JP5996196B2 - Polymer solid electrolyte and polymer solid electrolyte film - Google Patents

Polymer solid electrolyte and polymer solid electrolyte film Download PDF

Info

Publication number
JP5996196B2
JP5996196B2 JP2012014404A JP2012014404A JP5996196B2 JP 5996196 B2 JP5996196 B2 JP 5996196B2 JP 2012014404 A JP2012014404 A JP 2012014404A JP 2012014404 A JP2012014404 A JP 2012014404A JP 5996196 B2 JP5996196 B2 JP 5996196B2
Authority
JP
Japan
Prior art keywords
group
solid electrolyte
polymer
metal salt
polymer solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012014404A
Other languages
Japanese (ja)
Other versions
JP2013155213A (en
Inventor
信貴 藤本
信貴 藤本
祐治 金原
祐治 金原
聖司 西岡
聖司 西岡
瞬 橋本
瞬 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Seika Chemicals Co Ltd
Original Assignee
Sumitomo Seika Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Seika Chemicals Co Ltd filed Critical Sumitomo Seika Chemicals Co Ltd
Priority to JP2012014404A priority Critical patent/JP5996196B2/en
Publication of JP2013155213A publication Critical patent/JP2013155213A/en
Application granted granted Critical
Publication of JP5996196B2 publication Critical patent/JP5996196B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Conductive Materials (AREA)
  • Secondary Cells (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)

Description

本発明はイオン導電性の高分子固体電解質に関する。さらに詳しくは、高分子を構造材とした高分子固体電解質であって、高いイオン導電性を発揮し、かつ成膜性や柔軟性に優れる高分子固体電解質に関する。   The present invention relates to an ion conductive polymer solid electrolyte. More specifically, the present invention relates to a polymer solid electrolyte having a polymer as a structural material, exhibiting high ionic conductivity, and excellent in film formability and flexibility.

固体電解質を用いて全固体電池を構成した場合、従来型電池の問題点の一つである電池内の内容物(電解液)の漏液がなくなり、電池の安全性が向上する。また、電池の薄型化、積層化が可能になるため、固体電解質は、電池をはじめとした電気化学的デバイス材料として注目されている。   When an all-solid battery is configured using a solid electrolyte, the leakage of the contents (electrolytic solution) in the battery, which is one of the problems of the conventional battery, is eliminated, and the safety of the battery is improved. In addition, since the battery can be thinned and stacked, the solid electrolyte is attracting attention as an electrochemical device material including a battery.

固体電解質の種類としては、無機材料からなるものと有機材料(高分子)からなるものが知られている。
無機材料からなる固体電解質では、イオン導電性は比較的高いが、結晶体であるために機械的強度が乏しく、可撓性を有する膜に加工することが困難であり、電池デバイスに適用する場合には著しく不利となる。
一方、有機材料からなる固体電解質では、可撓性を有する薄膜に成膜することが可能であり、また、成形した薄膜に高分子固有の可撓性に基づく優れた機械的性質を付与することが可能となる。その結果、高分子固体電解質から成る薄膜は、無機系の固体電解質に比べて、電極−高分子固体電解質間のイオン電子交換反応過程で生じる体積変化に柔軟に適応することが可能となり、特に薄型の高エネルギー密度を有する電池の固体電解質材料として有望視されている。
Known types of solid electrolytes include those made of inorganic materials and those made of organic materials (polymers).
When solid electrolytes made of inorganic materials have relatively high ionic conductivity, but they are crystalline, they have poor mechanical strength and are difficult to process into flexible films. This is a significant disadvantage.
On the other hand, a solid electrolyte made of an organic material can be formed into a flexible thin film, and gives excellent mechanical properties based on the inherent flexibility of the polymer to the formed thin film. Is possible. As a result, a thin film made of a polymer solid electrolyte can be flexibly adapted to volume changes that occur in the process of ion-electron exchange reaction between an electrode and a polymer solid electrolyte, compared to inorganic solid electrolytes. It is considered promising as a solid electrolyte material for batteries having a high energy density.

これまでに知られている高分子固体電解質としては、非特許文献1にはポリエチレンオキシド(PEO)−金属塩複合体、また、特許文献1にはPEO等のポリエーテル結合を有する高分子に1種又は2種以上のアルカリ金属塩を配合したイオン伝導性高分子組成物が記載されている。
しかしながら、PEOを構成要素とする材料では、PEOの構造に由来する結晶性の発現により室温近傍でのイオンの移動が抑制され、イオン導電率が低下する問題点を有している。
As polymer solid electrolytes known so far, Non-Patent Document 1 discloses a polyethylene oxide (PEO) -metal salt complex, and Patent Document 1 discloses a polymer having a polyether bond such as PEO. An ion conductive polymer composition containing a seed or two or more alkali metal salts is described.
However, a material having PEO as a constituent element has a problem in that the movement of ions near room temperature is suppressed due to the expression of crystallinity derived from the structure of PEO, and the ionic conductivity is lowered.

結晶性を有しないポリマーを適用した例として、特許文献2と特許文献3には、ポリアルキレンカーボネートと周期律第I族および第II族から選ばれる1種または2種以上の金属塩からなる高分子固体電解質が記載されている。
しかしながら、これらの複合体では、イオン導電率が10−7〜10−5s/cmと低く、電池デバイスに適用するには十分ではないといった問題点がある。
As an example of applying a polymer having no crystallinity, Patent Document 2 and Patent Document 3 include a polyalkylene carbonate and a high salt composed of one or more metal salts selected from Group I and Group II of the periodic table. Molecular solid electrolytes are described.
However, these composites have a problem that the ionic conductivity is as low as 10 −7 to 10 −5 s / cm, which is not sufficient for application to battery devices.

ポリアルキレンカーボネートおよび金属塩を含む高分子固体電解質のイオン導電性が向上した例として、特許文献4には、エーテル結合を介して置換基が結合した構造を有する側鎖を備えたポリアルキレンカーボネートおよび金属塩を含む高分子固体電解質が記載されている。
しかしながら、エーテル結合を介して炭化水素基または芳香族炭化水素基が結合した構造を有する側鎖を備えたポリアルキレンカーボネートは、グリシジルエーテル化合物と二酸化炭素との共重合で得られているが、これらのグリシジルエーテル化合物の反応性が低く、ポリカーボネートを取得するのに高い反応温度を必要とし、エネルギー消費、製造コストの観点から問題点を有している。
As an example in which the ionic conductivity of a polymer solid electrolyte containing a polyalkylene carbonate and a metal salt is improved, Patent Document 4 discloses a polyalkylene carbonate having a side chain having a structure in which a substituent is bonded via an ether bond, and A polymer solid electrolyte containing a metal salt is described.
However, polyalkylene carbonates having a side chain having a structure in which a hydrocarbon group or an aromatic hydrocarbon group is bonded via an ether bond are obtained by copolymerization of a glycidyl ether compound and carbon dioxide. The glycidyl ether compound has a low reactivity, requires a high reaction temperature to obtain a polycarbonate, and has problems from the viewpoint of energy consumption and production cost.

