以下、本発明の一実施形態を図面を参照して説明する。
まず、遊技機の一例であるパチンコ遊技機の全体の構成について説明する。図1はパチンコ遊技機を正面からみた正面図である。
パチンコ遊技機1は、縦長の方形状に形成された外枠(図示せず)と、外枠の内側に開閉可能に取り付けられた遊技枠とで構成される。また、パチンコ遊技機1は、遊技枠に開閉可能に設けられている額縁状に形成されたガラス扉枠2を有する。遊技枠は、外枠に対して開閉自在に設置される前面枠(図示せず)と、機構部品等が取り付けられる機構板と、それらに取り付けられる種々の部品(後述する遊技盤を除く。)とを含む構造体である。
図1に示すように、パチンコ遊技機1は、額縁状に形成されたガラス扉枠2を有する。ガラス扉枠2の下部表面には打球供給皿(上皿)3がある。打球供給皿3の下部には、打球供給皿3に収容しきれない遊技球を貯留する余剰球受皿4と遊技球を発射する打球操作ハンドル(操作ノブ)5が設けられている。ガラス扉枠2の背面には、遊技盤6が着脱可能に取り付けられている。なお、遊技盤6は、それを構成する板状体と、その板状体に取り付けられた種々の部品とを含む構造体である。また、遊技盤6の前面には遊技領域7が形成されている。
遊技領域7の中央付近には、それぞれが演出用の飾り図柄(演出図柄)を可変表示する複数の可変表示部を含む演出表示装置(飾り図柄表示装置)9を有する可変入賞装置400が設けられている。演出表示装置9には、例えば「左」、「中」、「右」の3つの可変表示部(図柄表示エリア)がある。演出表示装置9は、第1特別図柄表示器8aまたは第2特別図柄表示器8bによる特別図柄の可変表示期間中に、装飾用(演出用)の図柄としての演出図柄の可変表示を行う。演出図柄の可変表示を行う演出表示装置9は、演出制御基板に搭載されている演出制御用マイクロコンピュータによって制御される。
遊技盤6における右側下部位置には、第1識別情報としての第1特別図柄を可変表示する第1特別図柄表示器(第1可変表示手段)8aが設けられている。この実施の形態では、第1特別図柄表示器8aは、0〜9の数字を可変表示可能な簡易で小型の表示器(例えば7セグメントLED)で実現されている。すなわち、第1特別図柄表示器8aは、0〜9の数字(または、記号)を可変表示するように構成されている。また、第1特別図柄表示器8aの上方位置には、第2識別情報としての第2特別図柄を可変表示する第2特別図柄表示器(第2可変表示手段)8bが設けられている。第2特別図柄表示器8bは、0〜9の数字を可変表示可能な簡易で小型の表示器(例えば7セグメントLED)で実現されている。すなわち、第2特別図柄表示器8bは、0〜9の数字(または、記号)を可変表示するように構成されている。
この実施の形態では、第1特別図柄の種類と第2特別図柄の種類とは同じ(例えば、ともに0〜9の数字)であるが、種類が異なっていてもよい。また、第1特別図柄表示器8aおよび第2特別図柄表示器8bは、それぞれ、例えば2つの7セグメントLED等を用いて00〜99の数字(または、2桁の記号)を可変表示するように構成されていてもよい。
以下、第1特別図柄と第2特別図柄とを特別図柄と総称することがあり、第1特別図柄表示器8aと第2特別図柄表示器8bとを特別図柄表示器と総称することがある。
第1特別図柄の可変表示は、可変表示の実行条件である第1始動条件が成立(例えば、遊技球が第1始動入賞口13aに入賞したこと)した後、可変表示の開始条件(例えば、保留記憶数が0でない場合であって、第1特別図柄の可変表示が実行されていない状態であり、かつ、大当り遊技が実行されていない状態)が成立したことにもとづいて開始され、可変表示時間(変動時間)が経過すると表示結果(停止図柄)を導出表示する。また、第2特別図柄の可変表示は、可変表示の実行条件である第2始動条件が成立(例えば、遊技球が第2始動入賞口13bに入賞したこと)した後、可変表示の開始条件(例えば、保留記憶数が0でない場合であって、第2特別図柄の可変表示が実行されていない状態であり、かつ、大当り遊技が実行されていない状態)が成立したことにもとづいて開始され、可変表示時間(変動時間)が経過すると表示結果(停止図柄)を導出表示する。なお、入賞とは、入賞口などのあらかじめ入賞領域として定められている領域に遊技球が入ったことである。また、表示結果を導出表示するとは、図柄(識別情報の例)を最終的に停止表示させることである。
第2特別図柄表示器8bの上部には、第1始動入賞口13aに入った有効入賞球数すなわち第1保留記憶数(保留記憶を、始動記憶または始動入賞記憶ともいう。)を表示する第1特別図柄保留記憶表示部と、該第1特別図柄保留記憶表示部とは別個に設けられ、第2始動入賞口13bに入った有効入賞球数すなわち第2保留記憶数を表示する第2特別図柄保留記憶表示部と、が設けられた例えば7セグメントLEDからなる特別図柄保留記憶表示器18が設けられている。第1特別図柄保留記憶表示部は、第1保留記憶数を入賞順に4個まで表示し、有効始動入賞がある毎に、点灯する表示器の数を1増やす。そして、第1特別図柄表示器8aでの可変表示が開始される毎に、点灯する表示器の数を1減らす。また、第2特別図柄保留記憶表示部は、第2保留記憶数を入賞順に4個まで表示し、有効始動入賞がある毎に、点灯する表示器の数を1増やす。そして、第2特別図柄表示器8bでの可変表示が開始される毎に、点灯する表示器の数を1減らす。なお、この例では、第1始動入賞口13aへの入賞による始動記憶数及び第2始動入賞口13bへの入賞による始動記憶数に上限数(4個まで)が設けられているが、上限数を4個以上にしてもよい。
また、演出表示装置9の表示画面には、第1保留記憶数を表示する第1保留記憶表示部(図示略)と、第2保留記憶数を表示する第2保留記憶表示部(図示略)とが設けられている。なお、第1保留記憶数と第2保留記憶数との合計である合計数(合算保留記憶数)を表示する領域(合算保留記憶表示部)が設けられるようにしてもよい。そのように、合計数を表示する合算保留記憶表示部が設けられているようにすれば、可変表示の開始条件が成立していない実行条件の成立数の合計を把握しやすくすることができる。
演出表示装置9は、第1特別図柄表示器8aでの第1特別図柄の可変表示時間中、および第2特別図柄表示器8bでの第2特別図柄の可変表示時間中に、装飾用(演出用)の図柄としての演出図柄(飾り図柄ともいう)の可変表示を行う。第1特別図柄表示器8aにおける第1特別図柄の可変表示と、演出表示装置9における演出図柄の可変表示とは同期している。また、第2特別図柄表示器8bにおける第2特別図柄の可変表示と、演出表示装置9における演出図柄の可変表示とは同期している。同期とは、可変表示の開始時点および終了時点がほぼ同じ(全く同じでもよい。)であって、可変表示の期間がほぼ同じ(全く同じでもよい。)であることをいう。また、第1特別図柄表示器8aにおいて大当り図柄が停止表示されるときと、第2特別図柄表示器8bにおいて大当り図柄が停止表示されるときには、演出表示装置9において大当りを想起させるような演出図柄の組み合わせが停止表示される。
可変入賞装置400の下方には、例えば所定の球受部材によって常に一定の開放状態に保たれる第1始動入賞口13aを有する入賞装置が設けられている。第1始動入賞口13aに入賞した遊技球は、遊技盤6の背面に導かれ、第1始動口スイッチ14a(例えば、近接スイッチ)及び第1入賞確認スイッチ14b(例えば、フォトセンサ)によって検出される。
また、可変入賞装置400の右方には、遊技球が入賞可能な第2始動入賞口13bを有する可変入賞球装置15が設けられている。第2始動入賞口(第2始動口)13bに入賞した遊技球は、遊技盤6の背面に導かれ、第2始動口スイッチ15a(例えば、近接スイッチ)及び第2入賞確認スイッチ15b(例えば、フォトセンサ)によって検出される。可変入賞球装置15は、ソレノイド16によって垂直位置となる開状態と傾動位置となる拡大開放状態とに変化する一対の可動翼片を有する電動チューリップ型役物(普通電動役物)を備え、第2始動入賞口13bを開閉可能に形成されている。可変入賞球装置15が開状態になることによって、遊技球が第2始動入賞口13bに入賞可能になり(始動入賞し易くなり)、遊技者にとって有利な状態になる。可変入賞球装置15が開状態になっている状態では、第1始動入賞口13aよりも第2始動入賞口13bに遊技球が入賞しやすい。また、可変入賞球装置15が閉状態になっている状態では、遊技球は第2始動入賞口13bに入賞しない。なお、可変入賞球装置15が閉状態になっている状態において、入賞はしづらいものの、入賞することは可能である(すなわち、遊技球が入賞しにくい)ように構成されていてもよい。
また、後述するように、第1始動口スイッチ14aと第1入賞確認スイッチ14bの検出結果及び第2始動口スイッチ15aと第2入賞確認スイッチ15bの検出結果にもとづいて異常入賞の発生の有無が判定され、異常入賞の発生を検出したことにもとづいてセキュリティ信号が外部出力される。
以下、第1始動入賞口13aと第2始動入賞口13bとを総称して始動入賞口または始動口ということがある。
可変入賞球装置15が開放状態に制御されているときには可変入賞球装置15に向かう遊技球は第2始動入賞口13bに極めて入賞しやすい。そして、第1始動入賞口13aは可変入賞装置400の直下に設けられているが、可変入賞装置400の下端と第1始動入賞口13aとの間の間隔をさらに狭めたり、第1始動入賞口13aの周辺で釘を密に配置したり、第1始動入賞口13aの周辺での釘配列を、遊技球を第1始動入賞口13aに導きづらくして、第2始動入賞口13bの入賞率の方を第1始動入賞口13aの入賞率よりもより高くするようにしてもよい。
なお、この実施の形態では、図1に示すように、第2始動入賞口13bに対してのみ開閉動作を行う可変入賞球装置15が設けられているが、第1始動入賞口13aおよび第2始動入賞口13bのいずれについても開閉動作を行う可変入賞球装置が設けられている構成であってもよい。
第1始動入賞口13aの下方には、特定遊技状態(大当り状態)においてソレノイド21によって傾動位置となる開状態と垂直位置となる開放状態とに変化する下部大入賞口扉23cを有する扉型役物を備え、横長長方形状に形成された下部大入賞口23bを開閉可能に形成された特別可変入賞球装置20が設けられている。特別可変入賞球装置20は下部大入賞口23bを開閉する手段である。特別可変入賞球装置20に入賞し遊技盤6の背面に導かれた入賞球は、下部カウントスイッチ23(例えば、近接スイッチ)及び第3入賞確認スイッチ23a(例えば、フォトセンサ)によって検出される。
第1特別図柄表示器8aの右側には、普通図柄表示器10が設けられている。普通図柄表示器10は、例えば2つのランプからなる。遊技球がゲート32を通過しゲートスイッチ32aで検出されると、普通図柄表示器10の表示の可変表示が開始される。この実施の形態では、上下のランプ(点灯時に図柄が視認可能になる)が交互に点灯することによって可変表示が行われ、例えば、可変表示の終了時に下側のランプが点灯すれば当りとなる。そして、普通図柄表示器10の下側のランプが点灯して当りである場合に、可変入賞球装置15が所定回数、所定時間だけ開状態になる。すなわち、可変入賞球装置15の状態は、下側のランプが点灯して当りである場合に、遊技者にとって不利な状態から有利な状態(第2始動入賞口13bに遊技球が入賞可能な状態)に変化する。特別図柄保留記憶表示器18の上部には、ゲート32を通過した入賞球数を表示する4つの表示部(例えば、7セグメントLEDのうち4つのセグメント)を有する普通図柄保留記憶表示器41が設けられている。ゲート32への遊技球の通過がある毎に、すなわちゲートスイッチ32aによって遊技球が検出される毎に、普通図柄保留記憶表示器41は点灯する表示部を1増やす。そして、普通図柄表示器10の可変表示が開始される毎に、点灯する表示部を1減らす。
尚、7セグメントLEDからなる普通図柄保留記憶表示器41には、ゲート32を通過した入賞球数を表示する4つの表示部(セグメント)とともに、例えば大当り時における特別可変入賞球装置20の開放回数(大当りラウンド数)を示す2つの表示部(セグメント)、及び遊技状態を示す2つの表示部(セグメント)が設けられているが、これら表示部を普通図柄保留記憶表示部とは別個の表示器にて構成してもよい。また、普通図柄表示器10は、普通図柄と呼ばれる複数種類の識別情報(例えば、「○」および「×」)を可変表示可能なセグメントLED等にて構成してもよい。
遊技領域7には、例えば所定の球受部材によって常に一定の開放状態に保たれる複数の入賞口29a〜29dが設けられ、遊技球の入賞口29a,29bへの入賞は入賞口スイッチ30aによって検出され、遊技球の入賞口29c,29dへの入賞は入賞口スイッチ30bによって検出される。各入賞口29a〜29dは、遊技媒体を受け入れて入賞を許容する領域として遊技盤6に設けられる入賞領域を構成しており、各入賞口29a〜29dの周辺で釘を密に配置するなど、遊技球を第1始動入賞口13aや第2始動入賞口13bに比べて各入賞口29a〜29dに導きづらくして、各入賞口29a〜29dの入賞率を第1始動入賞口13a、第2始動入賞口13bの入賞率に比べて低くしている。なお、第1始動入賞口13a、第2始動入賞口13bや下部大入賞口23bも、遊技媒体を受け入れて入賞を許容する入賞領域を構成する。なお、各入賞口29a〜29dに入賞した遊技球を入賞スイッチで検出する構成に代えて、遊技球が所定領域(例えばゲート)を通過したことを検出スイッチで検出する構成としてもよい。
次に、可変入賞装置400について、図23及び図24にもとづいて説明する。図23は、(a)は可変入賞装置の閉状態を示す正面図であり、(b)は可変入賞装置の開状態を示す正面図である。図24は、(a)は上部球経路からへ下部ステージと誘導された遊技球の流れを示す図であり、(b)は上部球経路から下部球経路へと誘導された遊技球の流れを示す図である。
可変入賞装置400には、可変入賞装置400の向かって右上部位置に、開閉部材となる可動部材としての上部大入賞口扉24cが、摺動変化可能に設けられている。上部大入賞口扉24cは、例えば連係アームといった所定のリンク機構などを介してソレノイド17(図5参照)におけるコイルに内装されたプランジャなどに連結されている。そして、ソレノイド17がオン状態であるときには、上部大入賞口扉24cが、上部大入賞口24bを、第1の状態としての開放状態にする。他方、ソレノイド17がオフ状態であるときには、上部大入賞口扉24cが、上部大入賞口24bを、第2の状態としての閉鎖状態にする。なお、上部大入賞口扉24cは、摺動変化可能に構成されたものに限定されず、例えば回動可能に構成されることにより、上部大入賞口24bを、第1の状態である開放状態と第2の状態である開放状態とに変化させることができるものであればよい。このように、可変入賞装置400は、遊技者にとって有利な第1の状態(開放状態)と遊技者にとって不利な第2の状態(閉鎖状態)とに変化する始動動作を実行することができるように構成されている。
可変入賞装置400の内部には、上部大入賞口24bから進入した遊技球が流下して通過可能な上部球経路406が設けられている。また、可変入賞装置400の左側には、足模型402を備えた人形模型401が設けられている。可変入賞装置400の内部に進入した遊技球は、上部球経路406を通過した後に、例えば特定領域43や通常領域44などといった複数の領域のいずれかに進入した後、遊技盤6の背面に誘導されて可変入賞装置400の外部へと排出される。このとき、特定領域43に進入した遊技球は、特定領域スイッチ43aによって検出される。すなわち、特定領域スイッチ43aは、可変入賞装置400に設けられた複数の領域のうち、特定領域43に進入した遊技球を検出する。本実施の形態では、小当り遊技状態における始動動作で上部大入賞口扉24cにより開放状態となった上部大入賞口24bより可変入賞装置400の内部に進入した遊技球が、特定領域43に進入して特定領域スイッチ43aによって検出されたことに対応して、特定遊技状態としての大当り遊技状態に制御される。
上部大入賞口24bは、可変入賞装置400の内部と外部とを連通させる開口部であり、図23(b)に示すような開放状態であるときに、遊技球を可変入賞装置400の外部から内部に進入させることができる。上部大入賞口24bから可変入賞装置400の内部に進入した遊技球は、上部球経路406への流入口に設けられた上部カウントスイッチ24にて検出された後、該流入口から上部球経路406へ流入する。上部カウントスイッチ24によって遊技球が検出されたことに基づき、所定個数(例えば10個)の遊技球が賞球として払い出されるとともに、第4入賞確認スイッチ24aにより検出される。なお、本実施の形態では、上部カウントスイッチ24にて検出されたことに応じて賞球を付与しているが、本発明はこれに限定されるものではなく、第4入賞確認スイッチ24aや後述する排出口スイッチ45による遊技球の検出に応じて賞球を付与するようにしてもよい。
図23(a)や図24(a)(b)に示すように、上部球経路406の付近には、装飾模型の一例として人形模型401が設けられている。人形模型401には、振分部材となる可動部材の一例として、足模型402が取り付けられている。足模型402は、所定のリンク機構などを介して、ソレノイド18(図5参照)におけるコイルに内装されたプランジャなどに連結されている。なお、ソレノイド18は、人形模型401に取り付けられた口飾り模型などにも連結され、足模型402と連係して動作させるようにしてもよい。
ソレノイド18がオフ状態であるときには、図24(a)に示すように、足模型402が上部球経路406を流下する遊技球には接触しないよう遊技球の経路よりも上方向に保持される。このとき、上部球経路406を流下した遊技球は、足模型402には接触することなく、下部ステージ407へと振分けられるように誘導される。一方、ソレノイド18がオン状態であるときには、図24(b)に示すように、足模型402が下方向に移動して、上部球経路406を流下する遊技球と接触する。このとき、上部球経路406を流下した遊技球は、足模型402に接触して、下部球経路408へと振分けられるように誘導される。
尚、通常領域44に進入した遊技球は、特定領域スイッチ43aによって検出されることなく、可変入賞装置400から遊技盤6の背面側に排出された後に排出口スイッチ45によって検出される。一方、特定領域43に進入した遊技球は、特定領域スイッチ43aによって検出された後、可変入賞装置400から遊技盤6の背面側に排出された後に排出口スイッチ45によって検出される。
可変入賞装置400の入賞空間内において、例えば可変入賞装置400の背面部分などには、演出表示装置9が配置されている。演出表示装置9は、例えば液晶表示器(LCD;)といった、多数の画素(ピクセル)を用いたドットマトリクス方式による画面表示を行うものであればよい。演出表示装置9には、演出画像を表示する表示領域が形成されている。演出表示装置9の表示領域では、第1特別図柄表示器8aや第2特別図柄表示器8bによる特図ゲームにおける特別図柄の可変表示に対応して、例えば3つに分割された演出図柄可変表示部にて、各々が識別可能な複数種類の演出図柄(飾り図柄ともいう)を可変表示するとともに、第1始動入賞口13aに進入した有効進入球数としての第1保留記憶数や第2始動入賞口13bに進入した有効進入球数としての第2保留記憶数を表示する。この演出図柄の可変表示も、開始条件が成立したことに基づいて行われる可変表示ゲームに含まれる。
一例として、演出表示装置9の表示領域には、「左」、「中」、「右」の演出図柄可変表示部が配置され、第1特別図柄表示器8a及び第2特別図柄表示器8bのいずれかによる特図ゲームが実行されることに対応して、各演出図柄可変表示部にて演出図柄の可変表示が開始される。すなわち、第1特別図柄表示器8aと第2特別図柄表示器8bのいずれかによる特別図柄の可変表示が開始されるときには、「左」、「中」、「右」の各演出図柄可変表示部にて演出図柄の可変表示(例えば切換表示やスクロール表示)を開始させ、その後、特図ゲームにおける可変表示結果として確定特別図柄が停止表示されるときに、「左」、「中」、「右」の各演出図柄可変表示部にて演出図柄の可変表示結果となる確定演出図柄が停止表示(導出表示)される。また、「左」、「中」、「右」の各演出図柄可変表示部は、演出表示装置9の表示領域内で移動可能とされ、演出図柄を縮小あるいは拡大して表示することができるようにしてもよい。
演出表示装置9の表示領域における「左」、「中」、「右」の各演出図柄可変表示部では、例えば8種類の図柄(英数字「1」〜「8」あるいは漢数字「一」〜「八」、英文字「A」〜「H」、所定のモチーフに関連する8個のキャラクタ画像、数字や文字あるいは記号とキャラクタ画像との組み合せなど。なお、キャラクタ画像は、例えば人物や動物、これら以外の物体、もしくは、文字などの記号、あるいは、その他の任意の図形を示す演出画像であればよい)が、演出図柄として変動可能に表示される。演出図柄のそれぞれには、対応する図柄番号が付されている。例えば、「1」〜「8」を示す英数字のそれぞれに対して、「1」〜「8」の図柄番号が付されていればよい。
演出表示装置9の表示領域において演出図柄の可変表示が開始されると、「左」、「中」、「右」の各演出図柄可変表示部では、例えば図柄番号が小さいものから大きいものへと切換表示やスクロール表示が行われ、図柄番号が最大の「8」である演出図柄が表示されると、次に図柄番号が最小の「1」である演出図柄が表示される。あるいは、図柄番号が大きいものから小さいものへと切換表示やスクロール表示を行って、図柄番号が最小の「1」である演出図柄が表示されると、次に図柄番号が最大の「8」である演出図柄が表示されてもよい。演出図柄の可変表示中には、例えば可変表示結果が「大当り」や「小当り」となることを予告する予告演出画像といった、各種の演出表示を行うための画像が、演出表示装置9の表示領域内において表示されるようにしてもよい。
遊技領域7の左右周辺には、遊技中に点滅表示される装飾ランプ25aが設けられた装飾部材25が設けられ、下部には、入賞しなかった遊技球を吸収するアウト口26がある。また、遊技領域7の外側の左右上下部には、効果音を発する2つのスピーカ27が設けられている。遊技領域7の外周には、天枠ランプ28a、左枠ランプ28bおよび右枠ランプ28cが設けられている。さらに、遊技領域7における各構造物(大入賞口等)の周囲には装飾LEDが設置されている。天枠ランプ28a、左枠ランプ28bおよび右枠ランプ28cおよび装飾用LEDは、遊技機に設けられている装飾発光体の一例である。なお、この実施の形態では、遊技機に設けられている発光体をランプやLEDを用いて構成する場合を示しているが、この実施の形態で示した態様にかぎらず、例えば、遊技機に設けられている発光体を全てLEDを用いて構成するようにしてもよい。
なお、図1および図2では、図示を省略しているが、左枠ランプ28bの近傍に、賞球払出中に点灯する賞球ランプが設けられ、天枠ランプ28aの近傍に、補給球が切れたときに点灯する球切れランプが設けられている。なお、賞球ランプおよび球切れランプは、賞球の払出中である場合や球切れが検出された場合に、演出制御基板に搭載された演出制御用マイクロコンピュータによって点灯制御される。さらに、プリペイドカードが挿入されることによって球貸しを可能にするプリペイドカードユニット(以下、「カードユニット」という。)50が、パチンコ遊技機1に隣接して設置されている。
カードユニット50には、例えば、使用可能状態であるか否かを示す使用可表示ランプ、カードユニットがいずれの側のパチンコ遊技機1に対応しているのかを示す連結台方向表示器、カードユニット内にカードが投入されていることを示すカード投入表示ランプ、記録媒体としてのカードが挿入されるカード挿入口、およびカード挿入口の背面に設けられているカードリーダライタの機構を点検する場合にカードユニットを解放するためのカードユニット錠が設けられている。
遊技者の操作により打球発射装置から発射された遊技球は、打球レールを通って遊技領域7に入り、その後、遊技領域7を下りてくる。遊技球が第1始動入賞口13aに入り第1始動口スイッチ14aで検出されると、第1特別図柄の可変表示を開始できる状態であれば(例えば、特別図柄の可変表示が終了し、第1の開始条件が成立したこと)、第1特別図柄表示器8aにおいて第1特別図柄の可変表示(変動)が開始されるとともに、演出表示装置9において演出図柄(飾り図柄)の可変表示が開始される。すなわち、第1特別図柄および演出図柄の可変表示は、第1始動入賞口13aへの入賞に対応する。第1特別図柄の可変表示を開始できる状態でなければ、第1保留記憶数が上限値に達していないことを条件として、第1保留記憶数を1増やす。
遊技球が第2始動入賞口13bに入り第2始動口スイッチ15aで検出されると、第2特別図柄の可変表示を開始できる状態であれば(例えば、特別図柄の可変表示が終了し、第2の開始条件が成立したこと)、第2特別図柄表示器8bにおいて第2特別図柄の可変表示(変動)が開始されるとともに、演出表示装置9において演出図柄(飾り図柄)の可変表示が開始される。すなわち、第2特別図柄および演出図柄の可変表示は、第2始動入賞口13bへの入賞に対応する。第2特別図柄の可変表示を開始できる状態でなければ、第2保留記憶数が上限値に達していないことを条件として、第2保留記憶数を1増やす。
第1特別図柄表示器8aにおける第1特別図柄の可変表示及び第2特別図柄表示器8bにおける第2特別図柄の可変表示は、一定時間が経過したときに停止する。停止時の特別図柄(停止図柄)が大当り図柄(特定表示結果)であると、大当り遊技状態に移行する。すなわち、特別可変入賞球装置20が、一定時間経過するまで、または、所定個数(例えば10個)の遊技球が入賞するまで開放する。そして、特別可変入賞球装置20の開放は、決定されたラウンド数の最後のラウンドまで(例えば、15ラウンドまで)許容される。また、停止時の特別図柄(停止図柄)が小当り図柄(小当り表示結果)であると、小当り遊技状態に移行する。すなわち、可変入賞装置400が、一定時間経過するまで開放する。
遊技球がゲート32を通過すると、普通図柄表示器10において普通図柄が可変表示される状態になる。また、普通図柄表示器10における停止図柄が所定の図柄(当り図柄)である場合に、可変入賞球装置15が所定時間だけ開状態になる。
第1特別図柄表示器8aによる特図ゲーム(第1特図ゲームとも言う)は、第1始動入賞口13aに遊技球が進入したことといった、第1特別図柄表示器8aにて特別図柄の可変表示を実行するための第1始動条件が成立した後に、例えば前回の特図ゲームが終了したことや大当り遊技状態が終了したことといった、特別図柄の可変表示を開始するための第1開始条件が成立したことに基づいて開始される。第2特別図柄表示器8bによる特図ゲーム(第2特図ゲームとも言う)は、第2始動入賞口13bに遊技球が進入したことといった、第2特別図柄表示器8bにて特別図柄の可変表示を実行するための第2始動条件が成立した後に、例えば前回の特図ゲームが終了したことや大当り遊技状態や小当り遊技状態が終了したことといった、特別図柄の可変表示を開始するための第2開始条件が成立したことに基づいて開始される。このように、第1特別図柄表示器8aは、第1始動条件が成立した後に第1開始条件が成立したことに基づいて、第1の識別情報となる第1特別図柄を可変表示する第1可変表示手段を構成する。また、第2特別図柄表示器8bは、第2始動条件が成立した後に第2開始条件が成立したことに基づいて、第2の識別情報となる第2特別図柄を可変表示する第2可変表示手段を構成する。尚、本実施の形態では、例えば第1始動条件と第2始動条件の双方が成立した後に、それぞれに対応する第1開始条件と第2開始条件とがいずれも成立していない場合のように、第1開始条件と第2開始条件の双方を成立させることができる場合に、第2開始条件の方を第1開始条件よりも優先して成立させる。また、入賞とは、入賞口などのあらかじめ入賞領域として定められている領域に遊技球が入ったことである。また、表示結果を導出表示するとは、図柄(識別情報の例)を最終的に停止表示させることである。
第1特別図柄表示器8aや第2特別図柄表示器8bによる特図ゲームでは、特別図柄の可変表示を開始させた後、所定時間が経過すると、特別図柄の可変表示結果となる確定特別図柄を停止表示(導出表示)する。このとき、確定特別図柄として特定の特別図柄(大当り図柄)が停止表示されれば、特定表示結果としての「大当り」となり、大当り図柄とは異なる所定の特別図柄(小当り図柄)が停止表示されれば、所定表示結果としての「小当り」となり、大当り図柄や小当り図柄以外の特別図柄が停止表示されれば「はずれ」となる。特図ゲームでの可変表示結果が「大当り」になると、特定遊技状態としての大当り遊技状態に制御される。また、特図ゲームでの可変表示結果が「小当り」になると、大当り遊技状態とは異なる小当り遊技状態に制御される。本実施の形態におけるパチンコ遊技機1では、一例として、第1特別図柄表示器8aにおいては「1」、「2」、「3」、「4」、「5」を示す数字を第1〜第5大当りの図柄とし、「−」を示す記号をはずれ図柄としている。また、第2特別図柄表示器8bにおいては、「7」を示す数字を大当り図柄とし、「1」、「2」、「3」、「4」、「5」を示す数字を小当り図柄としている。尚、本実施の形態では、第2特別図柄表示器8bでは、必ず大当りまたは小当りとなりはずれが存在しないためにはずれ図柄を設けていないが、はずれを設ける場合には、第1特別図柄表示器8aと同様に、「−」を示す記号をはずれ図柄とすればよい。第1特別図柄表示器8aによる第1特図ゲームにおいて、特別図柄の可変表示結果である確定特別図柄として停止表示される大当り図柄は第1特定表示結果となる。また、第2特別図柄表示器8bによる第2特図ゲームにおいて、特別図柄の可変表示結果である確定特別図柄として停止表示される大当り図柄は第2特定表示結果となり、小当り図柄は第2所定表示結果となる。
演出表示装置9の表示領域では、第1特別図柄表示器8aや第2特別図柄表示器8bによる特図ゲームにて特別図柄の可変表示が行われることに対応して、演出図柄の可変表示が行われる。そして、特図ゲームでの確定特別図柄が大当り図柄となる場合には、演出図柄の可変表示結果として、例えば「左」、「中」、「右」の各演出図柄可変表示部にて所定の大当り組み合せを構成する確定演出図柄が停止表示される。このような大当り組み合せの確定演出図柄には、例えば「左」、「中」、「右」の各演出図柄可変表示部にて、「7」を示す英数字といった、同一の演出図柄が揃って導出表示されるものが含まれていればよい。また、第2特図ゲームでの確定特別図柄が小当り図柄となる場合には、演出図柄の可変表示結果として、例えば「左」、「中」、「右」の各演出図柄可変表示部にて所定の小当り組み合せを構成する確定演出図柄が停止表示される。このような小当り組み合せの確定演出図柄には、例えば「左」、「中」、「右」の演出図柄可変表示部にそれぞれ「1」、「3」、「5」を示す英数字を停止表示させる場合のように、予め定められた組み合せの演出図柄が導出表示されるものが含まれていればよい。
第2特別図柄表示器8bによる特図ゲームでの確定特別図柄が小当り図柄となったことに基づく小当り遊技状態では、例えばソレノイド17をオフ状態からオン状態に切り換えることなどにより、可変入賞装置400における上部大入賞口扉24cを摺動させて、上部大入賞口24bを所定の始動態様で閉鎖状態から開放状態に変化させる。その後、所定時間が経過すると、例えばソレノイド17をオン状態からオフ状態に切り換えることなどにより、上部大入賞口24bを閉鎖状態に戻す。このような小当り遊技状態で行われる上部大入賞口24bの開閉動作を、始動動作という。例えば、小当り遊技状態では上部大入賞口24bを開閉する始動動作が、1回、あるいは2回といった複数回行われる。このように、始動動作は、第2始動入賞口13bに進入した遊技球が第2始動口スイッチ15aによって検出されたことに基づき、第2特別図柄表示器8bによる特図ゲームでの可変表示結果が第2所定表示結果である「小当り」となったことに対応して、可変入賞装置400における上部大入賞口24bを、遊技者にとって不利な第2の状態である閉鎖状態から遊技者にとって有利な第1の状態である開放状態とした後に、再び第2の状態である閉鎖状態へと変化させる。
始動動作にて開放状態となった上部大入賞口24bより可変入賞装置400の内部に進入した遊技球が特定領域43に進入して特定領域スイッチ43aによって検出された場合には、大当り遊技状態(第7大当り)となる。このように、第2特別図柄表示器8bによる特図ゲームでの確定特別図柄が小当り図柄となった場合には、始動動作にて開放状態となった上部大入賞口24bより可変入賞装置400の内部に進入した遊技球が特定領域スイッチ43aによって検出されたことに対応して、大当り遊技状態とする制御が行われる。他方、第1特別図柄表示器8aや第2特別図柄表示器8bによる特図ゲームでの確定特別図柄が大当り図柄となった場合には、特定領域43に遊技球が進入したか否かに関わりなく、大当り遊技状態(第1〜第6大当り)とする制御が行われる。この場合には、可変入賞装置400に設けられた上部大入賞口24bを開放状態とすることなく、特別可変入賞球装置20に設けられた下部大入賞口扉23cにより下部大入賞口23bを開放状態とする特定動作が開始される。
大当り遊技状態では、ラウンド遊技として予め定められた動作単位の特定動作が実行可能となり、特別可変入賞球装置20に形成された下部大入賞口23bが、第2の状態としての閉鎖状態から第1の状態としての開放状態となる。一例として、特別可変入賞球装置20では、下部大入賞口扉23cが下部大入賞口23bを閉鎖状態から開放状態へと変化させた後、所定時間(例えば29秒)が経過したこと、あるいは所定個数(例えば10個)の入賞球が発生したことに応じて、下部大入賞口23bを開放状態から閉鎖状態へと変化させるまでの動作単位が、1回のラウンド遊技として定められている。また、大当り遊技状態にてラウンド遊技を繰り返し実行可能(継続可能)な最大継続回数としてのラウンド最大値は「15」に決定される(小当りを経由した第7大当りの場合には、実質的には後述するように14回)。なお、本実施の形態では、全ての大当り種別におけるラウンド最大値が15とされているが、大当りの種別に応じてラウンド最大値を異ならせてもよい。
大当り遊技状態では、ラウンド最大値に達した最終のラウンド遊技以外の各ラウンド遊技の終了後に、次のラウンド遊技が実行可能となる。このときには、ラウンド遊技の実行中に下部カウントスイッチ23によって遊技球が検出されたこと、あるいは、継続入賞検出器によってV入賞検出がなされたことを、次のラウンド遊技が実行可能となるための条件(ラウンド継続条件)としてもよい。他方、ラウンド最大値に達するまでは、下部カウントスイッチ23や継続入賞検出器によって遊技球が検出されたか否かに関わりなく、ラウンド遊技の終了後に次のラウンド遊技が実行可能となるようにしてもよい。
大当り遊技状態が終了した後には、大当り種別に応じて、通常遊技状態または大当り遊技状態とは異なり、通常遊技状態に比べて遊技者にとって有利な有利状態としての時短状態(有利状態)に制御される。なお、通常遊技状態とは、大当り遊技状態等の特定遊技状態や時短(有利)状態等の有利状態及び小当り遊技状態以外の遊技状態のことであり、普図ゲームにおける可変表示結果が「普図当り」となる確率が、パチンコ遊技機1の初期設定状態(例えばシステムリセットが行われた場合のように、電源投入後に所定の復帰処理を実行しなかったとき)と同一に制御されている。
時短(有利)状態では、例えば普図ゲームにおける可変表示結果が「普図当り」となる確率が通常遊技状態よりも向上することや、普図ゲームにおける可変表示結果が「普図当り」となったときに第2始動入賞口13bにおける可動翼片が第2始動入賞口13bを第1誘導状態としての拡大開放状態とする期間や回数が通常遊技状態よりも増大すること、普図ゲームにて普通図柄の可変表示を開始してから可変表示結果が停止表示されるまでの可変表示時間が通常遊技状態よりも短くなること、これらのいずれかを組み合せること、あるいは、これらの全てを組み合せることなどにより、第2特別図柄表示器8bによる特図ゲームを実行するための第2始動条件が通常遊技状態に比べて成立しやすくなればよい。本実施の形態においては、時短(有利)状態では、「普図当り」となる確率は通常遊技状態と同じとされているものの、普図ゲームの可変表示時間が通常遊技状態(30秒)よりも短く(1秒)なるとともに、可動翼片が拡大開放状態とする期間が0.1秒から5秒に延長される時短制御が実施されることで、第2始動入賞口13bに入賞しやすくなることにより、遊技者に有利とされる。
本実施の形態では、大当り遊技状態の終了後に時短(有利)状態とすることが決定された場合、第2特別図柄表示器8bによる特図ゲームが100回となる期間において上述した時短状態に制御される。第1特別図柄表示器8aでは、大当り遊技状態に制御された際の時短(有利)状態の有無並びに発生した大当りの種別(第1〜第5)に基づいて、大当り遊技状態の終了後に有利状態とするか否かが決定されて、時短(有利)状態とすることに決定された場合には時短(有利)状態の制御が開始される。また、第2特別図柄表示器8bでは、発生した大当りの種別(第6)や、小当り遊技状態に制御されて特定領域43に遊技球が流入したことにより大当り遊技状態に制御されたときには、当選した小当りの種別(第1〜5)に基づいて、大当り遊技状態の終了後に時短(有利)状態とするか否かが決定されて、時短(有利)状態とすることに決定された場合には時短(有利)状態の制御が開始される。これら開始された時短(有利)状態は、時短(有利)状態であるときに大当り遊技状態に制御されたこと、あるいは、第2特別図柄表示器8bによる特図ゲームが上限回数(例えば、100回)に到達することに対応して、時短(有利)状態の制御が終了する。
次に、パチンコ遊技機1の背面の構造について図2を参照して説明する。図2は、遊技機を背面から見た背面図である。図2に示すように、パチンコ遊技機1背面側では、演出表示装置9を制御する演出制御用マイクロコンピュータ100が搭載された演出制御基板80を含む変動表示制御ユニット、遊技制御用マイクロコンピュータ等が搭載された遊技制御基板(主基板)31、音声出力基板70、ランプドライバ基板35、および球払出制御を行なう払出制御用マイクロコンピュータ等が搭載された払出制御基板37等の各種基板が設置されている。なお、遊技制御基板31は基板収納ケース200に収納されている。
さらに、パチンコ遊技機1背面側には、DC30V、DC21V、DC12VおよびDC5V等の各種電源電圧を作成する電源回路が搭載された電源基板910やタッチセンサ基板(図示略)が設けられている。電源基板910には、パチンコ遊技機1における遊技制御基板31および各電気部品制御基板(演出制御基板80および払出制御基板37)やパチンコ遊技機1に設けられている各電気部品(電力が供給されることによって動作する部品)への電力供給を実行あるいは遮断するための電力供給許可手段としての電源スイッチ、遊技制御基板31の遊技制御用マイクロコンピュータ560のRAM55をクリアするためのクリアスイッチが設けられている。さらに、電源スイッチの内側(基板内部側)には、交換可能なヒューズが設けられている。
なお、この実施の形態では、主基板31は遊技盤側に設けられ、払出制御基板37は遊技枠側に設けられている。このような構成であっても、後述するように、主基板31と払出制御基板37との間の通信をシリアル通信で行うことによって、遊技盤を交換する際の配線の取り回しを容易にしている。
なお、各制御基板には、制御用マイクロコンピュータを含む制御手段が搭載されている。制御手段は、遊技制御手段等からのコマンドとしての指令信号(制御信号)に従って遊技機に設けられている電気部品(遊技用装置:球払出装置97、演出表示装置9、ランプやLEDなどの発光体、スピーカ27等)を制御する。以下、主基板31を制御基板に含めて説明を行うことがある。その場合には、制御基板に搭載される制御手段は、遊技制御手段と、遊技制御手段等からの指令信号に従って遊技機に設けられている電気部品を制御する手段とのそれぞれを指す。また、主基板31以外のマイクロコンピュータが搭載された基板をサブ基板ということがある。なお、球払出装置97は、遊技球を誘導する通路とステッピングモータ等により駆動されるスプロケット等によって誘導された遊技球を上皿や下皿に払い出すための装置であって、払い出された賞球や貸し球をカウントする払出個数カウントスイッチ301(図6参照)等もユニットの一部として構成されている。なお、この実施の形態では、払出検出手段は、払出個数カウントスイッチ301によって実現され、球払出装置97から実際に賞球や貸し球が払い出されたことを検出する機能を備える。この場合、払出個数カウントスイッチ301は、賞球や貸し球の払い出しを1球検出するごとに検出信号を出力する。
パチンコ遊技機1背面において、上方には、各種情報をパチンコ遊技機1の外部に出力するための各端子を備えたターミナル基板160が設置されている。ターミナル基板160には、例えば、大当り遊技状態の発生を示す大当り情報等の情報出力信号(図58に示す始動口信号、図柄確定回数1信号、大当り1信号、大当り2信号、大当り3信号、時短信号、セキュリティ信号、賞球信号1、遊技機エラー状態信号)を外部出力するための情報出力端子が設けられている。なお、遊技機エラー状態信号に関しては必ずしもパチンコ遊技機1の外部に出力しなくてもよく、該情報出力端子から、この遊技機エラー状態信号の替わりに遊技枠が開放状態であることを示すドア開放信号等を出力するようにしてもよい。
貯留タンク38に貯留された遊技球は誘導レール(図示せず)を通り、カーブ樋を経て払出ケース40Aで覆われた球払出装置97に至る。球払出装置97の上方には、遊技媒体切れ検出手段としての球切れスイッチ187が設けられている。球切れスイッチ187が球切れを検出すると、球払出装置97の払出動作が停止する。球切れスイッチ187が遊技球の不足を検知すると、遊技機設置島に設けられている補給機構からパチンコ遊技機1に対して遊技球の補給が行なわれる。
入賞にもとづく景品としての遊技球や球貸し要求にもとづく遊技球が多数払出されて打球供給皿3が満杯になると、遊技球は、余剰球誘導通路を経て余剰球受皿4に導かれる。さらに遊技球が払出されると、感知レバー(図示せず)が貯留状態検出手段としての満タンスイッチを押圧して、貯留状態検出手段としての満タンスイッチがオンする。その状態では、球払出装置内の払出モータの回転が停止して球払出装置の動作が停止するとともに打球発射装置の駆動も停止する。
図3は、(a)は第1始動入賞口、(b)は第2始動入賞口、(c)は下部大入賞口、(d)は上部大入賞口内の断面構造の具体例を示す説明図である。図3(a)に示すように、第1始動入賞口13a内には、始動入賞口内に入賞した遊技球を検出可能な2つのスイッチ(第1始動口スイッチ14aと第1入賞確認スイッチ14b)が設けられている。この実施の形態では、第1始動入賞口13a内で、第1始動口スイッチ14aと第1入賞確認スイッチ14bとが上下に配置されている(本例では、第1始動口スイッチ14aが上側に配置され、第1入賞確認スイッチ14bが下側に配置されている)。従って、この実施の形態では、第1始動入賞口13a内に入賞した遊技球は、遊技盤6の背面に導かれ、まず第1始動口スイッチ14aで検出され、次いで第1入賞確認スイッチ14bで検出される。
また、図3(b)に示すように、第2始動入賞口13b内には、始動入賞口内に入賞した遊技球を検出可能な2つのスイッチ(第2始動口スイッチ15aと第2入賞確認スイッチ15b)が設けられている。この実施の形態では、第2始動入賞口13b内で、第2始動口スイッチ15aと第2入賞確認スイッチ15bとが上下に配置されている(本例では、第2始動口スイッチ15aが上側に配置され、第2入賞確認スイッチ15bが下側に配置されている)。従って、この実施の形態では、第2始動入賞口13b内に入賞した遊技球は、遊技盤6の背面に導かれ、まず第2始動口スイッチ15aで検出され、次いで第2入賞確認スイッチ15bで検出される。
また、図3(c)に示すように、下部大入賞口23b内には、下部大入賞口23b内に入賞した遊技球を検出可能な2つのスイッチ(下部カウントスイッチ23と第3入賞確認スイッチ23a)が設けられている。この実施の形態では、下部大入賞口23b内で、下部カウントスイッチ23と第3入賞確認スイッチ23aとが上下に配置されている(本例では、下部カウントスイッチ23が上側に配置され、第3入賞確認スイッチ23aが下側に配置されている)。従って、この実施の形態では、下部大入賞口23b内に入賞した遊技球は、遊技盤6の背面に導かれ、まず下部カウントスイッチ23で検出され、次いで第3入賞確認スイッチ23aで検出される。
また、図3(d)に示すように、上部大入賞口24b内には、上部大入賞口24b内に入賞した遊技球を検出可能な2つのスイッチ(上部カウントスイッチ24と第4入賞確認スイッチ24a)が設けられている。この実施の形態では、上部大入賞口24b内で、上部カウントスイッチ24と第4入賞確認スイッチ24aとが上下に配置されている(本例では、上部カウントスイッチ24が上側に配置され、第4入賞確認スイッチ24aが下側に配置されている)。従って、この実施の形態では、上部大入賞口24b内に入賞した遊技球は、まず上部カウントスイッチ24で検出され、次いで第4入賞確認スイッチ24aで検出される。
また、第1始動口スイッチ14aと第1入賞確認スイッチ14b、第2始動口スイッチ15a、と第2入賞確認スイッチ15b、下部カウントスイッチ23と第3入賞確認スイッチ23a、上部カウントスイッチ24と第4入賞確認スイッチ24aとして、それぞれ異なる検出方式のスイッチが用いられる。この実施の形態では、第1始動口スイッチ14a、第2始動口スイッチ15a、下部カウントスイッチ23、上部カウントスイッチ24として近接スイッチを用い、第1入賞確認スイッチ14b、第2入賞確認スイッチ15b、第3入賞確認スイッチ23a、第4入賞確認スイッチ24aとしてフォトセンサを用いる場合を示している。
また、この実施の形態では、後述するように、第1始動口スイッチ14aによって遊技球が検出されたことにもとづいて、第1特別図柄の変動表示が開始され、賞球払出が実行される。また、第2始動口スイッチ15aによって遊技球が検出されたことにもとづいて、第2特別図柄の変動表示が開始され、賞球払出が実行される。また、下部カウントスイッチ23、上部カウントスイッチ24によって遊技球が検出されたことにもとづいて、賞球払出が実行される。また、後述するように、第1始動口スイッチ14aによる検出結果に加えて第1入賞確認スイッチ14bの検出結果にもとづいて異常入賞の発生の有無が判定され、異常入賞の発生を検出したことにもとづいてセキュリティ信号が外部出力される。また、第2始動口スイッチ15aによる検出結果に加えて第2入賞確認スイッチ15bの検出結果にもとづいて異常入賞の発生の有無が判定され、異常入賞の発生を検出したことにもとづいてセキュリティ信号が外部出力される。また、下部カウントスイッチ23による検出結果に加えて第3入賞確認スイッチ23aの検出結果にもとづいて異常入賞の発生の有無が判定され、異常入賞の発生を検出したことにもとづいてセキュリティ信号が外部出力される。また、上部カウントスイッチ24による検出結果に加えて第4入賞確認スイッチ24aの検出結果にもとづいて異常入賞の発生の有無が判定され、異常入賞の発生を検出したことにもとづいてセキュリティ信号が外部出力される。従って、この実施の形態では、第1入賞確認スイッチ14b、第2入賞確認スイッチ15b、第3入賞確認スイッチ23a、第4入賞確認スイッチ24aは、異常入賞の判定のみに用いられる。
このようにこの実施の形態では、第1始動入賞口13aには、第1始動口スイッチ14aに加えて第1入賞確認スイッチ14bを、第2始動入賞口13bには、第2始動口スイッチ15aに加えて第2入賞確認スイッチ15bを、下部大入賞口23bには、下部カウントスイッチ23に加えて第3入賞確認スイッチ23aを、上部大入賞口24bには、上部カウントスイッチ24に加えて第4入賞確認スイッチ24aを設けている。そして第1始動入賞口13a、第2始動入賞口13b、下部カウントスイッチ23及び上部カウントスイッチ24は近接スイッチを用いて構成し、第1入賞確認スイッチ14b、第2入賞確認スイッチ15b、第3入賞確認スイッチ23a及び第4入賞確認スイッチ24aはフォトセンサを用いているが、第1始動口スイッチ14aと第1入賞確認スイッチ14b、第2始動口スイッチ15aと第2入賞確認スイッチ15b、下部カウントスイッチ23と第3入賞確認スイッチ23a、上部カウントスイッチ24と第4入賞確認スイッチ24aの検出方式は、この実施の形態で示したものにかぎらず、例えば、第1,2始動口スイッチ14a,15a及び下部カウントスイッチ23、上部カウントスイッチ24と、第1〜4入賞確認スイッチ14b、15b、23a、24aとで異なる検出方式であれば、逆に第1,2始動口スイッチ14a,15a及び下部カウントスイッチ23、上部カウントスイッチ24としてフォトセンサを用い、第1〜4入賞確認スイッチ14b、15b、23a、24aとして近接スイッチを用いてもよい。この場合、フォトセンサである第1,2始動口スイッチ14a,15a及び下部カウントスイッチ23、上部カウントスイッチ24の検出結果にもとづいて特別図柄の変動表示や賞球払出処理が実行され、近接スイッチである第1〜4入賞確認スイッチ14b、15b、23a、24aの検出結果は、第1,2始動口スイッチ14a,15a及び下部カウントスイッチ23、上部カウントスイッチ24の異常入賞の判定のみに用いられることになる。また、例えば、電磁式のスイッチである近接スイッチや光学式のフォトセンサに代えて、第1,2始動口スイッチ14a,15a及び下部カウントスイッチ23、上部カウントスイッチ24または第1〜4入賞確認スイッチ14b、15b、23a、24aとして、機械式のスイッチ(マイクロスイッチなど)を用いてもよい。
図4は、遊技球を検出可能な検出手段の方式を説明するための回路図である。なお、図4においては第1始動口スイッチ14a及び第1入賞確認スイッチ14bを一例として説明するが、第2始動口スイッチ15a及び第2入賞確認スイッチ15b、下部カウントスイッチ23及び第3入賞確認スイッチ23a、上部カウントスイッチ24及び第4入賞確認スイッチ24aについても第1始動口スイッチ14a及び第1入賞確認スイッチ14bと同様であるため、ここでの詳細な説明は省略する。
また、この実施の形態では、特別図柄の変動表示や賞球払出処理の実行の契機となる第1,2始動口スイッチ14a,15a及び下部カウントスイッチ23、上部カウントスイッチ24は、異常入賞の判定に用いられる第1〜4入賞確認スイッチ14b、15b、23a、24bよりも上流側に設けられていたが、異常入賞の判定に用いられるスイッチの下流側に設けてもよい。
図4(A)には、近接スイッチである第1始動口スイッチ14a(第2始動口スイッチ15a、下部カウントスイッチ23、上部カウントスイッチ24)が示されている。第1始動口スイッチ14a(第2始動口スイッチ15a、下部カウントスイッチ23、上部カウントスイッチ24)の一方の端子には、電源基板910から+12V電源電圧が供給されている。第1始動口スイッチ14aの他方の端子の電圧レベルである検出信号は、主基板31に入力される。主基板31において、検出信号は、入力ドライバ回路から遊技制御用マイクロコンピュータの入力ポートに入力される。また、第1始動口スイッチ14aの出力側には、一端が接地されている抵抗RとコンデンサCが接続されている。
近接スイッチである第1始動口スイッチ14aに設けられている穴を金属の遊技球が通過するとコイルLに逆起電力が生じ、コイルLの等価的な抵抗値が極めて大きくなる。従って、第1始動口スイッチ14aの出力は、0Vに近いローレベルになる。すなわち、検出信号は、ローレベルである。第1始動口スイッチ14aに設けられている穴を金属の遊技球が通過していない場合には、第1始動口スイッチ14aの出力は、+12VがコイルLと抵抗Rの抵抗値で分圧された値であり、ハイレベルであるとみなされるしきい値レベルを越える。すなわち、検出信号は、ハイレベルである。従って、この実施の形態では、遊技制御用マイクロコンピュータは、第1始動口スイッチ14aからの出力がハイレベルであれば第1始動口スイッチ14aがオフ状態であると判断することができ、第1始動口スイッチ14aからの出力がローレベルであれば第1始動口スイッチ14aがオン状態であると判断することができる(すなわち、第1始動口スイッチ14aの出力は負論理となっている)。なお、検出信号のレベルを入力ドライバ回路で論理反転してから遊技制御用マイクロコンピュータ560に入力するように構成してもよい。
図4(B)には、フォトセンサである第1入賞確認スイッチ14b(第2入賞確認スイッチ15b、第3入賞確認スイッチ23a、第4入賞確認スイッチ24a)が示されている。図4(B)に示すフォトセンサは、発光する発光ダイオード(LED)341と、受光して電流を出力するフォトトランジスタ342とで構成されている。発光ダイオード341およびフォトトランジスタ342の近傍を遊技球が通過すると、遊技球が反射した発光ダイオード341からの光をフォトトランジスタ342が受光して出力側に電流を流す。なお、この場合、フォトトランジスタ342のコレクタ端子からエミッタ端子の向きに電流が流れることにより、フォトセンサの検出信号は、近接スイッチと同様に負論理である。フォトセンサの出力側は主基板31に接続され、主基板31において、フォトセンサの検出信号は、入力ドライバ回路から遊技制御用マイクロコンピュータの入力ポートに入力される。フォトセンサの出力側(具体的には、フォトトランジスタ342の出力側)に電流が流れると、入力ドライバ回路は、ハイレベルの検出信号を遊技制御用マイクロコンピュータに出力する。なお、近接スイッチと同様に、検出信号のレベルを入力ドライバ回路で論理反転してから遊技制御用マイクロコンピュータ560に入力するように構成してもよい。
遊技制御用マイクロコンピュータは、入力ドライバ回路からの検出信号がローレベルである場合に、遊技球がフォトセンサを通過したと判定することができる。
なお、この実施の形態では、フォトセンサとして反射型のフォトセンサが用いられるが、図4(C)における上段に示すように、発光素子(LED341)と受光素子(フォトトランジスタ342)とを入賞球経路を挟むように対向させて設置し、遊技球が発光素子からの光を遮ることによって受光素子が光を検出しなくなることによって、発光素子と受光素子との間を通過した遊技球を検出する透過型のフォトセンサを用いてもよい。透過型のフォトセンサを用いる場合に、図4(C)における下段に示すように、発光素子の光軸(図4(C)において黒丸で例示されている。)が、遊技球経路(入賞球経路)を通過する遊技球の中央部からずれるように、発光素子および受光素子を設置することが好ましい。光軸が遊技球の中央部に相当するように設置する場合に比べて、連続して通過する2つの遊技球の間隔が相対的に広い部分(図4(C)における「空隙」の部分)において遊技球を検知することができ、2つの遊技球を別個に検出しやすいからである。同様の理由で、図4(B)に例示する反射型のフォトセンサを用いる場合にも、発光素子からの光の反射点が遊技球の中央部からずれるように、発光素子および受光素子を設置することが好ましい。
図5は、主基板(遊技制御基板)31における回路構成の一例を示すブロック図である。なお、図5には、払出制御基板37および演出制御基板80等も示されている。主基板31には、プログラムに従ってパチンコ遊技機1を制御する遊技制御用マイクロコンピュータ(遊技制御手段に相当)560が搭載されている。遊技制御用マイクロコンピュータ560は、ゲーム制御(遊技進行制御)用のプログラム等を記憶するROM54、ワークメモリとして使用される記憶手段としてのRAM55、プログラムに従って制御動作を行うCPU56およびI/Oポート部57を含む。この実施の形態では、ROM54およびRAM55は遊技制御用マイクロコンピュータ560に内蔵されている。すなわち、遊技制御用マイクロコンピュータ560は、1チップマイクロコンピュータである。1チップマイクロコンピュータには、少なくともRAM55が内蔵されていればよく、ROM54は外付けであっても内蔵されていてもよい。また、I/Oポート部57は、外付けであってもよい。
なお、遊技制御用マイクロコンピュータ560においてCPU56がROM54に格納されているプログラムに従って制御を実行するので、以下、遊技制御用マイクロコンピュータ560(またはCPU56)が実行する(または、処理を行う)ということは、具体的には、CPU56がプログラムに従って制御を実行することである。このことは、主基板31以外の他の基板に搭載されているマイクロコンピュータについても同様である。
また、遊技制御用マイクロコンピュータ560には、乱数回路503が内蔵されている。乱数回路503は、特別図柄の可変表示の表示結果により大当りとするか否か判定するための判定用の乱数を発生するために用いられるハードウェア回路である。乱数回路503は、初期値(例えば、0)と上限値(例えば、65535)とが設定された数値範囲内で、数値データを、設定された更新規則に従って更新し、ランダムなタイミングで発生する始動入賞時が数値データの読出(抽出)時であることにもとづいて、読出される数値データが乱数値となる乱数発生機能を有する。
乱数回路503は、数値データの更新範囲の選択設定機能(初期値の選択設定機能、および、上限値の選択設定機能)、数値データの更新規則の選択設定機能、および数値データの更新規則の選択切換え機能等の各種の機能を有する。このような機能によって、生成する乱数のランダム性を向上させることができる。
また、遊技制御用マイクロコンピュータ560は、乱数回路503が更新する数値データの初期値を設定する機能を有している。例えば、ROM54等の所定の記憶領域に記憶された遊技制御用マイクロコンピュータ560のIDナンバ(遊技制御用マイクロコンピュータ560の各製品ごとに異なる数値で付与されたIDナンバ)を用いて所定の演算を行なって得られた数値データを、乱数回路503が更新する数値データの初期値として設定する。そのような処理を行うことによって、乱数回路503が発生する乱数のランダム性をより向上させることができる。
遊技制御用マイクロコンピュータ560は、第1始動口スイッチ14aまたは第2始動口スイッチ15aへの始動入賞が生じたときに乱数回路503から数値データをランダムRとして読み出し、特別図柄および演出図柄の変動開始時にランダムRにもとづいて特定の表示結果としての大当り表示結果にするか否か、すなわち、大当りとするか否かを決定する。そして、大当りとすると決定したときに、遊技状態を遊技者にとって有利な特定遊技状態としての大当り遊技状態に移行させる。
また、遊技制御用マイクロコンピュータ560には、払出制御基板37(の払出制御用マイクロコンピュータ370)や演出制御基板80(の演出制御用マイクロコンピュータ)とシリアル通信で信号を入出力(送受信)するためのシリアル通信回路505が内蔵されている。なお、払出制御用マイクロコンピュータ370や演出制御用マイクロコンピュータにも、遊技制御用マイクロコンピュータ560とシリアル通信で信号を入出力するためのシリアル通信回路が内蔵されている(払出制御用マイクロコンピュータ370に内蔵されたシリアル通信回路については、図6参照)。遊技制御用マイクロコンピュータ560は、2チャネルのシリアル通信回路505を内蔵しており、払出制御用マイクロコンピュータ370とシリアル通信を行うことが可能であるとともに、演出制御用マイクロコンピュータ100ともシリアル通信を行うことが可能である。ただし、この実施の形態では、演出制御用マイクロコンピュータ100との間のシリアル通信に関しては、遊技制御用マイクロコンピュータ560から演出制御用マイクロコンピュータに対してのみ信号が出力され、演出制御用マイクロコンピュータから遊技制御用マイクロコンピュータ560に対しては信号が出力されない。なお、遊技制御用マイクロコンピュータ560と演出制御用マイクロコンピュータとの間の通信については、シリアル通信で行う構成に限られるわけではなく、パラレル通信で行うように構成してもよい。
また、RAM55は、その一部または全部が電源基板において作成されるバックアップ電源によってバックアップされている不揮発性記憶手段としてのバックアップRAMである。すなわち、遊技機に対する電力供給が停止しても、所定期間(バックアップ電源としてのコンデンサが放電してバックアップ電源が電力供給不能になるまで)は、RAM55の一部または全部の内容は保存される。特に、少なくとも、遊技状態すなわち遊技制御手段の制御状態に応じたデータ(特別図柄プロセスフラグや保留記憶数カウンタの値など)と未払出賞球数を示すデータ(具体的には、後述する賞球コマンド出力カウンタの値)は、バックアップRAMに保存される。遊技制御手段の制御状態に応じたデータとは、停電等が生じた後に復旧した場合に、そのデータにもとづいて、制御状態を停電等の発生前に復旧させるために必要なデータである。また、制御状態に応じたデータと未払出賞球数を示すデータとを遊技の進行状態を示すデータと定義する。なお、この実施の形態では、RAM55の全部が、電源バックアップされているとする。
遊技制御用マイクロコンピュータ560のリセット端子には、電源基板からのリセット信号が入力される。電源基板には、遊技制御用マイクロコンピュータ560等に供給されるリセット信号を生成するリセット回路が搭載されている。なお、リセット信号がハイレベルになると遊技制御用マイクロコンピュータ560等は動作可能状態になり、リセット信号がローレベルになると遊技制御用マイクロコンピュータ560等は動作停止状態になる。従って、リセット信号がハイレベルである期間は、遊技制御用マイクロコンピュータ560等の動作を許容する許容信号が出力されていることになり、リセット信号がローレベルである期間は、遊技制御用マイクロコンピュータ560等の動作を停止させる動作停止信号が出力されていることになる。なお、リセット回路をそれぞれの電気部品制御基板(電気部品を制御するためのマイクロコンピュータが搭載されている基板)に搭載してもよい。
