JP5991665B2 - Transparent hybrid film and manufacturing method thereof - Google Patents

Transparent hybrid film and manufacturing method thereof Download PDF

Info

Publication number
JP5991665B2
JP5991665B2 JP2012125381A JP2012125381A JP5991665B2 JP 5991665 B2 JP5991665 B2 JP 5991665B2 JP 2012125381 A JP2012125381 A JP 2012125381A JP 2012125381 A JP2012125381 A JP 2012125381A JP 5991665 B2 JP5991665 B2 JP 5991665B2
Authority
JP
Japan
Prior art keywords
film
transparent hybrid
hybrid film
group
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012125381A
Other languages
Japanese (ja)
Other versions
JP2013249389A (en
JP2013249389A5 (en
Inventor
篤 穂積
篤 穂積
千尋 浦田
千尋 浦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2012125381A priority Critical patent/JP5991665B2/en
Publication of JP2013249389A publication Critical patent/JP2013249389A/en
Publication of JP2013249389A5 publication Critical patent/JP2013249389A5/ja
Application granted granted Critical
Publication of JP5991665B2 publication Critical patent/JP5991665B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Paints Or Removers (AREA)
  • Silicon Polymers (AREA)

Description

本発明は、透明ハイブリッド皮膜とその製造方法に関するものであり、更に詳しくは、疎水性官能基を持った有機シランおよび金属アルコキシドを、有機溶媒、水、添加剤(防錆剤、紫外線吸収剤/光安定剤、防カビ剤/抗菌剤、生物付着防止剤等)を含む溶液中で共加水分解・縮重合させた前駆溶液を、例えば、金属、金属酸化膜、金属酸化物、合金、半導体、ポリマー、セラミックス、ガラス、樹脂、木材、紙、繊維等の固体表面に塗布し、溶媒の揮発と同時に、密着性に優れた透明ハイブリッド皮膜を形成させ、該透明膜の膜表面の有機シラン由来の官能基の運動性を制御すること、および、該透明膜の1〜10nmの層間に各種添加剤を固定化することで得られる、基材の特性を維持したまま、基材表面に優れたはっ水/はつ油性、液滴除去能、耐指紋付着性、防汚性、耐食性、耐候性、防カビ性、抗菌性、生物付着防止等の特性を長期間、安定に付与することを可能にする透明ハイブリッド皮膜とその製造方法に関するものである。   The present invention relates to a transparent hybrid film and a method for producing the same. More specifically, an organic silane having a hydrophobic functional group and a metal alkoxide are mixed with an organic solvent, water, an additive (rust inhibitor, ultraviolet absorber / For example, metals, metal oxide films, metal oxides, alloys, semiconductors, precursor solutions co-hydrolyzed and polycondensed in solutions containing light stabilizers, fungicides / antibacterial agents, bioadhesive agents, etc.) Apply to a solid surface such as polymer, ceramics, glass, resin, wood, paper, fiber, etc. to form a transparent hybrid film with excellent adhesion at the same time as volatilization of the solvent. Controlling the mobility of the functional group and immobilizing various additives between the 1 to 10 nm layers of the transparent film, while maintaining the characteristics of the base material, Water / oil repellency, Transparent hybrid film and its production that can stably provide properties such as droplet removal ability, fingerprint resistance, antifouling, corrosion resistance, weather resistance, mold resistance, antibacterial properties, and anti-biological adhesion for a long period of time It is about the method.

本発明は、基材との密着性、はっ水/はつ油性、液滴除去能、耐指紋付着性、防汚性、耐食性、耐候性、防カビ性、抗菌性、生物付着防止等の特性に優れた透明ハイブリッド皮膜を、上記基材表面に形成することで、例えば、金属/木質材料の腐食防止、タッチパネルディスプレー等への指紋付着防止、日常生活品や食品梱包材への抗菌性付与、ポリマーフィルムへの耐候性付与、紙や繊維等の劣化/黄変防止や防水性付与、タイルや水周りの防カビ処理等の用途において、特に著効を発揮する、新しい表面改質技術に関する新技術・新製品を提供するものである。   The present invention provides adhesion to a substrate, water repellency / oil repellency, droplet removal ability, fingerprint resistance, antifouling properties, corrosion resistance, weather resistance, antifungal properties, antibacterial properties, biological adhesion prevention, etc. By forming a transparent hybrid film with excellent properties on the surface of the base material, for example, corrosion prevention of metal / wood materials, prevention of fingerprint adhesion to touch panel displays, etc., and addition of antibacterial properties to daily living products and food packaging materials New surface modification technology that is particularly effective in applications such as weather resistance to polymer films, paper / fiber deterioration / yellowing prevention and waterproofing, and anti-mold treatment around tiles and water. It provides new technologies and products.

固体表面に液滴が付着すると、そこを起点として、固体表面の腐食、劣化、汚染が進行する。また、ガラス等の透明材料の場合、付着した液滴は、視界不良や汚れの原因となる。また、太陽光発電において、集光ミラーの汚れは、発電効率に大きな影響を及ぼすことから、多くの工学分野で、液滴除去性能の高い(はっ水/はつ油)材料/表面処理の開発が試みられている。   When a droplet adheres to the solid surface, the corrosion, deterioration, or contamination of the solid surface proceeds from that point. In the case of a transparent material such as glass, the adhered droplets cause poor visibility and dirt. In solar power generation, dirt on the condensing mirror has a large effect on power generation efficiency. Therefore, in many engineering fields, materials with high droplet removal performance (water-repellent / oil-repellent) / surface treatment Development is being attempted.

先行技術として、例えば、アルキル基やパーフルオロアルキル基のような表面エネルギーの低い不活性(疎水性)な官能基で終端された有機シラン単分子膜の防食皮膜への応用が検討されている(非特許文献1〜3)。これらは、表面にはっ水性を付与することで、液滴の付着を抑制し、防食性の向上を狙った手法である。   As a prior art, for example, application of an organic silane monomolecular film terminated with an inert (hydrophobic) functional group having a low surface energy, such as an alkyl group or a perfluoroalkyl group, to an anticorrosive film has been studied ( Non-patent documents 1 to 3). These are techniques aimed at improving the anticorrosion property by imparting water repellency to the surface to suppress the adhesion of droplets.

しかしながら、これらの表面はヒステリシスが大きいため、微小水滴の場合、固体表面を90°以上傾けても、水滴は、固体表面に留まることが知られており、はっ水処理を施したからと言っても、水滴の除去性能が向上するとは限らないことが分かってきた(非特許文献4)。   However, since these surfaces have large hysteresis, it is known that water droplets remain on the solid surface even if the solid surface is tilted by 90 ° or more in the case of minute water droplets. However, it has been found that the water droplet removal performance is not always improved (Non-Patent Document 4).

ヒステリシスとは、前進接触角(θ)と後退接触角(θ)の差(θ−θ)で示され、その値が小さいほど、液滴は、僅かな傾斜で固体表面を滑落する。また、単分子膜は、その極めて薄い膜厚(<3nm)から、長期安定性に問題があると同時に、微視的には欠陥があるため、基材表面を完全に被覆しているとは言えない。そのため、防食特性にも自ずと限界がある。 Hysteresis is indicated by the difference (θ A −θ R ) between the advancing contact angle (θ A ) and the receding contact angle (θ R ). The smaller the value, the more the droplet slides down the solid surface with a slight inclination. To do. In addition, the monomolecular film has a problem in long-term stability due to its extremely thin film thickness (<3 nm), and at the same time has a defect microscopically, so that the substrate surface is completely covered. I can not say. For this reason, the anticorrosion properties are naturally limited.

他の先行技術として、例えば、有機ホスホン酸とジルコニウムの自己集積化を利用し、ホスホン酸−ジルコウム積層膜(膜厚約9nm)を純アルミニウム基板(JIS1100P)上に形成し、その防食性能が評価されている(非特許文献5〜6)。塩水噴霧試験による耐食性の評価結果は、アルミ飲料缶の防食皮膜として実用化されているZrP化成処理皮膜(約24時間で白錆発生)の3倍という高い耐食性を示したものの、約72時間後、白錆が発生している。   As another prior art, for example, by utilizing self-integration of organic phosphonic acid and zirconium, a phosphonate-zirconium laminated film (film thickness of about 9 nm) is formed on a pure aluminum substrate (JIS1100P), and its anticorrosion performance is evaluated. (Non-Patent Documents 5 to 6). The evaluation result of the corrosion resistance by the salt spray test showed a high corrosion resistance of 3 times that of a ZrP chemical conversion coating (white rust generated in about 24 hours) that has been put to practical use as an anticorrosion coating for aluminum beverage cans, but after about 72 hours , White rust has occurred.

他の先行技術として、例えば、金属材料の防食処理として、亜鉛メッキやクロメート処理が有名である。しかし、前者は、その耐久性や、処理する形状に制約があるといった問題点が挙げられる(非特許文献7)。一方、後者は、耐食性には優れるものの、使用される六価クロムの環境や人体への影響が指摘されているため、クロメート処理の実施が困難になっており、クロムフリーな防食皮膜の開発が望まれている。   As other prior arts, for example, galvanization and chromate treatment are well known as anticorrosion treatment for metal materials. However, the former has a problem that its durability and the shape to be processed are limited (Non-patent Document 7). On the other hand, although the latter is excellent in corrosion resistance, it has been pointed out that the effect of hexavalent chromium used on the environment and the human body has been pointed out, making it difficult to carry out chromate treatment. It is desired.

他の先行技術として、例えば、Andreevaらは、高分子電解質のナノレイヤー交互層からなるコーティング膜により、傷つけても腐食を防止し自己修復する技術を開発している(非特許文献8)。反対電荷を持つ複数の高分子電解質層を用いて、8−ヒドロキシキノリン層(腐食防止剤)を挟む構成のコーティング膜をアルミニウム合金表面上に成膜したところ、コーティング処理された表面は、引っかき傷をつけた後、塩水に浸漬しても、16時間後も腐食はみられなかった。   As another prior art, Andreweva et al., For example, has developed a technique for preventing corrosion and self-healing even when damaged by a coating film composed of alternating nanolayers of a polymer electrolyte (Non-patent Document 8). When a coating film having an 8-hydroxyquinoline layer (corrosion inhibitor) is formed on the aluminum alloy surface using a plurality of polymer electrolyte layers having opposite charges, the coated surface is scratched. No corrosion was observed after 16 hours even after soaking in salt water.

一方、未処理のアルミニウム表面は、6時間塩水に浸けただけで著しく腐食した。このコーティング膜は、優れた自己修復能を有するが、海水のような高塩濃度環境下や水溶液の蒸発に伴う塩濃度の増加によって、高分子電解質層が解離しやすく、実環境下における使用には耐えられないという問題がある。   On the other hand, the untreated aluminum surface was significantly corroded only by being immersed in salt water for 6 hours. This coating film has excellent self-healing ability, but the polymer electrolyte layer is easily dissociated under high salt concentration environment such as seawater or the increase of salt concentration accompanying evaporation of aqueous solution, and it can be used in real environment. Has the problem of being unbearable.

他の先行技術として、例えば、ポリマー材料の耐候性を向上させるために、ポリマー自身、あるいはコーティング皮膜に紫外線吸収剤を添加し、材料の劣化/黄変を抑制する処理が行われている(特許文献1〜2)。しかしながら、単に紫外線吸収剤を添加しただけでは、紫外線吸収剤は材料マトリックス中に固定化されていないため、経時に伴い昇華やブリードアウトが発生し、紫外線カット能が低下する。また、紫外線吸収剤の溶剤への溶解性の問題、高濃度添加に伴う材料物性の低下の問題から、長期間安定した耐候性を実現するポリマー材料の開発には課題が多い。   As another prior art, for example, in order to improve the weather resistance of a polymer material, an ultraviolet absorber is added to the polymer itself or a coating film to suppress deterioration / yellowing of the material (patent) Literatures 1-2). However, simply adding an ultraviolet absorber does not fix the ultraviolet absorber in the material matrix, so sublimation or bleedout occurs over time, and the ultraviolet-cutting ability decreases. In addition, there are many problems in developing a polymer material that realizes stable weather resistance for a long period of time due to the problem of solubility of an ultraviolet absorber in a solvent and the problem of deterioration of physical properties of the material due to addition of a high concentration.

また、上記に記載した表面改質手法では、1)単分子膜処理では、原料分子と基材表面との反応性の違いにより、処理可能な基材の種類が限定されること、2)単分子膜や積層膜の膜厚は数nmであるため、該膜は何らかの化学的・物理的要因で剥離・損傷し、長期的な表面機能の維持が困難であること、3)耐候性コーティングでは、添加剤がマトリックス内に固定化されていないため、昇華やブリードアウトが発生し、紫外線カット能が低下すること、といった短所が挙げられる。   Moreover, in the surface modification method described above, in 1) monomolecular film treatment, the types of base materials that can be treated are limited by the difference in reactivity between the raw material molecules and the base material surface. Since the film thickness of molecular films and laminated films is several nanometers, they must be peeled and damaged by some chemical / physical factors, making it difficult to maintain long-term surface functions. 3) However, since the additive is not immobilized in the matrix, sublimation and bleed-out occur, and the ultraviolet cut ability is reduced.

そのため、当技術分野においては、長期間、安定なはっ水/はつ油性、液滴除去能、耐指紋付着性、防汚性、耐食性、耐候性、防カビ性、抗菌性、生物付着防止等を実用基材表面で実現できる表面改質手法の開発が強く望まれていた。   Therefore, in this technical field, stable water repellency / oil repellency, droplet removal ability, fingerprint resistance, antifouling properties, corrosion resistance, weather resistance, antifungal properties, antibacterial properties, and prevention of bioadhesion for a long time. Development of a surface modification technique that can realize the above on the surface of a practical substrate has been strongly desired.