特開2004−352757号公報JP 2004-352757 A 特開昭62−30147号公報JP 62-30147 A 特開昭62−30148号公報JP 62-30148 A 特開2010−287563号公報JP 2010-287563 A

British Polymer Journal、英国、1975年、第7号、第319頁British Polymer Journal, UK, 1975, No. 7, p. 319

本発明は、このような従来技術の課題を解決しようとするものであり、室温付近でも高いイオン導電性を有し、かつ優れた成膜性や可撓性も有する新たな高分子固体電解質を得ることを目的とする。   The present invention is intended to solve such problems of the prior art, and provides a new polymer solid electrolyte having high ionic conductivity near room temperature and excellent film forming properties and flexibility. The purpose is to obtain.

発明者らは、上記課題を解決するために鋭意検討した結果、特定の構造を有するポリカーボネートおよび金属塩を含む高分子固体電解質が室温付近でも高いイオン導電性を有することを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the inventors have found that a polymer solid electrolyte containing a polycarbonate having a specific structure and a metal salt has high ionic conductivity even near room temperature, and completed the present invention. It came to do.

具体的には、本発明は、以下の態様に関する。
項1.
式(1):
Specifically, the present invention relates to the following aspects.
Item 1.
Formula (1):

Figure 0005996196
(式中、RおよびRは、同一または異なっていてもよく、水素原子、アルキル基、アルコキシ基、アルカノイル基、カルバモイル基、シアノ基またはグリコール単位より構成される基を示す。ただし、R1およびR2のいずれか一方はグリコール単位より構成される基である。)で表されるエポキシドと二酸化炭素との共重合体であるポリカーボネートおよび金属塩を含む、高分子固体電解質。
項2.
前記グリコール単位がエチレングリコール単位である、項1に記載の高分子固体電解質。
項3.
金属塩がアルカリ金属塩である、項1または2に記載の高分子固体電解質。
項4.
金属塩の含有量が、ポリカーボネートの構成繰返し単位[O−CO−Oユニット]に対する金属塩イオンのモル比([金属塩イオン]/[O−CO−Oユニット])として、0.05〜0.9である、項1〜3のいずれか1項に記載の高分子固体電解質。
項5.
項1〜4のいずれか1項に記載の高分子固体電解質から得られる高分子固体電解質フィルム。
項6.
項1〜4のいずれか1項に記載の高分子固体電解質を溶媒に溶解させ、キャスト法によりフィルム化することを特徴とする高分子固体電解質フィルムの製造方法。
Figure 0005996196
(In the formula, R 1 and R 2 may be the same or different and each represents a hydrogen atom, an alkyl group, an alkoxy group, an alkanoyl group, a carbamoyl group, a cyano group, or a group composed of a glycol unit. 1 or R 2 is a group composed of glycol units.) A solid polymer electrolyte comprising a polycarbonate and a metal salt that are a copolymer of an epoxide and carbon dioxide.
Item 2.
Item 2. The polymer solid electrolyte according to Item 1, wherein the glycol unit is an ethylene glycol unit.
Item 3.
Item 3. The solid polymer electrolyte according to Item 1 or 2, wherein the metal salt is an alkali metal salt.
Item 4.
The metal salt content is 0.05 to 0 as the molar ratio of metal salt ion to the structural repeating unit [O-CO-O unit] of the polycarbonate ([metal salt ion] / [O-CO-O unit]). Item 9. The polymer solid electrolyte according to any one of Items 1 to 3, which is .9.
Item 5.
Item 5. A polymer solid electrolyte film obtained from the polymer solid electrolyte according to any one of items 1 to 4.
Item 6.
Item 5. A method for producing a polymer solid electrolyte film, comprising dissolving the polymer solid electrolyte according to any one of Items 1 to 4 in a solvent and forming the film by a casting method.

本発明によると、室温付近でも高いイオン導電性を有し、かつ成膜性に優れる新たな高分子固体電解質、および可撓性に優れる高分子固体電解質フィルムを得ることができる。   According to the present invention, it is possible to obtain a new polymer solid electrolyte having high ionic conductivity even near room temperature and excellent film forming properties, and a polymer solid electrolyte film excellent in flexibility.

本発明の高分子固体電解質は、特定の構造を有するポリカーボネートおよび金属塩を含んでいる。本発明の高分子固体電解質に用いられるポリカーボネートとしては、式(1):   The polymer solid electrolyte of the present invention includes a polycarbonate having a specific structure and a metal salt. Examples of the polycarbonate used in the polymer solid electrolyte of the present invention include formula (1):

Figure 0005996196
(式中、RおよびRは、同一または異なっていてもよく、水素原子、アルキル基、アルコキシ基、アルカノイル基、カルバモイル基、シアノ基またはグリコール単位より構成される基を示す。ただし、R1およびR2のいずれか一方はグリコール単位より構成される基である。)で表されるエポキシドと二酸化炭素とを触媒の存在下で重合して得られる共重合体が挙げられる。
Figure 0005996196
(In the formula, R 1 and R 2 may be the same or different and each represents a hydrogen atom, an alkyl group, an alkoxy group, an alkanoyl group, a carbamoyl group, a cyano group, or a group composed of a glycol unit. One of R 1 and R 2 is a group composed of glycol units.) And a copolymer obtained by polymerizing epoxide represented by (2) and carbon dioxide in the presence of a catalyst.

前記式(1)で表されるエポキシドとしては、(i)R1およびR2のいずれか一方がグリコール単位より構成される基であり、他方が水素原子、メチル基、エチル基、n−ブチル基およびn−デシル基等のアルキル基、メトキシ基およびエトキシ基等のアルコキシ基、メタノイル基およびエタノイル基等のアルカノイル基、カルバモイル基またはシアノ基であるもの、(ii)R1およびR2の両方が同一、又は異なっていてもよいグリコール単位より構成される基であるものが挙げられる。 As the epoxide represented by the formula (1), (i) one of R 1 and R 2 is a group composed of glycol units, and the other is a hydrogen atom, a methyl group, an ethyl group, or n-butyl. A group and an alkyl group such as n-decyl group, an alkoxy group such as methoxy group and ethoxy group, an alkanoyl group such as methanoyl group and ethanoyl group, a carbamoyl group or a cyano group, (ii) both R 1 and R 2 Are groups composed of glycol units which may be the same or different.

本明細書において、グリコール単位とは、置換もしくは非置換の直鎖状または分枝鎖状の脂肪族炭化水素の2つの炭素原子のそれぞれが一つの水酸基で置換されたジオール化合物から2つの水素原子が引き抜かれた二価の残基を意味する。グリコール単位の由来となるジオール化合物としては特に限定されないが、例えば、エチレングリコール、プロピレングリコール、ブチレングリコール等が挙げられる。グリコール単位としては、これらの中でも、イオン伝導性が高くなる観点からエチレングリコール単位が好ましい。   In this specification, the glycol unit means two hydrogen atoms from a diol compound in which each of two carbon atoms of a substituted or unsubstituted linear or branched aliphatic hydrocarbon is substituted with one hydroxyl group. Means a divalent residue extracted. Although it does not specifically limit as a diol compound which originates a glycol unit, For example, ethylene glycol, propylene glycol, butylene glycol etc. are mentioned. Among these, an ethylene glycol unit is preferable from the viewpoint of increasing ion conductivity among these.