さらに、遊技制御用マイクロコンピュータ560の入力ポートには、電源基板からの電源電圧が所定値以下に低下したことを示す電源断信号が入力される。すなわち、電源基板には、遊技機において使用される所定電圧(例えば、DC30VやDC5Vなど)の電圧値を監視して、電圧値があらかじめ定められた所定値にまで低下すると(電源電圧の低下を検出すると)、その旨を示す電源断信号を出力する電源監視回路が搭載されている。なお、電源監視回路を電源基板に搭載するのではなく、バックアップ電源によって電源バックアップされる基板(例えば、主基板31)に搭載するようにしてもよい。また、遊技制御用マイクロコンピュータ560の入力ポートには、RAMの内容をクリアすることを指示するためのクリアスイッチが操作されたことを示すクリア信号(図5参照)が入力される。
また、ゲートスイッチ32a、第1始動口スイッチ14a、第1入賞確認スイッチ14b、第2始動口スイッチ15a、第2入賞確認スイッチ15b、下部カウントスイッチ23、第3入賞確認スイッチ23a、上部カウントスイッチ24、第4入賞確認スイッチ24a、特定領域スイッチ43a、排出口スイッチ45および各入賞口スイッチ30a,30bからの検出信号を基本回路53に与える入力ドライバ回路58も主基板31に搭載され、可変入賞球装置15を開閉するソレノイド16、可変入賞装置400を開閉するソレノイド17、足模型402を駆動するソレノイド18、特別可変入賞球装置を開閉するソレノイド21を基本回路53からの指令に従って駆動する出力回路59も主基板31に搭載され、電源投入時に遊技制御用マイクロコンピュータ560をリセットするためのシステムリセット回路(図示せず)や、大当り遊技状態の発生を示す大当り情報等の情報出力信号を、ターミナル基板160を介して、ホールコンピュータ等の外部装置に対して出力する情報出力回路64も主基板31に搭載されている。
この実施の形態では、演出制御基板80に搭載されている演出制御手段(演出制御用マイクロコンピュータで構成される。)が、中継基板77を介して遊技制御用マイクロコンピュータ560からの演出制御コマンドを受信し、演出図柄を可変表示する演出表示装置9の表示制御を行う。
図6は、払出制御基板37および球払出装置97などの払出に関連する構成要素を示すブロック図である。図6に示すように、払出制御基板37には、払出制御用CPU371を含む払出制御用マイクロコンピュータ370が搭載されている。この実施の形態では、払出制御用マイクロコンピュータ370は、1チップマイクロコンピュータであり、少なくともRAMが内蔵されている。払出制御用マイクロコンピュータ370、RAM(図示せず)、払出制御用プログラムを格納したROM(図示せず)およびI/Oポート等は、払出制御手段を構成する。すなわち、払出制御手段は、払出制御用CPU371、RAMおよびROMを有する払出制御用マイクロコンピュータ370と、I/Oポートとで実現される。また、I/Oポートは、払出制御用マイクロコンピュータ370に内蔵されていてもよい。なお、遊技制御用マイクロコンピュータ560と異なり、払出制御用マイクロコンピュータ370が内蔵するRAMは、バックアップ電源による電源バックアップを受けていない。そのため、遊技機に対する電力供給が停止してしまうと、払出制御用マイクロコンピュータ370が内蔵するRAMの記憶内容は失われることになる。
なお、払出制御用マイクロコンピュータ370は、所定の払出条件が成立したことにもとづいて遊技球を払い出す制御を行う。なお、所定の払出条件は、遊技領域に設けられた入賞領域(普通入賞口29a〜29d、下部大入賞口23b、上部大入賞口24b、第1始動入賞口13a、第2始動入賞口13b)に遊技球が入賞したことや、貸し球要求がなされたことによって成立する。また、例えば、パロット機やスロットマシンなどの遊技機に適用する場合には、所定の払出条件は、遊技球やメダルの返却要求がなされたことによっても成立する。さらに、例えば、パロット機やスロットマシンなどの遊技機に適用する場合には、所定の払出条件は、図柄の停止図柄が所定の入賞図柄となったことによっても成立する。
球切れスイッチ187、満タンスイッチ48および払出個数カウントスイッチ301からの検出信号は、中継基板72を介して払出制御基板37のI/Oポート372fに入力される。なお、この実施の形態では、払出個数カウントスイッチ301からの検出信号は、払出制御用マイクロコンピュータ370に入力されたあと、I/Oポート372aおよび出力回路373Bを介して主基板31に出力される。
また、払出モータ位置センサ295からの検出信号は、中継基板72を介して払出制御基板37のI/Oポート372eに入力される。払出モータ位置センサ295は、払出モータ289の回転位置を検出するための発光素子(LED)と受光素子とによるセンサであり、遊技球が詰まったこと、すなわちいわゆる球噛みを検出するために用いられる。払出制御基板37に搭載されている払出制御用マイクロコンピュータ370は、球切れスイッチ187からの検出信号が球切れ状態を示していたり、満タンスイッチ48からの検出信号が満タン状態を示していると、球払出処理を停止する。
さらに、満タンスイッチ48からの検出信号が満タン状態を示していると、払出制御用マイクロコンピュータ370は、打球発射装置からの球発射を停止させるために、発射基板90に対してローレベルの満タン信号を出力する。発射基板90のAND回路91が出力する発射モータ94への発射モータ信号は、発射基板90から発射モータ94に伝えられる。払出制御用マイクロコンピュータ370からの満タン信号は、発射基板90に搭載されたAND回路91の入力側の一方に入力され、駆動信号生成回路92からの駆動信号(発射モータ94を駆動するための信号であって、電源基板からの電源を供給する役割を果たす信号である。)は、AND回路91の入力側の他方に入力される。そして、AND回路91の発射モータ信号が発射モータ94に入力される。すなわち、払出制御用マイクロコンピュータ370が満タン信号を出力している間は、発射モータ94への発射モータ信号の出力が停止される。払出制御用マイクロコンピュータ370が満タン信号を出力している間であっても、発射モータ94への発射モータ信号の出力を停止せず、打球発射装置からの球発射を停止させないように構成してもよい。
払出制御用マイクロコンピュータ370には、遊技制御用マイクロコンピュータ560とシリアル通信で信号を入出力(送受信)するためのシリアル通信回路380が内蔵されている。この実施の形態では、遊技制御用マイクロコンピュータ560と払出制御用マイクロコンピュータ370とは、シリアル通信回路505,380を介して、遊技制御用マイクロコンピュータ560と払出制御用マイクロコンピュータ370との間の接続確認を行うために、一定の間隔(例えば1秒)で払出制御コマンド(接続確認コマンド、接続OKコマンド)をやり取り(送受信)している。例えば、遊技制御用マイクロコンピュータ560は、シリアル通信回路505を介して、一定の間隔で接続確認を行うための接続確認コマンドを送信し、払出制御用マイクロコンピュータ370は、遊技制御用マイクロコンピュータ560からの接続確認コマンドを受信した場合、その旨を通知する接続OKコマンドを遊技制御用マイクロコンピュータ560に送信する。また、例えば、入賞が発生した場合には、遊技制御用マイクロコンピュータ560は、払い出すべき賞球個数を示すデータを賞球個数コマンドの下位4ビットに設定し、当該設定がなされた賞球個数コマンドを払出制御用マイクロコンピュータ370に送信する。そして、払出制御用マイクロコンピュータ370は、賞球個数を受け付けたことを示す賞球個数受付コマンドを遊技制御用マイクロコンピュータ560に送信する。さらに、払出制御用マイクロコンピュータ370は、賞球払出動作が終了すると、賞球終了を示賞球終了コマンドを遊技制御用マイクロコンピュータ560に送信する。なお、払出制御用マイクロコンピュータ370は、賞球払出動作を終了するまでの間、一定の間隔で賞球準備中コマンドを遊技制御用マイクロコンピュータ560に送信する。また、所定のエラー(球貸し、満タン、球切れなどのエラー)が発生した場合には、エラーの内容を示すデータを、接続OKコマンドや賞球準備中コマンドの下位4ビットを異ならせることにより設定し、当該設定がなされた接続OKコマンドや賞球準備中コマンドを遊技制御用マイクロコンピュータ560に送信する。なお、遊技制御用マイクロコンピュータ560と払出制御用マイクロコンピュータ370におけるシリアル通信による具体的な信号のやり取りについては、後述する。
また、払出制御用マイクロコンピュータ370は、出力ポート372cを介して、7セグメントLEDによるエラー表示用LED374にエラー信号を出力する。なお、払出制御基板37の入力ポート372fには、エラー状態を解除するためのエラー解除スイッチ375からの検出信号が入力される。エラー解除スイッチ375は、ソフトウェアリセットによってエラー状態を解除するために用いられる。
さらに、払出制御用マイクロコンピュータ370からの払出モータ289への駆動信号は、出力ポート372aおよび中継基板72を介して球払出装置97の払出機構部分における払出モータ289に伝えられる。なお、出力ポート372aの外側に、ドライバ回路(モータ駆動回路)が設置されているが、図6では記載省略されている。
遊技機に隣接して設置されているカードユニット50には、カードユニット制御用マイクロコンピュータが搭載されている。また、カードユニット50には、使用可表示ランプ、連結台方向表示器、カード投入表示ランプおよびカード挿入口が設けられている。インタフェース基板(中継基板)66には、打球供給皿3の近傍に設けられている度数表示LED60、球貸し可LED61、球貸しスイッチ62および返却スイッチ63が接続される。
インタフェース基板66からカードユニット50には、遊技者の操作に応じて、球貸しスイッチ62が操作されたことを示す球貸しスイッチ信号および返却スイッチ63が操作されたことを示す返却スイッチ信号が与えられる。また、カードユニット50からインタフェース基板66には、プリペイドカードの残高を示すカード残高表示信号および球貸し可表示信号が与えられる。カードユニット50と払出制御基板37の間では、接続信号(VL信号)、ユニット操作信号(BRDY信号)、球貸し要求信号(BRQ信号)、球貸し完了信号(EXS信号)およびパチンコ機動作信号(PRDY信号)が入力ポート372fおよび出力ポート372dを介して送受信される。カードユニット50と払出制御基板37の間には、インタフェース基板66が介在している。よって、接続信号(VL信号)等の信号は、図6に示すように、インタフェース基板66を介してカードユニット50と払出制御基板37の間で送受信されることになる。
パチンコ遊技機1の電源が投入されると、払出制御基板37に搭載されている払出制御用マイクロコンピュータ370は、カードユニット50にPRDY信号を出力する。また、カードユニット制御用マイクロコンピュータは、電源が投入されると、VL信号を出力する。払出制御用マイクロコンピュータ370は、VL信号の入力状態によってカードユニット50の接続状態/未接続状態を判定する。カードユニット50においてカードが受け付けられ、球貸しスイッチが操作され球貸しスイッチ信号が入力されると、カードユニット制御用マイクロコンピュータは、払出制御基板37にBRDY信号を出力する。この時点から所定の遅延時間が経過すると、カードユニット制御用マイクロコンピュータは、払出制御基板37にBRQ信号を出力する。
そして、払出制御用マイクロコンピュータ370は、カードユニット50に対するEXS信号を立ち上げ、カードユニット50からのBRQ信号の立ち下がりを検出すると、払出モータ289を駆動し、所定個の貸し球を遊技者に払い出す。そして、払出が完了したら、払出制御用マイクロコンピュータ370は、カードユニット50に対するEXS信号を立ち下げる。その後、カードユニット50からのBRDY信号がオン状態でないことを条件に、遊技制御手段から払出指令信号を受けると賞球払出制御を実行する。
カードユニット50で用いられる電源電圧AC24Vは払出制御基板37から供給される。すなわち、カードユニット50に対する電源基板910からの電力供給は、払出制御基板37およびインタフェース基板66を介して行われる。この例では、インタフェース基板66内に配されているカードユニット50に対するAC24Vの電源供給ラインに、カードユニット50を保護するためのヒューズが設けられ、カードユニット50に所定電圧以上の電圧が供給されることが防止される。
また、この実施の形態では、カードユニット50が遊技機とは別体として遊技機に隣接して設置されている場合を例にするが、カードユニット50は遊技機と一体化されていてもよい。また、コイン投入に応じてその金額に応じた遊技球が貸し出されるような場合でも本発明を適用できる。
図7は、中継基板77、演出制御基板80、ランプドライバ基板35および音声出力基板70の回路構成例を示すブロック図である。なお、図7に示す例では、ランプドライバ基板35および音声出力基板70には、マイクロコンピュータは搭載されていないが、マイクロコンピュータを搭載してもよい。また、ランプドライバ基板35および音声出力基板70を設けずに、演出制御に関して演出制御基板80のみを設けてもよい。
演出制御基板80は、演出制御用CPU101a、および演出図柄プロセスフラグ等の演出に関する情報を記憶するRAMを含む演出制御用マイクロコンピュータ100を搭載している。なお、RAMは外付けであってもよい。この実施の形態では、演出制御用マイクロコンピュータ100におけるRAMは電源バックアップされていない。演出制御基板80において、演出制御用CPU101aは、内蔵または外付けのROM(図示せず)に格納されたプログラムに従って動作する。また、演出制御用マイクロコンピュータ100は、遊技制御用マイクロコンピュータ560とシリアル通信で信号を入出力(送受信)するシリアル通信回路101bを内蔵している。また、演出制御用CPU101aは、演出制御コマンドにもとづいて、VDP(ビデオディスプレイプロセッサ)109に演出表示装置9の表示制御を行わせる。
この実施の形態では、演出制御用マイクロコンピュータ100と共動して演出表示装置9の表示制御を行うVDP109が演出制御基板80に搭載されている。VDP109は、演出制御用マイクロコンピュータ100とは独立したアドレス空間を有し、そこにVRAMをマッピングする。VRAMは、画像データを展開するためのバッファメモリである。そして、VDP109は、VRAM内の画像データをフレームメモリを介して演出表示装置9に出力する。
演出制御用CPU101aは、受信した演出制御コマンドに従ってCGROM(図示せず)から必要なデータを読み出すための指令をVDP109に出力する。CGROMは、演出表示装置9に表示されるキャラクタ画像データや動画像データ、具体的には、人物、文字、図形や記号等(演出図柄を含む)、および背景画像のデータをあらかじめ格納しておくためのROMである。VDP109は、演出制御用CPU101aの指令に応じて、CGROMから画像データを読み出す。そして、VDP109は、読み出した画像データにもとづいて表示制御を実行する。
さらに、演出制御用CPU101aは、出力ポート105を介してランプドライバ基板35に対してLEDを駆動する信号を出力する。また、演出制御用CPU101aは、出力ポート104を介して音声出力基板70に対して音番号データを出力する。
ランプドライバ基板35において、LEDを駆動する信号は、入力ドライバ351を介してLEDドライバ352に入力される。LEDドライバ352は、LEDを駆動する信号にもとづいて枠ランプ28などの枠側に設けられている発光体に電流を供給する。また、遊技盤側に設けられている装飾ランプ25aに電流を供給する。
音声出力基板70において、音番号データは、入力ドライバ702を介して音声合成用IC703に入力される。音声合成用IC703は、音番号データに応じた音声や効果音を発生し増幅回路705に出力する。増幅回路705は、音声合成用IC703の出力レベルを、ボリューム706で設定されている音量に応じたレベルに増幅した音声信号をスピーカ27に出力する。音声データROM704には、音番号データに応じた制御データが格納されている。音番号データに応じた制御データは、所定期間(例えば演出図柄の変動期間)における効果音または音声の出力態様を時系列的に示すデータの集まりである。
図8は、主基板31における回路構成および主基板31から演出制御基板80に送信される演出制御コマンドの信号線を示すブロック図である。図8に示すように、この実施の形態では、主基板31が搭載する遊技制御用マイクロコンピュータ560は、演出制御信号送信用の1本の信号線を用いて、演出制御コマンド(演出制御信号)を演出制御基板80に送信する。
主基板31には、図8に示すように、第1始動口スイッチ14a、第1入賞確認スイッチ14bや第2始動口スイッチ15a、第2入賞確認スイッチ15bからの配線が接続されている。また、主基板31には、下部大入賞口23bである特別可変入賞球装置20の下部カウントスイッチ23、第3入賞確認スイッチ23a、上部大入賞口24bである可変入賞装置400の上部カウントスイッチ24、第4入賞確認スイッチ24aや、その他の入賞口への遊技球の入賞等を検出するための各種スイッチ43a、45、30a、30bからの配線も接続されている。さらに、主基板31には、可変入賞球装置15を開閉するソレノイド16、上部大入賞口扉24cを開閉するソレノイド17、足模型402を駆動するソレノイド18および特別可変入賞球装置20を開閉するソレノイド21への配線が接続されている。
主基板31は、遊技制御用マイクロコンピュータ560、入力ドライバ回路58および出力回路59を搭載する。遊技制御用マイクロコンピュータ560は、クロック回路501、システムリセット手段として機能するリセットコントローラ502、乱数回路503a,503b、ゲーム制御用のプログラム等を記憶するROM54、ワークメモリとして使用されるRAM55、プログラムに従って動作するCPU56、CPU56に割込要求信号(タイマ割込による割込要求信号)を送出するCTC504、払出制御基板37や演出制御基板80が備えるマイクロコンピュータと非同期シリアル通信を行うシリアル通信回路505およびI/Oポート部57を内蔵する。
なお、この実施の形態では、シリアル通信回路505を内蔵するマイクロコンピュータを搭載した基板(例えば、主基板31)とは異なる基板(例えば、払出制御基板37や演出制御基板80)のマイクロコンピュータとの通信にシリアル通信回路505を用いる場合を説明するが、シリアル通信回路505は、シリアル通信回路505を内蔵するマイクロコンピュータを搭載した基板が備える別のマイクロコンピュータとシリアル通信を行ってもよい。例えば、同じ構成の2つのマイクロコンピュータが同じ基板に搭載されている場合に、各マイクロコンピュータが内蔵するシリアル通信回路が相互にシリアル通信を行ってもよい。
クロック回路501は、システムクロック信号を27(=128)分周して生成した所定の周期の基準クロック信号CLKを、各乱数回路503a,503bに出力する。リセットコントローラ502は、ローレベルの信号が一定期間入力されたとき、CPU56および各乱数回路503a,503bに所定の初期化信号を出力して、遊技制御用マイクロコンピュータ560をシステムリセットする。
また、この実施の形態では、図8に示すように、遊技制御用マイクロコンピュータ560は、発生可能な乱数の値の範囲が異なる2つの乱数回路503a,503bを搭載する。乱数回路503aは、12ビットの疑似乱数を発生する乱数回路(以下、12ビット乱数回路ともいう)である。12ビット乱数回路503aは、12ビットで発生できる範囲(すなわち、0から4095までの範囲)の値の乱数を発生する機能を備える。また、乱数回路503bは、16ビットの疑似乱数を発生する乱数回路(以下、16ビット乱数回路ともいう)である。16ビット乱数回路503bは、16ビットで発生できる範囲(すなわち、0から65535までの範囲)の値の乱数を発生する機能を備える。なお、この実施の形態では、遊技制御用マイクロコンピュータ560が2つの乱数回路を内蔵する場合を説明するが、遊技制御用マイクロコンピュータ560は、3以上の乱数回路を内蔵してもよい。また、この実施の形態では、12ビット乱数回路503aおよび16ビット乱数回路503bを包括的に表現する場合、または、12ビット乱数回路503aと16ビット乱数回路503bとのうちいずれかを指す場合に、乱数回路503という。
次に、シリアル通信回路505の構成について説明する。シリアル通信回路505は、全二重方式、非同期方式および標準NRZ(ノンリターンゼロ)符号化を用いたデータフォーマットで、各制御基板(例えば、払出制御基板37や演出制御基板80)のマイクロコンピュータとシリアル通信を行う。シリアル通信回路505は、各制御基板のマイクロコンピュータに各種データ(例えば、賞球個数コマンドや演出制御コマンド)を送信する送信部と、各制御基板のマイクロコンピュータからの各種データ(例えば、賞球ACKコマンド)を受信する受信部とを含む。
図9は、シリアル通信回路505の送信部の構成例を示すブロック図である。また、図10は、シリアル通信回路505の受信部の構成例を示すブロック図である。シリアル通信回路505は、ボーレートレジスタ702、ボーレート生成回路703、2つのステータスレジスタ705,706、3つの制御レジスタ707,708,709、送信データレジスタ710、受信データレジスタ711、送信用シフトレジスタ712、受信用シフトレジスタ713、割り込み制御回路714、送信フォーマット/パリティ生成回路715および受信フォーマット/パリティチェック回路716を含む。また、図9に示すように、シリアル通信回路505の送信部は、これらの構成要素のうち、ボーレートレジスタ702、ボーレート生成回路703、ステータスレジスタA705、制御レジスタ707,708,709、送信データレジスタ710、送信用シフトレジスタ712、割り込み制御回路714および送信フォーマット/パリティ生成回路715によって構成される。また、図10に示すように、シリアル通信回路505の受信部は、これらの構成要素のうち、ボーレートレジスタ702、ボーレート生成回路703、ステータスレジスタ705,706、制御レジスタ707,708,709、受信データレジスタ711、受信用シフトレジスタ713、割り込み制御回路714および受信フォーマット/パリティチェック回路716によって構成される。
なお、シリアル通信回路505において、送信部と受信部とは、実際には、共通の回路を用いて構成される。そして、シリアル通信回路505は、上記に示したように、シリアル通信回路505の各構成要素を使い分けて用いることによって、送信回路又は受信回路として機能する。
まず、シリアル通信回路505が各制御基板が搭載するマイクロコンピュータと送受信するデータのデータフォーマットを説明する。図11は、シリアル通信回路505が各制御基板に搭載されるマイクロコンピュータと送受信するデータのデータフォーマットの例を示す説明図である。図11に示すように、シリアル通信回路505が送受信するデータのデータフォーマットは、スタートビット、データおよびストップビットを1フレームとして構成される。また、シリアル通信回路505が送受信するデータのデータ長は、後述するシリアル通信回路設定処理において初期設定を行えば、8ビットまたは9ビットのいずれかに設定できる。図11(a)は、データ長を8ビットに設定した場合のデータフォーマットの例である。また、図11(b)は、データ長を9ビットに設定した場合のデータフォーマットの例である。
図11に示すように、シリアル通信回路505が送受信するデータのデータフォーマットは、ハイレベル(論理「1」)のアイドルラインのあとに、1フレームの始まりであることを示すスタートビット(論理「0」)を含む。また、データフォーマットは、スタートビットのあとに、8ビットまたは9ビットの送受信データを含む。そして、データフォーマットは、送受信データのあとに、1フレームの終わりであることを示すストップビット(論理「1」)を含む。
シリアル通信回路505は、図11に示すデータフォーマットに従って、送受信データの最下位ビット(ビット0)から先にデータを送受信する。また、後述するシリアル通信回路設定処理において初期設定を行えば、送受信データにパリティビットを付加するように設定することもできる。パリティビットを付加するように設定した場合、送受信データの最上位ビットがパリティビット(奇数パリティまたは偶数パリティ)として用いられる。例えば、データ長を8ビットに設定した場合、送受信データのビット7がパリティビットとして用いられる。また、例えば、データ長を9ビットに設定した場合、送受信データのビット8がパリティビットとして用いられる。
ボーレート生成回路703は、クロック回路501が出力するクロック信号およびボーレートレジスタ702に設定されている設定値(ボーレート設定値ともいう)にもとづいて、シリアル通信回路505が用いるボーレートを生成する。この場合、ボーレート生成回路703は、クロック信号およびボーレート設定値にもとづいて、所定の計算式を用いてボーレートを求める。例えば、ボーレート生成回路703は、式(1)を用いて、シリアル通信回路505が用いるボーレートを求める。
ボーレート=クロック周波数/(ボーレート設定値×16) 式(1)
図12は、ボーレートレジスタ702の例を示す説明図である。ボーレートレジスタ702は、ボーレート生成回路703が生成するボーレートの値を指定するための所定の設定値を設定するレジスタである。例えば、ボーレートレジスタ702が式(1)を用いてボーレートを求めるものとし、クロック周波数が3MHzであるとする。この場合、所望の目標ボーレートが1200bpsであるとすると、ボーレートレジスタ702に設定値「156」を設定する。すると、ボーレート生成回路703は、クロック周波数「3MHz」およびボーレート設定値「156」にもとづいて、式(1)を用いて、ボーレート「1201.92bps」を生成する。ボーレートレジスタ702は、16ビットレジスタであり、初期値が「0(=00h)」に設定されている。また、ボーレートレジスタ702は、ビット0〜ビット12が書込および読出ともに可能な状態に構成されている。また、ボーレートレジスタ702は、ビット13〜ビット15が書込および読出ともに不可能な状態に構成されている。したがって、ボーレートレジスタ702のビット13〜ビット15に値を書き込む制御を行っても無効とされ、ビット13〜ビット15から読み出す値は全て「0(=000b)」である。
図13(A)は、制御レジスタA707の例を示す説明図である。制御レジスタA707は、シリアル通信回路505の通信フォーマットを設定するレジスタである。この実施の形態では、制御レジスタA707の各ビットの値が設定されることによって、シリアル通信回路505の通信フォーマットが設定される。制御レジスタA707には、送受信データのデータ形式や各種通信方式等の通信フォーマットを設定するための通信フォーマット設定データが設定される。図13(A)に示すように、制御レジスタA707は、8ビットレジスタであり、初期値が「0(=00h)」に設定されている。また、制御レジスタA707は、ビット0〜ビット4が書込および読出ともに可能な状態に構成されている。また、制御レジスタA707は、ビット5〜ビット7が書込および読出ともに不可能な状態に構成されている。したがって、制御レジスタA707のビット5〜ビット7に値を書き込む制御を行っても無効とされ、ビット5〜ビット7から読み出す値は全て「0(=000b)」である。
図13(B)は、制御レジスタA707に設定される通信フォーマット設定データの一例の説明図である。図13(B)に示すように、制御レジスタA707のビット4(ビット名「M」)には、送受信するデータのデータ長を設定するための設定データが設定される。図13(B)に示すように、ビット4を「0」に設定することによって、送受信データのデータ長が8ビットに設定される。また、ビット4を「1」に設定することによって、送受信データのデータ長が9ビットに設定される。
制御レジスタA707のビット3(ビット名「WAKE」)には、スタンバイ状態の受信回路(シリアル通信回路505の受信部)をウエイクアップする(オンライン状態にさせる)ウエイクアップ方式を設定するための設定データが設定される。図13(B)に示すように、ビット3を「0」に設定することによって、アイドルラインを認識したときにウエイクアップするアイドルラインウエイクアップ方式が設定される。また、ビット3を「1」に設定することによって、所定のアドレスマークを認識することによってウエイクアップするアドレスマークウエイクアップ方式が設定される。
制御レジスタA707のビット2(ビット名「ILT」)には、受信データのアイドルラインの検出方式を選択するための設定データが設定される。図13(B)に示すように、ビット2を「0」に設定することによって、受信データに含まれるスタートビットの後からアイドルラインを検出する検出方式が設定される。また、ビット2を「1」に設定することによって、受信データに含まれるストップビットの後からアイドルラインを検出する検出方式が設定される。
制御レジスタA707のビット1(ビット名「PE」)には、パリティ機能を使用するか否かを設定するための設定データが設定される。図13(B)に示すように、ビット1を「0」に設定することによって、パリティ機能を使用しないように設定される。また、ビット1を「1」に設定することによって、パリティ機能を使用するように設定される。
制御レジスタA707のビット0(ビット名「PT」)には、パリティ機能を使用すると設定した場合のパリティの種類を設定するための設定データが設定される。図13(B)に示すように、ビット0を「0」に設定することによって、パリティの種類として偶数パリティが設定される。また、ビット0を「1」に設定することによって、パリティの種類として奇数パリティが設定される。
図14(A)は、制御レジスタB708の例を示す説明図である。制御レジスタB708は、シリアル通信回路505の割り込み要求を許可するか否かを設定するレジスタである。この実施の形態では、制御レジスタB708の各ビットの値が設定されることによって、シリアル通信回路505からの割り込み要求を許可するか禁止するかが設定される。制御レジスタB708には、各種割り込み要求を許可するか否かを示す割り込み要求設定データが主として設定される。なお、制御レジスタB708には、割り込み要求設定データ以外に、シリアル通信回路505の各種設定を行うための設定データも設定される。図14(A)に示すように、制御レジスタB708は、8ビットレジスタであり、初期値が「0(=00h)」に設定されている。また、制御レジスタB708は、ビット0〜ビット7が書込および読出ともに可能な状態に構成されている。
図14(B)は、制御レジスタB708に設定される割り込み要求設定データの一例を示す説明図である。図14(B)に示すように、制御レジスタB708のビット7(ビット名「TIE」)には、データの送信時に行う割り込み要求である送信割り込み要求を許可するか否かを示す設定データが設定される。図14(B)に示すように、ビット7を「0」に設定することによって、送信割り込み要求を禁止するように設定される。また、ビット7を「1」に設定することによって、送信割り込み要求を許可するように設定される。
制御レジスタB708のビット6(ビット名「TCIE」)には、データの送信完了時に行う割り込み要求である送信完了割り込み要求を許可するか否かを示す設定データが設定される。図14(B)に示すように、ビット6を「0」に設定することによって、送信完了割り込み要求を禁止するように設定される。また、ビット6を「1」に設定することによって、送信完了割り込み要求を許可するように設定される。
制御レジスタB708のビット5(ビット名「RIE」)には、データの受信時に行う割り込み要求である受信割り込み要求を許可するか否かを示す設定データが設定される。図14(B)に示すように、ビット5を「0」に設定することによって、受信割り込み要求を禁止するように設定される。また、ビット5を「1」に設定することによって、受信割り込み要求を許可するように設定される。
制御レジスタB708のビット4(ビット名「ILIE」)には、受信データのアイドルラインを検出したときに行う割り込み要求であるアイドルライン割り込み要求を許可するか否かを示す設定データが設定される。図14(B)に示すように、ビット4を「0」に設定することによって、アイドルライン割り込み要求を禁止するように設定される。また、ビット4を「1」に設定することによって、アイドルライン割り込み要求を許可するように設定される。
制御レジスタB708のビット3(ビット名「TE」)には、送信回路(シリアル通信回路505の送信部)を使用するか否かを示す設定データが設定される。図14(B)に示すように、ビット3を「0」に設定することによって、送信回路を使用しないように設定される。また、ビット3を「1」に設定することによって、送信回路を使用するように設定される。なお、この実施の形態では、ビット3を「1」に設定することによって、送信回路を使用する設定が行われる。このような設定は、メイン処理の初期設定(例えばステップS15a)において行われる。
制御レジスタB708のビット2(ビット名「RE」)には、受信回路を使用するか否かを示す設定データが設定される。図14(B)に示すように、ビット2を「0」に設定することによって、受信回路を使用しないように設定される。また、ビット2を「1」に設定することによって、受信回路を使用するように設定される。なお、この実施の形態では、ビット2を「1」に設定することによって、受信回路を使用する設定が行われる。このような設定は、メイン処理の初期設定(例えばステップS15a)において行われる。
制御レジスタB708のビット1(ビット名「RWU」)には、受信回路のウエイクアップ機能を使用するか否かを示す設定データが設定される。図14(B)に示すように、ビット1を「0」に設定することによって、ウエイクアップ機能を使用しないように設定される。また、ビット1を「1」に設定することによって、ウエイクアップ機能を使用するように設定される。
制御レジスタB708のビット0(ビット名「SBK」)には、所定のブレークコード送信機能を使用するか否かを示す設定データが設定される。図14(B)に示すように、ビット1を「0」に設定することによって、ブレークコード送信機能を使用しないように設定される。また、ビット1を「1」に設定することによって、ブレークコード送信機能を使用するように設定される。ビット1を「1」に設定すると、シリアル通信回路505は、ブレークコード(例えば、「0」を連続して含む信号)を制御基板(払出制御基板37や演出制御基板80)が搭載するマイクロコンピュータに送信する。
図15(A)は、ステータスレジスタA705の例を示す説明図である。ステータスレジスタA705は、シリアル通信回路505の各種ステータスを確認するためのレジスタである。この実施の形態では、ステータスレジスタA705の各ビットの値を確認することによって、CPU56は、シリアル通信回路505の各種ステータスを確認することができる。図15(A)に示すように、ステータスレジスタA705は、8ビットレジスタであり、初期値が「0(=00h)」に設定されている。また、ステータスレジスタA705は、ビット0〜ビット7が読出のみ可能な状態に構成されている。したがって、ステータスレジスタA705のビット0〜ビット7に値を書き込む制御を行っても無効とされる。
本実施の形態では、後述するように、送信データレジスタ710に送信データが入っていない状態(送信データエンプティ)となったり、送信用シフトレジスタ712が格納する送信データの送信を完了すると、割り込み制御回路714によって、ステータスレジスタA705の対応するビットがセットされる。そして、CPU56は、ステータスレジスタA705にセットされた各ビットの値を読み出す。
図15(B)は、ステータスレジスタA705に格納されるステータス確認データの一例を示す図である。図15(B)に示すように、ステータスレジスタA705のビット7(ビット名「TDRE」)には、送信データレジスタ710に送信データが入っていない状態であること(送信データエンプティ)を示す送信データエンプティフラグが格納される。図15(B)に示すように、ビット7に「0」が格納されている場合、送信データレジスタ710から送信用シフトレジスタ712に送信データが未だに転送されておらず、送信データレジスタ710に送信データが格納されたままの状態であることを示す。また、ビット7に「0」が格納されている状態では、送信データレジスタにデータが書き込まれない。例えば、ステップS5211,S52305ではビット7に「0」が格納されていないことを条件に送信データを設定する。また、ビット7に「1」が格納されている場合、送信データレジスタ710から送信用シフトレジスタ712に送信データが転送されており、送信データレジスタ710に送信データが入っていない状態(送信データエンプティ)であることを示す。
ステータスレジスタA705のビット6(ビット名「TC」)には、シリアル通信回路505からの送信データの送信を完了した旨を示す送信完了フラグが格納される。図15(B)に示すように、ビット6に「0」が格納されている場合、送信用シフトレジスタ712が格納する送信データの送信中の状態であり、シリアル通信回路505からの送信データの送信が完了していない状態であることを示す。また、ビット6に「1」が格納されている場合、送信用シフトレジスタ712が格納する送信データの転送を完了した状態であり、シリアル通信回路505からの送信データの送信が完了した状態であることを示す。コマンド格納領域がリングバッファ形式の場合には、ビット6に「1」が格納された状態となれば、コマンドの読出ポインタを更新する。
なお、送信データの送信を完了した状態となり、遊技制御用マイクロコンピュータ560は、送信先のマイクロコンピュータからの受信確認信号の待ち状態となる。この実施の形態では、後述する送信時割込の設定が行われると、シリアル通信回路505は、送信データの送信完了を検出すると、ステータスレジスタA705のビット6を「1」にするとともに、受信確認信号の待ち状態になったものとしてCPU56に割り込み要求(送信時割り込み要求という)を行う。
ステータスレジスタA705のビット5(ビット名「RDRF」)には、受信データレジスタ711に受信データが格納された状態であること(受信データフル)を示す受信データフルフラグが格納される。図15(B)に示すように、ビット5に「0」が格納されている場合、受信データレジスタ711に受信データが入っていない状態であることを示す。また、ビット5に「1」が格納されている場合、受信用シフトレジスタ713の値が受信データレジスタ711に転送され、受信データレジスタ711に受信データが格納されている状態であること(受信データフル)を示す。払出制御用マイクロコンピュータ370からのコマンドを受信したかどうかは、ビット5に「1」が格納された状態となっているかどうかによって確認される。例えば、ステップS5221,S52401,S52501ではビット5に「0」が格納されていないことを条件にコマンドを受信していると判定する。なお、この実施の形態では、ステータスレジスタA705のビット5(RDRF)は、遊技制御用マイクロコンピュータ560によって受信データレジスタ711から受信データが読み出されるとクリアされる。なお、受信データが読み出されたときにステータスレジスタA705のビット5(RDRF)が自動的にクリアされるように構成されていない場合には、遊技制御用マイクロコンピュータ560は、受信データレジスタ711から受信データを読み出すごとに、ステータスレジスタA705のビット5(RDRF)をクリアする処理を行う必要がある。
なお、受信データレジスタ711に受信データが格納された状態となると、CPU56は、受信データを受信データレジスタ711から読み込んで受信処理を行える状態となる。この実施の形態では、受信時割込の設定が行われると、シリアル通信回路505は、受信データフルを検出すると、ステータスレジスタA705のビット5を「1」にするとともに、受信処理が可能になったものとしてCPU56に割り込み要求(受信時割り込み要求という)を行う。
ステータスレジスタA705のビット4(ビット名「IDLE」)には、受信回路がアイドルラインを検出したことを示すアイドルライン検出フラグが格納される。図15(B)に示すように、ビット4に「0」が格納されている場合、シリアル通信回路505の受信部がアイドルラインを検出していない状態であることを示す。また、ビット4に「1」が格納されている場合、シリアル通信回路505の受信部がアイドルラインを検出した状態であることを示す。
ステータスレジスタA705のビット3(ビット名「OR」)には、CPU56が受信データレジスタ711が格納する受信データを読み込む前に、受信用シフトレジスタ713が次のデータを受信してしまったこと(オーバーラン)を示すオーバーランフラグが格納される。図15(B)に示すように、ビット3に「0」が格納されている場合、受信回路がオーバーランを検出していない状態であることを示す。また、ビット3に「1」が格納されている場合、受信回路がオーバーランを検出した状態であることを示す。
なお、オーバーランが発生すると、受信データレジスタ711内の受信データが読み込まれる前に受信用シフトレジスタ713に次の受信データが格納されてしまうので、受信データが上書きされてしまいCPU56が受信データを正しく読み込めなくなってしまう。そのため、各制御基板が搭載するマイクロコンピュータと正しく通信を行えなくなり、CPU56が誤動作をする原因となる。この実施の形態では、シリアル通信回路505は、オーバーランを検出すると、ステータスレジスタA705のビット3を「1」にするとともに、通信時にエラーが発生したものとしてCPU56に割り込み要求を行う。
ステータスレジスタA705のビット2(ビット名「NF」)には、受信データにノイズを検出したことを示すノイズエラーフラグが格納される。図15(B)に示すように、ビット2に「0」が格納されている場合、受信回路が受信データにノイズを検出していない状態であることを示す。また、ビット2に「1」が格納されている場合、受信回路が受信データにノイズを検出した状態であることを示す。
例えば、シリアル通信回路505は、受信データの各ビットを検出する際に、ボーレート生成回路703が生成したボーレートを用いて、所定ビット長の「1」または「0」を検出する。この場合、検出した「1」または「0」の長さが所定ビット長に満たない場合、シリアル通信回路505は、受信データにノイズが発生したものとしてノイズエラーを検出する。ノイズエラーが発生すると、ノイズによって正しい受信データを受信できない可能性が高く、CPU56が誤動作をする原因となる。この実施の形態では、シリアル通信回路505は、ノイズエラーを検出すると、ステータスレジスタA705のビット2を「1」にするとともに、通信時にエラーが発生したものとしてCPU56に割り込み要求を行う。
ステータスレジスタA705のビット1(ビット名「FE」)には、受信データのストップビットの位置が「0」(本来、ストップビットは「1」)であることを検出したこと(フレーミングエラー)を示すフレーミングエラーフラグが格納される。図15(B)に示すように、ビット1に「0」が格納されている場合、受信回路が受信データにフレーミングエラーを検出していない状態であることを示す。また、ビット1に「1」が格納されている場合、受信回路がフレーミングエラーを検出した状態であることを示す。
フレーミングエラーが発生すると、受信データのストップビットを正しく受信できなかった状態であるので、正しい受信データを受信できない可能性が高く、CPU56が誤動作をする原因となる。この実施の形態では、シリアル通信回路505は、フレーミングエラーを検出すると、ステータスレジスタA705のビット1を「1」にするとともに、通信時にエラーが発生したものとしてCPU56に割り込み要求を行う。
ステータスレジスタA705のビット0(ビット名「PF」)には、受信データから求めたパリティの値と、受信データに含まれるパリティの値とが一致しなかったこと(パリティエラー)を示すパリティエラーフラグが格納される。図15(B)に示すように、ビット0に「0」が格納されている場合、受信回路が受信データにパリティエラーを検出していない状態であることを示す。また、ビット0に「1」が格納されている場合、受信回路がパリティエラーを検出した状態であることを示す。
パリティエラーが発生すると、受信データの各データビットまたはパリティビットを正しく受信できなかった状態であるので、正しい受信データを受信できない可能性が高く、CPU56が誤動作をする原因となる。この実施の形態では、シリアル通信回路505は、パリティエラーを検出すると、ステータスレジスタA705のビット0を「1」にするとともに、通信時にエラーが発生したものとしてCPU56に割り込み要求を行う。
図16(A)は、ステータスレジスタB706の例を示す説明図である。ステータスレジスタB706は、シリアル通信回路505の受信状態(受信ステータス)を確認するためのレジスタである。この実施の形態では、ステータスレジスタB706のビットの値を確認することによって、CPU56は、シリアル通信回路505の受信ステータスを確認することができる。図16(B)に示すように、ステータスレジスタB706は、8ビットレジスタであり、初期値が「0(=00h)」に設定されている。また、ステータスレジスタB706は、ビット0が読出のみ可能な状態に構成されている。したがって、ステータスレジスタA705のビット0に値を書き込む制御を行っても無効とされる。また、ステータスレジスタB706は、ビット1〜ビット7が書込および読出ともに不可能な状態に構成されている。したがって、ステータスレジスタA705のビット1〜ビット7に値を書き込む制御を行っても無効とされ、ビット1〜ビット7から読み出す値は全て「0(=0000b)」である。
図16(B)は、ステータスレジスタB706に格納されるステータス確認データの一例を示す図である。図16(B)に示すように、ステータスレジスタB706のビット0(ビット名「RAF」)には、受信回路が受信データを受信中であること(受信アクティブ)を示す受信アクティブフラグが格納される。図16(B)に示すように、ビット0に「0」が格納されている場合、受信回路が受信データを受信中でないことを示す。また、ビット0に「1」が格納されている場合、受信回路が受信データを受信中であることを示す。また、ビット0に「1」が格納されている場合にも、コマンドデータの書き込みを行わない、もしくはコマンドデータを書き込めなくなっている。なお、シリアル通信回路505は、スタートビットを検出すると、受信データの受信が開始されたものとして、ステータスレジスタB706のビット0を「1」にする。
図17(A)は、制御レジスタC709の例を示す説明図である。制御レジスタC709は、シリアル通信回路505の通信エラー時の割り込み要求を許可するか否かを設定するレジスタである。この実施の形態では、制御レジスタC709の各ビットの値が設定されることによって、シリアル通信回路505からの通信時の割り込み要求を許可するか禁止するかが設定される。制御レジスタC709には、通信エラー時の各種割り込み要求を許可するか否かを示すエラー割り込み要求設定データが主として設定される。なお、制御レジスタC709には、エラー割り込み要求設定データ以外に、データ長を9ビットに設定した場合の9ビット目のデータが格納される。シリアル通信回路505の各種設も設定される。図17(A)に示すように、制御レジスタC709は、8ビットレジスタであり、初期値が「0(=00h)」に設定されている。また、制御レジスタC709は、ビット0〜ビット3およびビット6,7が書込および読出ともに可能な状態に構成されている。また、制御レジスタC709は、ビット4,5が書込および読出ともに不可能な状態に構成されている。したがって、制御レジスタC709のビット4,5に値を書き込む制御を行っても無効とされ、ビット4,5から読み出す値は全て「0(=0000b)」である。
図17(B)は、制御レジスタC709に設定されるエラー割り込み要求設定データの一例を示す説明図である。図17(B)に示すように、制御レジスタC709のビット7(ビット名「R8」)には、データ長を9ビットに設定した場合の受信データの9ビット目のデータが格納される。また、制御レジスタC709のビット6(ビット名「T8」)には、データ長を9ビットに設定した場合の送信データの9ビット目のデータが格納される。
制御レジスタC709のビット3(ビット名「ORIE」)には、オーバーランを検出した場合に行う割り込み要求であるオーバーランフラグ割り込み要求を許可するか否かを示す設定データが設定される。図17(B)に示すように、ビット3を「0」に設定することによって、オーバーランフラグ割り込み要求を禁止するように設定される。また、ビット3を「1」に設定することによって、オーバーランフラグ割り込み要求を許可するように設定される。
制御レジスタC709のビット2(ビット名「NEIE」)には、ノイズエラーを検出した場合に行う割り込み要求であるノイズエラーフラグ割り込み要求を許可するか否かを示す設定データが設定される。図17(B)に示すように、ビット2を「0」に設定することによって、ノイズエラーフラグ割り込み要求を禁止するように設定される。また、ビット2を「1」に設定することによって、ノイズエラーフラグ割り込み要求を許可するように設定される。
制御レジスタC709のビット1(ビット名「FEIE」)には、フレーミングエラーを検出した場合に行う割り込み要求であるフレーミングエラーフラグ割り込み要求を許可するか否かを示す設定データが設定される。図17(B)に示すように、ビット1を「0」に設定することによって、フレーミングエラーフラグ割り込み要求を禁止するように設定される。また、ビット1を「1」に設定することによって、フレーミングエラーフラグ割り込み要求を許可するように設定される。
制御レジスタC709のビット0(ビット名「PEIE」)には、パリティエラーを検出した場合に行う割り込み要求であるパリティエラーフラグ割り込み要求を許可するか否かを示す設定データが設定される。図17(B)に示すように、ビット0を「0」に設定することによって、パリティエラーフラグ割り込み要求を禁止するように設定される。また、ビット0を「1」に設定することによって、パリティエラーフラグ割り込み要求を許可するように設定される。
図18は、シリアル通信回路505が備えるデータレジスタの例を示す説明図である。データレジスタ701は、シリアル通信回路505が送受信するデータを格納するレジスタである。図18に示すように、データレジスタは、8ビットレジスタであり、初期値が「0(=00h)」に設定されている。また、データレジスタ701は、ビット0〜ビット7が書込および読出ともに可能な状態に構成されている。
この実施の形態では、シリアル通信回路505が送信データを送信する場合、データレジスタは、送信データレジスタ710として用いられる。なお、データ長を9ビットに設定した場合、データレジスタおよび制御レジスタC709のビット6が送信データレジスタ710として用いられる。この場合、データレジスタのビット0〜ビット7が送信データレジスタ710のビット0〜ビット7として用いられ、制御レジスタC709のビット6が送信データレジスタ710のビット8として用いられる。
また、シリアル通信回路505が受信データを受信する場合、データレジスタは、受信データレジスタ711として用いられる。なお、データ長を9ビットに設定した場合、データレジスタおよび制御レジスタC709のビット7が受信データレジスタ711として用いられる。この場合、データレジスタのビット0〜ビット7が受信データレジスタ711のビット0〜ビット7として用いられ、制御レジスタC709のビット7が受信データレジスタ711のビット8として用いられる。
割り込み制御回路714は、CPU56に各種割り込み要求を行う。この実施の形態では、割り込み制御回路714は、制御レジスタB708のビット6(TCIE)が「1」に設定されている場合、送信データレジスタ710に送信データの送信を完了した状態となると、CPU56に割り込み信号を出力するとともに、ステータスレジスタA705のビット6(TC)に「1」を設定することによって割り込み要求を行う。なお、ステータスレジスタA705のビットの設定値により割込要因を識別可能とするのでなく、割り込み制御回路714は、割込要因毎に異なる割り込み信号をCPU56に出力するようにしてもよい。
また、割り込み制御回路714は、制御レジスタB708のビット5(RIE)が「1」に設定されている場合、受信データレジスタ711に受信データが格納されている状態になると(受信データフルを検出すると)、CPU56に割り込み信号を出力するとともに、ステータスレジスタA705のビット5(RDRF)に「1」を設定することによって割り込み要求を行う。
また、割り込み制御回路714は、制御レジスタC709のビット0〜3のいずれかが「1」に設定されている場合、各種通信エラーが発生すると、CPU56に割り込み信号を出力するとともに、通信エラーの種類に応じて、ステータスレジスタA705のビット0〜ビット3に「1」を設定することによって割り込み要求を行う。例えば、制御レジスタC709のビット3(ORIE)が「1」に設定されている場合、オーバーランを検出して割り込み要求を行うときに、ステータスレジスタA705のビット3(OR)に「1」を設定する。また、例えば、制御レジスタC709のビット2(NEIE)が「1」に設定されている場合、ノイズエラーを検出して割り込み要求を行うときに、ステータスレジスタA705のビット2(NF)に「1」を設定する。また、例えば、制御レジスタC709のビット1(FEIE)が「1」に設定されている場合、フレーミングエラーを検出して割り込み要求を行うときに、ステータスレジスタA705のビット1(FE)に「1」を設定する。また、例えば、制御レジスタC709のビット0(PEIE)が「1」に設定されている場合、パリティエラーを検出して割り込み要求を行うときに、ステータスレジスタA705のビット0(PF)に「1」を設定する。なお、複数の通信エラーを検出した場合、割り込み制御回路714は、複数の通信エラーにもとづいて割り込み要求を行うとともに、ステータスレジスタA705の該当するビットをそれぞれ「1」に設定する。
送信フォーマット/パリティ生成回路715は、送信データのデータフォーマットを生成する。この実施の形態では、送信フォーマット/パリティ生成回路715は、送信データレジスタ710に格納される送信データにスタートビットおよびストップビットを付加してデータフォーマットを生成し、送信用シフトレジスタ712に転送する。また、制御レジスタA707のビット1(PE)に「1」が設定され、パリティ機能を使用する旨が設定されている場合、送信フォーマット/パリティ生成回路715は、送信データにパリティビットを付加してデータフォーマットを生成する。
受信フォーマット/パリティチェック回路716は、受信データのデータフォーマットを検出する。この実施の形態では、受信フォーマット/パリティチェック回路716は、受信用シフトレジスタ713に格納される受信データからスタートビットおよびストップビットを検出し、受信データに含まれるデータ部分を検出して受信データレジスタ711に転送する。また、制御レジスタA707のビット1(PE)に「1」が設定され、パリティ機能を使用する旨が設定されている場合、受信フォーマット/パリティチェック回路716は、受信データのパリティを求め、受信データに含まれるパリティと一致するか否かを検出する。また、求めた値が受信データに含まれるパリティと一致しない場合、受信フォーマット/パリティチェック回路716は、パリティエラーを検出する。なお、後述するシリアル通信回路設定処理において通信エラー時割り込み要求を許可する旨が設定されている場合、割り込み制御回路714は、パリティエラーを検出すると、通信エラーの発生を割込原因としてCPU56に割り込み要求を行う。
図19(a)は、当り判定テーブルを示す説明図である。当り判定テーブルとは、ROM54に記憶されているデータの集まりであって、ランダム0と比較される大当り判定値が設定されているテーブルである。当り判定テーブルは、後述する特別図柄ポインタが第1である、つまり、第1特別図柄が可変表示の対象とされている場合と、後述する特別図柄ポインタが第2である、つまり、第2特別図柄が可変表示の対象とされている場合のそれぞれについて、大当りとする判定値と、小当りとする判定値が設定されている。図19(a)に記載されている数値が当り判定値である。
図19(a)に示すように、特別図柄ポインタが第1である場合には、大当りに対応する判定値が設定されているが、小当りに対応する判定値は設定されておらず、よって、第1特別図柄が可変表示の対象とされている場合には、大当りのみが当選可能とされ、小当りの当選は発生しない。
また、特別図柄ポインタが第2である場合には、大当りに対応する判定値として、特別図柄ポインタが第1である場合と同様の判定値が設定されており、第2特別図柄が可変表示の対象とされている場合にも、第1特別図柄が可変表示の対象とされている場合と同じ確率で大当り(第6大当り;いわゆる直撃大当り)が発生するとともに、これら大当りに対応する判定値以外の判定値が全て小当りに対応する判定値として設定されていることにより、第2特別図柄が可変表示の対象とされている場合には、はずれがなく、大当り以外は全て小当りに当選するようになっている。
つまり、CPU106は、所定の時期に、乱数回路503のカウント値を抽出して抽出値を当り判定用乱数(ランダム0)の値とするのであるが、大当り判定用乱数値が図19(a)に示す大当りに対応するいずれかの当り判定値に一致すると、特別図柄に関して大当り(後述する大当り1〜6)にすることに決定する。また、当り判定用乱数(ランダム0)が図19(a)に示す小当りに対応するいずれかの当り判定値に一致すると、特別図柄に関して小当り(後述する小当り1〜5)にすることに決定する。なお、図19(a)に示す「確率」は、大当りになる確率(割合)並びに小当りになる確率(割合)を示す。また、大当りにするか否か決定するということは、大当り遊技状態に移行させるか否か決定するということであるが、第1特別図柄表示器8aまたは第2特別図柄表示器8bにおける停止図柄を大当り図柄にするか否か決定するということでもある。また、小当りにするか否か決定するということは、小当り遊技状態に移行させるか否か決定するということであるが、第1特別図柄表示器8aまたは第2特別図柄表示器8bにおける停止図柄を小当り図柄にするか否か決定するということでもある。
図19(b)、(c)は、ROM54に記憶されている大当り種別判定テーブル(第1特別図柄用)、大当り種別判定テーブル(第2特別図柄用)を示す説明図である。このうち、図19(b)は、遊技球が第1始動入賞口13aに入賞したことにもとづく保留記憶を用いて(すなわち、第1特別図柄の変動表示が行われるとき)大当り種別を決定する場合のテーブルである。また、図19(c)は、遊技球が第2始動入賞口に入賞したことにもとづく保留記憶を用いて(すなわち、第2特別図柄の変動表示が行われるとき)大当り種別を決定する場合のテーブルである。
大当り種別判定テーブルは、可変表示結果を大当り図柄にする旨の判定がなされたときに、当り種別判定用の乱数(ランダム1)にもとづいて、大当りの種別を第1大当り〜第6大当りのうちのいずれかに決定するために参照されるテーブルである。なお、この実施の形態では、図19(b)、(c)に示すように、大当り種別判定テーブル(第1特別図柄用)には、第1大当りから第5大当りまでの5種類の大当りが設けられているのに対し、大当り種別判定テーブル(第2特別図柄用)には、第6大当りの1種類の大当りのみが設けられている。つまり、第1特別図柄の変動表示が行われるときに発生する大当りとしては、第1大当りから第5大当りまでの5種類の大当りのうちのいずれかとなる一方、第2特別図柄の変動表示が行われるときに発生する大当りとしては、第6大当りのみとなる。
大当り種別判定テーブル(第1特別図柄用)には、第1大当り〜第5大当りのそれぞれについて、当り種別判定用の乱数(ランダム1)の判定値、確定特別図柄(「1」〜「5」)データ、ラウンド数(15R)データ、有利状態フラグがオフ状態であるかオン状態であるかに応じて大当り後に通常遊技状態とするか或いは時短(有利)状態とするかを示すデータが設定されている。
また、有利状態フラグがオフ状態(セットされていない状態)である通常遊技状態においては第3,5大当りとなった場合においてのみ、該大当り後に時短(有利)状態とされ、その他の第1,2,4大当りは通常遊技状態とされ、有利状態フラグがオン状態(セットされている状態)である有利状態においては第2大当りとなった場合においてのみ通常遊技状態とされ、その他の大当りは全て時短(有利)状態とされる。
本実施の形態における判定値数は、第1〜第5大当り全てが60であり、発生確率は同一であるが、本発明はこれに限定されるものではなく、これらの判定値数としては、遊技性を考慮して適宜に設定すれば良い。
このように第1特図ゲームでは、通常遊技状態において、大当り遊技状態の終了後に通常遊技状態に制御される第1,2,4大当りに当選する割合は3/5であり、大当り遊技状態の終了後に有利状態に制御される第3,5大当りに当選する割合は2/5である。一方、有利状態において、大当り遊技状態の終了後に通常遊技状態に制御される第2大当りに当選する割合は1/5であり、大当り遊技状態の終了後に有利状態に制御される第1,3,4,5大当りに当選する割合は4/5である。よって、有利状態での大当りの終了後は、通常遊技状態での大当りの終了後(1/5)よりも高い割合(4/5)で有利状態に制御されるため、有利状態は通常遊技状態よりも遊技者にとって有利である。