特開2002−201420号公報JP 2002-20140 A 特開2003−243687号公報JP 2003-243687 A

G.K.Jennings and P.E.Laibinis,Colloids Surf.A,116,105(1996)G. K. Jennings and P.M. E. Laibinis, Colloids Surf. A, 116, 105 (1996) G.Grumdmeier,C.Reinartz,M.Rohwerder,and M.Stratmann,Electrochim.Acta,43,165(1998)G. Grumdmeier, C.I. Reinartz, M.M. Rohwerder, and M.M. Stratmann, Electrochim. Acta, 43, 165 (1998) M.Itoh,H.Nishihara,and K.Aramaki,J.Electrochem.Soc.,142,3969(1995).151M.M. Itoh, H .; Nishihara, and K.K. Aramaki, J. et al. Electrochem. Soc. , 142, 3969 (1995). 151 赤松 佳則,表面技術,60,32(2009)Akamatsu Yoshinori, Surface Technology, 60, 32 (2009) 志田あずさ,蓬原正伸,杉村博之,高井治,表面技術,53,897(2002)Azusa Shida, Masanobu Sugawara, Hiroyuki Sugimura, Osamu Takai, Surface Technology, 53, 897 (2002) A.Shida,H.Sugmura,M.Futsuhara,and O.Takai,Surf.Coat.Technol.,169−170,686(2003)A. Shida, H .; Sugmura, M .; Futsuhara, and O.R. Takai, Surf. Coat. Technol. 169-170,686 (2003) 伊崎輝明,表面技術,50,545(1999)Teruaki Izaki, Surface Technology, 50, 545 (1999) Daria V.Andreeva,D.Fix,H.Mohwald,and D.G.Shchukin,Adv.Mater.,20,2789(2008)Daria V. Andrewva, D.A. Fix, H .; Mohwald, and D.M. G. Shchukin, Adv. Mater. , 20, 2789 (2008)

このような状況の中で、本発明者は、上記従来技術に鑑みて、各種添加剤を皮膜中に高濃度かつ安定に固定化し、耐食性/耐候性に優れた透明皮膜の形成を可能とする実用基材の新しい表面処理技術を開発することを目標として鋭意研究を進めた結果、疎水性官能基を持つ有機シランと金属アルコキシドを、有機溶媒、水、添加剤(防錆剤、紫外線吸収剤/光安定剤、防カビ剤/抗菌剤、生物付着防止剤等)を含む溶液中で共加水分解・縮重合させた前駆溶液を、基材表面に塗布後、所定時間、室温、大気圧下で静置することにより、所期の目的を達成し得ることを見出した。   Under such circumstances, the present inventor, in view of the above-mentioned prior art, stably fixes various additives in the film at a high concentration and enables formation of a transparent film having excellent corrosion resistance / weather resistance. As a result of diligent research aimed at developing new surface treatment technology for practical substrates, organic silanes and metal alkoxides with hydrophobic functional groups were combined with organic solvents, water, additives (rust inhibitors, UV absorbers). / Precursor solution co-hydrolyzed and polycondensed in a solution containing a light stabilizer, fungicide / antibacterial agent, bioadhesive agent, etc.) on the substrate surface, and then for a predetermined time at room temperature and atmospheric pressure It was found that the intended purpose can be achieved by leaving it at rest.

すなわち、本発明者は、上記構成により、1)溶媒の揮発と同時に、密着性に優れた透明膜が形成されること、2)上記1)の透明膜の層間に、添加剤(防錆剤、紫外線吸収剤/光安定剤、防カビ剤/抗菌剤、生物付着防止剤等)を高濃度で固定化できること、3)上記1)の透明膜の表面では、同じ有機シラン分子から構成される単分子膜で被覆した基材表面と比較して、ヒステリシスが極めて小さくなり、液滴の除去性能、防汚性が向上すること、4)上記2)と3)の効果があいまって、塗布した基材のはっ水/はつ油性、防汚性、耐食性、耐候性、防カビ性、抗菌性、生物付着防止等が極めて向上すること、との新規知見を見出し、更に研究を重ねて、本発明を完成させるに至った。   That is, the present inventor has 1) that a transparent film excellent in adhesion is formed simultaneously with the volatilization of the solvent, and 2) an additive (rust preventive agent) between the transparent films of 1) above. UV absorbers / light stabilizers, fungicides / antibacterial agents, bioadhesive agents, etc.) can be immobilized at a high concentration, and 3) the surface of the transparent film of 1) is composed of the same organosilane molecule. Compared with the surface of the substrate coated with a monomolecular film, the hysteresis is extremely small, and the droplet removal performance and antifouling properties are improved. 4) The effects of 2) and 3) above are combined and applied. We have found new knowledge that the water repellency / oil repellency, antifouling property, corrosion resistance, weather resistance, antifungal property, antibacterial property, prevention of biofouling, etc. of the base material are improved, The present invention has been completed.

本発明は、基材を、シリカ等の無機薄膜、添加剤をドープしたシリカ等の無機薄膜で被覆した場合と比較して、疎水性官能基を持つ有機シランを、金属アルコキシド、添加剤と混合し、塗布するだけで、透明なハイブリッド膜が形成され、更に、該添加剤が高濃度で層間に固定化され、昇華やブリードアウトを抑制できるとともに、更に、その表面が、表面張力が18〜73dyn/cmの液体に対して極めて小さな接触角ヒステリシス<動的接触角[前進接触角(θ)と、後退接触角(θ)]を測定した時の接触角の差(θ−θ)>を示す固体表面を実現できる新しい表面改質技術を提供することを目的とするものである。 In the present invention, an organic silane having a hydrophobic functional group is mixed with a metal alkoxide and an additive as compared with a case where the substrate is coated with an inorganic thin film such as silica or an inorganic thin film such as silica doped with an additive. Then, a transparent hybrid film is formed only by coating, the additive is fixed between the layers at a high concentration, and sublimation and bleed-out can be suppressed, and the surface has a surface tension of 18 to Very small contact angle hysteresis <dynamic contact angle [advanced contact angle (θ A ) and receding contact angle (θ R )] for a liquid of 73 dyn / cm (θ A −θ An object of the present invention is to provide a new surface modification technique capable of realizing a solid surface exhibiting R 1 )>.

更に、本発明は、該皮膜の層間に高濃度で添加剤を固定化できるため、長期間安定な耐候性、防カビ性、抗菌性を実現でき、また、液滴と固体表面の相互作用を抑制することもできることから、はっ水/はつ油性、液滴除去能、耐指紋付着性、防汚性を、該皮膜表面に同時に付与することも可能である。そのため、本発明は、例えば、金属/木質材料の腐食防止、タッチパネルディスプレー等への指紋付着防止、日常生活品や食品梱包材への抗菌性付与、ポリマーフィルムへの耐候性付与、紙や繊維等の劣化/黄変防止や防水性付与、タイルや水まわりの防カビ/防菌処理といった産業分野において特に有効な、新規表面改質技術に関する新技術・新製品を提供することを目的とするものである。   Furthermore, since the present invention can fix the additive at a high concentration between the layers of the coating, it can realize stable weather resistance, antifungal properties, and antibacterial properties for a long period of time, and also allows the interaction between the droplet and the solid surface. Since it can also be suppressed, water repellency / oil repellency, droplet removing ability, fingerprint resistance, and antifouling properties can be simultaneously imparted to the surface of the coating. Therefore, the present invention, for example, prevents corrosion of metal / woody materials, prevents fingerprint adhesion to touch panel displays, imparts antibacterial properties to daily life goods and food packaging materials, imparts weather resistance to polymer films, paper and fibers, etc. The purpose is to provide new technologies and new products related to new surface modification technologies that are particularly effective in industrial fields such as preventing deterioration / yellowing and imparting water resistance, and preventing mold / antibacterial treatment around tiles and water. It is.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)基材の固体表面に形成させる透明ハイブリッド皮膜であって、原料の有機シランと金属アルコキシドを、有機溶媒、水、添加剤、任意に触媒を含む溶液中で共加水分解・縮重合して有機シラン間の距離を制御した前駆溶液を塗布することにより得られる皮膜であり、基材表面の動的濡れ性、すなわち、動的接触角[前進接触角(θ)と、後退接触角(θ)]を測定した時の接触角ヒステリシス(θ−θ)が、有機シラン単独で表面処理された表面より小さな値とする特性を有していることを特徴とする透明ハイブリッド皮膜。
(2)有機シランと金属アルコキシドが、1:0.1以上の任意のモル比で混合されている、前記(1)に記載の透明ハイブリッド皮膜。
(3)得られる透明ハイブリッド皮膜が、1−10nmの繰り返し周期の層状構造を有している、前記(1)または(2)に記載の透明ハイブリッド皮膜。
(4)上記皮膜が、防錆剤、紫外線吸収剤、防カビ剤、生物付着防止剤から選択した少なくとも1種類以上の添加剤を含有している、前記(1)から(3)のいずれかに記載の透明ハイブリッド皮膜。
(5)上記添加剤を、皮膜の総重量に対して、最大50wt%含有している、前記(1)から(4)のいずれかに記載の透明ハイブリッド皮膜。
(6)前記(4)または(5)に記載の添加剤が、1−10nmの繰り返し周期の層状構造内に固定化されている、前記(1)から(3)のいずれかに記載の透明ハイブリッド皮膜。
(7)有機シランと金属アルコキシドのモル比に依存して、有機シラン分子間の距離を変化させたものである、前記(1)から(6)のいずれかに記載の透明ハイブリッド皮膜。
(8)上記皮膜が、金属、合金、金属酸化膜、半導体、ポリマー・樹脂、木材、繊維、紙から選択した基材と接着する密着性を示す、前記(1)から(7)のいずれかに記載の透明ハイブリッド皮膜表面。
(9)上記皮膜が、平面、曲面、凹凸面、ポーラス面の中から選択した少なくとも1種類以上の表面から構成された混合表面と接着する密着性を示す、前記(1)から(8)のいずれかに記載の透明ハイブリッド皮膜。
(10)金属表面に皮膜を形成させた場合、スクラッチによる傷が表面に発生しても、自己修復する、前記(1)から(9)のいずれかに記載の透明ハイブリッド皮膜。
(11)表面張力が18〜73dyn/cmである液体に対する前進接触角と後退接触角との差としてのヒステリシスが、有機シラン単独で表面処理された表面より小さな値となる、前記(1)から(9)のいずれかに記載の透明ハイブリッド皮膜。
(12)前記(11)に記載の液体と、少なくとも1種類以上の化合物が混ざった混合液体に対する前進接触角と後退接触角との差としてのヒステリシスが、有機シラン単独で表面処理された表面より小さな値となる、前記(1)から(9)のいずれかに記載の透明ハイブリッド皮膜。
(13)上記皮膜が、指紋が付着しにくい難付着性で、かつ付着した指紋が拭き取りやすい易拭き取り性を示す、前記(1)から(9)のいずれかに記載の透明ハイブリッド皮膜。
(14)透明ハイブリッド皮膜の原料となる有機シランが、式(A)のR−Si−R n−3 (但し、n=1、2、または3、Rは、炭素数1−30のアルキル鎖または炭素数1−20のパーフルオロ基、Rは、炭素数1−6のアルキル基、Rは、炭素数1から15のアルコキシ基、クロロ基、イソシアナト基、またはアセトキシ基)で示され、かつSi−C結合で結合された不活性な官能基と、加水分解後に1つ以上のSi−OH基を生成する官能基を有する、前記(1)から(9)のいずれかに記載の透明ハイブリッド皮膜。
(15)透明ハイブリッド皮膜の原料となる有機シランが、式(B)のR−Si−R n−3(但し、n=1、2、または3、Rは、水酸基、ビニル基、塩化アルキル基、アミノ基、イミノ基、ニトロ基、メルカプト基、エポキシ基、カルボニル基、メタクリロキシ基、アジド基、ジアゾ基、またはベンゾフェニル基あるいはこれらの誘導体、Rは、炭素数1から15のアルキル基、Rは、炭素数1−6のアルキル基、Rは、炭素数1から15のアルコキシ基、クロロ基、イソシアナト基、またはアセトキシ基)で示され、かつSi−C結合で結合された活性な官能基と、加水分解後に1つ以上のSi−OH基を生成する官能基を有する、前記(1)から(9)のいずれかに記載の透明ハイブリッド皮膜。
(16)透明ハイブリッド皮膜の原料となる有機シランが、前記(14)および(15)に記載された有機シランから選択された少なくとも2種類以上を原料としたものである、前記(1)から(9)のいずれかに記載の透明ハイブリッド皮膜。
(17)透明ハイブリッド皮膜の原料となる金属アルコキシドが、式(C)のM(R)n(但し、n=1、2、3、または4、Mは、Al、Ca、Fe、Ge、Hf、In、Si、Ta、Ti、Sn、またはZrの金属元素、Rは、炭素数1から15のアルコキシ基)で示される、前記(1)から(9)のいずれかに記載の透明ハイブリッド皮膜。
(18)透明ハイブリッド皮膜の原料となる金属アルコキシドが、前記(17)に記載された金属アルコキシドから選択された少なくとも2種類以上を原料としたものである、前記(1)から(9)のいずれかに記載の透明ハイブリッド皮膜。
(19)透明ハイブリッド皮膜の層間に固定化する添加剤が、防錆剤、紫外線吸収剤/光安定剤、防カビ剤/抗菌剤、および/または生物付着防止剤である、前記(1)から(9)のいずれかに記載の透明ハイブリッド皮膜。
(20)透明ハイブリッド皮膜の層間に固定化する添加剤が、前記(19)に記載された添加剤から選択された少なくとも2種類以上を原料として使用した、前記(1)から(9)のいずれかに記載の透明ハイブリッド皮膜。
(21)有機シランと金属アルコキシドを、有機溶媒、水、添加剤としての防錆剤、紫外線吸収剤、防カビ剤、または生物付着防止剤、任意に触媒を含む溶液中で共加水分解・縮重合した前駆溶液を、金属、金属酸化膜、合金、半導体、ポリマー、セラミックス、ガラス、樹脂、木材、紙、繊維の内から選択した固体表面に滴下した後、所定時間、室温、大気圧下で溶媒を揮発させ、皮膜を架橋させることを特徴とする、透明ハイブリッド皮膜の製造方法。
(22)加水分解に使用する水と混和可能であり、かつ有機シラン、金属アルコキシドおよび添加剤の加水分解・縮重後の物質を溶解し、かつ蒸気圧が水より大きな有機溶媒を使用する、前記(21)に記載の透明ハイブリッド皮膜の製造方法。
(23)加水分解に使用する触媒が、式(A)のR、式(B)のR、式(C)のR、の加水分解を促進する作用を有する、前記(21)から(22)のいずれかに記載の透明ハイブリッド皮膜の製造方法。
(24)スピンコーティング法、ディップコーティング法、ローラーコーティング法、バーコティング法、インクジェットコーティング法、グラビアコーティング法、スプレー法の内から選択したいずれかの方法により、溶媒の揮発を促進させる、前記(21)から(23)のいずれかに記載の透明ハイブリッド皮膜の製造方法。
(25)前駆溶液中の有機シラン、金属アルコキシドおよび添加剤の濃度、有機溶媒のモル濃度に依存して、10−10000nmまで膜厚を制御する、前記(21)から(24)のいずれかに記載の有機−無機透明ハイブリッド皮膜の製造方法。
(26)前記(21)から(25)に記載した方法で調製した前駆溶液が、少なくとも20日以上保存後も使用可能である、前記(21)から(25)のいずれかに記載の透明ハイブリッド皮膜の製造方法。
(27)前記(1)から(9)のいずれかに記載の透明ハイブリッド皮膜が被覆された固体表面であって、その表面が、はっ水/はつ油性、液滴除去能、耐指紋付着性、防汚性、耐食性、耐候性、防カビ性、抗菌性、および/または生物付着防止能を示すことを特徴とする固体表面。
The present invention for solving the above-described problems comprises the following technical means.
(1) A transparent hybrid film formed on the solid surface of a substrate, which is obtained by co-hydrolyzing / condensing a raw material organic silane and a metal alkoxide in a solution containing an organic solvent, water, additives, and optionally a catalyst. The film is obtained by applying a precursor solution in which the distance between the organosilanes is controlled, and the dynamic wettability of the substrate surface, that is, the dynamic contact angle [advanced contact angle (θ A ) and receding contact angle (Θ R )] has a characteristic that the contact angle hysteresis (θ A −θ R ) is smaller than that of the surface treated with organosilane alone. .
(2) The transparent hybrid film according to (1), wherein the organic silane and the metal alkoxide are mixed at an arbitrary molar ratio of 1: 0.1 or more.
(3) The transparent hybrid film according to (1) or (2), wherein the obtained transparent hybrid film has a layered structure with a repetition period of 1 to 10 nm.
(4) Any of the above (1) to (3), wherein the film contains at least one additive selected from a rust inhibitor, an ultraviolet absorber, an antifungal agent, and a biological adhesion inhibitor The transparent hybrid film described in 1.
(5) The transparent hybrid film according to any one of (1) to (4), wherein the additive is contained at a maximum of 50 wt% with respect to the total weight of the film.
(6) The transparent material according to any one of (1) to (3), wherein the additive according to (4) or (5) is immobilized in a layered structure having a repetition period of 1 to 10 nm. Hybrid film.
(7) The transparent hybrid film according to any one of (1) to (6), wherein the distance between the organic silane molecules is changed depending on the molar ratio between the organic silane and the metal alkoxide.
(8) Any of (1) to (7) above, wherein the film exhibits adhesion to adhere to a substrate selected from metals, alloys, metal oxide films, semiconductors, polymers / resins, wood, fibers, and paper The surface of the transparent hybrid film described in 1.
(9) The above-described (1) to (8), wherein the film exhibits adhesion to adhere to a mixed surface composed of at least one surface selected from a flat surface, a curved surface, an uneven surface, and a porous surface. The transparent hybrid film according to any one of the above.
(10) The transparent hybrid film according to any one of (1) to (9), wherein when a film is formed on the metal surface, the film self-repairs even if scratches are generated on the surface.
(11) From the above (1), the hysteresis as a difference between the advancing contact angle and the receding contact angle with respect to a liquid having a surface tension of 18 to 73 dyn / cm is smaller than the surface treated with organosilane alone. (9) The transparent hybrid film according to any one of (9).
(12) The hysteresis as the difference between the advancing contact angle and the receding contact angle with respect to the mixed liquid in which the liquid according to (11) and at least one kind of compound are mixed is more than the surface treated with organosilane alone. The transparent hybrid film according to any one of (1) to (9), which has a small value.
(13) The transparent hybrid film according to any one of (1) to (9), wherein the film is difficult to adhere to a fingerprint and exhibits easy wiping property to easily wipe off the attached fingerprint.
(14) The organic silane that is a raw material of the transparent hybrid film is R 1 —Si—R 2 n-3 R 3 n of the formula (A) (where n = 1, 2, or 3, R 1 is the number of carbon atoms. A 1-30 alkyl chain or a C 1-20 perfluoro group, R 2 is a C 1-6 alkyl group, R 3 is a C 1-15 alkoxy group, a chloro group, an isocyanato group, or (1) to (9) having an inactive functional group represented by an acetoxy group) and bonded with a Si—C bond, and a functional group that generates one or more Si—OH groups after hydrolysis. The transparent hybrid film according to any one of the above.
(15) R 1 R 2 —Si—R 3 n R 4 n-3 of the formula (B) is used as the raw material of the transparent hybrid film (where n = 1, 2, or 3, R 1 is Hydroxyl group, vinyl group, alkyl chloride group, amino group, imino group, nitro group, mercapto group, epoxy group, carbonyl group, methacryloxy group, azide group, diazo group, benzophenyl group or their derivatives, R 2 is carbon An alkyl group having 1 to 15 carbon atoms, R 3 is an alkyl group having 1 to 6 carbon atoms, R 4 is an alkoxy group having 1 to 15 carbon atoms, a chloro group, an isocyanato group, or an acetoxy group), and Si The transparent hybrid film according to any one of (1) to (9), which has an active functional group bonded by a -C bond and a functional group that generates one or more Si-OH groups after hydrolysis.
(16) From (1) to (1) above, wherein the organic silane used as a raw material for the transparent hybrid film is made from at least two kinds selected from the organic silanes described in (14) and (15) above. The transparent hybrid film according to any one of 9).
(17) The metal alkoxide that is a raw material of the transparent hybrid film is M (R 1 ) n (where n = 1, 2, 3, or 4, where M is Al, Ca, Fe, Ge, The transparent hybrid according to any one of (1) to (9), represented by a metal element of Hf, In, Si, Ta, Ti, Sn, or Zr, wherein R is an alkoxy group having 1 to 15 carbon atoms) Film.
(18) Any of (1) to (9) above, wherein the metal alkoxide used as a raw material of the transparent hybrid film is made from at least two kinds selected from the metal alkoxide described in (17) above. The transparent hybrid film according to crab.
(19) From the above (1), the additive to be immobilized between the layers of the transparent hybrid film is a rust inhibitor, an ultraviolet absorber / light stabilizer, a fungicide / antibacterial agent, and / or a bioadhesive agent. (9) The transparent hybrid film according to any one of (9).
(20) Any of the above (1) to (9), wherein the additive to be fixed between the layers of the transparent hybrid film uses at least two or more selected from the additives described in (19) as raw materials The transparent hybrid film according to crab.
(21) Co-hydrolysis / condensation of organic silane and metal alkoxide in a solution containing an organic solvent, water, rust preventive agent as additive, UV absorber, fungicide, or bioadhesive agent, and optionally a catalyst. The polymerized precursor solution is dropped on a solid surface selected from metal, metal oxide film, alloy, semiconductor, polymer, ceramics, glass, resin, wood, paper, and fiber, and then for a predetermined time at room temperature and atmospheric pressure. A method for producing a transparent hybrid film, characterized by evaporating a solvent and crosslinking the film.
(22) Use an organic solvent that is miscible with water used for hydrolysis, dissolves the organic silane, metal alkoxide, and additives after hydrolysis and degeneracy, and has a vapor pressure larger than that of water. The manufacturing method of the transparent hybrid membrane | film | coat as described in said (21).
(23) From the above (21), the catalyst used for hydrolysis has an action of promoting the hydrolysis of R 3 of formula (A), R 4 of formula (B), and R 1 of formula (C). (22) The manufacturing method of the transparent hybrid membrane | film | coat in any one of.
(24) Volatilization of the solvent is promoted by any method selected from a spin coating method, a dip coating method, a roller coating method, a bar coating method, an ink jet coating method, a gravure coating method, and a spray method. ) To (23). The method for producing a transparent hybrid film according to any one of (23).
(25) The film thickness is controlled from 10 to 10000 nm depending on the concentration of the organic silane, metal alkoxide and additive in the precursor solution, and the molar concentration of the organic solvent. The manufacturing method of the organic-inorganic transparent hybrid film | membrane of description.
(26) The transparent hybrid according to any one of (21) to (25), wherein the precursor solution prepared by the method described in (21) to (25) can be used even after storage for at least 20 days. A method for producing a film.
(27) A solid surface coated with the transparent hybrid film according to any one of (1) to (9), wherein the surface is water repellency / oil repellency, droplet removal ability, and fingerprint resistance. Solid surface characterized by exhibiting properties, antifouling properties, corrosion resistance, weather resistance, antifungal properties, antibacterial properties, and / or biofouling prevention ability.