グリコール単位への置換基としては、メチル基、エチル基、n−ブチル基およびn−デシル基等のアルキル基、メトキシ基およびエトキシ基等のアルコキシ基、メタノイル基およびエタノイル基等のアルカノイル基、カルバモイル基またはシアノ基等が挙げられる。
前記式(1)で表されるエポキシドにおいて、グリコール単位の繰り返し回数nは、1〜50回が好ましく、1〜30回がより好ましく、高い反応性を有する観点から1〜15回がさらに好ましい。
Examples of the substituent on the glycol unit include alkyl groups such as methyl group, ethyl group, n-butyl group and n-decyl group, alkoxy groups such as methoxy group and ethoxy group, alkanoyl groups such as methanoyl group and ethanoyl group, carbamoyl Group or a cyano group.
In the epoxide represented by the formula (1), the repeating number n of the glycol unit is preferably 1 to 50 times, more preferably 1 to 30 times, and further preferably 1 to 15 times from the viewpoint of high reactivity.

前記(i)で表されるエポキシドは、例えば、下式に示すように、エピクロロヒドリンとエチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコールモノメチルエーテルなどのグリコール類とを反応させる方法(Journal of Organic Chemistry 1983, 48, p.1117)により製造することができる。   The epoxide represented by (i) is, for example, a method of reacting epichlorohydrin with glycols such as ethylene glycol monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol monomethyl ether as shown in the following formula (Journal) of Organic Chemistry 1983, 48, p. 1117).

Figure 0005996196
Figure 0005996196

前記(i)で表されるエポキシドの具体例としては、2−(2−(2−メトキシエトキシ)エトキシ)メチルオキシランおよび2−(2−(2−(2−メトキシエトキシ)エトキシ)エトキシ)メチルオキシラン等が挙げられる。   Specific examples of the epoxide represented by (i) include 2- (2- (2-methoxyethoxy) ethoxy) methyloxirane and 2- (2- (2- (2-methoxyethoxy) ethoxy) ethoxy) methyl. Examples include oxirane.

前記(ii)で表されるエポキシドは、例えば、エピクロロヒドリンに代えて、1,4−ジクロロ−2,3−エポキシブタンを用いて、同様にして、R1およびR2に、非置換のエチレングリコール単位より構成される基を導入することにより製造することができる。 As the epoxide represented by (ii), for example, 1,4-dichloro-2,3-epoxybutane is used in place of epichlorohydrin, and R 1 and R 2 are unsubstituted. It can manufacture by introduce | transducing group comprised from the ethylene glycol unit of this.

前記(ii)で表されるエポキシドの具体例としては、2,3−ビス((2−(2−メトキシエトキシ)エトキシ)メチル)オキシランおよび2,3−ビス((2−(2−(2−メトキシエトキシ)エトキシ)エトキシ)メチル)オキシラン等が挙げられる。   Specific examples of the epoxide represented by (ii) include 2,3-bis ((2- (2-methoxyethoxy) ethoxy) methyl) oxirane and 2,3-bis ((2- (2- (2 -Methoxyethoxy) ethoxy) ethoxy) methyl) oxirane and the like.

一方、二酸化炭素は、気体のまま反応容器に導入して共重合反応に使用する。反応容器内の二酸化炭素の圧力は、0.01〜6MPaであることが好ましく、より好ましくは、0.1〜3.0MPaである。   On the other hand, carbon dioxide is introduced into the reaction vessel as a gas and used for the copolymerization reaction. The pressure of carbon dioxide in the reaction vessel is preferably 0.01 to 6 MPa, and more preferably 0.1 to 3.0 MPa.

反応に使用するエポキシドと二酸化炭素のモル比は、典型的には1:0.1〜1:10であるが、好ましくは1:0.5〜1:3.0、より好ましくは1:1.0〜1:2.0である。   The molar ratio of epoxide to carbon dioxide used in the reaction is typically 1: 0.1 to 1:10, but is preferably 1: 0.5 to 1: 3.0, more preferably 1: 1. 0 to 1: 2.0.

なお、本発明に用いられるポリカーボネートを製造する際に、以下に記載の一般的なエポキシドをモノマーとして加えても良い。   In addition, when manufacturing the polycarbonate used for this invention, you may add the following general epoxide as a monomer.

一般的なエポキシドとしては、特に限定されるものではないが、例えば、エチレンオキシド、プロピレンオキシド、1−ブテンオキシド、2−ブテンオキシド、イソブチレンオキシド、1−ペンテンオキシド、2−ペンテンオキシド、1−ヘキセンオキシド、1−オクテンオキシド、1−ドデセンオキシド、シクロペンテンオキシド、シクロヘキセンオキシド、スチレンオキシド、ビニルシクロヘキサンオキシド、3−フェニルプロピレンオキシド、3,3,3−トリフルオロプロピレンオキシド、3−ナフチルプロピレンオキシド、3−フェノキシプロピレンオキシド、3−ナフトキシプロピレンオキシド、ブタジエンモノオキシド、3−ビニルオキシプロピレンオキシドおよび3−トリメチルシリルオキシプロピレンオキシド等が挙げられる。中でも、高い反応性を有する観点から、エチレンオキシドおよびプロピレンオキシドが特に好ましい。   The general epoxide is not particularly limited, and examples thereof include ethylene oxide, propylene oxide, 1-butene oxide, 2-butene oxide, isobutylene oxide, 1-pentene oxide, 2-pentene oxide and 1-hexene oxide. 1-octene oxide, 1-dodecene oxide, cyclopentene oxide, cyclohexene oxide, styrene oxide, vinylcyclohexane oxide, 3-phenylpropylene oxide, 3,3,3-trifluoropropylene oxide, 3-naphthylpropylene oxide, 3- Examples include phenoxypropylene oxide, 3-naphthoxypropylene oxide, butadiene monoxide, 3-vinyloxypropylene oxide, and 3-trimethylsilyloxypropylene oxide. That. Among these, ethylene oxide and propylene oxide are particularly preferable from the viewpoint of high reactivity.

一般的なエポキシドの使用量としては、特に限定されるものではないが、式(1)で表されるエポキシド1モルに対して、一般に20モル以下とすることができ、10モル以下であることが好ましく、5モル以下であることがより好ましい。   The amount of the general epoxide used is not particularly limited, but can generally be 20 mol or less with respect to 1 mol of the epoxide represented by the formula (1), and is 10 mol or less. Is preferable, and it is more preferable that it is 5 mol or less.