大当り種別判定テーブル(第2特別図柄用)には、第6大当りについて、当り種別判定用の乱数(ランダム1)の判定値「0」〜「299」、確定特別図柄(「7」)データ、ラウンド数(15R)データ、有利状態フラグがオフ状態であるかオン状態であるかにかかわらず、有利状態とすることを示すデータが設定されている。つまり、第2特別図柄で直撃大当りとなった場合には、全て第6大当りとなり、ラウンド数として15Rの大当り遊技が付与されるとともに、大当り後には必ず有利状態となる。
なお、この実施の形態では、第2特図ゲームにて第6大当りとなった場合には、そのときの遊技状態が通常遊技状態または有利状態のいずれであっても大当り遊技状態の終了後に必ず有利状態に制御されるようになっていたが、第6大当りとなったときの遊技状態の種別に応じて、大当り遊技状態の終了後に通常遊技状態または有利状態のいずれかに制御されるようにしてもよい。なおこの場合、有利状態での大当りの終了後は、通常遊技状態での大当り遊技状態の終了後よりも高い割合で有利状態に制御されるようにすることが好ましい。
図19(d)は、ROM54に記憶されている小当り種別判定テーブル(第2特別図柄用)を示す説明図である。この小当り種別判定テーブル(第2特別図柄用)は、遊技球が第2始動入賞口13bに入賞したことにもとづく保留記憶を用いて(すなわち、第2特別図柄の変動表示が行われるとき)小当りの発生が決定されたときに、小当りの種別を決定する場合のテーブルである。つまり、小当り種別判定テーブル(第2特別図柄用)、可変表示結果を小当り図柄にする旨の判定がなされたときに、当り種別判定用の乱数(ランダム1)にもとづいて、小当りの種別を第1小当り〜第5小当りのうちのいずれかに決定するために参照されるテーブルである。
小当り種別判定テーブル(第2特別図柄用)には、第1小当り〜第5小当りのそれぞれについて、当り種別判定用の乱数(ランダム1)の判定値、確定特別図柄(「1」〜「5」)データ、小当りによって特定領域43に遊技球が流入することにより発生する大当りのラウンド数データ、有利状態フラグがオフ状態であるかオン状態であるかに応じて大当り後に通常遊技状態とするか或いは有利状態とするかを示すデータが設定されている。
具体的には、全ての小当りに対して、15ラウンドのラウンド数データ(実質は14ラウンド)となる第7大当りが設定されることで、小当りによって特定領域43に遊技球が流入した場合には、一義的に第7大当りとなり、15ラウンド(実質には14ラウンド)の大当り遊技が付与される。
また、有利状態フラグがオフ状態(セットされていない状態)である通常遊技状態においては、第3小当りと第4小当りとなった場合には、第7大当り後に時短(有利)状態とされ、第1小当り、第2小当り、第5小当りとなった場合には、第7大当り後に通常遊技状態とされるように設定され、有利状態フラグがオン状態(セットされている状態)である時短(有利)状態においては、第1小当り、第3小当り、第4小当り、第5小当りとなった場合には、第7大当り後に時短(有利)状態とされ、第2小当りとなった場合には、該第7大当り後に通常遊技状態とされるように設定される。
なお、本実施の形態においては、第1〜第5小当りにおける足模型402の駆動制御パターン(例えば、ソレノイド18の駆動時期や駆動時間)は全て同一であり、特定領域43への遊技球の入賞しやすさは同一に設定されているが、小当りの種別に応じて足模型402の駆動制御パターン(例えば、ソレノイド18の駆動時期や駆動時間)を異ならせて、特定領域43への遊技球の入賞しやすさが異なるようにしてもよい。
第2特図ゲームでは、通常遊技状態において、大当り遊技状態の終了後に通常遊技状態に制御される第1,2,5小当りに当選する割合は3/5であり、大当り遊技状態の終了後に有利状態に制御される第3,4小当りに当選する割合は2/5である。一方、有利遊技状態において、大当り遊技状態の終了後に通常遊技状態に制御される第2小当りに当選する割合は1/5であり、大当り遊技状態の終了後に有利状態に制御される第1,3,4,5小当りに当選する割合は4/5である。よって、有利状態での大当りの終了後は、通常遊技状態での大当りの終了後(1/5)よりも高い割合(4/5)で大当り遊技状態の終了後に有利状態に制御される小当りが当選するため、有利状態は通常遊技状態よりも遊技者にとって有利である。
また、第2特図ゲームにおける有利状態での大当りの終了後は、第1特図ゲームでの通常遊技状態での大当りの終了後(2/5)よりも高い割合(4/5)で、大当り遊技状態の終了後に有利状態に制御される小当りが当選するため、当該有利状態の終了後に再び大当りとなる可能性が高いばかりか、当該大当りの終了後も有利状態となる可能性が高い、つまり有利状態の継続率が高いため、大当りが連続して発生することを期待できる。
なお、この実施の形態では、通常遊技状態における第2特図ゲームにおいて、大当りの終了後に有利状態に制御される第3,第4小当りが当選することがあるが、通常遊技状態における第2特図ゲームでは、いずれの小当りでも大当りの終了後に通常遊技状態に制御されるようにしてもよい。
また、有利状態では、第2特図ゲームが100回、つまり小当り遊技状態となるチャンスは100回あり、実際には害釘や打球等により遊技球が必ず進入するとは限らないものの、100ゲーム以内にほぼ大当りとなるように、上部大入賞口扉24cの開閉動作制御パターン、足模型402の駆動動作制御パターンが設定されているとともに、障害釘が配列されている。
尚、本実施の形態では、有利状態において特図ゲームが100回実施されたときに、第2保留記憶数が最大で4個記憶されていることがあるため、有利状態が終了した後においても、その時点で第2保留記憶数に保留記憶がある場合は該保留記憶にもとづく第2特図ゲームが実施されるため、有利状態に制御された場合は最大で104回のチャンスがある。
すなわち、有利状態において大当りとなることなく100回目の第2特図ゲームが終了した時点で有利状態は終了するが、この時点で第2保留記憶数が1以上ある場合、該第2保留記憶数分の第2特図ゲームが有利状態の終了後に実施される。但し有利状態は終了するため、1の保留記憶にもとづく第2特図ゲームの実施期間中に新たに保留記憶数が増加することは殆どない。
なお、本実施の形態では、第2特別図柄についてのみ、小当りが発生するようにしているが、本発明はこれに限定されるものではなく、これら第1特別図柄についても、小当りが発生するようにするとともに、該小当りの発生の種別に応じて該小当り後に有利状態とすることで、大当りとならずに突然的に有利状態となるようにしても良い。
図20は、遊技制御手段における出力ポートの割り当ての例を示す説明図である。図20に示すように、出力ポート0からは、払出制御基板37に送信される払出制御信号(本例では、接続信号)が出力される。また、下部大入賞口23bを開閉する特別可変入賞球装置20を開閉するためのソレノイド(大入賞口扉ソレノイド)21、および可変入賞球装置15を開閉するためのソレノイド(普通電動役物ソレノイド)16に対する駆動信号も、出力ポート0から出力される。
なお、図20に示された「論理」(例えば1がオン状態)と逆の論理(例えば0がオン状態)を用いてもよいが、特に、接続信号については、主基板31と払出制御基板37との間の信号線において断線が生じた場合やケーブル外れの場合(ケーブル未接続を含む)等に、払出制御用マイクロコンピュータ370では必ずオフ状態と検知されるように「論理」が定められる。具体的には、一般に、断線やケーブル外れが生ずると信号の受信側ではハイレベルが検知されるので、主基板31と払出制御基板37との間の信号線でのハイレベルが、遊技制御手段における出力ポートにおいてオフ状態になるように「論理」が定められる。従って、必要であれば、主基板31において出力ポートの外側に、信号を論理反転させる出力バッファ回路が設置される。
そして、出力ポート1から、ターミナル基板160を介して、外部装置(例えば、ホールコンピュータ)に対して、種情報出力用信号すなわち制御に関わる情報(例えば、始動口信号、図柄確定回数1信号、大当り1信号、大当り2信号、大当り3信号、時短信号、セキュリティ信号)の出力データが出力される。なお、この実施の形態では、後述する賞球信号1(賞球払出を1個検出するごとに出力される信号)や、遊技機エラー状態信号(遊技機がエラー状態(本例では、球切れエラー状態または満タンエラー状態)であることを示す信号)も、ターミナル基板160を介して外部装置に出力される。この場合、払出制御基板37側において、賞球払出や遊技機のエラー状態が検出され、賞球信号1や遊技機エラー状態信号が主基板31に入力される。そして、主基板31に入力された賞球信号1や遊技機エラー状態信号は、遊技制御用マイクロコンピュータ560を経由することなく、主基板31上をそのまま経由してターミナル基板160を介して外部出力される。なお、主基板31に入力された賞球信号1や遊技機エラー状態信号は、遊技制御用マイクロコンピュータ560を一旦経由してから、ターミナル基板160を介して外部出力されるようにしてもよい。
また、この実施の形態におけるパチンコ遊技機1は、第1始動入賞口13aと第2始動入賞口13bとの2つの始動入賞口を備えているため、第1始動入賞口13aに遊技球が入賞したことを通知するための始動口1信号と、第2始動入賞口13bに遊技球が入賞したことを通知するための始動口2信号と、をそれぞれ個別にターミナル基板160を介して外部出力するようにしてもよい。
なお、ターミナル基板160を介して外部出力される信号は、この実施の形態で示したものに限られない。例えば、遊技枠が開放状態であることを示すドア開放信号や、賞球の払出を10個検出するごとに出力される賞球情報も、ターミナル基板160を介して外部装置に出力されるようにしてもよい。この場合、払出制御基板37側において、遊技枠が開放状態であることや賞球の払出も検出され、ドア開放信号や賞球情報が主基板31に入力される。そして、主基板31に入力されたドア開放信号や賞球情報は、遊技制御用マイクロコンピュータ560を経由することなく、主基板31上をそのまま経由してターミナル基板160を介して外部出力される。だたし、ドア開放信号および賞球情報は、主基板31上で分岐され、遊技制御用マイクロコンピュータ560にも入力されるものとする。なお、この場合も、主基板31に入力されたドア開放信号や賞球情報は、遊技制御用マイクロコンピュータ560を一旦経由してから、ターミナル基板160を介して外部出力されるようにしてもよい。
また、例えば、遊技機が第1始動入賞口と第2始動入賞口との2つの始動入賞口を備え、第1特別図柄と第2特別図柄との2つの特別図柄を変動表示可能に構成されている場合には、第1始動入賞口13aに遊技球が入賞したことを通知するための始動口1信号と、第2始動入賞口13bに遊技球が入賞したことを通知するための始動口2信号と、をそれぞれ個別にターミナル基板160を介して外部出力するとともに、特別図柄の変動回数を通知するための図柄確定回数信号として図柄確定回数1信号に加えて図柄確定回数2信号も、ターミナル基板160を介して外部出力するようにしてもよい。この場合、例えば、第1特別図柄の変動回数のみを通知するための信号として図柄確定回数2信号を外部出力するようにし、第1特別図柄および第2特別図柄の両方の変動回数を通知するための信号として図柄確定回数1信号を外部出力するように構成すればよい。そのように構成すれば、ホールコンピュータなどの外部装置側において、第1特別図柄のみの変動回数に加えて、第1特別図柄および第2特別図柄合計の変動回数や、第2特別図柄のみの変動回数も把握することができる。
図21は、遊技制御手段における入力ポートのビット割り当ての例を示す説明図である。図21に示すように、入力ポート0のビット1〜7(ビット0は未使用)には、それぞれ、ゲートスイッチ32a、入賞口スイッチ30a,30b、磁石センサ信号1、磁石センサ信号2、ドア開放信号、賞球情報が入力される。なお、この実施の形態では、磁石を用いた不正行為を検出するための磁石センサ(図示せず)が2個設けられており、それぞれの磁石センサからの検出信号も入力ポート0から入力される。また、入力ポート1のビット0には、第1始動口スイッチ14aの検出信号が入力され、入力ポート1のビット1には、第1入賞確認スイッチ14bの検出信号が入力され、入力ポート1のビット2には、第2始動口スイッチ15aの検出信号が入力され、入力ポート1のビット3には、第2入賞確認スイッチ15bの検出信号が入力され、入力ポート1のビット4には、下部カウントスイッチ23の検出信号が入力され、入力ポート1のビット5には、第3入賞確認スイッチ23aの検出信号が入力され、入力ポート1のビット6には、上部カウントスイッチ24の検出信号が入力され、入力ポート1のビット7には、第4入賞確認スイッチ24aの検出信号が入力される。また、入力ポート2のビット0,1(ビット2〜7は未使用)には、電源断信号、クリアスイッチの検出信号が入力される。
図22は、ターミナル基板160の内部構成を示す回路図である。図22に示すターミナル基板160において、左側上段のコネクタCN−1は、主基板31からの信号を伝達するケーブルを接続するためのコネクタであり、左側下段のコネクタCN−2は、払出制御基板37からの信号を、主基板31を経由して伝達するケーブルを接続するためのコネクタである。また、右側のコネクタCN1〜CN9は、ホールコンピュータなど外部装置に対して信号を伝達するケーブルを接続するためのコネクタである。また、ターミナル基板160には、ドライバ回路としての半導体リレー(PhotoMOSリレー)PC1〜PC9が搭載されている。
主基板31からのケーブルがコネクタCN−1に接続されることにより、主基板31(遊技制御用マイクロコンピュータ560)から各種信号がターミナル基板160に入力される。具体的には、コネクタCN−1の端子「2」に始動口信号が入力され、コネクタCN−1の端子「3」に図柄確定回数1信号が入力され、コネクタCN−1の端子「5」に大当り1信号が入力され、コネクタCN−1の端子「6」に大当り2信号が入力され、コネクタCN−1の端子「7」に大当り3信号が入力され、コネクタCN−1の端子「8」に時短信号が入力され、コネクタCN−1の端子「9」にセキュリティ信号が入力される。
また、払出制御基板37からのケーブルが主基板31を経由してコネクタCN−2に接続されることにより、払出制御基板37(払出制御用マイクロコンピュータ370)からの各種信号がターミナル基板160に入力される。具体的には、コネクタCN−2の端子「2」に賞球信号1が入力され、コネクタCN−2の端子「3」に遊技機エラー状態信号が入力される。
図22に示すように、ターミナル基板160では、コネクタCN−1およびコネクタCN−2の端子「1」に基準電位の信号線が接続され、その信号線が分岐して、各々の半導体リレーPC1〜PC9の入力端子「1」に接続されている。また、コネクタCN−1の端子「2」、「3」、「5」〜「9」およびコネクタCN−2のコネクタ「2」、「3」に接続された信号線は、それぞれ、1KΩの抵抗R1〜R9を介して半導体リレーPC1〜PC9の入力端子「2」に接続されている。また、半導体リレーPC1〜PC9の出力端子「4」に接続された信号線は、それぞれ、コネクタCN1〜CN9の端子「1」に接続されている。また、半導体リレーPC1〜PC9の出力端子「3」に接続された信号線は、それぞれ、コネクタCN1〜CN9の端子「2」に接続されている。
半導体リレーPC1〜PC9では、入力端子に信号電流が流れると、入力側の発光素子(LED)が発光する。発光された光は、LEDと対向に設けられた光電素子(太陽電池)に透明シリコンを通って照射される。光を受けた光電素子は、光の量に応じて電圧に交換し、この電圧は制御回路を通って出力部のMOSFETゲートを充電する。光電素子より供給されるMOSFETゲート電圧が設定電圧値に達すると、MOSFETが導通状態になり、負荷をオンさせる。入力端子の信号電流が切れると、発光素子(LED)の発光が止まる。LEDの発光が止まると、光電素子の電圧が下がり、光電素子から供給される電圧が下がると制御回路により、MOSFETのゲート負荷を急速に放電させる。この制御回路によりMOSFETが非導通状態になり、負荷をオフさせる。
以上のような半導体リレーPC1〜PC9の動作により、入力側のコネクタCN−1およびコネクタCN−2から入力された信号が出力側のコネクタCN1〜CN9に伝達され、ホールコンピュータなど外部装置に対して出力される。具体的には、コネクタCN1から始動口信号が出力され、コネクタCN2から図柄確定回数1信号が出力され、コネクタCN3から大当り1信号が出力され、コネクタCN4から大当り2信号が出力され、コネクタCN5から大当り3信号が出力され、コネクタCN6から時短信号が出力され、コネクタCN7からセキュリティ信号が出力され、コネクタCN8から賞球信号1が出力され、コネクタCN9から遊技機エラー状態信号が出力される。なお、ターミナル基板160における各外部出力信号に対するコネクタの割り当ては、この実施の形態で示したものにかぎられない。例えば、セキュリティ信号については、ターミナル基板160に設けられた一番端のコネクタ(例えば、コネクタCN9)から出力されるようにしてもよい。また、遊技機エラー状態信号に関しては必ずしもパチンコ遊技機1の外部に出力しなくてもよく、例えばコネクタCN9から、この遊技機エラー状態信号の替わりに遊技枠が開放状態であることを示すドア開放信号等を出力するようにしてもよい。
なお、コネクタCN7から出力されるセキュリティ信号は、遊技機のセキュリティ状態を示す信号である。具体的には、後述するように、第1始動口スイッチ14aの検出結果と第1入賞確認スイッチ14bの検出結果、第2始動口スイッチ15aの検出結果と第2入賞確認スイッチ15bの検出結果、下部カウントスイッチ23の検出結果と第3入賞確認スイッチ23aの検出結果、上部カウントスイッチ24の検出結果と第4入賞確認スイッチ24aの検出結果にそれぞれもとづいて、第1始動入賞口13a、第2始動入賞口13b、下部大入賞口23b、上部大入賞口24bへの異常入賞が発生したと判定された場合に、セキュリティ信号が所定期間(例えば、4分間)ホールコンピュータなどの外部装置に出力される。そのように構成することによって、電波などを用いて第1始動入賞口13a、第2始動入賞口13b、下部大入賞口23b、上部大入賞口24bへの入賞数が実際の入賞数よりも多くなるように認識させるような不正行為が行われたことを、ホールコンピュータなどの外部装置側で認識できるようにすることができる。
また、この実施の形態では、遊技機への電源投入が行われて初期化処理が実行された場合にも、セキュリティ信号が所定期間(例えば、30秒間)ホールコンピュータなどの外部装置に出力される。そのように構成することによって、不自然なタイミングで(例えば、遊技店の開店時に全ての遊技機の電源リセット作業を終えた後であるにもかかわらず)初期化処理が実行されたことを認識可能とすることによって、不正に遊技機を電源リセットさせて電源リセットのタイミングで大当りを狙うような不正行為が行われた可能性を、ホールコンピュータなどの外部装置側で認識できるようにすることができる。
なお、この実施の形態では、上記のように、異常入賞が検出された場合と、初期化処理(例えば、遊技機への電源投入時に、クリアスイッチによる操作が行われたことにもとづいてRAM55の記憶内容をクリアするなどの処理)が実行された場合とで、共通のセキュリティ信号をターミナル基板160の共通のコネクタCN7から外部出力している。これは、初期化処理が実行されるのは、通常、遊技店の開店時に遊技機の電源リセット作業を行う場合のみであることから、1日のうち1回程度しか出力されない信号のためにターミナル基板160上に専用のコネクタや半導体リレーを設けることは効率的ではなく無駄が多い。そこで、この実施の形態では、異常入賞が検出された場合と、初期化処理が実行された場合とで、共通のコネクタCN7からセキュリティ信号を出力するように構成することによって、外部出力用の信号線や回路素子の無駄を低減している。すなわち、ホールコンピュータなどの外部装置に情報を出力するための機構の部品数の増加や配線作業の複雑化を防ぐことができる。
なお、セキュリティ信号として共通のコネクタから外部出力される信号は、この実施の形態で示したものにかぎられない。例えば、第1始動入賞口13a、第2始動入賞口13b、下部大入賞口23b、上部大入賞口24bへの異常入賞にかぎらず、普通入賞口29a〜29dへの異常入賞を検出して、ターミナル基板160の共通のコネクタCN7からセキュリティ信号として外部出力可能なように構成してもよい。この場合、例えば、普通入賞口29a〜29dについても、第1始動入賞口13a、第2始動入賞口13b、下部大入賞口23b、上部大入賞口24bと同様に、遊技球の入賞を検出するためのスイッチとして検出方式の異なる2種類のスイッチ(近接スイッチとフォトセンサ)を設けるようにし、第1始動入賞口13a、第2始動入賞口13b、下部大入賞口23b、上部大入賞口24bと同様の判定方法に従って、異常入賞の有無を判定するようにすればよい。
また、例えば、遊技機に設けられた磁石センサで異常磁気を検出した場合や、遊技機に設けられた電波センサで異常電波を検出した場合に、ターミナル基板160の共通のコネクタCN7からセキュリティ信号として外部出力可能なように構成してもよい。また、例えば、遊技機に設けられた各種スイッチの異常を検出した場合(例えば、入力値が閾値を超えたと判定したことにより、短絡などの発生を検出した場合)に、ターミナル基板160の共通のコネクタCN7からセキュリティ信号として外部出力可能なように構成してもよい。
上記のように、下部大入賞口23bや上部大入賞口24bへの異常入賞や異常磁気エラー、異常電波エラーについてもターミナル基板160の共通のコネクタCN7からセキュリティ信号として外部出力可能なように構成すれば、1本の信号線さえ接続すればホールコンピュータなど外部装置でエラー検出を行えるようにすることができ、エラー検出に関する作業負担を軽減することができる。
なお、下部大入賞口23bへの異常入賞を検出する場合には、下部カウントスイッチ23による検出数と第3入賞確認スイッチ23aによる検出数とが所定値(例えば、20)以上となったことにもとづいて判定する場合に加えて、特別図柄プロセスフラグの値が大当り遊技中であることを示す値となっていない場合(例えば、特別図柄プロセスフラグの値が4以上となっていない場合。図65参照)に下部カウントスイッチ23により遊技球を検出した場合にも、下部大入賞口23bへの異常入賞が発生したと判定するようにしてもよい。また、このように特別図柄プロセスフラグの値にもとづいて下部大入賞口23bへの異常入賞が発生したと判定した場合にも、スイッチ正常/異常チェック処理におけるステップS127と同様に、セキュリティ信号情報タイマに所定時間(例えば、4分)をセットすることにより、セキュリティ信号を外部出力するようにすればよい。
また、例えば、遊技制御用マイクロコンピュータ560と払出制御用マイクロコンピュータ370との間の通信エラーを検出した場合にも、ターミナル基板160の共通のコネクタCN7からセキュリティ信号として外部出力可能なように構成してもよい。この場合、例えば、遊技制御用マイクロコンピュータ560は、払出制御用マイクロコンピュータ370から後述する接続OKコマンドや賞球個数受付コマンドを受信できなかったことにもとづいて通信エラーが発生したと判定し、ターミナル基板160の共通のコネクタCN7からセキュリティ信号として外部出力してもよい。また、例えば、遊技制御用マイクロコンピュータ560は、シリアル通信回路505のステータスレジスタAのビット0〜4のいずれかのエラービットの値がセットされていることにもとづいて通信エラーが発生したと判定し、ターミナル基板160の共通のコネクタCN7からセキュリティ信号として外部出力してもよい。
なお、セキュリティ信号用の信号線およびコネクタCN7とは別に、遊技制御用マイクロコンピュータ560と払出制御用マイクロコンピュータ370との間の通信エラー専用の信号線およびコネクタをターミナル基板160に設けてもよい。そして、遊技制御用マイクロコンピュータ560と払出制御用マイクロコンピュータ370との間の通信エラーを検出した場合には、セキュリティ信号とは別の信号として、ターミナル基板160を経由してホールコンピュータなどの外部装置に出力するようにしてもよい。
また、セキュリティ信号出力用の信号線とは別に、初期化処理実行の検出や、第1始動入賞口13a、第2始動入賞口13b、下部大入賞口23b、上部大入賞口24bへの異常入賞の検出、異常磁気エラーの検出、異常電波エラーの検出、通信エラーの検出について、それぞれ別々の信号線を設けるようにし、ターミナル基板160から、セキュリティ信号とともに、それぞれのエラーに対応した外部出力信号も、ホールコンピュータなどの外部装置に出力するようにしてもよい。そのように構成すれば、セキュリティ信号を確認することによって何らかのエラーが発生していることを認識できるとともに、さらにエラーの種類ごとに出力される信号を確認することによって遊技店側でエラーの種類を確認することができる。従って、遊技店側からエラーの種類の確認まで要求されているような場合には、セキュリティ信号とは別にエラー種類ごとの外部出力信号を設けることによって、より遊技店のニーズに応えた外部出力を行えるようにすることができる。一方で、何らかのエラーが発生していることの確認のみを要求しているような遊技店の場合には、外部出力される信号のうち、セキュリティ信号のみをホールコンピュータなどの外部装置に接続して確認するようにすればよい。
上記のように、半導体リレーPC1〜PC9をターミナル基板160に設けたことにより、外部から遊技機内部への信号入力を防止することができ、その結果、不正行為を確実に防止することができる。なお、上記の例では、ターミナル基板160に半導体リレーPC1〜PC9を設けていたが、半導体リレーPC1〜PC9ではなく、機械式のリレー等の他のリレー素子であってもよい。
次に、第1始動入賞口13a、第2始動入賞口13b、下部大入賞口23b、上部大入賞口24b、入賞口29a〜29dを構成する各入賞装置及び各入賞口に入賞(進入)した遊技球が流下する遊技球通路の構造について、図25にもとづいて説明する。図25は、(a)は遊技盤に設けられた各種入賞通路を示す背面図であり、(b)は第2入賞通路及び上部大入賞通路の放出口近傍を示す図であり、(c)は第1入賞通路の放出口近傍を示す図であり、(d)は下部大入賞通路の放出口近傍を示す図である。
図25(a)に示すように、遊技盤6には、上部大入賞口24bを形成する可変入賞装置400が取り付けられる第1開口451と、第1始動入賞口13aを形成する入賞装置が取り付けられる第2開口452と、第2始動入賞口13bを形成する可変入賞球装置15が取り付けられる第3開口453と、下部大入賞口23bを形成する特別可変入賞球装置20が取り付けられる第4開口454と、装飾ランプ25aが設けられる装飾部材25が取り付けられる第5開口455と、アウト口26を構成する第6開口456と、がそれぞれ形成されている。
第1開口451に前面側から取り付けられた可変入賞装置400の背面下部からは、可変入賞装置400の上部大入賞口24bに入賞した後、遊技盤6の背面に誘導された遊技球が流下する上部大入賞通路1309が下方に向けて延設されている。上部大入賞通路1309は、特に詳細な図示はしないが透明な合成樹脂材により筒状に形成され、上端部には、上部球経路406から下部ステージ407に振分けられて特定領域スイッチ43aによって検出された後に遊技盤6の背面側に誘導された遊技球と、上部球経路406から下部球経路408に振分けられて特定領域スイッチ43aによって検出されずに遊技盤6の背面側に誘導された遊技球と、を受け入れる受入口1309aが形成されている。
上部大入賞通路1309は、受入口1309aの下方において遊技盤6を背面から見て左側に屈曲された後、再度下方に向けて屈曲して垂下されている。受入口1309aの下部には排出口スイッチ45が設けられ、上部大入賞口24bに入賞した遊技球は、排出口スイッチ45にて検出された後、放出口1454(図25(b)参照)から放出されて後述する回収樋1500内に排出される。
第2開口452に前面側から取り付けられた第1始動入賞口13aを有する始動入賞ユニットの背面下部からは、第1始動入賞口13aに入賞した遊技球が流下する第1入賞通路1306aが下方に向けて延設されている。第1入賞通路1306aは、特に詳細な図示はしないが透明な合成樹脂材により筒状に形成され、第2開口452から下方に向けて垂設されている。また、第1始動入賞口13aの下方に配置される特別可変入賞球装置20の背面には、第1入賞通路1306aの直下に配置される第1入賞通路1306bが下方に向けて延設されており、これら第1入賞通路1306a,1306bにより第1入賞通路が構成されている。
上流側の第1入賞通路1306aには第1始動口スイッチ14aが設けられるとともに、下流側の第1入賞通路1306bには第1入賞確認スイッチ14bが設けられ、第1始動入賞口13aに入賞した遊技球は、第1始動口スイッチ14a及びその下流側に配置される第1入賞確認スイッチ14bにて検出された後、放出口1452から放出されて後述する回収樋1500内に排出される。
第3開口453に前面側から取り付けられた可変入賞球装置15の背面下部からは、第2始動入賞口13bに入賞した遊技球が流下する第2入賞通路1307が下方に向けて延設されている。第2入賞通路1307は、特に詳細な図示はしないが透明な合成樹脂材により筒状に形成され、第3開口453から下方に向けて垂設された後、遊技盤6を背面から見て左側に屈曲し、再度下方に向けて屈曲して垂下されている。
第2入賞通路1307における上部の垂直部には第2始動口スイッチ15aが設けられるとともに、下部の垂直部には第2入賞確認スイッチ15bが設けられ、第2始動入賞口13bに入賞した遊技球は、第2始動口スイッチ15a及びその下流側に配置される第2入賞確認スイッチ15bにて検出された後、放出口1453(図25(b)参照)から放出されて後述する回収樋1500内に排出される。
第4開口454に前面側から取り付けられた特別可変入賞球装置20の背面下部からは、下部大入賞口23bに入賞した遊技球が流下する下部大入賞通路1308が下方に向けて延設されている。下部大入賞通路1308は、特に詳細な図示はしないが透明な合成樹脂材により筒状に形成され、第4開口454から下方に向けて垂設されている。
下部大入賞通路1308には第3入賞確認スイッチ23aが設けられ、下部大入賞口23bから特別可変入賞球装置20の内部に設けられた入賞通路に入賞した遊技球は、遊技盤6を背面から見て右側に誘導された後に下部カウントスイッチ23にて検出された後、遊技盤6の背面側に誘導されて下部大入賞通路1308に流入した後、該下部大入賞通路1308に設けられた第3入賞確認スイッチ23aにて検出された後、放出口1455(図25(d)参照)から放出されて後述する回収樋1500内に排出される。
左右の第5開口455,455に前面側から取り付けられた装飾ランプ25aが設けられる装飾部材25,25の背面からは、入賞口29a,29bに入賞した遊技球が流下する入賞通路1450及び入賞口29c,29dに入賞した遊技球が流下する入賞通路1451が下方に向けて延設されている。入賞通路1450,1451は、特に詳細な図示はしないが透明な合成樹脂材により筒状に形成され、装飾部材25,25の背面から下方に向けて垂設されている。
入賞通路1450,1451には入賞口スイッチ30a,30bがそれぞれ設けられ、入賞口29a,29bに入賞した遊技球は入賞口スイッチ30aにて検出された後、放出口1457から放出されて後述する回収樋1500内に排出される。また、入賞口29c,29dに入賞した遊技球は入賞口スイッチ30bにて検出された後、放出口1458から放出されて後述する回収樋1500内に排出される。
また、図25(b)(c)(d)に示すように、各入賞通路1306b,1307,1308,1309の放出口1452〜1455の下部位置には、垂直方向に落下してきた遊技球の放出方向を左斜め下、右斜め下方向に変更する放出方向変更面1460〜1463がそれぞれ設けられている。
各放出口1452〜1455から放出される遊技球は、遊技機の遊技枠(図示略)に設けられる回収樋1500内に落下し、最終的には遊技機から排出されて図示しない遊技機設置島の回収路等にて回収される。回収樋1500は漏斗状に形成されており、回収路面としての底面1501は、中央の排出路1502に向けて下方に傾斜する傾斜面状に形成されており、各放出口1452〜1455から放出される遊技球を排出路1502に向けて誘導して排出する。
遊技盤6を遊技枠に取り付けた状態において、各放出口1452〜1455の直下に底面1501が左右方向に配置されることで、各放出口1452〜1455から放出され底面1501上に落下した遊技球が飛び跳ねることが予想されるが、各放出口1452〜1455には放出方向変更面1460〜1463が設けられていることで、第1入賞確認スイッチ14b、第2入賞確認スイッチ15b、第3入賞確認スイッチ23a、第4入賞確認スイッチ24aを通過した遊技球は鉛直方向に放出されることはない。つまり、底面1501上に落下した遊技球が飛び跳ねて第1入賞確認スイッチ14b、第2入賞確認スイッチ15b、第3入賞確認スイッチ23a、第4入賞確認スイッチ24aにより再度検出されてしまうことが防止される。
また、第4入賞確認スイッチ24aは可変入賞装置400内に設けられており、該第4入賞確認スイッチ24aから放出口1454までの各入賞通路407,408,1309には複数の屈曲部が設けられているため、放出口1454から放出され底面1501上に落下した遊技球が飛び跳ねたとしても屈曲部にて逆流が防止されるため、第4入賞確認スイッチ24aを通過した遊技球が再度検出されることはない。
特に図24に示すように、上部球経路406における垂直部には第4入賞確認スイッチ24aが設けられており、上部球経路406は、第4入賞確認スイッチ24aの近傍下方位置に形成された屈曲部から前面側に向けて下方に傾斜するように延設されて下部ステージ407に連通している。つまり、第4入賞確認スイッチ24aを通過した遊技球は再度第4入賞確認スイッチ24aで検出されることはない。
以上説明したように、本実施の形態においては、遊技領域7の下部に、第1始動入賞口13aを有する始動入賞ユニットと特別可変入賞球装置20とを上下に近接して配置することで、遊技領域7に設けられる演出表示装置9の表示部や、その右側に配設される役物や装飾部材等の配置スペースを広範囲にわたり確保することができ、これにより限られた遊技領域7において演出表示装置9の表示部や役物、装飾部材等を極力大型化することが可能となる。
そして特別可変入賞球装置20の上方には第1始動入賞口13aが近接して配置され、第1始動入賞口13aから入賞した遊技球が通過する第1入賞通路1306a,1306bには、第1検出手段としての第1始動口スイッチ14a及び第2検出手段としての第1入賞確認スイッチ14bが取り付けられるが、第1入賞通路1306a,1306bを短寸化すると第1始動口スイッチ14aと第1入賞確認スイッチ14bとを所定距離離間して配設することが困難となる。そこで、下流側の第1入賞通路1306bを特別可変入賞球装置20の背面に設け、第1入賞確認スイッチ14bを第1入賞通路1306bに取り付けることで、第1入賞通路1306bに制限されることなく第1始動入賞口13aを形成する始動入賞ユニットと特別可変入賞球装置20とを極力間隔を狭めて配置することができるため、遊技領域7に設けられる演出表示装置9の表示部や、その右側に配設される役物や装飾部材等の配置スペースを広範囲にわたり確保することができる。
また、この実施の形態では、第2始動入賞口13bから入賞した遊技球が通過する第2入賞通路1307に、検出方式が異なる電磁式の第2始動口スイッチ15a及び光学式の第2入賞確認スイッチ15bが取り付けられていることで、電波または光による不正行為の影響をうけず正常に遊技球を検出できることで、不正に賞球払出させることだけでなく、第2特図ゲームを不正に実行させて小当りを多発させることにより可変入賞装置400の上部大入賞口24bを不正開放させるといった不正行為を防止することができる。
また、上部カウントスイッチ24及び第4入賞確認スイッチ24aが設けられる上部球経路406は、特に詳細な図示はしないが、可変入賞装置400における下部ステージ407等よりも背面側の奥まった位置に配設されている。より詳しくは、上部球経路406は前面側に開口する可変入賞装置400の内部に配設されるものであるが、可変入賞装置400は、遊技盤6に形成された開口に前面側から嵌合されて取り付けられるものであり、上部球経路406の配設位置は、実質的に遊技盤6の背面よりも背面側に位置している。よって、遊技盤6の背面に設けられる他のスイッチ14a,14b,15a,15b,23,23b等と同様に、上部カウントスイッチ24及び第4入賞確認スイッチ24aは、遊技機の前面側から容易にアクセスしにくい位置に配設されているため、前面側に開口する可変入賞装置400における不正行為を極力困難とすることができる。
また、この実施の形態では、第1始動入賞口13aに遊技球が入賞したことにもとづいて第1特別図柄表示器8aにて第1特別図柄の変動表示が開始され、第2始動入賞口13bに遊技球が入賞したことにもとづいて第2特別図柄表示器8bにて第2特別図柄の変動表示が開始されるようになっていたが、第1始動入賞口13aまたは第2始動入賞口13bに遊技球が入賞したことにもとづいて1つの特別図柄表示器にて特別図柄の変動表示が開始されるものであってもよい。つまり、単一の特別図柄表示器に対応して2以上の始動入賞口を設けてもよい。
また、本実施の形態では、第1特図ゲームで第3大当りまたは第5大当りに当選して該大当り状態の終了後に有利状態に移行することで、第2特図ゲームが実行されやすくなり、この第2特図ゲームで小当りに当選することで可変入賞装置400が開放するようになっていたが、遊技領域7に設けた所定の始動入賞口に遊技球が入賞したことにもとづき実行される特図ゲームで小当りに当選したことで可変入賞装置400が開放するものに限定されるものではなく、例えば、通常遊技状態においてゲートスイッチ32aによって遊技球が検出されて普通図柄の可変表示が開始され、普図当りとなった場合に可変入賞装置400が開放するようにしてもよい。さらに、遊技領域7に設けた所定の始動入賞口に遊技球が入賞したことにより、特図ゲームで小当り判定などすることなく可変入賞装置400が開放するようにしてもよい。
次に遊技機の動作について説明する。図26は、遊技機に対して電力供給が開始され遊技制御用マイクロコンピュータ560へのリセット信号がハイレベルになったことに応じて遊技制御用マイクロコンピュータ560のCPU56が実行するメイン処理を示すフローチャートである。リセット信号が入力されるリセット端子の入力レベルがハイレベルになると、遊技制御用マイクロコンピュータ560のCPU56は、プログラムの内容が正当か否かを確認するための処理であるセキュリティチェック処理を実行した後、ステップS1以降のメイン処理を開始する。メイン処理において、CPU56は、まず、必要な初期設定を行う。
初期設定処理において、CPU56は、まず、割込禁止に設定する(ステップS1)。次に、マスク可能割込の割込モードを設定し(ステップS2)、スタックポインタにスタックポインタ指定アドレスを設定する(ステップS3)。なお、ステップS2では、遊技制御用マイクロコンピュータ560の特定レジスタ(Iレジスタ)の値(1バイト)と内蔵デバイスが出力する割込ベクタ(1バイト:最下位ビット0)から合成されるアドレスが、割込番地を示すモードに設定する。また、マスク可能な割込が発生すると、CPU56は、自動的に割込禁止状態に設定するとともに、プログラムカウンタの内容をスタックにセーブする。
次いで、CPU56は、払出制御用マイクロコンピュータ370に対して、接続信号の出力を開始する(ステップS4)。なお、CPU56は、ステップS4で接続信号の出力を開始すると、遊技機の電源供給が停止したり、何らかの通信エラーが生じて出力不能とならないかぎり、払出制御用マイクロコンピュータ370に対して接続信号を継続して出力する。
次いで、内蔵デバイスレジスタの設定(初期化)を行う(ステップS5)。ステップS5の処理によって、内蔵デバイス(内蔵周辺回路)であるCTC(カウンタ/タイマ)およびPIO(パラレル入出力ポート)の設定(初期化)がなされる。
この実施の形態で用いられる遊技制御用マイクロコンピュータ560は、I/Oポート(PIO)およびタイマ/カウンタ回路(CTC)504も内蔵している。
次いで、CPU56は、RAM55をアクセス可能状態に設定し(ステップS6)、クリア信号のチェック処理に移行する。
なお、遊技の進行を制御する遊技装置制御処理(遊技制御処理)の開始タイミングをソフトウェアで遅らせるためのソフトウェア遅延処理を実行するようにしてもよい。そのようなソフトウェア遅延処理によって、ソフトウェア遅延処理を実行しない場合に比べて、遊技制御処理の開始タイミングを遅延させることができる。遅延処理を実行したときには、他の制御基板(例えば、払出制御基板37)に対して、遊技制御基板(主基板31)が送信するコマンドを他の制御基板のマイクロコンピュータが受信できないという状況が発生することを防止できる。
次いで、CPU56は、クリアスイッチがオンされているか否か確認する(ステップS7)。なお、CPU56は、入力ポート0を介して1回だけクリア信号の状態を確認するようにしてもよいが、複数回クリア信号の状態を確認するようにしてもよい。例えば、クリア信号の状態がオフ状態であることを確認したら、所定時間(例えば、0.1秒)の遅延時間をおいた後、クリア信号の状態を再確認する。そのときにクリア信号の状態がオン状態であることを確認したら、クリア信号がオン状態になっていると判定する。また、このときにクリア信号の状態がオフ状態であることを確認したら、所定時間の遅延時間をおいた後、再度、クリア信号の状態を再確認するようにしてもよい。ここで、再確認の回数は、1回または2回に限られず、3回以上であってもよい。また、2回チェックして、チェック結果が一致していなかったときにもう一度確認するようにしてもよい。
ステップS7でクリアスイッチがオンでない場合には、遊技機への電力供給が停止したときにバックアップRAM領域のデータ保護処理(例えばパリティデータの付加等の電力供給停止時処理)が行われたか否か確認する(ステップS8)。この実施の形態では、電力供給の停止が生じた場合には、バックアップRAM領域のデータを保護するための処理が行われている。そのような電力供給停止時処理が行われていたことを確認した場合には、CPU56は、電力供給停止時処理が行われた、すなわち電力供給停止時の制御状態が保存されていると判定する。電力供給停止時処理が行われていないことを確認した場合には、CPU56は初期化処理を実行する。
電力供給停止時処理が行われていたか否かは、電力供給停止時処理においてバックアップRAM領域に保存されるバックアップ監視タイマの値が、電力供給停止時処理を実行したことに応じた値(例えば2)になっているか否かによって確認される。なお、そのような確認の仕方は一例であって、例えば、電力供給停止時処理においてバックアップフラグ領域に電力供給停止時処理を実行したことを示すフラグをセットし、ステップS8において、そのフラグがセットされていることを確認したら電力供給停止時処理が行われたと判定してもよい。
電力供給停止時の制御状態が保存されていると判定したら、CPU56は、バックアップRAM領域のデータチェック(この例ではパリティチェック)を行う(ステップS9)。この実施の形態では、クリアデータ(00)をチェックサムデータエリアにセットし、チェックサム算出開始アドレスをポインタにセットする。また、チェックサムの対象になるデータ数に対応するチェックサム算出回数をセットする。そして、チェックサムデータエリアの内容とポインタが指すRAM領域の内容との排他的論理和を演算する。演算結果をチェックサムデータエリアにストアするとともに、ポインタの値を1増やし、チェックサム算出回数の値を1減算する。以上の処理が、チェックサム算出回数の値が0になるまで繰り返される。チェックサム算出回数の値が0になったら、CPU56は、チェックサムデータエリアの内容の各ビットの値を反転し、反転後のデータをチェックサムにする。
電力供給停止時処理において、上記の処理と同様の処理によってチェックサムが算出され、チェックサムはバックアップRAM領域に保存されている。ステップS9では、算出したチェックサムと保存されているチェックサムとを比較する。不測の停電等の電力供給停止が生じた後に復旧した場合には、バックアップRAM領域のデータは保存されているはずであるから、チェック結果(比較結果)は正常(一致)になる。チェック結果が正常でないということは、バックアップRAM領域のデータが、電力供給停止時のデータとは異なっている可能性があることを意味する。そのような場合には、内部状態を電力供給停止時の状態に戻すことができないので、電力供給の停止からの復旧時でない電源投入時に実行される初期化処理(ステップS10〜S14の処理)を実行する。
チェック結果が正常であれば、CPU56は、遊技制御手段の内部状態と演出制御手段等の電気部品制御手段の制御状態を電力供給停止時の状態に戻すための遊技状態復旧処理を行う。具体的には、ROM54に格納されているバックアップ時設定テーブルの先頭アドレスをポインタに設定し(ステップS91)、バックアップ時設定テーブルの内容を順次作業領域(RAM55内の領域)に設定する(ステップS92)。作業領域はバックアップ電源によって電源バックアップされている。バックアップ時設定テーブルには、作業領域のうち初期化してもよい領域についての初期化データが設定されている。ステップS91およびS92の処理によって、作業領域のうち初期化してはならない部分については、保存されていた内容がそのまま残る。初期化してはならない部分とは、例えば、電力供給停止前の遊技状態を示すデータ(特別図柄プロセスフラグなど)、出力ポートの出力状態が保存されている領域(出力ポートバッファ)、未払出賞球数を示すデータが設定されている部分などである。
また、CPU56は、ROM54に格納されているバックアップ時コマンド送信テーブルの先頭アドレスをポインタに設定し(ステップS93)、ステップS15に移行する。なお、ステップS93で設定された後、後述するステップS15aのシリアル通信回路設定処理が行われてからバックアップコマンドが送信されることになる。
初期化処理では、CPU56は、まず、RAMクリア処理を行う(ステップS10)。なお、RAM55の全領域を初期化せず、所定のデータをそのままにしてもよい。また、ROM54に格納されている初期化時設定テーブルの先頭アドレスをポインタに設定し(ステップS11)、初期化時設定テーブルの内容を順次作業領域に設定する(ステップS12)。
ステップS11およびS12の処理によって、例えば、普通図柄判定用乱数カウンタ、普通図柄判定用バッファ、特別図柄バッファ、特別図柄プロセスフラグ、賞球中フラグ、球切れフラグなど制御状態に応じて選択的に処理を行うためのフラグに初期値が設定される。
また、CPU56は、ROM54に格納されている初期化時コマンド送信テーブルの先頭アドレスをポインタに設定し(ステップS13)、その内容に従ってサブ基板を初期化するための初期化コマンドをサブ基板に送信する処理を実行する(ステップS14)。初期化コマンドとして、演出表示装置9に表示される初期図柄を示すコマンドや払出制御基板37への初期化コマンド等を使用することができる。なお、ステップS13で設定された後、後述するステップS15aのシリアル通信回路設定処理が行われてから初期化コマンドが送信されることになる。
また、CPU56は、セキュリティ信号情報タイマに所定時間(本例では、30秒)をセットする(ステップS14a)。セキュリティ信号情報タイマは、ターミナル基板160から出力するセキュリティ信号のオン時間を計測するためのタイマである。この実施の形態では、ステップS14aでセキュリティ信号情報タイマに所定時間がセットされたことにもとづいて、後述する情報出力処理(S31参照)が実行されることによって、遊技機の電源投入時に初期化処理が実行されたときに、セキュリティ信号が所定時間(本例では、30秒)外部出力される。
また、CPU56は、各乱数回路503a,503bを初期設定する乱数回路設定処理を実行する(ステップS15)。この場合、CPU56は、乱数回路設定プログラム551に従って処理を実行することによって、各乱数回路503a,503bにランダムRの値を更新させるための設定を行う。
また、CPU56は、シリアル通信回路505を初期設定するシリアル通信回路設定処理を実行する(ステップS15a)。この場合、CPU56は、シリアル通信回路設定プログラムに従ってROM54の所定領域に格納されているデータをシリアル通信回路505に設定することによって、シリアル通信回路505に払出制御用マイクロコンピュータとシリアル通信させるための設定を行う。
シリアル通信回路505を初期設定すると、CPU56は、シリアル通信回路505の割り込み要求に応じて実行する割込処理の優先順位を初期設定する(ステップS15b)。この場合、CPU56は、割込優先順位設定プログラム557に従って処理を実行することによって、割込処理の優先順位を初期設定する。
例えば、CPU56は、各割込処理のデフォルトの優先順位を含む所定の割込処理優先順位テーブルに従って、各割込処理の優先順位を初期設定する。この実施の形態では、CPU56は、割込処理優先順位テーブルに従って、シリアル通信回路505において通信エラーが発生したことを割込原因とする割込処理を優先して実行するように初期設定する。この場合、例えば、CPU56は、通信エラーが発生したことを割込原因とする割込処理を優先して実行する旨を示す通信エラー時割込優先実行フラグをセットする。
なお、この実施の形態では、タイマ割込とシリアル通信回路505からの割り込み要求とが同時に発生した場合、CPU56は、タイマ割込による割込処理を優先して行う。
また、ユーザによって各割込処理のデフォルトの優先順位を変更することもできる。例えば、遊技制御用マイクロコンピュータ560は、ユーザ(例えば、遊技機の製作者)によって設定された割込処理を指定する指定情報を、あらかじめROM54の所定の記憶領域に記憶している。そして、CPU56は、ROM54の所定の記憶領域に記憶された指定情報に従って、割込処理の優先順位を設定する。
なお、ステップS15〜S15bだけでなく、乱数回路503やシリアル通信回路505の設定処理の一部は、ステップS5の処理においても実行される。例えば、ステップS5において、内蔵デバイスレジスタとして、シリアル通信回路505のボーレートレジスタや通信設定レジスタ、割込制御レジスタ、ステータスレジスタに、初期値を設定する処理が実行される。
例えば、内蔵デバイスレジスタの設定において、CPU56は、シリアル通信回路505のボーレートを設定する。この場合、CPU56は、シリアル通信回路505のボーレートレジスタ702に、設定するボーレートに対応する設定値を書き込む。例えば、遊技制御用マイクロコンピュータ560は、ユーザ(例えば、遊技機の製作者)によって設定された設定値を指定する指定情報を、あらかじめROM54の所定の記憶領域に記憶している。そして、CPU56は、ROM54の所定の記憶領域に記憶された指定情報に従って、設定値をボーレートレジスタ702に書き込む。例えば、CPU56によってボーレート設定値「156」が設定された場合、ボーレート生成回路703によって、式(1)およびクロック周波数「3MHz」を用いてボーレート「1201.92bps」が生成される。
また、例えば、CPU56は、シリアル通信回路505が送受信するデータのデータフォーマットを設定する。この場合、CPU56は、制御レジスタA707の各ビットの値を設定することによって、送受信データのデータ長(8ビットまたは9ビット)、パリティ機能の使用の有無を設定する。例えば、遊技制御用マイクロコンピュータ560は、ユーザ(例えば、遊技機の製作者)によって設定された制御レジスタA707の各ビットの値を指定する指定情報を、あらかじめROM54の所定の記憶領域に記憶している。そして、CPU56は、ROM54の所定の記憶領域に記憶された指定情報に従って、制御レジスタA707の各ビットの値を設定する。
また、例えば、CPU56は、シリアル通信回路505が発生する各割込要求を許可するか否かを設定する。この場合、CPU56は、制御レジスタB708のビット5,6,7の値を設定することによって、送信時割り込み要求(データの送信時に行う割り込み要求である送信割り込み要求や、送信完了時に行う送信完了割り込み要求)および受信時割り込み要求を許可するか否かを設定する。なお、CPU56は、送信時割り込み要求と受信時割り込み要求との両方を許可するように設定することも可能であり、送信時割り込み要求と受信時割り込み要求とのいずれか一方のみを許可するように設定することも可能である。また、CPU56は、制御レジスタC709のビット0〜3の値を設定することによって、各通信エラー時割り込み要求を許可するか否かを設定する。例えば、遊技制御用マイクロコンピュータ560は、ユーザ(例えば、遊技機の製作者)によって設定された制御レジスタB708および制御レジスタC709の各ビットの値を指定する指定情報を、あらかじめROM54の所定の記憶領域に記憶している。そして、CPU56は、ROM54の所定の記憶領域に記憶された指定情報に従って、制御レジスタB708および制御レジスタC709の各ビットの値を設定する。
また、メイン処理の初期化処理において、後述する賞球不足エラーや賞球過剰エラーを検出するために用いられる賞球個数カウンタに初期値として「250」が設定される処理も実行される。なお、賞球個数カウンタに初期値を設定する処理を、例えば、ステップS92,S12の作業領域に各初期値を順次設定する処理において実行してもよく、ステップS15〜S17の処理に移行するまでの間に実行していればよい。
そして、CPU56は、所定時間(例えば4ms)ごとに定期的にタイマ割込がかかるように遊技制御用マイクロコンピュータ560に内蔵されているCTCのレジスタの設定を行なうタイマ割込設定処理を実行する(ステップS16)。すなわち、初期値として例えば4msに相当する値が所定のレジスタ(時間定数レジスタ)に設定される。この実施の形態では、4msごとに定期的にタイマ割込がかかるとする。
タイマ割込の設定が完了すると、CPU56は、まず、割込禁止状態にして(ステップS17)、初期値用乱数更新処理(ステップS18a)と表示用乱数更新処理(ステップS18b)を実行して、再び割込許可状態にする(ステップS19)。すなわち、CPU56は、初期値用乱数更新処理および表示用乱数更新処理が実行されるときには割込禁止状態にして、初期値用乱数更新処理および表示用乱数更新処理の実行が終了すると割込許可状態にする。
なお、初期値用乱数更新処理とは、初期値用乱数を発生するためのカウンタのカウント値を更新する処理である。初期値用乱数とは、大当りの種類を決定するための判定用乱数(例えば、大当りを発生させる特別図柄を決定するための大当り図柄決定用乱数や、遊技状態を確変状態に移行させるかを決定するための確変決定用乱数、普通図柄にもとづく当りを発生させるか否かを決定するための普通図柄当たり判定用乱数)を発生するためのカウンタ(判定用乱数発生カウンタ)等のカウント値の初期値を決定するための乱数である。後述する遊技制御処理(遊技制御用マイクロコンピュータが、遊技機に設けられている演出表示装置9、可変入賞球装置15、球払出装置97等の遊技用の装置を、自身で制御する処理、または他のマイクロコンピュータに制御させるために指令信号を送信する処理、遊技装置制御処理ともいう)において、判定用乱数発生カウンタのカウント値が1周すると、そのカウンタに初期値が設定される。
また、表示用乱数とは、第1特別図柄表示器8a、第2特別図柄表示器8bの表示を決定するための乱数である。この実施の形態では、表示用乱数として、特別図柄の変動パターンを決定するための変動パターン決定用乱数や、大当りを発生させない場合にリーチとするか否かを決定するためのリーチ判定用乱数が用いられる。また、表示用乱数更新処理とは、表示用乱数を発生するためのカウンタのカウント値を更新する処理である。
また、表示用乱数更新処理が実行されるときに割込禁止状態にされるのは、表示用乱数更新処理および初期値用乱数更新処理が後述するタイマ割込処理でも実行される(すなわち、タイマ割込処理のステップS26,S27でも同じ処理が実行される)ことから、タイマ割込処理における処理と競合してしまうのを避けるためである。すなわち、ステップS18a,S18bの処理中にタイマ割込が発生してタイマ割込処理中で初期値用乱数や表示用乱数を発生するためのカウンタのカウント値を更新してしまったのでは、カウント値の連続性が損なわれる場合がある。しかし、ステップS18a,S18bの処理中では割込禁止状態にしておけば、そのような不都合が生ずることはない。
ステップS19で割込許可状態に設定されると、次にステップS17の処理が実行されて割込禁止状態とされるまで、タイマ割込またはシリアル通信回路505からの割り込み要求を許可する状態となる。そして、割込許可状態に設定されている間に、タイマ割込が発生すると、遊技制御用マイクロコンピュータ560のCPU56は、後述するタイマ割込処理を実行する。また、割込許可状態に設定されている間に、シリアル通信回路505から割り込み要求が発生すると、遊技制御用マイクロコンピュータ560のCPU56は、後述する各割込処理(通信エラー割込処理や、受信時割込処理、送信完了割込処理)を実行する。また、本実施の形態では、ステップS17からステップS19までのループ処理の前にステップS15bを実行することによって、タイマ割込または割り込み要求を許可する状態に設定される前に、割込処理の優先順位を設定または変更する処理が行われる。
次に、タイマ割込処理について説明する。図27は、タイマ割込処理を示すフローチャートである。メイン処理の実行中に、具体的には、ステップS17〜S19のループ処理の実行中における割込許可になっている期間において、タイマ割込が発生すると、遊技制御用マイクロコンピュータ560のCPU56は、タイマ割込の発生に応じて起動されるタイマ割込処理を実行する。タイマ割込処理において、CPU56は、まず、電源断信号が出力されたか否か(オン状態になったか否か)を検出する電源断処理(電源断検出処理)を実行する(ステップS20)。そして、CPU56は、スイッチ回路58を介して、ゲートスイッチ32a、第1始動口スイッチ14a、第1入賞確認スイッチ14b、第2始動口スイッチ15a、第2入賞確認スイッチ15b、下部カウントスイッチ23、第3入賞確認スイッチ23a、上部カウントスイッチ24、第4入賞確認スイッチ24a、特定領域スイッチ43a、排出口スイッチ45および入賞口スイッチ30a,30b等のスイッチの検出信号を入力し、各スイッチの入力を検出する(スイッチ処理:ステップS21)。具体的には、各スイッチの検出信号を入力する入力ポートの状態がオン状態であれば、各スイッチに対応して設けられているスイッチタイマの値を+1する。
次に、CPU56は、第1特別図柄表示器8a、第2特別図柄表示器8b、普通図柄表示器10、特別図柄保留記憶表示器18、普通図柄保留記憶表示器41の表示制御を行う表示制御処理を実行する(ステップS22)。第1特別図柄表示器8a、第2特別図柄表示器8bおよび普通図柄表示器10については、ステップS36,S37で設定される出力バッファの内容に応じて各表示器に対して駆動信号を出力する制御を実行する。
次いで、CPU56は、磁石センサから検出信号を入力したことにもとづいて磁石センサエラー報知を行う磁石センサエラー報知処理を実行する(ステップS24)。
次いで、CPU56は、遊技制御に用いられる普通図柄当り判定用乱数等の各判定用乱数を生成するための各カウンタのカウント値を更新する処理を行う(判定用乱数更新処理:ステップS25)。また、CPU56は、初期値用乱数を発生するためのカウンタのカウント値を更新する処理を行う(初期値用乱数更新処理:ステップS26)。さらに、CPU56は、表示用乱数を生成するためのカウンタのカウント値を更新する処理を行う(表示用乱数更新処理:ステップS27)。
次いで、CPU56は、特別図柄プロセス処理を行う(ステップS28)。特別図柄プロセス処理では、遊技状態に応じてパチンコ遊技機1を所定の順序で制御するための特別図柄プロセスフラグに従って該当する処理が選び出されて実行される。そして、特別図柄プロセスフラグの値は、遊技状態に応じて各処理中に更新される。また、普通図柄プロセス処理を行う(ステップS29)。普通図柄プロセス処理では、普通図柄表示器10の表示状態を所定の順序で制御するための普通図柄プロセスフラグに従って該当する処理が選び出されて実行される。そして、普通図柄プロセスフラグの値は、遊技状態に応じて各処理中に更新される。
次いで、CPU56は、特別図柄の変動に同期する演出図柄に関する演出制御コマンドをシリアル通信回路505の送信データレジスタに設定して演出制御コマンドを送出する処理を行う(演出図柄コマンド制御処理:ステップS30)。なお、演出図柄の変動が特別図柄の変動に同期するとは、変動時間(可変表示期間)が同じであることを意味する。
次いで、CPU56は、例えばホール管理用コンピュータに供給される始動口信号、図柄確定回数1信号、大当り1〜3信号、時短信号、セキュリティ信号などのデータを出力する情報出力処理を行う(ステップS31)。
次いで、CPU56は、シリアル通信回路505を介して、払出制御用マイクロコンピュータ370と信号を送受信(入出力)する処理を実行するとともに、入賞が発生した場合には入賞口スイッチ30a,30b等の検出信号にもとづく賞球個数の設定などを行う賞球処理を実行する(ステップS32)。なお、この実施の形態では、入賞口スイッチ30a,30b等がオンしたことにもとづく入賞検出に応じて、賞球個数コマンドの下位4ビットを異ならせることにより賞球個数を示すデータを賞球個数コマンドに設定し、当該設定した賞球個数コマンドをシリアル通信回路505を介して払出制御用マイクロコンピュータ370に出力する。払出制御基板37に搭載されている払出制御用マイクロコンピュータ370は、賞球個数を示すデータが設定された賞球個数コマンドの受信に応じて球払出装置97を駆動する。
