−ジメチルアミン錯体、ボラン−ジメチルスルフィド錯体、ボラン−エチルアミン錯体、ボラン−モルホリン錯体、ボラン−ピリジン錯体、ボラン−2−ピコリン錯体、ボラン−テトラヒドロフラン錯体、ボラン−トリエチルアミン錯体、ボラン−トリメチルアミン錯体、ボラン−トリフェニルフォスフィン錯体などが挙げられる。   Specific examples of the borane complex include borane-N, N-dimethylaniline complex, borane-dimethylamine complex, borane-dimethylsulfide complex, borane-ethylamine complex, borane-morpholine complex, borane-pyridine complex, borane-2- Examples include a picoline complex, a borane-tetrahydrofuran complex, a borane-triethylamine complex, a borane-trimethylamine complex, and a borane-triphenylphosphine complex.

水素化ホウ素金属は、具体的には、水素化ホウ素リチウム、水素化ホウ素カリウム、水素化ホウ素ナトリウム、シアノ水素化ホウ素ナトリウム、トリアセトキシ水素化ホウ素ナトリウムなどが挙げられる。   Specific examples of the metal borohydride include lithium borohydride, potassium borohydride, sodium borohydride, sodium cyanoborohydride, sodium triacetoxyborohydride, and the like.

水素化アルミニウム還元剤は、具体的には、水素化アルミニウム、水素化アルミニウムリチウム、水素化ビス(2−メトキシエトキシ)アルミニウムナトリウム、水素化アルコキシアルミニウム、水素化ジイソブチルアルミニウムなどの水素化アルミニウム化合物が挙げられる。   Specific examples of the aluminum hydride reducing agent include aluminum hydride compounds such as aluminum hydride, lithium aluminum hydride, sodium bis (2-methoxyethoxy) aluminum hydride, alkoxyaluminum hydride, and diisobutylaluminum hydride. It is done.

ヒドリド還元剤のうち、反応生成物を収率よく得ること、反応の簡便さから、水素化ホウ素ナトリウム、水素化ホウ素リチウム、ボラン−2−ピコリン錯体、水素化アルミニウムリチウム、水素化ジイソブチルアルミニウムが特に好ましい。   Of the hydride reducing agents, sodium borohydride, lithium borohydride, borane-2-picoline complex, lithium aluminum hydride, diisobutylaluminum hydride are particularly preferred because of the high yield of reaction products and the simplicity of the reaction. preferable.

ヒドリド還元剤は、複数の種類を併せて反応に用いることもできる。   A hydride reducing agent can also be used for reaction combining several types.

上記のヒドリド還元剤を使用する際、活性化剤としてルイス酸を使用してもよい。ルイス酸としては、例えば、塩化アルミニウム、三塩化鉄、三塩化ガリウム、三フッ化ホウ素ジエチルエーテル錯体などが挙げられる。この場合、ルイス酸の使用量は、一般に、ヒドリド還元剤に対して、0.1倍モル〜1倍モル程度であればよい。   When using the hydride reducing agent, a Lewis acid may be used as an activator. Examples of the Lewis acid include aluminum chloride, iron trichloride, gallium trichloride, boron trifluoride diethyl ether complex, and the like. In this case, the amount of Lewis acid used may generally be about 0.1 to 1 mole relative to the hydride reducing agent.

反応溶媒としては、反応を阻害しないものであれば特に限定は無い。例えば、水素化ホウ素還元剤を用いる場合は、脂肪族炭化水素類、芳香族炭化水素類、エーテル類、ハロゲン化炭化水素類、アルコール類、エステル類、非プロトン性極性溶媒類またはこれらの混合溶媒などが好適に使用できるが、エーテル類、ハロゲン化炭化水素類、アルコール類、エステル類が特に好ましい。   The reaction solvent is not particularly limited as long as it does not inhibit the reaction. For example, when a borohydride reducing agent is used, aliphatic hydrocarbons, aromatic hydrocarbons, ethers, halogenated hydrocarbons, alcohols, esters, aprotic polar solvents, or a mixed solvent thereof Etc. can be preferably used, but ethers, halogenated hydrocarbons, alcohols and esters are particularly preferred.

水素化アルミニウム還元剤を用いる場合は、脂肪族炭化水素類、芳香族炭化水素類、エーテル類、ハロゲン化炭化水素類またはこれらの混合溶媒などが好適に使用できるが、エーテル類、ハロゲン化炭化水素類が特に好ましい。   In the case of using an aluminum hydride reducing agent, aliphatic hydrocarbons, aromatic hydrocarbons, ethers, halogenated hydrocarbons, or a mixed solvent thereof can be preferably used, but ethers, halogenated hydrocarbons, etc. Are particularly preferred.

脂肪族炭化水素類としては、n−ペンタン、n−ヘキサン、イソヘキサン、n−ヘプタン、イソヘプタン、n−オクタン、イソオクタン、n−ノナン、イソノナン、n−デカン、イソデカン、n−ウンデカン、n−ドデカン、シクロペンタン、シクロヘキサン、メチルシクロヘキサン、tert−ブチルシクロヘキサン、石油エーテルなどが挙げられる。   Aliphatic hydrocarbons include n-pentane, n-hexane, isohexane, n-heptane, isoheptane, n-octane, isooctane, n-nonane, isononane, n-decane, isodecane, n-undecane, n-dodecane, Examples include cyclopentane, cyclohexane, methylcyclohexane, tert-butylcyclohexane, petroleum ether and the like.

芳香族炭化水素類としては、ベンゼン、トルエン、エチルベンゼン、イソプロピルベンゼン、tert−ブチルベンゼン、キシレン、メシチレンなどが挙げられる。   Aromatic hydrocarbons include benzene, toluene, ethylbenzene, isopropylbenzene, tert-butylbenzene, xylene, mesitylene and the like.

エーテル類としては、テトラヒドロフラン(略称:THF)、メチルテトラヒドロフラン、ジエチルエーテル、ジn−プロピルエーテル、ジイソプロピルエーテル、ジn−ブチルエーテル、ジn−ペンチルエーテル、ジn−ヘキシルエーテル、ジn−ヘプチルエーテル、ジn−オクチルエーテル、tert−ブチルメチルエーテル(略称:MTBE)、シクロペンチルメチルエーテル、1,2−ジメトキシエタン、ジエチレングリコールジメチルエーテル、アニソール、ジフェニルエーテルなどが挙げられる。   Examples of ethers include tetrahydrofuran (abbreviation: THF), methyltetrahydrofuran, diethyl ether, di-n-propyl ether, diisopropyl ether, di-n-butyl ether, di-n-pentyl ether, di-n-hexyl ether, di-n-heptyl ether, Examples include di n-octyl ether, tert-butyl methyl ether (abbreviation: MTBE), cyclopentyl methyl ether, 1,2-dimethoxyethane, diethylene glycol dimethyl ether, anisole, and diphenyl ether.

ハロゲン化炭化水素類としては、ジクロロメタン、クロロホルム、1,2−ジクロロエタン、モノクロロベンゼン、モノフルオロベンゼン、α,α,α−トリフルオロメチルベンゼン、1,2−ジクロロベンゼン、1,3−ジクロロベンゼン、1,2,3−トリクロロベンゼン、1,2,4−トリクロロベンゼンなどが挙げられる。   Examples of halogenated hydrocarbons include dichloromethane, chloroform, 1,2-dichloroethane, monochlorobenzene, monofluorobenzene, α, α, α-trifluoromethylbenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,2,3-trichlorobenzene, 1,2,4-trichlorobenzene and the like can be mentioned.

アルコール類としては、メタノール、エタノール、1−プロパノール、2−プロパノール、n−ブチルアルコール、イソブチルアルコール、tert−ブチルアルコール、1−ペンタノール、2−ペンタノール、イソペンチルアルコール、1−ヘキサノール、2−ヘキサノール、イソヘキシルアルコール、1−ヘプタノール、2−ヘプタノール、3−ヘプタノール、イソペプチルアルコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノn−プロピルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノn−ブチルエーテル、エチレングリコールモノイソブチルエーテル、エチレングリコールモノtert−ブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノn−プロピルエーテル、ジエチレングリコールモノイソプロピルエーテル、ジエチレングリコールモノn−ブチルエーテル、ジエチレングリコールモノイソブチルエーテル、ジエチレングリコールモノtert−ブチルエーテルなどが挙げられる。   Alcohols include methanol, ethanol, 1-propanol, 2-propanol, n-butyl alcohol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, isopentyl alcohol, 1-hexanol, 2- Hexanol, isohexyl alcohol, 1-heptanol, 2-heptanol, 3-heptanol, isopeptyl alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono n-propyl ether, ethylene glycol monoisopropyl ether, ethylene glycol Mono n-butyl ether, ethylene glycol monoisobutyl ether, ethylene glycol mono tert-butyl ether, diethylene glycol Monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol mono-n- propyl ether, diethylene glycol monoisopropyl ether, diethylene glycol mono n- butyl ether, diethylene glycol mono isobutyl ether, and the like diethylene glycol tert- butyl ether.

エステル類としては、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチル、酢酸tert−ブチル、酢酸アミル、酢酸イソアミルなどが挙げられる。   Examples of the esters include ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, tert-butyl acetate, amyl acetate, and isoamyl acetate.

非プロトン性極性溶媒類としては、ジメチルスルホキシド、スルホラン、N,N−ジメチルホルムアミド(略称:DMF)、N,N−ジメチルアセトアミド、N,N−ジメチルプロピオンアミド、N−メチルピロリドン、γ−ブチロラクトン、炭酸ジメチル、炭酸ジエチル、エチレンカーボネート、プロピレンカーボネート、1,3−ジメチル−2−イミダゾリジノン、1,3−ジメチル−3,4,5,6−テトラヒドロ−2(1H)−ピリジノンなどが挙げられる。   Examples of aprotic polar solvents include dimethyl sulfoxide, sulfolane, N, N-dimethylformamide (abbreviation: DMF), N, N-dimethylacetamide, N, N-dimethylpropionamide, N-methylpyrrolidone, γ-butyrolactone, Examples include dimethyl carbonate, diethyl carbonate, ethylene carbonate, propylene carbonate, 1,3-dimethyl-2-imidazolidinone, 1,3-dimethyl-3,4,5,6-tetrahydro-2 (1H) -pyridinone, and the like. .

中でも、ヒドリド還元剤において、水素化ホウ素還元剤を用いる場合には、テトラヒドロフラン、ジエチルエーテル、メタノール、エタノール、酢酸エチル、ジクロロメタンが特に好ましく、水素化アルミニウム還元剤を用いる場合には、テトラヒドロフラン、ジエチルエーテル、ジクロロメタンが特に好ましい。   Among them, when a borohydride reducing agent is used in the hydride reducing agent, tetrahydrofuran, diethyl ether, methanol, ethanol, ethyl acetate, and dichloromethane are particularly preferable. When an aluminum hydride reducing agent is used, tetrahydrofuran, diethyl ether Dichloromethane is particularly preferred.

本製造方法における後処理方法については、酸の水溶液を用いて余剰のヒドリド還元剤を処理することが好ましい。使用する酸としては、塩酸、硫酸、リン酸などの鉱酸、酢酸、メタンスルホン酸などの有機酸を用いることができるが、生成物との分離の点から希塩酸または希硫酸を用いることが好ましい。また、ヒドリド還元剤として水素化アルミニウム還元剤を用いた場合、副生する水酸化アルミニウムの溶解性の問題から希硫酸を用いることが特に好ましい。   About the post-processing method in this manufacturing method, it is preferable to process an excess hydride reducing agent using the aqueous solution of an acid. As the acid to be used, mineral acids such as hydrochloric acid, sulfuric acid and phosphoric acid, and organic acids such as acetic acid and methanesulfonic acid can be used, but dilute hydrochloric acid or dilute sulfuric acid is preferably used from the viewpoint of separation from the product. . Further, when an aluminum hydride reducing agent is used as the hydride reducing agent, it is particularly preferable to use dilute sulfuric acid because of the problem of solubility of by-product aluminum hydroxide.

本製造方法における化合物(2)の精製方法については特に制限はなく、一般的に有機合成で行われている精製方法を用いることができる。例えば、再結晶、蒸留、カラムクロマトグラフィーなどが挙げられる。これらの手段により、化合物(2)を得ることができる。   There is no restriction | limiting in particular about the purification method of the compound (2) in this manufacturing method, The purification method currently generally performed by the organic synthesis can be used. For example, recrystallization, distillation, column chromatography and the like can be mentioned. By these means, the compound (2) can be obtained.