前記重合で用いられる触媒としては、例えば、特開2010−1443号公報記載のような、特定の置換基を有した、下記式(2):   As the catalyst used in the polymerization, for example, the following formula (2) having a specific substituent as described in JP 2010-1443 A:

Figure 0005996196
または下記式(3):
Figure 0005996196
Or the following formula (3):

Figure 0005996196
(式中、RおよびRは、同一でも異なっていてもよく、互いに独立して、水素原子、置換もしくは非置換のアルキル基、置換もしくは非置換の芳香族基、または置換もしくは非置換の芳香族複素環基であるか、または2個のRもしくは2個のRが互いに結合して置換もしくは非置換の飽和もしくは不飽和の脂肪族環を形成してもよく、R、RおよびRはそれぞれ独立して水素原子、置換もしくは非置換のアルキル基、置換もしくは非置換のアルケニル基、置換もしくは非置換の芳香族基、置換もしくは非置換の芳香族複素環基、置換もしくは非置換のアルコキシ基、置換もしくは非置換のアシル基、置換もしくは非置換のアルコキシカルボニル基、置換もしくは非置換の芳香族オキシカルボニル基、置換もしくは非置換のアラルキルオキシカルボニル基であるか、または隣り合う炭素原子上のRとRとが互いに結合して置換もしくは非置換の脂肪族環または芳香環を形成してもよく、ZはF、Cl、Br、I、N 、CF3SO3 -、p−CH364SO3 -、BF4 -、NO2 -、NO3 -、OH-、PF6 -、BPh4 -、SbF6 -、ClO4 -、OTf-、OTs-、脂肪族カルボキシラート、芳香族カルボキシラート、アルコキシドおよび芳香族オキシドからなる群より選択されるアニオン性配位子である。)で表されるコバルト錯体を用いることができる。
Figure 0005996196
(In the formula, R 3 and R 4 may be the same or different, and independently of each other, a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aromatic group, or a substituted or unsubstituted group; It may be an aromatic heterocyclic group, or two R 3 or two R 4 may be bonded to each other to form a substituted or unsubstituted saturated or unsaturated aliphatic ring, and R 5 , R 6 and R 7 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted aromatic group, a substituted or unsubstituted aromatic heterocyclic group, substituted or unsubstituted Unsubstituted alkoxy group, substituted or unsubstituted acyl group, substituted or unsubstituted alkoxycarbonyl group, substituted or unsubstituted aromatic oxycarbonyl group, substituted or unsubstituted May form an aralkyloxycarbonyl an either group, or R 6 and R 7 on adjacent carbon atoms are bonded to each other substituted or unsubstituted aliphatic or aromatic ring, Z is F -, Cl , Br , I , N 3 , CF 3 SO 3 , p-CH 3 C 6 H 4 SO 3 , BF 4 , NO 2 , NO 3 , OH , PF 6 , BPh 4 , SbF 6 , ClO 4 , OTf , OTs , an anionic ligand selected from the group consisting of aliphatic carboxylates, aromatic carboxylates, alkoxides and aromatic oxides. Cobalt complexes can be used.

触媒の使用割合は、エポキシド1モルに対して、0.05モル以下であることが好ましく、0.01モル以下であることがより好ましい。また、反応時間が長くなることから、0.00001モル以上であることが好ましく、0.00002モル以上であることがより好ましい。   The use ratio of the catalyst is preferably 0.05 mol or less, and more preferably 0.01 mol or less, relative to 1 mol of the epoxide. Moreover, since reaction time becomes long, it is preferable that it is 0.00001 mol or more, and it is more preferable that it is 0.00002 mol or more.

前記重合において、さらに助触媒を使用することができる。用いられる助触媒としては、ビス(トリフェニルホスフォラニリデン)アンモニウムクロリド(PPNCl)、ピペリジン、ビス(トリフェニルホスフォラニリデン)アンモニウムフルオリド(PPNF)、ビス(トリフェニルホスフォラニリデン)アンモニウムペンタフルオロベンゾエート(PPNOBzF5)、テトラ−n−ブチルアンモニウムクロライド(nBu4NCl)、テトラ−n−ブチルアンモニウムブロマイド(nBu4NBr)、テトラ−n−ブチルアンモニウムアイオダイド(nBu4NI)、テトラ−n−ブチルアンモニウムアセテート(nBu4NOAc)、テトラ−n−ブチルアンモニウムナイトレート(nBuNO)、トリエチルホスフィン(EtP)、トリ−n−ブチルホスフィン(nBuP)、トリフェニルホスフィン(Ph3P)、ピリジン、4−メチルピリジン、4−ホルミルピリジン、4−(N,N−ジメチルアミノ)ピリジン、N−メチルイミダゾール、N−エチルイミダゾール、N−プロピルイミダゾールなどが挙げられ、好ましくはPPNCl、PPNF、PPNOBzF5およびnBu4NClであり、より好ましくは、高い反応活性を有する観点からPPNClおよびPPNFである。 In the polymerization, a cocatalyst can be further used. The co-catalyst used is bis (triphenylphosphoranylidene) ammonium chloride (PPNCl), piperidine, bis (triphenylphosphoranylidene) ammonium fluoride (PPNF), bis (triphenylphosphoranylidene) ammonium Pentafluorobenzoate (PPNOBzF 5 ), tetra-n-butylammonium chloride (nBu 4 NCl), tetra-n-butylammonium bromide (nBu 4 NBr), tetra-n-butylammonium iodide (nBu 4 NI), tetra- n- butylammonium acetate (nBu 4 nOAc), tetra -n- butylammonium nitrate (nBu 4 NO 3), triethylphosphine (Et 3 P), tri -n- butyl phosphine (nBu 3 P , Triphenylphosphine (Ph 3 P), pyridine, 4-methylpyridine, 4-formyl pyridine, 4- (N, N- dimethylamino) pyridine, N- methylimidazole, N- ethylimidazole, etc. N- propyl imidazole PNCCl, PPNF, PPNOBzF 5 and nBu 4 NCl are preferable, and PNCCl and PPNF are more preferable from the viewpoint of high reaction activity.

必要に応じて使用される助触媒の使用割合は、前記触媒1モルに対して、0.1〜10モルであることが好ましく、0.3〜5モルであることがより好ましく、0.5〜1.5モルであることがさらにより好ましい。   The proportion of the cocatalyst used as necessary is preferably 0.1 to 10 mol, more preferably 0.3 to 5 mol, relative to 1 mol of the catalyst, Even more preferably, it is ˜1.5 mol.