また、遊技機の制御状態を遊技機外部で確認できるようにするための試験信号を出力する処理である試験端子処理を実行する(ステップS33)。また、この実施の形態では、出力ポートの出力状態に対応したRAM領域(出力ポートバッファ)が設けられているのであるが、CPU56は、出力ポート0のRAM領域における接続信号に関する内容およびソレノイドに関する内容を出力ポートに出力する(ステップS34:出力処理)。そして、CPU56は、保留記憶数の増減をチェックする記憶処理を実行する(ステップS35)。
また、CPU56は、特別図柄プロセスフラグの値に応じて特別図柄の演出表示を行うための特別図柄表示制御データを特別図柄表示制御データ設定用の出力バッファに設定する特別図柄表示制御処理を行う(ステップS36)。さらに、CPU56は、普通図柄プロセスフラグの値に応じて普通図柄の演出表示を行うための普通図柄表示制御データを普通図柄表示制御データ設定用の出力バッファに設定する普通図柄表示制御処理を行う(ステップS37)。
次いで、CPU56は、各状態表示灯の表示を行うための状態表示制御データを状態表示制御データ設定用の出力バッファに設定する状態表示灯表示処理を行う(ステップS38)。この場合、遊技状態が時短状態である場合には、時短状態であることを示す状態表示灯の表示を行うための状態表示制御データを出力バッファに設定する。なお、遊技状態が高確率状態(例えば、確変状態)にも制御される場合には、高確率状態であることを示す状態表示灯の表示を行うための状態表示制御データを出力バッファに設定するようにしてもよい。
次いで、CPU56は、遊技機のエラー状態などを表示させるために遊技機のエラー状態などを示す情報が設定された枠状態表示コマンドを演出制御用マイクロコンピュータ100に対して送信する枠状態出力処理を実行する(ステップS39)。
その後、割込許可状態に設定し(ステップS40)、処理を終了する。
次に、メイン処理における賞球処理(ステップS32)を説明する。まず、主基板31と払出制御基板37との間で送受信される払出制御信号(接続信号、賞球情報)および払出制御コマンドについて説明する。
図28は、遊技制御手段から払出制御手段に対して出力される制御信号の内容の一例を示す説明図である。この実施の形態では、払出制御等に関する各種の制御を行うために、主基板31と払出制御基板37との間で制御信号として接続信号および賞球情報が送受信される。図28に示すように、接続信号は、主基板31の立ち上がり時(遊技制御手段が遊技制御処理を開始したとき)に出力され、払出制御基板37に対して主基板31が立ち上がったことを通知するための信号(主基板31の接続信号)である。また、接続信号は、賞球払出が可能な状態であることを示す。なお、接続信号は、遊技制御用マイクロコンピュータ560のI/Oポート57および出力回路67Aを介して出力され、払出制御用マイクロコンピュータ370の入力回路373AおよびI/Oポート372eを介して払出制御用マイクロコンピュータ370に入力される。接続信号は、1ビットのデータであり、1本の信号線によって送信される。なお、接続信号は、電源投入時に実行されるステップS4の処理によって出力ポート0の接続信号に対応するビットに初期値が設定されることによって出力可能な状態となる(具体的にはステップS34の処理によって出力されるが、ステップS4のタイミングで出力されるようにしてもよい)。また、賞球情報は、払出制御基板37側において賞球の払出を1個検出するごとに、主基板31に対して、10個の賞球払出を検出したことを通知するための情報である。なお、賞球情報は、払出制御用マイクロコンピュータ370のI/Oポート372aおよび出力回路373Bを介して出力され、遊技制御用マイクロコンピュータ560の入力回路67BおよびI/Oポート57を介して遊技制御用マイクロコンピュータ560に入力される。賞球情報は、1ビットのデータであり、1本の信号線によって送信される。
払出制御用マイクロコンピュータ370は、遊技制御用マイクロコンピュータ560と同様に、シリアル通信回路380を内蔵する。また、遊技制御用マイクロコンピュータ560が内蔵するシリアル通信回路505と、払出制御用マイクロコンピュータ370が内蔵するシリアル通信回路380との間で、各種払出制御コマンドが送受信される。なお、払出制御用マイクロコンピュータ370が内蔵するシリアル通信回路380の構成及び機能は、遊技制御用マイクロコンピュータ560が内蔵するシリアル通信回路505の構成及び機能と同様である。
図29は、遊技制御手段と払出制御手段との間で送受信される制御コマンドの内容の一例を示す説明図である。この実施の形態では、払出制御等に関する各種の制御を行うために、主基板31と払出制御基板37とのマイクロコンピュータの間で各種払出制御コマンドが送受信される。
上述したように、払出制御コマンドは、8ビットのデータ(2進8桁のデータ)によって構成され、設定された8ビットのデータの内容によって所定の内容を示す制御コマンドとして出力される。
接続確認コマンドは、遊技制御用マイクロコンピュータ560と払出制御用マイクロコンピュータ370との間の接続状態が正常であるか否かを確認するために一定間隔(1s)毎に遊技制御用マイクロコンピュータ560から送信される制御コマンドである。接続確認コマンドのデータの内容は「A0(H)」すなわち「10100000」とされている。
接続OKコマンドは、遊技制御用マイクロコンピュータ560と払出制御用マイクロコンピュータ370との間の接続状態が正常であることを通知するための制御コマンドであって、払出制御用マイクロコンピュータ370が接続確認コマンドの受信に応じて応答信号として送信する制御コマンドである。接続OKコマンドのデータの内容は「8x(H)」すなわち「1000xxxx」とされている。ここで、接続OKコマンドの2バイト目の「xxxx」については、図30に示すように、賞球エラー(入賞にもとづく賞球払出動作や球貸し要求にもとづく球貸払出動作が正常に行えない状態になった異常状態:具体的には、図94に示す主制御未接続エラーや、払出スイッチ異常検知エラー1、払出スイッチ異常検知エラー2、払出ケースエラー、主制御通信エラー)が発生した場合には、1ビット目(ビット0)の「x」に「1」が設定される。また、満タンエラーが発生した場合には、2ビット目(ビット1)の「x」に「1」が設定される。また、球切れエラーが発生した場合には、3ビット目(ビット2)の「x」に「1」が設定される。また、後述する賞球や貸し球の払出数の個数異常の累積値が所定値(例えば、2000個)に達した場合の払出個数異常エラーが発生した場合には、4ビット目(ビット3)の「x」に「1」が設定される。このようにして、遊技制御用マイクロコンピュータ560と払出制御用マイクロコンピュータ370との間の接続確認を行っている最中に、払出制御用マイクロコンピュータ370における所定のエラーの発生を遊技制御用マイクロコンピュータ560に通知することができる。なお、図30に示す例では、接続OKコマンドに、制御状態として払い出しに関するエラー(賞球エラーや、満タンエラー、球切れエラー、払出個数異常エラー)を示す値を設定する場合を示したが、エラー以外の制御状態を接続OKコマンドに設定するようにしてもよい。例えば、払出制御用マイクロコンピュータ370は、賞球払出動作中である旨や貸し球払出動作中である旨を示す値を制御状態として接続OKコマンドにセットして、遊技制御用マイクロコンピュータ560に送信するようにしてもよい。
賞球個数コマンドは、払出要求を行う遊技球の個数(0〜15個)を通知するための制御コマンドであって、遊技制御用マイクロコンピュータ560が入賞の発生にもとづいて送信する制御コマンドである。賞球個数コマンドのデータの内容は「5x(H)」すなわち「0101xxxx」とされている。この実施の形態では、第1始動口スイッチ14a、第2始動口スイッチ15aで遊技球が検出されると3個の賞球払出を行い、入賞口スイッチ30a,30bのいずれかで遊技球が検出されると10個の賞球払出を行い、下部カウントスイッチ23、上部カウントスイッチ24で遊技球が検出されると15個の賞球払出を行う。よって、第1始動口スイッチ14a、第2始動口スイッチ15aで遊技球が検出された場合、賞球数3個を通知するための賞球個数コマンド「01010011」が送信され、入賞口スイッチ30a,30bのいずれかで遊技球が検出された場合、賞球数10個を通知するための賞球個数コマンド「01011010」が送信され、下部カウントスイッチ23、上部カウントスイッチ24で遊技球が検出された場合、賞球数15個を通知するための賞球個数コマンド「01011111」が送信される。なお、この実施の形態では、下部カウントスイッチ23、上部カウントスイッチ24で遊技球が検出されることにより15個よりも少ない個数(例えば3個または5個等)の賞球払出を行うようにしてもよい。
賞球個数受付コマンドは、賞球個数コマンドで指定された賞球個数を受け付けたことを通知するための制御コマンドであって、払出制御用マイクロコンピュータ370が賞球個数コマンドの受信に応じて応答信号として送信する制御コマンドである。賞球個数受付コマンドのデータの内容は「70(H)」すなわち、「01110000」とされている。
賞球終了コマンドは、賞球動作(賞球払出動作)が終了したことを示す制御コマンドであって、払出制御用マイクロコンピュータ370が賞球動作の終了にもとづいて送信する制御コマンドである。賞球終了コマンドのデータの内容は「50(H)」すなわち「01010000」とされている。
賞球準備中コマンドは、賞球動作に時間がかかっている場合や、貸し球動作中であったり所定のエラーが発生したりして賞球動作が終了していないことを通知する制御コマンドである。賞球準備中コマンドのデータの内容は「4x(H)」すなわち「0100xxxx」とされている。ここで、賞球準備中コマンドの2バイト目の「xxxx」については、図30に示すように、賞球エラーが発生した場合には、1ビット目(ビット0)の「x」に「1」が設定される。また、満タンエラーが発生した場合には、2ビット目(ビット1)の「x」に「1」が設定される。また、球切れエラーが発生した場合には、3ビット目(ビット2)の「x」に「1」が設定される。また、後述する賞球や貸し球の払出数の個数異常の累積値が所定値(例えば、2000個)に達した場合の払出個数異常エラーが発生した場合には、4ビット目(ビット3)の「x」に「1」が設定される。このようにして、払出制御用マイクロコンピュータ370から、賞球動作に時間がかかっている場合や、貸し球動作中であったり賞球動作の実行中に所定のエラーが発生したりして賞球動作が終了していないことを遊技制御用マイクロコンピュータ560に通知することができるとともに、エラーの内容も遊技制御用マイクロコンピュータ560に通知することができる。賞球準備中コマンドは、接続OKコマンドと同様に、下位4ビットの内容をエラー状態に応じて異ならせる(所定ビットを異ならせる)ことによって所定のエラーが発生したことを通知している。なお、賞球準備中コマンドは、エラーが発生して賞球動作が実行できない状態のみならず、貸し球払出動作中であるために賞球の払出動作を直ちに開始できない状態や、賞球動作の実行中の状態(賞球個数コマンドで指定された賞球個数の払出動作を完了していない状態)においても出力されるコマンド(信号)である。なお、図30に示す例では、賞球準備中コマンドに、制御状態として払い出しに関するエラー(賞球エラーや、満タンエラー、球切れエラー、払出個数異常エラー)を示す値を設定する場合を示したが、エラー以外の制御状態を接続OKコマンドに設定するようにしてもよい。例えば、払出制御用マイクロコンピュータ370は、賞球払出動作中である旨や貸し球払出動作中である旨を示す値を制御状態として賞球準備中コマンドにセットして、遊技制御用マイクロコンピュータ560に送信するようにしてもよい。
なお、この実施の形態では、接続確認信号は払出制御コマンドのうちの接続確認コマンドによって実現され、応答信号は接続OKコマンドによって実現され、払出数信号は賞球個数コマンドによって実現され、受付信号は賞球個数受付コマンドによって実現され、払出終了信号は賞球終了コマンドによって実現され、払出中信号は賞球準備中コマンドによって実現される。
図31は、図28に示す制御信号および図29に示す制御コマンドの送受信に用いられる信号線等を示すブロック図である。図31に示すように、接続信号は、遊技制御用マイクロコンピュータ560によって出力回路67Aを介して出力され、入力回路373Aを介して払出制御用マイクロコンピュータ370に入力される。また、賞球情報は、払出制御用マイクロコンピュータ370によって出力回路373Bを介して出力され、入力回路67Bを介して遊技制御用マイクロコンピュータ560に入力される。なお、後述する賞球信号1や遊技機エラー状態信号も、払出制御用マイクロコンピュータ370によって出力回路373Bを介して出力され、入力回路67Bを介して遊技制御用マイクロコンピュータ560に入力されるようにしてもよい。また、ドア開放信号も、払出制御用マイクロコンピュータ370によって出力回路373Bを介して出力され、入力回路67Bを介して遊技制御用マイクロコンピュータ560に入力されるようにしてもよい。
また、制御コマンドのうちの接続確認コマンドおよび賞球個数コマンドは、遊技制御用マイクロコンピュータ560が内蔵するシリアル通信回路505から出力され、払出制御用マイクロコンピュータ370が内蔵するシリアル通信回路380に入力される。制御コマンドのうちの接続OKコマンド、賞球個数受付コマンド、賞球終了コマンドおよび賞球準備中コマンドは、払出制御用マイクロコンピュータ370が内蔵するシリアル通信回路380から出力され、遊技制御用マイクロコンピュータ560が内蔵するシリアル通信回路505に入力される。なお、図31では、シリアル通信を行うための信号線として2本の信号線(遊技制御用マイクロコンピュータ560から払出制御用マイクロコンピュータ370側にコマンドを送信するための信号線と払出制御用マイクロコンピュータ370から遊技制御用マイクロコンピュータ560側にコマンドを送信するための信号線)を示しているが、実際は1本の信号線で払出制御コマンドを送受信する。なお、遊技制御用マイクロコンピュータ560から払出制御用マイクロコンピュータ370側にコマンドを送信するための信号線と、払出制御用マイクロコンピュータ370から遊技制御用マイクロコンピュータ560側にコマンドを送信するための信号線とを、別々の信号線として構成するようにしてもよい。
次に、通常動作時における遊技制御用マイクロコンピュータと払出制御用マイクロコンピュータとの払出制御コマンドの送受信について説明する。この実施の形態では、遊技制御用マイクロコンピュータ560から払出制御用マイクロコンピュータ370には接続確認コマンドと賞球個数コマンドとが送信され、払出制御用マイクロコンピュータ370から遊技制御用マイクロコンピュータ560には接続OKコマンドと賞球個数受付コマンドと賞球終了コマンドと賞球準備中コマンドとが送信される。
図32は、通常動作時における遊技制御用マイクロコンピュータと払出制御用マイクロコンピュータとの信号の送受信を示すシーケンス図である。図32に示すように、遊技制御用マイクロコンピュータ560は、シリアル通信回路505を介して、払出制御用マイクロコンピュータ370との間の信号線の接続が切れていないかどうかを確認するために、接続確認コマンドを払出制御用マイクロコンピュータ370に送信する。払出制御用マイクロコンピュータ370は、接続確認コマンドをシリアル通信回路380を介して受信すると、接続OKコマンドを遊技制御用マイクロコンピュータ560に送信する。遊技制御用マイクロコンピュータ560は、接続OKコマンドを受信すると、受信した時点から1s(1秒)経過後に接続確認コマンドを送信する。遊技制御用マイクロコンピュータ560および払出制御用マイクロコンピュータ370は、接続状態が正常である限り、上記のような接続確認の通信処理を繰り返し実行する。
図33および図34は、賞球動作時における遊技制御用マイクロコンピュータと払出制御用マイクロコンピュータとの信号の送受信を示すシーケンス図である。図33および図34に示すように、入賞が発生して賞球払出動作を実行するときに、遊技制御用マイクロコンピュータ560は、シリアル通信回路505を介して、賞球個数を示すデータが設定された賞球個数コマンドを払出制御用マイクロコンピュータ370に送信する。なお、この場合、遊技制御用マイクロコンピュータ560は、前回送信した接続確認コマンドに対して受信した接続OKコマンドの下位4ビットにエラーを示す値が設定されておらず(図30参照)、かつ当該接続OK信号を受信してから1秒が経過するまでの間に始動入賞していることを条件として、賞球個数コマンドを払出制御用マイクロコンピュータ370に送信する。
次いで、払出制御用マイクロコンピュータ370は、賞球個数コマンドを受信すると、直ちに賞球動作の実行が可能であれば(すなわち、貸し球の払出動作中でなくエラーも発生していなければ)、賞球個数を受け付けたことを示す賞球個数受付コマンドをシリアル通信回路380を介して遊技制御用マイクロコンピュータ560に送信する。なお、賞球個数受付コマンドを送信した時点から1s(1秒)以内に賞球払出が完了しない場合には、賞球個数受付コマンドを送信した時点から1s(1秒)経過後に賞球準備中コマンドを送信する。そして、以後、賞球払出が完了するまでの間、賞球準備中コマンドを送信した時点から1s(1秒)経過するごとに繰り返し賞球準備中コマンドを送信する。また、賞球個数コマンドで指定された個数の賞球の払出動作を実行し、賞球払出動作が終了すると、賞球払出動作の終了を示す賞球終了コマンドをシリアル通信回路380を介して遊技制御用マイクロコンピュータ560に送信する。
次いで、遊技制御用マイクロコンピュータ560は、賞球終了コマンドを受信したときに、図33に示すように、次に払い出すべき賞球個数がまだ記憶されていない場合には、賞球終了コマンドを受信した時点から1s(1秒)経過後に新たな接続確認コマンドの送信を再開する。一方、図34に示すように、次に払い出すべき賞球個数が既に記憶されている場合には、1s(1秒)待つことなく、直ちに次の賞球個数を指定する賞球個数コマンドを払出制御用マイクロコンピュータ370に送信する。なお、この場合にも、遊技制御用マイクロコンピュータ560は、前回受信した接続OKコマンドまたは賞球準備中コマンドの下位4ビットにエラーを示す値が設定されておらず(図30参照)、かつ賞球終了コマンドを受信してから1秒が経過するまでの間に始動入賞していることを条件として、賞球個数コマンドを払出制御用マイクロコンピュータ370に送信する。以降、同様のシーケンスに従って制御コマンドの送受信が繰り返される。
図35は、直ちに賞球動作を実行できない場合における遊技制御用マイクロコンピュータと払出制御用マイクロコンピュータとの信号の送受信を示すシーケンス図である。払出制御用マイクロコンピュータ370は、賞球個数コマンドを受信しても、貸し球の払出動作中である場合や、エラー状態である場合には、受信した賞球個数コマンドで指定された賞球個数の賞球払出の動作を開始できない。このような場合には、図35に示すように、払出制御用マイクロコンピュータ370は、賞球個数コマンドを受信しても、直ちに賞球個数受付コマンドを送信せず、賞球払出動作が終了していないことを通知する賞球準備中コマンドを遊技制御用マイクロコンピュータ560に送信する。この場合、払出制御用マイクロコンピュータ370は、貸し球の払出動作を終了して賞球動作を開始可能な状態となるか、エラーが解除されない限り、一定間隔で(1s毎に)賞球準備中コマンドを遊技制御用マイクロコンピュータ560に送信する。
次いで、払出制御用マイクロコンピュータ370は、貸し球の払出動作を終了して次の賞球動作を開始可能な状態となるか、エラーが解除されると、賞球個数を受け付けたことを示す賞球個数受付コマンドをシリアル通信回路380を介して遊技制御用マイクロコンピュータ560に送信する。なお、賞球個数受付コマンドを送信した時点から1s(1秒)以内に賞球払出が完了しない場合には、賞球個数受付コマンドを送信した時点から1s(1秒)経過後に賞球準備中コマンドを送信する。そして、以後、賞球払出が完了するまでの間、賞球準備中コマンドを送信した時点から1s(1秒)経過するごとに繰り返し賞球準備中コマンドを送信する。また、賞球個数コマンドで指定された個数の賞球の払出動作を実行し、賞球払出動作が終了すると、賞球払出動作の終了を示す賞球終了コマンドをシリアル通信回路380を介して遊技制御用マイクロコンピュータ560に送信する。
図36は、通常動作時における遊技制御用マイクロコンピュータと払出制御用マイクロコンピュータとの信号の送受信を示すタイミング図である。図36に示すように、遊技制御用マイクロコンピュータ560は、接続確認コマンドを払出制御用マイクロコンピュータ370に送信すると、払出制御用マイクロコンピュータ370から送信される接続OKコマンドを受信する。遊技制御用マイクロコンピュータ560は、接続OKコマンドを受信すると、受信した時点から1s(1秒)経過後に接続確認コマンドを再び送信する。遊技制御用マイクロコンピュータ560および払出制御用マイクロコンピュータ370は、接続状態が正常である限り、上記のような接続確認の通信処理を繰り返し実行する。
接続確認の通信処理を実行していないとき(接続OKコマンドを受信してから次の接続確認コマンドを送信するまでの間)に入賞があった場合には、遊技制御用マイクロコンピュータ560は、接続確認コマンドを繰り返し送信する制御を中断し、賞球個数を示すデータを賞球個数コマンドの下位4ビットに設定し、当該設定した賞球個数コマンドを払出制御用マイクロコンピュータ370に送信する。払出制御用マイクロコンピュータ370は、賞球個数コマンドを受信すると、賞球個数受付コマンドを遊技制御用マイクロコンピュータ560に送信する。この場合、遊技制御用マイクロコンピュータ560は、賞球個数受付コマンドを受信したことにもとづいて、賞球個数記憶を減算する処理を行う(具体的には、後述する賞球コマンド出力カウンタを1減算する処理を行う。ステップS52404参照)。そして、払出制御用マイクロコンピュータ370は、賞球個数コマンドで指定された個数の賞球の払い出しを行い、賞球の払い出し(賞球払出動作)が終了すると、賞球終了コマンドを遊技制御用マイクロコンピュータ560に送信する。なお、前述したように、賞球払出動作に時間がかかる場合には、賞球払出動作が完了するまで、払出制御用マイクロコンピュータ370は、1s(1秒)経過するごとに賞球準備中コマンドを繰り返し送信する。遊技制御用マイクロコンピュータ560は、賞球終了コマンドを受信すると、次に払い出すべき賞球個数がまだ記憶されていない場合には、受信した時点から1s(1秒)経過後に接続確認コマンドを送信する。
接続確認の通信処理の実行中(接続確認コマンドを送信してから接続OKコマンドを受信するまでの間)に入賞があった場合は、遊技制御用マイクロコンピュータ560は、払出制御用マイクロコンピュータ370との接続状態が確認できていない段階であるので、賞球個数コマンドを直ちに送信せずに、接続OKコマンドの受信を確認できるまで待つ。そして、払出制御用マイクロコンピュータ370からの接続OKコマンドを受信すると、遊技制御用マイクロコンピュータ560は、賞球個数を示すデータを賞球個数コマンドの下位4ビットに設定し、当該設定した賞球個数コマンドを払出制御用マイクロコンピュータ370に送信する。払出制御用マイクロコンピュータ370は、賞球個数コマンドを受信すると、賞球個数受付コマンドを遊技制御用マイクロコンピュータ560に送信する。そして、払出制御用マイクロコンピュータ370は、以下同様の処理を実行し、賞球個数コマンドで指定された個数の賞球の払い出しを行い、賞球の払い出し(賞球払出動作)が終了すると、賞球終了コマンドを遊技制御用マイクロコンピュータ560に送信する。
なお、賞球終了コマンドを受信した後、遊技制御用マイクロコンピュータ560は、前回受信した接続OKコマンドまたは賞球準備中コマンドの下位4ビットにエラーを示す値が設定されておらず(図30参照)、かつ賞球終了コマンドを受信してから1秒が経過するまでの間に始動入賞している場合にも、賞球個数コマンドを払出制御用マイクロコンピュータ370に送信する。すなわち、この実施の形態では、遊技制御用マイクロコンピュータ560は、エラーを示す値が設定されていない接続OK信号を受信してから1秒が経過するまでの間と、賞球終了コマンドを受信してから1秒を経過するまでの間とに、賞球個数コマンドを送信可能な状態になっている。
図37は、賞球中にエラーが発生した場合における遊技制御用マイクロコンピュータと払出制御用マイクロコンピュータとの信号の送受信を示すタイミング図である。図37に示すように、遊技制御用マイクロコンピュータ560は、接続確認コマンドを払出制御用マイクロコンピュータ370に送信すると、払出制御用マイクロコンピュータ370から送信される接続OKコマンドを受信する。接続確認の通信処理を実行していないときに入賞があった場合は、遊技制御用マイクロコンピュータ560は、賞球個数を示すデータを賞球個数コマンドの下位4ビットに設定し、当該設定した賞球個数コマンドを払出制御用マイクロコンピュータ370に送信する。払出制御用マイクロコンピュータ370は、賞球個数コマンドを受信すると、賞球個数受付コマンドを遊技制御用マイクロコンピュータ560に送信する。そして、払出制御用マイクロコンピュータ370は、賞球個数コマンドで指定された個数の賞球の払い出しを行う。賞球個数コマンドで指定された個数の賞球の払出動作を実行しているときに、所定のエラー(例えば、払出個数異常エラー、球貸し、満タン、球切れのエラー)が発生し、賞球払出動作ができない状態(異常状態、エラー状態)になった場合は、払出制御用マイクロコンピュータ370は、エラーが発生し賞球払出動作が終了していないことを通知する賞球準備中コマンドを遊技制御用マイクロコンピュータ560に送信する。この場合、払出制御用マイクロコンピュータ370は、発生したエラーが解除されない限り、一定間隔で(1s毎に)賞球準備中コマンドを遊技制御用マイクロコンピュータ560に送信する。所定のエラー状態が解除(解消)されて賞球払出動作が終了すると、払出制御用マイクロコンピュータ370は、賞球終了コマンドを遊技制御用マイクロコンピュータ560に送信する。なお、賞球準備中コマンドは、賞球個数受付コマンドを送信した後、払出制御用マイクロコンピュータ370から遊技制御用マイクロコンピュータ560に1s毎に送信されることになる。また、遊技制御用マイクロコンピュータ560が賞球準備中コマンドを受信している間には、接続確認コマンドを送信しないように制御される。具体的には、払出制御用マイクロコンピュータ370は賞球払出動作が終了したことにもとづいて賞球終了コマンドを出力するようにし、遊技制御用マイクロコンピュータ560は当該賞球終了コマンドを受信したことにもとづいて、所定周期(1S)毎に接続確認コマンドを出力する状態に復帰するように制御する。
図38は、接続確認中の通信エラー時における遊技制御用マイクロコンピュータと払出制御用マイクロコンピュータとの信号の送受信を示すタイミング図である。図38に示すように、遊技制御用マイクロコンピュータ560は、接続確認コマンドを払出制御用マイクロコンピュータ370に送信したが、払出制御用マイクロコンピュータ370からの接続OKコマンドを受信していない場合、つまり、接続状態の異常(通信エラー)が発生した場合には、接続確認コマンドを送信した時点から10s(10秒)経過後に再度、接続確認コマンドを送信する。すなわち、接続OKコマンドを受信できない場合に接続確認コマンドを1s(1秒)ごとに送信する処理を継続したのでは、通信状態が不安定な状態であるにもかかわらず接続確認コマンドの送信回数が無駄に多くなってしまうので、接続確認コマンドの送信間隔を10s(10秒)に広げて、通信状態が回復するまで必要最低限の送信回数の接続確認コマンドを送信する制御に切り替える。通信エラーが発生しているときに入賞が発生した場合には、遊技制御用マイクロコンピュータ560は、払出制御用マイクロコンピュータ370から接続OKコマンドを受信するまでは、新たな入賞が発生しても、賞球個数コマンドを送信せずに、一定間隔(10s)毎に接続確認コマンドを送信し続ける。通信エラーが解除(解消)され、払出制御用マイクロコンピュータ370から接続OKコマンドが送信されると、遊技制御用マイクロコンピュータ560は、賞球個数コマンドを送信する。
図39は、賞球個数通知中の通信エラー時における遊技制御用マイクロコンピュータと払出制御用マイクロコンピュータとの信号の送受信を示すタイミング図である。図39に示すように、遊技制御用マイクロコンピュータ560は、入賞が発生したことにもとづいて賞球個数コマンドを送信したが、払出制御用マイクロコンピュータ370からの賞球個数受付コマンドを受信していない場合、つまり、接続状態の異常(通信エラー)が発生した場合には、賞球個数コマンドを送信した時点から10s(10秒)経過後に、接続確認コマンドを払出制御用マイクロコンピュータ370に送信する。そして、通信状態が回復するまで10s(10秒)経過ごとに接続確認コマンドを繰り返し送信する。その後、通信エラーが解除(解消)され、払出制御用マイクロコンピュータ370から接続OKコマンドを受信した場合には、遊技制御用マイクロコンピュータ560は、通常(正常時)の動作に戻り、賞球個数コマンドを払出制御用マイクロコンピュータ370に再送信(リトライ)する。なお、具体的には、遊技制御用マイクロコンピュータ560は、賞球個数コマンドを送信しても賞球個数受付コマンドを受信できなかった場合には、賞球個数記憶を減算しないようにし(後述するステップS52403でNであればステップS52404の賞球コマンド出力カウンタの値を1減算しないようにし)、次に賞球個数コマンドの送信を行うときに賞球コマンド出力カウンタの値がそのまま維持されていることにもとづいて賞球個数コマンドを再送信する(後述するステップS52301〜S52035参照)。
次に、賞球処理(ステップS32)について説明する。図40は、ステップS32の賞球処理の一例を示すフローチャートである。賞球処理において、遊技制御用マイクロコンピュータ560(具体的には、CPU56)は、賞球コマンド出力カウンタ加算処理(ステップS501)、賞球制御処理(ステップS502)および賞球カウンタ減算処理(ステップS503)を実行する。
賞球コマンド出力カウンタ加算処理では、図41に示す賞球個数テーブルが使用される。賞球個数テーブルは、ROM54に設定されている。賞球個数テーブルの先頭アドレスには処理数(この例では「4」)が設定され、その後に、スイッチオンバッファの下位アドレスと、賞球コマンド出力カウンタと、賞球数を指定する賞球指定データとが、順次設定されている。賞球コマンド出力カウンタとは、入賞口への入賞数をカウントするカウンタであり、例えば、ROM54に設定される。また、遊技制御用マイクロコンピュータ560は、賞球数(0〜15個)毎に、対応する賞球コマンド出力カウンタを備える。この実施の形態では、遊技制御用マイクロコンピュータ560は、賞球数「15」に対応する賞球コマンド出力カウンタ1と、賞球数「10」に対応する賞球コマンド出力カウンタ2,3(2つの普通入賞口29,30に対応)と、賞球数「3」に対応する賞球コマンド出力カウンタ4とを備える。なお、各賞球コマンド出力カウンタは、後述するように、賞球コマンド出力カウンタ加算処理でカウントアップされる。CPU56は、賞球個数テーブルに設定されている賞球コマンド出力カウンタ1が0でなければ、賞球数(15個)を指定する賞球指定データにもとづいて賞球個数(15個)を示すデータを賞球個数コマンドの下位4ビットに設定し、当該設定された賞球個数コマンドを払出制御用マイクロコンピュータ370に送信する。また、CPU56は、賞球個数テーブルに設定されている賞球コマンド出力カウンタ1の値が0であり、賞球コマンド出力カウンタ2,3の値が0でなければ、賞球数(10個)を指定する賞球指定データにもとづいて賞球個数(10個)を示すデータを賞球個数コマンドの下位4ビットに設定し、当該設定された賞球個数コマンドを払出制御用マイクロコンピュータ370に送信する。また、CPU56は、賞球個数テーブルに設定されている賞球コマンド出力カウンタ1および賞球コマンド出力カウンタ2,3の値が0であり、賞球コマンド出力カウンタ4の値が0でなければ、賞球数(3個)を指定する賞球指定データにもとづいて賞球個数(3個)を示すデータを賞球個数コマンドの下位4ビットに設定し、当該設定された賞球個数コマンドを払出制御用マイクロコンピュータ370に送信する。また、図41において、スイッチオンバッファ1は入力ポート0に対応しており、スイッチオンバッファ2は入力ポート2に対応している。
図42は、ステップS501の賞球コマンド出力カウンタ加算処理を示すフローチャートである。賞球コマンド出力カウンタ加算処理において、遊技制御用マイクロコンピュータ560(具体的には、CPU56)は、賞球個数テーブルの先頭アドレスをポインタにセットする(ステップS5101)。そして、ポインタが指すアドレスのデータ(この場合には処理数)をロードする(ステップS5102)。
次いで、CPU56は、ポインタの値を1増やし(ステップS5103)、ポインタが指すスイッチオンバッファの下位アドレスをポインタバッファの下位バイトにロードし(ステップS5104)、ポインタバッファの指すスイッチオンバッファをレジスタにロードする(ステップS5105)。次いで、CPU56は、ポインタの値を1増やし(ステップS5106)、ポインタが指す賞球コマンド出力カウンタの下位アドレスをポインタバッファの下位バイトにロードする(ステップS5107)。次いで、CPU56は、ポインタの値を1増やし(ステップS5108)、レジスタにロードしたスイッチオンバッファの内容と、ポインタが指す賞球指定データとの論理積をとる(ステップS5109)。
ステップS5109における演算結果が0であれば(ステップS5110のY)、すなわち、検査対象のスイッチの検出信号がオン状態でなければ、処理数を1減らし(ステップS5114)、処理数が0であれば処理を終了し、処理数が0でなければステップS5103に戻る(ステップS5115)。
ステップS5109における演算結果が0でなければ(ステップS5110のN)、すなわち、検査対象のスイッチの検出信号がオン状態であれば、CPU56は、ポインタが指す賞球コマンド出力カウンタの値を1加算する(ステップS111)。ただし、CPU56は、加算の結果、賞球コマンド出力カウンタの値に桁上げが発生した場合には、賞球コマンド出力カウンタの値を1減算し元に戻す(ステップS5112,S5113)。そしてステップS5113の処理に移行する。
図43は、ステップS502の賞球制御処理を示すフローチャートである。賞球制御処理では、遊技制御用マイクロコンピュータ560(具体的には、CPU56)は、賞球プロセスコードの値に応じて、ステップS521〜S525のいずれかの処理を実行する。
図44は、賞球プロセスコードの値が0の場合に実行される賞球送信処理1(ステップS521)を示すフローチャートである。CPU56は、賞球送信処理1において、接続確認コマンドを払出制御用マイクロコンピュータに送信する制御を行う(ステップS5211)。具体的には、CPU56は、シリアル通信回路505の送信データレジスタに接続確認コマンドを出力する処理を行う。そして、CPU56は、賞球プロセスコードに賞球接続確認処理を示す値「1」をセットし(ステップS5212)、賞球プロセスタイマに接続確認時間2(例えば10秒)をセットする(ステップS5213)。なお、ステップS5213でセットされた接続確認時間2にもとづいて、接続確認コマンドを送信した後、10秒を経過しても接続OKコマンドを受信できなかった場合には、以後、接続確認コマンドを送信する間隔を10秒に広げるように制御される。具体的には、ステップS5213でセットされた賞球プロセスタイマは、後述するステップS5227,S5229の処理で計測され、接続OKコマンドを受信することなく10秒が経過してタイムアウトしステップS5227でYと判定されると、賞球送信処理1に戻り次の接続確認コマンドが送信される(ステップS5228,S5211参照)。
なお、賞球プロセスタイマには、遊技制御用マイクロコンピュータ560で実行されるタイマ割込処理における割込周期も考慮した値(例えば、割込周期の整数倍)がセットされる。このことは、遊技制御用マイクロコンピュータ560や、払出制御用マイクロコンピュータ370、演出制御用マイクロコンピュータ100で用いられる他のタイマ(例えば、主制御通信制御タイマや、払出制御タイマ、再払出待ちタイマ、賞球情報出力タイマ、賞球信号1出力タイマ)についても同様である。
図45は、賞球プロセスコードの値が1の場合に実行される賞球接続確認処理(ステップS522)を示すフローチャートである。CPU56は、賞球接続確認処理において、まず、シリアル通信回路505の受信データレジスタにデータがあるか否かを確認する(ステップS5221)。具体的には、CPU56は、シリアル通信回路505のステータスレジスタAのビット5の値を確認するようにすればよい(図15参照)。受信データレジスタにデータがなければ(すなわち、コマンドを受信していなければ)、ステップS5227に移行する。
受信データレジスタにデータがあれば(すなわち、コマンドを受信していれば)、CPU56は、シリアル通信回路505のエラーが発生しているか否かを確認する(ステップS5222)。具体的には、CPU56は、シリアル通信回路505のステータスレジスタAのビット0〜4のいずれかのエラービットの値がセットされているか否かを確認するようにすればよい(図15参照)。エラーが発生していれば、ステップS5227に移行する。
シリアル通信回路505のエラーも発生していなければ、CPU56は、シリアル通信回路505の受信データレジスタからコマンドを読み出し、受信したコマンドが接続OKコマンドであるか否かを確認する(ステップS5223)。接続OKコマンドでなければ、ステップS5227に移行する。
接続OKコマンドを受信していれば、CPU56は、接続OKコマンドの下位4ビットに設定されているエラー情報(図30参照)を枠状態表示バッファに格納する(ステップS5224)。
次いで、CPU56は、賞球プロセスコードに賞球送信処理2を示す値「2」をセットし(ステップS5225)、賞球プロセスタイマに接続確認時間1(例えば1秒)をセットする(ステップS5226)。なお、ステップS5226でセットされた接続確認時間1にもとづいて、接続OKコマンドの受信後に1秒経過するごとに次の接続確認コマンドを繰り返し送信する制御が行われる。具体的には、ステップS5226でセットされた賞球プロセスタイマは、後述するステップS52313,S52315の処理で計測され、賞球個数コマンドを送信することなく1秒が経過してタイムアウトしステップS52313でYと判定されると、賞球送信処理1に戻り次の接続確認コマンドが送信される(ステップS52314,S5211参照)。
ステップS5227では、CPU56は、賞球プロセスタイマがタイムアウトしたか否かを確認する。賞球プロセスタイマがタイムアウトしていれば(すなわち、接続確認コマンドを送信した後、10秒を経過しても接続OKコマンドを受信できなかった場合)、CPU56は、賞球プロセスコードに賞球送信処理1を示す値「0」をセットし(ステップS5228)、処理を終了する。賞球プロセスタイマがタイムアウトしていなければ、CPU56は、賞球プロセスタイマの値を1減算する(ステップS5229)。
図46は、賞球プロセスコードの値が2の場合に実行される賞球送信処理2(ステップS523)を示すフローチャートである。CPU56は、賞球送信処理2において、賞球コマンド出力カウンタ1〜4の中にカウント値が0でないものがあるか否かを確認する(ステップS52301)。カウント値が0でないものがなければ、ステップS52313に移行する。
賞球コマンド出力カウンタ1〜4の中にカウント値が0でないものがある場合には(すなわち、カウント値が1以上のものがある場合には)、CPU56は、枠状態表示バッファの内容をロードし、枠状態表示バッファの内容が0であるか否かを確認する(ステップS52302)。枠状態表示バッファの内容が0でなければ、そのまま処理を終了する。そのように制御することによって、エラー情報が設定された接続OKコマンドを受信し、払出制御用マイクロコンピュータ370側で払出停止状態に制御されている場合には、ステップS52303以降の処理に移行しないようにし、賞球個数コマンドの送信を保留するように制御する。
枠状態表示バッファの内容が0であれば(すなわち、払出に関するエラーが発生していなければ)、払出制御用CPU371は、そのカウント値が0でない賞球コマンド出力カウンタに対応する賞球個数を個数バッファにセットする(ステップS52303)。具体的には、ステップS52301において、CPU56は、まず、賞球コマンド出力カウンタ1のカウント値が0であるか否かを確認する。そして、賞球コマンド出力カウンタ1のカウント値が1以上であった場合には、ステップS52303において、CPU56は、個数バッファに賞球個数15個をセットする。また、ステップS52301において、CPU56は、賞球コマンド出力カウンタ1のカウント値が0であった場合には、賞球コマンド出力カウンタ2,3のカウント値が0であるか否かを確認する。そして、賞球コマンド出力カウンタ2,3のカウント値が1以上であった場合には、ステップS52303において、CPU56は、個数バッファに賞球個数10個をセットする。さらに、ステップS52301において、CPU56は、賞球コマンド出力カウンタ2,3のカウント値も0であった場合には、賞球コマンド出力カウンタ4のカウント値が0であるか否かを確認する。そして、賞球コマンド出力カウンタ4のカウント値が1以上であった場合には、ステップS52303において、CPU56は、個数バッファに賞球個数3個をセットする。
また、CPU56は、そのカウント値が0でない賞球コマンド出力カウンタに対応する賞球個数を賞球個数コマンドにセットする(ステップS52304)とともに、賞球個数をセットした賞球個数コマンドを払出制御用マイクロコンピュータ370に送信する制御を行う(ステップS52305)。具体的には、CPU56は、シリアル通信回路505の送信データレジスタに、賞球個数をセットした賞球個数コマンドを出力する処理を行う。
なお、ステップS52301,S52305の処理が実行されることによって、この実施の形態では、接続確認コマンドの送信タイミングにかかわりなく、賞球コマンド出力カウンタの中にカウント値が0でないものがあれば(すなわち、賞球個数記憶があり、所定の払出条件が成立していれば)、賞球個数コマンドが払出制御用マイクロコンピュータ370に送信される。
そして、CPU56は、賞球プロセスコードに賞球受領確認処理を示す値「3」をセットし(ステップS52306)、賞球プロセスタイマに接続確認時間2(例えば10秒)をセットする(ステップS52307)。なお、ステップS52307でセットされた接続確認時間2にもとづいて、賞球個数コマンドを送信した後、10秒以内に賞球個数受付コマンドや賞球準備中コマンドを受信したか否かが確認される。具体的には、ステップS52307でセットされた賞球プロセスタイマは、後述するステップS52409,S52411の処理で計測され、賞球個数受付コマンドや賞球準備中コマンドを受信することなく10秒が経過してタイムアウトしステップS52409でYと判定されると、賞球送信処理1に戻り次の接続確認コマンドが送信される(ステップS52410,S5211参照)。
なお、ステップS52306の処理が実行されることによってステップS52305で賞球個数コマンドが送信されると、接続確認コマンドの送信処理を含む賞球送信処理1に戻ることなく、賞球受領確認処理に移行される。従って、この実施の形態では、賞球個数コマンドを送信するまでは所定時間(例えば1秒)ごとに繰り返し接続確認コマンドを送信する処理が実行されているのであるが、賞球個数コマンドを送信したことにもとづいて接続確認コマンドを送信する制御が停止される(より具体的には、賞球個数コマンドを送信した後、後述する賞球個数受付コマンドを受信したことにより賞球終了確認処理に移行する(ステップS52403〜S52405参照)ことによって、または賞球準備中コマンドを受信したことにより賞球受領確認処理を繰り返す(ステップS52406〜S52408参照)ことによって、賞球送信処理1に戻ることなく、接続確認コマンドを送信する制御が停止される。この場合、払出制御用マイクロコンピュータ370側から何も払出制御コマンドが返信されないという異常状態が発生しない限り、賞球個数コマンドを送信した後、賞球払出動作を終了して賞球終了コマンドを受信するまで、遊技制御用マイクロコンピュータ560から接続確認コマンドが送信されることはない。
次いで、CPU56は、ステップS52303でセットした個数バッファの値を賞球個数カウンタに加算し(ステップS52308)、加算後のカウント値が所定の賞球不足判定値(例えば501)以上であるか否かを確認する(ステップS52309)。この実施の形態において、賞球個数カウンタは、遊技制御用マイクロコンピュータ560側で未払い出しの賞球数を把握するために用いられるカウンタであり、賞球個数コマンドを送信する際に賞球個数コマンドで指定される賞球個数が加算され、賞球払出を10球検出するごとに払出制御用マイクロコンピュータ370から出力される賞球情報にもとづいて10ずつ減算される。また、前述したように、賞球個数カウンタには、メイン処理の初期設定処理において初期値として「250」がセットされている。そして、賞球個数カウンタのカウント値が所定の賞球不足判定値(例えば501)以上に達する場合には、未払い出しの賞球数が異常に多すぎるのであるから、賞球不足の事態が生じていると判定することができる。また、賞球個数カウンタのカウント値が所定の賞球過剰判定値(例えば0)未満となった場合には、本来払い出されるべき数を超えて異常に多くの遊技球が払い出されているのであるから、賞球過剰の事態が生じていると判定することができる。
なお、この実施の形態では、賞球個数コマンドを送信(ステップS52305参照)した直後に、賞球個数カウンタの加算処理(ステップS52308参照)する場合を示しているが、賞球個数コマンドが送信されるタイミングで加算するものであれば、例えば、まず賞球個数カウンタの加算処理を実行してから、その直後に賞球個数コマンドを送信するようにしてもよい。
また、賞球不足と判定される場合には、払出制御用マイクロコンピュータ370側に何らかの障害が生じて払出動作を正常に行えない場合の他、賞球情報を出力する信号線が断線している場合も考えられる。また、逆に、賞球過剰と判定される場合には、払出制御用マイクロコンピュータ370側に何らかの障害が生じて払出動作が必要以上に行われている場合の他、賞球個数コマンドを送信するコマンド線に何らかの不正が施されて不正に賞球個数コマンドが払出制御用マイクロコンピュータ370に入力されている場合も考えられる。
賞球個数カウンタのカウント値が所定の賞球不足判定値(例えば501)以上であった場合には、CPU56は、賞球不足や賞球過剰が発生していることを示す賞球エラーフラグが既にセットされているか否かを確認する(ステップS52310)。既に賞球エラーフラグがセットされていれば、そのまま処理を終了する。賞球エラーフラグがセットされていなければ、CPU56は、賞球エラーフラグをセットする(ステップS52311)とともに、賞球不足エラーコマンドを演出制御用マイクロコンピュータ100に送信する制御を行う(ステップS52312)。具体的には、CPU56は、賞球不足エラーコマンド送信テーブルのアドレスをポインタにセットする処理を行う。そして、ステップS52312で賞球不足エラーコマンド送信テーブルのアドレスがポインタにセットされたことにもとづいて、その後、ステップS30の演出図柄コマンド制御処理において、演出制御基板80との送受信用チャネルのシリアル通信回路505の送信データレジスタに賞球不足エラーコマンドが出力され、賞球不足エラーコマンドが演出制御用マイクロコンピュータ100に送信される。なお、賞球エラーフラグは、一度セットされると、遊技機への電力供給が停止された後、遊技機へ電源が再投入されるまで、クリアされずに維持される。また、この実施の形態では、遊技制御用マイクロコンピュータ560と演出制御用マイクロコンピュータ100との間の通信に関しては、遊技制御用マイクロコンピュータ560から演出制御用マイクロコンピュータ100に対してコマンドが送信されるのみで、その逆はない。そのため、遊技制御用マイクロコンピュータ560には、演出制御用マイクロコンピュータ100との通信に関しては、送信専用のシリアル通信回路が搭載されていてもよい。
なお、この実施の形態では、賞球不足エラーコマンドや、後述する賞球過剰エラーコマンドを受信したことにもとづいて、演出制御用マイクロコンピュータ100によって賞球不足や賞球過剰のエラー報知が行われるのであるが(ステップS623〜S626参照)、賞球不足や賞球過剰のエラー報知は、報知開始から所定期間を経過したときに復旧するようにしてもよい。また、例えば、賞球個数カウンタの値が所定の賞球不足判定値(例えば501)や所定の賞球過剰判定値(例えば0)の範囲内に復帰したときに、賞球不足や賞球過剰のエラー報知から復旧するようにしてもよい。
なお、この実施の形態では、ステップS52308において、賞球個数コマンドを送信したタイミングで賞球個数カウンタに賞球個数を加算する場合を示したが、賞球個数カウンタのカウントアップの仕方は、この実施の形態で示したものにかぎらず、例えば、逆に賞球個数を減算するようにしてもよい。この場合、例えば、後述するステップS5311の処理において、賞球情報を入力したことにもとづいて賞球個数カウンタの値に逆に10加算するようにすればよい。そして、ステップS52309の処理では賞球個数カウンタの値が0未満であれば賞球不足エラーと判定するようにし、後述するステップS5312の処理では賞球個数カウンタの値が501以上であれば賞球過剰エラーと判定するようにすればよい。
ステップS52313では、CPU56は、賞球プロセスタイマがタイムアウトしたか否かを確認する。賞球プロセスタイマがタイムアウトしていれば(すなわち、接続OKコマンドを受信した後、1秒を経過するまでに、賞球個数の記憶もなく、新たな入賞も発生しなかった場合)、CPU56は、賞球プロセスコードに賞球送信処理1を示す値「0」をセットし(ステップS52314)、処理を終了する。賞球プロセスタイマがタイムアウトしていなければ、CPU56は、賞球プロセスタイマの値を1減算する(ステップS52315)。
図47は、賞球プロセスコードの値が3の場合に実行される賞球受領確認処理(ステップS524)を示すフローチャートである。CPU56は、賞球受領確認処理において、まず、シリアル通信回路505の受信データレジスタにデータがあるか否かを確認する(ステップS52401)。具体的には、CPU56は、シリアル通信回路505のステータスレジスタAのビット5の値を確認するようにすればよい(図15参照)。受信データレジスタにデータがなければ(すなわち、コマンドを受信していなければ)、ステップS52409に移行する。
受信データレジスタにデータがあれば(すなわち、コマンドを受信していれば)、CPU56は、シリアル通信回路505のエラーが発生しているか否かを確認する(ステップS52402)。具体的には、CPU56は、シリアル通信回路505のステータスレジスタAのビット0〜4のいずれかのエラービットの値がセットされているか否かを確認するようにすればよい(図15参照)。エラーが発生していれば、ステップS52409に移行する。
シリアル通信回路505のエラーも発生していなければ、CPU56は、シリアル通信回路505の受信データレジスタからコマンドを読み出し、受信したコマンドが賞球個数受付コマンドであるか否かを確認する(ステップS52403)。賞球個数受付コマンドを受信していれば、CPU56は、送信した賞球個数コマンドで設定した賞球個数に対応する賞球コマンド出力カウンタの値を1減算する(ステップS52404)。また、CPU56は、賞球プロセスコードに賞球終了確認処理を示す値「4」をセットし(ステップS52405)、ステップS52408に移行する。
受信したコマンドが賞球個数受付コマンドでなければ、CPU56は、受信したコマンドが賞球準備中コマンドであるか否かを確認する(ステップS52406)。賞球準備中コマンドでもなければ、ステップS52409に移行する。
賞球準備中コマンドを受信していれば、CPU56は、賞球準備中コマンドの下位4ビットに設定されているエラー情報(図30参照)を枠状態表示バッファに格納する(ステップS52407)。そして、CPU56は、賞球プロセスタイマに接続確認時間2(例えば10秒)をセットする(ステップS52408)。なお、ステップS52408でセットされた接続確認時間2にもとづいて、賞球準備中コマンドを受信した後、10秒を経過しても賞球個数受付コマンドも次の賞球準備中コマンドも受信できなかった場合には、接続確認コマンドを送信する制御に戻る。具体的には、ステップS52408でセットされた賞球プロセスタイマは、後述するステップS52409,S52411の処理で計測され、賞球個数受付コマンドや次の賞球準備中コマンドを受信することなく10秒が経過してタイムアウトしステップS52409でYと判定されると、賞球送信処理1に戻り次の接続確認コマンドが送信される(ステップS52410,S5211参照)。
ステップS52409では、CPU56は、賞球プロセスタイマがタイムアウトしたか否かを確認する。賞球プロセスタイマがタイムアウトしていれば(すなわち、賞球個数コマンドを送信した後、10秒を経過しても賞球個数受付コマンドや賞球準備中コマンドを受信できなかった場合)、CPU56は、賞球プロセスコードに賞球送信処理1を示す値「0」をセットし(ステップS52410)、処理を終了する。賞球プロセスタイマがタイムアウトしていなければ、CPU56は、賞球プロセスタイマの値を1減算する(ステップS52411)。
図48は、賞球プロセスコードの値が4の場合に実行される賞球終了確認処理(ステップS525)を示すフローチャートである。CPU56は、賞球終了確認処理において、まず、シリアル通信回路505の受信データレジスタにデータがあるか否かを確認する(ステップS52501)。具体的には、CPU56は、シリアル通信回路505のステータスレジスタAのビット5の値を確認するようにすればよい(図15参照)。受信データレジスタにデータがなければ(すなわち、コマンドを受信していなければ)、ステップS52509に移行する。
受信データレジスタにデータがあれば(すなわち、コマンドを受信していれば)、CPU56は、シリアル通信回路505のエラーが発生しているか否かを確認する(ステップS52502)。具体的には、CPU56は、シリアル通信回路505のステータスレジスタAのビット0〜4のいずれかのエラービットの値がセットされているか否かを確認するようにすればよい(図15参照)。エラーが発生していれば、ステップS52509に移行する。
シリアル通信回路505のエラーも発生していなければ、CPU56は、シリアル通信回路505の受信データレジスタからコマンドを読み出し、受信したコマンドが賞球終了コマンドであるか否かを確認する(ステップS52503)。賞球終了コマンドを受信していれば、CPU56は、賞球プロセスコードに賞球送信処理2を示す値「2」をセットし(ステップS52504)、賞球プロセスタイマに接続確認時間1(例えば1秒)をセットする(ステップS52505)。なお、ステップS52505でセットされた接続確認時間1にもとづいて、賞球終了コマンドを受信した後、1秒を経過しても始動入賞が発生しなかった場合には、接続確認コマンドを送信する制御に戻る。具体的には、ステップS52505でセットされた賞球プロセスタイマは、ステップS52313,S52315の処理で計測され、新たな始動入賞が発生せず賞球個数コマンドを送信することなく1秒が経過してタイムアウトしステップS52313でYと判定されると、賞球送信処理1に戻り次の接続確認コマンドが送信される(ステップS52314,S5211参照)。
なお、ステップS52504の処理が実行されることによって、賞球終了コマンドを受信した場合にはまず賞球送信処理2に移行されるので、賞球個数の記憶が溜まっている場合には直ちに次の賞球個数コマンドが送信されるように制御される。一方で、賞球送信処理2に移行された後、賞球個数の記憶もなく、ステップS52505でセットされた接続確認時間1(例えば1秒)が経過するまでの間に新たな入賞も発生しなかった場合には、さらに賞球送信処理1に移行され、接続確認コマンドを繰り返し送信する処理が再開される。
受信したコマンドが賞球終了コマンドでなければ、CPU56は、受信したコマンドが賞球準備中コマンドであるか否かを確認する(ステップS52506)。賞球準備中コマンドでもなければ、ステップS52509に移行する。
賞球準備中コマンドを受信していれば、CPU56は、賞球準備中コマンドの下位4ビットに設定されているエラー情報(図30参照)を枠状態表示バッファに格納する(ステップS52507)。そして、CPU56は、賞球プロセスタイマに接続確認時間2(例えば10秒)をセットする(ステップS52508)。なお、ステップS52508でセットされた接続確認時間2にもとづいて、賞球準備中コマンドを受信した後、10秒を経過しても賞球終了コマンドも次の賞球準備中コマンドも受信できなかった場合には、接続確認コマンドを送信する制御に戻る。具体的には、ステップS52508でセットされた賞球プロセスタイマは、後述するステップS52509,S52511の処理で計測され、賞球終了コマンドや次の賞球準備中コマンドを受信することなく10秒が経過してタイムアウトしステップS52509でYと判定されると、賞球送信処理1に戻り次の接続確認コマンドが送信される(ステップS52510,S5211参照)。
ステップS52509では、CPU56は、賞球プロセスタイマがタイムアウトしたか否かを確認する。賞球プロセスタイマがタイムアウトしていれば(すなわち、賞球個数受付コマンドや賞球準備中コマンドを受信した後、10秒を経過しても賞球終了コマンドや賞球準備中コマンドを受信できなかった場合)、CPU56は、賞球プロセスコードに賞球送信処理1を示す値「0」をセットし(ステップS52510)、処理を終了する。賞球プロセスタイマがタイムアウトしていなければ、CPU56は、賞球プロセスタイマの値を1減算する(ステップS52511)。
図49は、ステップS503の賞球カウンタ減算処理を示すフローチャートである。CPU56は、賞球カウンタ減算処理において、まず、賞球情報入力無効タイマがタイムアウトしたか否かを確認する(ステップS5301)。なお、賞球情報入力無効タイマは、賞球情報の入力を確認した後、次の賞球情報の入力を確認するまでの間にインターバル期間を設けるために計測されるタイマである。タイムアウトしていなければ、CPU56は、賞球情報入力無効タイマの値を1減算して(ステップS5302)、処理を終了する。
賞球情報入力無効タイマがタイムアウトしていれば、CPU56は、入力ポート0の内容を入力し(ステップS5303)、賞球情報のビットがオン状態であるか否かを確認する(ステップS5304)。賞球情報のビットがオン状態であれば、ステップS5305に移行する。
ステップS5305では、CPU56は、処理数として所定の賞球情報確認回数(例えば8)をセットする(ステップS5305)。そして、CPU56は、賞球情報を入力しているか否かを確認し、賞球情報の入力を確認できれば賞球情報オンカウンタの値を1加算する処理を、処理数(本例では8)を終了するまで繰り返し実行する(ステップS5306〜S5308)。
次いで、CPU56は、賞球情報オンカウンタの値が6以上であるか否かを確認する(ステップS5309)。賞球情報オンカウンタの値が6以上であれば、CPU56は、賞球情報入力無効タイマに所定時間(例えば0.8秒)をセットする(ステップS5310)とともに、賞球個数カウンタの値を10減算する(ステップS5311)。
以上の処理が実行されることによって、この実施の形態では、賞球情報の入力を8回の確認処理中6回以上確認したことを条件として賞球情報を入力したと判定し、10個の賞球払出が行われたものとして賞球個数カウンタの値を10減算している。そのような処理によって、この実施の形態では、誤って賞球情報を入力したと判定する事態を低減し、遊技制御用マイクロコンピュータ560側で未払い出しの賞球数を適切に把握できなくなる事態を防止している。
次いで、CPU56は、減算後のカウント値が所定の賞球過剰判定値(例えば0)未満であるか否かを確認する(ステップS5312)。賞球個数カウンタのカウント値が所定の賞球過剰判定値(例えば0)未満であった場合には、CPU56は、賞球エラーフラグが既にセットされているか否かを確認する(ステップS5313)。既に賞球エラーフラグがセットされていれば、そのまま処理を終了する。賞球エラーフラグがセットされていなければ、CPU56は、賞球エラーフラグをセットする(ステップS5314)とともに、賞球過剰エラーコマンドを演出制御用マイクロコンピュータ100に送信する制御を行う(ステップS5315)。具体的には、CPU56は、賞球過剰エラーコマンド送信テーブルのアドレスをポインタにセットする処理を行う。そして、ステップS5315で賞球過剰エラーコマンド送信テーブルのアドレスがポインタにセットされたことにもとづいて、その後、ステップS30の演出図柄コマンド制御処理において、演出制御基板80との送受信用チャネルのシリアル通信回路505の送信データレジスタに賞球過剰エラーコマンドが出力され、賞球過剰エラーコマンドが演出制御用マイクロコンピュータ100に送信される。