次に、本発明について更に詳細に説明する。
本発明は、固体表面に形成させるための透明ハイブリッド皮膜であって、有機シランと金属アルコキシドを、有機溶媒、水、添加剤(防錆剤、紫外線吸収剤/光安定剤、防カビ剤/抗菌剤、生物付着防止剤等)を含む溶液中で共加水分解・縮重合することにより得られる皮膜であることを特徴とするものである。
Next, the present invention will be described in more detail.
The present invention is a transparent hybrid film for forming on a solid surface, comprising an organic silane and a metal alkoxide, an organic solvent, water, an additive (rust inhibitor, ultraviolet absorber / light stabilizer, fungicide / antibacterial agent). A film obtained by cohydrolysis / condensation polymerization in a solution containing an agent, a bioadhesion inhibitor, and the like).

また、本発明は、透明なハイブリッド皮膜の製造方法であって、固体表面に、有機溶媒、水、添加剤を含む溶液中で、有機シランおよび金属アルコキシドを共加水分解・縮重合し、有機シラン間の距離を制御した前駆溶液を塗布後、所定時間、室温、大気圧下で静置することを特徴とするものである。更に、本発明は、上述の透明ハイブリッド皮膜が被覆された固体表面であって、その表面が、優れたはっ水/はつ油性、液滴除去能、耐指紋付着性、防汚性、耐食性、耐候性、防カビ性、抗菌性、生物付着防止能を示すことを特徴とするものである。   The present invention also relates to a method for producing a transparent hybrid film, comprising co-hydrolyzing / condensing an organic silane and a metal alkoxide on a solid surface in a solution containing an organic solvent, water, and an additive. After applying the precursor solution in which the distance between them is controlled, the precursor solution is allowed to stand at room temperature and atmospheric pressure for a predetermined time. Furthermore, the present invention is a solid surface coated with the above-described transparent hybrid film, and the surface has excellent water repellency / oil repellency, droplet removal ability, fingerprint resistance, antifouling, and corrosion resistance. It is characterized by exhibiting weather resistance, antifungal property, antibacterial property, and ability to prevent biological adhesion.

本発明では、上記構成により、密着性と、膜表面の有機シラン由来の官能基の運動性に優れた有機−無機透明ハイブリッド皮膜を形成することで、各種液滴(表面張力18〜73dyn/cm)およびこれらの液体のうち少なくとも2種類以上の液体が混ざった混合液体の前進接触角と、後退接触角との差(ヒステリシス)が、有機シラン単独で表面処理された表面より小さな値となることを実現するものである。   In the present invention, with the above-described configuration, various droplets (surface tension of 18 to 73 dyn / cm) are formed by forming an organic-inorganic transparent hybrid film having excellent adhesion and mobility of functional groups derived from organosilane on the film surface. And the difference (hysteresis) between the advancing contact angle and the receding contact angle of a mixed liquid in which at least two of these liquids are mixed is smaller than that of the surface treated with organosilane alone. Is realized.

本発明では、有機シランと金属アルコキシドが、1:0.1以上の任意のモル比で混合されていること、得られる有機−無機透明ハイブリッド皮膜が、金属、金属酸化膜、合金、半導体、ポリマー、セラミックス、ガラス、樹脂、木材、繊維、紙の内から選択した基材と容易に密着する良好な密着性を示すこと、を好ましい実施態様としている。   In the present invention, the organic silane and the metal alkoxide are mixed at an arbitrary molar ratio of 1: 0.1 or more, and the obtained organic-inorganic transparent hybrid film is a metal, metal oxide film, alloy, semiconductor, polymer. It is a preferred embodiment that it exhibits good adhesion that easily adheres to a substrate selected from ceramics, glass, resin, wood, fiber, and paper.

また、本発明では、有機シランと金属アルコキシドのモル比に依存して、有機シラン分子間の距離を変化させたものであること、上記透明ハイブリッド皮膜の表面の、各種液滴(表面張力18〜73dyn/cm)およびこれらの液体が少なくとも2種類以上混ざった混合液体の前進接触角と、後退接触角との差(ヒステリシス)が、有機シラン単独で表面処理された表面より小さな値となること、または、指紋が付着しにくい難付着性であること、を好ましい実施態様としている。   In the present invention, the distance between the organosilane molecules is changed depending on the molar ratio of the organosilane to the metal alkoxide, and various droplets (surface tension of 18 to 73 dyn / cm) and the difference (hysteresis) between the advancing contact angle and the receding contact angle of the mixed liquid in which at least two of these liquids are mixed is smaller than that of the surface treated with organosilane alone, Or it is set as the preferable embodiment that it is hard to adhere to a fingerprint and it is difficult to adhere.

また、本発明では、透明ハイブリッド皮膜の原料となる有機シランは、上記式(A)のR−Si−R n−3 (但し、n=1、2、または3、Rは、炭素数1−30のアルキル鎖または炭素数1−20のパーフルオロ基、Rは、炭素数1−6のアルキル基、Rは、炭素数1から15のアルコキシ基、クロロ基、イソシアナト基、またはアセトキシ基)で示され、かつSi−C結合で結合された不活性な官能基と、加水分解後に1つ以上のSi−OH基を生成する官能基を有すること、が好ましい。 In the present invention, an organic silane as a raw material for the transparent hybrid coatings, the formula R 1 -Si-R 2 n- 3 R 3 n in (A) (where, n = 1, 2 or 3,, R 1 Is an alkyl chain having 1 to 30 carbon atoms or a perfluoro group having 1 to 20 carbon atoms, R 2 is an alkyl group having 1 to 6 carbon atoms, R 3 is an alkoxy group having 1 to 15 carbon atoms, a chloro group, It is preferable to have an inert functional group represented by an isocyanato group or an acetoxy group) and bonded with a Si—C bond and a functional group that generates one or more Si—OH groups after hydrolysis.

また、本発明では、透明ハイブリッド皮膜の原料となる有機シランは、上記式(B)のR−Si−R n−3(但し、n=1、2、または3、Rは、水酸基、ビニル基、塩化アルキル基、アミノ基、イミノ基、ニトロ基、メルカプト基、エポキシ基、カルボニル基、メタクリロキシ基、アジド基、ジアゾ基、またはベンゾフェニル基およびこれらの誘導体、Rは、炭素数1から15のアルキル基、Rは、炭素数1−6のアルキル基、Rは、炭素数1から15のアルコキシ基、クロロ基、イソシアナト基、又はアセトキシ基)で示され、かつ、Si−C結合で結合された活性な官能基と、加水分解後に1つ以上のSi−OH基を生成する官能基を有すること、が好ましい。 Moreover, in this invention, the organosilane used as the raw material of the transparent hybrid film is R 1 R 2 —Si—R 3 n R 4 n-3 (where n = 1, 2, or 3, R 1 is a hydroxyl group, vinyl group, alkyl chloride group, amino group, imino group, nitro group, mercapto group, epoxy group, carbonyl group, methacryloxy group, azide group, diazo group, or benzophenyl group and derivatives thereof, R 2 is an alkyl group having 1 to 15 carbon atoms, R 3 is an alkyl group having 1 to 6 carbon atoms, R 4 is an alkoxy group having 1 to 15 carbon atoms, a chloro group, an isocyanato group, or an acetoxy group) And having an active functional group bonded by a Si—C bond and a functional group that generates one or more Si—OH groups after hydrolysis.