前記重合において、必要に応じて溶媒を使用することができる。用いられる溶媒としては、使用されるエポキシド、二酸化炭素、触媒および助触媒と反応しないものであれば特に制限はなく、例えば、炭化水素類、エーテル類、エステル類、ケトン類、ハロゲン化炭化水素類などが挙げられる。具体的には、ヘキサン、ベンゼン、トルエン、キシレン、シクロヘキサン、1,2−ジメトキシエタン、ジブチルエーテル、テトラヒドロフラン、1,4−ジオキサン、酢酸メチル、酢酸エチル、酢酸プロピル、メチルエチルケトン、メチルイソブチルケトン、ジエチルケトン、塩化メチレン、クロロホルム、ジクロロエタン、トリクロロエタン、クロロベンゼンなどが挙げられる。中でも、溶解性が高いことからエーテル類およびハロゲン化炭化水素類が好ましく、特に、1,2−ジメトキシエタンおよび塩化メチレンが好ましい。これら溶媒は単独で用いても、2種以上を組み合わせて用いてもよい。   In the said polymerization, a solvent can be used as needed. The solvent used is not particularly limited as long as it does not react with the epoxide, carbon dioxide, catalyst and cocatalyst used. For example, hydrocarbons, ethers, esters, ketones, halogenated hydrocarbons Etc. Specifically, hexane, benzene, toluene, xylene, cyclohexane, 1,2-dimethoxyethane, dibutyl ether, tetrahydrofuran, 1,4-dioxane, methyl acetate, ethyl acetate, propyl acetate, methyl ethyl ketone, methyl isobutyl ketone, diethyl ketone , Methylene chloride, chloroform, dichloroethane, trichloroethane, chlorobenzene and the like. Among them, ethers and halogenated hydrocarbons are preferable because of high solubility, and 1,2-dimethoxyethane and methylene chloride are particularly preferable. These solvents may be used alone or in combination of two or more.

溶媒を使用する場合の使用量としては、前記エポキシド100質量部に対して50〜10000質量部であることが好ましく、100〜5000質量部であることがより好ましい。   When using a solvent, it is preferable that it is 50-10000 mass parts with respect to 100 mass parts of said epoxides, and it is more preferable that it is 100-5000 mass parts.

前記重合は、加圧可能な公知の重合反応装置、例えば、オートクレーブを用いて行うことができる。重合の反応温度は、副生成物である環状カーボネートの生成反応を抑制する観点、および反応時間を短縮する観点から、0℃〜100℃であることが好ましく、10℃〜90℃であることがより好ましく、20℃〜60℃であることがさらにより好ましい。   The polymerization can be carried out using a known polymerization reactor that can be pressurized, for example, an autoclave. The polymerization reaction temperature is preferably 0 ° C. to 100 ° C., preferably 10 ° C. to 90 ° C., from the viewpoint of suppressing the production reaction of the cyclic carbonate as a by-product and from the viewpoint of shortening the reaction time. More preferably, it is 20 to 60 degreeC.

反応時間は、反応条件により異なるが、通常、1〜100時間である。
前記重合は、酸素などの影響を排除するために不活性雰囲気下で実施することが好ましい。
Although reaction time changes with reaction conditions, it is 1 to 100 hours normally.
The polymerization is preferably carried out in an inert atmosphere in order to eliminate the influence of oxygen and the like.

このようにして得られるポリカーボネートは、前記反応終了後、常法により濃縮、乾燥して単離することができる。また、カラムクロマトグラフィーなどの周知の手段を用いて、前記ポリカーボネートをさらに精製してもよい。   The polycarbonate thus obtained can be isolated by concentrating and drying by a conventional method after completion of the reaction. Moreover, you may further refine | purify the said polycarbonate using well-known means, such as column chromatography.

前記重合により得られるポリカーボネートの分子量は、ゲルパーミエーションクロマトグラフィー(GPC;ポリスチレン換算)によって測定した典型的な数平均分子量(Mn)では、例えば1,000〜2,000,000、好ましくは2,000〜1,000,000であり、より好ましくは3,000〜100,000である。   The molecular weight of the polycarbonate obtained by the polymerization is, for example, 1,000 to 2,000,000, preferably 2, in a typical number average molecular weight (Mn) measured by gel permeation chromatography (GPC; polystyrene conversion). It is 000-1,000,000, More preferably, it is 3,000-100,000.

本発明の高分子固体電解質を構成する金属塩としては、従来の高分子固体電解質に用いられているアルカリ金属塩を好ましく使用することができる。アルカリ金属塩としては、例えば、LiBr、LiCl、LiI、LiSCN、LiBF、LiAsF、LiClO、CHCOOLi、CFCOOLi、LiCFSO、LiPF、LiN(CFSO、LiC(CFSOなどのリチウム塩を使用することができる。これらの中でも、前記重合により得られるポリカーボネートへの相溶性に優れ、イオン伝導性が高くなる観点からLiN(CFSO(リチウムビストリフルオロメタンスルホニルイミド:LiTFSI)が好ましい。 As the metal salt constituting the polymer solid electrolyte of the present invention, alkali metal salts used in conventional polymer solid electrolytes can be preferably used. The alkali metal salts, e.g., LiBr, LiCl, LiI, LiSCN , LiBF 4, LiAsF 6, LiClO 4, CH 3 COOLi, CF 3 COOLi, LiCF 3 SO 3, LiPF 6, LiN (CF 3 SO 2) 2, Lithium salts such as LiC (CF 3 SO 2 ) 3 can be used. Among these, LiN (CF 3 SO 2 ) 2 (lithium bistrifluoromethanesulfonylimide: LiTFSI) is preferable from the viewpoint of excellent compatibility with the polycarbonate obtained by the polymerization and high ion conductivity.

また、金属塩としては、上述のリチウム塩のアニオンと、リチウム以外のアルカリ金属、例えばカリウム、ナトリウム等との塩を使用することもできる。   Moreover, as a metal salt, the salt of the above-mentioned lithium salt anion and alkali metals other than lithium, for example, potassium, sodium, etc. can also be used.

高分子固体電解質を構成する金属塩の含有量は、使用する金属塩やポリカーボネートの種類などにより異なるが、通常、ポリカーボネートの全ての構成繰返し単位[O−CO−Oユニット]に対する金属塩イオンのモル比([金属塩イオン]/[O−CO−Oユニット])として、0.05〜0.9であることが好ましく、0.1〜0.5がより好ましい。この比が0.05より小さいと導電率が低下し、0.9より大きいと金属塩の析出により高分子固体電解質の成膜性が低下するおそれがある。   The content of the metal salt constituting the polymer solid electrolyte varies depending on the metal salt used and the type of polycarbonate, but usually the moles of metal salt ions relative to all the structural repeating units [O-CO-O unit] of the polycarbonate. The ratio ([metal salt ion] / [O—CO—O unit]) is preferably 0.05 to 0.9, more preferably 0.1 to 0.5. If this ratio is less than 0.05, the electrical conductivity is lowered, and if it is more than 0.9, the film formability of the polymer solid electrolyte may be lowered due to precipitation of a metal salt.

ポリカーボネートおよび金属塩を含有する本発明の高分子固体電解質を製造する方法としては特に制限はなく、種々の方法により任意の形状の高分子固体電解質を得ることができる。   There is no restriction | limiting in particular as a method to manufacture the polymer solid electrolyte of this invention containing a polycarbonate and a metal salt, The polymer solid electrolyte of arbitrary shapes can be obtained by various methods.