次に、枠状態出力処理(ステップS39)について説明する。図50は、ステップS39の枠状態出力処理の一例を示すフローチャートである。CPU56は、枠状態出力処理において、まず、枠状態表示バッファの内容をロードする(ステップS391)。次いで、CPU56は、入力ポート0の内容を入力する(ステップS392)とともに、入力した入力ポート0の内容を所定のドア開放信号確認用のマスク値(具体的には、01000000)と論理積をとる(ステップS393)。さらに、CPU56は、論理積をとった演算結果と、ステップS391でロードした枠状態表示バッファの内容との論理積をとる(ステップS394)。以上の処理が実行されることによって、枠状態表示バッファの内容にさらにドア開放信号の入力状態が付加された演算結果が得られる。
次いで、CPU56は、演算結果と前回枠状態表示バッファの内容とを比較する(ステップS395)。なお、前回枠状態表示バッファには、前回のタイマ割込によって枠状態出力処理が実行されたときに算出されたステップS394の演算結果が格納されている。演算結果が前回枠状態表示バッファの内容と異なる場合には(ステップS396のY)、CPU56は、前回枠状態表示バッファにステップS394で算出した演算結果を格納して前回枠状態表示バッファを更新する(ステップS397)とともに、ステップS394で算出した演算結果をそのまま枠状態表示コマンドに設定して、枠状態表示コマンドを演出制御用マイクロコンピュータ100に送信する制御を行う(ステップS398)。具体的には、CPU56は、枠状態表示コマンド送信テーブルのアドレスをポインタにセットする処理を行う。そして、ステップS398で枠状態表示コマンド送信テーブルのアドレスがポインタにセットされたことにもとづいて、その後、ステップS30の演出図柄コマンド制御処理において、演出制御基板80との送受信用チャネルのシリアル通信回路505の送信データレジスタに枠状態表示コマンドが出力され、枠状態表示コマンドが演出制御用マイクロコンピュータ100に送信される。
以上の処理が実行されることによって、払出制御用マイクロコンピュータ370から接続OKコマンドや賞球準備中コマンドで設定されたエラー情報(払出個数異常エラーや、球切れエラー、満タンエラー、賞球エラー)の内容やドア開放信号の入力状態が枠状態表示コマンドに設定されて、演出制御用マイクロコンピュータ100に送信される。
図51は、遊技制御用マイクロコンピュータ560が実行する特別図柄プロセス処理(ステップS28)のプログラムの一例を示すフローチャートである。上述したように、特別図柄プロセス処理では第1特別図柄表示器8aまたは第2特別図柄表示器8bおよび特別可変入賞球装置20、可変入賞装置400を制御するための処理が実行される。特別図柄プロセス処理において、CPU56は、第1始動入賞口13aに遊技球が入賞したことを検出するための第1始動口スイッチ14aがオンしていたら、すなわち、第1始動入賞口13aへの始動入賞が発生していたら、第1始動口スイッチ通過処理を実行する(ステップS311,S312)。また、CPU56は、第2始動入賞口13bに遊技球が入賞したことを検出するための第2始動口スイッチ15aがオンしていたら、すなわち第2始動入賞口13bへの始動入賞が発生していたら、第2始動口スイッチ通過処理を実行する(ステップS313,S314)。そして、ステップS300〜S310のうちのいずれかの処理を行う。第1始動口スイッチ14aまたは第2始動口スイッチ15aがオンしていなければ、内部状態に応じて、ステップS300〜S310のうちのいずれかの処理を行う。なお、ステップS311及びステップS313の判定は、第1始動口スイッチ14aに対応するスイッチオンバッファまたは第2始動口スイッチ15aに対応するスイッチオンバッファが「0」であるか否かにより判定してもよい。
ステップS300〜S310の処理は、以下のような処理である。
特別図柄通常処理(ステップS300):特別図柄プロセスフラグの値が0であるときに実行される。遊技制御用マイクロコンピュータ560は、特別図柄の可変表示が開始できる状態になると、保留記憶数バッファに記憶される数値データの記憶数(合算保留記憶数)を確認する。保留記憶数バッファに記憶される数値データの記憶数は合算保留記憶数カウンタのカウント値により確認できる。また、合算保留記憶数カウンタのカウント値が0でなければ、第1特別図柄または第2特別図柄の可変表示の表示結果を大当りとするか否か、或いは小当りとするか否かを決定する。大当りとする場合には大当りフラグをセットする。小当りとする場合には小当りフラグをセットする。そして、内部状態(特別図柄プロセスフラグ)をステップS301に応じた値(この例では1)に更新する。なお、大当りフラグは、大当り遊技が終了するときにリセットされ、小当りフラグは、小当り開始前処理にてリセットされる。
変動パターン設定処理(ステップS301):特別図柄プロセスフラグの値が1であるときに実行される。また、変動パターンを決定し、その変動パターンにおける変動時間(可変表示時間:可変表示を開始してから表示結果を導出表示(停止表示)するまでの時間)を特別図柄の可変表示の変動時間とすることに決定する。また、特別図柄の変動時間を計測する変動時間タイマをスタートさせる。そして、内部状態(特別図柄プロセスフラグ)をステップS302に対応した値(この例では2)に更新する。
表示結果指定コマンド送信処理(ステップS302):特別図柄プロセスフラグの値が2であるときに実行される。演出制御用マイクロコンピュータ100に、表示結果指定コマンドを送信する制御を行う。そして、内部状態(特別図柄プロセスフラグ)をステップS303に対応した値(この例では3)に更新する。
特別図柄変動中処理(ステップS303):特別図柄プロセスフラグの値が3であるときに実行される。変動パターン設定処理で選択された変動パターンの変動時間が経過(ステップS301でセットされる変動時間タイマがタイムアウトすなわち変動時間タイマの値が0になる)すると、内部状態(特別図柄プロセスフラグ)をステップS304に対応した値(この例では4)に更新する。
特別図柄停止処理(ステップS304):特別図柄プロセスフラグの値が4であるときに実行される。第1特別図柄表示器8aまたは第2特別図柄表示器8bにおける可変表示を停止して停止図柄を導出表示させる。また、演出制御用マイクロコンピュータ100に、図柄確定指定コマンドを送信する制御を行う。そして、大当りフラグがセットされている場合には、内部状態(特別図柄プロセスフラグ)をステップS305に対応した値(この例では5)に更新する。また、小当りフラグがセットされている場合には、内部状態(特別図柄プロセスフラグ)をステップS308に対応した値(この例では8)に更新する。大当りフラグおよび小当りフラグのいずれもセットされていない場合には、内部状態(特別図柄プロセスフラグ)をステップS300に対応した値(この例では0)に更新する。なお、演出制御用マイクロコンピュータ100は、遊技制御用マイクロコンピュータ560が送信する図柄確定指定コマンドを受信すると演出表示装置9において演出図柄が停止されるように制御する。
大入賞口開放前処理(ステップS305):特別図柄プロセスフラグの値が5であるときに実行される。大入賞口開放前処理では、下部大入賞口23bを開放する制御を行う。具体的には、カウンタ(例えば、下部大入賞口23bに入った遊技球数をカウントするカウンタ)などを初期化するとともに、ソレノイド17を駆動して下部大入賞口23bを開放状態にする。また、タイマによって大入賞口開放中処理の実行時間を設定し、内部状態(特別図柄プロセスフラグ)をステップS306に対応した値(この例では6)に更新する。なお、大入賞口開放前処理は各ラウンド毎に実行されるが、第1ラウンドを開始する場合には、大入賞口開放前処理は大当り遊技を開始する処理でもある。
大入賞口開放中処理(ステップS306):特別図柄プロセスフラグの値が6であるときに実行される。大当り遊技状態中のラウンド表示の演出制御コマンドを演出制御用マイクロコンピュータ100に送信する制御や下部大入賞口23bの閉成条件の成立を確認する処理等を行う。下部大入賞口23bの閉成条件が成立し、かつ、まだ残りラウンドがある場合には、内部状態(特別図柄プロセスフラグ)をステップS305に対応した値(この例では5)に更新する。また、全てのラウンドを終えた場合には、内部状態(特別図柄プロセスフラグ)をステップS307に対応した値(この例では7)に更新する。
大当り終了処理(ステップS307):特別図柄プロセスフラグの値が7であるときに実行される。大当り遊技状態が終了したことを遊技者に報知する表示制御を演出制御用マイクロコンピュータ100に行わせるための制御を行う。また、遊技状態を示すフラグ(例えば有利状態フラグ)をセットする処理を行う。そして、内部状態(特別図柄プロセスフラグ)をステップS300に対応した値(この例では0)に更新する。
小当り開放前処理(ステップS308):特別図柄プロセスフラグの値が8であるときに実行される。小当り開放前処理では、小当り種別に対応した小当り開始コマンドを送信するとともに、カウンタ(例えば、可変入賞装置400に進入した遊技球をカウントする残存球数カウンタ)などを初期化する。また、上部大入賞口24bを開放状態とするタイミングや閉状態とするタイミングや足模型402を動作させるタイミングを含む小当り制御パターンをセットすることで、これら小当り遊技状態の動作設定を実施し、内部状態(特別図柄プロセスフラグ)をステップS309に対応した値(この例では9)に更新する。
小当り開放中処理(ステップS309):特別図柄プロセスフラグの値が9であるときに実行される。小当り開放中処理においては、上部大入賞口24bを開放状態とする制御を行う。具体的には、ソレノイド17を駆動して上部大入賞口24bを開放状態にする。また、タイマによって小当り遊技状態の終了を判定して、内部状態(特別図柄プロセスフラグ)をステップS310に対応した値(この例では10(10進数))に更新する。
小当り終了処理(ステップS310):特別図柄プロセスフラグの値が10であるときに実行される。小当り終了指定コマンドを送信して小当り遊技状態が終了したことを遊技者に報知する表示制御を演出制御用マイクロコンピュータ100に行わせるための制御を行うとともに、小当りによって特定領域43に遊技球が進入したか否かを判定する(特定入賞判定処理)。小当りにおいて特定領域43に遊技球が進入した場合には、内部状態(特別図柄プロセスフラグ)をステップS305に対応した値(この例では5)に更新する一方、特定領域43に遊技球が進入していない場合には、内部状態(特別図柄プロセスフラグ)をステップS300に対応した値(この例では0)に更新する。
図52は、ステップS312,S314の始動口スイッチ通過処理を示すフローチャートである。このうち、図52(A)は、ステップS312の第1始動口スイッチ通過処理を示すフローチャートである。また、図52(B)は、ステップS314の第2始動口スイッチ通過処理を示すフローチャートである。
まず、図52(A)を参照して第1始動口スイッチ通過処理について説明する。第1始動口スイッチ14aがオン状態の場合に実行される第1始動口スイッチ通過処理において、遊技制御用マイクロコンピュータ560のCPU56は、第1始動入賞記憶カウンタが示す第1始動入賞記憶数(または第1特図保留メモリが記憶している第1始動入賞記憶数)が最大値である4に達しているかどうか確認する(ステップS321A)。第1始動入賞記憶数が4に達していなければ、CPU56は、乱数回路503の乱数値記憶回路から、乱数値として記憶されているランダムRの値を読み出す(ステップS322A)。また、CPU56は、読み出したランダムRの値を、始動入賞記憶数の値に対応した保存領域(第1特別図柄判定用バッファ(第1特図保留メモリ))に格納する(ステップS323A)。なお、この実施の形態では、乱数回路503は、第1始動口スイッチ14aからの入力信号をラッチ信号として入力する。この場合、乱数回路503は、第1始動口スイッチ14aから入力信号を入力したタイミングで、乱数回路503が内蔵するカウンタのカウンタ値を乱数値記憶回路(ラッチ回路)にラッチする。そして、CPU56は、ステップS322Aにおいて、乱数回路503の乱数値記憶回路にラッチされている値をランダムRとして読み出す。
なお、乱数値記憶回路(ラッチ回路)にラッチされたカウント値を読み出さないかぎり、ラッチ信号を出力しても新たなカウント値をラッチ回路にラッチできないように乱数回路503が構成されている場合には、ステップS321Aで始動入賞記憶数が最大値4に達していると判定されている間は、ラッチ回路からカウント値が読み出されず、新たなカウント値がラッチ回路にラッチされない状態となる。そのため、その後、始動入賞記憶数が4未満となってステップS322Aが実行されてラッチ回路からカウント値が読み出されても、本来のラッチタイミング以外でラッチされた古いカウント値が読み出され、誤って古いカウント値にもとづく乱数値を用いて大当り判定などの処理が行われてしまうおそれがある。そのため、ラッチ回路にラッチされたカウント値を読み出さないかぎり新しいカウント値をラッチできないように乱数回路503が構成されている場合には、ステップS321AでYと判定した場合であっても(始動入賞記憶数が4以上であった場合でも)、ステップS322Aの処理を実行して、ラッチ回路にラッチされたカウント値を読み出すようにしてもよい(ただし、ステップS323A〜S325Aは実行しない)。そのようにすれば、本来のラッチタイミング以外でラッチされた古いカウント値にもとづく乱数値を用いて大当り判定などの処理を行ってしまう事態を防止することができる。
次いで、CPU56は、所定のバッファ領域に格納したランダムRの値を第1特図保留メモリの空エントリの先頭にセットし(ステップS324A)、第1始動入賞カウンタのカウント数を1加算することで第1始動入賞記憶数を1増やす(ステップS325A)。
なお、ステップS321Aにおいて第1始動入賞記憶が最大値である4に達している場合には、そのまま第1始動口スイッチ通過処理を終了する。
次に、図52(B)を参照して第2始動口スイッチ通過処理について説明する。第2始動口スイッチ15aがオン状態の場合に実行される第2始動口スイッチ通過処理において、遊技制御用マイクロコンピュータ560のCPU56は、第2始動入賞記憶カウンタが示す第2始動入賞記憶数(または第2特図保留メモリが記憶している第2始動入賞記憶数)が最大値である4に達しているかどうか確認する(ステップS321B)。第2始動入賞記憶数が4に達していなければ、CPU56は、乱数回路503の乱数値記憶回路から、乱数値として記憶されているランダムRの値を読み出す(ステップS322B)。また、CPU56は、読み出したランダムRの値を、始動入賞記憶数の値に対応した保存領域(第2特別図柄判定用バッファ(第2特図保留メモリ))に格納する(ステップS323B)。なお、この実施の形態では、乱数回路503は、第2始動口スイッチ15aからの入力信号をラッチ信号として入力する。この場合、乱数回路503は、第2始動口スイッチ15aから入力信号を入力したタイミングで、乱数回路503が内蔵するカウンタのカウンタ値を乱数値記憶回路(ラッチ回路)にラッチする。そして、CPU56は、ステップS322Bにおいて、乱数回路503の乱数値記憶回路にラッチされている値をランダムRとして読み出す。
次いで、CPU56は、所定のバッファ領域に格納したランダムRの値を第2特図保留メモリの空エントリの先頭にセットし(ステップS324B)、第2始動入賞カウンタのカウント数を1加算することで第2始動入賞記憶数を1増やす(ステップS325B)。
なお、ステップS321Bにおいて第2始動入賞記憶が最大値である4に達している場合には、そのまま第2始動口スイッチ通過処理を終了する。
図53および図54は、特別図柄プロセス処理における特別図柄通常処理(ステップS300)を示すフローチャートである。特別図柄通常処理において、CPU56は、合算保留記憶数の値を確認する(ステップS51)。具体的には、合算保留記憶数カウンタのカウント値を確認する。合算保留記憶数が0であれば処理を終了する。
合算保留記憶数が0でなければ、CPU56は、第2保留記憶数が0であるか否かを確認する(ステップS52)。具体的には、第2保留記憶数カウンタの値が0であるか否かを確認する。第2保留記憶数が0でなければ、CPU56は、特別図柄ポインタ(第1特別図柄について特別図柄プロセス処理を行っているのか第2特別図柄について特別図柄プロセス処理を行っているのかを示すフラグ)に「第2」を示すデータを設定する(ステップS53)。第2保留記憶数が0であれば(すなわち、第1保留記憶数のみが溜まっている場合)には、CPU56は、特別図柄ポインタに「第1」を示すデータを設定する(ステップS54)。
この実施の形態では、ステップS52〜S54の処理が実行されることによって、第1特別図柄の変動表示に対して、第2特別図柄の変動表示が優先して実行される。
次いで、CPU56は、RAM55において、特別図柄ポインタが示す方の保留記憶数=1に対応する保存領域に格納されている各乱数値を読み出してRAM55の乱数バッファ領域に格納する(ステップS55)。具体的には、CPU56は、特別図柄ポインタが「第1」を示している場合には、第1保留記憶数バッファにおける第1保留記憶数=1に対応する保存領域に格納されている各乱数値を読み出してRAM55の乱数バッファ領域に格納する。また、CPU56は、特別図柄ポインタが「第2」を示している場合には、第2保留記憶数バッファにおける第2保留記憶数=1に対応する保存領域に格納されている各乱数値を読み出してRAM55の乱数バッファ領域に格納する。
そして、CPU56は、特別図柄ポインタが示す方の保留記憶数カウンタのカウント値を1減算し、かつ、各保存領域の内容をシフトする(ステップS56)。具体的には、CPU56は、特別図柄ポインタが「第1」を示している場合には、第1保留記憶数カウンタのカウント値を1減算し、かつ、第1保留記憶数バッファにおける各保存領域の内容をシフトする。また、特別図柄ポインタが「第2」を示している場合に、第2保留記憶数カウンタのカウント値を1減算し、かつ、第2保留記憶数バッファにおける各保存領域の内容をシフトする。
すなわち、CPU56は、特別図柄ポインタが「第1」を示している場合に、RAM55の第1保留記憶数バッファにおいて第1保留記憶数=n(n=2,3,4)に対応する保存領域に格納されている各乱数値を、第1保留記憶数=n−1に対応する保存領域に格納する。また、特別図柄ポインタが「第2」を示す場合に、RAM55の第2保留記憶数バッファにおいて第2保留記憶数=n(n=2,3,4)に対応する保存領域に格納されている各乱数値を、第2保留記憶数=n−1に対応する保存領域に格納する。
よって、各第1保留記憶数(または、各第2保留記憶数)に対応するそれぞれの保存領域に格納されている各乱数値が抽出された順番は、常に、第1保留記憶数(または、第2保留記憶数)=1,2,3,4の順番と一致するようになっている。
そして、CPU56は、合算保留記憶数カウンタのカウント値をRAM55の所定の領域に保存した後(ステップS57)、合算保留記憶数の値を1減らす。すなわち、合算保留記憶数カウンタのカウント値を1減算する(ステップS58)。なお、CPU56は、カウント値が1減算される前の合算保留記憶数カウンタの値をRAM55の所定の領域に保存する。
また、CPU56は、減算後の特別図柄ポインタが示す方の保留記憶数カウンタの値にもとづいて、特別図柄ポインタが示す方の保留記憶数指定コマンドを演出制御用マイクロコンピュータ100に送信する制御を行う(ステップS59)。この場合、特別図柄ポインタに「第1」を示す値が設定されている場合には、CPU56は、第1保留記憶数指定コマンドを送信する制御を行う。また、特別図柄ポインタに「第2」を示す値が設定されている場合には、CPU56は、第2保留記憶数指定コマンドを送信する制御を行う。
特別図柄通常処理では、最初に、第1始動入賞口13aを対象として処理を実行することを示す「第1」を示すデータすなわち第1特別図柄を対象として処理を実行することを示す「第1」を示すデータ、または第2始動入賞口13bを対象として処理を実行することを示す「第2」を示すデータすなわち第2特別図柄を対象として処理を実行することを示す「第2」を示すデータが、特別図柄ポインタに設定される。そして、特別図柄プロセス処理における以降の処理では、特別図柄ポインタに設定されているデータに応じた処理が実行される。よって、ステップS300〜S310の処理を、第1特別図柄を対象とする場合と第2特別図柄を対象とする場合とで共通化することができる。
次いで、CPU56は、乱数バッファ領域からランダム0(当り判定用乱数)を読み出し、当り判定モジュールを実行する。なお、この場合、CPU56は、第1始動口スイッチ通過処理のステップS312Aや第2始動口スイッチ通過処理のステップS314Bで抽出し第1保留記憶バッファや第2保留記憶バッファにあらかじめ格納した当り判定用乱数を読み出し、当り判定を行う。当り判定モジュールは、あらかじめ決められている大当り判定値や小当り判定値と当り判定用乱数とを比較し、それらが一致したら大当りや小当りとすることに決定する処理を実行するプログラムである。すなわち、大当り判定や小当り判定の処理を実行するプログラムである。
すなわち、CPU56は、当り判定用乱数(ランダム0)の値が図19(a)に示すいずれかの大当り判定値に一致すると、特別図柄に関して大当りとすることに決定する。大当りとすることに決定した場合には(ステップS61)、ステップS71に移行する。なお、大当りとするか否か決定するということは、大当り遊技状態に移行させるか否か決定するということであるが、特別図柄表示装置における停止図柄を大当り図柄とするか否か決定するということでもある。
当り判定用乱数(ランダム0)の値がいずれの大当り判定値にも一致しなければ(ステップS61のNo)、CPU56は、当り判定テーブル(図19(a)参照)を使用して小当りの判定の処理を行う。すなわち、CPU56は、当り判定用乱数(ランダム0)の値が図19(a)に示すいずれかの小当り判定値に一致すると、特別図柄に関して小当りとすることに決定する。この場合、CPU56は、特別図柄ポインタが示すデータを確認し、特別図柄ポインタが示すデータが「第1」である場合には、第1特別図柄に対応する小当りに対応付けて記憶されている判定値を用いて小当りとするか否かを決定する。また、特別図柄ポインタが示すデータが「第2」である場合には、第2特別図柄に対応する小当りに対応付けて記憶されている判定値を用いて小当りとするか否かを決定する。そして、小当りとすることに決定した場合には(ステップS62;Yes)、CPU56は、小当りであることを示す小当りフラグをセットするとともに(ステップS63)、乱数バッファ領域からランダム1を読み出し、読み出したランダム1と小当り種別判定テーブル(図19(d)参照)に基づいて小当り種別を特定して(ステップS64)、該特定した小当り種別(第1〜第5)をRAM55における小当り種別バッファに設定(記憶)する(ステップS65)。例えば、小当り種別が第1小当りである場合には小当り種別を示すデータとして「01」が設定され、小当り種別が第2小当りである場合には小当り種別を示すデータとして「02」が設定され、小当り種別が第3小当りである場合には小当り種別を示すデータとして「03」が設定され、小当り種別が第4小当りである場合には小当り種別を示すデータとして「04」が設定され、小当り種別が第5小当りである場合には小当り種別を示すデータとして「05」が設定される。一方、小当りとすることに決定しない場合には(ステップS62;No)、ステップS63〜S64を経由することなく、ステップS66に移行する。
次いで、CPU56は、有利状態終了フラグがオン(セット)されているか否かを判定する(ステップS66)。このとき、有利状態終了フラグがオフ(非セット)であれば(ステップS66;No)、さらに、有利状態フラグがオン(セット)されているか否かの判定を行う(ステップS67)。
そして、有利状態フラグがオフ(非セット)であれば(ステップS67;No)、時短回数カウント値の更新を行う必要がないので、ステップS67+〜S70の処理を実施することなくステップS75に進む一方、有利状態フラグがオン(セット)されていれば(ステップS67;Yes)、特別図柄ポインタが第2であるか否か、つまり、特図ゲームの対象が第2特別図柄であるか否かを判定する(ステップS67+)。特別図柄ポインタが第2でない場合(ステップS67+;No)には、ステップS75に進む一方、特別図柄ポインタが第2である場合(ステップS67+;Yes)には、時短回数カウンタにてカウントされている時短回数カウント値から1を減算更新するとともに(ステップS68)、該減算更新後の時短回数を演出制御用マイクロコンピュータ100に通知するための時短回数指定コマンドを送信した後(ステップS68+)、減算後の時短回数カウント値が0となっているか、つまり、有利状態が第2特図ゲームについての所定の上限値である例えば100回に到達したか否かを判定する(ステップS69)。
このとき、時短回数カウント値が0であれば(ステップS69;Yes)、次の特図ゲームにおいて有利状態フラグをクリアして有利状態を終了させるための有利状態終了フラグをセットした後(ステップS70)、ステップS75に進む一方、有利状態カウント値が0でなければ(ステップS69;No)、有利状態終了フラグをセットすることなくステップS75に進む。つまり、有利状態が第2特図ゲームについての所定の上限値である例えば100回に到達したことに応じて有利状態終了フラグがセットされる。
また、ステップS66において有利状態終了フラグがオン(セット)されている場合には(ステップS66;Yes)、有利状態終了フラグをクリア(リセット)するとともに、有利状態フラグをクリア(リセット)して有利状態を終了するとともに(ステップS77)、通常遊技状態指定コマンドを送信した後、ステップS75に進む。つまり、第2特図ゲームについての上限回数(例えば100回)に到達することに応じて有利状態終了フラグがセットされた次の特図ゲームにおいて有利状態が終了されることで、上限回数(例えば100回)に到達した特図ゲームを契機として大当りとなっても、時短(有利)状態にて発生した大当りとして判断できる。
なお、この実施の形態では、ステップS66において有利状態終了フラグがオン(セット)されているか否かを判定しているが、この判定を特別図柄停止処理において実施するようにしてもよく、その場合には、有利状態終了フラグがオン(セット)されているか否かを判定した後、有利状態終了フラグのクリア(リセット)を実施すればよい。また、通常遊技状態指定コマンドは、特別図柄停止処理で有利状態であるか否かを判定し、有利状態ではない場合に送信すればよい。
ステップS71では、CPU56は、大当りであることを示す大当りフラグをセットする。そして、大当り種別を複数種類のうちのいずれかに決定するために使用するテーブルとして、特別図柄ポインタが示す方の大当り種別判定テーブルを選択する(ステップS72)。具体的には、CPU56は、特別図柄ポインタが「第1」を示している場合には、図19(b)に示す第1特別図柄用の大当り種別判定用テーブルを選択する。また、CPU56は、特別図柄ポインタが「第2」を示している場合には、図19(c)に示す第2特別図柄用の大当り種別判定用テーブルを選択する。
次いで、CPU56は、選択した大当り種別判定テーブルを用いて、乱数バッファ領域に格納された当り種別判定用の乱数(ランダム1)の値と一致する値に対応した種別(第1〜第6大当り)を大当りの種別に決定する(ステップS73)。なお、この場合、CPU56は、第1始動口スイッチ通過処理のステップS214Aや第2始動口スイッチ通過処理のステップS214Bで抽出し第1保留記憶バッファや第2保留記憶バッファにあらかじめ格納した大当り種別判定用乱数を読み出し、大当り種別の決定を行う。
また、CPU56は、決定した大当りの種別を示すデータをRAM55における大当り種別バッファに設定(記憶)する(ステップS74)。例えば、大当り種別が第1大当りである場合には大当り種別を示すデータとして「01」が設定され、大当り種別が第2大当りである場合には大当り種別を示すデータとして「02」が設定され、大当り種別が第3大当りである場合には大当り種別を示すデータとして「03」が設定され、大当り種別が第4大当りである場合には大当り種別を示すデータとして「04」が設定され、大当り種別が第5大当りである場合には大当り種別を示すデータとして「05」が設定され、大当り種別が第6大当りである場合には大当り種別を示すデータとして「06」が設定される。
次いで、CPU56は、特別図柄の停止図柄を決定する(ステップS75)。具体的には、大当りフラグおよび小当りフラグのいずれもセットされていない場合には、はずれ図柄となる「−」を特別図柄の停止図柄に決定する。大当りフラグがセットされている場合には、大当り種別の決定結果に応じて、大当り種別に応じた「1」〜「5」、「7」のいずれかを特別図柄の停止図柄に決定する(図19(b)、(c)参照)。また、小当りフラグがセットされている場合には、小当り種別に応じた小当り図柄となる「1」〜「5」を特別図柄の停止図柄に決定する。
そして、特別図柄プロセスフラグの値を変動パターン設定処理(ステップS301)に対応した値に更新する(ステップS76)。
図55は、特別図柄プロセス処理における特別図柄停止処理(ステップS304)を示すフローチャートである。特別図柄停止処理において、CPU56は、ステップS32の特別図柄表示制御処理で参照される終了フラグをセットして特別図柄の変動を終了させ、第1特別図柄表示器8aまたは第2特別図柄表示器8bに停止図柄を導出表示する制御を行う(ステップS131)。なお、特別図柄ポインタに「第1」を示すデータが設定されている場合には第1特別図柄表示器8aでの第1特別図柄の変動を終了させ、特別図柄ポインタに「第2」を示すデータが設定されている場合には第2特別図柄表示器8bでの第2特別図柄の変動を終了させる。また、演出制御用マイクロコンピュータ100に図柄確定指定コマンドを送信する制御を行う(ステップS132)。そして、大当りフラグがセットされていない場合には、ステップS147に移行する(ステップS133)。
大当りフラグがセットされている場合には、CPU56は、演出制御用マイクロコンピュータ100に大当り開始指定コマンドを送信する制御を行う(ステップS134)。なお、大当りの種別が第1大当り〜第6大当りのいずれであるかは、RAM55に記憶されている大当り種別を示すデータ(大当り種別バッファに記憶されているデータ)にもとづいて判定される。
また、CPU56は、演出制御用マイクロコンピュータ100に通常状態指定コマンドを送信する制御を行う(ステップS135)。大当り表示時間タイマに大当り表示時間(大当りが発生したことを、例えば、演出表示装置9において報知する時間)に相当する値を設定する(ステップS136)。また、下部大入賞口23bの開放回数カウンタに開放回数(例えば、15ラウンド大当りである場合には15回)をセットする(ステップS137)。
なお、ステップS135において演出制御用マイクロコンピュータ100に通常状態指定コマンドを送信する制御は、大当り終了処理において、該大当り終了後に時短(有利)状態に制御されないときに送信するようにしてもよい。
また、CPU56は、時短(有利)状態であることを示す有利状態フラグがオン(セット)されているか否かを判定する。そして、時短(有利)状態であることを示す有利状態フラグがオン(セット)されている場合(ステップS138;Yes)には、大当り時有利フラグをオン状態にセットするともに(ステップS139)、有利状態フラグをクリア(リセット)してオフ(非セット)状態とする(ステップS140)。また、時短回数カウンタをクリアして、時短回数カウント値を「0」に初期化しておく(ステップS141)とともに、ステップS138にて有利状態フラグがオンであるときには(ステップS138;Yes)、時短(有利)状態の上限回数に到達する第2特図ゲームにて有利状態終了フラグがセットされてから直接大当りとなった場合があることから、セットされている場合には、有利状態終了フラグをリセット(クリア)してオフ(非セット)状態としておく(ステップS142)。このように、ステップS139にて大当り時有利フラグをオン状態にセットすることにより、大当り遊技状態へと制御されるより前に遊技状態が時短(有利)状態であった旨を記憶しておくことができる。
ステップS142の処理の後、或いはステップS138にて有利状態フラグがオフ(非セット)であるときには(ステップS138;No)、特別図柄プロセスフラグの値を大入賞口開放前処理(ステップS305)に対応した値に更新する(ステップS143)。
ステップS147では、小当りフラグがセットされているか否かを判定する。小当りフラグもセットされていなければ(ステップS147のNo)、CPU56は、特別図柄プロセスフラグの値を特別図柄通常処理(ステップS300)に対応した値に更新する(ステップS149)。一方、小当りフラグがセットされていれば(ステップS147のYes)、CPU56は、特別図柄プロセスフラグの値を小当り開放前処理(ステップS308)に対応した値に更新する(ステップS148)。
図56は、特別図柄プロセス処理における小当り開放前処理(ステップS308)を示すフローチャートである。小当り開放前処理において、CPU56は、まず、小当り開始指定コマンドを送信するとともに(ステップS152)、小当り遊技制御時間の設定を行う(ステップS153)。例えば、ステップS153の処理ではCPU56が、遊技制御プロセスタイマをリセットしてタイマ値を「0」に設定するとともに、小当り遊技制御時間に対応して予め定められた小当り遊技終了基準値を、遊技制御プロセスタイマ値との比較対象としてセットする。このときセットされた小当り遊技終了基準値は、図57に示すステップS309にて実行される小当り開放中処理において、遊技制御プロセスタイマ値と比較されることになる。例えば、小当り遊技終了基準値は、小当り遊技状態を開始してから、始動動作により開放状態となった上部大入賞口24bより可変入賞装置400の内部に進入した遊技球が特定領域43に進入するまでに十分な時間に対応するタイマ基準値であればよい。すなわち、小当り遊技終了基準値は、小当り遊技状態において始動動作により開放状態となった上部大入賞口24bに進入した遊技球が、特定領域43に進入した場合に特定領域スイッチ43aによって有効に検出されるまでの猶予期間である有効入賞検出期間を示している。加えて、ステップS153の処理では、遊技を停止させるまでの猶予期間に対応した遊技停止判定値の初期設定を行うようにしてもよい。
ステップS153にて小当り遊技制御時間を設定した後には、小当りフラグをクリア(リセット)してオフ(非セット)状態にするとともに(ステップS154)、可変入賞装置400に進入した遊技球をカウントする残存球数カウンタなどのカウンタを初期化した後(ステップS155)、特図プロセスフラグの値を小当り開放中処理に対応した値に更新する(ステップS156)。
図57は、特別図柄プロセス処理における小当り開放中処理(ステップS309)を示すフローチャートである。小当り開放中処理において、CPU56は、まず、遊技制御プロセスタイマ値を、例えば1加算することなどにより更新する(ステップS161)。遊技制御プロセスタイマ値は、例えば図56に示すステップS153の処理により「0」に設定された後、ステップS271の処理が実行されるごとに更新されることで、小当り遊技状態における経過時間に対応した値を示すことができる。ステップS161の処理に続いて、更新後の遊技制御プロセスタイマ値に対応した各種の設定や制御が行われる。
例えば、CPU56は、遊技制御プロセスタイマ値が上部大入賞口開放開始判定値と合致するか否かの判定を行う(ステップS162)。ステップS162にて遊技制御プロセスタイマ値が上部大入賞口開放開始判定値と合致した場合には(ステップS162;Yes)、ソレノイド17を駆動して、可変入賞装置400に設けられた上部大入賞口24bを上部大入賞口扉24cにより開放状態とする始動動作の開始設定を行う(ステップS163)。ステップS163の処理では、上部大入賞口開放開始制御データが示す駆動パターンに従ってソレノイド17の駆動を開始する駆動制御信号の生成などが行われる。ステップS162にて遊技制御プロセスタイマ値が上部大入賞口開放開始判定値と合致しない場合には(ステップS162;No)、ステップS163の処理をスキップする。
この後、CPU56は、遊技制御プロセスタイマ値が模型用ソレノイド駆動判定値と合致するか否かの判定を行う(ステップS164)。ステップS164にて遊技制御プロセスタイマ値が模型用ソレノイド駆動判定値と合致した場合には(ステップS164;Yes)、足模型402に対応して設けられたソレノイド18の駆動を開始する設定を行う(ステップS165)。ステップS165の処理では、模型用ソレノイド駆動制御データが示す駆動パターンに従ってソレノイド18の駆動を開始する駆動制御信号の生成などが行われる。ステップS164にて遊技制御プロセスタイマ値が模型用ソレノイド駆動判定値と合致しない場合には(ステップS164;No)、ステップS165の処理をスキップする。
そして、CPU56は、上部大入賞口進入時処理を実行することにより、上部大入賞口24bより可変入賞装置400の内部に遊技球が進入した場合における各種の設定や制御が行われる(ステップS166)。
ステップS166にて上部大入賞口進入時処理を実行した後には、遊技制御プロセスタイマ値が模型用ソレノイド停止判定値と合致するか否かの判定を行う(ステップS167)。ステップS167にて遊技制御プロセスタイマ値が模型用ソレノイド停止判定値と合致した場合には(ステップS167;Yes)、ソレノイド18の駆動を停止する設定を行う(ステップS168)。ステップS168の処理では、模型用ソレノイド停止制御データが示す駆動パターンに従ってソレノイド18の駆動を停止する駆動制御信号の生成などが行われる。ステップS167にて遊技制御プロセスタイマ値が模型用ソレノイド停止判定値と合致しない場合には(ステップS167;No)、ステップS168の処理をスキップする。
この後、CPU56は、遊技制御プロセスタイマ値が上部大入賞口開放終了判定値と合致するか否かの判定を行う(ステップS169)。ステップS169にて遊技制御プロセスタイマ値が上部大入賞口開放終了判定値と合致した場合には(ステップS169;Yes)、ソレノイド17の駆動を停止して上部大入賞口24bを上部大入賞口扉24cにより閉鎖状態とする動作の設定を行う(ステップS170)。ステップS170の処理では、上部大入賞口開放終了制御データが示す駆動パターンに従ってソレノイド17の駆動を停止する駆動制御信号の生成などが行われる。ステップS169にて遊技制御プロセスタイマ値が上部大入賞口開放終了判定値と合致しない場合には(ステップS169;No)、ステップS170の処理をスキップする。
そして、CPU56は、遊技制御プロセスタイマ値を小当り遊技終了基準値と比較して、遊技制御プロセスタイマ値が小当り遊技終了基準値に達したか否かを判定する(ステップS175)。このとき、遊技制御プロセスタイマ値が小当り遊技終了基準値に達している場合には(ステップS175;Yes)、特図プロセスフラグの値を小当り終了処理に対応した値に更新する一方(ステップS176)、遊技制御プロセスタイマ値が小当り遊技終了基準値に達していなければ(ステップS175;No)、特図プロセスフラグの値は変更しない。
図58は、小当り開放中処理(ステップS309)における上部大入賞口進入時処理を示すフローチャートである。図58に示す上部大入賞口進入時処理において、CPU56は、まず、上部カウントスイッチ24からの検出信号のいずれかがオン状態となっているか否かを判定する(ステップS501)。このとき、上部カウントスイッチ24からの検出信号のいずれかがオン状態であれば(ステップS501;Yes)、残存球数カウント値を1加算する(ステップS502)。これに対して、上部カウントスイッチ24からの検出信号がいずれもオフ状態である場合には(ステップS501;No)、ステップS502の処理をスキップする。
この後、特定領域スイッチ43aからの検出信号がオン状態となっているか否かの判定を行う(ステップS503)。このとき、特定領域スイッチ43aからの検出信号がオン状態であれば(ステップS503;Yes)、特定球検出フラグ(V入賞フラグ)をオン状態にセットする(ステップS504)。これに対して、特定領域スイッチ43aからの検出信号がオフ状態である場合には(ステップS503;No)、ステップS504の処理をスキップする。
続いて、排出口スイッチ45からの検出信号がオン状態となっているか否かの判定を行う(ステップS505)。このとき、排出口スイッチ45からの検出信号がオフ状態であれば(ステップS505;No)、上部大入賞口進入時処理を終了する。これに対して、排出口スイッチ45からの検出信号がオン状態である場合には(ステップS505;Yes)、残存球数カウント値を1減算してから(ステップS506)、上部大入賞口進入時処理を終了する。
図59は、特別図柄プロセス処理における小当り終了処理(ステップS310)を示すフローチャートである。小当り終了処理において、CPU56は、まず、小当り終了指定コマンドを送信するとともに(ステップS180)、残存球数カウント値が「0」であるか否かを判定する(ステップS181)。なお、残存球数カウント値は、図57に示すステップS166の上部大入賞口進入時処理にて、図58に示すステップS502、S506の処理が実行されることにより、更新される。
ステップS181にて残存球数カウント値が「0」である場合には(ステップS181;Yes)、例えばソレノイド18の駆動を停止させる駆動制御信号を生成することなどにより、ソレノイド18の駆動を停止させるための設定を行う(ステップS182)。その後、遊技制御プロセスタイマをリセットしてタイマ値をクリアするとともに(ステップS183)、特定入賞判定処理を実行することにより、小当り遊技状態における有効入賞検出期間にて特定領域43に遊技球が進入したか否かの判定が行われる(ステップS184)。
ステップS181にて残存球数カウント値が「0」ではない場合には(ステップS181;No)、遊技制御プロセスタイマ値が遊技停止判定値に達したか否かを判定する(ステップS186)。このとき、遊技停止判定値に達していなければ(ステップS186;No)、小当り開放時処理を終了する。これに対して、ステップS186にて遊技停止判定値に達している場合には(ステップS186;Yes)、異常状態である旨を報知する異常報知処理を繰返し実行する(ステップS187)。これにより、遊技の進行を停止することができ、異常状態を発生させて行われる不正行為を防止することができる。ステップS187の異常報知処理では、所定の報知画面を演出表示装置9の表示領域に表示させることや、所定の警告ランプを点灯させること、スピーカ27から所定の警告音を出力させること、あるいは、これらを組み合せることにより、異常を報知できるようにすればよい。
ステップS187にて実行される異常報知処理は、電源基板からの電力供給停止時、すなわち電源断が行われるまで、繰返し行われるようにすればよい。この場合、電源断が生じたときには、電源の再投入時にクリアスイッチの押圧操作が行われることにより、RAM55がクリアされた後に初期設定処理が実行されて、異常状態がクリア(解除)されればよい。これに対して、電源断が生じたときには、電源の再投入時にクリアスイッチの押圧操作が行われなくても、異常の報知を終了させるようにしてもよい。これにより、異常状態をクリア(解除)するために特別な信号を主基板31に入力させる必要がないので、不正な信号が入力される可能性を低減することができる。
また、ステップS187にて実行される異常報知処理は、所定時間(例えば30秒)が経過するまで繰返し行われるようにして、その所定時間が経過した後には、自動的に異常状態から復旧できるようにしてもよい。これにより、異常状態が発生したことを遊技場の店員等に対して確実に報知することができる一方で、クリアスイッチの押圧操作や電源の再投入などによりRAM55をクリアしなくても異常状態から復旧させられるので、ノイズ等の原因で異常状態と判定された場合などに、遊技者に与える不利益を軽減することができる。あるいは、ステップS187の異常報知処理では、例えば演出制御基板80に対してエラーコマンドとなる演出制御コマンドを送信してエラーの発生を報知させた後、ループ処理には入らずに小当り開放時処理を終了するようにしてもよい。あるいは、ステップS186にて遊技制御プロセスタイマ値が遊技停止判定値に達した場合でも、CPU56は異常報知処理を実行しないようにして、演出制御基板80の側で所定時間の経過を検出して、異常を報知するようにしてもよい。一例として、主基板31から演出制御基板80に対しては、上部カウントスイッチ24のいずれかによって遊技球が検出されたときに、その遊技球の検出を示す演出制御コマンドとしての上部カウント検出コマンドを送信する。演出制御基板80の側では、上部カウント検出コマンドを受信してからの経過時間を計測し、主基板31からの小当り終了コマンドや大当り開始コマンドを受信することなく、計測された経過時間が所定のエラー判定時間に達したときには、異常の発生を報知するための処理を実行すればよい。この場合、例えば上部カウントスイッチ24のいずれかによる遊技球の検出に対応した異常入賞に関しては賞球の払い出しを行い、異常の発生を報知する動作のみが実行されるようにしてもよい。これにより、例えばパチンコ遊技機1を設置する店舗の閉店時において、出球補償を容易に行うことができるようになる。
図60は、小当り終了処理(ステップS310)における特定入賞判定処理を示すフローチャートである。特定入賞判定処理において、CPU56は、まず、特定球検出フラグ(V入賞フラグ)がオン状態にセットされているか否かを判定する(ステップS510)。このとき、特定球検出フラグ(V入賞フラグ)がオンであれば(ステップS510;Yes)、大当りフラグをオン状態にセットし(ステップS511)、大当り種別バッファに大当り種別として、第7大当りに該当する「07」を設定(記憶)するとともに(ステップS512)、演出制御用マイクロコンピュータ100に大当り開始指定コマンドを送信する(ステップS513)。また、CPU56は、演出制御用マイクロコンピュータ100に通常状態指定コマンドを送信する制御を行う(ステップS514)。なお、ステップS514において演出制御用マイクロコンピュータ100に通常状態指定コマンドを送信する制御は、大当り終了処理において、該大当り終了後に時短(有利)状態に制御されないときに送信するようにしてもよい。
次いで、大当り表示時間タイマに大当り表示時間(V入賞により大当りが発生したことを、演出表示装置9において報知する時間)に相当する値を設定する(ステップS515)。また、下部大入賞口開放回数カウンタに、第7大当りに該当する開放回数である14回をセットした後(ステップS516)、特定球検出フラグ(V入賞フラグ)をリセット(クリア)してオフ(非セット)状態とする(ステップS517)。
次いで、CPU56は、時短(有利)状態であることを示す有利状態フラグがオン(セット)されているか否かを判定する。
そして、時短(有利)状態であることを示す有利状態フラグがオン(セット)されている場合(ステップS518;Yes)には、大当り時有利フラグをオン状態にセットするともに(ステップS519)、有利状態フラグをクリア(リセット)してオフ(非セット)状態とする(ステップS520)。また、時短回数カウンタをクリアして、時短回数カウント値を「0」に初期化しておく(ステップS521)とともに、ステップS518にて有利状態フラグがオンであるときには(ステップS518;Yes)、時短(有利)状態の上限回数に到達する第2特図ゲームにて有利状態終了フラグがセットされてから、小当りとなって特定領域43に入賞することで大当りとなった場合があることから、セットされている場合には、有利状態終了フラグをリセット(クリア)してオフ(非セット)状態としておく(ステップS522)。このように、ステップS519にて大当り時有利フラグをオン状態にセットすることにより、大当り遊技状態へと制御されるより前に遊技状態が有利状態であった旨を記憶しておくことができる。ステップS522の処理の後、特別図柄プロセスフラグの値を大入賞口開放前処理(ステップS305)に対応した値に更新する(ステップS523)。
一方、ステップS510で特定球検出フラグ(V入賞フラグ)がオン状態にセットされていない場合には(ステップS510;No)、小当り種別バッファに設定(記憶)されている小当り種別をクリアした後(ステップS524)、特別図柄プロセスフラグの値を特別図柄通常処理(ステップS300)に対応した値に更新する(ステップS525)。
図61は、特別図柄プロセス処理における大当り終了処理(ステップS307)を示すフローチャートである。大当り終了処理において、CPU56は、大当り終了表示タイマが設定されているか否か確認し(ステップS190)、大当り終了表示タイマが設定されている場合には、ステップS206に移行する。大当り終了表示タイマが設定されていない場合には、大当りフラグをリセットした後(ステップS191)、ステップS192〜ステップS205までの処理を実施することにより、大当り時有利状態フラグの有無と大当り種別バッファに記憶されている大当り種別とに基づいて、大当り後の遊技状態を通常遊技状態とするか時短(有利)状態とするかを判定して、通常遊技状態または時短(有利)に対応する時短回数の設定並びに大当り終了指定コマンドの送信を実施する。
ステップS192では、まず、大当り時有利状態フラグがオン状態にセットされているか否かを判定する。大当り時有利状態フラグがオン状態にセットされていない場合には、ステップS200へ進む一方、大当り時有利状態フラグがオン状態にセットされている場合には、ステップS193に進んで、セットされている大当り時有利状態フラグをリセット(クリア)する。
そして、CPU56は、大当り種別バッファに記憶されている大当り種別データが第7大当りに該当する「7」であるか否か、つまり、終了した大当りが第7大当りであるか否かを判定する(ステップS194)。
終了した大当りが第7大当りでない場合には、ステップS195に進み、更に、大当り種別バッファに記憶されている大当り種別データが第2大当りに該当する「2」であるか否か、つまり、終了した大当りが第2大当りであるか否かを判定する。
終了した大当りが第2大当りである場合にはステップS196に進み、大当り終了表示タイマに、演出表示装置9において大当り終了表示が行われている時間(大当り終了表示時間)に対応する表示時間に相当する値を設定した後(ステップS196)、大当り後の遊技状態が通常遊技状態であると判定して、通常遊技状態に対応する大当り終了1指定コマンドを演出制御用マイクロコンピュータ100に送信する制御を行う(ステップS197)。
一方、ステップS195において終了した大当りが第2大当りでない場合には、ステップS204に進み、大当り終了表示タイマに、演出表示装置9において大当り終了表示が行われている時間(大当り終了表示時間)に対応する表示時間に相当する値を設定した後(ステップS204)、大当り後の遊技状態が時短(有利)状態であると判定して時短回数カウント値の初期値として100回を設定するともに、時短(有利)状態に対応する大当り終了2指定コマンドを演出制御用マイクロコンピュータ100に送信する制御を行う(ステップS205)。
また、ステップS194において終了した大当りが第7大当りである場合には、ステップS203に進んで、小当り種別バッファに記憶されている小当り種別データが第2小当りに該当する「2」であるか否か、つまり、終了した第7大当りが発生した小当りが、時短(有利)状態において発生した第2小当りであるか否かを判定する。
終了した第7大当りが発生した小当りが、時短(有利)状態において発生した第2小当り以外の第1,3〜5小当りである場合には、ステップS204に進む。また、終了した第7大当りが発生した小当りが、時短(有利)状態において発生した第2小当りである場合、つまり、時短(有利)状態において発生した第2小当りである場合には、ステップS196に進む。
一方、ステップS200においてCPU56は、大当り種別バッファに記憶されている大当り種別データが第7大当りに該当する「7」であるか否か、つまり、終了した大当りが通常遊技状態において発生した第7大当りであるか否かを判定する。
終了した大当りが第7大当りでない場合には、ステップS201に進み、更に、大当り種別バッファに記憶されている大当り種別データが第3大当りに該当する「3」、第5大当りに該当する「5」、第6大当りに該当する「6」のいずれかであるか、つまり、終了した大当りが通常遊技状態において発生した第3大当り、第5大当り、第6大当りのいずれかであるかを判定する。
終了した大当りが通常遊技状態において発生した第3大当り、第5大当り、第6大当りのいずれかである場合には、ステップS204に進む。また、終了した大当りが通常遊技状態において発生した第3大当り、第5大当り、第6大当りのいずれでもない場合、つまり、終了した大当りが通常遊技状態において発生した第1大当り、第2大当り、第4大当りである場合には、ステップS196に進む。
一方、ステップS200において終了した大当りが第7大当りである場合には、ステップS202に進んで、小当り種別バッファに記憶されている小当り種別データが第3小当りに該当する「3」、或いは第4小当りに該当する「4」であるか否か、つまり、終了した第7大当りが発生した小当りが、通常遊技状態において発生した第3小当りまたは第4小当りであるか否かを判定する。
終了した第7大当りが発生した小当りが、通常遊技状態において発生した第3小当りまたは第4小当りである場合には、ステップS204に進む。また、終了した第7大当りが発生した小当りが、通常遊技状態において発生した第3小当りまたは第4小当りでない場合、つまり、通常遊技状態において発生した第1小当りまたは第2小当りまたは第5小当りである場合には、ステップS196に進む。
そして、ステップS197の処理或いはステップS205の処理の終了後、大当り種別バッファ並びに小当り種別バッファに設定(記憶)されている大当り種別並びに小当り種別をクリアし(ステップS198)、処理を終了する。
ステップS206では、大当り終了表示タイマの値を1減算する。そして、CPU56は、大当り終了表示タイマの値が0になっているか否か、すなわち大当り終了表示時間が経過したか否か確認する(ステップS207)。経過していなければ処理を終了する。
大当り終了表示時間を経過していればステップ208に進み、CPU56は、大当り終了1指定コマンドを送信したか否か、すなわち、大当り後の遊技状態が時短(有利)状態であるか否かを判定する(ステップS208)。大当り後の遊技状態が時短(有利)状態であると判定した場合には、時短回数カウント値の初期値として100回を設定するともに(ステップS209)、有利状態フラグをセットした後(ステップS210)、時短(有利)状態に対応する時短状態指定コマンドを演出制御用マイクロコンピュータ100に送信する制御を行う(ステップS211)。また、ステップS208において大当り後の遊技状態が時短(有利)状態でないと判定した場合はそのままステップS212に進む。そして、特別図柄プロセスフラグの値を特別図柄通常処理(ステップS300)に対応した値に更新する(ステップS212)。
図62は、図27のステップS28にて実行される普通図柄プロセス処理の一例を示すフローチャートである。この普通図柄プロセス処理において、CPU56は、まず、通過ゲート32に設けられたゲートスイッチ32aからの検出信号がオン状態であるか否かをチェックすることにより、通過ゲート32を遊技球が通過したか否かの判定を行う(ステップS401)。遊技球が通過ゲート32を通過してゲートスイッチ32aからの検出信号がオン状態となった場合には(ステップS401;Yes)、ゲート通過時処理を実行する(ステップS402)。他方、ゲートスイッチ32aからの検出信号がオフ状態である場合には(ステップS401;No)、ステップS402の処理をスキップする。
ステップS402にて実行されるゲート通過時処理では、まず、RAM55の普図保留記憶バッファに記憶されている保留データの個数である普図保留記憶数が、所定の上限値(例えば「4」)となっているか否かを判定する。このとき、普図保留記憶数が上限値となっていれば、今回の遊技球検出は無効として、そのままゲート通過時処理を終了する。これに対して、普図保留記憶数が上限値未満であるときには、例えばCPU56が、ランダムカウンタにより更新されている数値データのうちから、普図表示結果判定用の乱数値ランダム4を示す数値データを抽出する。そして、抽出した乱数値ランダム4を示す数値データを、普図保留記憶バッファにおける空きエントリの先頭にセットする。このときには、例えば遊技制御カウンタ設定部に設けられた普図保留記憶数カウンタにおけるカウント値である普図保留記憶数カウント値を1加算するように更新してもよい。以上のようなゲート通過時処理を実行した後や、ステップS401にてゲートスイッチ32aからの検出信号がオフ状態であると判定された後には、普図プロセスフラグの値に応じて、以下のようなステップS410〜S414の各処理を実行する。
ステップS410の普通図柄通常処理は、普図プロセスフラグの値が“0”のときに実行される。この普通図柄通常処理では、普図保留記憶バッファに格納された保留データの有無などに基づいて、普通図柄表示装置10による普図ゲームを開始するか否かの判定が行われる。このとき、例えば普図保留記憶バッファに格納された保留データがある場合には、普図プロセスフラグの値を“1”に更新する。
ステップS411の普通図柄判定処理は、普図プロセスフラグの値が“1”のときに実行される。この普通図柄判定処理では、普図表示結果判定用の乱数値ランダム4を示す数値データに基づき、普図ゲームにおける普通図柄の可変表示結果としての普図表示結果を、「普図当り」とするか「普図はずれ」とするかの判定などが行われる。また、普通図柄判定処理では、普図表示結果並びに有利状態の有無に対応する普図変動パターンの決定も行われる。
ステップS412の普通図柄変動処理は、普図プロセスフラグの値が“2”のときに実行される。この普通図柄変動処理では、普通図柄表示装置10において普通図柄を変動させるための設定が行われる。こうした設定に基づいて変動する普通図柄は、ステップS413の普通図柄停止処理が実行されることにより、その変動が停止して普通図柄の可変表示結果となる普図表示結果が表示される。普通図柄変動処理では、普通図柄が変動を開始してからの経過時間が計測される。このときには、計測された経過時間が普図変動パターンに対応して定められた普図変動時間に達したか否かの判定が行われる。そして、普図変動時間に達したときには、普図プロセスフラグの値を“3”に更新する。
ステップS413の普通図柄停止処理は、普図プロセスフラグの値が“3”のときに実行される。この普通図柄停止処理では、普通図柄表示装置10にて普通図柄の可変表示結果を停止表示させるための設定が行われる。なお、普通図柄の可変表示結果を停止表示させるための設定は、ステップS412の普通図柄変動処理にて、計測された経過時間が普図変動時間に達したときに、普図プロセスフラグの値を“3”に更新する以前に、行われるようにしてもよい。また、普通図柄停止処理では、普図表示結果が「普図当り」である場合に、第2始動入賞口13bに対応して設けられたソレノイド16を駆動するための設定が行われ、普図プロセスフラグの値が“5”に更新される。他方、普図表示結果が「普図はずれ」である場合には、普図プロセスフラグの値が“0”に更新される。
ステップS414の普通電動役物作動処理は、普図プロセスフラグの値が“4”のときに実行される。この普通電動役物作動処理では、普図ゲームにおける可変表示結果が「普図当り」となったことに対応して、第2始動入賞口13bが備える可動翼片を垂直位置から傾動位置に移動させて、第2始動入賞口を通常開放状態から拡大開放状態に変化させるための設定などが行われる。例えば、普通電動役物作動処理では、ステップS413の普通図柄停止処理にてセットされた普電作動パターンの設定に応じて、ソレノイド16を駆動するための駆動制御信号の生成が行われるようにすればよい。また、普通電動役物作動処理では、ソレノイド16を駆動して第2始動入賞口を拡大開放状態としてからの経過時間が計測され、その経過時間が普電作動パターンに対応した拡大開放時間に達したか否かの判定が行われる。そして、経過時間が拡大開放期間に達した場合には、ソレノイド16の駆動を停止して可動翼片を傾動位置から垂直位置に戻すことにより、第2始動入賞口を拡大開放状態から通常開放状態に変化させるための設定を行う。このときには、普図プロセスフラグの値を“0”に更新すればよい。
次に、タイマ割込処理におけるスイッチ処理(ステップS21)を説明する。この実施の形態では、入賞検出またはゲート通過に関わる各スイッチの検出信号のオン状態が所定時間継続すると、確かにスイッチがオンしたと判定されスイッチオンに対応した処理が開始される。図63は、スイッチ処理で使用されるRAM55に形成される各2バイトのバッファを示す説明図である。前回ポートバッファは、前回(例えば4ms前)のスイッチオン/オフの判定結果が格納されるバッファである。ポートバッファは、今回入力したポート0,1,2の内容が格納されるバッファである。スイッチオンバッファは、スイッチのオンが検出された場合に対応ビットが1に設定され、スイッチのオフが検出された場合に対応ビットが0に設定されるバッファである。なお、図63に示す前回ポートバッファ、ポートバッファ、およびスイッチオンバッファは、入力ポート0,1,2ごとに用意される。例えば、この実施の形態では、2つのスイッチオンバッファ1,2,3が用意されており、入力ポート0のスイッチの状態がスイッチオンバッファ1に設定され、入力ポート1のスイッチの状態がスイッチオンバッファ2に設定され、入力ポート2のスイッチの状態がスイッチオンバッファ3に設定される。
図64は、遊技制御処理におけるステップS21のスイッチ処理の処理例を示すフローチャートである。スイッチ処理において、遊技制御用マイクロコンピュータ560は、まず、入力ポート0,1,2(図21参照)に入力されているデータを入力し(ステップS101)、入力したデータをポートバッファにセットする(ステップS102)。
次いで、RAM55に形成されるウェイトカウンタの初期値をセットし(ステップS103)、ウェイトカウンタの値が0になるまで、ウェイトカウンタの値を1ずつ減算する(ステップS104,S105)。
ウェイトカウンタの値が0になると、再度、入力ポート0,1,2のデータを入力し(ステップS106)、入力したデータとポートバッファにセットされているデータとの間で、ビット毎に論理積をとる(ステップS107)。そして、論理積の演算結果を、ポートバッファにセットする(ステップS108)。ステップS103〜S108の処理によって、ほぼ[ウェイトカウンタの初期値×(ステップS104,S105の処理時間)]の時間間隔を置いて入力ポート0から入力した2回の入力データのうち、2回とも「1」になっているビットのみが、ポートバッファにおいて「1」になる。つまり、所定期間としての[ウェイトカウンタの初期値×(ステップS104,S105の処理時間)]だけスイッチの検出信号のオン状態が継続すると、ポートバッファにおける対応するビットが「1」になる。
さらに、遊技制御用マイクロコンピュータ560は、前回ポートバッファにセットされているデータとポートバッファにセットされているデータとの間で、ビット毎に排他的論理和をとる(ステップS109)。排他的論理和の演算結果において、前回(例えば4ms前)のスイッチオン/オフの判定結果と、今回オンと判定されたスイッチオン/オフの判定結果とが異なっているスイッチに対応したビットが「1」になる。遊技制御用マイクロコンピュータ560は、さらに、排他的論理和の演算結果と、ポートバッファにセットされているデータとの間で、ビット毎に論理積をとる(ステップS110)。この結果、前回のスイッチオン/オフの判定結果と今回オンと判定されたスイッチオン/オフの判定結果とが異なっているスイッチに対応したビット(排他的論理和演算結果による)のうち、今回オンと判定されたスイッチに対応したビット(論理積演算による)のみが「1」として残る。
そして、遊技制御用マイクロコンピュータ560は、ステップS110における論理積の演算結果をスイッチオンバッファにセットし(ステップS111)、ステップS108における演算結果がセットされているポートバッファの内容を前回ポートバッファにセットする(ステップS112)。
以上の処理によって、所定期間継続してオン状態であったスイッチのうち、前回(例えば4ms前)のスイッチオン/オフの判定結果がオフであったスイッチ、すなわち、オフ状態からオン状態に変化したスイッチに対応したビットが、スイッチオンバッファにおいて「1」になっている。
さらに、遊技制御用マイクロコンピュータ560(具体的には、CPU56)は、スイッチ正常/異常チェック処理を行う(ステップS113)。
図65は、スイッチ正常/異常チェック処理を示すフローチャートである。図65に示すスイッチ正常/異常チェック処理において、CPU56は、入力ポート1に対応するスイッチオンバッファの内容を読み出す(ステップS121)。そして、入力ポート1に対応するスイッチオンバッファにおける第1始動口スイッチ14aに対応するビット0の値が0であるか否か確認する(ステップS122)。すなわち、第1始動入賞口13aの第1入賞通路1306aに設けられた第1始動口スイッチ14a(近接スイッチ)がオン(遊技球を検出)したか否か確認する。
入力ポート1に対応するスイッチオンバッファにおける第1始動口スイッチ14aに対応するビット0の値が0である場合(すなわち、第1始動口スイッチ14aがオン状態である場合)には、RAM55に形成されているスイッチ用カウンタの値を1増やす(ステップS123)。
また、CPU56は、入力ポート1に対応するスイッチオンバッファにおける第1入賞確認スイッチ14bに対応するビット1の値が0であるか否か確認する(ステップS124)。すなわち、第1始動入賞口13aの第1入賞通路1306bに設けられた第1入賞確認スイッチ14b(フォトセンサ)がオン(遊技球を検出)したか否か確認する。
入力ポート1に対応するスイッチオンバッファにおける第1入賞確認スイッチ14bに対応するビット1の値が0である場合(すなわち、第1入賞確認スイッチ14bがオン状態である場合)には、RAM55に形成されているスイッチ用カウンタの値を1減らす(ステップS125)。
また、CPU56は、入力ポート1に対応するスイッチオンバッファにおける第2始動口スイッチ15aに対応するビット2の値が0であるか否か確認する(ステップS126)。すなわち、第2始動入賞口13bの第2入賞通路1307に設けられた第2始動口スイッチ15a(近接スイッチ)がオン(遊技球を検出)したか否か確認する。
入力ポート1に対応するスイッチオンバッファにおける第2始動口スイッチ15aに対応するビット2の値が0である場合(すなわち、第2始動口スイッチ15aがオン状態である場合)には、RAM55に形成されているスイッチ用カウンタの値を1増やす(ステップS127)。
また、CPU56は、入力ポート1に対応するスイッチオンバッファにおける第2入賞確認スイッチ15bに対応するビット3の値が0であるか否か確認する(ステップS128)。すなわち、第2始動入賞口13bの第2入賞通路1307に設けられた第2入賞確認スイッチ15b(フォトセンサ)がオン(遊技球を検出)したか否か確認する。
入力ポート1に対応するスイッチオンバッファにおける第2入賞確認スイッチ15bに対応するビット3の値が0である場合(すなわち、第2入賞確認スイッチ15bがオン状態である場合)には、RAM55に形成されているスイッチ用カウンタの値を1減らす(ステップS129)。
また、CPU56は、入力ポート1に対応するスイッチオンバッファにおける下部カウントスイッチ23に対応するビット4の値が0であるか否か確認する(ステップS130)。すなわち、下部大入賞口23bの下部大入賞通路1308に設けられた下部カウントスイッチ23(近接スイッチ)がオン(遊技球を検出)したか否か確認する。
入力ポート1に対応するスイッチオンバッファにおける下部カウントスイッチ23に対応するビット4の値が0である場合(すなわち、下部カウントスイッチ23がオン状態である場合)には、RAM55に形成されているスイッチ用カウンタの値を1増やす(ステップS131)。
また、CPU56は、入力ポート1に対応するスイッチオンバッファにおける第3入賞確認スイッチ23aに対応するビット5の値が0であるか否か確認する(ステップS132)。すなわち、下部大入賞口23bの下部大入賞通路1308に設けられた第3入賞確認スイッチ23a(フォトセンサ)がオン(遊技球を検出)したか否か確認する。
入力ポート1に対応するスイッチオンバッファにおける第3入賞確認スイッチ23aに対応するビット5の値が0である場合(すなわち、第3入賞確認スイッチ23aがオン状態である場合)には、RAM55に形成されているスイッチ用カウンタの値を1減らす(ステップS133)。
また、CPU56は、入力ポート1に対応するスイッチオンバッファにおける上部カウントスイッチ24に対応するビット6の値が0であるか否か確認する(ステップS134)。すなわち、上部大入賞口24bの上部大入賞通路1309に設けられた上部カウントスイッチ24(近接スイッチ)がオン(遊技球を検出)したか否か確認する。
入力ポート1に対応するスイッチオンバッファにおける上部カウントスイッチ24に対応するビット6の値が0である場合(すなわち、上部カウントスイッチ24がオン状態である場合)には、RAM55に形成されているスイッチ用カウンタの値を1増やす(ステップS135)。
また、CPU56は、入力ポート1に対応するスイッチオンバッファにおける第4入賞確認スイッチ24aに対応するビット7の値が0であるか否か確認する(ステップS136)。すなわち、上部大入賞口24bの上部大入賞通路1309に設けられた第4入賞確認スイッチ24a(フォトセンサ)がオン(遊技球を検出)したか否か確認する。
入力ポート1に対応するスイッチオンバッファにおける第4入賞確認スイッチ24aに対応するビット7の値が0である場合(すなわち、第4入賞確認スイッチ24aがオン状態である場合)には、RAM55に形成されているスイッチ用カウンタの値を1減らす(ステップS137)。
そして、CPU56は、スイッチ用カウンタの値が所定値以上になっているか否か確認する(ステップS138)。スイッチ用カウンタの値が所定値以上になっている場合には、CPU56は、第1始動入賞口13a、第2始動入賞口13b、下部大入賞口23b、上部大入賞口24bのうちいずれかへの異常入賞が発生したと判定し、セキュリティ信号情報タイマに所定時間(本例では、4分)をセットする(ステップS139)。なお、この実施の形態では、CPU56は、スイッチ用カウンタの値が所定値として20以上となったことにもとづいて、セキュリティ信号情報タイマに所定時間(本例では、4分)をセットするものとする。この実施の形態では、ステップS138でセキュリティ信号情報タイマに所定時間がセットされたことにもとづいて、情報出力処理(S31参照)が実行されることによって、第1始動入賞口13a、第2始動入賞口13b、下部大入賞口23b、上部大入賞口24bの異常入賞が検出されたときに、セキュリティ信号が所定時間(本例では、4分)外部出力される。
なお、ステップS138の処理において、CPU56は、例えば、スイッチ用カウンタの値が20以上となったことにもとづいて、第1始動入賞口13a、第2始動入賞口13b、下部大入賞口23b、上部大入賞口24bへの異常入賞が発生したと判定することに加えて、逆にスイッチ用カウンタの値が−20以下となったことにもとづいても、第1始動入賞口13a、第2始動入賞口13b、下部大入賞口23b、上部大入賞口24bへの異常入賞が発生したと判定するようにしてもよい。この場合、スイッチ用カウンタの値がマイナス値となっていることを認識できないように構成されている場合には、例えば、スイッチ用カウンタの値のデフォルト値として20をセットするようにしておき、スイッチ用カウンタの値が0または40以上となったことにもとづいて、第1始動入賞口13a、第2始動入賞口13b、下部大入賞口23b、上部大入賞口24bへの異常入賞が発生したと判定するようにしてもよい。
なお、この実施の形態では、既にセキュリティ信号情報タイマに値が設定されセキュリティ信号を外部出力中であっても、新たに異常入賞を検出した場合には、再度ステップS139の処理が実行されて、セキュリティ信号情報タイマに所定時間(本例では、4分)が上書きされる。従って、セキュリティ信号の外部出力中に新たな異常入賞を検出した場合には、実質的にセキュリティ信号の外部出力期間が延長され、その新たに異常入賞を検出した時点から更に所定時間(本例では、4分)セキュリティ信号の出力が継続されることになる。
なお、この実施の形態では、1つのスイッチ用カウンタのみを用いて第1始動入賞口13a、第2始動入賞口13b、下部大入賞口23b、上部大入賞口24bへの異常入賞を検出する場合を示したが、第1始動口スイッチ14aの検出回数と第1入賞確認スイッチ14bの検出回数または第2始動口スイッチ15aの検出回数と第2入賞確認スイッチ15bの検出回数または下部カウントスイッチ23の検出回数と第3入賞確認スイッチ23aの検出回数または上部カウントスイッチ24の検出回数と第4入賞確認スイッチ24aの検出回数とで異なるスイッチ用カウンタを用いてもよい。この場合、例えば、第1始動口スイッチ14aのオン状態を検出するごとに第1スイッチ用カウンタの値を1加算するようにするとともに、第1入賞確認スイッチ14bのオン状態を検出するごとに第2スイッチ用カウンタの値を1加算するようにすればよい。そして、ステップS138では、第1スイッチ用カウンタの値と第2スイッチ用カウンタの値との差が所定値(例えば、20)以上であると判定したことにもとづいて、第1始動入賞口13aへの異常入賞が発生したと判定し、ステップS139の処理を実行してセキュリティ信号を外部出力するようにすればよい。
また、第1始動入賞口13aへの異常入賞が発生したことを検出した場合には、ステップS139の処理を実行してセキュリティ信号を外部出力するとともに、所定のエラー報知コマンドを演出制御用マイクロコンピュータ100に送信するようにして、演出制御用マイクロコンピュータ100側において演出表示装置9に所定のエラー画面を表示させるなどによりエラー報知を行えるようにすることが望ましい。
また、例えば、第1始動入賞口13aへの異常入賞に加えて、他の入賞口29a、29bへの異常入賞や、異常磁気エラー、異常電波エラー、通信エラーを検出した場合にもセキュリティ信号を出力するように構成する場合には、それぞれエラーの種類ごとに異なるエラー報知コマンドを演出制御用マイクロコンピュータ100に送信するようにしてもよい。そして、演出制御用マイクロコンピュータ100側において、演出表示装置9に、エラーの種類ごとにそれぞれ異なるエラー画面を表示させるなどによりエラー報知を行えるようにしてもよい。
なお、上記のように構成する場合、遊技機への電力供給が停止した後に電力供給が再開したときには、電力供給の停止前にエラー報知中であった場合には、電源供給の再開時に所定のエラー報知コマンドを演出制御用マイクロコンピュータ100に対して再度送信するようにするようにしてもよい。すなわち、演出制御用マイクロコンピュータ100側ではRAMなどの記憶内容がバックアップ電源によってバックアップされていないので、停電が発生してしまうと、そのままでは、それまで実行していたエラー報知などの演出を実行できないのであるが、停電復旧時に所定のエラー報知コマンドを再度送信するように構成することによって、停電復旧時にエラー報知を再開できるようにすることができる。また、遊技制御用マイクロコンピュータ560は、セキュリティ信号情報タイマの値もバックアップRAMにバックアップしておくようにし、電力供給の停止前にセキュリティ信号の出力中であった場合には、停電復旧時にバックアップされていたセキュリティ信号情報タイマの値にもとづいてセキュリティ信号の出力を再開できるようにしてもよい。それらの構成を備えることによって、故意に遊技機への電源断を発生させることによって、エラー報知を消したりセキュリティ信号の出力を停止させたりするような不正行為を防止することができる。
図66および図67は、スイッチ正常/異常チェック処理を説明するための説明図である。このうち、図66は、正常な状態におけるスイッチ正常/異常チェック処理の例を示しており、図67は、異常入賞につながる不正行為が行われているときのスイッチ正常/異常チェック処理の例を示している。
図66および図67に示すように、例えば入力ポート1に対応するスイッチオンバッファのビット0は、そのビット0に対応する第1始動口スイッチ14a(近接スイッチ)によって遊技球が検出されると「0」になる。また、入力ポート1に対応するスイッチオンバッファのビット1は、そのビット1に対応する第1入賞確認スイッチ14b(フォトセンサ)によって遊技球が検出されると「0」になる。スイッチが正常に動作し、かつ、不正行為(スイッチからの検出信号を不正にオン状態にしたり、オン状態の検出信号を不正にオフ状態にしたりする行為)を受けていない場合には、第1始動口スイッチ14aが第1入賞確認スイッチ14bよりも上流側に配置されていることから、まず、第1始動口スイッチ14a(近接スイッチ)がオンし、次いで、第1入賞確認スイッチ14b(フォトセンサ)がオンするはずである。従って、まず第1始動口スイッチ14aがオンしたことにもとづいてスイッチ用カウンタの値が1加算されて1となり(ステップS123参照)、次いで第1入賞確認スイッチ14bがオンしたことにもとづいてスイッチ用カウンタの値が1減算されて0に戻る(ステップS125参照)。よって、遊技球がスイッチを通過するときに、入力ポート1に対応するスイッチオンバッファのビット0とビット1とがともに「0」となり、正常な動作状態であれば、カウントアップのタイミングにずれ(遊技球の通過タイミングのずれに相当)があるものの、図66に示すように、スイッチ用カウンタの値は0に保たれる筈である。
しかし、電波による不正行為が行われた場合には、図67に示すように、第1始動口スイッチ14aが1回オンする筈の期間に、電波により不正にオフ状態を割り込ませ、恰も第1始動口スイッチ14aが2回オンしたかのように認識させる不正行為が行われるおそれがある。従って、第1始動口スイッチ14aが1回だけオンとなったにもかかわらず、第1始動口スイッチ14aが2回に亘ってオンしたと誤認識させられてスイッチ用カウンタの値が合計で2加算されて2となる(ステップS123が2回実行されることになる)。一方、下流側に配置されている第1入賞確認スイッチ14bは、電磁式である第1始動口スイッチ14aとは検出方式が異なり、光学式のフォトセンサが用いられていることから、電波による不正行為の影響を受けない。そのため、図67に示すように、第1始動口スイッチ14aで遊技球を1球検出した後に、少し遅れて第1入賞確認スイッチ14b側で遊技球を検出されたときに、正常に第1入賞確認スイッチ14bのオンを1回だけ検出して、スイッチ用カウンタの値を1減算して1とする(ステップS125参照)。従って、電波による不正行為が行われた場合には、検出方式の異なる第1始動口スイッチ14aと第1入賞確認スイッチ14bとの間で検出数に差が生じるのであるから、図67に示すように、スイッチ用カウンタの値が0に保たれず、スイッチ用カウンタの値が所定値(本例では20)以上となったことにもとづいて(第1始動口スイッチ14aと第1入賞確認スイッチ14bとの間の検出誤差の累積値が所定値(本例では20)以上となったことにもとづいて)、第1始動入賞口13aへの異常入賞が発生したことを検出することができる。
なお、ここでは第1始動口スイッチ14aの検出結果と第1入賞確認スイッチ14bの検出結果とにもとづいて第1始動入賞口13aへの異常入賞を検出する例を示したが、第2始動口スイッチ15aの検出結果と第2入賞確認スイッチ15bの検出結果とにもとづいて第2始動入賞口13bへの異常入賞を検出することができる。また、下部カウントスイッチ23の検出結果と第3入賞確認スイッチ23aの検出結果とにもとづいて下部大入賞口23bへの異常入賞を検出することができる。また、上部カウントスイッチ24の検出結果と第4入賞確認スイッチ24aの検出結果とにもとづいて上部大入賞口24bへの異常入賞を検出することができる。
なお、不正に光を照射するなどの行為によって同様な不正行為が行われることも考えられる。この場合、第1入賞確認スイッチ14bが1回オンする筈の期間に、光により不正にオフ状態を割り込ませ、恰も第1入賞確認スイッチ14bが2回オンしたかのように認識させる不正行為が行われるおそれがある。しかし、この場合、逆に電磁式の第1始動口スイッチ14a側では光による不正行為の影響をうけず正常に遊技球を検出できるのであるから、同様にスイッチ用カウンタの値が0に保たれず、スイッチ用カウンタの値が所定値(本例では20)以上となったことにもとづいて(第1始動口スイッチ14aと第1入賞確認スイッチ14bとの間の検出誤差の累積値が所定値(本例では20)以上となったことにもとづいて)、第1始動入賞口13aへの異常入賞が発生したことを検出することができる。
なお、この実施の形態では、第1始動口スイッチ14aおよび第1入賞確認スイッチ14bの出力が負論理である場合を示しているが、第1始動口スイッチ14aおよび第1入賞確認スイッチ14bの出力が正論理となるように構成してもよい。この場合、例えば、第1始動口スイッチ14aおよび第1入賞確認スイッチ14bの出力レベルをそれぞれ入力ドライバ回路で論理反転してから遊技制御用マイクロコンピュータ560に入力するように構成すればよい。
また、この実施の形態では、スイッチ用カウンタの値が0に保たれていないこと(第1始動口スイッチ14aと第1入賞確認スイッチ14bとの間に検出誤差が発生したこと)にもとづいて直ちに異常入賞と判定するのではなく、スイッチ用カウンタの値が所定値(本例では20)以上となったことにもとづいて異常入賞が発生したと判定している。そのように構成することによって、例えば、第1始動入賞口13a内で遊技球が球詰まり状態を起こした場合などを不正行為による異常入賞と判定することを防止している。
図68(a)は、第1始動入賞口13aに入賞した遊技球が通過する第1入賞通路1306a,1306b内で遊技球が球詰まり状態を起こした場合を示す説明図である。図68(a)に示すように、第1入賞通路1306a,1306b内において、第1始動口スイッチ14aと第1入賞確認スイッチ14bとは、上下に一定の距離をおいて配置されている。そのため、第1始動入賞口13aに入賞した遊技球は、まず第1始動口スイッチ14aで検出された後、少し時間をおいて下流側の第1入賞確認スイッチ14bで検出されることになる。よって、第1入賞通路1306a,1306b内において遊技球が球詰まり状態を起こした場合には、第1始動口スイッチ14aと第1入賞確認スイッチ14bとの物理的な距離差によって、その検出数に差が生じた状態となる。そして、第1入賞通路1306a,1306b内では、第1始動口スイッチ14aと第1入賞確認スイッチ14bとの間で最大5個の検出誤差が生じるものとする。
図68(b)は、第2始動入賞口13bに入賞した遊技球が通過する第2入賞通路1307内で遊技球が球詰まり状態を起こした場合を示す説明図である。図68(b)に示すように、第2入賞通路1307内において、第2始動口スイッチ15aと第2入賞確認スイッチ15bとは、上下に一定の距離をおいて配置されている。そのため、第2始動入賞口13bに入賞した遊技球は、まず第2始動口スイッチ15aで検出された後、少し時間をおいて下流側の第2入賞確認スイッチ15bで検出されることになる。よって、第2入賞通路1307内において遊技球が球詰まり状態を起こした場合には、第2始動口スイッチ15aと第2入賞確認スイッチ15bとの物理的な距離差によって、その検出数に差が生じた状態となる。そして、第2入賞通路1307内では、第2始動口スイッチ15aと第2入賞確認スイッチ15bとの間で最大14個の検出誤差が生じるものとする。
図68(c)は、下部大入賞口23bに入賞した遊技球が通過する下部大入賞通路1308内で遊技球が球詰まり状態を起こした場合を示す説明図である。図68(c)に示すように、下部大入賞通路1308内において、下部カウントスイッチ23と第3入賞確認スイッチ23aとは、左右及び前後に一定の距離をおいて配置されている。そのため、下部大入賞口23bに入賞した遊技球は、まず下部カウントスイッチ23で検出された後、少し時間をおいて下流側の第3入賞確認スイッチ23aで検出されることになる。よって、下部大入賞通路1308内において遊技球が球詰まり状態を起こした場合には、下部カウントスイッチ23と第3入賞確認スイッチ23aとの物理的な距離差によって、その検出数に差が生じた状態となる。そして、下部大入賞通路1308内では、下部カウントスイッチ23と第3入賞確認スイッチ23aとの間で最大4個の検出誤差が生じるものとする。
図68(d)は、上部大入賞口24bに入賞した遊技球が通過する上部球経路406内で遊技球が球詰まり状態を起こした場合を示す説明図である。図68(d)に示すように、上部球経路406内において、上部カウントスイッチ24と第4入賞確認スイッチ24aとは、左右及び上下に一定の距離をおいて配置されている。そのため、上部大入賞口24bに入賞した遊技球は、まず上部カウントスイッチ24で検出された後、少し時間をおいて下流側の第4入賞確認スイッチ24aで検出されることになる。よって、上部球経路406内において遊技球が球詰まり状態を起こした場合には、上部カウントスイッチ24と第4入賞確認スイッチ24aとの物理的な距離差によって、その検出数に差が生じた状態となる。そして、上部球経路406内では、上部カウントスイッチ24と第4入賞確認スイッチ24aとの間で最大12個の検出誤差が生じるものとする。
本実施の形態では、スイッチ用カウンタの値が、複数の入賞通路(第1入賞通路1306a,1306b、第2入賞通路1307、下部大入賞通路1308、上部球経路406)のうち、上流側の近接スイッチ(14a,15a,23,24)と下流側のフォトセンサ(14b,15b,23a,24a)との物理的な距離差が最も大きい入賞通路である第2入賞通路1307内での球詰まり状態における第2始動口スイッチ15aと第2入賞確認スイッチ15bとの検出誤差14個に対して、十分余裕をもたせた所定値(本例では20)以上となったことにもとづいて異常入賞が発生したと判定することによって、第1入賞通路1306a,1306b、第2入賞通路1307、下部大入賞通路1308、上部球経路406のうちいずれかで遊技球が球詰まり状態を起こした場合などを不正行為による異常入賞と判定することを防止している。
なお、この実施の形態では、球詰まり状態における第2始動口スイッチ15aと第2入賞確認スイッチ15bとの検出誤差14個に対して十分余裕をもたせた所定値(本例では20)以上となったことにもとづいて異常入賞が発生したと判定する場合を示しているが、異常入賞の判定に用いる所定値は、この実施の形態で示したものにかぎられない。例えば、少なくとも、球詰まり状態における第2始動口スイッチ15aと第2入賞確認スイッチ15bとの検出誤差14個より多い数であれば、誤って異常入賞と判定してしまうことを防止できるのであるから、スイッチ用カウンタの値が15以上となったことにもとづいて異常入賞が発生したと判定するようにしてもよい。
また、複数の入賞通路における球詰まり状態での検出誤差がそれぞれ同数(例えば3個)である場合は、検出誤差3個に対して十分余裕をもたせた所定値(例えば10)以上となったことにもとづいて異常入賞が発生したと判定するようにしてもよい。
また、複数の入賞通路内における異常入賞を検出可能に構成した場合には、これら全ての入賞通路での球詰まり状態における検出誤差を合計した数(5個+14個+4個+12個=35個)より多い数(例えば40個)を所定値として用いて、異常入賞の判定を行うようにすれば、誤って異常入賞を判定することを防止することができる。
また、本実施の形態では、複数の入賞通路での球詰まり状態における検出誤差を1つのスイッチ用カウンタにて検出できるようにしていることで、各入賞通路に対応するスイッチ用カウンタをそれぞれ設けなくても各入賞通路内における異常入賞を検出できるようになっていたが、各入賞通路に対応するスイッチ用カウンタをそれぞれ設けるとともに、各入賞通路毎の検出誤差に対応する所定値を設定し、各スイッチ用カウンタにおける検出誤差を監視して異常入賞の判定を行うようにしてもよい。このようにすることで、いずれの入賞通路にて入賞異常が発生したかを特定することが可能となる。
図69は、ターミナル基板160に出力される各種信号を示すブロック図である。図69に示すように、この実施の形態では、主基板31に搭載されている遊技制御用マイクロコンピュータ560からターミナル基板160に対して、始動口信号、図柄確定回数1信号、大当り1信号、大当り2信号、大当り3信号、時短信号、およびセキュリティ信号が、遊技制御用マイクロコンピュータ560側の情報出力処理(ステップS31参照)によって出力される。また、この実施の形態では、払出制御基板37に搭載されている払出制御用マイクロコンピュータ370から、主基板31を経由して、ターミナル基板160に対して、賞球信号1および遊技機エラー状態信号が、払出制御用マイクロコンピュータ370側の情報出力処理(ステップS759参照)によって出力される。
始動口信号は、第1始動入賞口13a、第2始動入賞口13bへの入賞個数を通知するための信号である。図柄確定回数1信号は、特別図柄の変動回数を通知するための信号である。大当り1信号は、大当り遊技中(特別可変入賞球装置の動作中)であることを通知するための信号である。大当り2信号は、大当り遊技中(特別可変入賞球装置の動作中)で、または特別図柄の変動時間短縮機能が作動中(時短状態中)であることを通知するための信号である。大当り3信号は、15ラウンドの大当り遊技中であることを通知するための信号である。時短信号は、特別図柄の変動時間短縮機能が作動中(時短状態中)であることを通知するための信号である。
また、セキュリティ信号は、遊技機のセキュリティ状態を示す信号である。具体的には、第1始動口スイッチ14aの検出結果と第1入賞確認スイッチ14bの検出結果とにもとづいて、第1始動入賞口13aへの異常入賞が発生したと判定された場合、または第2始動口スイッチ15aの検出結果と第2入賞確認スイッチ15bの検出結果とにもとづいて、第2始動入賞口13bへの異常入賞が発生したと判定された場合、または下部カウントスイッチ23の検出結果と第3入賞確認スイッチ23aの検出結果とにもとづいて、下部大入賞口23bへの異常入賞が発生したと判定された場合、または上部カウントスイッチ24の検出結果と第4入賞確認スイッチ24aの検出結果とにもとづいて、上部大入賞口24bへの異常入賞が発生したと判定された場合に、セキュリティ信号が所定期間(例えば、4分間)ホールコンピュータなどの外部装置に出力される。また、遊技機への電源投入が行われて初期化処理が実行された場合にも、セキュリティ信号が所定期間(例えば、30秒間)ホールコンピュータなどの外部装置に出力される。
なお、セキュリティ信号として外部出力される信号は、この実施の形態で示したものにかぎられない。例えば、第1始動入賞口13a、第2始動入賞口13b、下部大入賞口23b、上部大入賞口24bへの異常入賞にかぎらず、普通入賞口29,30への異常入賞を検出して、セキュリティ信号として外部出力可能なように構成してもよい。また、例えば、遊技機に設けられた磁石センサで異常磁気を検出した場合や、遊技機に設けられた電波センサで異常電波を検出した場合に、セキュリティ信号として外部出力可能なように構成してもよい。また、例えば、遊技機に設けられた各種スイッチの異常を検出した場合(例えば、入力値が閾値を超えたと判定したことにより、短絡などの発生を検出した場合)に、セキュリティ信号として外部出力可能なように構成してもよい。そのように、上部大入賞口24bや下部大入賞口23bへの異常入賞や異常磁気エラー、異常電波エラーについてもターミナル基板160の共通のコネクタCN7からセキュリティ信号として外部出力可能なように構成すれば、1本の信号線さえ接続すればホールコンピュータなど外部装置でエラー検出を行えるようにすることができ、エラー検出に関する作業負担を軽減することができる。
また、例えば、遊技制御用マイクロコンピュータ560と払出制御用マイクロコンピュータ370との間の通信エラーを検出した場合にも、ターミナル基板160の共通のコネクタCN7からセキュリティ信号として外部出力可能なように構成してもよい。この場合、例えば、遊技制御用マイクロコンピュータ560は、払出制御用マイクロコンピュータ370から後述する接続OKコマンドや賞球個数受付コマンドを受信できなかったことにもとづいて通信エラーが発生したと判定し、ターミナル基板160の共通のコネクタCN7からセキュリティ信号として外部出力してもよい。また、例えば、遊技制御用マイクロコンピュータ560は、シリアル通信回路505のステータスレジスタAのビット0〜4のいずれかのエラービットの値がセットされていることにもとづいて通信エラーが発生したと判定し、ターミナル基板160の共通のコネクタCN7からセキュリティ信号として外部出力してもよい。
なお、セキュリティ信号用の信号線およびコネクタCN7とは別に、遊技制御用マイクロコンピュータ560と払出制御用マイクロコンピュータ370との間の通信エラー専用の信号線およびコネクタをターミナル基板160に設けてもよい。そして、遊技制御用マイクロコンピュータ560と払出制御用マイクロコンピュータ370との間の通信エラーを検出した場合には、セキュリティ信号とは別の信号として、ターミナル基板160を経由してホールコンピュータなどの外部装置に出力するようにしてもよい。
また、賞球信号1は、賞球払出を1個検出するごとに出力される信号である。また、遊技機エラー状態信号は、遊技機がエラー状態(本例では、球切れエラー状態または満タンエラー状態)であることを示す信号である。なお、賞球払出を1個検出するごとに賞球信号1を外部出力するのではなく、賞球払出を所定個(例えば、10個)検出するごとに何らかの賞球信号を出力するようにしてもよい。
図70〜図73は、ステップS31の情報出力処理を示すフローチャートである。なお、図70〜図73に示す処理のうち、ステップS1002〜S1030が始動口信号を出力するための処理であり、ステップS1031〜S1036が図柄確定回数1信号を出力するための処理であり、ステップS1050〜S1068が大当り1信号、大当り2信号、大当り3信号および時短信号を出力するための処理である。また、ステップS1069〜S1074がセキュリティ信号を出力するための処理である。
情報出力処理において、CPU56は、初期値(00(H))をRAM55に形成されている情報バッファにセットする(ステップS1001)。そして、始動口情報設定テーブルのアドレスをポインタにセットし(ステップS1002)、ポインタの指す処理数をロードする(ステップS1003)。始動口情報設定テーブルには、処理数(=1)と始動口スイッチ入力ビット(始動口スイッチ入力ビット判定値(01(H))が設定されている。ステップS1003では、ポインタが始動口情報設定テーブルの処理数のアドレスを指しているので、始動口情報設定テーブルにおける処理数(=1)のデータがロードされることになる。なお、遊技機が2つの始動入賞口を備えている場合には、始動口情報設定テーブルに、処理数として2が設定されるとともに、2つの始動入賞口に対する始動口スイッチ入力ビットがそれぞれ設定されるようにすればよい。
次いで、CPU56は、スイッチオンバッファの内容をレジスタにロードし(ステップS1004)、スイッチオンバッファをスイッチ入力データにセットする(ステップS1005)。そして、ポインタを1加算し(ステップS1006)、ポインタの指す始動口スイッチ入力ビットをレジスタにロードし(ステップS1007)、始動口スイッチ入力ビットとスイッチ入力データの論理積をとる(ステップS1008)。スイッチオンバッファの内容が01(H)であったとき、すなわち第1始動口スイッチ14aまたは第2始動口スイッチ15aがオンしているときは、論理積の演算結果は01(H)になる。第1始動口スイッチ14aまたは第2始動口スイッチ15aがオンしていないときは、論理積の演算結果は、00(H)になる。
論理積の演算結果が0の場合には(ステップS1009のY)、ステップS1015の処理に移行する。論理積の演算結果が0でない場合には(ステップS1009のN)、第1始動入賞口13aまたは第2始動入賞口13bへの入賞が生じたと判定し、始動口情報記憶カウンタをレジスタにロードする(ステップS1010)。始動口情報記憶カウンタは、始動口信号の残り出力回数(つまり、始動口信号の未出力の始動入賞の残り入賞個数)をカウントするカウンタである。次いで、CPU56は、始動口情報記憶カウンタを1加算する(ステップS1011)。そして、演算結果(加算した結果)が0でないかどうかを確認する(ステップS1012)。演算結果が0のときは(ステップS1012のN)、演算結果を1減算する(ステップS1013)。そして、演算結果を始動口情報記憶カウンタにストアする(ステップS1014)。
次に、CPU56は、処理数を1減算し(ステップS1015)、処理数が0でないかどうかを判定する(ステップS1016)。処理数が0でないときは(ステップS1016のY)、ステップS1004の処理に移行する。なお、この実施の形態では、遊技機は1つの第1始動入賞口13aのみを備えていることから、処理数の初期値として1が設定され、ステップS1016では必ず処理数が0であると判定されることになる。
ステップS1016で処理数が0であると判定されると(ステップS1016のN)、CPU56は、始動口情報記憶タイマをロードし(ステップS1017)、始動口情報記憶タイマの状態をフラグレジスタに反映させて(ステップS1018)、始動口信号が出力中であるか否かを判定する(ステップS1019)。始動口情報記憶タイマは、始動口信号のオン時間およびオフ時間(例えば、オン時間200msとオフ時間200ms)を計測するためのタイマである。始動口情報記憶タイマの値が0でなければ始動口信号が出力中であると判定され、始動口情報記憶タイマの値が0であれば始動口信号が出力中でないと判定される。
始動口信号が出力中であれば(ステップS1019のY)、ステップS1026の処理に移行する。始動口信号が出力中でなければ(ステップS1019のN)、CPU56は、始動口情報記憶カウンタをロードし(ステップS1020)、始動口情報記憶カウンタの状態をフラグレジスタに反映させて(ステップS1021)、始動口信号の出力回数の残数があるかどうかを判定する(ステップS1022)。なお、第1始動口スイッチ14aまたは第2始動口スイッチ15aがオンしたときは(ステップS1009のN)、始動口情報記憶カウンタが1加算されるので、始動口信号の出力回数の残数があると判定されることになる。
始動口信号の出力回数の残数がなければ(ステップS1022のY)、ステップS1031の処理に移行する。始動口信号の出力回数の残数があれば(ステップS1023のN)、CPU56は、始動口情報記憶カウンタを1減算し(ステップS1023)、演算結果(1減算した結果)を始動口情報記憶カウンタにストアする(ステップS1024)。そして、入賞情報動作時間(100)をレジスタにセットする(ステップS1025)。なお、入賞情報動作時間(100)は、4msのタイマ割込みが100回実行される時間、すなわち、0.400秒(400ms)の時間となっている。
次に、CPU56は、ステップS1025で入賞情報動作時間がセットされていなければ始動口情報記憶タイマを1減算し、ステップS1025で入賞情報動作時間がセットされていれば入賞情報動作時間を1減算する(ステップS1026)。そして、演算結果(1減算した結果)を始動口情報記憶タイマにストアする(ステップS1027)。
CPU56は、演算結果と入賞情報オン時間(50)を比較し(ステップS1029)、演算結果が入賞情報オン時間よりも短い時間であるかどうかを判定する(ステップS1030)。なお、入賞情報オン時間(50)は、4msのタイマ割込みが50回実行される時間、すなわち、0.200秒(200ms)の時間となっている。
演算結果が入賞情報オン時間よりも短い時間でない場合、つまり、演算結果(始動口1情報記憶タイマの残り時間)が入賞情報オン時間(200ms)よりも長い時間である場合は(ステップS1029のN)、CPU56は、情報バッファの始動口出力ビット位置(図20に示す例では出力ポート1のビット0)をセットする(ステップS1030)。情報バッファの始動口出力ビット位置がセットされると、その後のステップS1102で情報バッファを出力値にセットし、ステップS1103で出力値を出力ポート1に出力することによって、始動口信号が出力ポート1から出力されることになる。
以上に示したステップS1001〜S1030の処理によって、第1始動入賞口13aへの入賞(第1始動口スイッチ14aのオン)または第2始動入賞口13bへの入賞(第2始動口スイッチ15aのオン)が発生すると、始動口信号が出力される。すなわち、始動口信号が200ms間オン状態となった後、200ms間オフ状態になる。この始動口信号がホールコンピュータに入力されることによって、第1始動入賞口13aまたは第2始動入賞口13bへの入賞個数を認識させることができる。
始動口信号は、200ms間オン状態となった後、200ms間オフ状態になるので、短時間に連続して始動入賞が発生した場合であっても、200ms間のオフ状態の後に次の始動口信号が出力される。すなわち、始動口信号は少なくとも200msの間隔をあけて出力される。
このように、始動口信号は少なくとも200msの間隔をあけて出力されるので、ホールコンピュータは、全始動入賞数を確実に把握することができる。
次に、CPU56は、図柄確定回数1情報タイマをレジスタにロードし(ステップS1031)、図柄確定回数1情報タイマの状態をフラグレジスタに反映させて(ステップS1032)、図柄確定回数1情報タイマがタイムアウトしているかどうかを判定する(ステップS1033)。この実施の形態では、特別図柄変動処理(ステップS302参照)において、変動時間がタイムアウトすると、特別図柄の変動を停止するときに、図柄確定回数1情報タイマに図柄確定回数出力時間(本例では0.500秒)がセットされ、その図柄確定回数出力時間が経過していないときは、図柄確定回数1情報タイマがタイムアウトしていないと判定され、図柄確定回数出力時間が経過したとき(図柄確定回数1情報タイマの値が0のとき)に、図柄確定回数1情報タイマがタイムアウトしたと判定される。
図柄確定回数1情報タイマがタイムアウトしていなければ(ステップS1033のN)、図柄確定回数1情報タイマを1減算し(ステップS1034)、演算結果を図柄確定回数1情報タイマにストアする(ステップS1035)。そして、情報バッファの図柄確定回数1出力ビット位置(図20に示す例では出力ポート1のビット1)をセットする(ステップS1036)。情報バッファの図柄確定回数1出力ビット位置がセットされると、その後のステップS1102で情報バッファを出力値にセットし、ステップS1103で出力値を出力ポート1に出力することによって、図柄確定回数1信号が出力ポート1から出力される(オン状態となる)。なお、図柄確定回数1情報タイマがタイムアウトすれば(ステップS1033のY)、ステップS1036の処理が実行されない結果、図柄確定回数1信号はオフ状態となる。
以上に示したステップS1031〜S1036の処理によって、特別図柄の変動が停止(停止図柄が確定)する度に、図柄確定回数1信号が図柄確定回数出力時間(例えば500ms)オン状態となる。
次に、CPU56は、特別図柄プロセスフラグをロードし(ステップS1050)、特別図柄プロセスフラグの値と大入賞口開放前処理指定値(「4」)を比較し(ステップS1051)、特別図柄プロセスフラグの値が4未満であるかどうかを判定する(ステップS1052)。特別図柄プロセスフラグの値が4未満であるときは(ステップS1052のY)、ステップS1058の処理に移行する。特別図柄プロセスフラグの値が4以上であるときは(ステップS1052のN)、情報バッファの大当り1出力ビット位置をセットする(ステップS1053)。また、情報バッファの大当り2出力ビット位置をセットする(ステップS1054)。情報バッファの大当り1出力ビット位置および大当り2出力ビット位置がセットされると、その後のステップS1102で情報バッファを出力値にセットし、ステップS1103で出力値を出力ポート1に出力することによって、大当り1信号および大当り2信号が出力ポート1から出力される(オン状態となる)。
また、CPU56は、時短状態であるか否かを確認する時短チェック処理を実行し(ステップS1058)、時短状態であるか否かを判定する(ステップS1059)。具体的には、CPU56は、時短状態に移行するときにセットされる時短フラグがセットされているか否かを確認することによって、時短状態であるか否かを判定する。時短状態であるときは(ステップS1059のY)、情報バッファの時短出力ビット位置をセットする(ステップS1060)。時短出力ビット位置がセットされると、その後のステップS1102で情報バッファを出力値にセットし、ステップS1103で出力値を出力ポート1に出力することによって、時短信号が出力ポート1から出力される(オン状態となる)。また、情報バッファの大当り2出力ビット位置をセットする(ステップS1061)。大当り2出力ビット位置がセットされると、その後のステップS1102で情報バッファを出力値にセットし、ステップS1103で出力値を出力ポート1に出力することによって、大当り2信号が出力ポート1から出力される(オン状態となる)。
また、CPU56は、特別図柄プロセスフラグをロードし(ステップS1062)、特別図柄プロセスフラグの値と大入賞口開放前処理指定値(「4」)を比較し(ステップS1063)、特別図柄プロセスフラグの値が4未満であるかどうかを判定する(ステップS1064)。特別図柄プロセスフラグの値が4未満であるときは(ステップS1064のY)、ステップS1069の処理に移行する。特別図柄プロセスフラグの値が4以上であるときは(ステップS1064のN)、大当り図柄判定バッファの内容をロードし(ステップS1065)、15ラウンドの大当りであるか否かを確認する(ステップS1067)。なお、15ラウンドの大当りであるか否かは、例えば、特別図柄通常処理において設定された大当り図柄判定バッファの内容を確認することによって判定できる。例えば、大当り図柄判定バッファには、特別図柄通常処理で決定された大当り種別の内容や大当り判定結果を示す内容が格納されており、例えば、「1」が通常大当り、「2」が確変大当り、「3」が突然確変大当りとされている。そして、大当り図柄判定バッファの内容が「1」または「2」であれば、大当り時のラウンド数が15ラウンドであると判断される。この場合、情報バッファの大当り3出力ビット位置をセットする(ステップS1068)。大当り3出力ビット位置がセットされると、その後のステップS1102で情報バッファを出力値にセットし、ステップS1103で出力値を出力ポート1に出力することによって、大当り3信号が出力ポート1から出力される(オン状態となる)。
以上に示したステップS1050〜S1068の処理によって、大当りの種別や遊技状態に応じた大当り1信号、大当り2信号、大当り3信号および時短信号が出力される(オン状態になる)。
次いで、CPU56は、セキュリティ信号情報タイマをロードし(ステップS1069)、セキュリティ信号情報タイマの状態をフラグレジスタに反映させて(ステップS1070)、セキュリティ信号情報タイマがタイムアウトしているかどうかを判定する(ステップS1071)。この実施の形態では、始動口スイッチ14a,14b及び下部カウントスイッチ23、上部大入賞口24bと第1〜第4入賞確認スイッチ14b,15b,23a,24aとの検出差が所定値(本例では20)以上に達したと判定され、始動入賞口または大入賞口への異常入賞が発生したと判定された場合には、セキュリティ信号情報タイマに所定時間(本例では4分)がセットされ(スイッチ正常/異常チェック処理におけるステップS126,S127参照)、その所定時間が経過していないときは、セキュリティ信号情報タイマがタイムアウトしていないと判定され、その所定時間が経過したとき(セキュリティ信号情報タイマの値が0のとき)に、セキュリティ信号情報タイマがタイムアウトしたと判定される。
また、この実施の形態では、遊技機への電力供給が開始されて初期化処理が実行されたときにも、セキュリティ信号情報タイマに所定時間(本例では30秒)がセットされ(メイン処理におけるステップS14a参照)、その所定時間が経過していないときは、セキュリティ信号情報タイマがタイムアウトしていないと判定され、その所定時間が経過したとき(セキュリティ信号情報タイマの値が0のとき)に、セキュリティ信号情報タイマがタイムアウトしたと判定される。
セキュリティ信号情報タイマがタイムアウトしていなければ(ステップS1071のN)、セキュリティ信号情報タイマを1減算し(ステップS1072)、演算結果をセキュリティ信号情報タイマにストアする(ステップS1073)。そして、情報バッファのセキュリティ信号出力ビット位置(図20に示す例では出力ポート1のビット7)をセットする(ステップS1074)。情報バッファのセキュリティ信号出力ビット位置がセットされると、その後のステップS1102で情報バッファを出力値にセットし、ステップS1103で出力値を出力ポート1に出力することによって、セキュリティ信号が出力ポート1から出力される(オン状態となる)。なお、セキュリティ信号情報タイマがタイムアウトすれば(ステップS1071のY)、ステップS1074の処理が実行されない結果、セキュリティ信号はオフ状態となる。
以上に示したステップS1069〜S1074の処理によって、第1始動入賞口13a、第2始動入賞口13b、下部大入賞口23b、上部大入賞口24bへの異常入賞が検出されてから4分が経過するまで、または遊技機への電力供給開始時に初期化処理が実行されてから30秒が経過するまで、ターミナル基板160の共通のコネクタCN7を用いてセキュリティ信号が出力される。なお、セキュリティ信号の出力中更に新たな異常入賞を検出した場合には、最後に異常入賞を検出してから4分間が経過するまでセキュリティ信号の出力が継続される。
次に、セキュリティ信号の出力タイミングについて説明する。図74は、セキュリティ信号の出力タイミングを示す説明図である。この実施の形態では、遊技機への電力供給開始時に初期化処理が実行されると(ステップS10〜S14参照)、セキュリティ信号情報タイマに所定時間(本例では、30秒)がセットされたことにもとづいて(ステップS14a参照)、情報出力処理(ステップS31参照)でステップS1069〜S1103の処理が実行されて、図74(A)に示すように、ターミナル基板160のコネクタCN7から、ホールコンピュータなどの外部装置に対してセキュリティ信号が出力される。また、遊技機への電源供給が開始された後に、始動口スイッチ14a,14b及び下部カウントスイッチ23、上部カウントスイッチ24の検出数と第1〜第4入賞確認スイッチ14b,15b,23a,24aの検出数との検出誤差が所定値(本例では20)以上となったことにもとづいて、第1始動入賞口13a、第2始動入賞口13b、下部大入賞口23b、上部大入賞口24bへの異常入賞が発生したと判定されたときにも(ステップS121〜S126参照)、セキュリティ信号情報タイマに所定時間(本例では、4分)がセットされたことにもとづいて(ステップS127参照)、情報出力処理(ステップS31参照)でステップS1069〜S1103の処理が実行されて、図74(A)に示すように、ターミナル基板160のコネクタCN7から、ホールコンピュータなどの外部装置に対してセキュリティ信号が出力される。このように、この実施の形態では、遊技機への電源供給開始時に初期化処理が実行されたときと、第1始動入賞口13a、第2始動入賞口13b、下部大入賞口23b、上部大入賞口24bへの異常入賞を検出したときとで、ターミナル基板160の共通のコネクタCN7からセキュリティ信号が外部出力される。
また、この実施の形態では、セキュリティ信号の外部出力中である場合に、新たに第1始動入賞口13a、第2始動入賞口13b、下部大入賞口23b、上部大入賞口24bへの異常入賞を検出した場合には、実質的にセキュリティ信号の出力期間が延長され、最後に第1始動入賞口13a、第2始動入賞口13b、下部大入賞口23b、上部大入賞口24bへの異常入賞を検出した時点から所定時間(本例では、4分)が経過するまで、セキュリティ信号の出力が継続される。例えば、遊技機への電源供給開始時に初期化処理が実行されたことにもとづいてセキュリティ信号の出力を開始した場合には、図74(A)に示すように、原則として30秒を経過するまでセキュリティ信号の出力が継続される筈である。しかし、図74(B)に示すように、その30秒を経過する前であっても、始動口スイッチ14a,14b及び下部カウントスイッチ23、上部カウントスイッチ24の検出数と第1〜第4入賞確認スイッチ14b,15b,23aの検出数との検出誤差が所定値(本例では20)以上となって第1始動入賞口13a、第2始動入賞口13b、下部大入賞口23b、上部大入賞口24bへの異常入賞が発生したと判定される可能性がある。この場合、異常入賞の発生が検出されたことにもとづいてセキュリティ信号情報タイマに所定時間(本例では、4分)が上書きで書き込まれることになり(ステップS127参照)、情報出力処理(ステップS31参照)でステップS1069〜S1103の処理が実行されて、図74(B)に示すように、そのままセキュリティ信号の出力が継続される。ただし、セキュリティ信号情報タイマの値が4分に上書きされたのであるから、この場合、図74(B)に示すように、その第1始動入賞口13a、第2始動入賞口13b、下部大入賞口23b、上部大入賞口24bへの異常入賞を検出した時点から4分が経過するまでセキュリティ信号の出力が継続されることになり、実質的にセキュリティ信号の出力が延長されることになる。
また、例えば、第1始動入賞口13a、第2始動入賞口13b、下部大入賞口23b、上部大入賞口24bへの異常入賞を検出したことにもとづいてセキュリティ信号の出力を開始した場合には、図74(A)に示すように、原則として4分を経過するまでセキュリティ信号の出力が継続される筈である。しかし、図74(C)に示すように、その4分を経過する前であっても、始動口スイッチ14a,14b及び下部カウントスイッチ23、上部カウントスイッチ24の検出数と第1〜第4入賞確認スイッチ14b,15b,23aの検出数との検出誤差が所定値(本例では20)以上となって、新たに第1始動入賞口13a、第2始動入賞口13b、下部大入賞口23b、上部大入賞口24bへの異常入賞が発生したと判定される可能性がある。この場合、新たに異常入賞の発生が検出されたことにもとづいてセキュリティ信号情報タイマに所定時間(本例では、4分)が上書きで書き込まれることになり(ステップS127参照)、情報出力処理(ステップS31参照)でステップS1069〜S1103の処理が実行されて、図74(C)に示すように、そのままセキュリティ信号の出力が継続される。ただし、セキュリティ信号情報タイマの値が4分に上書きされたのであるから、この場合、図74(C)に示すように、その新たに第1始動入賞口13a、第2始動入賞口13b、下部大入賞口23b、上部大入賞口24bへの異常入賞を検出した時点から4分が経過するまでセキュリティ信号の出力が継続されることになり、実質的にセキュリティ信号の出力が延長されることになる。
なお、既にセキュリティ信号の出力中であるときに第1始動入賞口13a、第2始動入賞口13b、下部大入賞口23b、上部大入賞口24bへの異常入賞を検出した場合に、出力中のセキュリティ信号の出力を終了してから、改めて次のセキュリティ信号の出力を開始するように構成することも考えられるが、この実施の形態では、図74(B)および図74(C)に示すように、出力中のセキュリティ信号の出力時間をそのまま延長することによって、セキュリティ信号の出力処理にかかる処理負担を軽減するとともに、セキュリティ信号の出力処理用のプログラム容量を低減している。すなわち、出力中のセキュリティ信号の出力を終了してから、改めて次のセキュリティ信号の出力を開始するように構成する場合には、セキュリティ信号の出力を終了した後、次のセキュリティ信号の出力を開始するまでのインターバル時間を計測する処理などが必要となり、処理負担が増加するとともにプログラム容量も増加してしまう。これに対して、この実施の形態では、セキュリティ信号情報タイマの値をそのまま上書きするので、セキュリティ信号情報タイマの値をセットする処理のみを行えば(ステップS14a,S127参照)、セキュリティ信号の出力を行うことができ、処理負担の増加やプログラム容量の増加を防止することができる。
なお、この実施の形態では、遊技機への電力供給開始時に初期化処理が実行された場合には30秒間に亘ってセキュリティ信号を出力し、第1始動入賞口13a、第2始動入賞口13b、下部大入賞口23b、上部大入賞口24bへの異常入賞を検出した場合には4分間に亘ってセキュリティ信号を出力する場合を示したが、セキュリティ信号の出力時間は、この実施の形態で示したものにかぎられない。すなわち、初期化処理が実行された場合であるか第1始動入賞口13a、第2始動入賞口13b、下部大入賞口23b、上部大入賞口24bへの異常入賞を検出した場合であるかを認識可能に、初期化処理が実行された場合と第1始動入賞口13a、第2始動入賞口13b、下部大入賞口23b、上部大入賞口24bへの異常入賞が検出された場合とで異なる出力時間に亘ってセキュリティ信号を出力するものであればよい。
なお、この実施の形態において、第1始動入賞口13a、第2始動入賞口13b、下部大入賞口23b、上部大入賞口24bへの異常入賞を検出した場合のセキュリティ信号の出力期間を4分間としたのは、第1始動入賞口13a、第2始動入賞口13b、下部大入賞口23b、上部大入賞口24bへの異常入賞の場合には、できるかぎり長い時間に亘ってセキュリティ信号を出力すべく、設定可能な略最大時間としたものである。すなわち、この実施の形態では、遊技制御用マイクロコンピュータ560は、セキュリティ信号情報タイマの値として2バイトの値を設定可能であるので、セキュリティ信号情報タイマには最大値として「FFFF(H)=65535」を設定可能である。そこで、この実施の形態では、セキュリティ信号情報タイマに、ほぼ最大値に近い「60000」をセットするようにし、タイマ割込の周期が4msであることから、4ms×60000=4分間に亘ってセキュリティ信号を出力するようにしたものである。
次に、払出制御手段(払出制御用マイクロコンピュータ370)の動作を説明する。図75は、払出制御手段における出力ポートの割り当ての例を示す説明図である。図75に示すように、出力ポート0からは、ステッピングモータによる払出モータ289に供給される各相の信号が出力される。また、出力ポート0からは、カードユニット50に対してPRDY信号やEXS信号が出力されるとともに、遊技機がエラー状態(本例では、球切れエラー状態または満タンエラー状態)であることを示す遊技機エラー状態信号や、賞球払出を検出したことを示す賞球信号1も出力される。また、出力ポート1からは、7セグメントLEDによるエラー表示用LED374の各セグメント出力信号が出力される。また、出力ポート1からは、賞球払出を10球検出したことを示す賞球情報も出力される。
図76は、払出制御手段における入力ポートのビット割り当ての例を示す説明図である。図76に示すように、入力ポート0のビット0〜2には、それぞれ、カードユニット50からのVL信号、BRDY信号、およびBRQ信号が入力される。また、入力ポート0のビット4には、主基板31からの接続信号が入力される。また、入力ポート0のビット5〜7には、それぞれ、満タンスイッチ48の検出信号、球切れスイッチ187の検出信号、および払出モータ位置センサ295の検出信号が入力される。また、入力ポート1のビット0,1には、それぞれ、エラー解除スイッチ375からの操作信号、および払出個数カウントスイッチ301の検出信号が入力される。
次に、払出制御手段の動作について説明する。図77は、払出制御手段が実行するメイン処理を示すフローチャートである。メイン処理では、払出制御用マイクロコンピュータ370の払出制御用CPU371は、まず、必要な初期設定を行う。すなわち、払出制御用CPU371は、まず、割込禁止に設定する(ステップS701)。次に、割込モードを割込モード2に設定し(ステップS702)、スタックポインタにスタックポインタ指定アドレスを設定する(ステップS703)。
次いで、払出制御用CPU371は、内蔵デバイスレジスタの設定を行う(ステップS704)。ステップS704の内蔵デバイスレジスタの設定の処理では、払出制御用CPU371は、CTCの設定を行う。また、この実施の形態では、内蔵CTCのうちの一つのチャネルがタイマモードで使用される。そのため、払出制御用CPU371は、使用するチャネルをタイマモードに設定するためのレジスタ設定、割込発生を許可するためのレジスタ設定および割込ベクタを設定するためのレジスタ設定を行う。そして、そのチャネルによる割込がタイマ割込として用いられる。タイマ割込を例えば1ms毎に発生させたい場合は、初期値として1msに相当する値が所定のレジスタ(時間定数レジスタ)に設定される。
また、ステップS704において、払出制御用CPU371は、シリアル通信回路380の割り込み要求に応じて実行する割込処理の優先順位を初期設定する。この場合、払出制御用CPU371は、遊技制御用マイクロコンピュータ560のCPU56が行う優先順位の初期設定処理(ステップS15b参照)と同様の処理に従って、割込処理の優先順位を初期設定する。
また、ステップS704において、払出制御用CPU371は、シリアル通信回路380の設定を行う。この場合、払出制御用CPU371は、受信回路のボーレートの設定、受信モード(8ビットまたは9ビットのデータフォーマットのいずれにするか)の設定、パリティ設定(パリティの有無や、偶数パリティまたは奇数パリティの設定)を行う。また、受信回路の各制御レジスタを初期化するとともに、各ステータスレジスタを初期化する。また、払出制御用CPU371は、送信回路のボーレートの設定、送信モード(8ビットまたは9ビットのデータフォーマットのいずれにするか)の設定、パリティ設定(パリティの有無や、偶数パリティまたは奇数パリティの設定)を行う。また、送信回路の各制御レジスタを初期化する。
なお、タイマモードに設定されたチャネル(この実施の形態ではチャネル3)に設定される割込ベクタは、タイマ割込処理の先頭アドレスに相当するものである。具体的は、Iレジスタに設定された値と割込ベクタとでタイマ割込処理の先頭アドレスが特定される。タイマ割込処理では、払出手段を制御する払出制御処理(少なくとも主基板からの賞球払出に関する指令信号に応じて球払出装置97を駆動する処理を含み、球貸し要求に応じて球払出装置97を駆動する処理が含まれていてもよい。)が実行される。
また、この実施の形態では、払出制御用マイクロコンピュータ370でも割込モード2が設定される。従って、内蔵CTCのカウントアップにもとづく割込処理を使用することができる。また、CTCが送出した割込ベクタに応じた割込処理開始アドレスを設定することができる。CTCのチャネル3(CH3)のカウントアップにもとづく割込は、CPUの内部クロック(システムクロック)をカウントダウンしてレジスタ値が「0」になったら発生する割込であり、タイマ割込として用いられる。
次いで、払出制御用CPU371は、RAMをアクセス可能状態に設定し(ステップS705)、RAMクリア処理を行う(ステップS706)。また、RAM領域のフラグやカウンタなどに初期値を設定する(ステップS707)。なお、ステップS707の処理には、未払出個数カウンタ初期値を未払出個数カウンタにセットする処理が含まれる。また、ステップS707の処理では、払出制御用CPU371は、払出個数異常エラーや満タンエラー、球切れエラーの検出状態を示すエラーフラグをクリアする処理も行う。なお、この実施の形態では、払出個数異常エラーと判定されてエラーフラグの払出個数異常エラー指定ビットがセットされた場合には、電源リセットがされるまで払出個数異常エラー指定ビットがクリアされず払出個数異常エラーから復旧しないのであるが、具体的には、電源投入時にステップS707の処理が実行されることによって、エラーフラグの払出個数異常エラー指定ビットがクリアされ、払出個数異常エラーから復旧する。
また、払出制御用CPU371は、シリアル通信回路380を初期設定するシリアル通信回路設定処理を実行する(ステップS708)。この場合、払出制御用CPU371は、遊技制御用マイクロコンピュータ560のCPU56が行うシリアル通信回路設定処理(ステップS15a参照)と同様の処理に従って、シリアル通信回路380に遊技制御用マイクロコンピュータ560とシリアル通信させるための設定を行う。また、前述したように、シリアル通信回路380の初期設定の一部は、ステップS704の内蔵デバイスレジスタの設定処理において実行される。なお、シリアル通信回路380の全ての設定処理をステップS708のシリアル通信回路設定処理で行うようにしてもよい。
そして、初期設定処理のステップS701において割込禁止とされているので、初期化処理を終える前に割込が許可される(ステップS709)。その後、タイマ割込の発生を監視するループ処理に入る。
上記のように、この実施の形態では、払出制御用マイクロコンピュータ370の内蔵CTCが繰り返しタイマ割込を発生するように設定される。そして、タイマ割込が発生すると、払出制御用マイクロコンピュータ370の払出制御用CPU371は、タイマ割込処理を実行する。
図78は、払出制御手段が実行するタイマ割込処理の例を示すフローチャートである。タイマ割込処理にて、払出制御用マイクロコンピュータ370の払出制御用CPU371は、以下の処理を実行する。まず、払出制御用CPU371は、スイッチチェック処理を行う(ステップS751)。スイッチチェック処理では、払出制御用CPU371は、入力ポート1の入力にもとづいて、払出個数カウントスイッチ301およびエラー解除スイッチ375のオン/オフ状態を確認する処理を行う。次いで、払出制御用CPU371は、入力判定処理を行う(ステップS752)。入力判定処理は、入力ポート0のビット0〜7(図76参照)の状態を検出して検出結果をRAMの所定の1バイト(センサ入力状態フラグと呼ぶ。)に反映する処理である。なお、払出制御用CPU371は、入力ポート0のビット0〜7の状態にもとづいて制御を行う場合には、直接入力ポートの状態をチェックするのではなく、センサ入力状態フラグの状態をチェックする。
次いで、払出制御用CPU371は、カードユニット50と通信を行うプリペイドカードユニット制御処理を実行する(ステップS753)。次いで、払出制御用CPU371は、主基板31の遊技制御手段と通信を行う主制御通信処理を実行する(ステップS754)。次いで、払出制御用CPU371は、カードユニット50からの球貸し要求に応じて貸し球を払い出す制御を行い、また、主基板31からの賞球個数コマンドが示す個数の賞球を払い出す制御を行う払出制御処理を実行する(ステップS755)。
次に、払出制御用CPU371は、払出モータ制御処理を実行する(ステップS756)。払出モータ制御処理では、払出モータ289を駆動すべきときには、払出モータφ1〜φ4のパターンを出力ポート0に出力するための処理を行う。
次いで、払出制御用CPU371は、各種のエラーを検出するエラー処理を実行する(ステップS757)。次いで、払出制御用CPU371は、カードユニット50のエラー制御を行うプリペイドカードユニットエラー制御処理を実行する(ステップS758)。次いで、払出制御用CPU371は、主基板31に対して賞球情報を出力したり、賞球信号1や遊技機エラー状態信号を外部出力するための情報出力処理を実行する(ステップS759)。また、エラー処理の結果に応じてエラー表示用LED374に所定の表示を行う表示制御処理を実行する(ステップS760)。
本実施の形態では、後述するエラー処理において各種エラー(例えば、払出個数異常エラーや、満タンエラー、球切れエラー、プリペイドカードユニット未接続エラー)が検出されると、検出されたエラーに対応するエラービットがセットされる。そして、ステップS760の表示制御処理において、エラービットがセットされていることについて、払出制御用CPU371は、エラー表示用LED374に所定の表示を行う。
また、この実施の形態では、出力ポートの出力状態に対応したRAM領域(出力ポート0バッファ、出力ポート1バッファ)が設けられているのであるが、払出制御用CPU371は、出力ポート0バッファおよび出力ポート1バッファの内容を出力ポートに出力する(ステップS761:出力処理)。出力ポート0バッファおよび出力ポート1バッファは、払出モータ制御処理(ステップS756)、プリペイドカード制御処理(ステップS753)、主制御通信処理(ステップS754)、情報出力処理(ステップS759)および表示制御処理(ステップS760)で更新される。
図79は、ステップS754の主制御通信処理を示すフローチャートである。主制御通信処理では、払出制御用マイクロコンピュータ370(具体的には、払出制御用CPU371)は、主制御コマンド受信処理(ステップS740)を実行する。そして、払出制御用CPU371は、主制御通信制御コードの値に応じて、ステップS741〜S744のいずれかの処理を実行する。
図80は、主制御通信処理におけるステップS740の主制御コマンド受信処理を示すフローチャートである。払出制御用CPU371は、主制御コマンド受信処理において、まず、接続信号を入力しているか否かを確認する(ステップS7401)。接続信号を入力していなければ、払出制御用CPU101は、シリアル通信回路380の送信回路および受信回路の初期化を行う(ステップS7402)。このように、接続信号を受信できない場合にシリアル通信回路380の送信回路および受信回路を初期化することによって、主基板31との接続状態が異常な状態下であるにもかかわらずコマンドを送信データレジスタや受信データレジスタに格納してしまう事態を防止することができる。次いで、払出制御用CPU371は、主制御通信制御コードの値をロードし(ステップS7403)、主制御通信制御コードの値が主制御接続確認処理を示す値「0」となっているか否かを確認する(ステップS7404)。
この実施の形態では、主制御通信処理において、遊技機への電源供給が開始されてから遊技制御用マイクロコンピュータ560からの接続信号の入力が開始され、最初の接続確認コマンドの受信を確認できるまでステップS741の主制御接続確認処理が実行される。そして、接続確認コマンドの受信を確認できると、ステップS742以降の処理に移行し、各種払出制御コマンドの送受信の処理が実行される。また、以降、遊技制御用マイクロコンピュータ560との間の通信状態が正常に維持されていれば、ステップS742〜S744のいずれかの処理が実行され、ステップS741の主制御接続確認処理は原則として遊技機への電源投入時にのみ実行されることになる。ステップS7404において、主制御通信制御コードの値が主制御接続確認処理以外の値を示しているということは、ステップS742以降の処理に移行した後に、何らかの通信エラーが生じて接続信号を入力不能となった場合である。そのため、払出制御用CPU371は、ステップS7404で主制御通信制御コードの値が主制御接続確認処理以外の値を示している場合には、エラーフラグの主制御通信エラー指定ビット(遊技制御用マイクロコンピュータ560との間の通信状態に異常が生じたことを示すビット)をセットする(ステップS7405)。なお、エラーフラグは、各種賞球エラーがセットされるフラグであり、払出制御用マイクロコンピュータ370が備えるRAMに形成されている。そして、払出制御用CPU371は、主制御通信制御コードに主制御接続確認処理を示す値「0」をセットする(ステップS7406)。なお、ステップS7404で主制御通信制御コードの値が主制御接続確認処理を示す値「0」となっていれば、そのままステップS7406)に移行する。
なお、ステップS741の主制御確認処理は、遊技機への電源投入時以降であっても例外的に実行される場合がある。具体的には、上記したように、ステップS7401で接続信号を入力していないと判定した後、ステップS7404で主制御接続確認処理の実行中でなければ、遊技機への電源投入後に接続信号が切断されてしまった可能性があると判断して主制御接続確認処理に戻り(ステップS7406参照)、再び遊技制御用マイクロコンピュータ560との接続状態を確認する(具体的には、接続確認コマンドを受信できることを確認。ステップS7412参照。)。また、後述する主制御通信通常処理において、接続OKコマンドを送信してから所定期間(本例では1050ms)を経過しても、遊技制御用マイクロコンピュータ560から接続確認コマンドも賞球個数コマンドも受信していない場合には、何らかの通信異常が生じたものとして主制御接続確認処理に戻り(ステップS74202,S74203参照)、再び遊技制御用マイクロコンピュータ560との接続状態を確認する(具体的には、接続確認コマンドを受信できることを確認。ステップS7412参照。)。
接続信号を入力していれば、払出制御用CPU371は、シリアル通信回路380のステータスレジスタに受信エラーフラグがセットされているか否かを確認する(ステップS7407)。例えば、払出制御用CPU371は、シリアル通信回路380のステータスレジスタにパリティエラーや、フレーイングエラー、ノイズエラー、オーバーランエラー、アイドルラインエラーを示すフラグがセットされていれば、シリアル通信回路380の受信エラー状態であると判定する。
受信エラーフラグがセットされていれば、払出制御用CPU371は、シリアル通信回路380の受信回路を初期化する(ステップS7408)。このように、受信エラー状態である場合にシリアル通信回路380の受信回路を初期化することによって、何らかの受信異常が生じているにもかかわらず受信コマンドを受信データレジスタに格納してしまう事態を防止することができる。そして、払出制御用CPU371は、エラーフラグの主制御通信エラー指定ビットをセットする(ステップS7409)。
受信エラーフラグもセットされていなければ、払出制御用CPU371は、受信バッファの内容をロードし(ステップS7410)、接続確認コマンドを受信しているか否かを確認する(ステップS7411)。具体的には、払出制御用CPU371は、ロードした受信バッファの内容が「A0(H)」であるか否か(図29参照)を確認する。接続確認コマンドを受信していれば、払出制御用CPU371は、ステップS7414に移行する。
接続確認コマンドを受信していなければ、払出制御用CPU371は、賞球個数コマンドを受信しているか否かを確認する。この実施の形態では、図29に示すように、接続個数コマンドの内容は、少なくとも「51(H)」以上、「60(H)」未満の値となる筈である。従って、払出制御用CPU371は、まず、ロードした受信バッファの内容が賞球個数コマンド最小値「51(H)」以上であるか否かを確認する(ステップS7412)。次いで、賞球個数コマンド最小判定値「51(H)」以上であれば、払出制御用CPU371は、ロードした受信バッファの内容が賞球個数コマンド最大判定値「60(H)」未満であるか否かを確認する(ステップS7413)。賞球個数コマンド最大判定値「60(H)」未満であれば、払出制御用CPU371は、賞球個数コマンドを受信していると判定し、ステップS7414に移行する。
そして、ステップS7414では、払出制御用CPU371は、受信バッファの内容(接続確認コマンド、賞球個数コマンド)を主制御通信受信バッファに格納する。なお、主制御通信受信バッファは、1バイトで構成され、1度に1つの受信コマンドのみを格納することができる。このように構成しても、この実施の形態では、払出制御用マイクロコンピュータ370におけるタイマ割込の周期(本例では1ms)は、遊技制御用マイクロコンピュータ560におけるタイマ割込の周期(本例では4ms)より短いので、1回のタイマ割込内で複数の払出制御コマンドが受信される事態が生じることはなく、不都合は生じない。また、万一、遊技機への電源投入後、誤処理などにより、最初の接続確認コマンドを受信する前に賞球個数コマンドを受信してしまった場合であっても、その後、接続確認コマンドを受信すれば主制御通信受信バッファに上書きで格納されるので、後述する主制御接続確認処理(ステップS741)で接続確認コマンドを全く確認できず主制御通信通常処理に移行できなくなる事態が生じることを防止することができる。
図81は、主制御通信制御コードの値が0の場合に実行される主制御接続確認処理(ステップS741)を示すフローチャートである。主制御接続確認処理において、払出制御用CPU371は、主制御通信受信バッファの内容をロードし(ステップS7411)、接続確認コマンドを受信しているか否かを確認する(ステップS7412)。接続確認コマンドを受信していれば、払出制御用CPU371は、接続OKコマンドをセットし(ステップS7413)、主制御送信コマンド変換処理を実行する(ステップS7414)。なお、ステップS7414の主制御送信コマンド変換処理では、接続OKコマンドの下位4ビットに制御状態(払出個数異常エラーや、球切れエラー、満タンエラー、賞球エラーなどのエラー状態)をセットする処理が行われる。そして、払出制御用CPU371は、変換後の接続OKコマンドを遊技制御用マイクロコンピュータ560に送信する制御を行う(ステップS7415)。具体的には、払出制御用CPU371は、シリアル通信回路380の送信レジスタに接続OKコマンドを出力する処理を行う。
なお、払出制御用CPU371は、ステップS7415で接続OKコマンドを送信すると、主制御通信受信バッファをクリアする。そのようにすることによって、その後の処理で受信コマンドを誤って認識して誤った処理を実行してしまう事態を防止することができる。
次いで、払出制御用CPU371は、主制御通信制御コードに主制御通信通常処理を示す値「1」をセットする(ステップS7416)。そして、払出制御用CPU371は、主制御通信制御タイマに所定値(本例では1050ms)をセットする(ステップS7417)。
図82および図83は、主制御通信制御コードの値が1の場合に実行される主制御通信通常処理(ステップS742)を示すフローチャートである。主制御通信通常処理において、払出制御用CPU371は、主制御通信制御タイマの値を1減算し(ステップS74201)、主制御通信制御タイマがタイムアウトしたか否かを確認する(ステップS74202)。
この実施の形態では、前述したように、払出制御用マイクロコンピュータ370から接続OKコマンドを受信して1秒経過するごとに、遊技制御用マイクロコンピュータ560から次の接続確認コマンドが送信される。従って、ステップS7402において主制御通信制御タイマがタイムアウトしたということは、接続OKコマンドの送信後1秒を遙かに超えて1050ms(ステップS7417,S7409参照)を経過しても次の接続確認コマンドを受信できなかった場合である。そのため、払出制御用CPU371は、主制御通信制御コードに主制御接続確認処理を示す値「0」をセットして(ステップS7403)、主制御接続確認処理に戻り通信状態の回復を待つように制御する。
なお、払出制御用CPU371は、ステップS74202で主制御通信制御タイマがタイムアウトしていれば、主制御通信受信バッファをクリアする。そのようにすることによって、その後の処理で受信コマンドを誤って認識して誤った処理を実行してしまう事態を防止することができる。
主制御通信制御タイマがタイムアウトしていなければ、払出制御用CPU371は、主制御通信受信バッファに受信コマンドが格納されているか否かを確認する(ステップS74204)。主制御通信受信バッファに受信コマンドが格納されていれば、払出制御用CPU371は、受信したコマンドが接続確認コマンドであるか否かを確認する(ステップS74205)。接続確認コマンドを受信していれば、払出制御用CPU371は、接続OKコマンドをセットし(ステップS74206)、主制御送信コマンド変換処理を実行する(ステップS74207)。なお、ステップS74207の主制御送信コマンド変換処理では、接続OKコマンドの下位4ビットに制御状態(払出個数異常エラーや、球切れエラー、満タンエラー、賞球エラーなどのエラー状態)をセットする処理が行われる。そして、払出制御用CPU371は、変換後の接続OKコマンドを遊技制御用マイクロコンピュータ560に送信する制御を行う(ステップS74208)。具体的には、払出制御用CPU371は、シリアル通信回路380の送信レジスタに接続OKコマンドを出力する処理を行う。
なお、払出制御用CPU371は、ステップS74208で接続OKコマンドを送信すると、主制御通信受信バッファをクリアする。そのようにすることによって、その後の処理で受信コマンドを誤って認識して誤った処理を実行してしまう事態を防止することができる。
そして、払出制御用CPU371は、主制御通信制御タイマに所定値(本例では1050ms)をセットする(ステップS74209)。
ステップS74205で受信したコマンドが接続確認コマンドでなければ、賞球個数コマンドを受信していることになる。この場合、払出制御用CPU371は、エラーフラグの値が0であるか否かを確認する(ステップS74210)。エラーフラグの値が0でなければ(すなわち、エラー状態であり、いずれかのエラービットがセットされていれば)、ステップS74219に移行する。エラーフラグの値が0であれば(すなわち、エラー状態となっておらず、いずれのエラービットもセットされていなければ)、払出制御用CPU371は、BRDY信号を入力しているか否かを確認する(ステップS74211)。BRDY信号を入力していれば、ステップS74219に移行する。
BRDY信号も入力していなければ、払出制御用CPU371は、払出制御状態を示す払出制御状態フラグをロードし(ステップS74212)、賞球払出動作中または球貸し払出動作中であるか否かを確認する(ステップS74213)。具体的には、払出制御用CPU371は、払出制御状態フラグに賞球払出動作中指定ビット(賞球払出動作中であることを示すビット)または球貸し払出動作中指定ビット(球貸し払出動作中であることを示すビット)がセットされているか否かを確認する。賞球払出動作中または球貸し払出動作中であれば、ステップS74219に移行する。なお、この実施の形態では、賞球払出動作を終了して賞球終了コマンドを受信してから次の賞球個数コマンドが送信されるので、通信エラーなどの異常が発生していないかぎり、ステップS74213において賞球払出動作中であると判定されることはない。
賞球払出動作中でも球貸し払出動作中でもなければ、受信した賞球個数コマンドにもとづく賞球払出動作を直ちに開始できる場合である。この場合、払出制御用CPU371は、主制御通信受信バッファの下位4ビット(すなわち、賞球個数コマンドにセットされた賞球個数)を未払出個数カウンタにセットする(ステップS74214)。なお、未払出個数カウンタは、賞球や貸し球の未払出数をカウントするためのカウンタである。
次いで、払出制御用CPU371は、賞球個数受付コマンドを遊技制御用マイクロコンピュータ560に送信する制御を行う(ステップS74215)。具体的には、払出制御用CPU371は、シリアル通信回路380の送信レジスタに賞球個数受付コマンドを出力する処理を行う。
なお、払出制御用CPU371は、ステップS74215で賞球個数受付コマンドを送信すると、主制御通信受信バッファをクリアする。そのようにすることによって、その後の処理で受信コマンドを誤って認識して誤った処理を実行してしまう事態を防止することができる。
次いで、払出制御用CPU371は、主制御通信制御コードに主制御通信終了処理を示す値「3」をセットする(ステップS74216)。そして、払出制御用CPU371は、主制御通信制御タイマに所定値(本例では1秒)をセットする(ステップS74218)。なお、ステップS74218でセットされた値にもとづいて、賞球個数受付コマンドを送信した後、1秒経過後に賞球払出動作を完了していなければ賞球準備中コマンドが送信されることになる。
ステップS74219では、払出制御用CPU371は、主制御通信受信バッファの下位4ビット(すなわち、賞球個数コマンドのセットされた賞球個数)を主制御通信賞球個数バッファに格納する。すなわち、この場合、何らかのエラー状態が発生していたり、賞球払出動作中や球貸し払出動作中、球貸し準備中の場合であるので、受信した賞球個数コマンドにもとづく賞球払出動作を直ちに開始することはできない。そのため、払出制御用CPU371は、賞球個数受付コマンドの返信を保留するとともに、賞球個数コマンドにセットされた賞球個数を主制御通信賞球個数バッファに一旦退避する。
次いで、払出制御用CPU371は、賞球準備中コマンドをセットし(ステップS74220)、主制御送信コマンド変換処理を実行する(ステップS74221)。なお、ステップS74221の主制御送信コマンド変換処理では、賞球準備中コマンドの下位4ビットに制御状態(払出個数異常エラーや、球切れエラー、満タンエラー、賞球エラーなどのエラー状態)をセットする処理が行われる。そして、払出制御用CPU371は、変換後の賞球準備中コマンドを遊技制御用マイクロコンピュータ560に送信する制御を行う(ステップS74222)。具体的には、払出制御用CPU371は、シリアル通信回路380の送信レジスタに賞球準備中コマンドを出力する処理を行う。
なお、払出制御用CPU371は、ステップS74222で賞球準備中コマンドを送信すると、主制御通信受信バッファをクリアする。そのようにすることによって、その後の処理で受信コマンドを誤って認識して誤った処理を実行してしまう事態を防止することができる。
次いで、払出制御用CPU371は、主制御通信制御コードに主制御通信中処理を示す値「2」をセットする(ステップS74223)。そして、払出制御用CPU371は、主制御通信制御タイマに所定値(本例では1秒)をセットする(ステップS74224)。なお、ステップS74224でセットされた値にもとづいて、賞球準備中コマンドを送信した後、1秒経過後にまだ賞球払出動作を開始できる状態になっていなければ次の賞球準備中コマンドが送信されることになる。
図84および図85は、主制御通信制御コードの値が2の場合に実行される主制御通信中処理(ステップS743)を示すフローチャートである。主制御通信中処理において、払出制御用CPU371は、まず、主制御通信受信バッファに受信コマンドが格納されているか否かを確認する(ステップS74301)。主制御通信受信バッファに受信コマンドが格納されていれば、払出制御用CPU371は、受信したコマンドが接続確認コマンドであるか否かを確認する(ステップS74302)。接続確認コマンドでなければ、ステップS74306に移行する。接続確認コマンドを受信していれば、払出制御用CPU371は、接続OKコマンドをセットし(ステップS74303)、主制御送信コマンド変換処理を実行する(ステップS74304)。なお、ステップS74304の主制御送信コマンド変換処理では、接続OKコマンドの下位4ビットに制御状態(払出個数異常エラーや、球切れエラー、満タンエラー、賞球エラーなどのエラー状態)をセットする処理が行われる。そして、払出制御用CPU371は、変換後の接続OKコマンドを遊技制御用マイクロコンピュータ560に送信する制御を行う(ステップS74305)。具体的には、払出制御用CPU371は、シリアル通信回路380の送信レジスタに接続OKコマンドを出力する処理を行う。そして、ステップS74306に移行する。
ステップS74306では、払出制御用CPU371は、エラーフラグに主制御通信エラー指定ビットをセットする。すなわち、主制御通信中処理は、賞球個数コマンドを受信した後、受信した賞球個数コマンドにもとづく賞球払出動作を開始可能な状態となるまでに実行される処理であり、賞球個数受付コマンドの返信が保留されて、遊技制御用マイクロコンピュータ560は賞球個数受付コマンドの受信待ち状態となっているのであるから、この間に遊技制御用マイクロコンピュータ560から新たに払出制御コマンドを受信することはない筈である。それにもかかわらず、新たなコマンドを受信したということは通信状態に何らかの異常が生じたと判断することができるのであるから、払出制御用CPU371は、主制御通信エラー指定ビットをセットする処理を行う。
なお、払出制御用CPU371は、ステップS74306で主制御通信エラー指定ビットをセットすると、主制御通信受信バッファをクリアする。そのようにすることによって、その後の処理で受信コマンドを誤って認識して誤った処理を実行してしまう事態を防止することができる。
次いで、払出制御用CPU371は、主制御通信制御コードに主制御通信通常処理を示す値「1」をセットする(ステップS74307)。そして、払出制御用CPU371は、主制御通信制御タイマに所定値(本例では1050ms)をセットする(ステップS74308)。
主制御通信受信バッファに受信コマンドがなければ、払出制御用CPU371は、主制御通信制御タイマの値を1減算し(ステップS74309)、主制御通信制御タイマがタイムアウトしたか否かを確認する(ステップS74310)。
主制御通信制御タイマがタイムアウトしていれば(ステップS74310のY)、賞球準備中コマンドを前回送信してから1秒以上経過したことを意味する。この場合、払出制御用CPU371は、次の賞球準備中コマンドを送信するために、賞球準備中コマンドをセットし(ステップS74311)、主制御送信コマンド変換処理を実行する(ステップS74312)。なお、ステップS74312の主制御送信コマンド変換処理では、賞球準備中コマンドの下位4ビットに制御状態(払出個数異常エラーや、球切れエラー、満タンエラー、賞球エラーなどのエラー状態)をセットする処理が行われる。そして、払出制御用CPU371は、変換後の賞球準備中コマンドを遊技制御用マイクロコンピュータ560に送信する制御を行う(ステップS74313)。具体的には、払出制御用CPU371は、シリアル通信回路380の送信レジスタに賞球準備中コマンドを出力する処理を行う。
そして、払出制御用CPU371は、主制御通信制御タイマに所定値(本例では1秒)をセットする(ステップS74314)。なお、ステップS74314でセットされた値にもとづいて、賞球準備中コマンドを送信した後、さらに1秒経過後にまだ賞球払出動作を開始できる状態になっていなければ次の賞球準備中コマンドが送信されることになる。
主制御通信制御タイマがタイムアウトしていなければ、払出制御用CPU371は、エラーフラグの値が0であるか否かを確認する(ステップS74315)。エラーフラグの値が0でなければ(すなわち、エラー状態であり、いずれかのエラービットがセットされていれば)、まだ賞球払出動作を開始できないので、そのまま処理を終了する。エラーフラグの値が0であれば(すなわち、エラー状態となっておらず、いずれのエラービットもセットされていなければ)、払出制御用CPU371は、BRDY信号を入力しているか否かを確認する(ステップS74316)。BRDY信号を入力していれば、まだ賞球払出動作を開始できないので、そのまま処理を終了する。
BRDY信号も入力していなければ、払出制御用CPU371は、払出制御状態を示す払出制御状態フラグをロードし(ステップS74317)、賞球払出動作中または球貸し払出動作中であるか否かを確認する(ステップS74318)。具体的には、払出制御用CPU371は、払出制御状態フラグに賞球払出動作中指定ビット(賞球払出動作中であることを示すビット)または球貸し払出動作中指定ビット(球貸し払出動作中であることを示すビット)がセットされているか否かを確認する。賞球払出動作中または球貸し払出動作中であれば、まだ賞球払出動作を開始できないので、そのまま処理を終了する。なお、この実施の形態では、賞球払出動作を終了して賞球終了コマンドを受信してから次の賞球個数コマンドが送信されるので、通信エラーなどの異常が発生していないかぎり、ステップS74318において賞球払出動作中であると判定されることはない。
賞球払出動作中でも球貸し払出動作中でもなければ、受信した賞球個数コマンドにもとづく賞球払出動作を開始可能な状態となったことを意味する。この場合、払出制御用CPU371は、主制御通信賞球個数バッファの下位4ビット(すなわち、一時退避した賞球個数)を未払出個数カウンタにセットする(ステップS74319)。
なお、この実施の形態では、既に述べたように、賞球個数コマンドを受信したときに直ちに賞球払出動作を開始できない場合に、賞球個数コマンドで特定される賞球個数を直ちに未払出個数カウンタにセットするのではなく、主制御通信賞球個数バッファに一旦退避するのであるが、このように制御するのは、例えば、貸し球払出動作中に未払出個数カウンタに賞球個数が上乗せされて賞球個数を正確に管理できなくなる事態を防止するなど、払出制御に関する処理に不都合が生じないようにするためである。
次いで、払出制御用CPU371は、賞球個数受付コマンドを遊技制御用マイクロコンピュータ560に送信する制御を行う(ステップS74320)。具体的には、払出制御用CPU371は、シリアル通信回路380の送信レジスタに賞球個数受付コマンドを出力する処理を行う。
次いで、払出制御用CPU371は、主制御通信制御コードに主制御通信終了処理を示す値「3」をセットする(ステップS74321)。そして、払出制御用CPU371は、主制御通信制御タイマに所定値(本例では1秒)をセットする(ステップS74322)。なお、ステップS74322でセットされた値にもとづいて、賞球個数受付コマンドを送信した後、1秒経過後に賞球払出動作を完了していなければ賞球準備中コマンドが送信されることになる。
図86は、主制御通信制御コードの値が3の場合に実行される主制御通信終了処理(ステップS744)を示すフローチャートである。主制御通信終了処理において、払出制御用CPU371は、まず、主制御通信受信バッファに受信コマンドが格納されているか否かを確認する(ステップS74401)。主制御通信受信バッファに受信コマンドが格納されていれば、払出制御用CPU371は、受信したコマンドが接続確認コマンドであるか否かを確認する(ステップS74402)。接続確認コマンドでなければ、ステップS74406に移行する。接続確認コマンドを受信していれば、払出制御用CPU371は、接続OKコマンドをセットし(ステップS74403)、主制御送信コマンド変換処理を実行する(ステップS74404)。なお、ステップS74404の主制御送信コマンド変換処理では、接続OKコマンドの下位4ビットに制御状態(払出個数異常エラーや、球切れエラー、満タンエラー、賞球エラーなどのエラー状態)をセットする処理が行われる。そして、払出制御用CPU371は、変換後の接続OKコマンドを遊技制御用マイクロコンピュータ560に送信する制御を行う(ステップS74405)。具体的には、払出制御用CPU371は、シリアル通信回路380の送信レジスタに接続OKコマンドを出力する処理を行う。そして、ステップS74406に移行する。
ステップS74406では、払出制御用CPU371は、エラーフラグに主制御通信エラー指定ビットをセットする。すなわち、主制御通信終了処理は、賞球個数コマンドを受信して賞球払出動作を開始した後、受信した賞球個数コマンドにもとづく賞球払出動作を終了するまで実行する処理であり、遊技制御用マイクロコンピュータ560は賞球終了コマンドの受信待ち状態となっているのであるから、この間に遊技制御用マイクロコンピュータ560から新たに払出制御コマンドを受信することはない筈である。それにもかかわらず、新たなコマンドを受信したということは通信状態に何らかの異常が生じたと判断することができるのであるから、払出制御用CPU371は、主制御通信エラー指定ビットをセットする処理を行う。
なお、払出制御用CPU371は、ステップS74406で主制御通信エラー指定ビットをセットすると、主制御通信受信バッファをクリアする。そのようにすることによって、その後の処理で受信コマンドを誤って認識して誤った処理を実行してしまう事態を防止することができる。
次いで、払出制御用CPU371は、主制御通信制御コードに主制御通信通常処理を示す値「1」をセットする(ステップS74407)。そして、払出制御用CPU371は、主制御通信制御タイマに所定値(本例では1050ms)をセットする(ステップS74408)。
主制御通信受信バッファに受信コマンドがなければ、払出制御用CPU371は、主制御通信制御タイマの値を1減算し(ステップS74409)、主制御通信制御タイマがタイムアウトしたか否かを確認する(ステップS74410)。
主制御通信制御タイマがタイムアウトしていれば(ステップS74410のY)、賞球個数受付コマンドや賞球準備中コマンドを前回送信してから1秒以上経過したことを意味する。この場合、払出制御用CPU371は、次の賞球準備中コマンドを送信するために、賞球準備中コマンドをセットし(ステップS74411)、主制御送信コマンド変換処理を実行する(ステップS74412)。なお、ステップS74412の主制御送信コマンド変換処理では、賞球準備中コマンドの下位4ビットに制御状態(払出個数異常エラーや、球切れエラー、満タンエラー、賞球エラーなどのエラー状態)をセットする処理が行われる。そして、払出制御用CPU371は、変換後の賞球準備中コマンドを遊技制御用マイクロコンピュータ560に送信する制御を行う(ステップS74413)。具体的には、払出制御用CPU371は、シリアル通信回路380の送信レジスタに賞球準備中コマンドを出力する処理を行う。
そして、払出制御用CPU371は、主制御通信制御タイマに所定値(本例では1秒)をセットする(ステップS74414)。なお、ステップS74414でセットされた値にもとづいて、賞球準備中コマンドを送信した後、さらに1秒経過後にまだ賞球払出動作が終了していなければ次の賞球準備中コマンドが送信されることになる。
主制御通信制御タイマがタイムアウトしていなければ、払出制御用CPU371は、払出制御状態フラグをロードし(ステップS74415)、賞球払出動作中であるか否かを確認する(ステップS74416)。具体的には、払出制御用CPU371は、払出制御状態フラグに賞球払出動作中指定ビットがセットされているか否かを確認する。賞球払出動作中であれば、受信した賞球個数コマンドにもとづく賞球払出動作をまだ終了していないことを意味するので、払出制御用CPU371は、そのまま処理を終了する。賞球払出動作中でなければ、受信した賞球個数コマンドにもとづく賞球払出動作を終了したことを意味する。そのため、払出制御用CPU371は、賞球終了コマンドを遊技制御用マイクロコンピュータ560に送信する制御を行う(ステップS74417)。具体的には、払出制御用CPU371は、シリアル通信回路380の送信レジスタに賞球終了コマンドを出力する処理を行う。
なお、払出制御用CPU371は、ステップS74417で賞球終了コマンドを送信すると、主制御通信受信バッファをクリアする。そのようにすることによって、その後の処理で受信コマンドを誤って認識して誤った処理を実行してしまう事態を防止することができる。
次いで、払出制御用CPU371は、主制御通信制御コードに主制御通信通常処理を示す値「1」をセットする(ステップS74418)。そして、払出制御用CPU371は、主制御通信制御タイマに所定値(本例では1050ms)をセットする(ステップS74419)。
図87は、ステップS7414,S74207,S74221,S74304,S74312,S74404,S74412で実行される主制御送信コマンド変換処理を示すフローチャートである。主制御送信コマンド変換処理において、払出制御用CPU371は、まず、エラーフラグをロードし、払出個数異常エラー指定ビットがセットされているか否かを確認する(ステップS731)。払出個数異常エラー指定ビットがセットされていれば、払出制御用CPU371は、変換バッファの主制御通信用払出個数異常エラー出力ビット(具体的にはビット3)をセットする(ステップS732)。
次いで、払出制御用CPU371は、球切れエラー指定ビットがセットされているか否かを確認する(ステップS733)。球切れエラー指定ビットがセットされていれば、払出制御用CPU371は、変換バッファの主制御通信用球切れ出力ビット(具体的にはビット2)をセットする(ステップS734)。
次いで、払出制御用CPU371は、満タンエラー指定ビットがセットされているか否かを確認する(ステップS735)。満タンエラー指定ビットがセットされていれば、払出制御用CPU371は、変換バッファの主制御通信用満タン出力ビット(具体的にはビット1)をセットする(ステップS736)。
次いで、払出制御用CPU371は、その他の賞球エラー指定ビットがセットされているか否かを確認する(ステップS737)。具体的には、払出制御用CPU371は、エラーフラグに、主制御通信エラー指定ビットや、主制御未接続エラー指定ビット、払出スイッチ異常検知エラー1指定ビット、払出スイッチ異常検知エラー2指定ビット、払出ケースエラー指定ビットがセットされているか否かを確認する。その他の賞球エラー指定ビットがセットされていれば、払出制御用CPU371は、変換バッファの主制御通信用球切れ出力ビット(具体的にはビット0)をセットする(ステップS738)。
そして、払出制御用CPU371は、送信するためにセットされている払出制御コマンド(接続OKコマンドまたは賞球準備中コマンド)に変換バッファの内容をセットする(ステップS739)。
図88は、ステップS755の払出制御処理を示すフローチャートである。払出制御処理において、払出制御用CPU371は、払出個数カウントスイッチ301の検出信号がオン状態となったことを確認したら(ステップS7501)、未払出個数カウンタの値が0となっているか否かを確認する(ステップS7502)。未払出個数カウンタの値が0となっていた場合には、払出制御用CPU371は、異常な払出の累積数をカウントするための払出個数異常カウンタの値を1加算する(ステップS7503)。すなわち、ステップS7502でYであるということは、未払出個数カウンタに払い出すべき未払い出し数がセットされていないのであるから、遊技球の払い出しが行われない筈であるにもかかわらず、払出動作が行われ払出個数カウントスイッチ301で遊技球の払い出しが検出された場合である。そのため、何らかの不正行為により払出動作が行われた可能性があるので、払出制御用CPU101は、払出個数異常カウンタの値を累積的に1加算する。
なお、払出個数異常カウンタは、賞球や貸し球の払い出すべき数の未払出の遊技球を超えた払出過多数と払い出すべき数の未払出の遊技球に満たなかった払出不足数とを累積的にカウントするためのカウンタである。後述するように、この実施の形態では、払出個数異常カウンタの値が所定の払出個数異常エラー判定値(本例では2000)以上となると、払出個数異常エラーが発生したと判定して、払出停止状態に制御する処理が行われる。なお、ステップS7503の処理は、払出個数異常カウンタに払出過多数を累積的にカウントする処理に相当する。
なお、この実施の形態では、賞球であるか貸し球であるかを区別することなく、払出過多数と払出不足数とを払出個数異常カウンタに累積的にカウントするのであるが、賞球と貸し球のうちのいずれか一方のみを対象として、払出過多数と払出不足数とを払出個数異常カウンタに累積的にカウントするようにしてもよい。また、例えば、賞球と貸し球について、それぞれ別々のカウンタを用いて払出過多数と払出不足数とを累積的にカウントするようにしてもよい。この場合、いずれか一方のカウンタの値が所定の閾値に達したときに払出個数異常エラーと判定するようにしてもよく、両カウンタの合計値が所定の閾値に達したときに払出個数異常エラーと判定するようにしてもよい。
また、この実施の形態では、ステップS7503において払出過多を検出したときに払出個数異常カウンタの値を1加算する場合を示したが、払出個数異常カウンタの値のカウントアップの仕方は、この実施の形態で示したものにかぎられない。例えば、逆に、払出個数異常カウンタの値から払出過多数を減算するとともに、払出不足数を払出個数異常カウンタの値に加算するようにしてもよい。この場合、払出制御用CPU371は、例えば、電源投入時の初期設定処理において払出個数異常カウンタに初期値として「2000」をセットするとともに、ステップS7503において、払出個数異常カウンタの値を1減算するようにし、後述するステップS75320,S75325,S75335において払出個数異常カウンタの値に払出不足数に相当する値を加算するようにすればよい。そして、例えば、後述するステップS7504,S75321,S7725の処理では、払出個数異常カウンタの値が2000以下となっていることにもとづいて、払出個数異常エラーが発生したと判定するようにしてもよい。
次いで、払出制御用CPU371は、加算後の払出個数異常カウンタの値が所定の払出個数異常エラー判定値(例えば2000)以上となったか否かを確認する(ステップS7504)。所定の払出個数異常エラー判定値(例えば2000)以上となっていれば、払出制御用CPU371は、払出個数異常エラーが発生したと判断し、払出個数異常エラーが発生したことを示す払出個数異常エラーフラグをセットする(ステップS7505)。すなわち、この実施の形態では、払出制御用マイクロコンピュータ370側で異常な払出の検出数を累積的に管理し、その累積値が所定の払出個数異常エラー判定値(例えば2000)以上となれば、何らかの不正行為により払出動作が行われている可能性が極めて高いと判断して、払出個数異常エラー(払い出された遊技球数が異常である旨のエラー)が発生したと判定される。なお、誤動作などにより遊技球が過剰に払い出されたり払出不足が生じたりすることも少なからずあるので、払出数の異常を検出したときに直ちに払出個数異常エラーと判定してしまったのでは、払出個数異常エラーと判定される頻度が必要以上に高くなり却って遊技に支障を生じてしまう。そこで、この実施の形態では、異常な払出の検出数を累積的に管理し、その累積値が所定の払出個数異常エラー判定値(例えば2000)以上となったことを条件として払出個数異常エラーと判定するようにすることによって、必要以上に払出個数異常エラーと判定されることを防止している。
なお、この実施の形態では、払出個数異常エラーと判定されて払出個数異常エラーフラグが一度セットされると、電源リセットされるまで払出個数異常エラーフラグはクリアされず払出個数異常エラーから復旧しないので、払出個数異常エラーフラグがセットされると、以降、ステップS7504,S7505の処理や後述するS75321,S75322、S7725,S7726の処理は実行しないようにしてもよい。そのようにすれば、払出個数異常エラーと一度判定してしまった後の無駄な処理を防止し処理負担を軽減することができる。
また、この実施の形態では、所定の払出個数異常エラー判定値として、一般に、遊技店で用いられる遊技球の収納箱(いわゆるドル箱)に収納可能な遊技球の数に相当する「2000」を用いる場合を示しているが、所定の払出個数異常エラー判定値として他の値(例えば、1000や3000)を用いてもよい。
なお、この実施の形態では、図88に示す払出制御処理は、賞球払出動作を実行するときと貸し球払出動作を実行するときとで共通に実行される処理であり、未払出個数カウンタは、賞球による未払出の遊技球数をカウントするときと貸し球による未払出の遊技球数をカウントするときとで共通に用いられるカウンタである。そして、払出個数の異常を検出した場合には、賞球による払出と貸し球による払出とを区別することなく払出個数異常カウンタの値がカウントアップされ、払出個数異常エラーが発生したか否かの判定が行われる。
未払出個数カウンタの値が0でなければ、払出制御用CPU371は、未払出個数カウンタの値を1減算し(ステップS7506)、払出制御状態のフラグに払出球検知指定ビット(遊技球の払い出しを検出したことを示すビット)をセットする(ステップS7507)。なお、払出球検知指定ビットは、払出個数カウントスイッチ301がオンしたときにセットされるビットであり、払出動作中に払出個数カウントスイッチ301が少なくとも1個の遊技球を検出したことを示すビットである。
その後、払出制御用CPU371は、払出制御コードの値に応じてステップS7511〜S7513のいずれかの処理を実行する。
図89は、払出制御コードが0の場合に実行される払出開始待ち処理(ステップS7511)を示すフローチャートである。払出開始待ち処理において、払出制御用CPU371は、まず、エラーフラグの値が0であるか否かを確認する(ステップS75101)。そして、エラービット(エラーフラグにおける全てのエラービットのうちの1つ以上)がセットされていたら、払出制御用CPU371は、以降の処理を実行しないように制御する。なお、この実施の形態では、ステップS75101の処理が実行されることによって、払出個数異常エラーと判定されてエラービットの払出個数異常エラー指定ビットがセットされていることにもとづいて、ステップS75102以降の処理に移行しないように制御され、払出停止状態に制御される。
エラーフラグの値が0であれば、払出制御用CPU371は、BRDY信号を入力しているか否かを確認する(ステップS75102)。BRDY信号を入力していれば、払出制御用CPU371は、払出制御状態フラグをロードし(ステップS75103)、球貸し要求中であるか否かを確認する(ステップS75104)。具体的には、払出制御用CPU371は、払出制御状態フラグに球貸し要求中指定ビット(球貸し要求中であることを示すビット)がセットされているか否かを確認する。なお、払出制御用CPU371は、BRQ信号を入力しているか否かを確認することによって、球貸し要求中であるか否かを判定するようにしてもよい。球貸し要求中であれば(すなわち、球貸し払出動作を開始する場合)、払出制御用CPU371は、払出制御状態フラグの球貸し要求中指定ビットをリセットする(ステップS75105)とともに、払出制御状態フラグの球貸し払出動作中指定ビットをセットする(ステップS75016)。次いで、払出制御用CPU371は、未払出個数カウンタに所定の球貸し個数(本例では25)をセットする(ステップS75107)とともに、払出モータ回転回数バッファに所定の球貸し個数(本例では25)をセットする(ステップS75108)。そして、ステップS75113に移行する。
なお、払出モータ回転回数バッファは、払出モータ制御処理(ステップS756)において参照される。すなわち、払出モータ制御処理では、払出モータ回転回数バッファにセットされた値に対応した回転数分だけ払出モータ289を回転させる制御が実行される。
BRDY信号を入力していなければ、払出制御用CPU371は、未払出個数カウンタの値が0であるか否かを確認する(ステップS75109)。未払出個数カウンタの値が0でなければ(すなわち、賞球払出動作を開始する場合)、払出制御用CPU371は、払出モータ回転回数バッファに未払出個数カウンタの値をセットする(ステップS75110)。すなわち、この場合、未払出個数カウンタには、受信した賞球個数コマンドで指定された賞球個数がセットされている筈であるから(ステップS74214,S74319参照)、賞球払出動作を開始するために、賞球個数を払出モータ回転回数バッファにセットする処理を行う。次いで、払出制御用CPU371は、払出制御状態フラグをロードし(ステップS75111)、払出制御状態フラグに賞球払出動作中指定ビットをセットする(ステップS75112)。そして、ステップS75113に移行する。
ステップS75113では、払出制御用CPU371は、払出モータ制御処理で実行される処理を選択するための払出モータ制御コードに、払出モータ起動処理に応じて値をセットする。これにより、ステップS756の払出モータ制御処理において、払出モータ289を起動する払出モータ起動処理が実行され、貸し球払出動作または賞球払出動作が開始される。そして、払出制御用CPU371は、払出制御コードに払出モータ停止待ち処理を示す値「1」をセットし(ステップS75114)、処理を終了する。
図90は、払出制御コードが1の場合に実行される払出モータ停止待ち処理(ステップS7512)を示すフローチャートである。払出モータ停止待ち処理において、払出制御用CPU371は、まず、払出制御状態フラグをロードし(ステップS7521)、払出動作が終了したか否かを確認する(ステップS7522)。具体的には、払出制御用CPU371は、払出制御状態フラグに払出動作終了指定ビット(払出動作を終了したことを示すビット)がセットされているか否かを確認する。なお、払出動作終了指定ビットは、図78に示すステップS756の払出モータ制御処理における払出モータブレーキ処理や払出モータ球噛み解除処理においてセットされる。
なお、払出モータ制御処理では、払出制御用CPU371は、払出モータ制御コードの値に応じて、払出モータ通常処理(ポインタをROMに格納されているテーブルの先頭アドレスにセットする等の処理)、払出モータ起動処理(出力ポート0の出力状態に対応したポート0バッファのビット4〜7に励磁パターンの初期値を設定する等の処理)、払出モータスローアップ処理(払出モータ289を滑らかに回転開始させるために、定速処理の場合よりも長い間隔で、かつ、徐々に定速処理の場合の時間間隔に近づくような時間間隔で、払出モータ励磁パターンテーブルの内容を読み出して出力ポート0の出力状態に対応したポート0バッファのビット4〜7に設定する等の処理)、払出モータ定速処理(定期的に払出モータ励磁パターンテーブルの内容を読み出して出力ポート0の出力状態に対応したポート0バッファのビット4〜7に設定する等の処理)、払出モータブレーキ処理(払出モータ289を滑らかに停止させるために、定速処理の場合よりも長い間隔で、かつ、徐々に定速処理の場合の時間間隔から遠ざかるような時間間隔で、払出モータ励磁パターンテーブルの内容を読み出して出力ポート0の出力状態に対応したポート0バッファのビット4〜7に設定する等の処理)、払出モータ球噛み処理(球噛み状態を検出した場合に、球噛みを解除するために、払出モータ励磁パターンテーブルの内容を読み出して出力ポート0の出力状態に対応したポート0バッファのビット4〜7に設定する処理)、および払出モータ球噛み解除処理(球噛み状態が解除されたときに払出モータ通常処理に移行して通常のモータ制御状態に復帰する処理)のいずれかの処理を実行する。
払出動作を終了していれば、払出制御用CPU371は、払出制御状態フラグの払出動作終了指定ビットをリセットする(ステップS7523)とともに、後述する払出通過監視時間などをセットするために用いる払出モータ停止待ち処理設定テーブル2をセットする(ステップS7524)。
次いで、払出制御用CPU371は、払出制御状態フラグに払出球数検査済み指定ビットがセットされているか否かを確認する(ステップS7525)。払出球数検査済み指定ビットは、払出モータ289による払出動作終了時(正常動作の終了時)に払出個数カウントスイッチ301による検出の判定を行ったことを示すビットである。払出球数検査済み指定ビットがセットされていれば、ステップS7527に移行する。払出球数検査済み指定ビットがセットされていなければ、払出制御用CPU371は、払出モータ停止待ち処理設定テーブルをセットする(ステップS7526)。すなわち、払出制御用CPU371は、ステップS7524でセットしたテーブルを払出モータ停止待ち処理設定テーブルに差し替える。そして、ステップS7527に移行する。
ステップS7527では、払出制御用CPU371は、払出制御コードに払出通過待ち処理を示す値「2」をセットする。そして、払出制御用CPU371は、ステップS7524,S7526でセットしたテーブルにもとづいて、払出制御タイマに払出通過監視時間をセットする(ステップS7527)。払出通過監視時間は、最後の払出球が払出モータ289によって払い出されてから払出個数カウントスイッチ301を通過するまでの時間に、余裕を持たせた時間である。この実施の形態では、ステップS7525で払出球数検査済みビットがセットされていた場合には、ステップS7524でセットした払出モータ停止待ち処理設定テーブル2にもとづいて、払出通過監視時間として1秒をセットする。また、ステップS7525で払出球数検査済みビットがセットされていなかった場合には、ステップS7526で差し替えた払出モータ停止待ち処理設定テーブルにもとづいて、払出通過監視時間として0.6秒をセットする。
図91〜図93は、払出制御コードの値が2の場合に実行される払出通過待ち処理(ステップS7513)を示すフローチャートである。払出通過待ち処理において、払出制御用CPU371は、まず、払出制御タイマの値を確認し(ステップS75301)、その値が0になっていれば、ステップS75304に移行する。払出制御タイマの値が0でなければ、払出制御タイマの値を−1する(ステップS75302)。そして、払出制御タイマの値が0になっていなければ(ステップS75303)、すなわち払出制御タイマがタイムアウトしていなければ処理を終了する。
払出制御タイマがタイムアウトしていれば、払出制御用CPU371は、エラーフラグをロードし、払出個数異常エラー指定ビット、払出スイッチ異常検知エラー1指定ビット、または払出スイッチ異常検知エラー2指定ビットがセットされているか否かを確認する(ステップS75304)。払出個数異常エラー指定ビット、払出スイッチ異常検知エラー1指定ビット、または払出スイッチ異常検知エラー2指定ビットのいずれかがセットされていれば、払出動作をこれ以上継続できないと判断して、ステップS75306に移行する。払出個数異常エラー指定ビット、払出スイッチ異常検知エラー1指定ビット、および払出スイッチ異常検知エラー2指定ビットのいずれもセットされていなければ、払出制御用CPU371は、未払出個数カウンタの値が0となっているか否かを確認する(ステップS75305)。未払出個数カウンタの値が0となっていれば、払出制御用CPU371は、正常に払出動作が終了したとして、払出制御状態フラグをロードし(ステップS75306)、払出制御状態フラグの球貸し要求中指定ビットおよび払出動作終了指定ビット以外のビットをリセットする(ステップS75307)。そして、払出制御用CPU371は、払出制御コードに払出開始待ち処理を示す値「0」をセットし(ステップS75308)、処理を終了する。
未払出個数カウンタの値が0となっていなければ、払出制御用CPU371は、エラーフラグをロードし、球切れエラー指定ビットまたは満タンエラー指定ビットがセットされているか否かを確認する(ステップS75309)。球切れエラー指定ビットまたは満タンエラー指定ビットがセットされていれば、そのまま処理を終了する。球切れエラー指定ビットおよび満タンエラー指定ビットのいずれもセットされていなければ、払出制御用CPU371は、エラーフラグに払出ケースエラー指定ビットがセットされているか否かを確認する(ステップS75310)。払出ケースエラー指定ビットがセットされていれば、払出制御用CPU371は、払出制御状態フラグをロードして(ステップS75311)、払出制御状態フラグに払出球数検査済み指定ビットをセットする(ステップS75312)。また、払出制御用CPU371は、払出制御状態フラグの再払出動作中1指定ビット(1回目の再払出動作の実行を示すビット)と再払出動作中2指定ビット(2回目の再払出動作の実行を示すビット)をリセットし(ステップS75313)、処理を終了する。
なお、払出球数検査済み指定ビットは、払出モータ289による払出動作終了時(正常動作の終了時)に払出個数カウントスイッチ301による検出の判定を行ったことを示すビットである。なお、払出動作を終了したにもかかわらず、未払出個数カウンタの値が2以上残っている場合には、払出個数異常カウンタにその残数が加算される。また、払出動作終了時の払出個数カウントスイッチ301による検出の判定は、払出動作を1回実行するごとに1回のみ実行され、払出モータ球噛み処理や払出モータ球噛み解除処理を実行して球噛み動作を終了するときには実行しない(具体的には、球噛み状態では払出ケースエラー指定ビットがセットされるので、ステップS75312であらかじめ払出球数検査済み指定ビットがセットされることによって、球噛み動作を終了しても払出個数カウントスイッチ301による検出の判定を行わない)ように制御される。なお、払出球数検査済み指定ビットは、払出モータ制御処理内における払出モータ定速処理で満タン状態となったときにもセットされる。
ステップS75310で払出ケースエラー指定ビットもセットされていなければ、払出制御用CPU371は、払出制御状態フラグをロードし(ステップS75314)、ステップS75315以降の再払出処理を実行するための処理を行う。
再払出処理を実行するために、払出制御用CPU371は、まず、払出制御状態フラグの再払出動作中2指定ビットがセットされているか否かを確認する(ステップS75315)。セットされていなければ、払出制御用CPU371は、払出制御状態フラグの再払出動作中1指定ビットがセットされているか否かを確認する(ステップS75316)。再払出動作中1指定ビットもセットされていなければ、払出制御用CPU371は、初回の再払出動作を実行するために、払出制御状態フラグに再払出動作中1指定ビットをセットする(ステップS75317)。
次いで、払出制御用CPU371は、払出制御状態フラグに払出球数検査済み指定ビットがセットされているか否かを確認する(ステップS75318)。払出球数検査済み指定ビットがセットされていれば、ステップS75326に移行する。払出球数検査済み指定ビットがセットされていなければ、払出制御用CPU371は、未払出個数カウンタの値が2以上であるか否かを確認する(ステップS75319)。未払出個数カウンタの値が2以上でなければ、ステップS75326に移行する。未払出個数カウンタの値が2以上であれば、払出制御用CPU371は、払出個数異常カウンタに未払個数カウンタの値を加算する(ステップS75320)。なお、ステップS75320の処理は、払出個数異常カウンタに払出不足数を累積的にカウントする処理に相当する。次いで、払出制御用CPU371は、加算後の払出個数異常カウンタの値が所定の払出個数異常エラー判定値(例えば2000)以上となったか否かを確認する(ステップS75321)。所定の払出個数異常エラー判定値(例えば2000)以上となっていれば、払出制御用CPU371は、払出個数異常エラーが発生したと判断し、払出個数異常エラーが発生したことを示す払出個数異常エラーフラグをセットする(ステップS75322)。
なお、この実施の形態では、ステップS75319の処理により、払出動作を終了したにもかかわらず、未払出個数カウンタの値が所定基準数(本例では2)以上残っていることを条件として、払出個数異常カウンタに未払出個数カウンタの値を加算する。すなわち、誤動作などにより、払出動作を終了したにもかかわらず、未払出個数カウンタの値がごく少数(本例では1)残った状態となることも少なからずあるので、払出動作を終了したときに未払出個数カウンタの値が1つでも残っているときに直ちに払出個数異常カウンタに累積カウントとしてしまったのでは、払出個数異常エラーと判定される頻度が必要以上に高くなり却って遊技に支障を生じてしまう。そこで、この実施の形態では、少し余裕をもたせて未払出個数カウンタの値が2以上残っていることを条件として、払出個数異常カウンタに累積カウントすることとし、必要以上に払出個数異常エラーと判定されることを防止している。なお、ステップS75319の処理では、払出不足数が所定基準数(本例では2)以上であることを条件に払出個数異常カウンタを累積的にカウントアップする場合を示しているが、払出過多数についても所定基準数(本例では2)以上であることを条件に払出個数異常カウンタを累積的にカウントアップするようにしてもよい。この場合、例えば、図88に示すステップS7502でYと判定した回数が累積して2回以上に達したことを条件にステップS7503で払出過多数分のカウント値を払出個数異常カウンタを累積的にカウントアップするようにすればよい。また、ステップS75319,S75320の処理において、未払出個数カウンタの値が所定基準数(本例では2)以上残っているか否かにかかわらず、必ず払出個数異常カウンタに未払出個数カウンタの値をそのまま加算するようにしてもよい。
ステップS75316で再払出動作中1指定ビットがセットされていれば、払出制御用CPU371は、払出制御状態フラグに払出球検知指定ビットがセットされているか否かを確認する(ステップS75323)。払出球検知指定ビットがセットされていれば、払出制御用CPU371は、ステップS75326に移行する。払出球検知指定ビットがセットされていなければ、払出制御用CPU371は、2回目の再払出動作を実行するために、払出制御状態フラグに再払出動作中2指定ビットをセットする(ステップS75324)とともに、払出個数異常カウンタの値を1加算する(ステップS75325)。なお、ステップS75325の処理は、払出個数異常カウンタに払出不足数を累積的にカウントする処理に相当する。そして、ステップS75326に移行する。なお、ステップS75325の処理を実行することによって、1回目の再払出動作を実行したにもかかわらず、再払出動作が正常に行われなかった場合に、払出個数異常カウンタの値が1カウントアップされる。また、正常に払出が完了した場合でも、誤カウントなどにより未払出個数カウンタの値が0になっていいないこともある。そこで、ステップS75323の処理が実行されることによって、払出球検知指定ビットがセットされていれば、すなわち払出個数カウントスイッチ301が払出動作中に少なくとも1個の遊技球の払出を検出していれば、正常に払出が完了している可能性があるので、払出個数異常カウンタの累積カウントを行うことなく、そのままステップS75326に移行する。
ステップS75326では、払出制御用CPU371は、初回の再払出動作を実行するために、再払出動作個数として1をセットする。次いで、払出制御用CPU371は、払出モータ回転回数バッファに再払出動作個数(本例では1)をセットする(ステップS75327)。次いで、払出制御用CPU371は、払出制御状態フラグをロードし(ステップS75328)、払出制御状態フラグの払出球検知指定ビットをリセットする(ステップ75329)。
次いで、払出制御用CPU371は、払出モータ制御処理で実行される処理を選択するための払出モータ制御コードに、払出モータ起動処理に応じて値をセットする(ステップS75330)。これにより、ステップS756の払出モータ制御処理において、払出モータ289を起動する払出モータ起動処理が実行され、再払出動作が開始される。そして、払出制御用CPU371は、払出制御コードに払出モータ停止待ち処理を示す値「1」をセットし(ステップS75331)、処理を終了する。
ステップS75315で再払出動作中2指定ビットがセットされていれば、払出制御用CPU371は、払出制御状態フラグの再払出動作中2指定ビットをリセットする(ステップS75332)。次いで、払出制御用CPU371は、払出制御状態フラグの払出球検知指定ビットがセットされているか否かを確認する(ステップS75333)。払出球検知指定ビットがセットされていれば、ステップS75326に移行する。払出球検知指定ビットがセットされていなければ、払出制御用CPU371は、払出制御状態フラグの再払出動作中2指定ビットをリセットする(ステップS75334)とともに、払出個数異常カウンタの値を1加算する(ステップS75335)。なお、ステップS75335の処理は、払出個数異常カウンタに払出不足数を累積的にカウントする処理に相当する。また、ステップS75335の処理を実行することによって、2回目の再払出動作を実行しても、再払出動作が正常に行われなかった場合に、払出個数異常カウンタの値が1カウントアップされる。また、正常に払出が完了した場合でも、誤カウントなどにより未払出個数カウンタの値が0になっていいないこともある。そこで、ステップS75333の処理が実行されることによって、払出球検知指定ビットがセットされていれば、すなわち払出個数カウントスイッチ301が払出動作中に少なくとも1個の遊技球の払出を検出していれば、正常に払出が完了している可能性があるので、払出個数異常カウンタの累積カウントを行うことなく、そのままステップS75326に移行する。
次いで、払出制御用CPU371は、エラーフラグをロードして、エラーフラグに払出ケースエラー指定ビットをセットする(ステップS75336)。そして、払出制御用CPU371は、再払出待ちタイマに所定時間(例えば2分)をセットし(ステップS75337)、処理を終了する。なお、ステップS57337でセットされた再払出待ちタイマは、後述するエラー処理で計測され(ステップS7710参照)、再払出タイマがタイムアウトしたことにもとづいて、エラーフラグの払出ケースエラー指定ビットがリセットされる(ステップS7711,S7712参照)。そのような処理が実行されることによって、この実施の形態では、払出ケースエラーが検出された後、2分経過したことにもとづいてエラー状態が自動復旧される。
次に、エラー処理について説明する。図94は、エラーの種類とエラー表示用LED374の表示との関係等を示す説明図である。図94に示すように、エラーが発生していない状態である場合には、エラー表示用LED374には「−」が表示される。また、払出個数異常カウンタの累積カウント値が2000個以上となり、払出個数異常エラーを検出した場合には、払出制御用マイクロコンピュータ370の払出制御用CPU371は、払出個数異常エラーとして、エラー表示用LED374に「A」を表示する制御を行う。なお、払出個数異常エラーとなった場合には、遊技機の電源がリセットされるまで、エラー状態が継続される。
主基板31からの接続信号がオフ状態になった場合には、払出制御用マイクロコンピュータ370の払出制御用CPU371は、主基板未接続エラーとして、エラー表示用LED374に「1」を表示する制御を行う。
払出個数カウントスイッチ301の断線または払出個数カウントスイッチ301の部分において球詰まりが発生した場合には、払出スイッチ異常検知エラー1として、エラー表示用LED374に「2」を表示する制御を行う。なお、払出個数カウントスイッチ301の断線または払出個数カウントスイッチ301の部分において球詰まりが発生したことは、払出個数カウントスイッチ301の検出信号がオフ状態にならなかったことによって判定される。
遊技球の払出動作中でないにも関わらず払出個数カウントスイッチ301の検出信号がオン状態になった場合には、払出スイッチ異常検知エラー2として、エラー表示用LED374に「3」を表示する制御を行う。払出モータ289の回転異常または遊技球が払い出されたにも関わらず払出個数カウントスイッチ301の検出信号がオン状態にならない場合には、払出ケースエラーとして、エラー表示用LED374に「4」を表示する制御を行う。払出個数カウントスイッチ301の検出信号がオン状態にならないことの具体的な検出方法は既に説明したとおりである。
また、遊技制御用マイクロコンピュータ560と払出制御用マイクロコンピュータ370との間のシリアル通信エラーが検出された場合には、主制御通信エラーとして、エラー表示用LED374に「5」を表示する制御を行う。
また、下皿満タン状態すなわち満タンスイッチ48がオン状態になった場合には、満タンエラーとして、エラー表示用LED374に「6」を表示する制御を行う。補給球の不足状態すなわち球切れスイッチ187がオン状態になった場合には、球切れエラーとして、エラー表示用LED374に「7」を表示する制御を行う。
また、カードユニット50からのVL信号がオフ状態になった場合には、プリペイドカードユニット未接続エラーとして、エラー表示用LED374に「8」を表示する制御を行う。不正なタイミングでカードユニット50と通信がなされた場合には、プリペイドカードユニット通信エラーとして、エラー表示用LED374に「9」を表示する制御を行う。なお、プリペイドカードユニット通信エラーは、プリペイドカードユニット制御処理(ステップS758)において検出される。
以上のエラーのうち、払出スイッチ異常検知エラー2、払出ケースエラー、または主制御通信エラーが発生した後、エラー解除スイッチ375が操作されエラー解除スイッチ375から操作信号が出力されたら(オン状態になったら)、払出制御手段は、エラーが発生する前の状態に復帰する。
なお、払出制御用CPU371は、既に述べたように、具体的には、タイマ割込処理の表示制御処理(ステップS760参照)において、図94に示す関係に従ってエラー表示用LED374にエラー表示を行う。例えば、払出制御用CPU371は、後述するエラー処理においてプリペイドカードユニット未接続状態指定ビットをセットしたことにもとづいて(ステップS7729参照)、表示制御処理において、プリペイドカードユニット未接続エラーが発生している旨を示すエラー表示「8」をエラー表示用LED374に表示する制御を行う。また、例えば、エラー処理において満タンエラー指定ビットをセットしたことにもとづいて(ステップS7714参照)、表示制御処理において、満タンエラーが発生している旨を示すエラー表示「6」をエラー表示用LED374に表示する制御を行う。
図95および図96は、ステップS757のエラー処理を示すフローチャートである。エラー処理において、払出制御用CPU371は、まず、エラーフラグをロードし、エラーフラグの払出スイッチ異常検知エラー2指定ビット、払出ケースエラー指定ビット、主制御通信エラー指定ビット、および払出個数異常エラー指定ビット以外のエラービットをリセットする(ステップS7701)。次いで、払出制御用CPU371は、エラーフラグの値が0となっているか否かを確認する(ステップS7702)。エラーフラグの値が0となっていれば、ステップS7710に移行する。エラーフラグの値が0でなければ(すなわち、払出スイッチ異常検知エラー2指定ビット、払出ケースエラー指定ビット、主制御通信エラー指定ビット、または払出個数異常エラー指定ビットがセットされていれば)、払出制御用CPU371は、エラー解除スイッチ375から操作信号がオン状態になったか否か確認する(ステップS7703)。操作信号がオン状態になったら、エラー復帰時間をエラー復帰前タイマにセットする(ステップS7709)。エラー復帰時間は、エラー解除スイッチ375が操作されてから、実際にエラー状態から通常状態に復帰するまでの時間である。
エラー解除スイッチ375から操作信号がオン状態でない場合には、エラー復帰前タイマの値を確認する(ステップS7704)。エラー復帰前タイマの値が0であれば、すなわち、エラー復帰前タイマがセットされていなければ、ステップS7710に移行する。エラー復帰前タイマがセットされていれば、エラー復帰前タイマの値を−1し(ステップS7705)、エラー復帰前タイマの値が0になったら(ステップS7706)、エラーフラグのうちの、払出スイッチ異常検知エラー2指定ビット、払出ケースエラー指定ビット、および主制御通信エラー指定ビットをリセットする(ステップS7707)とともに、セットされていれば再払出待ちタイマをリセットする(ステップS7708)。そして、ステップS7710に移行する。また、エラー復帰前タイマがタイムアウトしていなければ、ステップS7713に移行する。
なお、ステップS7707の処理が実行されるときに、払出スイッチ異常検知エラー2指定ビット、払出ケースエラー指定ビット、および主制御通信エラー指定ビットのうちには、セット状態ではないエラービットがある場合もあるが、セット状態にないエラービットをリセットしても何ら問題はない。以上のように、この実施の形態では、払出スイッチ異常検知エラー2、払出ケースエラー、および主制御通信エラーのビットをセットする原因になったエラー(図94参照)が発生した場合には、エラー解除スイッチ375が押下されることによってエラー解除される。
ステップS7710では、払出制御用CPU371は、セットされていれば、再払出待ちタイマの値を1減算し、減算後の再払出待ちタイマがタイムアウトしているか否かを確認する(ステップS7711)。再払出待ちタイマがタイムアウトしていれば、払出制御用CPU371は、エラーフラグの払出ケースエラー指定ビットをリセットする(ステップS7712)。そして、ステップS7713に移行する。
以上のように、この実施の形態では、ステップS7707,S7712の処理が実行されることによって、払出ケースエラーが検出されて払出検出エラー指定ビットがセットされた場合には、エラー解除スイッチ375が押下されたこと(正確には、さらにエラー復帰前時間を経過したこと)を条件にエラー解除される場合と、払出ケースエラーの検出後に所定時間(本例では2分)を経過したことを条件にエラーが自動解除される場合とがある。なお、この実施の形態では、払出個数異常エラーに関しては、一度検出されると、遊技機への電源供給をリセットしないかぎり解除されない。
ステップS7707,S7712の処理が実行されて払出ケースエラー指定ビットがリセットされた場合には、払出制御コードが「2」(図91〜図93に示す払出通過待ち処理の実行に対応)であるときには、遊技球払出のリトライ動作が開始される。つまり、次にステップS755の払出制御処理が実行されるときにステップS7513の払出通過待ち処理が実行されると、再び、再払出処理が行われる。例えば、賞球払出処理が行われていた場合には、未払出個数カウンタの値が0でないときには、ステップS75305からステップS75309,S75310に移行し、ステップS75310において払出ケースエラー指定ビットがリセット状態であることが確認されるので、ステップS75314以降の再払出処理を開始するための処理が再度実行され、再払出処理が実行される。
以上のように、払出制御手段は、球払出装置97が遊技球の払い出しを行ったにもかかわらず払出個数カウントスイッチ301が1個も遊技球を検出しなかったときには遊技球を払い出すためのリトライ動作をあらかじめ決められた所定回(例えば2回)を限度として球払出装置97に実行させる補正払出制御を行った後、払出個数カウントスイッチ301が1個も遊技球を検出しなかったことが検出されたときには(図91〜図93のステップS75314以降を参照)、払い出しに関わる制御状態をエラー状態に移行させ、エラー状態においてエラー解除スイッチ375からエラー解除信号が出力されたこと、または払出ケースエラーを検出してから所定時間(本例では2分)を経過したことを条件に再度補正払出制御を行わせる補正払出制御再起動処理を実行する。
さらに、エラー状態における再払出処理の実行中(具体的には払出ケースエラーをセットする前の再払出処理中およびエラー解除スイッチ375押下後の再払出処理中)でも、図88に示すステップS7501,S7502,S7506処理は実行されている。すなわち、払い出しに関わるエラーが生じているときでも、遊技球が払出個数カウントスイッチ301を通過すれば、未払出個数カウンタの値が減算される。従って、エラー状態から復帰したときの未払出個数カウンタの値は、実際に払い出された遊技球数を反映した値になっている。すなわち、払い出しに関わるエラーが発生しても、実際に払い出した遊技球数を正確に管理することができる。
また、図91〜図93に示された払出通過待ち処理において、再払出処理が実行された結果、遊技球が払い出されたことが確認されたときでも、払出ケースエラーのビットはリセットされない。払出ケースエラーのビットがリセットされるのは、あくまでも、エラー解除スイッチ375が操作されたとき(具体的は、操作後エラー復帰時間が経過したとき)、または払出ケースエラーを検出してから所定時間(本例では2分)を経過したときである(ステップS7707,S7712)。すなわち、払出ケースエラーを検出してから所定時間(本例では2分)を経過するまでは、遊技球が払出個数カウントスイッチ301を通過したこと等にもとづいて自動的に払出ケースエラー(払出不足エラー)の状態が解除されるということはなく、人為的な操作を経ないと払出ケースエラーは解除されない。従って、遊技店員等は、確実に払出不足が発生したことを認識することができる。ただし、この実施の形態では、少なくとも、払出ケースエラーが発生してからある程度長い時間(本例では2分)が経過すれば払出ケースエラーを自動解除するように構成することによって、払出ケースエラーが必要以上に長時間継続することを防止している。
なお、エラー解除スイッチ375が操作されたことによってハードウェア的にリセット(払出制御用CPU371に対するリセット)がかかるように遊技機を構成する場合もあるが、そのように遊技機を構成した場合には、エラー解除スイッチ375が操作されたことによって例えば未払出個数カウンタの値もクリアされてしまう。しかし、この実施の形態では、払出制御手段が、エラー解除スイッチ375が操作されたことによって再払出動作を再び行うように構成されているので、確実に払出処理が実行され、遊技者に不利益を与えないようにすることができる。
ステップS7713では、払出制御用CPU371は、満タンスイッチ48の検出信号を確認する。満タンスイッチ48の検出信号が出力されていれば(オン状態であれば)、エラーフラグのうちの満タンエラー指定ビットをセットする(ステップS7714)。
また、払出制御用CPU371は、球切れスイッチ187の検出信号を確認する(ステップS7715)。球切れスイッチ187の検出信号が出力されていれば(オン状態であれば)、エラーフラグのうちの球切れエラー指定ビットをセットする(ステップS7716)。
さらに、払出制御用CPU371は、主基板31からの接続信号の状態を確認し(ステップS7717)、接続信号が出力されていなければ(オフ状態であれば)、主基板未接続エラー指定ビットをセットする(ステップS7718)。
また、払出制御用CPU371は、各スイッチの検出信号の状態が設定される各スイッチタイマのうち払出個数カウントスイッチ301に対応したスイッチタイマの値を確認し、その値がスイッチオン最大時間(例えば「250」)を越えていたら(ステップS7719)、エラーフラグのうち払出スイッチ異常検知エラー1のビットをセットする(ステップS7720)。なお、各スイッチタイマの値は、ステップS752の入力判定処理において、各スイッチの検出信号を入力する入力ポートの状態がスイッチオン状態であれば+1され、オフ状態であれば0クリアされる。従って、払出個数カウントスイッチ301に対応したスイッチタイマの値がスイッチオン最大時間を越えていたということは、スイッチオン最大時間を越えて払出個数カウントスイッチ301がオン状態になっていることを意味し、払出個数カウントスイッチ301の断線または払出個数カウントスイッチ301の部分で遊技球が詰まっていると判断される。
また、払出制御用CPU371は、払出個数カウントスイッチ301に対応したスイッチタイマの値がスイッチオン判定値(例えば「4」)になった場合には(ステップS7721)、払出制御状態フラグをロードし(ステップS7722)、賞球払出動作中または球貸し払出動作中であるか否かを確認する(ステップS7723)。具体的には、払出制御用CPU371は、払出制御状態フラグに賞球払出動作中指定ビットまたは球貸し払出動作中指定ビットがセットされているか否かを確認する。賞球払出動作中指定ビットおよび球貸し払出動作中指定ビットがともにリセット状態であれば、払出制御用CPU371は、払出動作中でないのに払出個数カウントスイッチ301を遊技球が通過したとして、エラーフラグのうち払出スイッチ異常検知エラー2のビットをセットする(ステップS7724)。
また、払出制御用CPU371は、払出個数異常カウンタの値が所定の払出個数異常エラー判定値(例えば2000)以上となっているか否かを確認する(ステップS7725)。所定の払出個数異常エラー判定値(例えば2000)以上となっていれば、払出制御用CPU371は、払出個数異常エラーが発生したと判断し、払出個数異常エラーフラグをセットする(ステップS7726)。
次いで、払出制御用CPU371は、カードユニット50のエラー状態を設定するためのプリペイドカードユニット用エラーフラグをリセットする(ステップS7727)。また、払出制御用CPU371は、カードユニット50からのVL信号の入力状態を確認し(ステップS7728)、VL信号が入力されていなければ(オフ状態であれば)、プリペイドカードユニット用エラーフラグのうちプリペイドカードユニット未接続エラー指定ビットをセットする(ステップS7729)。
なお、ステップS760の表示制御処理では、エラーフラグおよびプリペイドカードユニット用エラーフラグ中のエラービットに応じた表示(数値表示)による報知をエラー表示用LED374によって行う。従って、通信エラーをエラー表示用LED374によって報知することができる。また、通信エラーは、払出制御手段の側で検出されるので、遊技制御手段の負担を増すことなく通信エラーを検出できる。
また、この実施の形態では、主基板未接続エラーは接続信号がオン状態になると自動的に解消されるが(ステップS7701,S7717,S7718参照)、さらにエラー解除スイッチ375が操作されたという条件を加えて、エラー状態が解消されるようにしてもよい。
また、この実施の形態では、通信エラーが、カードユニット50との間の通信エラー(プリペイドカードユニット未接続エラーおよびプリペイドカードユニット通信エラー)やその他のエラーと区別可能に報知される(図94参照)。従って、遊技制御用マイクロコンピュータ560と払出制御用マイクロコンピュータ370との間の通信エラーが容易に特定される。
また、この実施の形態では、エラー処理において、まず、エラーフラグのうち、払出スイッチ異常検知エラー2指定ビット、払出ケースエラー指定ビット、主制御通信エラー指定ビット、および払出個数異常エラー指定ビット以外のビットを一旦リセット(ステップS7701参照)してから、エラー処理を実行するごとに満タンエラーや球切れエラー、主制御未接続エラーとなっているか否かを確認している。そして、払出スイッチ異常検知エラー2指定ビット、払出ケースエラー指定ビット、および主制御通信エラー指定ビットについては、エラー解除スイッチ375が操作されたことを条件にリセットしている。しかし、払出個数異常エラーについては、一度セットされれば解除されることはない。従って、この実施の形態では、払出個数異常エラーとなった場合には、電源リセットが行われたこと条件として払出個数異常エラーが解除されることになる。
図97および図98は、ステップS759の情報出力処理を示すフローチャートである。情報出力処理において、払出制御用CPU371は、まず、払出制御状態フラグをロードし(ステップS7901)、球貸し払出動作中であるか否かを確認する(ステップS7902)。具体的には、払出制御用CPU371は、払出制御状態フラグの球貸し払出動作中指定ビットがセットされているか否かを確認する。球貸し払出動作中であれば、ステップS7909に移行する。球貸し払出動作中でなければ、払出制御用CPU371は、払出個数カウントスイッチ301がオン状態であるか否かを確認する(ステップS7903)。払出個数カウントスイッチ301がオン状態であれば(この場合、賞球による払い出しを検出したことになる)、払出制御用CPU371は、賞球信号1出力回数カウンタの値を1加算する(ステップS7904)とともに、賞球払出個数カウンタの値を1加算する(ステップS7905)。なお、賞球信号1出力回数カウンタは、賞球信号1を出力する条件が成立した回数をカウントするためのカウンタである。また、賞球払出個数カウンタは、賞球払出により払い出された遊技球の数をカウントするためのカウンタである。
次いで、払出制御用CPU371は、加算後の賞球払出個数カウンタの値が所定の賞球情報出力判定値(本例では10)以上となっているか否かを確認する(ステップS7906)。所定の賞球情報出力判定値(本例では10)以上となっていれば、払出制御用CPU371は、賞球払出個数カウンタをリセットする(ステップS7907)とともに、賞球情報出力回数カウンタの値を1加算する(ステップS7908)。なお、賞球情報出力回数カウンタは、賞球情報を出力する条件が成立した回数をカウントするためのカウンタである。
次いで、払出制御用CPU371は、セットされていれば賞球情報出力タイマを1減算し(ステップS7909)、減算後の賞球情報出力タイマがタイムアウトしているか否かを確認する(ステップS7910)。なお、賞球情報出力タイマは、賞球情報の出力継続時間を計測するためのタイマである。タイムアウトしていなければ、ステップS7914に移行する。タイムアウトしていれば、払出制御用CPU371は、賞球情報出力回数カウンタの値が0となっているか否かを確認する(ステップS7911)。賞球情報出力回数カウンタの値が0であれば、ステップS7915に移行する。賞球情報出力回数カウンタの値が0でなければ(すなわち、賞球情報の出力条件の成立数がまだ残っていれば)、払出制御用CPU371は、賞球情報出力回数カウンタの値を1減算する(ステップS7912)。次いで、払出制御用CPU371は、次の賞球情報の出力を開始するために、賞球情報出力タイマをセットする(ステップS7913)。そして、払出制御用CPU371は、賞球情報を遊技制御用マイクロコンピュータ560に出力する制御を行う(ステップS7914)。具体的には、払出制御用CPU371は、出力ポート1の賞球情報出力ビット(ビット7。図75参照。)に出力データをセットする処理を行う。
次いで、払出制御用CPU371は、セットされていれば賞球信号1出力タイマを1減算し(ステップS7915)、減算後の賞球信号1出力タイマがタイムアウトしているか否かを確認する(ステップS7916)。なお、賞球信号1出力タイマは、賞球信号1の出力継続時間を計測するためのタイマである。タイムアウトしていなければ、ステップS7920に移行する。タイムアウトしていれば、払出制御用CPU371は、賞球信号1出力回数カウンタの値が0となっているか否かを確認する(ステップS7917)。賞球信号1出力回数カウンタの値が0であれば、ステップS7921に移行する。賞球信号1出力回数カウンタの値が0でなければ(すなわち、賞球信号1の出力条件の成立数がまだ残っていれば)、払出制御用CPU371は、賞球信号1出力回数カウンタの値を1減算する(ステップS7918)。次いで、払出制御用CPU371は、次の賞球信号1の出力を開始するために、賞球信号1出力タイマをセットする(ステップS7919)。そして、払出制御用CPU371は、賞球信号1を外部出力する制御を行う(ステップS7920)。具体的には、払出制御用CPU371は、出力ポート0の賞球信号1出力ビット(ビット0。図75参照。)に出力データをセットする処理を行う。なお、この実施の形態では、賞球信号1は、払出制御基板37から直接ターミナル基板160に入力されて外部出力されるのではなく、主基板31を一旦経由してからターミナル基板160に入力されて外部出力される。
次いで、払出制御用CPU371は、出力ポート0の遊技機エラー状態信号出力ビット(ビット1。図75参照。)に出力データをセットする処理を行い(ステップS7921)、エラーフラグをロードする(ステップS7922)。エラーフラグに球切れエラー指定ビットまたは満タンエラー指定ビットのいずれかがセットされていれば(ステップS7923,S7924のY)、出力ポート0の遊技機エラー状態信号出力ビットがセットされたままの状態で処理を終了する。この場合、ステップS7921で出力ポート0の遊技機エラー状態信号出力ビットがセットされたことにもとづいて、遊技機エラー状態信号が外部出力されることになる。なお、この実施の形態では、遊技機エラー状態信号は、払出制御基板37から直接ターミナル基板160に入力されて外部出力されるのではなく、主基板31を一旦経由してからターミナル基板160に入力されて外部出力される。一方、エラーフラグに球切れエラー指定ビットおよび満タンエラー指定ビットのいずれもセットされていなければ、払出制御用CPU371は、出力ポート0の遊技機エラー状態信号出力ビットをクリアし(ステップS7925)、処理を終了する。
以上の処理が実行されることによって、この実施の形態では、払出制御手段側で賞球払出を1球検出するごとに賞球信号1が外部出力される。また、払出制御手段側で賞球払出を10球検出するごとに遊技制御手段側に対して賞球情報が出力される。さらに、払出制御手段側で球切れエラーまたは満タンエラーを検出すると遊技機エラー状態信号が外部出力される。
次に、演出制御手段の動作を説明する。図99は、演出制御基板80に搭載されている演出制御手段としての演出制御用マイクロコンピュータ100(具体的には、演出制御用CPU101a)が実行するメイン処理を示すフローチャートである。演出制御用CPU101aは、電源が投入されると、メイン処理の実行を開始する。メイン処理では、まず、RAM領域のクリアや各種初期値の設定、また演出制御の起動間隔(例えば、4ms)を決めるためのタイマの初期設定等を行うための初期化処理を行う(ステップS781)。その後、演出制御用CPU101aは、タイマ割込フラグの監視(ステップS782)を行うループ処理に移行する。タイマ割込が発生すると、演出制御用CPU101aは、タイマ割込処理においてタイマ割込フラグをセットする。メイン処理において、タイマ割込フラグがセットされていたら、演出制御用CPU101aは、そのフラグをクリアし(ステップS783)、以下の演出制御処理を実行する。
演出制御処理において、演出制御用CPU101aは、まず、受信した演出制御コマンドを解析し、受信した演出制御コマンドに応じたフラグをセットする処理等を行う(コマンド解析処理:ステップS784)。
次いで、演出制御用CPU101aは、演出制御プロセス処理を行う(ステップS785)。演出制御プロセス処理では、制御状態に応じた各プロセスのうち、現在の制御状態(演出制御プロセスフラグ)に対応した処理を選択して演出表示装置9の表示制御を実行する。
次いで、大当り図柄決定用乱数などの乱数を生成するためのカウンタのカウント値を更新する乱数更新処理を実行する(ステップS786)。その後、ステップS782に移行する。
図100は、コマンド解析処理(ステップS784)の具体例を示すフローチャートである。主基板31から受信された演出制御コマンドは受信コマンドバッファに格納されるが、コマンド解析処理では、演出制御用CPU101aは、コマンド受信バッファに格納されているコマンドの内容を確認する。
なお、図100では、遊技制御用マイクロコンピュータ560から送信される演出制御コマンドのうち、特に、払出制御に関するエラーを示すコマンドを受信した場合の処理について示しているが、実際には、演出図柄の変動パターンを示す変動パターンコマンドや、大当りとするか否かの表示結果を示す表示結果指定コマンドなど、様々な演出制御コマンドが遊技制御用マイクロコンピュータ560から送信される。
コマンド解析処理において、演出制御用CPU101aは、まず、コマンド受信バッファに受信コマンドが格納されているか否か確認する(ステップS611)。格納されているか否かは、コマンド受信個数カウンタの値と読出ポインタとを比較することによって判定される。両者が一致している場合が、受信コマンドが格納されていない場合である。コマンド受信バッファに受信コマンドが格納されている場合には、演出制御用CPU101aは、コマンド受信バッファから受信コマンドを読み出す(ステップS612)。なお、読み出したら読出ポインタの値を+2しておく(ステップS613)。+2するのは2バイト(1コマンド)ずつ読み出すからである。
受信した演出制御コマンドが枠状態表示コマンドであれば(ステップS614)、演出制御用CPU101aは、枠状態表示コマンドの下位4ビットのうちの賞球エラービット(ビット0。図30参照。)がセットされているか否かを確認する(ステップS615)。セットされていれば、演出制御用CPU101aは、演出表示装置9の表示画面に所定の賞球エラー報知情報を重畳表示する制御を行う(ステップS616)。例えば、演出制御用CPU101aは、演出表示装置9の表示画面に「賞球エラーが発生しました」などの文字列を表示させる制御を行う。
また、演出制御用CPU101aは、枠状態表示コマンドの下位4ビットのうちの満タンエラービット(ビット1。図30参照。)がセットされているか否かを確認する(ステップS617)。セットされていれば、演出制御用CPU101aは、演出表示装置9の表示画面に所定の満タンエラー報知情報を重畳表示する制御を行う(ステップS618)。例えば、演出制御用CPU101aは、演出表示装置9の表示画面に「満タンエラーが発生しました」などの文字列を表示させる制御を行う。
また、演出制御用CPU101aは、枠状態表示コマンドの下位4ビットのうちの球切れエラービット(ビット2。図30参照。)がセットされているか否かを確認する(ステップS619)。セットされていれば、演出制御用CPU101aは、演出表示装置9の表示画面に所定の球切れエラー報知情報を重畳表示する制御を行う(ステップS620)。例えば、演出制御用CPU101aは、演出表示装置9の表示画面に「球切れエラーが発生しました」などの文字列を表示させる制御を行う。
また、演出制御用CPU101aは、枠状態表示コマンドの下位4ビットのうちの払出個数異常エラービット(ビット3。図30参照。)がセットされているか否かを確認する(ステップS621)。セットされていれば、演出制御用CPU101aは、演出表示装置9の表示画面に所定の払出個数異常エラー報知情報を重畳表示する制御を行う(ステップS622)。例えば、演出制御用CPU101aは、演出表示装置9の表示画面に「払出個数異常エラーが発生しました」などの文字列を表示させる制御を行う。
受信した演出制御コマンドが賞球不足エラーコマンドであれば(ステップS623)、演出制御用CPU101aは、演出表示装置9の表示画面に所定の賞球不足エラー報知情報を重畳表示する制御を行う(ステップS624)。例えば、演出制御用CPU101aは、演出表示装置9の表示画面に「賞球不足エラーが発生しました」などの文字列を表示させる制御を行う。
受信した演出制御コマンドが賞球過剰エラーコマンドであれば(ステップS625)、演出制御用CPU101aは、演出表示装置9の表示画面に所定の賞球過剰エラー報知情報を重畳表示する制御を行う(ステップS626)。例えば、演出制御用CPU101aは、演出表示装置9の表示画面に「賞球過剰エラーが発生しました」などの文字列を表示させる制御を行う。
なお、各エラー表示を単に重畳表示させるのではなく、不正の重要度の観点から順位付けを行って優先順位が高いエラーを優先して報知するようにしてもよい。例えば、払出個数異常エラーを最も高い優先順位で優先的に報知するようにしてもよく、エラー状態が変化した場合に新たに発生したエラーを優先して報知するようにしてもよい。
受信した演出制御コマンドがその他のコマンドであれば、演出制御用CPU101aは、受信した演出制御コマンドに応じたフラグをセットする(ステップS627)。そして、ステップS611に移行する。なお、例えば、変動パターンコマンドや表示結果指定コマンドを受信した場合には、演出制御用CPU101aは、受信した変動パターンコマンドや表示結果指定コマンドをRAMに形成された所定の格納領域に格納する処理も行う。
図101は、図99に示されたメイン処理における演出制御プロセス処理(ステップS785)を示すフローチャートである。演出制御プロセス処理では、演出制御用CPU101aは、演出制御プロセスフラグの値に応じてステップS800〜S806のうちのいずれかの処理を行う。各処理において、以下のような処理を実行する。なお、演出制御プロセス処理では、演出表示装置9の表示状態が制御され、演出図柄の可変表示が実現されるが、第1特別図柄の変動に同期した演出図柄の可変表示に関する制御も、第2特別図柄の変動に同期した演出図柄の可変表示に関する制御も、一つの演出制御プロセス処理において実行される。なお、第1特別図柄の変動に同期した演出図柄の可変表示と、第2特別図柄の変動に同期した演出図柄の可変表示とを、別の演出制御プロセス処理により実行するように構成してもよい。また、この場合、いずれの演出制御プロセス処理により演出図柄の変動表示が実行されているかによって、いずれの特別図柄の変動表示が実行されているかを判断するようにしてもよい。
変動パターンコマンド受信待ち処理(ステップS800):遊技制御用マイクロコンピュータ560から変動パターンコマンドを受信しているか否か確認する。具体的には、コマンド解析処理でセットされる変動パターンコマンド受信フラグがセットされているか否か確認する。変動パターンコマンドを受信していれば、演出制御プロセスフラグの値を演出図柄変動開始処理(ステップS801)に対応した値に変更する。
演出図柄変動開始処理(ステップS801):演出図柄の変動が開始されるように制御する。そして、演出制御プロセスフラグの値を演出図柄変動中処理(ステップS802)に対応した値に更新する。
演出図柄変動中処理(ステップS802):変動パターンを構成する各変動状態(変動速度)の切替タイミング等を制御するとともに、変動時間の終了を監視する。そして、変動時間が終了したら、演出制御プロセスフラグの値を演出図柄変動停止処理(ステップS803)に対応した値に更新する。
演出図柄変動停止処理(ステップS803):演出図柄の変動を停止し表示結果(停止図柄)を導出表示する制御を行う。そして、演出制御プロセスフラグの値を大当り表示処理(ステップS804)または変動パターンコマンド受信待ち処理(ステップS800)に対応した値に更新する。
大当り表示処理(ステップS804):大当りである場合には、変動時間の終了後、演出表示装置9に大当りの発生を報知するための画面を表示する制御を行う。そして、演出制御プロセスフラグの値を大当り遊技中処理(ステップS805)に対応した値に更新する。
大当り遊技中処理(ステップS805):大当り遊技中の制御を行う。例えば、大入賞口開放中指定コマンドや大入賞口開放後指定コマンドを受信したら、演出表示装置9におけるラウンド数の表示制御等を行う。そして、演出制御プロセスフラグの値を大当り終了演出処理(ステップS806)に対応した値に更新する。
大当り終了演出処理(ステップS806):演出表示装置9において、大当り遊技状態が終了したことを遊技者に報知する表示制御を行う。そして、演出制御プロセスフラグの値を変動パターンコマンド受信待ち処理(ステップS800)に対応した値に更新する。
以上に説明したように、この実施の形態によれば、遊技制御用マイクロコンピュータ560は、遊技機への電源投入時に初期化処理が実行されたこと、および所定のエラー(本例では、第1始動入賞口13a、第2始動入賞口13b、下部大入賞口23b、上部大入賞口24bへの異常入賞)が発生していると判定されたことを含む所定の信号出力条件が成立したことにもとづいて、遊技機の外部にセキュリティ信号を出力する。この場合、遊技制御用マイクロコンピュータ560は、初期化処理が実行されたときと所定のエラーが発生していると判定されたときとで、遊技機に設けられた共通の出力端子(ターミナル基板の共通のコネクタCN7)からセキュリティ信号を出力する。また、セキュリティ信号を出力しているときに新たに所定の信号出力条件が成立(本例では、新たに第1始動入賞口13a、第2始動入賞口13b、下部大入賞口23b、上部大入賞口24bへの異常入賞を検出)した場合には、セキュリティ信号を出力する出力時間を延長する。そのため、初期化処理が実行されたことにもとづいてセキュリティ信号を出力することによって、遊技機への電源投入時に行われる不正行為を防止することができる。また、初期化処理が実行されたときと所定のエラーが発生していると判定されたときとで共通の出力端子にセキュリティ信号を出力するので、外部出力用の信号線の無駄を低減することができる。従って、遊技機への電源投入時に行われる不正行為を防止しつつ、外部出力用の信号線の無駄を低減することができる。
また、特許文献1には、入賞スイッチに対して入力された不正信号(電波等)がセーフセンサを作動させないようにすることによって、不正行為を検知可能にすることが記載されている。具体的には、通過式のセーフセンサを用いることが記載されている。しかし、特許文献1には、強力な電波によって入賞スイッチとセーフセンサとが同時に作動することが示されているので、入賞スイッチの検出性能とセーフセンサの検出性能とは異なっているが、入賞スイッチとセーフセンサとして同タイプのものが用いられていることになる。特許文献1には、全ての入賞スイッチとセーフセンサとが同時動作した場合に、不正行為を受けたと判定することが示されているが、電波等による不正行為を受けた場合に、常に全ての入賞スイッチとセーフセンサとが同時動作するとは限らない。電波の強弱に応じて、全ての入賞スイッチとセーフセンサとが同時動作する場合があったり、そうでない場合があったりすることが想定される。すなわち、特許文献1に開示されている方式は、不正行為の検知として不十分である。
この実施の形態によれば、遊技制御用マイクロコンピュータ560は、第1始動口スイッチ14a(近接スイッチ)から入力した検出信号と第1入賞確認スイッチ14b(フォトセンサ)から入力した検出信号、第2始動口スイッチ15a(近接スイッチ)から入力した検出信号と第2入賞確認スイッチ15b(フォトセンサ)から入力した検出信号、下部カウントスイッチ23(近接スイッチ)から入力した検出信号と第3入賞確認スイッチ23a(フォトセンサ)から入力した検出信号、上部カウントスイッチ24(近接スイッチ)から入力した検出信号と第4入賞確認スイッチ24a(フォトセンサ)から入力した検出信号とにもとづいて、第1始動口スイッチ14a、第2始動口スイッチ15a、下部カウントスイッチ23、上部カウントスイッチ24にて検出された遊技球数と第1〜4入賞確認スイッチ14b,15b,23a,24aにて検出された遊技球数との差が所定の閾値を超えた(本例では、20以上となった)と判定すると、所定のエラーとして、第1始動入賞口13a、第2始動入賞口13b、下部大入賞口23b、上部大入賞口24bへの異常入賞が発生したと判定する。また、この実施の形態では、第1始動口スイッチ14aと第1入賞確認スイッチ14b、第2始動口スイッチ15aと第2入賞確認スイッチ15b、下部カウントスイッチ23と第3入賞確認スイッチ23a、上部カウントスイッチ24と第4入賞確認スイッチ24aとを互いに異なる検出方式のセンサ(本例では、近接スイッチとフォトセンサ)により構成している。そのため、遊技球を検出するスイッチに対する不正行為をより確実に検知して、確実な不正行為対策を講ずることができる。
また、この実施の形態によれば、遊技制御用マイクロコンピュータ560は、第1始動口スイッチ14aから検出信号を入力したことのみにもとづいて、特別図柄の変動表示を実行するとともに賞球払出処理を実行し、第1入賞確認スイッチ14bから入力した検出信号は、第1始動入賞口13aへの異常入賞が発生したか否かの判定のみに用いられる。また、第2始動口スイッチ15aから検出信号を入力したことのみにもとづいて、特別図柄の変動表示を実行するとともに賞球払出処理を実行し、第2入賞確認スイッチ15bから入力した検出信号は、第2始動入賞口13bへの異常入賞が発生したか否かの判定のみに用いられる。そのため、特別図柄の変動表示および賞球払出処理については、一方のスイッチにおける検出結果にもとづいて処理を行うので、不正行為対策の強化に伴う処理負担の増加を防止することができる。
また、特に第2始動入賞口13bへの異常入賞を第2始動口スイッチ15aと第2入賞確認スイッチ15bとにより検出できるようにすることで、例えば有利状態において電波などを用いて第2始動口スイッチ15aへの入賞数が実際の入賞数よりも多くなるように認識させ、これにより小当りを多発させて上部大入賞口扉24cを不正に開放させることを防止することができる。
また、この実施の形態によれば、遊技制御用マイクロコンピュータ560は、下部カウントスイッチ23から検出信号を入力したことのみにもとづいて、下部大入賞口扉23cの開閉を実行するとともに賞球払出処理を実行し、第3入賞確認スイッチ23aから入力した検出信号は、下部大入賞口23bへの異常入賞が発生したか否かの判定のみに用いられる。また、上部カウントスイッチ24から検出信号を入力したことのみにもとづいて、上部大入賞口扉24cの開閉を実行するとともに賞球払出処理を実行し、第4入賞確認スイッチ24aから入力した検出信号は、上部大入賞口24bへの異常入賞が発生したか否かの判定のみに用いられる。そのため、各大入賞口扉23c,24cの開閉および賞球払出処理については、一方のスイッチにおける検出結果にもとづいて処理を行うので、不正行為対策の強化に伴う処理負担の増加を防止することができる。
また、この実施の形態によれば、遊技制御用マイクロコンピュータ560は、第1始動口スイッチ14a、第2始動口スイッチ15a、下部カウントスイッチ23、上部カウントスイッチ24にて検出された遊技球数と第1〜4入賞確認スイッチ14b、15b、23a、24aにて検出された遊技球数との差が、所定の閾値として、第2入賞通路1307内が球詰まり状態となったときの第2始動口スイッチ15aにおける遊技球の検出数と第2入賞確認スイッチ15bにおける遊技球の検出数との差分(例えば、14個)よりも多い値(本例では20)を超えたか否かを判定する。そのため、第1始動口スイッチ14a、第2始動口スイッチ15a、下部カウントスイッチ23、上部カウントスイッチ24内が球詰まり状態となってしまった場合に、誤って第1始動口スイッチ14a、第2始動口スイッチ15a、下部カウントスイッチ23、上部カウントスイッチ24への異常入賞が発生したと判定することを防止することができる。従って、不正行為対策の強化に伴う誤判定を防止することができる。
また、この実施の形態によれば、遊技制御用マイクロコンピュータ560は、遊技機への電源投入時に初期化処理が実行されたときと所定のエラー(本例では、第1始動入賞口13a、第2始動入賞口13b、下部大入賞口23b、上部大入賞口24bへの異常入賞)が発生していると判定されたときとで、異なる時間にわたってセキュリティ信号を出力する。具体的には、この実施の形態では、遊技機への電源投入時に初期化処理が実行された場合には30秒間に亘ってセキュリティ信号が外部出力され、第1始動入賞口13a、第2始動入賞口13b、下部大入賞口23b、上部大入賞口24bへの異常入賞が検出された場合には4分間にわたってセキュリティ信号が外部出力される。そのため、セキュリティ信号の出力時間を判定することによって、ホールコンピュータなどの外部装置において、初期化処理が行われた場合であるか所定のエラーが発生している場合であるかを判別することが可能となる。
また、この実施の形態によれば、可変入賞装置400とは別個に遊技領域7に設けられ、該可変入賞装置400の開放状態よりも遊技球が通過しにくい入賞口29a〜29dにあっては、もともと遊技球が入賞しにくいばかりか、入賞口29a〜29dに入賞したことにもとづいて、遊技球が払い出されるものの特別図柄の変動表示が行われることや上部大入賞口扉24cが開放されることはなく、不正の対象になりにくい。よって、このような入賞口29a〜29dに進入した遊技球が通過する入賞通路1450,1451には、近接スイッチからなる入賞口スイッチ30a,30bのみを設け、該近接スイッチと検出方式が異なる第1〜4入賞確認スイッチのような入賞確認スイッチを設けないことで、パチンコ遊技機1の製造コストを低減できる。
また、この実施の形態によれば、遊技制御用マイクロコンピュータ560と払出制御用マイクロコンピュータ370とは、シリアル通信で制御コマンドを送受信する。また、遊技制御用マイクロコンピュータ560は、払出制御用マイクロコンピュータ370との通信接続状態を確認するための接続確認コマンドを、所定期間(本例では1秒)が経過する毎に払出制御用マイクロコンピュータ370に送信する。また、払出制御用マイクロコンピュータ370は、接続確認コマンドを受信したことにもとづいて接続OKコマンドを遊技制御用マイクロコンピュータ560に送信する。この場合、払出制御用マイクロコンピュータ370は、遊技制御用マイクロコンピュータ560が制御状態(本例では、賞球エラー、満タンエラー、球切れエラー、および払出個数異常エラー)を認識可能な態様で接続OKコマンドを遊技制御用マイクロコンピュータ560に送信する。そのような構成により、シリアル通信方式を用いることにより、遊技制御用マイクロコンピュータ560と払出制御用マイクロコンピュータ370との配線の取り回しの容易化を図ることができる。また、払出制御用マイクロコンピュータ370が接続確認コマンドの受信にもとづいて定期的に出力する接続OKコマンドに制御状態を乗せることにより、制御状態信号(制御状態が付加された応答信号)を送信することができる。そのため、制御状態信号の出力タイミングを考慮することなく制御状態信号の取りこぼし等の発生を防止することができ、遊技制御用マイクロコンピュータ560と払出制御用マイクロコンピュータ370との間の通信を確実に行うことができる。なお、この実施の形態では、接続確認コマンドを送信する周期(間隔)を1秒としていたが、0.5秒等としてもよい。
また、この実施の形態によれば、遊技制御用マイクロコンピュータ560は、払出制御の実行を終了したときに、賞球プロセスタイマに所定期間(本例では1秒)を再設定して賞球プロセスタイマによる計測制御を開始する(ステップS52505参照)。そして、遊技制御用マイクロコンピュータ560は、賞球個数が記憶されていなければ(具体的には、ステップS52301で賞球コマンド出力カウンタの中にカウント値が1以上のものがなければ)、再設定した賞球プロセスタイマがタイムアウトしたことにもとづいて、新たな接続確認コマンドを払出制御用マイクロコンピュータ370に送信する。そのため、払出制御の実行の終了後に新たな接続確認コマンドを送信するまでの間にインターバル期間を設けることができ、払出制御の実行の終了時における処理が集中して新たな接続確認コマンドの取りこぼし等が発生することを防止することができる。
また、この実施の形態によれば、遊技制御用マイクロコンピュータ560は、接続確認コマンドの送信タイミングにかかわらず、入賞を検出したことにもとづいて、賞球個数コマンドを払出制御用マイクロコンピュータ370に送信する。また、払出制御用マイクロコンピュータ370は、賞球個数コマンドを受信したことにもとづいて賞球個数受付コマンドを送信するとともに、払出制御の実行の実行中に賞球準備中コマンドを、所定の払出中信号出力期間(本例では1秒)毎に遊技制御用マイクロコンピュータ560に送信する。この場合、払出制御用マイクロコンピュータ370は、遊技制御用マイクロコンピュータ560が制御状態(本例では、賞球エラー、満タンエラー、球切れエラー、および払出個数異常エラー)を認識可能な態様で賞球準備中コマンドを遊技制御用マイクロコンピュータ560に送信する。また、遊技制御用マイクロコンピュータ560は、賞球個数受付コマンドを受信したことにもとづいて、接続確認コマンドの送信を停止する。そのため、払出制御の実行中は無駄に接続確認コマンドの送信制御を行わないようにすることによって、遊技制御用マイクロコンピュータ560の制御負担を軽減することができる。また、払出制御の実行中であっても、賞球準備中コマンドに制御状態を乗せることにより制御状態信号を出力することができるため、遊技制御用マイクロコンピュータ560側で制御状態を認識することができる。
また、この実施の形態によれば、遊技制御用マイクロコンピュータ560は、賞球終了コマンドを受信した後、賞球個数が記憶されていれば(具体的には、ステップS52301で賞球コマンド出力カウンタの中にカウント値が1以上のものがあれば)、接続確認コマンドの送信にかかわらず、直ちに新たな賞球個数コマンドを払出制御用マイクロコンピュータ370に送信する。そのため、払出制御の実行処理の迅速化を図ることができる。
また、この実施の形態によれば、遊技制御用マイクロコンピュータ560は、受信した接続OKコマンドで示される制御状態にもとづいて、所定のエラー(本例では、賞球エラー、満タンエラー、球切れエラー、および払出個数異常エラー)が発生しているか否かを判定する。そして、遊技制御用マイクロコンピュータ560は、所定のエラーが発生していないと判定したことを条件として、賞球個数コマンドを払出制御用マイクロコンピュータ370に送信する。そのため、エラー状態となっていて正常に払出制御を行えない場合に賞球個数コマンドを送信してしまう不都合を防止することができる。特に、この実施の形態では、払出制御用マイクロコンピュータ370が備えるRAMはバックアップ電源によりバックアップされていないので、払出制御に異常が生じているときに賞球個数コマンドを送信してしまうと、電源リセットなどにより賞球個数の記憶が消滅し、遊技者に大きな不利益を与えてしまう可能性がある。そこで、この実施の形態では、払出制御に異常が生じている場合には、バックアップ電源でバックアップされている遊技制御用マイクロコンピュータ560側で賞球個数の記憶を保持したまま賞球個数コマンドの送信を保留するように制御することによって、そのような不利益が生じることを防止することができる。
また、この実施の形態によれば、遊技制御用マイクロコンピュータ560は、接続確認コマンドを送信した後、接続OKコマンドを受信できなかった場合には、接続確認コマンドを送信する時間間隔を長くし、特定期間(本例では10秒)が経過する毎に接続確認コマンドを送信する制御に切り替える。そのため、遊技制御用マイクロコンピュータ560と払出制御用マイクロコンピュータ370との間の通信状態が不安定な状態では、接続確認コマンドを送信するまでのインターバル期間を長くすることによって、接続確認コマンドの送信処理を無駄に実行する頻度を低減し、無駄な処理負担を軽減することができる。
また、この実施の形態によれば、払出制御用マイクロコンピュータ370は、所定のエラー(本例では、賞球エラー、満タンエラー、球切れエラー、および払出個数異常エラー)が発生したときに、遊技制御用マイクロコンピュータ560が所定のエラーを認識可能な情報を、接続OKコマンドの特定ビットを異ならせることにより設定し、当該設定がなされた接続OKコマンドを遊技制御用マイクロコンピュータ560に送信する。また、遊技制御用マイクロコンピュータ560は、受信した接続OKコマンドに設定された所定のエラーを認識可能な情報をそのまま設定した枠状態表示コマンドを演出制御用マイクロコンピュータ100に送信する。そして、演出制御用マイクロコンピュータ100は、枠状態表示コマンドを受信したことにもとづいて、演出装置(本例では、演出表示装置9)を制御して所定のエラーが発生したことを報知する制御を行う。そのため、演出装置を用いて所定のエラーが発生したことを報知することができるとともに、遊技制御用マイクロコンピュータ560の処理負担を軽減することができる。
また、この実施の形態によれば、払出制御用マイクロコンピュータ370は、賞球や貸し球の払い出すべき数の未払出の遊技球を超えた払出過多数と払い出すべき数の未払出の遊技球に満たなかった払出不足数とを払出個数異常カウンタを用いて累積的にカウントする。そして、払出個数異常カウンタの値が所定の払出個数異常エラー判定値(本例では2000)以上となると、払出制御の実行を停止させて払出停止状態に制御する。そのため、各々の払出制御について判断するのではなく、累積的にカウントアップされた払出個数異常カウンタの値にもとづいて異常な状況下で実行された払出制御を総合的に判断して払出制御の実行を停止させることができる。従って、不正に遊技球を払い出させる行為をより的確に防止することを可能とすることができる。
また、この実施の形態によれば、払出制御用マイクロコンピュータ370は、所定基準数(本例では2)以上の払出不足数が発生したときに払出個数異常カウンタの値をカウントアップする。そのため、必要以上に払出制御の実行を停止させてしまう不都合を防止することができる。すなわち、遊技機の稼働状態ではごく少数(本例では1個)の払出不足数が生じることが少なからずあるのであるから、所定基準数(本例では2)以上の払出不足数が発生したことを条件としてカウントアップを行うことによって、必要以上に払出制御の実行を停止させてしまうことを防止している。
また、この実施の形態によれば、払出制御用マイクロコンピュータ370は、払出不足数が発生したときに球払出装置97を駆動制御して遊技球を1つだけ払い出させる再払出制御を実行する。そして、再払出制御を実行しても遊技球の払い出しを検出しなかった場合には払出個数異常カウンタの値をカウントアップする。そのため、払出不足数が少ない場合でも適切に払出個数異常カウンタのカウント値に反映させて払出制御の実行の停止を行うことができ、不正に遊技球を払い出させる行為を防止する不正対策をより強化することができる。
また、この実施の形態によれば、払出個数異常エラーが検出されて払出停止状態に制御されたときに、遊技機の電源リセットが行われたことを条件として払出停止状態を解除する。そのため、払出停止状態を解除するためには遊技店員が異常状態を確認した上で解除操作を行わなければならないので、不正に払出停止状態を解除されて異常な状態のまま遊技を継続されてしまうことを防止することができる。
また、この実施の形態によれば、遊技制御用マイクロコンピュータ560が備えるRAM55は、遊技機への電力供給が停止してもバックアップ電源により記憶内容を所定期間保持可能である。また、遊技制御用マイクロコンピュータ560は、払出停止状態に制御されているときには、入賞が生じても賞球個数コマンドの送信を禁止する。そのため、不正行為によらない遊技機側に起因する異常により払出停止状態となったにもかかわらずRAM55記憶された賞球個数(具体的には、賞球コマンド出力カウンタの値)がクリアされてしまう事態を防止することができ、遊技者に対して不利益が生じることを防止することができる。
また、この実施の形態によれば、遊技制御用マイクロコンピュータ560は、賞球個数コマンドを送信するタイミングで賞球個数カウンタに賞球個数を加算し、賞球情報を受信したことにもとづいて賞球個数カウンタの値を10減算する。そして、賞球個数カウンタの値が所定の賞球不足判定値(本例では501)以上となったことにもとづいて賞球不足エラーと判定し、賞球個数カウンタの値が所定の賞球過剰判定値(本例では0)未満となったことにもとづいて賞球過剰エラーと判定する。そのため、遊技制御用マイクロコンピュータ560と払出制御用マイクロコンピュータ370との双方で異常状態を検出することができる。従って、不正に遊技球を払い出させる行為を防止する不正対策をより強固なものとすることができる。
また、この実施の形態によれば、遊技制御用マイクロコンピュータ560は、払出制御用マイクロコンピュータ370との通信の接続状態を示す接続信号を出力ポート57を介して払出制御用マイクロコンピュータ370に送信するように構成されているので、払出制御用マイクロコンピュータ370側でどのタイミングにおいても通信の接続状態を確認することができるため、通信の接続状態が異常状態であるときに賞球の払い出しが行われることを確実に防止することができる。
なお、上記の実施の形態では、遊技制御用マイクロコンピュータ560が、通常時は接続OKコマンドの受信後1秒経過後に接続確認コマンドを送信し、通信エラーが発生しているときは(例えば、接続OKコマンドを受信できないときには)、接続確認コマンドの送信後10秒経過後に接続確認コマンドを送信するように構成し、1秒や10秒の期間をタイマ(ソフトウェアで構成されたカウンタ)で計測するように構成していたが、内部クロックによってハードウェアとして更新されるカウンタが所定値になったとき(1秒や10秒)発生する内部割込で接続確認コマンドを送信するようにしてもよい。その場合、接続OKコマンドの受信によってカウンタをクリアするようにするか、所定値となって内部割込を発生させたらカウンタがクリアされるものであればよい。
次に、遊技機が搭載するターミナル基板160の物理構成の変形例について説明する。図102および図103は、ターミナル基板160の物理構成の変形例を示す説明図である。遊技機には、例えば、主基板31や演出制御基板80、払出制御基板37などの各基板を覆って保護するためのカバー部材800が設けられているのであるが、図102および図103に示すように、このようなカバー部材800にターミナル基板160を埋め込む形式で構成してもよい。また、カバー部材800のターミナル基板160が取り付けられている部分には、ターミナル基板160を覆って保護するためのターミナル基板用カバー801が取り付けられる。ここで、図102は、カバー部材800にターミナル基板用カバー801が取り付けられている状態を示しており、図103は、カバー部材800からターミナル基板用カバー801が取り外された状態を示している。図103に示すように、ターミナル基板用カバー801の上部には、取り付け用の爪部801aが2つ設けられており、爪部801aを嵌め込み、ビス801bを用いてビス止めすることによって、ターミナル基板用カバー801を取り付けることができる。
また、図102および図103に示すように、ターミナル基板160上には、ホールコンピュータなど外部装置との間のケーブルを接続するための複数の端子96a,96b,98a,98b・・・が設けられた端子盤900が設けられている。また、端子盤900は、端子96a,96b・・・を含む端子列と、端子98a,98b・・・を含む端子列との上下2段構成となっており、横方向に並ぶ2つの端子によって1セット(信号線とグランド線とのセット)となっている。例えば、図102および図103に示す例では、上段側の端子列において各端子のうち横方向に並ぶ端子96aと端子96bとで1セットであり、下段側の端子列において各端子のうち横方向に並ぶ端子98aと端子98bとで1セットである。また、端子盤900に設けられている各端子96a,96b,98a,98b・・・には、それぞれ摘み部95a,95b,99a,99b・・・が設けられており、摘み部95a,95b,99a,99b・・・を押すなどの操作を行うことにより端子96a,96b,98a,98b・・・が開放されてケーブルを接続可能となる。例えば、上段側の摘み部95aを押すと端子96aにケーブルを接続可能となり、下段側の摘み部99aを押すと端子98aにケーブルを接続可能となる。また、例えば、上段側の摘み部95bを押すと端子96bにケーブルを接続可能となり、下段側の摘み部99bを押すと端子98bにケーブルを接続可能となる。
また、図102および図103に示すように、端子96a,96b,98a,98b・・・ごとに設けられた摘み部95a,95b,99a,99b・・・は、相互に互い違いになるように配置されている。そのように構成することによって、誤って隣の端子用の摘み部を操作してしまうなどの不都合を防止することができ、端子盤900にケーブルを接続する作業を行う際における作業性を向上させることができる。
図104は、カバー部材800のターミナル基板160が取り付けられている部位の断面構造を示す説明図である。図104に示すように、ターミナル基板160は、そのターミナル基板160に設けられている端子盤900が、カバー部材800の表面(図104に示すX面)よりも内側に位置するように、十分にカバー部材800内の奥側に取り付けられる。そのように、ターミナル基板160に設けられている端子盤900が、カバー部材800の表面(図104に示すX面)よりも内側になるように構成されているので、遊技中に誤って遊技球が端子盤900に接触してしまうなどの不都合が生じる事態を防止することができる。
また、図104に示すように、ターミナル基板用カバー801は、その側壁部801cが徐々に狭まっていくように傾きがつけられている。そのように側壁部801cに傾きがつけられていることによって、ターミナル基板用カバー801が取り付けられている状態であっても指などが入りやすく、端子盤900にケーブルを接続する作業を行う際における作業性を向上させることができる。