また、本発明では、透明ハイブリッド皮膜の原料となる金属アルコキシドは、上記式(C)のM(R)n(但し、n=1、2、3、または4、Mは、Al、Ca、Fe、Ge、Hf、In、Si、Ta、Ti、Sn、またはZrの金属元素、Rは、炭素数1から15のアルコキシ基)で示されること、が好ましい。 In the present invention, the metal alkoxide used as a raw material for the transparent hybrid film is M (R 1 ) n (where n = 1, 2, 3, or 4 in the above formula (C), where M is Al, Ca, It is preferably represented by a metal element of Fe, Ge, Hf, In, Si, Ta, Ti, Sn, or Zr, and R is an alkoxy group having 1 to 15 carbon atoms.

本発明で使用可能な添加剤は、従来公知のものを使用することができ、例えば、防錆剤、紫外線吸収剤/光安定剤、防カビ剤/抗菌剤、生物付着防止剤等を中心として好適に用いることができるが、これらと同等又は類似の効果を奏する添加剤であれば同様に使用することが可能である。また、2つ以上の添加剤を混合して使用することも可能である。これらの添加剤として、具体的には、以下に示す化合物が例示される。   As the additive that can be used in the present invention, conventionally known additives can be used, for example, rust preventives, ultraviolet absorbers / light stabilizers, fungicides / antibacterial agents, bioadhesive agents and the like. Although it can use suitably, if it is an additive with the same or similar effect as these, it can be used similarly. It is also possible to use a mixture of two or more additives. Specific examples of these additives include the following compounds.

すなわち、添加剤として、例えば、以下に示す化合物が例示される。
[防錆剤]
アルカノールアミン、第四アンモニウム塩、アルカンチオール、イミダゾリン、メタバナジン酸ナトリウム、クエン酸ビスマス、フェノール誘導体、ポリアルケニルアミン、アルキルイミダゾリン誘導体、ジアノアルキルアミン、カルボン酸アミド、アルキレンジアミン、ピリミジンおよびこれらのカルボン酸、ナフテン酸、スルホン酸複合体、亜硝酸カルシウム、アルキルアミンとエステル、ポリアルコール、ポリフェノール、アルカノールアミン、モリブデン酸ナトリウム、タングステン酸ナトリウム、亜硝酸ナトリウム、ホスホン酸ナトリウム、クロム酸ナトリウム、ケイ酸ナトリウム、ゼラチン、カルボン酸のポリマー、脂肪族および芳香族アミンとジアミン、エトキシ化アミン、イミダゾール、ベンズイミダゾール、ニトロ化合物、ホルムアルデヒド、アセチレンアルコール、脂肪族および芳香族チオールとスルフィド、スルホキシド、チオ尿素、アセチレンアルコール、2−メルカプトベンズイミダゾール、アミン又は第四アンモニウム塩+ハロゲンイオン、アセチレンチオールおよびスルフィド、ジベンジルスルホキシド、アルキルアミン+ヨウ化カリウム、亜硝酸ジシクロヘキシルアミン、安息香酸シクロヘキシルアミン、ベンゾトリアゾール、タンニン+リン酸ナトリウム、トリエタノールアミン+ラウリルサルコシン、+ベンゾトリアゾール、アルキルアミン+ベンゾトリアゾール+亜硝酸ナトリウム+リン酸ナトリウム。
That is, as an additive, the compound shown below is illustrated, for example.
[Rust preventive]
Alkanolamines, quaternary ammonium salts, alkanethiols, imidazolines, sodium metavanadate, bismuth citrate, phenol derivatives, polyalkenylamines, alkylimidazoline derivatives, dianoalkylamines, carboxylic acid amides, alkylenediamines, pyrimidines and their carboxylic acids , Naphthenic acid, sulfonic acid complex, calcium nitrite, alkylamine and ester, polyalcohol, polyphenol, alkanolamine, sodium molybdate, sodium tungstate, sodium nitrite, sodium phosphonate, sodium chromate, sodium silicate, Gelatin, polymers of carboxylic acids, aliphatic and aromatic amines and diamines, ethoxylated amines, imidazoles, benzimidazoles, nitro compounds Formaldehyde, acetylene alcohol, aliphatic and aromatic thiols and sulfides, sulfoxide, thiourea, acetylene alcohol, 2-mercaptobenzimidazole, amine or quaternary ammonium salt + halogen ion, acetylene thiol and sulfide, dibenzyl sulfoxide, alkylamine + Potassium iodide, dicyclohexylamine nitrite, cyclohexylamine benzoate, benzotriazole, tannin + sodium phosphate, triethanolamine + lauryl sarcosine, + benzotriazole, alkylamine + benzotriazole + sodium nitrite + sodium phosphate.

[紫外線吸収剤/光安定剤]
2−(5−メチル−2−ヒドロキシフェニル)ベンゾトリアゾール、2−[2−ヒドロキシ−3,5−ビス(α,α−ジメチルベンジル)フェニル]−2H−ベンゾトリアゾール、2−(3−t−ブチル−5−メチル−2−ヒドロキシフェニル)−5−クロロベンゾトリアゾール、2−(2’−ヒドロキシ−5’−t−オクチルフェニル)ベンゾトリアゾール、メチル−3−[3−t−ブチル−5−(2H−ベンゾトリアゾール−2−イル)−4−ヒドロキシフェニル]プロピオネート−ポリエチレングリコール(分子量約300)との縮合物、ヒドロキシフェニルベンゾトリアゾール誘導体、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5[(ヘキシル)オキシ]−フェノール、2−エトキシ−2’−エチル−オキサリック酸ビスアニリド。
[Ultraviolet absorber / light stabilizer]
2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2H-benzotriazole, 2- (3-t- Butyl-5-methyl-2-hydroxyphenyl) -5-chlorobenzotriazole, 2- (2′-hydroxy-5′-t-octylphenyl) benzotriazole, methyl-3- [3-t-butyl-5- Condensate with (2H-benzotriazol-2-yl) -4-hydroxyphenyl] propionate-polyethylene glycol (molecular weight about 300), hydroxyphenylbenzotriazole derivative, 2- (4,6-diphenyl-1,3,5 -Triazin-2-yl) -5 [(hexyl) oxy] -phenol, 2-ethoxy-2'-ethyl-oxalyl Bisanilide succinate.

[防カビ剤/抗菌剤]
2−(4−チアゾリル)ベンツイミダゾール、ソルビン酸、1,2−ベンズイソチアゾリン−3オン、(2−ピリジルチオ−1−オキシド)ナトリウム、デヒドロ酢酸、2−メチル−5−クロロ−4−イソチアゾロン錯体、2,4,5,6−テトラクロロフタロニトリル、2−ベンズイミダゾールカルバミン酸メチル、1−(ブチルカルバモイル)−2−ベンズイミダゾールカルバミン酸メチル、モノあるいはジブロモシアノアセトアミド類、1,2−ジブロモ−2,4−ジシアノブタン、1,1−ジブロモ−1−ニトロプロパノールおよび1,1−ジブロモ−1−ニトロ−2−アセトキシプロパン。
[Anti-mold / antibacterial agent]
2- (4-thiazolyl) benzimidazole, sorbic acid, 1,2-benzisothiazoline-3-one, (2-pyridylthio-1-oxide) sodium, dehydroacetic acid, 2-methyl-5-chloro-4-isothiazolone complex, 2,4,5,6-tetrachlorophthalonitrile, methyl 2-benzimidazolecarbamate, methyl 1- (butylcarbamoyl) -2-benzimidazolecarbamate, mono- or dibromocyanoacetamides, 1,2-dibromo-2 , 4-dicyanobutane, 1,1-dibromo-1-nitropropanol and 1,1-dibromo-1-nitro-2-acetoxypropane.

[生物付着防止剤]
テトラメチルチウラムジサルファイド、ビス(N,N−ジメチルジチオカルバミン酸)亜鉛、3−(3,4−ジクロロフェニル)−1,1−ジメチルウレア、ジクロロ−N−((ジメチルアミノ)スルフォニル)フルオロ−N−(P−トリル)メタンスルフェンアミド、ピリジン−トリフェニルボラン、N,N−ジメチル−N’−フェニル−N’−(フルオロジクロロメチルチオ)スルファミド、チオシアン酸第一銅(1)、酸化第一銅、テトラブチルチウラムジサルファイド、2,4,5,6−テトラクロロイソフタロニトリル、ジンクエチレンビスジチオカーバーメート、2,3,5,6−テトラクロロ−4−(メチルスルホニル)ピリジン、N−(2,4,6−トリクロロフェニル)マレイミド、ビス(2−ピリジンチオール−1−オキシド)亜鉛塩、ビス(2−ピリジンチオール−1−オキシド)銅塩、2−メチルチオ−4−t−ブチルアミノ−6−シクロプロピルアミノ−s−トリアジン、4,5−ジクロロ−2−n−オクチル−4−イソチアゾリン−3−オン、フラノン類、アルキルピリジン化合物、グラミン系化合物、イソトニル化合物。
[Bioadhesion inhibitor]
Tetramethylthiuram disulfide, bis (N, N-dimethyldithiocarbamate) zinc, 3- (3,4-dichlorophenyl) -1,1-dimethylurea, dichloro-N-((dimethylamino) sulfonyl) fluoro-N- (P-tolyl) methanesulfenamide, pyridine-triphenylborane, N, N-dimethyl-N′-phenyl-N ′-(fluorodichloromethylthio) sulfamide, cuprous thiocyanate (1), cuprous oxide , Tetrabutylthiuram disulfide, 2,4,5,6-tetrachloroisophthalonitrile, zinc ethylenebisdithiocarbamate, 2,3,5,6-tetrachloro-4- (methylsulfonyl) pyridine, N- ( 2,4,6-trichlorophenyl) maleimide, bis (2-pyridinethiol-1-oxy) D) Zinc salt, bis (2-pyridinethiol-1-oxide) copper salt, 2-methylthio-4-t-butylamino-6-cyclopropylamino-s-triazine, 4,5-dichloro-2-n- Octyl-4-isothiazolin-3-one, furanones, alkylpyridine compounds, gramine compounds, isotonyl compounds.

また、本発明では、有機シランと金属アルコキシドを、有機溶媒、水、添加剤、必要により触媒を含む溶液中で共加水分解・縮重合した前駆溶液を、金属、金属酸化膜、合金、半導体、ポリマー、セラミックス、ガラス、樹脂、木材、紙、繊維の内から選択した固体表面に滴下した後、所定時間、室温、大気圧下で溶媒を揮発させる。   Further, in the present invention, a precursor solution obtained by co-hydrolyzing / condensation of an organic silane and a metal alkoxide in a solution containing an organic solvent, water, an additive, and optionally a catalyst, a metal, a metal oxide film, an alloy, a semiconductor, After dripping onto a solid surface selected from polymer, ceramics, glass, resin, wood, paper, and fiber, the solvent is volatilized at room temperature and atmospheric pressure for a predetermined time.

また、本発明では、加水分解に使用する少量の水と混和可能であり、かつ有機シラン、金属アルコキシドおよび添加剤の加水分解・縮重後の物質を溶解し、かつ蒸気圧が水より大きな有機溶媒を使用すること、加水分解に使用する水のモル分率が、前駆溶液組成におけるアルコキシ基のモル分率より多いこと、が好ましい。   In the present invention, an organic compound that is miscible with a small amount of water used for hydrolysis, dissolves the organic silane, metal alkoxide, and additives after hydrolysis and degeneracy, and has a vapor pressure higher than that of water. It is preferable to use a solvent and that the molar fraction of water used for hydrolysis is larger than the molar fraction of alkoxy groups in the precursor solution composition.

更に、本発明では、加水分解を促進する作用を有する触媒を用いることができる。例えば、加水分解に使用する触媒としては、上記式(A)のR、上記式(B)のR、上記式(C)のR、の加水分解を促進する作用を有するものが使用される。また、本発明では、スピンコーティング法、ディップコーティング法、ローラーコーティング法、バーコティング法、インクジェットコーティング法、グラビアコーティング法、スプレー法の中から選択したいずれかの方法により、溶媒の揮発を促進させること、が好ましく、前駆溶液中の有機シラン、金属アルコキシドおよび添加剤の濃度に依存して、10−10000nmまで膜厚を制御すること、が好ましい。 Furthermore, in the present invention, a catalyst having an action of promoting hydrolysis can be used. For example, as the catalyst used for the hydrolysis, those having the action of promoting the hydrolysis of R 3 of the above formula (A), R 4 of the above formula (B), and R 1 of the above formula (C) are used. Is done. In the present invention, the volatilization of the solvent is promoted by any method selected from a spin coating method, a dip coating method, a roller coating method, a bar coating method, an ink jet coating method, a gravure coating method, and a spray method. It is preferable to control the film thickness from 10 to 10,000 nm depending on the concentration of the organic silane, metal alkoxide and additive in the precursor solution.

本発明で使用可能な有機シランは、例えば、アルキル(炭素数3から18)アルコキシシラン等を好適に用いることができるが、これらと同等又は類似の効果を奏する有機シランであれば同様に使用することが可能である。これらの有機シランとして、具体的には、以下に示す化合物が例示される。   As the organic silane that can be used in the present invention, for example, alkyl (having 3 to 18 carbon atoms) alkoxysilane and the like can be preferably used, but any organic silane that exhibits the same or similar effect as these can be used similarly. It is possible. Specific examples of these organosilanes include the following compounds.