例えば、一般に、高分子固体電解質は膜の形態で使用されることが多く、このための成膜方法としては、上述のポリカーボネートおよび金属塩を溶媒に均一に溶解させた後、溶液を平坦な基板にキャストし、溶媒を蒸発させることによりフィルムを得るというキャスト法により成膜することができる。この場合、溶媒としては、ポリカーボネートおよび金属塩の双方を溶解させることができる溶媒の中から、高分子固体電解質の用途等に応じて適宜選択して使用することができる。一般には、アセトニトリル、ジメチルホルムアミドやテトラヒドロフラン等の適度な極性を有する有機溶媒を使用することができる。   For example, in general, a polymer solid electrolyte is often used in the form of a film. As a film forming method for this purpose, the above polycarbonate and metal salt are uniformly dissolved in a solvent, and then the solution is flattened. The film can be formed by a casting method in which a film is obtained by casting the film and evaporating the solvent. In this case, the solvent can be appropriately selected from solvents that can dissolve both the polycarbonate and the metal salt according to the use of the polymer solid electrolyte. In general, an organic solvent having an appropriate polarity such as acetonitrile, dimethylformamide or tetrahydrofuran can be used.

前記溶媒の使用量としては、前記ポリカーボネート100質量部に対して100〜10000質量部であることが好ましく、250〜2500質量部であることがより好ましい。   As the usage-amount of the said solvent, it is preferable that it is 100-10000 mass parts with respect to 100 mass parts of said polycarbonates, and it is more preferable that it is 250-2500 mass parts.

以下に実施例を示すが、本発明はこれらに限定されるものではない。   Examples are shown below, but the present invention is not limited thereto.

なお、本実施例で得られたポリカーボネートの数平均分子量(Mn)および分子量分布(Mw/Mn)は、ゲルパーミエーションクロマトグラフィー(ジーエルサイエンス社製高速液体クロマトグラフィーシステムDG660B・PU713・UV702・RI631A)を用いて、テトラハイドロフラン(THF)中、40℃にて測定し、標準ポリスチレンを基準にして算出した。   In addition, the number average molecular weight (Mn) and molecular weight distribution (Mw / Mn) of the polycarbonate obtained in this example are gel permeation chromatography (high performance liquid chromatography system DG660B / PU713 / UV702 / RI631A manufactured by GL Sciences Inc.). Was measured in tetrahydrofuran (THF) at 40 ° C. and calculated based on standard polystyrene.

本実施例で得られたポリカーボネートのH−NMRスペクトルの測定は、JEOL社製JNM−ECP500(500MHz)を用いて行った。 The 1 H-NMR spectrum of the polycarbonate obtained in this example was measured using JNM-JNM-ECP500 (500 MHz).

本実施例において作成した固体高分子電解質フィルムのイオン伝導度(σ)は、東洋テクニカ社製solartron SI 1260を用いて複素インピーダンスを測定し、次式:   The ionic conductivity (σ) of the solid polymer electrolyte film prepared in this example was measured for complex impedance using a solartron SI 1260 manufactured by Toyo Technica Co., Ltd.

Figure 0005996196
(式中、Rはバルク抵抗値、dは試料の厚さ、Aは電極の面積である。)に基づきイオン伝導度(σ)を算出した。
Figure 0005996196
(Wherein, R is the bulk resistance value, d is the thickness of the sample, and A is the area of the electrode), and the ionic conductivity (σ) was calculated.

複素インピーダンスの測定では、電位勾配に沿ったイオンの泳動と同時に、電気二重層の充放電、電極反応などが起こるために、周波数依存性を示す。この周波数依存性を、実数部を横軸、虚数部を縦軸とした平面にプロット(Cole−Coleプロット)し、その軌跡を説明する等価回路の値(抵抗値)を求めた。   In the measurement of the complex impedance, charge and discharge of the electric double layer, electrode reaction, and the like occur simultaneously with ion migration along the potential gradient, and thus show frequency dependence. This frequency dependence was plotted on a plane (Cole-Cole plot) with the real part as the horizontal axis and the imaginary part as the vertical axis (Cole-Cole plot), and an equivalent circuit value (resistance value) explaining the locus was obtained.

グリコール単位を有するエポキシドは、既報(Journal of Organic Chemistry 1983, 48, p.1117)に記載の方法に従って合成した。   Epoxides having glycol units were synthesized according to the method described in a previous report (Journal of Organic Chemistry 1983, 48, p. 1117).

また、下記式(4):   Moreover, following formula (4):

Figure 0005996196
で表されるコバルトサレン錯体(4)は、US−B2−7674873(p.6)記載の方法に従って合成した。
Figure 0005996196
The cobalt salen complex (4) represented by the above was synthesized according to the method described in US-B2-7677483 (p.6).

[合成例1]
500mL容のステンレス製オートクレーブに、コバルトサレン錯体(4)0.407g(0.5mmol)、PPNCl 0.287g(0.5mmol)を仕込み、窒素雰囲気に置換した後、2−(2−(2−メトキシエトキシ)エトキシ)メチルオキシラン(MEEMO)88.1g(0.5mol)を加え、二酸化炭素を0.7MPaまで圧入して、圧力を一定に保ちながら25℃で24時間撹拌した。常圧に戻した後、内容物を塩化メチレンに溶解させ、1M塩酸で2回洗浄した後、揮発分を濃縮し、残留物をジエチルエーテルで2回洗浄した。その後、80℃で5時間真空乾燥を行い、無色ゴム状のポリマーを97g得た(収率90%)。
[Synthesis Example 1]
A 500 mL-volume stainless steel autoclave was charged with 0.407 g (0.5 mmol) of cobalt-salen complex (4) and 0.287 g (0.5 mmol) of PPNCl and replaced with a nitrogen atmosphere, and then 2- (2- (2- Methoxyethoxy) ethoxy) methyloxirane (MEEMO) 88.1 g (0.5 mol) was added, carbon dioxide was injected to 0.7 MPa, and the mixture was stirred at 25 ° C. for 24 hours while keeping the pressure constant. After returning to normal pressure, the contents were dissolved in methylene chloride, washed twice with 1M hydrochloric acid, volatiles were concentrated, and the residue was washed twice with diethyl ether. Then, it vacuum-dried at 80 degreeC for 5 hours, and obtained 97g of colorless rubber-like polymers (yield 90%).

=72,400、M/M=2.03
H−NMR(CDCl)δ 5.03(br,1H,CH),4.50−4.25(br,2H,CHCH),3.70−3.61(m,8H,CHCHO),3.54−3.43(m,2H,CHOCHCH),3.37(s,3H,CHCHOCH)ppm.
M n = 72,400, M w / M n = 2.03
1 H-NMR (CDCl 3 ) δ 5.03 (br, 1H, CH), 4.50-4.25 (br, 2H, CH 2 CH), 3.70-3.61 (m, 8H, CH 2 CH 2 O), 3.54-3.43 ( m, 2H, CH 2 OCH 2 CH 2), 3.37 (s, 3H, CH 2 CH 2 OCH 3) ppm.