蒸留を行う場合には、常圧でも良いが、減圧条件にすることが好ましい。蒸留塔の材質には特に制限はなく、ガラス製のもの、ステンレス製のもの、四フッ化エチレン樹脂、クロロトリフルオロエチレン樹脂、フッ化ビニリデン樹脂、PFA樹脂、ガラスなどを内部にライニングしたものなどを用いることができる。蒸留塔中には、充填剤を詰めることもできる。蒸留は、減圧条件下で行うと、比較的低い温度で達成できるため、簡便であり、好ましい。   When distillation is performed, normal pressure may be used, but reduced pressure is preferable. There are no particular restrictions on the material of the distillation tower, glass, stainless steel, tetrafluoroethylene resin, chlorotrifluoroethylene resin, vinylidene fluoride resin, PFA resin, glass lined inside, etc. Can be used. A filler can also be packed in the distillation column. Distillation is preferred because it can be achieved at a relatively low temperature when performed under reduced pressure.


4.ビス(トリフルオロメチルスルホニル)メチル基含有化合物(2)の酸触媒としての使用方法

化合物(2)は、ビス(トリフルオロメチルスルホニル)メチル基による高い酸性度を有するため、様々な有機合成反応における酸触媒として有用である。化合物(2)は、酸性でありながら共役塩基の求核性が低いために分解反応を起こし難く、また、酸触媒反応後に目的化合物との分離が容易である。

4). Method of using bis (trifluoromethylsulfonyl) methyl group-containing compound (2) as an acid catalyst

Since compound (2) has high acidity due to the bis (trifluoromethylsulfonyl) methyl group, it is useful as an acid catalyst in various organic synthesis reactions. Although the compound (2) is acidic, the conjugate base has a low nucleophilicity, so that it does not easily cause a decomposition reaction, and can be easily separated from the target compound after the acid-catalyzed reaction.

化合物(2)は、アルドール型反応、フリーデル・クラフツ型反応、ディールズ・アルダー反応、マイケル反応、エン反応、エステル化反応、アセタール化反応等の各種有機合成反応における酸触媒として用いることが可能である。   Compound (2) can be used as an acid catalyst in various organic synthesis reactions such as aldol-type reaction, Friedel-Crafts-type reaction, Diels-Alder reaction, Michael reaction, ene reaction, esterification reaction, acetalization reaction. is there.

化合物(2)は、従来知られている発煙硫酸などのブレンステッド酸、塩化アルミニウム、四塩化チタン、三フッ化ホウ素などのルイス酸と比べて高活性な酸触媒である。   Compound (2) is a highly active acid catalyst compared to conventionally known Bronsted acids such as fuming sulfuric acid, Lewis acids such as aluminum chloride, titanium tetrachloride, and boron trifluoride.

化合物(2)の酸触媒としての添加量については、化学量論量を用いる必要がなく、少量を用いる場合でも、所望の有機反応が進行する。具体的には、反応基質に対して通常、0.001倍モル〜10倍モルであるが、好ましくは0.01倍モル〜7倍モルであり、さらに好ましくは0.03倍モル〜5倍モルである。0.001倍モル未満の場合、希薄すぎて実用的でなく、10倍モル超だと経済的でない。   About the addition amount as an acid catalyst of a compound (2), it is not necessary to use a stoichiometric amount, and even when using a small amount, a desired organic reaction advances. Specifically, it is usually 0.001 times to 10 times mol, preferably 0.01 times to 7 times mol, more preferably 0.03 times to 5 times the amount of the reaction substrate. Is a mole. If it is less than 0.001 mol, it is too dilute and impractical, and if it exceeds 10 mol, it is not economical.

各種有機合成反応における酸触媒としての使用の際、反応温度は反応基質および添加する触媒の量により変化するが、通常−50℃〜+100℃の範囲で行えば良い。   When used as an acid catalyst in various organic synthesis reactions, the reaction temperature varies depending on the amount of the reaction substrate and the catalyst to be added, but may be usually in the range of −50 ° C. to + 100 ° C.

各種有機合成反応における酸触媒の使用については、通常の固体触媒を用いるときと同様、液相反応にて行うと良い。   About the use of the acid catalyst in various organic synthesis reactions, it is good to carry out by a liquid phase reaction like the case of using a normal solid catalyst.

溶媒としては、反応に関与しないものであれば特に制限されず、例えば、脂肪族炭化水素類、芳香族炭化水素類、エーテル類、ハロゲン化炭化水素類、アルコール類、ケトン類、非プロトン性極性溶媒類などが挙げられる。具体的には、n−ペンタン、n−ヘキサン、n−ヘプタン、n−オクタン、ベンゼン、トルエン、キシレン、ジエチルエーテル、テトラヒドロフラン、ジオキサン、ジクロロメタン、ジクロロエタン、クロロホルム、アセトン、アセトニトリル、N,N−ジメチルホルムアミド(略称:DMF)、ジメチルスルホキシド(略称:DMSO)、ヘキサメチルリン酸トリアミド(略称:HMPA)などが挙げられる。   The solvent is not particularly limited as long as it does not participate in the reaction. For example, aliphatic hydrocarbons, aromatic hydrocarbons, ethers, halogenated hydrocarbons, alcohols, ketones, aprotic polarity And solvents. Specifically, n-pentane, n-hexane, n-heptane, n-octane, benzene, toluene, xylene, diethyl ether, tetrahydrofuran, dioxane, dichloromethane, dichloroethane, chloroform, acetone, acetonitrile, N, N-dimethylformamide (Abbreviation: DMF), dimethyl sulfoxide (abbreviation: DMSO), hexamethylphosphoric triamide (abbreviation: HMPA), and the like.

しかしながら、反応原料または反応試剤が、室温で液体または反応温度で溶融する場合、それら自身が溶媒の役割も兼ねることから、敢えて別途溶媒を使用する必要はなく、その方が工業的にも負荷がかからず、経済的にも好ましい。   However, when the reaction raw materials or reaction reagents are liquid at room temperature or melt at the reaction temperature, they themselves also serve as a solvent, so that it is not necessary to use a separate solvent, which is industrially burdensome. However, it is economically preferable.

反応容器としては、特に制限は無く、反応時に使用する圧力に耐えるもの、反応に影響を与えない材質のものを使用することができる。反応は常圧でも加圧下でも良く、反応の種類により当業者が適宜調節することができる。   There is no restriction | limiting in particular as a reaction container, The thing which can endure the pressure used at the time of reaction and the material which does not influence reaction can be used. The reaction may be at normal pressure or under pressure, and can be appropriately adjusted by those skilled in the art depending on the type of reaction.

また、窒素ガス、アルゴンガスなどの不活性ガスを流通させながら反応を行っても良い。   Further, the reaction may be performed while circulating an inert gas such as nitrogen gas or argon gas.

反応時間は特に制限は無いが、通常は24時間以内の範囲で行えばよく、ガスクロマトグラフィー測定、液体クロマトグラフィー測定、核磁気共鳴スペクトル(NMR)測定などの分析手段により反応の進行状況を追跡し、反応原料がほとんど消失した時点を終点とするのが好ましい。
The reaction time is not particularly limited, but usually it can be performed within 24 hours, and the progress of the reaction is traced by analytical means such as gas chromatography measurement, liquid chromatography measurement, and nuclear magnetic resonance spectrum (NMR) measurement. In addition, it is preferable that the end point is when the reaction raw material is almost lost.

以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples.

本実施例において得られた化合物の同定には、以下の測定装置を用いた。   The following measuring apparatus was used for identification of the compound obtained in the present Example.

赤外線吸収スペクトル(IR):Bruker ALPHA FT−IR分光器
核磁気共鳴スペクトル(NMR):Bruker ANANCE III 400分光器
質量分析スペクトル(MS):Micromass LCT分光器(ESI−TOF)またはVarian CP−3800 ガスクロマトグラフ1200 QuadrupoleMS/MS system(EI)
Infrared absorption spectrum (IR): Bruker ALPHA FT-IR spectrometer Nuclear magnetic resonance spectrum (NMR): Bruker ANANCE III 400 spectrometer Mass spectrometry spectrum (MS): Micromass LCT spectrometer (ESI-TOF) or Varian CP-3800 gas chromatograph TOGRAPH 1200 Quadrupole MS / MS system (EI)


[実施例1]
[水素化ホウ素ナトリウムを還元剤に用いた(E)−(4,4−ビス(トリフルオロメチルスルホニル)ブト−1−エニル)ベンゼン(2a)の製造]
反応式を以下に示す(反応式中、Etはエチル基を表し、Acはアセチル基を表す。実施例において以下同じ。)。

Figure 0005998948

[Example 1]
[Production of (E)-(4,4-bis (trifluoromethylsulfonyl) but-1-enyl) benzene (2a) using sodium borohydride as a reducing agent]
The reaction formula is shown below (in the reaction formula, Et represents an ethyl group and Ac represents an acetyl group. The same applies hereinafter in the examples).
Figure 0005998948

酢酸エチル9.0mlに化合物(1)である1,1−ビス(トリフリル)アルカジエン(1a)118mgを溶解させた後、−78℃に冷却した。次いで還元剤である水素化ホウ素ナトリウム22.7mgをゆっくりと加えた後、同温で1.5時間攪拌した。撹拌後の反応液を室温まで昇温した後、10%塩酸10mlを加え、有機層と水層を分離した。分離した水層をジエチルエーテル15mlを用いて3回抽出操作を行った。得られた有機層を硫酸ナトリウム500mgで脱水乾燥後、ろ過した。減圧下、ろ液を濃縮した後、クーゲルロール蒸留装置を用い、温度160℃、圧力6.57Paの条件で蒸留精製し、化合物(2)としての(E)−(4,4−ビス(トリフルオロメチルスルホニル)ブト−1−エニル)ベンゼン95.4mgを収率80%で得た。赤外線吸収スペクトル(IR)、核磁気共鳴スペクトル(NMR)、質量分析(MS)、元素分析の測定結果を以下に示す。   118 mg of 1,1-bis (trifuryl) alkadiene (1a) as compound (1) was dissolved in 9.0 ml of ethyl acetate, and then cooled to -78 ° C. Next, 22.7 mg of sodium borohydride as a reducing agent was slowly added, and the mixture was stirred at the same temperature for 1.5 hours. The temperature of the stirred reaction solution was raised to room temperature, 10 ml of 10% hydrochloric acid was added, and the organic layer and the aqueous layer were separated. The separated aqueous layer was extracted three times with 15 ml of diethyl ether. The obtained organic layer was dehydrated and dried with 500 mg of sodium sulfate and then filtered. After concentrating the filtrate under reduced pressure, it was purified by distillation using a Kugelrohr distillation apparatus under the conditions of a temperature of 160 ° C. and a pressure of 6.57 Pa to obtain (E)-(4,4-bis (tri 95.4 mg of fluoromethylsulfonyl) but-1-enyl) benzene was obtained with a yield of 80%. The measurement results of infrared absorption spectrum (IR), nuclear magnetic resonance spectrum (NMR), mass spectrometry (MS), and elemental analysis are shown below.

無色結晶; Mp.96.8−97.5 ℃; IR (ATR)v 2943,1389,1374,1206,1114,1098,970,759,692,660,485cm−1H−NMR(400MHz,CDCl)δ3.38−3.44(2H,m),4.97(1H,t,J=5.8 Hz),6.24(1H,dt,J=15.7,7.3 Hz),6.70(1H,d,J=15.7Hz),7.28−7.41(5H,m); 13C−NMR(100MHz,CDCl)δ29.0,77.6,119.2(q,JC−F=327.0Hz),119.3,126.5,128.5,128.7,135.5,137.3;19F−NMR(376MHz,CDCl)δ−10.2(6F,s); MS(ESI−TOF)m/z 419 [M+Na]; HRMS calcd for C1210NaO [M+Na],418.9822;found,418.9821; Anal.Calcd for C1210: C,36.37;H,2.54.Found:C,36.47;H,2.76. Colorless crystals; Mp. IR (ATR) v 2943, 1389, 1374, 1206, 1114, 1098, 970, 759, 692, 660, 485 cm −1 ; 1 H-NMR (400 MHz, CDCl 3 ) δ3. 38-3.44 (2H, m), 4.97 (1H, t, J = 5.8 Hz), 6.24 (1H, dt, J = 15.7, 7.3 Hz), 6.70. (1H, d, J = 15.7 Hz), 7.28-7.41 (5H, m); 13 C-NMR (100 MHz, CDCl 3 ) δ 29.0, 77.6, 119.2 (q, J C-F = 327.0 Hz), 119.3, 126.5, 128.5, 128.7, 135.5, 137.3; 19 F-NMR (376 MHz, CDCl 3 ) δ-10.2 (6F) , S); MS (ESI-TOF) m / z 419 [M + Na] + ; HRMS calcd for C 12 H 10 F 6 NaO 4 S 2 [M + Na] + , 418.9822; found, 418.9821; Anal. Calcd for C 12 H 10 F 6 O 4 S 2: C, 36.37; H, 2.54. Found: C, 36.47; H, 2.76.


[実施例2]
[ボラン−2−ピコリン錯体を還元剤に用いた(E)−(4,4−ビス(トリフルオロメチルスルホニル)ブト−1−エニル)ベンゼン(2a)の製造]
反応式を以下に示す。

Figure 0005998948

[Example 2]
[Production of (E)-(4,4-bis (trifluoromethylsulfonyl) but-1-enyl) benzene (2a) using borane-2-picoline complex as reducing agent]
The reaction formula is shown below.
Figure 0005998948

酢酸エチル9.0mlに化合物(1)である1,1−ビス(トリフリル)アルカジエン(1a)118mgを溶解させた後、−10℃に冷却した。次いで還元剤であるボラン−ピコリン錯体31.8mgをゆっくりと加えた後、同温で5分間攪拌した。撹拌後の反応液を室温まで昇温した後、10%塩酸10mlを加え、有機層と水層を分離した。分離した水層をジエチルエーテル15mlを用いて3回抽出操作を行った。得られた有機層を硫酸ナトリウム500mgで脱水乾燥後、ろ過した。減圧下、ろ液を濃縮した後、クーゲルロール蒸留装置を用い、温度160℃、圧力6.57Paの条件で蒸留精製し、化合物(2)としての(E)−(4,4−ビス(トリフルオロメチルスルホニル)ブト−1−エニル)ベンゼン83.7mgを収率71%で得た。   118 mg of 1,1-bis (trifuryl) alkadiene (1a), which is the compound (1), was dissolved in 9.0 ml of ethyl acetate, and then cooled to -10 ° C. Next, 31.8 mg of borane-picoline complex as a reducing agent was slowly added, followed by stirring at the same temperature for 5 minutes. The temperature of the stirred reaction solution was raised to room temperature, 10 ml of 10% hydrochloric acid was added, and the organic layer and the aqueous layer were separated. The separated aqueous layer was extracted three times with 15 ml of diethyl ether. The obtained organic layer was dehydrated and dried with 500 mg of sodium sulfate and then filtered. After concentrating the filtrate under reduced pressure, it was purified by distillation using a Kugelrohr distillation apparatus under the conditions of a temperature of 160 ° C. and a pressure of 6.57 Pa to obtain (E)-(4,4-bis (tri Fluoromethylsulfonyl) but-1-enyl) benzene 83.7 mg was obtained with a yield of 71%.


[実施例3]
[水素化ジイソブチルアルミニウムを還元剤に用いた(E)−(4,4−ビス(トリフルオロメチルスルホニル)ブト−1−エニル)ベンゼン(2a)の製造]
反応式を以下に示す。

Figure 0005998948

[Example 3]
[Production of (E)-(4,4-bis (trifluoromethylsulfonyl) but-1-enyl) benzene (2a) using diisobutylaluminum hydride as a reducing agent]
The reaction formula is shown below.
Figure 0005998948

ジクロロメタン1.5mlに化合物(1)である1,1−ビス(トリフリル)アルカジエン(1a)197.4mgを溶解させた後、−78℃に冷却した。次いで還元剤である水素化ジイソプロピルアルミニウム(1.0Mヘキサン溶液)0.55mlをゆっくりと加えた後、室温で4時間攪拌した。撹拌後の反応液に10%硫酸5mlを加え、有機層と水層を分離した。分離した水層をジエチルエーテル15mlを用いて3回抽出操作を行った。得られた有機層を硫酸ナトリウム500mgで脱水乾燥後、ろ過した。減圧下、ろ液を濃縮した後、クーゲルロール蒸留装置を用い、温度140−150℃、圧力5mmHgの条件で蒸留精製し、化合物(2)としての(E)−(4,4−ビス(トリフルオロメチルスルホニル)ブト−1−エニル)ベンゼン172.6mgを収率87%で得た。   After dissolving 197.4 mg of 1,1-bis (trifuryl) alkadiene (1a) as compound (1) in 1.5 ml of dichloromethane, it was cooled to -78 ° C. Next, 0.55 ml of diisopropylaluminum hydride (1.0 M hexane solution) as a reducing agent was slowly added, and the mixture was stirred at room temperature for 4 hours. To the reaction solution after stirring, 5 ml of 10% sulfuric acid was added, and the organic layer and the aqueous layer were separated. The separated aqueous layer was extracted three times with 15 ml of diethyl ether. The obtained organic layer was dehydrated and dried with 500 mg of sodium sulfate and then filtered. After concentrating the filtrate under reduced pressure, it was purified by distillation using a Kugelrohr distillation apparatus under conditions of a temperature of 140 to 150 ° C. and a pressure of 5 mmHg, and (E)-(4,4-bis (tri 172.6 mg of fluoromethylsulfonyl) but-1-enyl) benzene was obtained with a yield of 87%.


[実施例4]
[水素化アルミニウムリチウムを還元剤に用いた(E)−(4,4−ビス(トリフルオロメチルスルホニル)ブト−1−エニル)ベンゼン(2a)の製造]
反応式を以下に示す。

Figure 0005998948

[Example 4]
[Production of (E)-(4,4-bis (trifluoromethylsulfonyl) but-1-enyl) benzene (2a) using lithium aluminum hydride as a reducing agent]
The reaction formula is shown below.
Figure 0005998948

還元剤である水素化アルミニウムリチウム20.9mgにジエチルエーテル1.0mlを加えて懸濁液とした後、0℃に冷却した。次いで、化合物(1)である1,1−ビス(トリフリル)アルカジエン(1a)197.2mgのジエチルエーテル0.5ml溶液をゆっくりと加えた後、室温で2.5時間攪拌した。撹拌後の反応液に10%硫酸5mlを加え、有機層と水層を分離した。分離した水層をジエチルエーテル15mlを用いて3回抽出操作を行った。得られた有機層を硫酸ナトリウム500mgで脱水乾燥後、ろ過した。減圧下、ろ液を濃縮した後、クーゲルロール蒸留装置を用い、温度140−150℃、圧力5mmHgの条件で蒸留精製し、化合物(2)としての(E)−(4,4−ビス(トリフルオロメチルスルホニル)ブト−1−エニル)ベンゼン136.5mgを収率65%で得た。   To 20.9 mg of lithium aluminum hydride as a reducing agent, 1.0 ml of diethyl ether was added to form a suspension, and then cooled to 0 ° C. Next, a solution of 197.2 mg of 1,1-bis (trifuryl) alkadiene (1a) as the compound (1) in 0.5 ml of diethyl ether was slowly added, followed by stirring at room temperature for 2.5 hours. To the reaction solution after stirring, 5 ml of 10% sulfuric acid was added, and the organic layer and the aqueous layer were separated. The separated aqueous layer was extracted three times with 15 ml of diethyl ether. The obtained organic layer was dehydrated and dried with 500 mg of sodium sulfate and then filtered. After concentrating the filtrate under reduced pressure, it was purified by distillation using a Kugelrohr distillation apparatus under conditions of a temperature of 140 to 150 ° C. and a pressure of 5 mmHg, and (E)-(4,4-bis (tri 136.5 mg of fluoromethylsulfonyl) but-1-enyl) benzene was obtained with a yield of 65%.


[比較例1]
[水素雰囲気下でパラジウムカーボンを触媒に用いた接触還元]
実施例1で使用した水素化ホウ素ナトリウムに代えて、水素雰囲気下、パラジウムカーボンを触媒として還元を行った。反応式を以下に示す。

Figure 0005998948

[Comparative Example 1]
[Catalytic reduction using palladium carbon as a catalyst in a hydrogen atmosphere]
Instead of sodium borohydride used in Example 1, reduction was performed using palladium carbon as a catalyst in a hydrogen atmosphere. The reaction formula is shown below.
Figure 0005998948

酢酸エチル1.0mlに化合物(1)である1,1−ビス(トリフリル)アルカジエン(1a)119.1mgを溶解させた後、5%パラジウム炭素(約55%水湿潤品)47.6mgを室温で加えた。次いで、反応溶液を水素雰囲気下に付し、室温で30分間攪拌した。セライト(登録商標、セライト コーポレーション製)を用いて反応混合物をろ過した後、減圧下濃縮した。得られた残渣をシリカゲルクロマトグラフィーにかけ、ヘキサン/酢酸エチル=20:1の展開溶媒を用いて溶出させ、上記反応式中、式(15)で表される(4−トリフルオロメチルスルホニル)ブチルベンゼン56.3mgを収率70%で得た。得られた生成物の核磁気共鳴スペクトルの測定結果を以下に示す。   After dissolving 119.1 mg of 1,1-bis (trifuryl) alkadiene (1a) as the compound (1) in 1.0 ml of ethyl acetate, 47.6 mg of 5% palladium carbon (about 55% water-wet product) was added at room temperature. Added in. Next, the reaction solution was subjected to a hydrogen atmosphere and stirred at room temperature for 30 minutes. The reaction mixture was filtered using Celite (registered trademark, manufactured by Celite Corporation) and then concentrated under reduced pressure. The obtained residue was subjected to silica gel chromatography and eluted with a developing solvent of hexane / ethyl acetate = 20: 1. In the above reaction formula, (4-trifluoromethylsulfonyl) butylbenzene represented by the formula (15) was used. 56.3 mg was obtained with a yield of 70%. The measurement results of the nuclear magnetic resonance spectrum of the obtained product are shown below.

無色液体; IR (neat) 2938,1446,1360,1194,1119cm−1H−NMR(400MHz,CDCl)δ1.79−1.88(2H,m),1.92−2.03(2H,m),2.69(2H,t,J=7.4 Hz),3.21(2H,t,J=8.0Hz),7.17(2H,d,J=8.2 Hz),7.19−7.25(1H,m),7.27−7.34(2H,m); 13C−NMR(100MHz,CDCl)δ20.3,30.0,35.1,49.5,119.5(q,JC−F=327.0Hz),126.3,128.3,128.6,140.6; 19F−NMR(376MHz,CDCl)δ−15.5(3F,s); MS(ESI−TOF)m/z 289 [M+Na]; HRMS calcd for C1113NaOS [M+Na],289.0486;found,289.0476. Colorless liquid; IR (neat) v 2938, 1446, 1360, 1194, 1119 cm −1 ; 1 H-NMR (400 MHz, CDCl 3 ) δ 1.79-1.88 (2H, m), 1.92-2.03 (2H, m), 2.69 (2H, t, J = 7.4 Hz), 3.21 (2H, t, J = 8.0 Hz), 7.17 (2H, d, J = 8.2) Hz), 7.19-7.25 (1H, m), 7.27-7.34 (2H, m); 13 C-NMR (100 MHz, CDCl 3 ) δ 20.3, 30.0, 35.1. 49.5, 119.5 (q, J C-F = 327.0 Hz), 126.3, 128.3, 128.6, 140.6; 19 F-NMR (376 MHz, CDCl 3 ) δ-15 .5 (3F, s); MS (ESI-TOF) m / z 289 [M + N a] + ; HRMS calcd for C 11 H 13 F 3 NaO 2 S [M + Na] + , 289.0486; found, 289.0476.

本発明に係るヒドリド還元剤に代えて、接触還元条件を用いて反応を行うと、反応基質、生成物の過剰還元反応が進行し、目的の化合物(2)である(E)−(4,4−ビス(トリフルオロメチルスルホニル)ブト−1−エニル)ベンゼン(2a)は得られなかった。   When the reaction is carried out using catalytic reduction conditions instead of the hydride reducing agent according to the present invention, an excessive reduction reaction of the reaction substrate and product proceeds, and the target compound (2) (E)-(4, 4-Bis (trifluoromethylsulfonyl) but-1-enyl) benzene (2a) was not obtained.


[実施例5]
[水素化ホウ素ナトリウムを還元剤に用いた(E)−1−(4,4−ビス(トリフルオロメチルスルホニル)ブト−1−エン−1−イル)―4−メチルベンゼン(2b)の製造]
反応式を以下に示す。

Figure 0005998948

[Example 5]
[Production of (E) -1- (4,4-bis (trifluoromethylsulfonyl) but-1-en-1-yl) -4-methylbenzene (2b) using sodium borohydride as a reducing agent]
The reaction formula is shown below.
Figure 0005998948

酢酸エチル9.0mlに化合物(1)である(E)−1−(4,4−ビス(トリフルオロメチル)スルホニル)ブタ−1,3−ジエニル)−4−メチルベンゼン(1b)119.6mgを溶解させた後、−78℃に冷却した。次いで還元剤である水素化ホウ素ナトリウム22.2mgをゆっくりと加えた後、同温で1.5時間攪拌した。撹拌後の反応液を室温まで昇温した後、10%塩酸10mlを加え、有機層と水層を分離した。分離した水層をジエチルエーテル15mlを用いて3回抽出操作を行った。得られた有機層を硫酸ナトリウム500mgで脱水乾燥後、ろ過した。減圧下、ろ液を濃縮した後、クーゲルロール蒸留装置を用い、温度160℃、圧力6.57Paの条件で蒸留精製し、化合物(2)としての(E)−1−(4,4−ビス(トリフルオロメチルスルホニル)ブト−1−エン−1−イル)―4−メチルベンゼン(2b)119.6mgを収率99%で得た。赤外線吸収スペクトル(IR)、核磁気共鳴スペクトル(NMR)、質量分析(MS)、元素分析の測定結果を以下に示す。   Compound (1) (E) -1- (4,4-bis (trifluoromethyl) sulfonyl) buta-1,3-dienyl) -4-methylbenzene (1b) 119.6 mg in 9.0 ml of ethyl acetate Was dissolved, and then cooled to -78 ° C. Next, 22.2 mg of sodium borohydride as a reducing agent was slowly added, and the mixture was stirred at the same temperature for 1.5 hours. The temperature of the stirred reaction solution was raised to room temperature, 10 ml of 10% hydrochloric acid was added, and the organic layer and the aqueous layer were separated. The separated aqueous layer was extracted three times with 15 ml of diethyl ether. The obtained organic layer was dehydrated and dried with 500 mg of sodium sulfate and then filtered. After concentrating the filtrate under reduced pressure, it was purified by distillation using a Kugelrohr distillation apparatus under the conditions of a temperature of 160 ° C. and a pressure of 6.57 Pa to obtain (E) -1- (4,4-bis as the compound (2). 119.6 mg of (trifluoromethylsulfonyl) but-1-en-1-yl) -4-methylbenzene (2b) was obtained with a yield of 99%. The measurement results of infrared absorption spectrum (IR), nuclear magnetic resonance spectrum (NMR), mass spectrometry (MS), and elemental analysis are shown below.

無色結晶; Mp.69.0−71.0℃;IR (ATR) 2942,1514,1377,1203,1168,1103,698,642,592,470cm−1H−NMR(400 MHz,CDCl)δ2.32 (3H,s),3.32−3.39(2H,m),4.92(1H,t,J=5.8Hz),6.14(1H,dt,J=15.7,7.3Hz),6.63(1H,d,J=15.7Hz),7.12(2H,d,J=8.0Hz),7.25(2H,d,J=8.0Hz); 13C−NMR(100MHz,CDCl)δ2.11,29.0,77.7,118.3,119.3(q,JC−F=328.0Hz),124.2,129.4,132.7,137.3,138.7; 19F−NMR(376MHz,CDCl)δ−10.2(6F,s); MS(ESI−TOF)m/z 433[M+Na]; HRMS calcd for C1512NaO[M+Na],432.9979;found,432,9981. Anal.Calcd for C1512:C,38.05;H,2.95.Found:C,37.84;H,3.09. Colorless crystals; Mp. 69.0-71.0 ° C .; IR (ATR) v 2942, 1514, 1377, 1203, 1168, 1103, 698, 642, 592, 470 cm −1 ; 1 H-NMR (400 MHz, CDCl 3 ) δ 2.32. (3H, s), 3.32-3.39 (2H, m), 4.92 (1H, t, J = 5.8 Hz), 6.14 (1H, dt, J = 15.7, 7.). 13 C), 6.63 (1H, d, J = 15.7 Hz), 7.12 (2H, d, J = 8.0 Hz), 7.25 (2H, d, J = 8.0 Hz); 13 C -NMR (100MHz, CDCl 3) δ2.11,29.0,77.7,118.3,119.3 (q, J C-F = 328.0Hz), 124.2,129.4,132. 7,137.3,138.7; 19 F-NMR (376MHz , C Cl 3) δ-10.2 (6F , s); MS (ESI-TOF) m / z 433 [M + Na] +; HRMS calcd for C 15 H 12 F 6 NaO 4 S 2 [M + Na] +, 432.9979 Found, 432, 9981. Anal. Calcd for C 15 H 12 F 6 O 4 S 2: C, 38.05; H, 2.95. Found: C, 37.84; H, 3.09.


[実施例6]
[水素化ホウ素ナトリウムを還元剤に用いた(E)−1−(4,4−ビス(トリフルオロメチルスルホニル)ブト−1−エン−1−イル)―3−エトキシベンゼン(2c)の製造]
反応式を以下に示す。

Figure 0005998948

[Example 6]
[Production of (E) -1- (4,4-bis (trifluoromethylsulfonyl) but-1-en-1-yl) -3-ethoxybenzene (2c) using sodium borohydride as a reducing agent]
The reaction formula is shown below.
Figure 0005998948

酢酸エチル9.0mlに化合物(1)である(E)−1−(4,4−ビス(トリフルオロメチル)スルホニル)ブタ−1,3−ジエニル)−3−エトキシベンゼン(1c)135.4mgを溶解させた後、−78℃に冷却した。次いで還元剤である水素化ホウ素ナトリウム23.4mgをゆっくりと加えた後、同温で1時間攪拌した。撹拌後の反応液を室温まで昇温した後、10%塩酸10mlを加え、有機層と水層を分離した。分離した水層をジエチルエーテル15mlを用いて3回抽出操作を行った。得られた有機層を硫酸ナトリウム500mgを加え脱水乾燥後、ろ過した。減圧下、ろ液を濃縮した後、クーゲルロール蒸留装置を用い、温度190℃、圧力6.57Paの条件で蒸留精製し、化合物(2)としての(E)−1−(4,4−ビス(トリフルオロメチルスルホニル)ブト−1−エン−1−イル)―3−エトキシベンゼン(2c)135.5mgを収率99%で得た。赤外線吸収スペクトル(IR)、核磁気共鳴スペクトル(NMR)、質量分析(MS)、元素分析の測定結果を以下に示す。   Compound (1) (E) -1- (4,4-bis (trifluoromethyl) sulfonyl) buta-1,3-dienyl) -3-ethoxybenzene (1c) 135.4 mg in 9.0 ml of ethyl acetate Was dissolved, and then cooled to -78 ° C. Next, 23.4 mg of sodium borohydride as a reducing agent was slowly added, and the mixture was stirred at the same temperature for 1 hour. The temperature of the stirred reaction solution was raised to room temperature, 10 ml of 10% hydrochloric acid was added, and the organic layer and the aqueous layer were separated. The separated aqueous layer was extracted three times with 15 ml of diethyl ether. To the obtained organic layer, 500 mg of sodium sulfate was added, dehydrated and dried, followed by filtration. After concentrating the filtrate under reduced pressure, it was purified by distillation using a Kugelrohr distillation apparatus under conditions of a temperature of 190 ° C. and a pressure of 6.57 Pa, and (E) -1- (4,4-bis as the compound (2). 135.5 mg of (trifluoromethylsulfonyl) but-1-en-1-yl) -3-ethoxybenzene (2c) was obtained with a yield of 99%. The measurement results of infrared absorption spectrum (IR), nuclear magnetic resonance spectrum (NMR), mass spectrometry (MS), and elemental analysis are shown below.

無色結晶; Mp.56.0−57.5℃;IR (ATR) 2930,1581,1377,1205,1106,686,664,578,520,495cm−1H−NMR(400 MHz, CDCl)δ1.43 (3H, t,J=7.0Hz),3.36−3.41 (2H, m),4.05 (2H,q,J=7.0Hz),4.96(1H,t,J=5.8Hz),6.21 (1H,dt,J=15.7,7.3 Hz),6.66 (1H,d,J=15.7Hz),6.85(1H,dd,J=8.1,2.2Hz),6.91(1H,brs)6.96(1H,d,J=7.7Hz),7.21−7.30(1H,m); 13C−NMR(100MHz,CDCl)δ14.7,29.0,63.5,77.7,112.7,114.3,119.1,119.3(q,JC−F=330.0Hz),119.6,129.7,136.9,137.3,159.3; 19F−NMR(376MHz,CDCl)δ−10.1(6F,s); MS(ESI−TOF)m/z 463[M+Na]; HRMS calcd for C1414NaO[M+Na],463.0085;found,463.0074. Anal.Calcd for C1414:C,38.18;H,3.20.Found:C,38.23;H,3.20. Colorless crystals; Mp. 56.0-57.5 ° C .; IR (ATR) v 2930, 1581, 1377, 1205, 1106, 686, 664, 578, 520, 495 cm −1 ; 1 H-NMR (400 MHz, CDCl 3 ) δ 1.43 (3H, t, J = 7.0 Hz), 3.36-3.41 (2H, m), 4.05 (2H, q, J = 7.0 Hz), 4.96 (1H, t, J = 5.8 Hz), 6.21 (1H, dt, J = 15.7, 7.3 Hz), 6.66 (1H, d, J = 15.7 Hz), 6.85 (1H, dd, J = 8.1, 2.2 Hz), 6.91 (1 H, brs) 6.96 (1 H, d, J = 7.7 Hz), 7.21-7.30 (1 H, m); 13 C-NMR ( 100MHz, CDCl 3) δ14.7,29.0,63.5,77.7,112.7,114.3,119. , 119.3 (q, J C- F = 330.0Hz), 119.6,129.7,136.9,137.3,159.3; 19 F-NMR (376MHz, CDCl 3) δ-10 MS (ESI-TOF) m / z 463 [M + Na] + ; HRMS calcd for C 14 H 14 F 6 NaO 5 S 2 [M + Na] + , 463.0085; found, 463.0074 . Anal. Calcd for C 14 H 14 F 6 O 5 S 2: C, 38.18; H, 3.20. Found: C, 38.23; H, 3.20.


[実施例7]
[水素化ホウ素ナトリウムを還元剤に用いた(E)−1−(4,4−ビス(トリフルオロメチルスルホニル)ブト−1−エン−1−イル)―4−クロロベンゼン(2d)の製造]
反応式を以下に示す。

Figure 0005998948

[Example 7]
[Production of (E) -1- (4,4-bis (trifluoromethylsulfonyl) but-1-en-1-yl) -4-chlorobenzene (2d) using sodium borohydride as a reducing agent]
The reaction formula is shown below.
Figure 0005998948

酢酸エチル6.0mlに化合物(1)である(E)−1−(4,4−ビス(トリフルオロメチルスルホニル)ブタ−1,3−ジエニル)−4−クロロベンゼン(1d)86.3mgを溶解させた後、−78℃に冷却した。次いで還元剤である水素化ホウ素ナトリウム15.2mgをゆっくりと加えた後、同温で1時間攪拌した。撹拌後の反応液を室温まで昇温した後、10%塩酸10mlを加え、有機層と水層を分離した。分離した水層をジエチルエーテル15mlを用いて3回抽出操作を行った。得られた有機層を硫酸ナトリウム500mgで脱水乾燥後、ろ過した。減圧下、ろ液を濃縮した後、クーゲルロール蒸留装置を用い、温度170℃、圧力5.23Paの条件で蒸留精製し、化合物(2)としての(E)−1−(4,4−ビス(トリフルオロメチルスルホニル)ブト−1−エン−1−イル)−4−クロロベンゼン(2d)76.5mgを収率88%で得た。赤外線吸収スペクトル(IR)、核磁気共鳴スペクトル(NMR)、質量分析(MS)、元素分析の測定結果を以下に示す。   Dissolve 86.3 mg of compound (1) (E) -1- (4,4-bis (trifluoromethylsulfonyl) buta-1,3-dienyl) -4-chlorobenzene (1d) in 6.0 ml of ethyl acetate. And then cooled to -78 ° C. Next, 15.2 mg of sodium borohydride as a reducing agent was slowly added, and the mixture was stirred at the same temperature for 1 hour. The temperature of the stirred reaction solution was raised to room temperature, 10 ml of 10% hydrochloric acid was added, and the organic layer and the aqueous layer were separated. The separated aqueous layer was extracted three times with 15 ml of diethyl ether. The obtained organic layer was dehydrated and dried with 500 mg of sodium sulfate and then filtered. After concentrating the filtrate under reduced pressure, it was purified by distillation using a Kugelrohr distillation apparatus under conditions of a temperature of 170 ° C. and a pressure of 5.23 Pa, and (E) -1- (4,4-bis as the compound (2). 76.5 mg of (trifluoromethylsulfonyl) but-1-en-1-yl) -4-chlorobenzene (2d) was obtained with a yield of 88%. The measurement results of infrared absorption spectrum (IR), nuclear magnetic resonance spectrum (NMR), mass spectrometry (MS), and elemental analysis are shown below.

無色結晶; Mp.71.5−72.5℃; IR (ATR) 2943,1492,1377,1205,1102,970,590,470cm−1H−NMR(400MHz,CDCl)δ3.30−3.39(2H,t,J=7.0Hz),4.89(1H,t,J=5.6Hz),6.16(1H,dt,J=15.6,7.2Hz),6.60(1H,d,J=15.6Hz),7.27−7.31(4H,m); 13C−NMR(100MHz,CDCl)δ29.0,77.3,119.2(q,JC−F=328.0Hz),120.0,127.8,128.9,134.0,134.4,136.2; 19F−NMR(376MHz,CDCl)δ−10.1(6F,s); MS(ESI−TOF)m/z 475[M−H+2Na],477[M+2−H+2Na]; HRMS calcd for C12ClFNa[M−H+2Na],474.9252; found,474.9241. Anal. Calcd for C12ClF:C,33.46;H,2.11.Found:C,33.69;H,2.28. Colorless crystals; Mp. IR (ATR) v 2943, 1492, 1377, 1205, 1102, 970, 590, 470 cm −1 ; 1 H-NMR (400 MHz, CDCl 3 ) δ 3.30-3.39 (71.5-72.5 ° C.) 2H, t, J = 7.0 Hz), 4.89 (1H, t, J = 5.6 Hz), 6.16 (1H, dt, J = 15.6, 7.2 Hz), 6.60 (1H , D, J = 15.6 Hz), 7.27-7.31 (4H, m); 13 C-NMR (100 MHz, CDCl 3 ) δ 29.0, 77.3, 119.2 (q, J C- F = 328.0 Hz), 120.0, 127.8, 128.9, 134.0, 134.4, 136.2; 19 F-NMR (376 MHz, CDCl 3 ) δ-10.1 (6F, s ); MS (ESI-TOF) m / z 475 [M H + 2Na] +, 477 [ M + 2-H + 2Na] +; HRMS calcd for C 12 H 8 ClF 6 Na 2 O 4 S 2 [M-H + 2Na] +, 474.9252; found, 474.9241. Anal. Calcd for C 12 H 9 ClF 6 O 4 S 2: C, 33.46; H, 2.11. Found: C, 33.69; H, 2.28.


[実施例8]
[水素化ホウ素ナトリウムを還元剤に用いた(E)−1−(4,4−ビス((トリフルオロメチル)スルホニル)ブト−1−エン−1−イル)―4−ブロモベンゼン(2e)の製造]
反応式を以下に示す。

Figure 0005998948

[Example 8]
[(E) -1- (4,4-bis ((trifluoromethyl) sulfonyl) but-1-en-1-yl) -4-bromobenzene (2e) using sodium borohydride as a reducing agent] Manufacturing]
The reaction formula is shown below.
Figure 0005998948

酢酸エチル6.0mlに化合物(1)である(E)−1−(4,4−ビス(トリフルオロメチルスルホニル)ブタ−1,3−ジエニル)−4−ブロモベンゼン(1e)94.7mgを溶解させた後、−78℃に冷却した。次いで還元剤である水素化ホウ素ナトリウム15.1mgをゆっくりと加えた後、同温で1.5時間攪拌した。撹拌後の反応液を室温まで昇温した後、10%塩酸10mlを加え、有機層と水層を分離した。分離した水層をジエチルエーテル15mlを用いて3回抽出操作を行った。得られた有機層を硫酸ナトリウム500mgで脱水乾燥後、ろ過した。減圧下、ろ液を濃縮した後、クーゲルロール蒸留装置を用い、温度210℃、圧力6.57Paの条件で蒸留精製し、化合物(2)としての(E)−1−(4,4−ビス(トリフルオロメチルスルホニル)ブト−1−エン−1−イル)−4−ブロモベンゼン(2e)68.7mgを収率72%で得た。赤外線吸収スペクトル(IR)、核磁気共鳴スペクトル(NMR)、質量分析(MS)、元素分析の測定結果を以下に示す。   To 4.7 ml of ethyl acetate, 94.7 mg of (E) -1- (4,4-bis (trifluoromethylsulfonyl) buta-1,3-dienyl) -4-bromobenzene (1e) (1) is added. After dissolving, it was cooled to -78 ° C. Next, after slowly adding 15.1 mg of sodium borohydride as a reducing agent, the mixture was stirred at the same temperature for 1.5 hours. The temperature of the stirred reaction solution was raised to room temperature, 10 ml of 10% hydrochloric acid was added, and the organic layer and the aqueous layer were separated. The separated aqueous layer was extracted three times with 15 ml of diethyl ether. The obtained organic layer was dehydrated and dried with 500 mg of sodium sulfate and then filtered. After concentrating the filtrate under reduced pressure, it was purified by distillation using a Kugelrohr distillation apparatus under conditions of a temperature of 210 ° C. and a pressure of 6.57 Pa, and (E) -1- (4,4-bis as the compound (2). 68.7 mg of (trifluoromethylsulfonyl) but-1-en-1-yl) -4-bromobenzene (2e) was obtained with a yield of 72%. The measurement results of infrared absorption spectrum (IR), nuclear magnetic resonance spectrum (NMR), mass spectrometry (MS), and elemental analysis are shown below.

無色結晶; Mp.81.8−83.5℃; IR (ATR) 2943,1487,1424,1396,1203,1102,645,587cm−1H−NMR(400MHz,CDCl)δ3.35−3.42(2H,m),4.93(1H,t,J=5.6Hz),6.23(1H,dt,J=15.7,7.7Hz),6.63(1H,d,J=15.7Hz),7.23(2H,d,J=8.4Hz),7.46(2H,d,J=8.4Hz); 13C−NMR(100MHz,CDCl)δ29.0,77.3,119.2(q,JC−F=328.0Hz),120.1,122.6,128.1,131.9,134.4,136.3; 19F−NMR(376MHz,CDCl)δ−10.1(6F,s); MS(ESI−TOF)m/z 519[M−H+2Na],521[M+2−H+2Na]; HRMS calcd for C12BrFNa[M−H+2Na],518.8747; found,518.8734. Anal. Calcd for C12BrF:C,30.33;H,1.91.Found:C,30.56;H,2.20. Colorless crystals; Mp. IR (ATR) v 2943, 1487, 1424, 1396, 1203, 1102, 645, 587 cm −1 ; 1 H-NMR (400 MHz, CDCl 3 ) δ 3.35-3.42 (81.8-83.5 ° C.) 2H, m), 4.93 (1H, t, J = 5.6 Hz), 6.23 (1H, dt, J = 15.7, 7.7 Hz), 6.63 (1H, d, J = 15) 7 Hz), 7.23 (2H, d, J = 8.4 Hz), 7.46 (2H, d, J = 8.4 Hz); 13 C-NMR (100 MHz, CDCl 3 ) δ 29.0, 77. 3, 119.2 (q, J C-F = 328.0 Hz), 120.1, 122.6, 128.1, 131.9, 134.4, 136.3; 19 F-NMR (376 MHz, CDCl 3) δ-10.1 (6F, s); MS (E I-TOF) m / z 519 [M-H + 2Na] +, 521 [M + 2-H + 2Na] +; HRMS calcd for C 12 H 8 BrF 6 Na 2 O 4 S 2 [M-H + 2Na] +, 518.8747; found , 5188.8734. Anal. Calcd for C 12 H 9 BrF 6 O 4 S 2: C, 30.33; H, 1.91. Found: C, 30.56; H, 2.20.


[実施例9]
[水素化ホウ素ナトリウムを還元剤に用いた(E)−1−(4,4−ビス(トリフルオロメチルスルホニル)ブト−1−エン−1−イル)―2−ブロモベンゼン(2f)の製造]
反応式を以下に示す。

Figure 0005998948

[Example 9]
[Production of (E) -1- (4,4-bis (trifluoromethylsulfonyl) but-1-en-1-yl) -2-bromobenzene (2f) using sodium borohydride as a reducing agent]
The reaction formula is shown below.
Figure 0005998948

酢酸エチル6.0mlに化合物(1)である(E)−1−(4,4−ビス(トリフルオロメチル)スルホニル)ブタ−1,3−ジエニル)−2−ブロモベンゼン(1f)87.8mgを溶解させた後、−78℃に冷却した。次いで還元剤である水素化ホウ素ナトリウム14.0mgをゆっくりと加えた後、同温で1時間攪拌した。撹拌後の反応液を室温まで昇温した後、10%塩酸10mlを加え、有機層と水層を分離した。分離した水層をジエチルエーテル15mlを用いて3回抽出操作を行った。得られた有機層を硫酸ナトリウム500mgで脱水乾燥後、ろ過した。減圧下、ろ液を濃縮した後、クーゲルロール蒸留装置を用い、温度160℃、圧力6.57Paの条件で蒸留精製し、化合物(2)としての(E)−1−(4,4−ビス(トリフルオロメチル)スルホニル)ブト−1−エン−1−イル)−2−ブロモベンゼン(2f)79.5mgを収率97%で得た。赤外線吸収スペクトル(IR)、核磁気共鳴スペクトル(NMR)、質量分析(MS)、元素分析の測定結果を以下に示す。   Compound (1) (E) -1- (4,4-bis (trifluoromethyl) sulfonyl) buta-1,3-dienyl) -2-bromobenzene (1f) 87.8 mg in 6.0 ml of ethyl acetate Was dissolved, and then cooled to -78 ° C. Next, 14.0 mg of sodium borohydride as a reducing agent was slowly added, followed by stirring at the same temperature for 1 hour. The temperature of the stirred reaction solution was raised to room temperature, 10 ml of 10% hydrochloric acid was added, and the organic layer and the aqueous layer were separated. The separated aqueous layer was extracted three times with 15 ml of diethyl ether. The obtained organic layer was dehydrated and dried with 500 mg of sodium sulfate and then filtered. After concentrating the filtrate under reduced pressure, it was purified by distillation using a Kugelrohr distillation apparatus under the conditions of a temperature of 160 ° C. and a pressure of 6.57 Pa to obtain (E) -1- (4,4-bis as the compound (2). 79.5 mg of (trifluoromethyl) sulfonyl) but-1-en-1-yl) -2-bromobenzene (2f) was obtained with a yield of 97%. The measurement results of infrared absorption spectrum (IR), nuclear magnetic resonance spectrum (NMR), mass spectrometry (MS), and elemental analysis are shown below.

無色結晶; Mp.57.8−59.5℃; IR (ATR) 2931,1376,1202,1105,694,660,592,491cm−1H−NMR(400MHz,CDCl)δ3.42−3.48(2H,m),4.96(1H,t,J=5.7Hz),6.19(1H,dt,J=15.6,7.6Hz),7.05(1H,d,J=15.6Hz),7.16(1H,dt,J=7.8,1.4Hz),7.30(1H,t,J=7.8Hz),7.48(1H,brd,J=7.8Hz),7.57(1H,brd,J=7.8Hz); 13C−NMR(100MHz,CDCl)δ29.1,77.3,119.2(q,JC−F=330.0Hz),122.5,123.6,127.3,127.7,129.8,133.0,135.6,136.2; 19F−NMR(376MHz,CDCl)δ−10.1(6F,s); MS(ESI−TOF)m/z 497[M+Na],499[M+2+Na]; HRMS calcd for C12BrFNaO[M+Na],496.8928; found,496.8928. Anal. Calcd for C12BrF:C,30.33;H,1.91.Found:C,30.46;H,2.17. Colorless crystals; Mp. IR (ATR) v 2931, 1376, 1202, 1105, 694, 660, 592, 491 cm −1 ; 1 H-NMR (400 MHz, CDCl 3 ) δ 3.42-3.48 (57.8-59.5 ° C.) 2H, m), 4.96 (1H, t, J = 5.7 Hz), 6.19 (1H, dt, J = 15.6, 7.6 Hz), 7.05 (1H, d, J = 15) .6 Hz), 7.16 (1 H, dt, J = 7.8, 1.4 Hz), 7.30 (1 H, t, J = 7.8 Hz), 7.48 (1 H, brd, J = 7. 8 Hz), 7.57 (1H, brd, J = 7.8 Hz); 13 C-NMR (100 MHz, CDCl 3 ) δ 29.1, 77.3, 119.2 (q, J C-F = 330.0 Hz) ), 122.5, 123.6, 127.3, 127.7, 129.8, 1 19 F-NMR (376 MHz, CDCl 3 ) δ-10.1 (6F, s); MS (ESI-TOF) m / z 497 [M + Na] + , 499 [33.0, 135.6, 136.2; M + 2 + Na] + ; HRMS calcd for C 12 H 9 BrF 6 NaO 4 S 2 [M + Na] + , 4968.828; found, 4968.828. Anal. Calcd for C 12 H 9 BrF 6 O 4 S 2: C, 30.33; H, 1.91. Found: C, 30.46; H, 2.17.


[実施例10]
[水素化ホウ素ナトリウムを還元剤に用いた(E)−1−(4,4−ビス(トリフルオロメチルスルホニル)ブト−1−エン−1−イル)―4−ニトロベンゼン(2g)の製造]
反応式を以下に示す。

Figure 0005998948

[Example 10]
[Production of (E) -1- (4,4-bis (trifluoromethylsulfonyl) but-1-en-1-yl) -4-nitrobenzene (2 g) using sodium borohydride as a reducing agent]
The reaction formula is shown below.
Figure 0005998948

酢酸エチル9.0mlに化合物(1)である(E)−1−(4,4−ビス(トリフルオロメチルスルホニル)ブタ−1,3−ジエニル)−4−ニトロベンゼン(1g)118.9mgを溶解させた後、−78℃に冷却した。次いで還元剤である水素化ホウ素ナトリウム22.4mgをゆっくりと加えた後、同温で2時間攪拌した。撹拌後の反応液を室温まで昇温した後、10%塩酸10mlを加え、有機層と水層を分離した。分離した水層をジエチルエーテル15mlを用いて3回抽出操作を行った。得られた有機層を硫酸ナトリウム500mgで脱水乾燥後、ろ過した。減圧下、ろ液を濃縮した後、クーゲルロール蒸留装置を用い、温度210℃、圧力6.57Paの条件で蒸留精製し、化合物(2)としての(E)−1−(4,4−ビス(トリフルオロメチルスルホニル)ブト−1−エン−1−イル)−4−ニトロベンゼン(2g)118.9mgを収率91%で得た。赤外線吸収スペクトル(IR)、核磁気共鳴スペクトル(NMR)、質量分析(MS)、元素分析の測定結果を以下に示す。   Dissolve 118.9 mg of (E) -1- (4,4-bis (trifluoromethylsulfonyl) buta-1,3-dienyl) -4-nitrobenzene (1 g) as compound (1) in 9.0 ml of ethyl acetate. And then cooled to -78 ° C. Next, 22.4 mg of sodium borohydride as a reducing agent was slowly added, and the mixture was stirred at the same temperature for 2 hours. The temperature of the stirred reaction solution was raised to room temperature, 10 ml of 10% hydrochloric acid was added, and the organic layer and the aqueous layer were separated. The separated aqueous layer was extracted three times with 15 ml of diethyl ether. The obtained organic layer was dehydrated and dried with 500 mg of sodium sulfate and then filtered. After concentrating the filtrate under reduced pressure, it was purified by distillation using a Kugelrohr distillation apparatus under conditions of a temperature of 210 ° C. and a pressure of 6.57 Pa, and (E) -1- (4,4-bis as the compound (2). 118.9 mg of (trifluoromethylsulfonyl) but-1-en-1-yl) -4-nitrobenzene (2 g) was obtained with a yield of 91%. The measurement results of infrared absorption spectrum (IR), nuclear magnetic resonance spectrum (NMR), mass spectrometry (MS), and elemental analysis are shown below.

無色結晶; Mp.75.5−77.5℃; IR (ATR) 2924,1598,1517,1382,1343,1202,1101,588,485cm−1H−NMR(400MHz,CDCl)δ3.49−3.50(2H,m),5.09(1H,t,J=4.6Hz),6.44(1H,dt,J=15.8,7.7Hz),6.77(1H,t,J=15.8Hz),7.51(2H,d,J=8.8Hz),8.17(2H,d,J=8.8Hz); 13C−NMR(100MHz,CDCl)δ29.1,77.3,119.2(q,JC−F=328.0Hz),124.1,124.2,127.3,135.2,141.8,147.5; 19F−NMR(376MHz,CDCl)δ−10.1(6F,s); MS(ESI−TOF)m/z 486[M−H+2Na]; HRMS calcd for C12NNaO[M−H+2Na],485.9493; found,485.9482. Anal. Calcd for C12NO:C,32.66;H,2.06;N,3.17.Found:C,33.03;H,2.33;N,3.21. Colorless crystals; Mp. IR (ATR) v 2924, 1598, 1517, 1382, 1343, 1202, 1101, 588, 485 cm −1 ; 1 H-NMR (400 MHz, CDCl 3 ) δ 3.49-3. 50 (2H, m), 5.09 (1H, t, J = 4.6 Hz), 6.44 (1H, dt, J = 15.8, 7.7 Hz), 6.77 (1H, t, J = 15.8 Hz), 7.51 (2H, d, J = 8.8 Hz), 8.17 (2H, d, J = 8.8 Hz); 13 C-NMR (100 MHz, CDCl 3 ) δ 29.1. 77.3, 119.2 (q, J CF = 328.0 Hz), 124.1, 124.2, 127.3, 135.2, 141.8, 147.5; 19 F-NMR (376 MHz) , CDCl 3 ) δ-10.1 (6F, s); MS (ESI-TOF) m / z 486 [M-H + 2Na] + ; HRMS calcd for C 12 H 8 F 6 NNaO 6 S 2 [M-H + 2Na] + , 485.9493; found, 485.9482. Anal. Calcd for C 12 H 9 F 6 NO 6 S 2: C, 32.66; H, 2.06; N, 3.17. Found: C, 33.03; H, 2.33; N, 3.21.


[実施例11]
[水素化ホウ素ナトリウムを還元剤に用いた(E)−2−(4,4−ビス(トリフルオロメチルスルホニル)ブト−1−エン−1−イル)―1−ブロモ−4−フルオロベンゼン(2h)の製造]
反応式を以下に示す。

Figure 0005998948

[Example 11]
[(E) -2- (4,4-bis (trifluoromethylsulfonyl) but-1-en-1-yl) -1-bromo-4-fluorobenzene (2h using sodium borohydride as a reducing agent] )Manufacturing of]
The reaction formula is shown below.
Figure 0005998948

酢酸エチル15.0mlに化合物(1)である(E)−2−(4,4−ビス(トリフルオロメチルスルホニル)ブタ−1,3−ジエニル)−1−ブロモ−4−フルオロベンゼン(1h)245.9mgを溶解させた後、0℃に冷却した。次いで還元剤である水素化ホウ素ナトリウム22.4mgをゆっくりと加えた後、同温で1.5時間攪拌した。撹拌後の反応液に10%塩酸10mlを加え、有機層と水層を分離した。分離した水層をジエチルエーテル15mlを用いて3回抽出操作を行った。得られた有機層を硫酸ナトリウム500mgで脱水乾燥後、ろ過した。減圧下、ろ液を濃縮した後、クーゲルロール蒸留装置を用い、温度210℃、圧力3.94Paの条件で蒸留精製し、化合物(2)としての(E)−2−(4,4−ビス(トリフルオロメチルスルホニル)ブト−1−エン−1−イル)−1−ブロモ−4−フルオロベンゼン(2h)198.7mgを収率80%で得た。赤外線吸収スペクトル(IR)、核磁気共鳴スペクトル(NMR)、質量分析(MS)の測定結果を以下に示す。   Compound (1) (E) -2- (4,4-bis (trifluoromethylsulfonyl) buta-1,3-dienyl) -1-bromo-4-fluorobenzene (1h) was added to 15.0 ml of ethyl acetate. After 245.9 mg was dissolved, it was cooled to 0 ° C. Next, 22.4 mg of sodium borohydride as a reducing agent was slowly added, and the mixture was stirred at the same temperature for 1.5 hours. 10 ml of 10% hydrochloric acid was added to the reaction solution after stirring, and the organic layer and the aqueous layer were separated. The separated aqueous layer was extracted three times with 15 ml of diethyl ether. The obtained organic layer was dehydrated and dried with 500 mg of sodium sulfate and then filtered. After concentrating the filtrate under reduced pressure, it was purified by distillation under the conditions of a temperature of 210 ° C. and a pressure of 3.94 Pa using a Kugelrohr distillation apparatus, and (E) -2- (4,4-bis as the compound (2). 198.7 mg of (trifluoromethylsulfonyl) but-1-en-1-yl) -1-bromo-4-fluorobenzene (2h) was obtained with a yield of 80%. The measurement results of infrared absorption spectrum (IR), nuclear magnetic resonance spectrum (NMR), and mass spectrometry (MS) are shown below.

無色結晶; Mp.53.0−54.8℃; IR (ATR) 2938,1465,1394,1203,1099,969,808,703,661,578,484,471cm−1H−NMR(400MHz,CDCl)δ3.41−3.48(2H,m),4.97(1H,t,J=5.6Hz),6.19(1H,dt,J=15.6,7.6Hz),6.91(1H,td,JH−F=8.6Hz,JH−H=8.6,3.0Hz),7.00(1H,d,J=15.6Hz),7.18(1H,dd,JH−F=9.9Hz,JH−H=3.0Hz),7.52(1H,dd,JH−H=8.5Hz,JH−F=5.3Hz); 13C−NMR(100MHz,CDCl)δ29.0,77.0,114.1(d,JC−F=23.6Hz),117.1(d,JC−F=22.7Hz),118.5(d,JC−F=3.2Hz)119.3(2C,q,JC−F=330.0Hz),123.7,134.3(d,JC−F=8.1Hz),135.5,137.3(d,JC−F=7.9Hz),162.1(d,JC−F=246.0Hz); 19F−NMR(376MHz,CDCl)δ−51.3(1F,m)−10.1(6F,s); MS(ESI−TOF)m/z 537[M−H+2Na],539[M+2−H+2Na]; HRMS calcd for C12Na[M−H+2Na],536.8653; found,536.8632. Colorless crystals; Mp. IR (ATR) v 2938, 1465, 1394, 1203, 1099, 969, 808, 703, 661, 578, 484, 471 cm −1 ; 1 H-NMR (400 MHz, CDCl 3 ) 53.0-54.8 ° C. δ 3.41-3.48 (2H, m), 4.97 (1H, t, J = 5.6 Hz), 6.19 (1H, dt, J = 15.6, 7.6 Hz), 6.91 (1H, td, JH-F = 8.6 Hz, JH-H = 8.6, 3.0 Hz), 7.00 (1H, d, J = 15.6 Hz), 7.18 (1H, dd , J H-F = 9.9 Hz, J H-H = 3.0 Hz), 7.52 (1H, dd, J H-H = 8.5 Hz, J H-F = 5.3 Hz); 13 C- NMR (100MHz, CDCl 3) δ29.0,77.0,114.1 (d, J C- = 23.6Hz), 117.1 (d, J C-F = 22.7Hz), 118.5 (d, J C-F = 3.2Hz) 119.3 (2C, q, J C-F = 330.0 Hz), 123.7, 134.3 (d, J C-F = 8.1 Hz), 135.5, 137.3 (d, J C-F = 7.9 Hz), 162.1 (d , J C-F = 246.0 Hz); 19 F-NMR (376 MHz, CDCl 3 ) δ-51.3 (1F, m) -10. 1 (6F, s); MS (ESI-TOF) m / z 537 [M-H + 2Na] + , 539 [M + 2-H + 2Na] + ; HRMS calcd for C 12 H 7 F 7 Na 2 O 4 S 2 [M-H + 2Na] + , 536.8653; found, 536.8632.


[実施例12]
[水素化ホウ素ナトリウムを還元剤に用いた(E)−メチル−3−(2−((E)−(4,4−ビス(トリフルオロメチルスルホニル)ブト−1−エン−1−イル)フェニル)アクリレート(2i)の製造]
反応式を以下に示す。

Figure 0005998948

[Example 12]
[(E) -Methyl-3- (2-((E)-(4,4-bis (trifluoromethylsulfonyl) but-1-en-1-yl) phenyl using sodium borohydride as a reducing agent] ) Production of acrylate (2i)]
The reaction formula is shown below.
Figure 0005998948

酢酸エチル6.0mlに化合物(1)である(E)−メチル−3−(2−((E)−(4,4−ビス(トリフルオロメチルスルホニル)ブタ−1,3−ジエニル)フェニル)アクリレート(1i)93.2mgを溶解させた後、−78℃に冷却した。次いで還元剤である水素化ホウ素ナトリウム15.1mgをゆっくりと加えた後、同温で3時間攪拌した。撹拌後の反応液を室温まで昇温した後、10%塩酸10mlを加え、有機層と水層を分離した。分離した水層をジエチルエーテル15mlを用いて3回抽出操作を行った。得られた有機層を硫酸ナトリウム500mgで脱水乾燥後、ろ過した。減圧下、ろ液を濃縮した後、クーゲルロール蒸留装置を用い、温度210℃、圧力6.57Paの条件で蒸留精製し、化合物(2)としての(E)−メチル−3−(2−((E)−(4,4−ビス(トリフルオロメチルスルホニル)ブト−1−エン−1−イル)フェニル)アクリレート(2i)52.0mgを収率55%で得た。赤外線吸収スペクトル(IR)、核磁気共鳴スペクトル(NMR)、質量分析(MS)の測定結果を以下に示す。   Compound (1) (E) -methyl-3- (2-((E)-(4,4-bis (trifluoromethylsulfonyl) buta-1,3-dienyl) phenyl) in 6.0 ml of ethyl acetate After dissolving 93.2 mg of acrylate (1i), the mixture was cooled to −78 ° C. Next, 15.1 mg of sodium borohydride as a reducing agent was slowly added, followed by stirring at the same temperature for 3 hours. The reaction solution was warmed to room temperature, 10 ml of 10% hydrochloric acid was added to separate the organic layer and the aqueous layer, and the separated aqueous layer was extracted three times with 15 ml of diethyl ether. After dehydrating and drying with 500 mg of sodium sulfate, the filtrate was concentrated under reduced pressure, and then purified by distillation using a Kugelrohr distillation apparatus at a temperature of 210 ° C. and a pressure of 6.57 Pa as compound (2). ( ) -Methyl-3- (2-((E)-(4,4-bis (trifluoromethylsulfonyl) but-1-en-1-yl) phenyl) acrylate (2i) 52.0 mg 55% yield Measurement results of infrared absorption spectrum (IR), nuclear magnetic resonance spectrum (NMR), and mass spectrometry (MS) are shown below.

無色結晶; Mp.69.5−72.0℃; IR (ATR) 2097,1702,1631,1383,1319,1194,1101,959,644,585,483cm−1H−NMR(400MHz,CDCl)δ3.42−3.50(2H,m),3.82(3H,s),5.03(1H,t,J=5.5Hz),6.13(1H,dt,J=15.5,7.6Hz),6.34(1H,d,J=15.9Hz),7.04(1H,d,J=15.5Hz),7.30−7.40(2H,m),7.42(1H,d,J=7.5Hz),7.54(1H,d,J=7.4Hz),7.95(1H,d,J=15.9Hz); 13C−NMR(100MHz,CDCl)δ29.3,51.8,77.1,119.2(q,JC−F=328.1Hz),120.5,123.5,127.2,127.5,128.7,130.2,132.8,134.8,135.8,141.9,167.1; 19F−NMR(376MHz,CDCl)δ−10.1(6F,s); MS(ESI−TOF)m/z 481[M+H]; HRMS calcd for C1615[M+H],481.0214; found,481.0201. Colorless crystals; Mp. IR (ATR) v 2097, 1702, 1631, 1383, 1319, 1194, 1101, 959, 644, 585, 483 cm −1 ; 1 H-NMR (400 MHz, CDCl 3 ) δ3. 42-3.50 (2H, m), 3.82 (3H, s), 5.03 (1H, t, J = 5.5 Hz), 6.13 (1H, dt, J = 15.5, 7) .6 Hz), 6.34 (1 H, d, J = 15.9 Hz), 7.04 (1 H, d, J = 15.5 Hz), 7.30-7.40 (2 H, m), 7.42 (1H, d, J = 7.5 Hz), 7.54 (1H, d, J = 7.4 Hz), 7.95 (1H, d, J = 15.9 Hz); 13 C-NMR (100 MHz, CDCl 3 ) δ 29.3, 51.8, 77.1, 119.2 (q, J C−F = 328.1 Hz), 120.5, 123.5, 127.2, 127.5, 128.7, 130.2, 132.8, 134.8, 135.8, 141.9, 167.1; 19 F-NMR (376 MHz, CDCl 3 ) δ-10.1 (6F, s); MS (ESI-TOF) m / z 481 [M + H] + ; HRMS calcd for C 16 H 15 F 6 O 6 S 2 [M + H ] + , 481.0214; found, 481.0201.


[実施例13]
[水素化ホウ素ナトリウムを還元剤に用いた(E)−2−(4,4−ビス(トリフルオロメチルスルホニル)ブト−1−エン−1−イル)フラン(2j)の製造]
反応式を以下に示す。

Figure 0005998948

[Example 13]
[Production of (E) -2- (4,4-bis (trifluoromethylsulfonyl) but-1-en-1-yl) furan (2j) using sodium borohydride as a reducing agent]
The reaction formula is shown below.
Figure 0005998948

酢酸エチル6.0mlに化合物(1)である(E)−2−(4,4−ビス(トリフルオロメチルスルホニル)ブタ−1,3−ジエン−1−イル)フラン(1j)113.6mgを溶解させた後、−78℃に冷却した。次いで還元剤である水素化ホウ素ナトリウム22.7mgをゆっくりと加えた後、同温で1.5時間攪拌した。撹拌後の反応液を室温まで昇温した後、10%塩酸10mlを加え、有機層と水層を分離した。分離した水層をジエチルエーテル15mlを用いて3回抽出操作を行った。得られた有機層を硫酸ナトリウム500mgで脱水乾燥後、ろ過した。減圧下、ろ液を濃縮した後、クーゲルロール蒸留装置を用い、温度160℃、圧力6.57Paの条件で蒸留精製し、化合物(2)としての(E)−2−(4,4−ビス(トリフルオロメチルスルホニル)ブト−1−エン−1−イル)フラン(2j)80.7mgを収率71%で得た。赤外線吸収スペクトル(IR)、核磁気共鳴スペクトル(NMR)、質量分析(MS)、元素分析の測定結果を以下に示す。   To 6.0 ml of ethyl acetate, 113.6 mg of (E) -2- (4,4-bis (trifluoromethylsulfonyl) but-1,3-dien-1-yl) furan (1j), which is the compound (1), was added. After dissolving, it was cooled to -78 ° C. Next, 22.7 mg of sodium borohydride as a reducing agent was slowly added, and the mixture was stirred at the same temperature for 1.5 hours. The temperature of the stirred reaction solution was raised to room temperature, 10 ml of 10% hydrochloric acid was added, and the organic layer and the aqueous layer were separated. The separated aqueous layer was extracted three times with 15 ml of diethyl ether. The obtained organic layer was dehydrated and dried with 500 mg of sodium sulfate and then filtered. After concentrating the filtrate under reduced pressure, it was purified by distillation using a Kugelrohr distillation apparatus under the conditions of a temperature of 160 ° C. and a pressure of 6.57 Pa to obtain (E) -2- (4,4-bis as the compound (2). 80.7 mg of (trifluoromethylsulfonyl) but-1-en-1-yl) furan (2j) was obtained with a yield of 71%. The measurement results of infrared absorption spectrum (IR), nuclear magnetic resonance spectrum (NMR), mass spectrometry (MS), and elemental analysis are shown below.

黄色結晶; Mp.56.5−58.8℃; IR (ATR) 2945,1373,1201,1100,961,747,587,494,469cm−1H−NMR(400MHz,CDCl)δ3.32−3.40(2H,m),4.90(1H,t,J=5.6Hz),6.13(1H,dt,J=15.6,7.7Hz),6.32(1H,d,J=3.3Hz),6.39(1H,dd,J=3.3,1.4Hz),6.49(1H,d,J=15.6Hz),7.38(1H,d,J=1.4Hz); 13C−NMR(100MHz,CDCl)δ28.9,77.5,109.8,111.5,117.7,119.2(q,JC−F=328.0Hz),125.2,142.9,151.0; 19F−NMR(376MHz,CDCl)δ−10.1(6F,s); MS(ESI−TOF)m/z 409[M+Na]; HRMS calcd for C10NaO[M+Na],408.9615; found,408.9610. Anal. Calcd for C10:C,31.09;H,2.09.Found:C,31.36;H,2.36. Yellow crystals; Mp. IR (ATR) v 2945, 1373, 1201, 1100, 961, 747, 587, 494, 469 cm −1 ; 1 H-NMR (400 MHz, CDCl 3 ) δ 3.32-3-3. 40 (2H, m), 4.90 (1H, t, J = 5.6 Hz), 6.13 (1H, dt, J = 15.6, 7.7 Hz), 6.32 (1H, d, J = 3.3 Hz), 6.39 (1H, dd, J = 3.3, 1.4 Hz), 6.49 (1H, d, J = 15.6 Hz), 7.38 (1H, d, J = 1.4 CHz); 13 C-NMR (100 MHz, CDCl 3 ) δ 28.9, 77.5, 109.8, 111.5, 117.7, 119.2 (q, J CF = 328.0 Hz) , 125.2,142.9,151.0; 19 F-NMR ( 376MH , CDCl 3) δ-10.1 ( 6F, s); MS (ESI-TOF) m / z 409 [M + Na] +; HRMS calcd for C 10 H 8 F 6 NaO 5 S 2 [M + Na] +, 408. 9615; found, 408.99610. Anal. Calcd for C 10 H 8 F 6 O 5 S 2: C, 31.09; H, 2.09. Found: C, 31.36; H, 2.36.


[実施例14]
[(E)−(4,4−ビス(トリフルオロメチルスルホニル)ブト−1−エニル)ベンゼンを酸触媒とする3−フェニルプロピオンアルデヒドのアセタール化反応]
反応式を以下に示す。

Figure 0005998948

[Example 14]
[Acetalization of 3-phenylpropionaldehyde using (E)-(4,4-bis (trifluoromethylsulfonyl) but-1-enyl) benzene as an acid catalyst]
The reaction formula is shown below.
Figure 0005998948

3−フェニルプロピオンアルデヒド132.9mgをギ酸トリメチル1.0mlに溶解させた後、(E)−(4,4−ビス(トリフルオロメチルスルホニル)ブト−1−エニル)ベンゼン15.5mgを室温で加えた。同温で1時間攪拌後、反応混合物を減圧下濃縮した。残渣をシリカゲルカラムクロマトグラフィーにかけ、ヘキサン/酢酸エチル=30:1の展開溶媒を用いて溶出させ、目的の3−フェニルプロピオンアルデヒドジメチルアセタール169.2mgを収率95%で得た。得られた生成物の核磁気共鳴スペクトルの測定結果を以下に示す。生成物の構造は既知のスペクトルとの比較により決定した。   After 132.9 mg of 3-phenylpropionaldehyde was dissolved in 1.0 ml of trimethyl formate, 15.5 mg of (E)-(4,4-bis (trifluoromethylsulfonyl) but-1-enyl) benzene was added at room temperature. It was. After stirring at the same temperature for 1 hour, the reaction mixture was concentrated under reduced pressure. The residue was subjected to silica gel column chromatography and eluted with a developing solvent of hexane / ethyl acetate = 30: 1 to obtain 169.2 mg of the intended 3-phenylpropionaldehyde dimethyl acetal in a yield of 95%. The measurement results of the nuclear magnetic resonance spectrum of the obtained product are shown below. The product structure was determined by comparison with known spectra.

無色液体; H−NMR(400MHz,CDCl)δ1.95−2.03(2H,m),2.74(2H,t,J=7.9Hz),3.39(6H,s),4.42(1H,t,J=5.7Hz),7.20−7.29(3H,m),7.30−7.37(2H,m); 13C−NMR(100MHz,CDCl)δ30.9,34.2,52.8,104.0,125.9,128.4(4C),141.7. Colorless liquid; 1 H-NMR (400MHz, CDCl 3) δ1.95-2.03 (2H, m), 2.74 (2H, t, J = 7.9Hz), 3.39 (6H, s), 4.42 (1H, t, J = 5.7 Hz), 7.20-7.29 (3H, m), 7.30-7.37 (2H, m); 13 C-NMR (100 MHz, CDCl 3 ) 30.9, 34.2, 52.8, 104.0, 125.9, 128.4 (4C), 141.7.


[実施例15]
[(E)−(4,4−ビス(トリフルオロメチルスルホニル)ブト−1−エニル)ベンゼンを酸触媒とする2−メチルシクロヘキサノンの向山アルドール反応]
反応式を以下に示す(反応式中、TBSはtert−ブチルジメチルシリル基を表す。)。

Figure 0005998948

[Example 15]
[Mukoyama aldol reaction of 2-methylcyclohexanone using (E)-(4,4-bis (trifluoromethylsulfonyl) but-1-enyl) benzene as an acid catalyst]
The reaction formula is shown below (in the reaction formula, TBS represents a tert-butyldimethylsilyl group).
Figure 0005998948

2−メチルシクロヘキサノン110.9mgをジクロロメタン1.5mlに溶解させた後、(E)−(4,4−ビス(トリフルオロメチルスルホニル)ブト−1−エニル)ベンゼン19.1mgを0℃で加えた。次いで、tert−ブチル(1−エトキシビニロキシ)ジメチルシラン303.0mgのジクロロメタン0.5ml溶液をシリンジポンプを使用し、0℃で1時間かけて加えた。同温で2時間攪拌後、反応混合物を減圧下濃縮した。残渣をシリカゲルカラムクロマトグラフィーにかけ、ヘキサン/酢酸エチル=50:1の展開溶媒を用いて溶出させ、目的の((1S,2S)−1−(tert−ブチルジメチルシロキシ)−2−メチルシクロヘキシル酢酸エチル293.8mgを収率95%で得た。得られた生成物の核磁気共鳴スペクトルの測定結果を以下に示す。生成物の構造は既知のスペクトルとの比較により決定した。 After 10.9 mg of 2-methylcyclohexanone was dissolved in 1.5 ml of dichloromethane, 19.1 mg of (E)-(4,4-bis (trifluoromethylsulfonyl) but-1-enyl) benzene was added at 0 ° C. . Next, a solution of tert-butyl (1-ethoxyvinyloxy) dimethylsilane (303.0 mg) in dichloromethane (0.5 ml) was added at 0 ° C. over 1 hour using a syringe pump. After stirring at the same temperature for 2 hours, the reaction mixture was concentrated under reduced pressure. The residue was subjected to silica gel column chromatography and eluted with a developing solvent of hexane / ethyl acetate = 50: 1 to obtain the desired ((1S * , 2S * )-1- (tert-butyldimethylsiloxy) -2-methylcyclohexyl. 293.8 mg of ethyl acetate was obtained with a yield of 95%, and the results of measurement of the nuclear magnetic resonance spectrum of the obtained product are shown below: The structure of the product was determined by comparison with a known spectrum.

無色液体; H−NMR(400MHz,CDCl)δ0.08(3H,s),0.10(3H,s),0.87−0.93(3H,m),0.89(9H,s),1.18(1H,qt,J=12.8,3.9Hz),1.24(3H,t,J=7.1Hz),1.27−1.78(8H,m),2.35(1H,d,J=12.8Hz),2.77(1H,d,J=12.8Hz),4.03−4.16(2H,m); 13C−NMR(100MHz,CDCl)δ−2.2,−1.8,14.2,15.6,18.8,21.8,25.9,26.0,30.5,37.7,38.8,46.4,60.1,76.3,170.8.
1 H-NMR (400 MHz, CDCl 3 ) δ 0.08 (3H, s), 0.10 (3H, s), 0.87-0.93 (3H, m), 0.89 (9H, s), 1.18 (1H, qt, J = 12.8, 3.9 Hz), 1.24 (3H, t, J = 7.1 Hz), 1.27-1.78 (8H, m), 2.35 (1H, d, J = 12.8 Hz), 2.77 (1 H, d, J = 12.8 Hz), 4.03-4.16 (2H, m); 13 C-NMR (100 MHz, CDCl 3 ) δ-2.2, -1.8, 14.2, 15.6, 18.8, 21.8, 25.9, 26.0, 30.5, 37.7, 38.8, 46.4, 60.1, 76.3, 170.8.

本発明で対象とするビス(トリフルオロメチルスルホニル)メチル基を有する化合物は、種々の有機合成反応における酸触媒として利用できる。   The compound having a bis (trifluoromethylsulfonyl) methyl group targeted in the present invention can be used as an acid catalyst in various organic synthesis reactions.

Claims (7)

式(1)
Figure 0005998948
[式(1)中、Aは下記式(3)
Figure 0005998948
[式(3)中、Arはアリール基、ヘテロアリール基、置換基を有するアリール基または置換基を有するヘテロアリール基を表す。nは0〜5の任意の整数を表す。]
で表される1価の有機基を表す。]
で表される化合物を水素化ホウ素還元剤または水素化アルミニウム還元剤と接触させて、式(2)
Figure 0005998948
[式(2)中、Aは式(1)におけるAと同義である。
で表される化合物を得ることを特徴とする、式(2)で表される化合物の製造方法。
Formula (1)
Figure 0005998948
[In the formula (1), A represents the following formula (3)
Figure 0005998948
[In Formula (3), Ar represents an aryl group, a heteroaryl group, an aryl group having a substituent, or a heteroaryl group having a substituent. n represents an arbitrary integer of 0 to 5. ]
The monovalent organic group represented by these is represented. ]
The compound represented by formula (2) is contacted with a borohydride reducing agent or an aluminum hydride reducing agent.
Figure 0005998948
[In Formula (2), A is synonymous with A in Formula (1). ]
A method for producing a compound represented by the formula (2), wherein the compound represented by the formula (2) is obtained.
Aが、式(4)
Figure 0005998948
[式(4)中、Arは、アリール基、ヘテロアリール基、置換基を有するアリール基または置換基を有するヘテロアリール基を表す。]
で表される1価の有機基である、請求項1に記載の製造方法。
A is the formula (4)
Figure 0005998948
[In Formula (4), Ar represents an aryl group, a heteroaryl group, an aryl group having a substituent, or a heteroaryl group having a substituent. ]
In a monovalent organic group represented by The process according to claim 1.
Aが、式(5)または(6)
Figure 0005998948
[式(5)または式(6)中、各R1、各R2は、それぞれ独立に、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ニトロ基、スルホ基、シアノ基、炭素数1〜20の脂肪族炭化水素基または炭素数6〜20の芳香族炭化水素基を表す。
炭素数1〜20の脂肪族炭化水素基は、不飽和結合を含んでいてもよく、基中の任意の数の水素原子がフッ素原子、塩素原子、臭素原子、ヨウ素原子、ニトロ基、スルホ基、シアノ基に置換されていてもよい。
炭素数1〜20の脂肪族炭化水素基中の炭素原子の一部または炭素数6〜20の芳香族炭化水素基中の炭素原子の一部が、酸素原子または硫黄原子に置換されていてもよい。
炭素数1〜20の脂肪族炭化水素基または炭素数6〜20の芳香族炭化水素基は、基中に、カルボニル基またはスルホニル基を含んでいてもよい。
pは0〜5の任意の整数を表す。
qは0〜3の任意の整数を表す。]
で表される1価の有機基である、請求項1または請求項2に記載の製造方法。
A is the formula (5) or (6)
Figure 0005998948
[In formula (5) or formula (6), each R 1 and each R 2 are each independently a fluorine atom, chlorine atom, bromine atom, iodine atom, nitro group, sulfo group, cyano group, 20 aliphatic hydrocarbon groups or C6-C20 aromatic hydrocarbon groups are represented.
The aliphatic hydrocarbon group having 1 to 20 carbon atoms may contain an unsaturated bond, and any number of hydrogen atoms in the group is a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a nitro group, or a sulfo group. The cyano group may be substituted.
Even if a part of carbon atoms in an aliphatic hydrocarbon group having 1 to 20 carbon atoms or a part of carbon atoms in an aromatic hydrocarbon group having 6 to 20 carbon atoms is substituted with an oxygen atom or a sulfur atom Good.
The aliphatic hydrocarbon group having 1 to 20 carbon atoms or the aromatic hydrocarbon group having 6 to 20 carbon atoms may include a carbonyl group or a sulfonyl group in the group.
p represents an arbitrary integer of 0 to 5.
q represents an arbitrary integer of 0 to 3. ]
The manufacturing method of Claim 1 or Claim 2 which is a monovalent organic group represented by these.
水素化ホウ素還元剤が、ボラン錯体または水素化ホウ素金属である、請求項に記載の製造方法。 The production method according to claim 1 , wherein the borohydride reducing agent is a borane complex or a borohydride metal. 水素化ホウ素金属が、水素化ホウ素リチウム、水素化ホウ素ナトリウムまたは水素化ホウ素カリウムである、請求項に記載の製造方法。 The production method according to claim 4 , wherein the metal borohydride is lithium borohydride, sodium borohydride or potassium borohydride. 式(2)
Figure 0005998948
[式(2)中、Aは、式(5)または式(6)
Figure 0005998948
(式(5)または式(6)中、各R1、各R2は、それぞれ独立に、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ニトロ基、スルホ基、シアノ基、炭素数1〜20の脂肪族炭化水素基または炭素数6〜20の芳香族炭化水素基を表す。
炭素数1〜20の脂肪族炭化水素基は、不飽和結合を含んでいてもよく、基中の任意の数の水素原子がフッ素原子、塩素原子、臭素原子、ヨウ素原子、ニトロ基、スルホ基、シアノ基に置換されていてもよい。
炭素数1〜20の脂肪族炭化水素基中の炭素原子の一部または炭素数6〜20の芳香族炭化水素基中の炭素原子の一部が、酸素原子または硫黄原子に置換されていてもよい。
炭素数1〜20の脂肪族炭化水素基または炭素数6〜20の芳香族炭化水素基は、基中に、カルボニル基またはスルホニル基を含んでいてもよい。
pは0〜5の任意の整数を表す。
qは0〜3の任意の整数を表す。)
で表される1価の有機基である。]
で表される化合物。
Formula (2)
Figure 0005998948
[In Formula (2), A represents Formula (5) or Formula (6)
Figure 0005998948
(In Formula (5) or Formula (6), each R 1 and each R 2 are each independently a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a nitro group, a sulfo group, a cyano group, 20 aliphatic hydrocarbon groups or C6-C20 aromatic hydrocarbon groups are represented.
The aliphatic hydrocarbon group having 1 to 20 carbon atoms may contain an unsaturated bond, and any number of hydrogen atoms in the group is a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a nitro group, or a sulfo group. The cyano group may be substituted.
Even if a part of carbon atoms in an aliphatic hydrocarbon group having 1 to 20 carbon atoms or a part of carbon atoms in an aromatic hydrocarbon group having 6 to 20 carbon atoms is substituted with an oxygen atom or a sulfur atom Good.
The aliphatic hydrocarbon group having 1 to 20 carbon atoms or the aromatic hydrocarbon group having 6 to 20 carbon atoms may include a carbonyl group or a sulfonyl group in the group.
p represents an arbitrary integer of 0 to 5.
q represents an arbitrary integer of 0 to 3. )
The monovalent organic group represented by these. ]
A compound represented by
請求項に記載の式(2)で表される化合物の、酸触媒としての使用方法。
The use method of the compound represented by Formula (2) of Claim 6 as an acid catalyst.
JP2013008581A 2013-01-21 2013-01-21 Compound having bis (trifluoromethylsulfonyl) methyl group, process for producing the same, and use thereof as acid catalyst Active JP5998948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013008581A JP5998948B2 (en) 2013-01-21 2013-01-21 Compound having bis (trifluoromethylsulfonyl) methyl group, process for producing the same, and use thereof as acid catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013008581A JP5998948B2 (en) 2013-01-21 2013-01-21 Compound having bis (trifluoromethylsulfonyl) methyl group, process for producing the same, and use thereof as acid catalyst

Publications (2)

Publication Number Publication Date
JP2014139148A JP2014139148A (en) 2014-07-31
JP5998948B2 true JP5998948B2 (en) 2016-09-28

Family

ID=51416116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013008581A Active JP5998948B2 (en) 2013-01-21 2013-01-21 Compound having bis (trifluoromethylsulfonyl) methyl group, process for producing the same, and use thereof as acid catalyst

Country Status (1)

Country Link
JP (1) JP5998948B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3932526A (en) * 1972-10-25 1976-01-13 Minnesota Mining And Manufacturing Company Fluoroaliphaticsulfonyl substituted ethylenes
US4053519A (en) * 1975-03-07 1977-10-11 Minnesota Mining And Manufacturing Company 1,1,3,3-tetrakis(perfluoroalkylsulfonyl)propanes
CN101323650B (en) * 2007-06-13 2010-11-03 中国石油天然气股份有限公司 Olefin polymerization catalyst and preparation method and application thereof
JP5696465B2 (en) * 2010-12-17 2015-04-08 セントラル硝子株式会社 Compound having bis (trifluoromethanesulfonyl) ethyl group, acid catalyst, and production method thereof

Also Published As

Publication number Publication date
JP2014139148A (en) 2014-07-31

Similar Documents

Publication Publication Date Title
Prakash et al. Direct S-difluoromethylation of thiols using the Ruppert–Prakash reagent
JP6596081B2 (en) Method for producing chiral γ-secondary amine alcohol
JP6213417B2 (en) Method for improving storage stability of 2,2-difluoroacetaldehyde
CN112142694A (en) Polysubstituted tetrahydrofuran and tetrahydropyrane diene compound and preparation method thereof
JP5070936B2 (en) Process for producing 2-hydroxy-4- (methylthio) butyric acid or an ester thereof and an intermediate thereof
JP7009012B2 (en) Method for Producing N-Retinoyl Cysteic Acid Alkyl Ester
JP5563324B2 (en) MAXA CALCITOL INTERMEDIATE AND PROCESS FOR PRODUCING THE SAME
US20210070700A1 (en) Process for the preparation of haloalkanesulfonic acids from sulfur trioxide and a haloalkane
JP5998948B2 (en) Compound having bis (trifluoromethylsulfonyl) methyl group, process for producing the same, and use thereof as acid catalyst
EP3394027B1 (en) Method for preparing phenolics using a catalyst
JP2014062076A (en) Methylenedisulfonyl chloride compound, methylene disulfonate compound and method for producing methylene disulfonate compound
JP2007523077A (en) Method for forming a CC bond between an electrophilic substrate and a pi nucleophile without using Lewis or protonic acids in neutral to basic aqueous or alcoholic solvents
CN113880737B (en) Application of novel persulfate reagent in synthesis of asymmetric polysulfide
JP2011515433A (en) Synthesis method of ethynylcyclopropane
CN106631926A (en) Method for selectively compounding aryl methyl sulphone and belta-hydroxy sulphone derivative
EP3416944A1 (en) Process for preparing aminothiol ester compounds and salts thereof
EP0258160A2 (en) 2,3-Dihydrofuran derivatives, process for their preparation, their use as intermediate in the preparation of tetrahydrofuran
JP5485583B2 (en) Method for producing diaryliodonium compound
KR101020486B1 (en) Novel 1,3-butadien-2-yl methyl amine derivatives and a process for their preparation using indium reagents
CN111072653A (en) Method for directly synthesizing 1, 3-disulfo-indolizine compound from substituted 2-aryl indolizine
CN114213361B (en) Preparation method of thiamine 1, 4-naphthoquinone compound
CN115160120B (en) Synthesis method of polyalkoxyl aromatic ketone
JP5305321B2 (en) Method for producing fluoro compound
CN108623529B (en) Preparation method of oxaziclomefone
KR20070107604A (en) Process for the preparation of mixtures of alpha-hydroxycarbonyl derivatives of alpha-methylstyrene derivatives

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20160614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160815

R150 Certificate of patent or registration of utility model

Ref document number: 5998948

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250