すなわち、有機シランとして、例えば、アルキル(炭素数1から30)トリメトキシシラン、アルキル(炭素数1から30)トリエトキシシラン、アルキル(炭素数1から30)メチルジメトキシシラン、アルキル(炭素数1から30)メチルジエトキシシラン、アルキル(炭素数1から30)ジメチルメトキシシラン、アルキル(炭素数1から30)ジメチルエトキシシラン、アルキル(炭素数1から30)トリクロロシラン、アルキル(炭素数1から30)メチルジクロロシラン、アルキル(炭素数1から30)ジメチルクロロシラン、アルキル(炭素数1から30)トリアセトキシシラン、アルキル(炭素数1から30)メチルジアセトキシシラン、アルキル(炭素数1から30)ジメチルアセトキシシラン、アルキル(炭素数1から30)トリイソシアナシシラン、アルキル(炭素数1から30)メチルジシアナトシラン、アルキル(炭素数1から30)ジメチルシアナトシラン、パーフルオロ(炭素数3から18)トリメトキシシラン、パーフルオロ(炭素数3から18)トリエトキシシラン、パーフルオロ(炭素数3から18)メチルジメトキシシラン、パーフルオロ(炭素数3から18)メチルジエトキシシラン、パーフルオロ(炭素数3から18)ジメチルメトキシシラン、パーフルオロ(炭素数3から18)ジメチルエトキシシラン、パーフルオロ(炭素数3から18)トリクロロシラン、パーフルオロ(炭素数3から18)メチルジクロロシラン、パーフルオロ(炭素数3から18)ジメチルクロロシラン、パーフルオロ(炭素数3から18)トリアセトキシシラン、パーフルオロ(炭素数3から18)メチルジアセトキシシラン、パーフルオロ(炭素数3から18)ジメチルアセトキシシラン、パーフルオロ(炭素数3から18)トリイソシアナシシラン、パーフルオロ(炭素数3から18)メチルジシアナトシラン、パーフルオロ(炭素数3から18)ジメチルシアナトシラン、が例示される。   That is, as the organic silane, for example, alkyl (C1-30) trimethoxysilane, alkyl (C1-30) triethoxysilane, alkyl (C1-30) methyldimethoxysilane, alkyl (C1) 30) methyldiethoxysilane, alkyl (1 to 30 carbon atoms) dimethylmethoxysilane, alkyl (1 to 30 carbon atoms) dimethylethoxysilane, alkyl (1 to 30 carbon atoms) trichlorosilane, alkyl (1 to 30 carbon atoms) Methyldichlorosilane, alkyl (1-30 carbon atoms) dimethylchlorosilane, alkyl (1-30 carbon atoms) triacetoxysilane, alkyl (1-30 carbon atoms) methyldiacetoxysilane, alkyl (1-30 carbon atoms) dimethylacetoxy Silane, alkyl (from 1 carbon atoms 0) Triisocyanacylsilane, alkyl (1 to 30 carbon atoms) methyl dicyanatosilane, alkyl (1 to 30 carbon atoms) dimethyl cyanatosilane, perfluoro (3 to 18 carbon atoms) trimethoxysilane, perfluoro (carbon) 3 to 18) triethoxysilane, perfluoro (3 to 18 carbon atoms) methyldimethoxysilane, perfluoro (3 to 18 carbon atoms) methyldiethoxysilane, perfluoro (3 to 18 carbon atoms) dimethylmethoxysilane, perfluorocarbon Fluoro (3 to 18 carbon atoms) dimethylethoxysilane, perfluoro (3 to 18 carbon atoms) trichlorosilane, perfluoro (3 to 18 carbon atoms) methyldichlorosilane, perfluoro (3 to 18 carbon atoms) dimethylchlorosilane, Fluoro (3 to 18 carbon atoms) triacetoxy Lan, perfluoro (3 to 18 carbon atoms) methyldiacetoxysilane, perfluoro (3 to 18 carbon atoms) dimethylacetoxysilane, perfluoro (3 to 18 carbon atoms) triisocyanacylsilane, perfluoro (from 3 carbon atoms) 18) Methyl dicyanatosilane and perfluoro (C3-18) dimethylcyanatosilane are exemplified.

また、本発明で使用可能な金属アルコキシドとしては、従来公知のものを使用することができる。例えば、金属元素を中心として、2つ以上のアルコキシ基を有する上記[0028]以外の分子である金属アルコキシド、あるいはそれと同等又は類似の効果を奏する、以下に示す化合物が例示される。   Moreover, as a metal alkoxide which can be used by this invention, a conventionally well-known thing can be used. For example, a metal alkoxide which is a molecule other than the above [0028] having two or more alkoxy groups centered on a metal element, or a compound shown below which exhibits the same or similar effect is exemplified.

すなわち、金属アルコキシドとして、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラ−n−プロポキシシラン、テトラ−i−プロポキシシラン、テトラ−n−ブトキシシラン、テトラ−t−ブトキシシラン、トリエトキシアルミニウム、トリ−n−プロポキシアルミニウム、トリ−i−プロポキシアルミニウム、トリ−n−ブトキシアルミニウム、トリ−t−ブトキシアルミニウム、ジメトキシカルシウム、ジエトキシカルシウム、ジ−i−プロポキシカルシウム、ジ−n−ブトキシカルシウム、トリエトキシ鉄、テトラメトキシゲルマニウム、テトラエトキシゲルマニウム、テトラ−i−プロポキシゲルマニウム、テトラ−n−ブトキシゲルマニウム、テトラ−t−ブトキシゲルマニウム、テトラメトキシハフニウム、テトラエトキシハフニウム、テトラ−i−プロポキシハフニウム、テトラ−n−ブトキシハフニウム、テトラ−t−ブトキシハフニウム、トリメトキシインジウム、トリエトキシインジウム、トリ−i−プロポキシインジウム、トリ−n−ブトキシインジウム、トリ−t−ブトキシインジウム、ペンタメトキシタンタル、ペンタエトキシタンタル、ペンタ−i−プロポキシタンタル、ペンタ−t−ブトキシタンタル、ペンタ−n−ブトキシタンタル、テトラメトキシチタン、テトラエトキシチタン、テトラ−i−プロポキシチタン、テトラ−n−ブトキシチタン、テトラ−t−ブトキシチタン、テトラメトキシスズ、テトラエトキシスズ、テトラ−i−プロポキシスズ、テトラ−n−ブトキシスズ、テトラ−t−ブトキシスズ、が例示される。   That is, as the metal alkoxide, for example, tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetra-i-propoxysilane, tetra-n-butoxysilane, tetra-t-butoxysilane, triethoxyaluminum, tri- n-propoxyaluminum, tri-i-propoxyaluminum, tri-n-butoxyaluminum, tri-t-butoxyaluminum, dimethoxycalcium, diethoxycalcium, di-i-propoxycalcium, di-n-butoxycalcium, triethoxyiron, Tetramethoxygermanium, tetraethoxygermanium, tetra-i-propoxygermanium, tetra-n-butoxygermanium, tetra-t-butoxygermanium, tetramethoxyhafnium, te Laethoxy hafnium, tetra-i-propoxy hafnium, tetra-n-butoxy hafnium, tetra-t-butoxy hafnium, trimethoxy indium, triethoxy indium, tri-i-propoxy indium, tri-n-butoxy indium, tri-t -Butoxy indium, pentamethoxy tantalum, pentaethoxy tantalum, penta-i-propoxy tantalum, penta-t-butoxy tantalum, penta-n-butoxy tantalum, tetramethoxy titanium, tetraethoxy titanium, tetra-i-propoxy titanium, tetra- Examples thereof include n-butoxy titanium, tetra-t-butoxy titanium, tetramethoxy tin, tetraethoxy tin, tetra-i-propoxy tin, tetra-n-butoxy tin, and tetra-t-butoxy tin.

本発明では、透明で均一な皮膜を形成するために、有機溶媒は、少量の水と混和し、かつ、有機シラン、金属アルコキシドおよび添加剤の縮重合物質を溶解させることができることと、前駆溶液の基材上への塗布時に、速やかに揮発するものであることが望ましい。すなわち、本発明では、蒸気圧が水より高い、例えば、メタノール、エタノール、テトラヒドロフラン等の有機溶媒を用いて前駆溶液を調製することが好ましい。   In the present invention, in order to form a transparent and uniform film, the organic solvent is miscible with a small amount of water, and the polycondensation material of the organic silane, the metal alkoxide and the additive can be dissolved, and the precursor solution It is desirable that it is volatilized quickly when it is applied onto the substrate. That is, in the present invention, it is preferable to prepare the precursor solution using an organic solvent having a vapor pressure higher than that of water, for example, methanol, ethanol, tetrahydrofuran or the like.

また、有機シラン、金属アルコキシドおよび添加剤の濃度を調整することで、膜厚を10−10000nmの範囲で制御することが可能である。これは、ある一定量の前駆溶液を基材表面に滴下し、溶媒の揮発に伴う皮膜形成時に、前駆溶液に含まれる固形成分である有機シラン、金属アルコキシドおよび添加剤の濃度が高いほど、多くの固体が基材表面に析出するためである。   In addition, the film thickness can be controlled in the range of 10 to 10000 nm by adjusting the concentration of the organic silane, metal alkoxide, and additive. This is because when a certain amount of the precursor solution is dropped on the surface of the base material and the concentration of the organic silane, metal alkoxide and additive, which are solid components contained in the precursor solution, is higher when the film is formed due to volatilization of the solvent, the more This is because the solids are deposited on the substrate surface.

本発明では、有機シランおよび金属アルコキシドの反応性官能基の加水分解、すなわちM−OH基(但し、Mは金属元素)の生成、を促進させるために、触媒を利用することが望ましく、また、当該触媒により、前駆体溶液中のpHを制御することで、有機シラン、金属アルコキシドおよび添加剤の縮重合物質を安定化することが望ましいため、例えば、アルコキシシリル基を用いる場合には、pH1〜3に制御可能な塩酸等の酸を使用することが好ましい。   In the present invention, it is desirable to use a catalyst in order to promote hydrolysis of reactive functional groups of organosilane and metal alkoxide, that is, generation of M-OH group (where M is a metal element), Since it is desirable to stabilize the polycondensation material of the organic silane, metal alkoxide, and additive by controlling the pH in the precursor solution with the catalyst, for example, when using an alkoxysilyl group, pH 1 It is preferable to use an acid such as hydrochloric acid which can be controlled to 3.

また、添加する水の量としては、前駆体溶液に含まれる全ての反応性官能基が加水分解し、M−OH基(但し、Mは金属元素)を生成するために、官能基数以上の水が含まれていることが望ましい。水の量が上記した官能基数より少なくても、膜の形成は可能であるが、加水分解が不十分になるため、加水分解していない有機シランや金属アルコキシドが処理中に揮発し、歩留まりが低下するという問題があるため、好ましくない。   Further, the amount of water to be added is such that all the reactive functional groups contained in the precursor solution are hydrolyzed to form M-OH groups (where M is a metal element), so that the number of water is equal to or greater than the number of functional groups. Is desirable. Even if the amount of water is less than the number of functional groups described above, a film can be formed, but because hydrolysis becomes insufficient, unhydrolyzed organic silane and metal alkoxide are volatilized during the treatment, and the yield increases. Since there is a problem that it falls, it is not preferable.

本発明における加水分解・縮重合中の前駆溶液中においては、加水分解後の有機シランと金属アルコキシドの一部がランダムに縮重合する。それは、その際、加水分解後の金属アルコキシドと加水分解後の有機シランが交互に縮重合することで、有機シラン由来の有機基の距離が離れるためである。つまり、金属アルコキシドが“バインダー”として有機シランの有機基の距離を隔てるためである。このため、膜表面での有機シラン由来物質の運動性が向上し、ヒステリシスの小さな固体表面を得ることが可能となる。   In the precursor solution during the hydrolysis / condensation polymerization in the present invention, the hydrolyzed organosilane and a part of the metal alkoxide are randomly condensed. This is because the metal alkoxide after hydrolysis and the organic silane after hydrolysis are alternately polycondensed so that the distance between the organic groups derived from the organosilane is increased. That is, the metal alkoxide serves as a “binder” to separate the organic groups of the organosilane. For this reason, the mobility of the organosilane-derived substance on the film surface is improved, and a solid surface with small hysteresis can be obtained.

従って、本発明では、有機シランに対する金属アルコキシドの添加量を変えることによって、有機シラン間の距離を任意に制御することが可能であり、膜表面の有機シラン由来の官能基の運動性を調整できるようになり、それにより、接触角ヒステリシスが小さくなるため、液滴除去能が向上する。   Therefore, in the present invention, the distance between the organic silanes can be arbitrarily controlled by changing the amount of the metal alkoxide added to the organosilane, and the mobility of the functional group derived from the organosilane on the film surface can be adjusted. As a result, the contact angle hysteresis is reduced, so that the droplet removing ability is improved.

本発明において、成膜方法は、溶媒の揮発を促進する方法であれば特に制限はなく、例えば、スピンコーティング法、ディップコーティング法、ローラーコーティング法、バーコティング法、インクジェットコーティング法、グラビアコーティング法、スプレー法が好適な例として挙げられる。   In the present invention, the film formation method is not particularly limited as long as it promotes the volatilization of the solvent. For example, the spin coating method, the dip coating method, the roller coating method, the bar coating method, the ink jet coating method, the gravure coating method, A spray method is a suitable example.

また、本発明で使用し得る基材としては、例えば、金属、金属酸化膜、合金、半導体、ポリマー、セラミックス、ガラス、樹脂、木材、紙、繊維等の適宜の材料を任意に使用することができる。基材の具体例としては、例えば、銅、真鍮、シリコン、各種ポリマー(ポリカーボネート、アクリル、PET、ポリエチレン、ポリプロピレン)、ガラス、シリコーン、ヒノキ、リボン等が好適なものとして例示される。   Moreover, as a base material which can be used in the present invention, for example, an appropriate material such as a metal, a metal oxide film, an alloy, a semiconductor, a polymer, ceramics, glass, a resin, wood, paper, and fiber can be arbitrarily used. it can. Specific examples of the substrate include, for example, copper, brass, silicon, various polymers (polycarbonate, acrylic, PET, polyethylene, polypropylene), glass, silicone, hinoki, ribbon and the like.

これらの基材の形状は、板状、凹凸状、粉末状、チューブ状、ポーラス状、繊維状等、任意な形状の基材を使用することができる。また、特に、基材の前処理は必要としない。更に、強固な密着性を得るために、プラズマ、紫外線、電子線等を基板に照射して、表面を活性化させることも有効である。   As the shape of these base materials, a base material having an arbitrary shape such as a plate shape, an uneven shape, a powder shape, a tube shape, a porous shape, or a fiber shape can be used. In particular, no pretreatment of the substrate is required. Furthermore, in order to obtain strong adhesion, it is also effective to activate the surface by irradiating the substrate with plasma, ultraviolet rays, electron beams or the like.

本発明において、有機シランの種類によっては、層間が1−10nmの層状構造体を形成することがある。これは、有機シランの加水分解後に生成したシラノールが親水性を示す一方で、有機基は疎水性を示し、このため、成膜時に、有機シランと無機アルコキシドの縮重合物が両親媒的に振るまい、有機部の疎水性相互作用を駆動力として自己集合するためである。例えば、炭素数4から18のアルキルアルコキシシランが、層状構造を形成する好適な有機シランとして例示される。また、この自己集合する過程で、有機シランの疎水性官能基と疎水的な添加剤(防錆剤、紫外線吸収剤/光安定剤、防カビ剤/抗菌剤、生物付着防止剤等)が疎水性相互作用により凝集し層間内に固定化される。   In the present invention, depending on the type of organosilane, a layered structure having an interlayer of 1 to 10 nm may be formed. This is because silanol produced after hydrolysis of organosilane shows hydrophilicity, while organic groups show hydrophobicity, and therefore, a polycondensation product of organosilane and inorganic alkoxide shakes in an amphiphilic manner during film formation. This is to self-assemble using the hydrophobic interaction of the organic part as a driving force. For example, a C4-C18 alkyl alkoxysilane is illustrated as a suitable organosilane that forms a layered structure. In addition, the hydrophobic functional groups of organic silanes and hydrophobic additives (such as rust preventives, UV absorbers / light stabilizers, fungicides / antibacterial agents, and bioadhesive agents) are hydrophobic during this self-assembly process. Aggregates due to sexual interaction and is fixed in the interlayer.

上述した通り、有機シランとしては、アルキルアルコキシシラン以外にも、不活性(疎水性)官能基を有する有機シランも利用することができる。本発明において、有機シランとしては、例えば、パーフルオロアルキル基やフェニル基等の不活性(疎水性)官能基を有する有機シランも利用することができる。   As described above, as the organic silane, in addition to the alkylalkoxysilane, an organic silane having an inactive (hydrophobic) functional group can be used. In the present invention, as the organic silane, for example, an organic silane having an inactive (hydrophobic) functional group such as a perfluoroalkyl group or a phenyl group can also be used.

本発明は、基材の固体表面に形成させる透明ハイブリッド皮膜であって、原料の有機シランと金属アルコキシドを、有機溶媒、水、添加剤、必要により触媒を含む溶液中で共加水分解・縮重合して有機シラン間の距離を制御した前駆溶液を塗布することにより得られる皮膜であり、基材表面の動的濡れ性、すなわち、動的接触角[前進接触角(θ)と、後退接触角(θ)]を測定した時の接触角ヒステリシス(θ−θ)が、有機シラン単独で表面処理された表面より小さな値とする特性を有していることを特徴とする透明ハイブリッド皮膜に係るものであり、密着性と、膜表面の有機シラン由来の官能基の運動性に優れた有機−無機透明ハイブリッド皮膜を形成することで、各種液滴(表面張力18〜73dyn/cm)およびこれらの液体のうち少なくとも2種類以上の液体が混ざった混合液体の前進接触角と、後退接触角との差(ヒステリシス)が、有機シラン単独で表面処理された表面より小さな値となることを実現する新規な透明ハイブリッド皮膜を提供するものである。 The present invention is a transparent hybrid film formed on a solid surface of a substrate, and the raw organic silane and metal alkoxide are cohydrolyzed / condensed in a solution containing an organic solvent, water, additives, and optionally a catalyst. The film is obtained by applying a precursor solution in which the distance between the organosilanes is controlled, and the dynamic wettability of the substrate surface, that is, the dynamic contact angle [advanced contact angle (θ A ) and receding contact The transparent hybrid characterized in that the contact angle hysteresis (θ A −θ R ) when measuring the angle (θ R )] is smaller than that of the surface treated with organosilane alone. Various liquid droplets (surface tension of 18 to 73 dyn / cm) by forming an organic-inorganic transparent hybrid film that is excellent in adhesion and mobility of functional groups derived from organosilane on the film surface. And this The difference (hysteresis) between the advancing contact angle and receding contact angle of a mixed liquid in which at least two of these liquids are mixed is smaller than that of the surface treated with organosilane alone. The present invention provides a novel transparent hybrid film that can be realized.

本発明により、次のような効果が奏される。
(1)高濃度(最大約50wt.%)の添加剤、例えば、防錆剤、紫外線吸収剤/光安定剤、防カビ剤/抗菌剤、生物付着防止等を皮膜の層間に導入することができるため、はっ水/はつ油性、防汚性、耐食性、耐候性、防カビ性、生物付着防止性等の、長期間に渡る効果持続を実現できる、新しい表面改質技術を提供することができる。
(2)添加剤は層間に固定化されているために、単に添加剤を混合したり、練り込んだ従来の塗膜や高分子材料と異なり、昇華やブリードアウト防止を実現できる、新しい表面改質技術を提供することができる。
(3)添加剤が有機化合物の場合、ハイブリッド皮膜内部で添加剤が完全に分散することで、結晶化・凝集が抑制されるため、濃度消光の抑制・最大吸収波長シフトの抑制、溶解性の向上が実現できる、新しい表面改質技術を提供することができる。
(4)皮膜に亀裂が入っても、添加剤が亀裂部位に集まっていく性能があるため、腐食の進行抑制を実現できる、新しい表面改質技術を提供することができる。
(5)不活性な官能基を有する有機シラン、例えば、長鎖アルキルトリエトキシシラン、パーフルオロアルキルトリエトキシシラン等を用いているため、層状構造形成の際に、腐食・劣化防止剤を疎水性相互作用により層間に固定化すると同時に、透明ハイブリッド皮膜の表面に、はっ水/はつ油性、液滴除去能、耐指紋付着性、防汚性等を付与できる、新しい表面改質技術を提供することができる。
(6)活性な官能基を有する有機シラン、例えば、ビニルトリエトキシシラン、2−ヒドロキシ−4−(3−トリエトキシシリルプロポキシ)−ジフェニルケトン等を用いているため、層状構造形成の際に、添加剤を水素結合や共有結合により固定化すると同時に、透明ハイブリッド皮膜の表面に、生体親和性や化学反応性を付与できる、新しい表面改質技術を提供することができる。
(7)基材表面の動的濡れ性、すなわち、動的接触角[前進接触角(θ)と、後退接触角(θ)]を測定した時の接触角ヒステリシス(θ−θ)が、有機シラン単独で表面処理された表面より小さな値となる、ヒステリシスの極めて小さい表面にすることを可能とする表面改質技術を提供することができる。
(8)表面張力が18〜73dyn/cmの液体に対してヒステリシスの極めて小さい透明ハイブリッド皮膜を、特に、基材を選ぶことなく、また、基材の前処理を施すことなく、基材に密着性よく形成できる表面処理技術を提供することができる。
(9)有機溶媒に対する有機シランと金属アルコキシドの濃度によって、膜厚を任意に制御(10−10000nm)することが可能である。
(10)当該ハイブリッド皮膜は透明性が高いため、処理する基材表面の外観を維持したまま、意匠性を損なうことなく、表面処理を施すことができる。
(11)調製後の前駆溶液が安定であるため、調製後に長期間(1ヶ月程度)保存することができる。
(12)特に加熱処理をすることなく、室温で硬化させることが可能なため、耐熱温度の低いポリマー、紙、繊維、木材等への成膜が可能である。
(13)有機シラン含有量を調整することで、膜の硬度、耐熱性、可とう性を任意に調整することができるため、シート状のポリマー、金属フィルム、紙等に、曲げてもクラックや剥離を発生させない成膜が可能である。
(14)透明ハイブリッド皮膜の優れたはっ水/はつ油性、液滴除去能、耐指紋付着性、防汚性、耐食性、耐候性、防カビ性、生物付着防止性により、例えば、金属/木質材料の腐食防止、タッチパネルディスプレー等の指紋付着防止、日常生活品や食品梱包材への抗菌性付与、ポリマーフィルムへの耐候性付与、紙や繊維等の劣化/黄変防止や防水性付与、タイルや水周りの防カビ/防菌処理、等の用途において、長期に渡りこれらの機能を持続可能な、新しい表面改質技術を提供することができる。
The present invention has the following effects.
(1) It is possible to introduce high concentration (up to about 50 wt.%) Additives such as rust preventives, UV absorbers / light stabilizers, fungicides / antibacterial agents, biological adhesion prevention, etc. between the layers of the film. To provide a new surface modification technology that can achieve long-lasting effects such as water repellency / oil repellency, antifouling properties, corrosion resistance, weather resistance, antifungal properties, and anti-bioadhesion properties. Can do.
(2) Since the additive is fixed between the layers, it is a new surface modification that can prevent sublimation and bleed-out, unlike conventional coatings and polymer materials that are simply mixed or kneaded. Can provide quality technology.
(3) When the additive is an organic compound, crystallization and aggregation are suppressed by completely dispersing the additive inside the hybrid film. Therefore, suppression of concentration quenching, suppression of maximum absorption wavelength shift, solubility It is possible to provide a new surface modification technology that can realize improvement.
(4) Since the additive has the ability to collect at the crack site even if a crack occurs in the coating, it is possible to provide a new surface modification technique that can suppress the progress of corrosion.
(5) Since organic silanes having an inert functional group, such as long-chain alkyltriethoxysilane, perfluoroalkyltriethoxysilane, etc. are used, the corrosion / deterioration inhibitor is hydrophobic when forming a layered structure. Providing new surface modification technology that can immobilize between layers by interaction and at the same time provide water repellency / oil repellency, droplet removal ability, fingerprint resistance, antifouling, etc. to the surface of the transparent hybrid film can do.
(6) Since an organic silane having an active functional group, for example, vinyltriethoxysilane, 2-hydroxy-4- (3-triethoxysilylpropoxy) -diphenylketone, or the like is used, when forming a layered structure, It is possible to provide a new surface modification technique that can immobilize the additive by hydrogen bonding or covalent bonding and at the same time impart biocompatibility and chemical reactivity to the surface of the transparent hybrid film.
(7) Dynamic wettability of the substrate surface, that is, contact angle hysteresis (θ A −θ R ) when dynamic contact angles [advanced contact angle (θ A ) and receding contact angle (θ R )] are measured. However, it is possible to provide a surface modification technique that makes it possible to obtain a surface with extremely small hysteresis, which is smaller than the surface treated with organosilane alone.
(8) A transparent hybrid film having extremely small hysteresis with respect to a liquid having a surface tension of 18 to 73 dyn / cm, in particular, closely contacting the base material without selecting the base material and without subjecting the base material to pretreatment. It is possible to provide a surface treatment technique that can be formed with good properties.
(9) The film thickness can be arbitrarily controlled (10-10000 nm) by the concentration of the organic silane and the metal alkoxide with respect to the organic solvent.
(10) Since the hybrid film has high transparency, the surface treatment can be performed without impairing the design properties while maintaining the appearance of the surface of the substrate to be treated.
(11) Since the prepared precursor solution is stable, it can be stored for a long time (about one month) after preparation.
(12) Since it can be cured at room temperature without any heat treatment, it can be formed on a polymer, paper, fiber, wood, or the like having a low heat-resistant temperature.
(13) By adjusting the organosilane content, the hardness, heat resistance, and flexibility of the film can be adjusted arbitrarily, so that even if bent into a sheet-like polymer, metal film, paper, Film formation that does not cause peeling is possible.
(14) Excellent water repellency / oil repellency, droplet removal ability, antifouling property, antifouling property, corrosion resistance, weather resistance, antifungal property, and anti-bioadhesion property of the transparent hybrid film, for example, metal / Prevention of corrosion of wood materials, prevention of fingerprint adhesion such as touch panel display, provision of antibacterial properties to daily life goods and food packaging materials, provision of weather resistance to polymer films, prevention of deterioration / yellowing of paper and fibers, and waterproofing, In applications such as anti-fungal / anti-bacterial treatment around tiles and water, it is possible to provide new surface modification technology that can sustain these functions over a long period of time.

図1は、実施例1および比較例2〜3に係る、[腐食試験3]実施後の各試料の外観を示すものである。FIG. 1 shows the appearance of each sample after [Corrosion Test 3] according to Example 1 and Comparative Examples 2-3.

次に、実施例に基づいて本発明を具体的に説明するが、以下の実施例は、本発明の好適な例を示すものであり、本発明は、該実施例によって何ら限定されるものではない。   Next, the present invention will be specifically described based on examples. However, the following examples show preferred examples of the present invention, and the present invention is not limited to the examples. Absent.

以下に、実施した腐食試験の内容を示す。
[腐食試験1]
試験片を0.05M NaCl水溶液に、室温で24時間浸漬した。
[腐食試験2]
試験片を純水の入った密閉容器内で、100℃で240時間浸漬した。
[腐食試験3]
試験片を5wt%塩水噴霧に暴露した。
[腐食試験4]
試験片にメッシュ状の切り込み(縦横それぞれ10本)を入れ、0.05M NaCl水溶液に、室温で12時間浸漬した。
The details of the corrosion test performed are shown below.
[Corrosion test 1]
The test piece was immersed in 0.05 M NaCl aqueous solution at room temperature for 24 hours.
[Corrosion test 2]
The test piece was immersed in a sealed container containing pure water at 100 ° C. for 240 hours.
[Corrosion test 3]
Specimens were exposed to 5 wt% salt spray.
[Corrosion test 4]
A mesh-shaped cut (10 pieces each in length and width) was put into the test piece, and immersed in a 0.05 M NaCl aqueous solution at room temperature for 12 hours.

テトラメトキシシラン(TMOS)、デシルトリエトキシシラン(DTES)を、TMOS/DTES(モル比)=4の比率で混合し、エタノールおよび塩酸と混ぜ合わせた後、室温で所定時間撹拌した。その後、TMOSおよびDTESの固形成分(TMOS:SiO、DTES:C1023SiO1.5)の全重量に対し、3.1、6.3、12.5、25、50wt.%のトリルトリアゾール(TTA)を添加し、更に、室温で所定時間撹拌した。得られた前駆溶液を、銅板およびガラス板にスピンコートし、一日、室温で静置した。 Tetramethoxysilane (TMOS) and decyltriethoxysilane (DTES) were mixed at a ratio of TMOS / DTES (molar ratio) = 4, mixed with ethanol and hydrochloric acid, and then stirred at room temperature for a predetermined time. Then, 3.1, 6.3, 12.5, 25, 50 wt.% With respect to the total weight of the solid components of TMOS and DTES (TMOS: SiO 2 , DTES: C 10 H 23 SiO 1.5 ). % Tolyltriazole (TTA) was added, and the mixture was further stirred at room temperature for a predetermined time. The obtained precursor solution was spin-coated on a copper plate and a glass plate and allowed to stand at room temperature for one day.

表1に、実施例1に係る、ガラス板上に成膜した、3.1、6.3、12.5、25、50wt.%のTTAを含む試料の、XRDパターンから得られた面間隔、透明性、水およびn−ヘキサデカンに対する、前進接触角(θ)、後退接触角(θ)、ヒステリシス(θ−θ)の値を示す。 In Table 1, 3.1, 6.3, 12.5, 25, 50 wt. % TTA of sample containing% TTA, transparency, advancing contact angle (θ A ), receding contact angle (θ R ), hysteresis (θ A −θ R ) for water and n-hexadecane ) Value.

表1に、実施例1に係る、3.1、6.3、12.5、25、50wt.%のTTAを含む試料(銅板)の、[腐食試験1]の結果を示す。   Table 1 shows 3.1, 6.3, 12.5, 25, 50 wt. The result of the [corrosion test 1] of the sample (copper plate) containing% TTA is shown.

表1に、実施例1に係る、3.1、6.3wt.%のTTAを含む試料(銅板)の、[腐食試験2]の結果を示す。   Table 1 shows 3.1, 6.3 wt. The result of the [corrosion test 2] of the sample (copper plate) containing% TTA is shown.

表1に、実施例1に係る、12.5wt.%のTTAを含む試料(銅板)の、[腐食試験3]の結果を示す。   Table 1 shows that 12.5 wt. The result of [corrosion test 3] of the sample (copper plate) containing% TTA is shown.

図1(a)に、実施例1に係る、12.5wt.%のTTAを含む試料(銅板)の、[腐食試験3]の結果を示す。   FIG. 1A shows a 12.5 wt. The result of [corrosion test 3] of the sample (copper plate) containing% TTA is shown.

テトラメトキシシラン(TMOS)、オクタデシルトリメトキシシラン(ODMS)を、TMOS/ODMS(モル比)=4の比率で混合し、エタノールおよび塩酸と混ぜ合わせた後、室温で所定時間撹拌した。その後、TMOSおよびODMS固形成分(TMOS:SiO、DTES:C1837SiO1.5)の全重量に対し、12.5wt.%のトリルトリアゾール(TTA)、もしくは、12.5wt.%のベンゾトリアゾール(BTA)、を前駆溶液に添加し、更に、室温で所定時間撹拌した。得られた前駆溶液を、銅板およびガラス板にディップコートし、一日、室温で静置した。 Tetramethoxysilane (TMOS) and octadecyltrimethoxysilane (ODMS) were mixed at a ratio of TMOS / ODMS (molar ratio) = 4, mixed with ethanol and hydrochloric acid, and then stirred at room temperature for a predetermined time. Thereafter, the total weight of TMOS and ODMS solid components (TMOS: SiO 2 , DTES: C 18 H 37 SiO 1.5 ) was 12.5 wt. % Tolyltriazole (TTA), or 12.5 wt. % Benzotriazole (BTA) was added to the precursor solution and further stirred at room temperature for a predetermined time. The obtained precursor solution was dip-coated on a copper plate and a glass plate and allowed to stand at room temperature for one day.

表1に、実施例2に係る、ガラス板上に成膜した12.5wt%のTTAもしくは12.5wt%のBTAを含む試料の、XRDパターンから得られた面間隔、透明性、水およびn−ヘキサデカンに対する、前進接触角(θ)、後退接触角(θ)、ヒステリシス(θ−θ)の値を示す。 Table 1 shows the interplanar spacing obtained from the XRD pattern, transparency, water, and n of a sample containing 12.5 wt% TTA or 12.5 wt% BTA formed on a glass plate according to Example 2. -Advancing contact angle (θ A ), receding contact angle (θ R ), and hysteresis (θ AR ) values for hexadecane are shown.

表1に、実施例2に係る、試料(銅板)の、[腐食試験1]の結果を示す。   Table 1 shows the results of [Corrosion Test 1] of the sample (copper plate) according to Example 2.

表1に、実施例2に係る、試料(銅板)の、[腐食試験4]の結果を示す。   Table 1 shows the results of [Corrosion Test 4] of the sample (copper plate) according to Example 2.

[比較例1]
未処理の銅板を用いて、各種腐食試験を実施した。
[Comparative Example 1]
Various corrosion tests were performed using untreated copper plates.

表2に、比較例1に関わる、[腐食試験1]の結果を示す。   Table 2 shows the results of [Corrosion Test 1] related to Comparative Example 1.

表2に、比較例1に関わる、[腐食試験2]の結果を示す。   Table 2 shows the results of [Corrosion Test 2] related to Comparative Example 1.

表2に、比較例1に関わる、[腐食試験3]の結果を示す。   Table 2 shows the results of [Corrosion Test 3] related to Comparative Example 1.

表2に、比較例1に関わる、[腐食試験4]の結果を示す。   Table 2 shows the results of [Corrosion Test 4] related to Comparative Example 1.

[比較例2]
テトラメトキシシラン(TMOS)を、エタノールおよび塩酸と混ぜ合わせた後、室温で所定時間撹拌した。その後、TMOSの固形成分(SiO)の全重量に対し、0、3.1、6.3、12.5、25、50wt.%のトリルトリアゾール(TTA)、または、12.5wt.%のベンゾトリアゾール(BTA)を添加し、更に、所定時間添加した。得られた前駆溶液を、銅板上およびガラス板にスピンコートし、一日、室温で静置した。
[Comparative Example 2]
Tetramethoxysilane (TMOS) was mixed with ethanol and hydrochloric acid and then stirred at room temperature for a predetermined time. Thereafter, 0, 3.1, 6.3, 12.5, 25, 50 wt.% With respect to the total weight of the solid component (SiO 2 ) of TMOS. % Tolyltriazole (TTA), or 12.5 wt. % Benzotriazole (BTA) was added and further added for a predetermined time. The obtained precursor solution was spin-coated on a copper plate and a glass plate and allowed to stand at room temperature for one day.

表2に、比較例2に係る、ガラス板上に成膜した、0、3.1、6.3、12.5、25、50wt.%のTTAを含む試料の、XRDパターンから得られた面間隔、透明性、水およびn−ヘキサデカンに対する、前進接触角(θ)、後退接触角(θ)、ヒステリシス(θ−θ)の値を示す。 Table 2 shows 0, 3.1, 6.3, 12.5, 25, 50 wt. % TTA of sample containing% TTA, transparency, advancing contact angle (θ A ), receding contact angle (θ R ), hysteresis (θ A −θ R ) for water and n-hexadecane ) Value.

表2に、比較例2に係る、0、3.1、6.3、12.5、25、50wt.%のTTAを含む試料(銅板)の、[腐食試験1]の結果を示す。   Table 2 shows 0, 3.1, 6.3, 12.5, 25, 50 wt. The result of the [corrosion test 1] of the sample (copper plate) containing% TTA is shown.

表2に、比較例2に係る、3.1、6.3wt.%のTTAを含む試料(銅板)の、[腐食試験2]の結果を示す。   Table 2 shows 3.1, 6.3 wt. The result of the [corrosion test 2] of the sample (copper plate) containing% TTA is shown.

表2に、比較例2に係る、12.5wt.%のTTAを含む試料(銅板)の、[腐食試験3]の結果を示す。   Table 2 shows that 12.5 wt. The result of [corrosion test 3] of the sample (copper plate) containing% TTA is shown.

図1(b)に、比較例2に係る、12.5wt.%のTTAを含む試料(銅板)の、[腐食試験3]の結果を示す。   In FIG. 1B, 12.5 wt. The result of [corrosion test 3] of the sample (copper plate) containing% TTA is shown.

表2に、比較例2に係る、0、12.5wt.%のTTAおよび12.5wt.%のBTAを含む試料(銅板)の、[腐食試験4]の結果を示す。   Table 2 shows 0, 12.5 wt. % TTA and 12.5 wt. The result of the [corrosion test 4] of the sample (copper plate) containing% BTA is shown.

[比較例3]
テトラメトキシシラン(TMOS)、デシルトリエトキシシラン(DTES)をTMOS/DTES(モル比)=4の比率で混合し、エタノールおよび塩酸と混ぜ合わせた後、室温で所定時間撹拌した。得られた前駆溶液を、銅板およびガラス板にスピンコートし、一日、室温で静置した。
[Comparative Example 3]
Tetramethoxysilane (TMOS) and decyltriethoxysilane (DTES) were mixed at a ratio of TMOS / DTES (molar ratio) = 4, mixed with ethanol and hydrochloric acid, and stirred at room temperature for a predetermined time. The obtained precursor solution was spin-coated on a copper plate and a glass plate and allowed to stand at room temperature for one day.

表2に、比較例3に係る、ガラス板上に成膜した試料の、XRDパターンから得られた面間隔、透明性、水およびn−ヘキサデカンに対する、前進接触角(θ)、後退接触角(θ)、ヒステリシス(θ−θ)の値を示す。 Table 2 shows the surface contact distance, transparency, water, and advancing contact angle (θ A ) and receding contact angle obtained from the XRD pattern of the sample formed on the glass plate according to Comparative Example 3. The values of (θ R ) and hysteresis (θ A −θ R ) are shown.

表2に、比較例3に係る、試料(銅板)の、[腐食試験1]の結果を示す。   Table 2 shows the results of [Corrosion Test 1] of the sample (copper plate) according to Comparative Example 3.

表2に、比較例3に係る、試料(銅板)の、[腐食試験2]の結果を示す。   Table 2 shows the result of [Corrosion Test 2] of the sample (copper plate) according to Comparative Example 3.

表2に、比較例3に係る、試料(銅板)の、[腐食試験3]の結果を示す。   Table 2 shows the result of [Corrosion Test 3] of the sample (copper plate) according to Comparative Example 3.

図1(c)に、比較例3に係る、12.5wt.%のTTAを含む試料(銅板)の、[腐食試験3]の結果を示す。   In FIG. 1C, 12.5 wt. The result of [corrosion test 3] of the sample (copper plate) containing% TTA is shown.

[比較例4]
テトラメトキシシラン(TMOS)、オクタデシルトリメトキシシラン(ODMS)をTMOS/ODMS(モル比)=4の比率で混合し、エタノールおよび塩酸と混ぜ合わせた後、室温で所定時間撹拌した得られた前駆溶液を、銅板およびガラス板にディップコートし、一日、室温で静置した。
[Comparative Example 4]
Tetramethoxysilane (TMOS) and octadecyltrimethoxysilane (ODMS) were mixed at a ratio of TMOS / ODMS (molar ratio) = 4, mixed with ethanol and hydrochloric acid, and then stirred at room temperature for a predetermined time. Was dip coated on a copper plate and a glass plate and allowed to stand at room temperature for one day.

図1に、比較例4に係る、XRDパターンから得られた面間隔、透明性、水およびn−ヘキサデカンに対する、前進接触角(θ)、後退接触角(θ)、ヒステリシス(θ−θ)の値を示す。 In FIG. 1, the advancing contact angle (θ A ), receding contact angle (θ R ), hysteresis (θ A −) for the interplanar spacing, transparency, water and n-hexadecane obtained from the XRD pattern according to Comparative Example 4 The value of θ R ) is shown.

表2に、比較例4に係る、試料(銅板)の、[腐食試験1]の結果を示す。   Table 2 shows the result of [Corrosion Test 1] of the sample (copper plate) according to Comparative Example 4.

表2に、比較例4に係る、試料(銅板)の、[腐食試験4]の結果を示す。   Table 2 shows the results of [Corrosion Test 4] of the sample (copper plate) according to Comparative Example 4.

以上の2つの実施例、4つの比較例で作製した基板試料の表面を、相対的に評価すると、実施例1〜2より、添加剤を添加した場合でも、透明性に優れた層状構造を有する皮膜が得られることが明らかとなった。また、層間に高濃度(最大50wt.%)の添加剤を含有させることが可能であることが分かった。   When the surface of the substrate sample produced in the above two examples and four comparative examples is relatively evaluated, even when an additive is added, it has a layered structure with excellent transparency. It became clear that a film was obtained. Further, it was found that an additive having a high concentration (up to 50 wt.%) Can be contained between the layers.

比較例2の結果より、シリカ膜の場合でも、添加剤の濃度が低い場合、添加剤を膜内に含有させることができるが、濃度の増加と共に(12.5wt.%以上)、皮膜の透明度が著しく低下し、添加剤が凝集し、膜内部に不均一に分散することが分かった。また、実施例1〜2および比較例3〜4の結果より、いずれのハイブリッド皮膜も、優れたはっ水/はつ油性を示すことが明らかとなり、添加剤の有無は膜表面の動的濡れ性に影響しないことが分かった。   From the results of Comparative Example 2, even in the case of a silica film, when the concentration of the additive is low, the additive can be contained in the film. However, as the concentration increases (12.5 wt.% Or more), the transparency of the film is increased. As a result, the additive was agglomerated and the additives were agglomerated and dispersed unevenly inside the film. In addition, from the results of Examples 1 and 2 and Comparative Examples 3 and 4, it is clear that any of the hybrid films exhibits excellent water repellency / oil repellency. It turns out that it does not affect sex.

実施例1〜2の結果より、添加剤を含むハイブリッド皮膜は優れた防食能を示すことが分かった。比較例1の[腐食試験1〜3]より、銅単体は、本実験条件下において、容易に腐食することが分かる。また、比較例3〜4の[腐食試験1〜3]より、添加剤を含まないハイブリッド膜を被覆した場合、腐食の進行をある程度抑制できることが確認できたが、その効果は不十分であった。特に、中性塩水噴霧試験([腐食試験3])において、腐食抑制能が低下した結果を考慮すると、塩素イオンが膜表面の僅かな隙間を縫って、銅表面に到達したため、腐食が進行したと考えられる。   From the results of Examples 1 and 2, it was found that the hybrid film containing the additive exhibits excellent anticorrosive ability. From [Corrosion Tests 1 to 3] in Comparative Example 1, it can be seen that copper alone corrodes easily under the experimental conditions. Further, from [Corrosion Tests 1 to 3] of Comparative Examples 3 to 4, it was confirmed that the progress of corrosion could be suppressed to some extent when the hybrid film containing no additive was coated, but the effect was insufficient. . In particular, in the neutral salt spray test ([corrosion test 3]), considering the result of the decrease in the ability to inhibit corrosion, corrosion progressed because chlorine ions reached the copper surface by sewing a slight gap on the film surface. it is conceivable that.

添加剤を含むシリカ膜(比較例2)を被覆した場合でも、銅の腐食をある程度抑制できることが分かったが、前述のハイブリッド単独皮膜(比較例3〜4)よりも抑制効果は著しく低い。これは、添加剤の凝集体がシリカ内部に不均一に分散しているため、添加剤の溶解に伴い、添加剤が元来存在していた場所に“孔”のような空間が形成することで、水や塩素イオンの銅表面へのアクセスが容易になったことが原因であると考えられる。   Even when the silica film containing the additive (Comparative Example 2) was coated, it was found that the corrosion of copper could be suppressed to some extent, but the inhibitory effect was remarkably lower than the hybrid single film (Comparative Examples 3 to 4) described above. This is because the aggregates of the additives are dispersed non-uniformly inside the silica, and as the additive dissolves, a space like a “hole” is formed where the additive originally existed. It is thought that this is because water and chlorine ions can easily access the copper surface.

また、シリカ膜表面が親水性であるため、水滴が付着しやすいことも、腐食を促進した要因の一つであると考えられる。これに対し、添加剤を含むハイブリッド皮膜は、表面の優れた液滴除去効果および層状構造による添加剤の分散化/閉じ込め効果があいまって、優れた防食能を実現できたものと考えられる。   In addition, since the silica film surface is hydrophilic, it is considered that one of the factors that promoted corrosion is that water droplets are easily attached. On the other hand, the hybrid film containing the additive is considered to have realized an excellent anticorrosive ability due to the excellent droplet removing effect on the surface and the dispersing / confining effect of the additive due to the layered structure.

実施例2と比較例2の[腐食試験4]を比較すると、添加剤の濃度が同じであるにもかかわらず、ハイブリッド皮膜のみ、優れた自己修復能を示すことが分かった。ハイブリッド皮膜の場合、内包された添加剤が分子レベルで均一に分散し、かつ、層間に固定化されているため、亀裂の発生と共に、添加剤が速やかに放出され、銅表面に到達することで、腐食の進行が著しく抑制されたと考えられる。一方、シリカ膜の場合は、添加剤はシリカ膜内部で不均一に凝集して存在しているため、ハイブリッド皮膜と比較して、亀裂発生後の添加剤の銅表面への移動が、水や塩素イオンのそれよりも遅れたために、腐食が進行したものと考えられる。   When [Corrosion test 4] of Example 2 and Comparative Example 2 were compared, it was found that only the hybrid film exhibited excellent self-healing ability even though the additive concentration was the same. In the case of a hybrid film, the encapsulated additive is uniformly dispersed at the molecular level and is fixed between the layers, so that with the occurrence of cracks, the additive is quickly released and reaches the copper surface. It is considered that the progress of corrosion was remarkably suppressed. On the other hand, in the case of a silica film, since the additive is present in a non-uniformly aggregated state in the silica film, the movement of the additive to the copper surface after the occurrence of cracks is less It is thought that corrosion progressed because it was later than that of chloride ion.

以上詳述したように、本発明は、透明ハイブリッド皮膜とその製造方法に関するものであり、本発明により、有機シランおよび金属アルコキシドを、有機溶媒、水、添加剤(防錆剤、紫外線吸収剤/光安定剤、防カビ剤/抗菌剤、生物付着防止剤等)、必要により触媒を含む溶液中で共加水分解・縮重合させた前駆溶液を、例えば、金属、金属酸化膜、合金、半導体、ポリマー、木材、紙、繊維等の固体表面に塗布することで、溶媒の揮発と同時に、密着性の良好な透明膜を形成させ、1)層間に高濃度の添加剤を固定化すること、2)膜表面の有機シラン由来の官能基の運動性を制御することで、基材の特性を維持したまま、基材表面に、優れたはっ水/はつ油性、液滴除去能、耐指紋付着性、防汚性、耐食性、耐候性、防カビ性、抗菌性、生物付着防止を長期にわたり持続させることを可能にする透明ハイブリッド皮膜とその製造方法を提供することができる。本発明は、例えば、金属/木質材料の腐食防止、タッチパネルディスプレー等への指紋付着防止、日常生活品や食品梱包材への抗菌性付与、ポリマーフィルムへの耐候性付与、紙や繊維等の劣化/黄変防止や防水性付与、タイルや水周りの防カビ/防菌処理等の用途において、長期に渡りこれらの機能を持続できる、特に有効な、新しい表面改質技術に関する新技術・新製品を提供するものとして有用である。   As described above in detail, the present invention relates to a transparent hybrid film and a method for producing the same. According to the present invention, an organic silane and a metal alkoxide are mixed with an organic solvent, water, an additive (rust inhibitor, ultraviolet absorber / Light stabilizers, fungicides / antibacterial agents, biofouling inhibitors, etc.), and precursor solutions co-hydrolyzed and polycondensed in a solution containing a catalyst if necessary, such as metals, metal oxide films, alloys, semiconductors, By applying to a solid surface such as polymer, wood, paper, fiber, etc., a transparent film with good adhesion is formed at the same time as the volatilization of the solvent. 1) Immobilization of a high concentration of additive between layers 2 ) By controlling the mobility of the functional group derived from organosilane on the film surface, excellent water repellency / oil repellency, droplet removal ability, and fingerprint resistance are maintained on the substrate surface while maintaining the characteristics of the substrate. Adhesion, antifouling, corrosion resistance, weather resistance, antifungal, antibacterial It is possible to provide a transparent hybrid film and a manufacturing method thereof which allows to long lasting biofouling prevention. The present invention, for example, prevents corrosion of metal / wood materials, prevents fingerprint adhesion to touch panel displays, imparts antibacterial properties to daily life products and food packaging materials, imparts weather resistance to polymer films, and degrades paper and fibers. / New technologies and products related to new surface modification technologies that are particularly effective in sustaining these functions over a long period of time in applications such as prevention of yellowing, waterproofing, and anti-fungal / antibacterial treatment around tiles and water. It is useful as a thing to provide.

Claims (9)

基材の表面に形成された、有機シランと金属アルコキシドからなる透明ハイブリッド皮膜であって、
1〜10nmの繰り返し周期の層状構造を有し、層間に、防錆剤、紫外線吸収剤/光安定剤、防カビ剤/抗菌剤、及び生物付着防止剤から選択される少なくとも1種類以上の添加剤が固定化されており、
該皮膜が形成された基板表面の動的接触角[前進接触角(θ )と後退接触角(θ )]を測定した時の接触角ヒステリシス(θ −θ )が、有機シラン単独で形成された基板表面より小さな値である特性を有していることを特徴とする透明ハイブリッド皮膜。
A transparent hybrid film made of an organic silane and a metal alkoxide formed on the surface of a substrate,
Addition of at least one kind selected from a rust inhibitor, an ultraviolet absorber / light stabilizer, an antifungal agent / antibacterial agent, and a bioadhesive agent, having a layered structure with a repetition period of 1 to 10 nm The agent is immobilized,
The contact angle hysteresis (θ A −θ R ) when measuring the dynamic contact angle [advanced contact angle (θ A ) and receding contact angle (θ R )] of the substrate surface on which the film is formed is organosilane alone. A transparent hybrid film characterized by having a characteristic that is smaller than the surface of the substrate formed of
前記添加剤を、皮膜の総重量に対して、3〜50wt%含有している請求項1に記載の透明ハイブリッド皮膜。 Said additive, based on the total weight of the film, the transparent hybrid film of placing serial to claim 1 containing. 3 to 50 wt%. 前記有機シランが、炭素数4〜18のアルキルアルコキシシランである請求項1又は2に記載の透明ハイブリッド皮膜。The transparent hybrid film according to claim 1 or 2, wherein the organic silane is an alkylalkoxysilane having 4 to 18 carbon atoms. 有機シランと金属アルコキシドを、有機溶媒、添加剤としての防錆剤、紫外線吸収剤/光安定剤、防カビ剤/抗菌剤、及び生物付着防止剤から選択される少なくとも1種類以上、及び任意に触媒を含む溶液中で共加水分解・縮重合した前駆溶液を、基板表面に滴下した後、室温、大気圧下で溶媒を揮発させ、皮膜を架橋させることを特徴とする透明ハイブリッド皮膜の製造方法。 Organic silane and metal alkoxide, at least one selected from organic solvents, rust preventives as additives, UV absorbers / light stabilizers , fungicides / antibacterial agents, and bioadhesive agents , and optionally the precursor solution was cohydrolytic polycondensation in a solution containing a catalyst, was added dropwise to the surface of the substrate, Atsushi Muro, solvent is evaporated under atmospheric pressure, transparency hybrid film you characterized in that cross-linking the film Manufacturing method. 前記有機シランが、式(A)The organosilane is represented by the formula (A)
R 1 −Si−(OR-Si- (OR 2 )) 3 ・・・・(A)... (A)
(但し、式中、R(However, in the formula, R 1 は炭素数4〜18のアルキル基、RIs an alkyl group having 4 to 18 carbon atoms, R 2 は炭素数1又は2のアルコキシ基)で示されることを特徴とする請求項4に記載の透明ハイブリッド皮膜の製造方法。Is represented by an alkoxy group having 1 or 2 carbon atoms).
前記金属アルコキシドが、式(C)The metal alkoxide has the formula (C)
Si(RSi (R 1 ) 4 ・・・・・・・(C).... (C)
(但し、式中、R(However, in the formula, R 1 は炭素数1又は2のアルコキシ基)Is an alkoxy group having 1 or 2 carbon atoms)
で示されることを特徴とする請求項4又は5に記載の透明ハイブリッド皮膜の製造方法。The method for producing a transparent hybrid film according to claim 4 or 5, wherein
前記有機溶媒として、加水分解に使用する水と混和可能であり、かつ有機シラン、金属アルコキシドおよび添加剤の加水分解・縮重後の物質を溶解し、かつ蒸気圧が水より大きな有機溶媒を使用することを特徴とする請求項4〜6のいずれか1項に記載の透明ハイブリッド皮膜の製造方法。 As the organic solvent, an organic solvent that is miscible with water used for hydrolysis, dissolves the organic silane, metal alkoxide, and additives after hydrolysis and degeneracy, and has a vapor pressure larger than that of water is used. The manufacturing method of the transparent hybrid membrane | film | coat of any one of Claims 4-6 characterized by the above-mentioned. 前記触媒が、前記式(A)中の で示される基及び式(C)中のR で示される基の加水分解を促進する作用を有することを特徴とする請求項4〜7のいずれか1項に記載の透明ハイブリッド皮膜の製造方法。 Said catalyst, according to claim 4-7, characterized in that it has an effect of promoting the hydrolysis of the group represented by R 1 in the formula group and the formula represented by R 2 in (A) (C) The manufacturing method of the transparent hybrid membrane | film | coat of any one . 請求項1〜3のいずれか1項に記載の透明ハイブリッド皮膜が被覆された固体表面であって、その表面が、はっ水/はつ油性、液滴除去能、耐指紋付着性、防汚性、耐食性、耐候性、防カビ性、抗菌性、および/または生物付着防止能を示すことを特徴とする固体表面。 A solid surface coated with the transparent hybrid film according to any one of claims 1 to 3 , wherein the surface is water-repellent / oil-repellent, droplet removing ability, fingerprint resistance, and antifouling. A solid surface characterized by exhibiting properties, corrosion resistance, weather resistance, antifungal properties, antibacterial properties, and / or biofouling prevention ability.
JP2012125381A 2012-05-31 2012-05-31 Transparent hybrid film and manufacturing method thereof Active JP5991665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012125381A JP5991665B2 (en) 2012-05-31 2012-05-31 Transparent hybrid film and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012125381A JP5991665B2 (en) 2012-05-31 2012-05-31 Transparent hybrid film and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2013249389A JP2013249389A (en) 2013-12-12
JP2013249389A5 JP2013249389A5 (en) 2015-09-10
JP5991665B2 true JP5991665B2 (en) 2016-09-14

Family

ID=49848409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012125381A Active JP5991665B2 (en) 2012-05-31 2012-05-31 Transparent hybrid film and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5991665B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180085135A (en) * 2017-01-18 2018-07-26 한국해양대학교 산학협력단 Room temperature curable ceramic coating composition

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107109123A (en) 2014-10-31 2017-08-29 住友化学株式会社 Transparent coating
JP6715530B2 (en) 2014-10-31 2020-07-01 住友化学株式会社 Water- and oil-repellent coating mixed composition
JP6705752B2 (en) 2014-11-12 2020-06-03 住友化学株式会社 Water- and oil-repellent coating composition and transparent film
KR101884193B1 (en) * 2015-10-21 2018-08-01 주식회사 맥스젠테크놀로지 Coating layer of display component having multi-function and method of manufacturing the layer
WO2017145201A1 (en) * 2016-02-25 2017-08-31 日新製鋼株式会社 Coated plated metal sheet
KR20180081223A (en) * 2017-01-06 2018-07-16 주식회사 맥스젠테크놀로지 Coating layer of display component having multi-function and method of manufacturing the layer
CN108485322A (en) * 2018-03-29 2018-09-04 南京信息工程大学 A kind of corrosion-resistant composite material and preparation method
CN116574409B (en) * 2023-07-12 2023-09-22 中国林业科学研究院木材工业研究所 Stain-resistant fingerprint-resistant additive based on carbon quantum dots, preparation method thereof, stain-resistant fingerprint-resistant coating and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4145699B2 (en) * 2003-04-03 2008-09-03 日鉱金属株式会社 Copper foil or copper alloy foil subjected to resin dust adhesion prevention treatment and resin dust adhesion prevention method
JP4289935B2 (en) * 2003-06-19 2009-07-01 三井化学株式会社 Composite multilayer film, self-organized manufacturing method thereof, and electronic component
JP4289936B2 (en) * 2003-06-19 2009-07-01 三井化学株式会社 Composite multilayer film, manufacturing method thereof, and electronic component
JP4384898B2 (en) * 2003-11-28 2009-12-16 日油株式会社 Method for producing water / oil repellent coating
US20050282953A1 (en) * 2004-06-17 2005-12-22 Microphase Coatings, Inc. Hydrophobic coating composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180085135A (en) * 2017-01-18 2018-07-26 한국해양대학교 산학협력단 Room temperature curable ceramic coating composition
KR101953568B1 (en) * 2017-01-18 2019-03-04 한국해양대학교 산학협력단 Room temperature curable ceramic coating composition

Also Published As

Publication number Publication date
JP2013249389A (en) 2013-12-12

Similar Documents

Publication Publication Date Title
JP5991665B2 (en) Transparent hybrid film and manufacturing method thereof
JP4746323B2 (en) Composition for coating metal to protect against corrosion
RU2458095C2 (en) Biocidal/hydrophobic inner coating of condenser tubes (industrial turbines and secondary cooling loops)
US11053397B2 (en) Anticorrosion layer and process for production thereof
CN107109128B (en) Water-and oil-repellent coating composition and transparent coating film
US20230031778A1 (en) Selectively Applied Gradient Coating Compositions
JP2011526835A5 (en)
WO2016068103A1 (en) Water-repellant/oil-repellant coating composition
EP1523530A1 (en) Superprimer
JP2013213181A (en) Organic-inorganic transparency hybrid coating and method of manufacturing the same
JP6243914B2 (en) Super-hydrophobic / super-lipophilic paint, epoxy and method for producing composition
KR101463050B1 (en) Article including Ultra Hydrophobic Coating and Method for Fabrication thereof
WO2016068118A1 (en) Transparent coating film
WO2017188330A1 (en) Composition
WO2019131872A1 (en) Substrate for polymer brush formation, production method for substrate for polymer brush formation, and precursor liquid for use in production method for substrate for polymer brush formation
CN107075306B (en) Transparent coating film
AU2018204389A1 (en) A chromium-free water based coating for treating a Galvannealed or galvanized steel surface
Saffar et al. Superhydrophobic ZnO thin film modified by stearic acid on copper substrate for corrosion and fouling protections
Dong et al. Hydrophobic polyvinyl butyral/polytetrafluoroethylene composite coating on 5052 aluminum alloy: Preparation, characterization, and anticorrosive properties
WO2019033199A1 (en) Coating compositions and methods for preventing the formation of biofilms on surfaces
KR20190142533A (en) Antifouling coating agent and manufacturing method of it
EP4081604B9 (en) An omniphobic and biocide sol-gel coating composition
Jiang et al. NIR-Driven Self-Healing Phase-Change Solid Slippery Surface with Stability and Promising Antifouling and Anticorrosion Properties
Sfameni et al. Design and Development of Sustainable Nanotechnological Protective Systems in Surface Treatment
AU2010340120B2 (en) Corrosion protection coatings and methods of making the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150527

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150529

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160808

R150 Certificate of patent or registration of utility model

Ref document number: 5991665

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250