[実施例1]
(1)固体高分子電解質フィルムの作成
50mL容のナス型フラスコに、合成例1で得られたポリカーボネート 1.0g、LiTFSI 0.13g([金属塩イオン]/[O−CO−Oユニット]=0.10 mol/mol)、アセトニトリル10mLを仕込み、溶解させ、均一な溶液を得た。
絶縁基板としてスライドガラス(幅:26mm、長さ:76mm、厚み:1mm)を用意し、アセトンを用いて洗浄した。その後、UV−オゾン処理装置(セン特殊光源株式会社製、商品名:卓上型光表面処理装置 PL16−110)を用いて、スライドガラスの表面処理を行い、試験用スライドガラスとした。
[Example 1]
(1) Preparation of solid polymer electrolyte film In a 50 mL eggplant-shaped flask, 1.0 g of the polycarbonate obtained in Synthesis Example 1 and 0.13 g of LiTFSI ([metal salt ion] / [O—CO—O unit] = 0.10 mol / mol) and 10 mL of acetonitrile were charged and dissolved to obtain a uniform solution.
A slide glass (width: 26 mm, length: 76 mm, thickness: 1 mm) was prepared as an insulating substrate and washed with acetone. Then, using a UV-ozone treatment device (manufactured by Sen Special Light Source Co., Ltd., trade name: tabletop optical surface treatment device PL16-110), the slide glass was subjected to surface treatment to obtain a test slide glass.

次に、試験用スライドガラスに、マスキングテープを用いて、長方形(10mm×50mm)のパターンを形成し、上記アセトニトリル溶液を流し込んだ。室温でアセトニトリルを蒸発させた後、マスキングテープを除去し、110℃で、8時間乾燥させることにより、固体高分子電解質フィルムを作成した。   Next, a rectangular (10 mm × 50 mm) pattern was formed on the test slide glass using a masking tape, and the acetonitrile solution was poured. After evaporating acetonitrile at room temperature, the masking tape was removed, and the solid polymer electrolyte film was prepared by drying at 110 ° C. for 8 hours.

(2)アルミラミネート測定セルの作成
PPラミネートフィルム上にAu箔(正極兼リード線)、Cu箔(陰極兼リード線)を貼り付けた後、正極上に固体高分子電解質フィルム、Li箔の順に重ね合わせた後、PPラミネートフィルムを閉じた。次に、PPラミネートフィルムをアルミラミネートフィルムで挟み込んだ後、脱気しながらシールを施し、アルミラミネート測定セルを作成した。
(2) Preparation of aluminum laminate measurement cell After affixing Au foil (positive electrode and lead wire) and Cu foil (cathode and lead wire) on PP laminate film, solid polymer electrolyte film and Li foil in this order on the positive electrode After overlapping, the PP laminate film was closed. Next, after the PP laminate film was sandwiched between the aluminum laminate films, sealing was performed while deaeration, thereby producing an aluminum laminate measurement cell.

(3)イオン伝導度(σ)の評価
得られたアルミラミネート測定セルを用いてイオン伝導度(σ)を測定した。なお、測定温度は、25℃,40℃,60℃,80℃である。
(3) Evaluation of ion conductivity (σ) Ion conductivity (σ) was measured using the obtained aluminum laminate measurement cell. In addition, measurement temperature is 25 degreeC, 40 degreeC, 60 degreeC, and 80 degreeC.

[実施例2]
実施例1において、LiTFSI 0.13g([金属イオン]/[O−CO−Oユニット]=0.10 mol/mol)に代えてLiTFSI 0.22g([金属イオン]/[O−CO−Oユニット]=0.17mol/mol)を用いた以外は実施例1と同様にして固体高分子電解質フィルムを作成した。
次に、実施例1と同様にしてアルミラミネート測定セルを作成し、イオン伝導度(σ)を測定した。
[Example 2]
In Example 1, instead of LiTFSI 0.13 g ([metal ion] / [O—CO—O unit] = 0.10 mol / mol), LiTFSI 0.22 g ([metal ion] / [O—CO—O] A solid polymer electrolyte film was prepared in the same manner as in Example 1 except that [unit] = 0.17 mol / mol) was used.
Next, an aluminum laminate measurement cell was prepared in the same manner as in Example 1, and the ionic conductivity (σ) was measured.

[比較例1]
実施例1において、本実施例で得られたポリカーボネートに代えてポリエチレンカーボネート(EMPWER MATERIALS社製、商品名 QPAC25)を用いた以外は、実施例1と同様にしてイオン伝導度を測定した。
[Comparative Example 1]
In Example 1, ion conductivity was measured in the same manner as in Example 1 except that polyethylene carbonate (manufactured by EMPWER MATERIALS, trade name QPAC25) was used instead of the polycarbonate obtained in this example.

[比較例2]
実施例1において、本実施例で得られたポリカーボネートに代えてポリプロピレンカーボネート(EMPWER MATERIALS社製、商品名 QPAC40)を用いた以外は、実施例1と同様にしてイオン伝導度を測定した。結果を表1に示す。
[Comparative Example 2]
In Example 1, ion conductivity was measured in the same manner as in Example 1 except that polypropylene carbonate (product name: QPAC40, manufactured by EMPWER MATERIALS) was used instead of the polycarbonate obtained in this example. The results are shown in Table 1.

Figure 0005996196
Figure 0005996196

表1に示す結果から、合成例1で得られるポリマーを用いた固体高分子電解質でのイオン伝導度が優れていることが分かる。   From the results shown in Table 1, it can be seen that the ionic conductivity of the solid polymer electrolyte using the polymer obtained in Synthesis Example 1 is excellent.

本発明によれば、室温付近でも高いイオン導電性を有し、かつ優れた成膜性や可撓性を有する高分子固体電解質を得ることができる。
本発明の高分子固体電解質は、リチウム電池等のエネルギー密度の高い電池をはじめとする種々の電気化学的デバイス向け材料として使用することができる。
According to the present invention, it is possible to obtain a polymer solid electrolyte having high ionic conductivity even near room temperature and having excellent film forming properties and flexibility.
The polymer solid electrolyte of the present invention can be used as a material for various electrochemical devices including a battery having a high energy density such as a lithium battery.

Claims (5)

式(1):
Figure 0005996196
(式中、RおよびRは、同一または異なっていてもよく、水素原子、アルキル基、アルコキシ基、アルカノイル基、カルバモイル基、シアノ基またはグリコール単位より構成される基を示す。ただし、R1およびR2のいずれか一方はグリコール単位より構成される基である。ただし、前記グリコール単位の繰り返し回数nが1であるものを除く。)で表されるエポキシドと二酸化炭素との共重合体であるポリカーボネートおよび金属塩を含み、前記金属塩の含有量が、ポリカーボネートの構成繰返し単位[O−CO−Oユニット]に対する金属塩イオンのモル比([金属塩イオン]/[O−CO−Oユニット])として、0.05〜0.9である、高分子固体電解質。
Formula (1):
Figure 0005996196
(In the formula, R 1 and R 2 may be the same or different and each represents a hydrogen atom, an alkyl group, an alkoxy group, an alkanoyl group, a carbamoyl group, a cyano group, or a group composed of a glycol unit. One of R 1 and R 2 is a group composed of glycol units , except for those having a glycol unit repeating number n of 1 ) . look containing polycarbonate and metal salts is, the content of the metal salt, the molar ratio of metal salt ions to the polycarbonate constituent repeating units [O-CO-O units ([metal salt ions] / [O-CO- Polymer unit electrolyte which is 0.05-0.9 as O unit]) .
前記グリコール単位がエチレングリコール単位である、請求項1に記載の高分子固体電解質。   The solid polymer electrolyte according to claim 1, wherein the glycol unit is an ethylene glycol unit. 金属塩がアルカリ金属塩である、請求項1または2に記載の高分子固体電解質。   The polymer solid electrolyte according to claim 1 or 2, wherein the metal salt is an alkali metal salt. 請求項1〜のいずれか1項に記載の高分子固体電解質から得られる高分子固体電解質フィルム。 The polymer solid electrolyte film obtained from the polymer solid electrolyte of any one of Claims 1-3 . 請求項1〜のいずれか1項に記載の高分子固体電解質を溶媒に溶解させ、キャスト法によりフィルム化することを特徴とする高分子固体電解質フィルムの製造方法。 A method for producing a solid polymer electrolyte film, comprising dissolving the solid polymer electrolyte according to any one of claims 1 to 3 in a solvent and forming the film by a casting method.
JP2012014404A 2012-01-26 2012-01-26 Polymer solid electrolyte and polymer solid electrolyte film Expired - Fee Related JP5996196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012014404A JP5996196B2 (en) 2012-01-26 2012-01-26 Polymer solid electrolyte and polymer solid electrolyte film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012014404A JP5996196B2 (en) 2012-01-26 2012-01-26 Polymer solid electrolyte and polymer solid electrolyte film

Publications (2)

Publication Number Publication Date
JP2013155213A JP2013155213A (en) 2013-08-15
JP5996196B2 true JP5996196B2 (en) 2016-09-21

Family

ID=49050740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012014404A Expired - Fee Related JP5996196B2 (en) 2012-01-26 2012-01-26 Polymer solid electrolyte and polymer solid electrolyte film

Country Status (1)

Country Link
JP (1) JP5996196B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6401586B2 (en) * 2014-11-26 2018-10-10 リンテック株式会社 Aliphatic polycarbonate resin, solid electrolyte, and lithium ion secondary battery
JP6460830B2 (en) * 2015-02-23 2019-01-30 リンテック株式会社 Aliphatic polycarbonate resin, solid electrolyte, and lithium ion secondary battery
WO2017033805A1 (en) * 2015-08-21 2017-03-02 リンテック株式会社 Solid electrolyte and battery
KR102311275B1 (en) * 2016-04-08 2021-10-12 스미토모 세이카 가부시키가이샤 Aliphatic polycarbonate resin, barrier rib material, substrate and manufacturing method thereof, wiring board manufacturing method and wiring forming method
EP3441417A4 (en) 2016-04-08 2019-10-30 Sumitomo Seika Chemicals CO. LTD. Aliphatic polycarbonate resin for forming partition, partition material, substrate and production method therefor, production method for wiring substrate, and wiring forming method
CN107768717B (en) * 2017-09-14 2020-10-27 哈尔滨工业大学无锡新材料研究院 Ultraviolet-cured polycarbonate-based solid polymer electrolyte with semi-interpenetrating network structure and preparation method thereof
CN112259789B (en) * 2020-10-13 2022-07-12 北京卫国创芯科技有限公司 Polyether solid polymer electrolyte, preparation method thereof and solid battery comprising polyether solid polymer electrolyte

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3384174B2 (en) * 1995-02-10 2003-03-10 ソニー株式会社 Polymer solid electrolyte
JP3384173B2 (en) * 1995-02-10 2003-03-10 ソニー株式会社 Polymer solid electrolyte
JP2003187637A (en) * 2001-09-21 2003-07-04 Daiso Co Ltd Element using polymer gel electrolyte
JP5610468B2 (en) * 2009-05-11 2014-10-22 国立大学法人東京農工大学 Solid polymer electrolyte, solid polymer electrolyte film, and method for producing solid polymer electrolyte film
JPWO2010147237A1 (en) * 2009-06-18 2012-12-06 学校法人慶應義塾 Method for producing multi-component aliphatic polycarbonate
JP5382536B2 (en) * 2010-02-25 2014-01-08 ダイソー株式会社 Polymer solid electrolyte and use thereof
WO2012114939A1 (en) * 2011-02-23 2012-08-30 国立大学法人東京大学 Polycarbonate having responsiveness to protic polar solvent and method for producing same

Also Published As

Publication number Publication date
JP2013155213A (en) 2013-08-15

Similar Documents

Publication Publication Date Title
JP5996196B2 (en) Polymer solid electrolyte and polymer solid electrolyte film
JP5610468B2 (en) Solid polymer electrolyte, solid polymer electrolyte film, and method for producing solid polymer electrolyte film
JP3215440B2 (en) Polymer solid electrolyte
JP3491539B2 (en) Polymer solid electrolyte and its use
US6180287B1 (en) Polyether copolymer and solid polymer electrolyte
JP3215436B2 (en) Crosslinked polymer solid electrolyte and its use
US8124283B2 (en) Cyclic siloxane-based compounds and solid polymer electrolyte composition containing the same as a crosslinking agent
EP3340362B1 (en) Solid electrolyte and battery
JP2002280075A (en) Polyalkylene oxide-based solid polymer electrolytic composition
JP4164131B2 (en) Polyether copolymer, polymer solid electrolyte and battery
Mindemark et al. Hydroxyl-functionalized poly (trimethylene carbonate) electrolytes for 3D-electrode configurations
Oh et al. Poly (vinylpyridine-co-styrene) based in situ cross-linked gel polymer electrolyte for lithium-ion polymer batteries
JP2014009282A (en) Polycarbonate compound, and electrolyte composition
Thielen et al. Model Compounds Based on Cyclotriphosphazene and Hexaphenylbenzene with Tethered Li+-Solvents and Their Ion-Conducting Properties
JP2015018759A (en) Polymer electrolyte
US9469612B2 (en) Polyether compound and electrolyte composition
JP6460830B2 (en) Aliphatic polycarbonate resin, solid electrolyte, and lithium ion secondary battery
CN100354336C (en) Polyether high polymer compound, using formed ion conducing high polymer composition and electrochemical equipment
WO2022070874A1 (en) Solid electrolyte and battery
JP6401586B2 (en) Aliphatic polycarbonate resin, solid electrolyte, and lithium ion secondary battery
JP5310495B2 (en) NOVEL POLYMER AND PROCESS FOR PRODUCING THE SAME, NOVEL COMPOUND AND PROCESS FOR PRODUCING THE SAME, AND ELECTROLYTE CONTAINING AT LEAST ONE SELECTED FROM THE POLYMER AND THE COMPOUND
JP2013538181A (en) Ionizable compound, process for producing the same, and ion conductive material
JP2001035250A (en) High-polymer solid electrolyte, manufacture of high- polymer solid electrolyte, and electrochemical device
JP6218282B2 (en) Novel oxetane compound and polymer thereof
Tominaga A New Class of Ion-Conductive Polymer Electrolytes: CO2/Epoxide Alternating Copolymers With Lithium Salts

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160824

R150 Certificate of patent or registration of utility model

Ref document number: 5996196

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees