JP5893076B2 - 遊技機 - Google Patents

遊技機 Download PDF

Info

Publication number
JP5893076B2
JP5893076B2 JP2014103229A JP2014103229A JP5893076B2 JP 5893076 B2 JP5893076 B2 JP 5893076B2 JP 2014103229 A JP2014103229 A JP 2014103229A JP 2014103229 A JP2014103229 A JP 2014103229A JP 5893076 B2 JP5893076 B2 JP 5893076B2
Authority
JP
Japan
Prior art keywords
winning
game
ball
signal
bit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014103229A
Other languages
English (en)
Other versions
JP2014223314A (ja
Inventor
小倉 敏男
敏男 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sankyo Co Ltd
Original Assignee
Sankyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Co Ltd filed Critical Sankyo Co Ltd
Priority to JP2014103229A priority Critical patent/JP5893076B2/ja
Publication of JP2014223314A publication Critical patent/JP2014223314A/ja
Application granted granted Critical
Publication of JP5893076B2 publication Critical patent/JP5893076B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pinball Game Machines (AREA)

Description

本発明は、遊技を行うことが可能な遊技機に関する。
遊技機として、遊技球などの遊技媒体を用いて遊技を行うものがある。
また、不正行為を防止するために、複数のスイッチによる検出数を比較して、それらが一致しない場合に、異常が発生したと判定する遊技機がある(例えば、特許文献1参照)。
特開2000−237436号公報
本発明は、遊技媒体詰まりにより異常と誤判定されてしまうことを防止できる遊技機を提供することを目的とする。
前記課題を解決するために、本発明の請求項1に記載の遊技機は、
遊技媒体を用いて遊技を行うことが可能な遊技機であって、
遊技媒体が流下する流下経路と、
前記流下経路を流下する遊技媒体が通過したことを検出する第1検出手段と、
前記流下経路を流下する遊技媒体が通過したことを前記第1検出手段よりも下流側で検出する第2検出手段と、
前記第1検出手段と前記第2検出手段との検出結果に基づいて異常を判定する異常判定手段と、
前記異常判定手段により異常と判定されたことに基づいて遊技機外部に異常が発生した旨を報知するためのエラー状態に所定期間移行させる移行手段と、
を備え、
前記異常判定手段は、
前記第1検出手段と前記第2検出手段との検出結果に基づいて、前記第1検出手段にて検出された遊技媒体数と前記第2検出手段にて検出された遊技媒体数との差が所定の閾値を超えたときに異常が生じたと判定し、
前記所定の閾値を、前記流下経路において前記第1検出手段と前記第2検出手段との間に複数の遊技媒体が滞留した状態となったときの前記第1検出手段にて検出された遊技媒体数と前記第2検出手段にて検出された遊技媒体数との差よりも多い値とし、
前記第1検出手段と前記第2検出手段とは遊技媒体の通過の検出方法が異なり、
前記移行手段がエラー状態に移行させている期間においても前記流下経路を遊技媒体が流下し得るとともに、当該期間においても前記異常判定手段は、前記第1検出手段と前記第2検出手段との検出結果に基づいて異常を判定するものであり、
前記移行手段は、前記移行手段がエラー状態に移行させている期間において前記異常判定手段により異常と判定されたことに基づいて、エラー状態に再度所定期間移行させるものである
ことを特徴としている。
本発明の手段1に記載の遊技機は、
遊技媒体(遊技球)が入賞可能な複数の入賞口(第1始動入賞口13a、第2始動入賞口13b、大入賞口23b)を備え、該複数のうちいずれかの入賞口に遊技媒体が入賞したことにもとづいて景品として景品遊技媒体(賞球)を払い出す遊技機(パチンコ遊技機1)であって、
前記複数の入賞口にはそれぞれ、
遊技媒体を検出し、第1の検出信号を出力する第1検出手段(第1始動口スイッチ14a、第2始動口スイッチ15a、カウントスイッチ23)と、
遊技媒体を検出し、第2の検出信号を出力する第2検出手段(第1入賞確認スイッチ14b、第2入賞確認スイッチ15b、第3入賞確認スイッチ23a)と、が設けられ、
前記第1検出手段から出力された前記第1の検出信号と前記第2検出手段から出力された前記第2の検出信号とにもとづいて前記入賞口への入賞異常を判定する異常判定手段(遊技制御用マイクロコンピュータ560において、スイッチ処理におけるステップS113を実行する部分)と、
前記異常判定手段により入賞異常と判定されたことにもとづいて所定のエラー状態に移行させる移行手段(遊技制御用マイクロコンピュータ560において、スイッチ処理におけるステップS135を実行する部分)と、を備え、
前記第1検出手段と前記第2検出手段とは互いに異なる検出方式のセンサにより構成されるとともに(例えば、第1検出手段の遊技媒体の検出方式を電磁式にし、第2検出手段の遊技媒体の検出方式を光学式にする)、
前記異常判定手段は、前記第1検出手段から出力された前記第1の検出信号と前記第2検出手段から出力された前記第2の検出信号とにもとづいて、前記第1検出手段にて検出された遊技媒体数と前記第2検出手段にて検出された遊技媒体数との差が所定の閾値(例えば15)を超えたときに前記入賞口への入賞異常が生じたと判定し(例えば、遊技制御用マイクロコンピュータ560は、ステップS134でYと判定し、第1始動入賞口13a、第2始動入賞口13b、大入賞口23bのいずれかへの異常入賞が発生したと判定する)、
前記所定の閾値を、前記複数の入賞口のうち前記第1検出手段から前記第2検出手段までの遊技媒体の流下距離が最も長い入賞口(第1入賞通路1360a,1360b)における前記第1検出手段と前記第2検出手段との間に複数の遊技媒体が滞留した状態となったときの前記第1検出手段における遊技媒体の検出数と前記第2検出手段における遊技媒体の検出数との差分(例えば9個)よりも多い値(例えば15)とした、
ことを特徴としている。
この特徴によれば、遊技媒体を検出する検出手段に対する不正行為をより確実に検知して、確実な不正行為対策を講ずることができるばかりか、複数の入賞口内における遊技媒体詰まりによる誤判定を防止できる。
本発明の手段2に記載の遊技機は、手段1に記載の遊技機であって、
前記第2検出手段(第1入賞確認スイッチ14b、第2入賞確認スイッチ15b、第3入賞確認スイッチ23a)の下方位置に配置され、該第2検出手段を通過した遊技媒体(遊技球)を回収する回収路面(底面1501)と、
前記第2検出手段と前記回収路面との間に、該第2検出手段を通過した遊技媒体に当接して該遊技媒体の流下方向を変更可能に設けられる方向変更部(放出方向変更面1453a,1455a)と、を備える、
ことを特徴としている。
この特徴によれば、第2検出手段を通過した遊技媒体の流下方向が方向変更部により変更されることで、回収路面に落下して跳ね上がった遊技媒体が再度第2検出手段にて検出されることが防止される。
本発明の手段3に記載の遊技機は、手段1または2に記載の遊技機であって、
前記複数の入賞口(第1始動入賞口13a、第2始動入賞口13b、大入賞口23b)とは別個に設けられた普通入賞口(入賞口29a〜29d)と、
前記普通入賞口に入賞した遊技媒体を検出する普通入賞検出手段(入賞口スイッチ30a,30b)と、
前記普通入賞検出手段により遊技媒体が検出されたことにもとづいて、景品として景品遊技媒体を払い出す制御を行う払出制御実行手段(例えば、遊技制御用マイクロコンピュータ560におけるステップS32を実行する部分)と、を備える、
ことを特徴としている。
この特徴によれば、不正の対象になりにくい普通入賞口にはエラーを判定するための検出手段を設けないので、遊技機の製造コストを低減できる。
本発明の手段4に記載の遊技機は、手段1〜3のいずれかに記載の遊技機であって、
前記複数の入賞口のうち大入賞口(23b)を構成する大入賞装置(特別可変入賞球装置20)を備え、
前記大入賞装置は、
所定条件が成立したこと(大当り遊技状態に制御されたこと)にもとづいて、前記大入賞口に遊技媒体が入賞可能な開放状態と入賞不可能な閉鎖状態とに可動する可動部材(開閉板1406)と、
前記可動部材を駆動させる電磁式駆動手段(ソレノイド21)と、を備え、
前記大入賞口に入賞した遊技媒体(遊技球)を検出する前記第1検出手段(カウントスイッチ23)の検出方式は電磁式(近接スイッチ)であり、
前記可動部材の両側に、前記第1検出手段と前記電磁式駆動手段とを離間して配置した(図30(b)参照)、
ことを特徴としている。
この特徴によれば、電磁式駆動手段の電磁波による電磁式の検出手段の誤検出を防止することができるとともに、電磁式の検出手段及び電磁式駆動手段双方を効率よく配置することができる。
本発明の手段5に記載の遊技機は、手段1〜4のいずれかに記載の遊技機であって、
前記複数の入賞口のうち大入賞口(23b)を構成する大入賞装置(特別可変入賞球装置20)を備え、
前記大入賞装置は、
所定条件が成立したこと(大当り遊技状態に制御されたこと)にもとづいて、前記大入賞口に遊技媒体が入賞可能な開放状態と入賞不可能な閉鎖状態とに可動する可動部材(開閉板1406)と、
前記可動部材を駆動させる駆動手段(ソレノイド21)と、
所定の回動軸(1427)を中心として上下動可能に設けられ、前記駆動手段の駆動に応じて上下動することにより前記可動部材を前記開放状態と前記閉鎖状態とに可動させるリンク部材(伝達部材1422)と、
前記リンク部材を上下動可能に支持するとともに、遊技盤に形成された取付用開口に嵌合可能に形成された支持部材(大入賞通路壁部1402)と、を備え、
前記リンク部材は、前記遊技盤の厚み幅方向の寸法が該遊技盤の厚み幅寸法よりも短く形成され(図33(c)参照)、
前記支持部材には、前記閉鎖位置または前記開放位置において前記リンク部材の少なくとも一部を収容可能な開口部(1428)が形成されている(図33(c)参照)、
ことを特徴としている。
この特徴によれば、大入賞装置が大型化することを回避できるとともに、開口部は支持部材を取付用開口に嵌合することで閉鎖されるため、開口部から不正部材等を進入して可動部材を不正に開放状態とするといった不正行為を防止できる。
パチンコ遊技機を正面からみた正面図である。 遊技機を示す背面図である。 (a)は第1始動入賞口、(b)は第2始動入賞口、(c)は大入賞口内の断面構造の具体例を示す説明図である。 遊技球を検出可能な検出手段の方式を説明するための回路図である。 遊技制御基板(主基板)の構成例を示すブロック図である。 払出制御基板の回路構成例を示すブロック図である。 中継基板、演出制御基板、ランプドライバ基板および音声出力基板の回路構成例を示すブロック図である。 主基板における回路構成および主基板から演出制御基板に送信される演出制御コマンドの信号線を示すブロック図である。 シリアル通信回路の送信部の構成例を示すブロック図である。 シリアル通信回路の受信部の構成例を示すブロック図である。 シリアル通信回路が各制御基板に搭載されるマイクロコンピュータと送受信するデータのデータフォーマットの例を示す説明図である。 ボーレートレジスタの例を示す説明図である。 制御レジスタAおよび通信フォーマット設定データの例を示す説明図である。 制御レジスタBおよび割り込み要求設定データの例を示す説明図である。 ステータスレジスタAおよびステータス確認データの例を示す図である。 ステータスレジスタBおよびステータス確認データの例を示す図である。 制御レジスタCおよびエラー割り込み要求設定データの例を示す説明図である。 シリアル通信回路が備えるデータレジスタの例を示す説明図である。 大当り判定テーブルメモリの例を示す説明図である。 遊技制御手段における出力ポートのビット割り当て例を示す説明図である。 遊技制御手段における入力ポートのビット割り当て例を示す説明図である。 ターミナル基板の内部構成を示す回路図である。 パチンコ遊技機を開放した状態を示す斜視図である。 遊技盤を示す背面図である。 (a)は始動入賞ユニットを示す正面図であり、(b)は(a)の背面図である。 (a)は始動入賞ユニットを示す平面図であり、(b)は(a)の側面図である。 可変入賞球装置の構造を示す分解斜視図である。 (a)は可変入賞球装置の開放状態を示す縦断面図であり、(b)は(a)のA−A断面図である。 (a)は可変入賞球装置の閉鎖状態を示す縦断面図であり、(b)は(a)のA’−A’断面図である。 (a)は特別可変入賞球装置を示す正面図であり、(b)は(a)の背面図である。 (a)は特別可変入賞球装置を示す平面図であり、(b)は(a)の側面図である。 (a)は図30(a)のB−B断面図であり、(b)は図30(a)のC−C断面図であり、(c)は図30(a)のD−D断面図である。 (a)は特別可変入賞球装置の構造を示す分解斜視図である。 遊技盤の背面を示す要部拡大図である。 図34のE−E断面図である。 図34のF−F断面図である。 図34のG−G断面図である。 変動表示制御ユニットを示す正面図である。 (a)は変動表示制御ユニットに設けられた役物が上昇動作した状態を示す図であり、(b)は役物が解放動作した状態を示す図である。 遊技制御用マイクロコンピュータが実行するメイン処理を示すフローチャートである。 4msタイマ割込処理を示すフローチャートである。 遊技制御手段から払出制御手段に対して出力される制御信号の内容の一例を示す説明図である。 遊技制御手段と払出制御手段との間で送受信される制御コマンドの内容の一例を示す説明図である。 接続OKコマンドおよび賞球準備中コマンドに設定されるエラー情報の例を示す説明図である。 制御信号および制御コマンドの送受信に用いられる信号線等を示すブロック図である。 通常動作時における遊技制御用マイクロコンピュータと払出制御用マイクロコンピュータとの信号の送受信を示すシーケンス図である。 賞球動作時における遊技制御用マイクロコンピュータと払出制御用マイクロコンピュータとの信号の送受信を示すシーケンス図である。 賞球動作時における遊技制御用マイクロコンピュータと払出制御用マイクロコンピュータとの信号の送受信を示すシーケンス図である。 直ちに賞球動作を実行できない場合における遊技制御用マイクロコンピュータと払出制御用マイクロコンピュータとの信号の送受信を示すシーケンス図である。 通常動作時における遊技制御用マイクロコンピュータと払出制御用マイクロコンピュータとの信号の送受信を示すタイミング図である。 賞球中にエラーが発生した場合における遊技制御用マイクロコンピュータと払出制御用マイクロコンピュータとの信号の送受信を示すタイミング図である。 接続確認中の通信エラー時における遊技制御用マイクロコンピュータと払出制御用マイクロコンピュータとの信号の送受信を示すタイミング図である。 賞球個数通知中の通信エラー時における遊技制御用マイクロコンピュータと払出制御用マイクロコンピュータとの信号の送受信を示すタイミング図である。 賞球処理の一例を示すフローチャートである。 賞球個数テーブルの例を示す説明図である。 賞球コマンド出力カウンタ加算処理を示すフローチャートである。 賞球制御処理を示すフローチャートである。 賞球送信処理1を示すフローチャートである。 賞球接続確認処理を示すフローチャートである。 賞球送信処理2を示すフローチャートである。 賞球受領確認処理を示すフローチャートである。 賞球終了確認処理を示すフローチャートである。 賞球カウンタ減算処理を示すフローチャートである。 枠状態出力処理の一例を示すフローチャートである。 特別図柄プロセス処理の一例を示すフローチャートである。 始動口スイッチ通過処理を示すフローチャートである。 特別図柄通常処理の一例を示すフローチャートである。 スイッチ処理で使用されるRAMに形成される各2バイトのバッファを示す説明図である。 スイッチ処理の処理例を示すフローチャートである。 スイッチ正常/異常チェック処理を示すフローチャートである。 スイッチ正常/異常チェック処理を説明するための説明図である。 スイッチ正常/異常チェック処理を説明するための説明図である。 始動入賞口内で遊技球が球詰まり状態を起こした場合を示す説明図である。 ターミナル基板に出力される各種信号を示すブロック図である。 情報出力処理を示すフローチャートである。 情報出力処理を示すフローチャートである。 情報出力処理を示すフローチャートである。 情報出力処理を示すフローチャートである。 セキュリティ信号の出力タイミングを示す説明図である。 払出制御手段における出力ポートのビット割り当て例を示す説明図である。 払出制御手段における入力ポートのビット割り当て例を示す説明図である。 払出制御用CPUが実行するメイン処理を示すフローチャートである。 払出制御用CPUが実行するタイマ割込処理を示すフローチャートである。 主制御通信処理を示すフローチャートである。 主制御コマンド受信処理を示すフローチャートである。 主制御接続確認処理を示すフローチャートである。 主制御通信通常処理を示すフローチャートである。 主制御通信通常処理を示すフローチャートである。 主制御通信中処理を示すフローチャートである。 主制御通信中処理を示すフローチャートである。 主制御通信終了処理を示すフローチャートである。 主制御送信コマンド変換処理を示すフローチャートである。 払出制御処理を示すフローチャートである。 払出開始待ち処理を示すフローチャートである。 払出モータ停止待ち処理を示すフローチャートである。 払出通過待ち処理を示すフローチャートである。 払出通過待ち処理を示すフローチャートである。 払出通過待ち処理を示すフローチャートである。 エラーの種類とエラー表示用LEDの表示との関係等の一例を示す説明図である。 エラー処理を示すフローチャートである。 エラー処理を示すフローチャートである。 情報出力処理を示すフローチャートである。 情報出力処理を示すフローチャートである。 演出制御用CPUが実行するメイン処理を示すフローチャートである。 コマンド解析処理の具体例を示すフローチャートである。 演出制御プロセス処理を示すフローチャートである。 ターミナル基板の物理構成の変形例を示す説明図である。 ターミナル基板の物理構成の変形例を示す説明図である。 カバー部材のターミナル基板が取り付けられている部位の断面構造を示す説明図である。
以下、本発明の一実施形態を図面を参照して説明する。
まず、遊技機の一例であるパチンコ遊技機の全体の構成について説明する。図1はパチンコ遊技機を正面からみた正面図である。
パチンコ遊技機1は、縦長の方形状に形成された外枠(図示せず)と、外枠の内側に開閉可能に取り付けられた遊技枠とで構成される。また、パチンコ遊技機1は、遊技枠に開閉可能に設けられている額縁状に形成されたガラス扉枠402を有する。遊技枠は、外枠に対して開閉自在に設置される前面枠(図示せず)と、機構部品等が取り付けられる機構板と、それらに取り付けられる種々の部品(後述する遊技盤を除く。)とを含む構造体である。
図1に示すように、パチンコ遊技機1は、額縁状に形成されたガラス扉枠402を有する。ガラス扉枠402の下部表面には打球供給皿(上皿)3がある。打球供給皿3の下部には、打球供給皿3に収容しきれない遊技球を貯留する余剰球受皿4と遊技球を発射する打球操作ハンドル(操作ノブ)5が設けられている。ガラス扉枠402の背面には、遊技盤6が着脱可能に取り付けられている。なお、遊技盤6は、それを構成する板状体と、その板状体に取り付けられた種々の部品とを含む構造体である。また、遊技盤6の前面には遊技領域7が形成されている。
遊技領域7の中央付近には、それぞれが演出用の飾り図柄(演出図柄)を可変表示する複数の可変表示部を含む演出表示装置(飾り図柄表示装置)9が設けられている。演出表示装置9には、例えば「左」、「中」、「右」の3つの可変表示部(図柄表示エリア)がある。演出表示装置9は、第1特別図柄表示器8aまたは第2特別図柄表示器8bによる特別図柄の可変表示期間中に、装飾用(演出用)の図柄としての演出図柄の可変表示を行う。演出図柄の可変表示を行う演出表示装置9は、演出制御基板80に搭載されている演出制御用マイクロコンピュータによって制御される。
遊技盤6における右側下部位置には、第1識別情報としての第1特別図柄を可変表示する第1特別図柄表示器(第1可変表示手段)8aが設けられている。この実施の形態では、第1特別図柄表示器8aは、0〜9の数字を可変表示可能な簡易で小型の表示器(例えば7セグメントLED)で実現されている。すなわち、第1特別図柄表示器8aは、0〜9の数字(または、記号)を可変表示するように構成されている。また、第1特別図柄表示器8aの上方位置には、第2識別情報としての第2特別図柄を可変表示する第2特別図柄表示器(第2可変表示手段)8bが設けられている。第2特別図柄表示器8bは、0〜9の数字を可変表示可能な簡易で小型の表示器(例えば7セグメントLED)で実現されている。すなわち、第2特別図柄表示器8bは、0〜9の数字(または、記号)を可変表示するように構成されている。
この実施の形態では、第1特別図柄の種類と第2特別図柄の種類とは同じ(例えば、ともに0〜9の数字)であるが、種類が異なっていてもよい。また、第1特別図柄表示器8aおよび第2特別図柄表示器8bは、それぞれ、例えば2つの7セグメントLED等を用いて00〜99の数字(または、2桁の記号)を可変表示するように構成されていてもよい。
以下、第1特別図柄と第2特別図柄とを特別図柄と総称することがあり、第1特別図柄表示器8aと第2特別図柄表示器8bとを特別図柄表示器と総称することがある。
第1特別図柄の可変表示は、可変表示の実行条件である第1始動条件が成立(例えば、遊技球が第1始動入賞口13aに入賞したこと)した後、可変表示の開始条件(例えば、保留記憶数が0でない場合であって、第1特別図柄の可変表示が実行されていない状態であり、かつ、大当り遊技が実行されていない状態)が成立したことにもとづいて開始され、可変表示時間(変動時間)が経過すると表示結果(停止図柄)を導出表示する。また、第2特別図柄の可変表示は、可変表示の実行条件である第2始動条件が成立(例えば、遊技球が第2始動入賞口13bに入賞したこと)した後、可変表示の開始条件(例えば、保留記憶数が0でない場合であって、第2特別図柄の可変表示が実行されていない状態であり、かつ、大当り遊技が実行されていない状態)が成立したことにもとづいて開始され、可変表示時間(変動時間)が経過すると表示結果(停止図柄)を導出表示する。なお、入賞とは、入賞口などのあらかじめ入賞領域として定められている領域に遊技球が入ったことである。また、表示結果を導出表示するとは、図柄(識別情報の例)を最終的に停止表示させることである。
演出表示装置9は、第1特別図柄表示器8aでの第1特別図柄の可変表示時間中、および第2特別図柄表示器8bでの第2特別図柄の可変表示時間中に、装飾用(演出用)の図柄としての演出図柄(飾り図柄ともいう)の可変表示を行う。第1特別図柄表示器8aにおける第1特別図柄の可変表示と、演出表示装置9における演出図柄の可変表示とは同期している。また、第2特別図柄表示器8bにおける第2特別図柄の可変表示と、演出表示装置9における演出図柄の可変表示とは同期している。同期とは、可変表示の開始時点および終了時点がほぼ同じ(全く同じでもよい。)であって、可変表示の期間がほぼ同じ(全く同じでもよい。)であることをいう。また、第1特別図柄表示器8aにおいて大当り図柄が停止表示されるときと、第2特別図柄表示器8bにおいて大当り図柄が停止表示されるときには、演出表示装置9において大当りを想起させるような演出図柄の組み合わせが停止表示される。
演出表示装置9の下方には、第1始動入賞口13aを有する入賞装置が設けられている。第1始動入賞口13aに入賞した遊技球は、遊技盤6の背面に導かれ、第1始動口スイッチ14a(例えば、近接スイッチ)及び第1入賞確認スイッチ14b(例えば、フォトセンサ)によって検出される。
また、第1始動入賞口(第1始動口)13aを有する入賞装置の下方には、遊技球が入賞可能な第2始動入賞口13bを有する可変入賞球装置15が設けられている。第2始動入賞口(第2始動口)13bに入賞した遊技球は、遊技盤6の背面に導かれ、第2始動口スイッチ15a及び第2入賞確認スイッチ15bによって検出される。可変入賞球装置15は、ソレノイド16によって開状態とされる。可変入賞球装置15が開状態になることによって、遊技球が第2始動入賞口13bに入賞可能になり(始動入賞し易くなり)、遊技者にとって有利な状態になる。可変入賞球装置15が開状態になっている状態では、第1始動入賞口13aよりも、第2始動入賞口13bに遊技球が入賞しやすい。また、可変入賞球装置15が閉状態になっている状態では、遊技球は第2始動入賞口13bに入賞しない。なお、可変入賞球装置15が閉状態になっている状態において、入賞はしづらいものの、入賞することは可能である(すなわち、遊技球が入賞しにくい)ように構成されていてもよい。
また、後述するように、第1始動口スイッチ14aと第1入賞確認スイッチ14bの検出結果及び第2始動口スイッチ15aと第2入賞確認スイッチ15bの検出結果にもとづいて異常入賞の発生の有無が判定され、異常入賞の発生を検出したことにもとづいてセキュリティ信号が外部出力される。また、可変入賞球装置15は、ソレノイド16によって開状態にされる。
以下、第1始動入賞口13aと第2始動入賞口13bとを総称して始動入賞口または始動口ということがある。また、本実施の形態においては、第1始動入賞口13aを有する入賞装置及び第2始動入賞口13bを有する可変入賞球装置15は一体化されて始動入賞ユニット12とされた状態で遊技盤6に取り付けられるが、入賞装置と可変入賞球装置15とをそれぞれ別個に遊技盤6に設けてもよい。
可変入賞球装置15が開放状態に制御されているときには可変入賞球装置15に向かう遊技球は第2始動入賞口13bに極めて入賞しやすい。そして、第1始動入賞口13aは演出表示装置9の直下に設けられているが、演出表示装置9の下端と第1始動入賞口13aとの間の間隔をさらに狭めたり、第1始動入賞口13aの周辺で釘を密に配置したり、第1始動入賞口13aの周辺での釘配列を、遊技球を第1始動入賞口13aに導きづらくして、第2始動入賞口13bの入賞率の方を第1始動入賞口13aの入賞率よりもより高くするようにしてもよい。
第2特別図柄表示器8bの上部には、第1始動入賞口13aに入った有効入賞球数すなわち第1保留記憶数(保留記憶を、始動記憶または始動入賞記憶ともいう。)を表示する第1特別図柄保留記憶表示部と、該第1特別図柄保留記憶表示部とは別個に設けられ、第2始動入賞口13bに入った有効入賞球数すなわち第2保留記憶数を表示する第2特別図柄保留記憶表示部と、が設けられた例えば7セグメントLEDからなる特別図柄保留記憶表示器18が設けられている。第1特別図柄保留記憶表示部は、第1保留記憶数を入賞順に4個まで表示し、有効始動入賞がある毎に、点灯する表示器の数を1増やす。そして、第1特別図柄表示器8aでの可変表示が開始される毎に、点灯する表示器の数を1減らす。また、第2特別図柄保留記憶表示部は、第2保留記憶数を入賞順に4個まで表示し、有効始動入賞がある毎に、点灯する表示器の数を1増やす。そして、第2特別図柄表示器8bでの可変表示が開始される毎に、点灯する表示器の数を1減らす。なお、この例では、第1始動入賞口13aへの入賞による始動記憶数及び第2始動入賞口13bへの入賞による始動記憶数に上限数(4個まで)が設けられているが、上限数を4個以上にしてもよい。
また、演出表示装置9の表示画面には、第1保留記憶数を表示する第1保留記憶表示部(図示略)と、第2保留記憶数を表示する第2保留記憶表示部(図示略)とが設けられている。なお、第1保留記憶数と第2保留記憶数との合計である合計数(合算保留記憶数)を表示する領域(合算保留記憶表示部)が設けられるようにしてもよい。そのように、合計数を表示する合算保留記憶表示部が設けられているようにすれば、可変表示の開始条件が成立していない実行条件の成立数の合計を把握しやすくすることができる。
なお、この実施の形態では、図1に示すように、第2始動入賞口13bに対してのみ開閉動作を行う可変入賞球装置15が設けられているが、第1始動入賞口13aおよび第2始動入賞口13bのいずれについても開閉動作を行う可変入賞球装置が設けられている構成であってもよい。
可変入賞球装置15の下方には、特定遊技状態(大当り状態)においてソレノイド21によって開状態に制御される開閉板1406(図30(a)参照)を用いた特別可変入賞球装置20が設けられている。特別可変入賞球装置20は大入賞口23b(図30(a)参照)を開閉する手段である。特別可変入賞球装置20に入賞し遊技盤6の背面に導かれた入賞球は、カウントスイッチ23で検出される。
第1特別図柄表示器8aの右側には、普通図柄表示器10が設けられている。普通図柄表示器10は、例えば2つのランプからなる。遊技球がゲート32を通過しゲートスイッチ32aで検出されると、普通図柄表示器10の表示の可変表示が開始される。この実施例では、上下のランプ(点灯時に図柄が視認可能になる)が交互に点灯することによって可変表示が行われ、例えば、可変表示の終了時に下側のランプが点灯すれば当りとなる。そして、普通図柄表示器10の下側のランプが点灯して当りである場合に、可変入賞球装置15が所定回数、所定時間だけ開状態になる。すなわち、可変入賞球装置15の状態は、下側のランプが点灯して当りである場合に、遊技者にとって不利な状態から有利な状態(第2始動入賞口13bに遊技球が入賞可能な状態)に変化する。特別図柄保留記憶表示器18の上部には、ゲート32を通過した入賞球数を表示する4つの表示部(例えば、7セグメントLEDのうち4つのセグメント)を有する普通図柄保留記憶表示器41が設けられている。ゲート32への遊技球の通過がある毎に、すなわちゲートスイッチ32aによって遊技球が検出される毎に、普通図柄保留記憶表示器41は点灯する表示部を1増やす。そして、普通図柄表示器10の可変表示が開始される毎に、点灯する表示部を1減らす。
尚、7セグメントLEDからなる普通図柄保留記憶表示器41には、ゲート32を通過した入賞球数を表示する4つの表示部(セグメント)とともに、例えば大当り時における特別可変入賞球装置20の開放回数(大当りラウンド数)を示す2つの表示部(セグメント)、及び遊技状態を示す2つの表示部(セグメント)が設けられているが、これら表示部を普通図柄保留記憶表示部とは別個の表示器にて構成してもよい。また、普通図柄表示器10は、普通図柄と呼ばれる複数種類の識別情報(例えば、「○」および「×」)を可変表示可能なセグメントLED等にて構成してもよい。
遊技盤6には、複数の入賞口29a〜29dが設けられ、遊技球の入賞口29a,29c,29dへの入賞は入賞口スイッチ30aによって検出され、遊技球の入賞口29bへの入賞は入賞口スイッチ30bによって検出される。各入賞口29a〜29dは、遊技媒体を受け入れて入賞を許容する領域として遊技盤6に設けられる入賞領域を構成している。なお、第1始動入賞口13a、第2始動入賞口13bや大入賞口23bも、遊技媒体を受け入れて入賞を許容する入賞領域を構成する。なお、各入賞口29a〜29dに入賞した遊技球を入賞スイッチで検出する構成に代えて、遊技球が所定領域(例えばゲート)を通過したことを検出スイッチで検出する構成としてもよい。遊技領域7の左右周辺には、遊技中に点滅表示される装飾ランプ25aが設けられ、下部には、入賞しなかった遊技球を吸収するアウト口26がある。また、遊技領域7の外側の左右上下部には、効果音を発する2つのスピーカ27が設けられている。遊技領域7の外周には、天枠ランプ28a、左枠ランプ28bおよび右枠ランプ28cが設けられている。さらに、遊技領域7における各構造物(大入賞口等)の周囲には、装飾ランプ25aが設けられる装飾部材25が設置されている。天枠ランプ28a、左枠ランプ28bおよび右枠ランプ28cおよび装飾用LEDは、遊技機に設けられている装飾発光体の一例である。なお、この実施の形態では、遊技機に設けられている発光体をランプやLEDを用いて構成する場合を示しているが、この実施の形態で示した態様にかぎらず、例えば、遊技機に設けられている発光体を全てLEDを用いて構成するようにしてもよい。
なお、図1および図2では、図示を省略しているが、左枠ランプ28bの近傍に、賞球払出中に点灯する賞球ランプが設けられ、天枠ランプ28aの近傍に、補給球が切れたときに点灯する球切れランプが設けられている。なお、賞球ランプおよび球切れランプは、賞球の払出中である場合や球切れが検出された場合に、演出制御基板に搭載された演出制御用マイクロコンピュータによって点灯制御される。さらに、プリペイドカードが挿入されることによって球貸しを可能にするプリペイドカードユニット(以下、「カードユニット」という。)50が、パチンコ遊技機1に隣接して設置されている。
カードユニット50には、例えば、使用可能状態であるか否かを示す使用可表示ランプ、カードユニットがいずれの側のパチンコ遊技機1に対応しているのかを示す連結台方向表示器、カードユニット内にカードが投入されていることを示すカード投入表示ランプ、記録媒体としてのカードが挿入されるカード挿入口、およびカード挿入口の背面に設けられているカードリーダライタの機構を点検する場合にカードユニットを解放するためのカードユニット錠が設けられている。
遊技者の操作により打球発射装置から発射された遊技球は、打球レールを通って遊技領域7に入り、その後、遊技領域7を下りてくる。遊技球が第1始動入賞口13aに入り第1始動口スイッチ14aで検出されると、第1特別図柄の可変表示を開始できる状態であれば(例えば、特別図柄の可変表示が終了し、第1の開始条件が成立したこと)、第1特別図柄表示器8aにおいて第1特別図柄の可変表示(変動)が開始されるとともに、演出表示装置9において演出図柄(飾り図柄)の可変表示が開始される。すなわち、第1特別図柄および演出図柄の可変表示は、第1始動入賞口13aへの入賞に対応する。第1特別図柄の可変表示を開始できる状態でなければ、第1保留記憶数が上限値に達していないことを条件として、第1保留記憶数を1増やす。
遊技球が第2始動入賞口13bに入り第2始動口スイッチ15aで検出されると、第2特別図柄の可変表示を開始できる状態であれば(例えば、特別図柄の可変表示が終了し、第2の開始条件が成立したこと)、第2特別図柄表示器8bにおいて第2特別図柄の可変表示(変動)が開始されるとともに、演出表示装置9において演出図柄(飾り図柄)の可変表示が開始される。すなわち、第2特別図柄および演出図柄の可変表示は、第2始動入賞口13bへの入賞に対応する。第2特別図柄の可変表示を開始できる状態でなければ、第2保留記憶数が上限値に達していないことを条件として、第2保留記憶数を1増やす。
第1特別図柄表示器8aにおける第1特別図柄の可変表示及び第2特別図柄表示器8bにおける第2特別図柄の可変表示は、一定時間が経過したときに停止する。停止時の特別図柄(停止図柄)が大当り図柄(特定表示結果)であると、大当り遊技状態に移行する。すなわち、特別可変入賞球装置20が、一定時間経過するまで、または、所定個数(例えば10個)の遊技球が入賞するまで開放する。そして、特別可変入賞球装置20の開放は、決定されたラウンド数の最後のラウンドまで(例えば、15ラウンドまで)許容される。
停止時の第1特別図柄表示器8aにおける第1特別図柄または停止時の第2特別図柄表示器8bにおける第2特別図柄が確率変動を伴う大当り図柄(確変図柄)である場合には、次に大当りになる確率が高くなる。すなわち、確変状態という遊技者にとってさらに有利な状態になる。
遊技球がゲート32を通過すると、普通図柄表示器10において普通図柄が可変表示される状態になる。また、普通図柄表示器10における停止図柄が所定の図柄(当り図柄)である場合に、可変入賞球装置15が所定時間だけ開状態になる。
次に、パチンコ遊技機1の背面の構造について図2を参照して説明する。図2は、遊技機を背面から見た背面図である。図2に示すように、パチンコ遊技機1の背面側では、演出表示装置9を制御する演出制御用マイクロコンピュータ100が搭載された演出制御基板80を含む変動表示制御ユニット、遊技制御用マイクロコンピュータ等が搭載された遊技制御基板(主基板)31、音声出力基板70、ランプドライバ基板35、および球払出制御を行なう払出制御用マイクロコンピュータ等が搭載された払出制御基板37等の各種基板が設置されている。なお、遊技制御基板31は基板収納ケース200に収納されている。
さらに、パチンコ遊技機1背面側には、DC30V、DC21V、DC12VおよびDC5V等の各種電源電圧を作成する電源回路が搭載された電源基板910やタッチセンサ基板(図示略)が設けられている。電源基板910には、パチンコ遊技機1における遊技制御基板31および各電気部品制御基板(演出制御基板80および払出制御基板37)やパチンコ遊技機1に設けられている各電気部品(電力が供給されることによって動作する部品)への電力供給を実行あるいは遮断するための電力供給許可手段としての電源スイッチ、遊技制御基板31の遊技制御用マイクロコンピュータ560のRAM55をクリアするためのクリアスイッチが設けられている。さらに、電源スイッチの内側(基板内部側)には、交換可能なヒューズが設けられている。
なお、この実施の形態では、主基板31は遊技盤側に設けられ、払出制御基板37は遊技枠側に設けられている。このような構成であっても、後述するように、主基板31と払出制御基板37との間の通信をシリアル通信で行うことによって、遊技盤を交換する際の配線の取り回しを容易にしている。
なお、各制御基板には、制御用マイクロコンピュータを含む制御手段が搭載されている。制御手段は、遊技制御手段等からのコマンドとしての指令信号(制御信号)に従って遊技機に設けられている電気部品(遊技用装置:球払出装置97、演出表示装置9、ランプやLEDなどの発光体、スピーカ27等)を制御する。以下、主基板31を制御基板に含めて説明を行うことがある。その場合には、制御基板に搭載される制御手段は、遊技制御手段と、遊技制御手段等からの指令信号に従って遊技機に設けられている電気部品を制御する手段とのそれぞれを指す。また、主基板31以外のマイクロコンピュータが搭載された基板をサブ基板ということがある。なお、球払出装置97は、遊技球を誘導する通路とステッピングモータ等により駆動されるスプロケット等によって誘導された遊技球を上皿や下皿に払い出すための装置であって、払い出された賞球や貸し球をカウントする払出個数カウントスイッチ301(図6参照)等もユニットの一部として構成されている。なお、この実施の形態では、払出検出手段は、払出個数カウントスイッチ301によって実現され、球払出装置97から実際に賞球や貸し球が払い出されたことを検出する機能を備える。この場合、払出個数カウントスイッチ301は、賞球や貸し球の払い出しを1球検出するごとに検出信号を出力する。
パチンコ遊技機1背面において、上方には、各種情報をパチンコ遊技機1の外部に出力するための各端子を備えたターミナル基板160が設置されている。ターミナル基板160には、例えば、大当り遊技状態の発生を示す大当り情報等の情報出力信号(図74に示す始動口信号、図柄確定回数1信号、大当り1信号、大当り2信号、大当り3信号、時短信号、セキュリティ信号、賞球信号1、遊技機エラー状態信号)を外部出力するための情報出力端子が設けられている。なお、遊技機エラー状態信号に関しては必ずしもパチンコ遊技機1の外部に出力しなくてもよく、該情報出力端子から、この遊技機エラー状態信号の替わりに遊技枠が開放状態であることを示すドア開放信号等を出力するようにしてもよい。
貯留タンク38に貯留された遊技球は誘導レール(図示せず)を通り、カーブ樋を経て払出ケース40Aで覆われた球払出装置97に至る。球払出装置97の上方には、遊技媒体切れ検出手段としての球切れスイッチ187が設けられている。球切れスイッチ187が球切れを検出すると、球払出装置97の払出動作が停止する。球切れスイッチ187が遊技球の不足を検知すると、遊技機設置島に設けられている補給機構からパチンコ遊技機1に対して遊技球の補給が行なわれる。
入賞にもとづく景品としての遊技球や球貸し要求にもとづく遊技球が多数払出されて打球供給皿3が満杯になると、遊技球は、余剰球誘導通路を経て余剰球受皿4に導かれる。さらに遊技球が払出されると、感知レバー(図示せず)が貯留状態検出手段としての満タンスイッチを押圧して、貯留状態検出手段としての満タンスイッチがオンする。その状態では、球払出装置内の払出モータの回転が停止して球払出装置の動作が停止するとともに打球発射装置の駆動も停止する。
図3は、(a)は第1始動入賞口、(b)は第2始動入賞口、(c)は大入賞口内の断面構造の具体例であり、(b)は第2始動入賞口13b内の断面構造の具体例を示す説明図である。図3(a)に示すように、第1始動入賞口13a内には、始動入賞口内に入賞した遊技球を検出可能な2つのスイッチ(第1始動口スイッチ14aと第1入賞確認スイッチ14b)が設けられている。この実施の形態では、第1始動入賞口13a内で、第1始動口スイッチ14aと第1入賞確認スイッチ14bとが上下に配置されている(本例では、第1始動口スイッチ14aが上側に配置され、第1入賞確認スイッチ14bが下側に配置されている)。従って、この実施の形態では、第1始動入賞口13a内に入賞した遊技球は、遊技盤6の背面に導かれ、まず第1始動口スイッチ14aで検出され、次いで第1入賞確認スイッチ14bで検出される。
また、図3(b)に示すように、第2始動入賞口13b内には、始動入賞口内に入賞した遊技球を検出可能な2つのスイッチ(第2始動口スイッチ15aと第2入賞確認スイッチ15b)が設けられている。この実施の形態では、第2始動入賞口13b内で、第2始動口スイッチ15aと第2入賞確認スイッチ15bとが上下に配置されている(本例では、第2始動口スイッチ15aが上側に配置され、第2入賞確認スイッチ15bが下側に配置されている)。従って、この実施の形態では、第2始動入賞口13b内に入賞した遊技球は、遊技盤6の背面に導かれ、まず第2始動口スイッチ15aで検出され、次いで第2入賞確認スイッチ15bで検出される。
また、図3(c)に示すように、大入賞口23b内には、大入賞口23b内に入賞した遊技球を検出可能な2つのスイッチ(カウントスイッチ23と第3入賞確認スイッチ23a)が設けられている。この実施の形態では、大入賞口23b内で、カウントスイッチ23と第3入賞確認スイッチ23aとが上下に配置されている(本例では、カウントスイッチ23が上側に配置され、第3入賞確認スイッチ23aが下側に配置されている)。従って、この実施の形態では、大入賞口23b内に入賞した遊技球は、遊技盤6の背面に導かれ、まずカウントスイッチ23で検出され、次いで第3入賞確認スイッチ23aで検出される。
また、第1始動口スイッチ14aと第1入賞確認スイッチ14b、第2始動口スイッチ15aと第2入賞確認スイッチ15b、カウントスイッチ23と第3入賞確認スイッチ23aとして、それぞれ異なる検出方式のスイッチが用いられる。この実施の形態では、第1始動口スイッチ14a、第2始動口スイッチ15a及びカウントスイッチ23として近接スイッチを用い、第1入賞確認スイッチ14b、第2入賞確認スイッチ15b、第3入賞確認スイッチ23aとしてフォトセンサを用いる場合を示している。
また、この実施の形態では、後述するように、第1始動口スイッチ14aによって遊技球が検出されたことにもとづいて、第1特別図柄の変動表示が開始され、賞球払出が実行される。また、第2始動口スイッチ15aによって遊技球が検出されたことにもとづいて、第2特別図柄の変動表示が開始され、賞球払出が実行される。また、カウントスイッチ23によって遊技球が検出されたことにもとづいて、賞球払出が実行される。また、後述するように、第1始動口スイッチ14aによる検出結果に加えて第1入賞確認スイッチ14bの検出結果にもとづいて異常入賞の発生の有無が判定され、異常入賞の発生を検出したことにもとづいてセキュリティ信号が外部出力される。また、第2始動口スイッチ15aによる検出結果に加えて第2入賞確認スイッチ15bの検出結果にもとづいて異常入賞の発生の有無が判定され、異常入賞の発生を検出したことにもとづいてセキュリティ信号が外部出力される。また、カウントスイッチ23による検出結果に加えて第3入賞確認スイッチ23aの検出結果にもとづいて異常入賞の発生の有無が判定され、異常入賞の発生を検出したことにもとづいてセキュリティ信号が外部出力される。従って、この実施の形態では、第1入賞確認スイッチ14b、第2入賞確認スイッチ15b及び第3入賞確認スイッチ23aは、異常入賞の判定のみに用いられる。
このようにこの実施の形態では、第1始動入賞口13aには、第1始動口スイッチ14aに加えて第1入賞確認スイッチ14bを、第2始動入賞口13bには、第2始動口スイッチ15aに加えて第2入賞確認スイッチ15bを、大入賞口23bには、カウントスイッチ23に加えて第3入賞確認スイッチ23aを設けている。そして第1始動入賞口13a、第2始動入賞口13b及びカウントスイッチ23は近接スイッチを用いて構成し、第1入賞確認スイッチ14b、第2入賞確認スイッチ15b及び第3入賞確認スイッチ23aはフォトセンサを用いているが、第1始動口スイッチ14aと第1入賞確認スイッチ14b、第2始動口スイッチ15aと第2入賞確認スイッチ15b、カウントスイッチ23と第3入賞確認スイッチ23aの検出方式は、この実施の形態で示したものにかぎらず、例えば、第1,2始動口スイッチ14a,15a及びカウントスイッチ23と、第1〜3入賞確認スイッチ14b、15b、23aとで異なる検出方式であれば、逆に第1,2始動口スイッチ14a,15a及びカウントスイッチ23としてフォトセンサを用い、第1〜3入賞確認スイッチ14b、15b、23aとして近接スイッチを用いてもよい。この場合、フォトセンサである第1,2始動口スイッチ14a,15a及びカウントスイッチ23の検出結果にもとづいて特別図柄の変動表示や賞球払出処理が実行され、近接スイッチである第1〜3入賞確認スイッチ14b、15b、23aの検出結果は、第1始動入賞口13a、第2始動入賞口13b、大入賞口23bの異常入賞の判定のみに用いられることになる。また、例えば、電磁式のスイッチである近接スイッチや光学式のフォトセンサに代えて、第1,2始動口スイッチ14a,15a及びカウントスイッチ23または第1〜3入賞確認スイッチ14b、15b、23aとして、機械式のスイッチ(マイクロスイッチなど)を用いてもよい。
また、この実施の形態では、特別図柄の変動表示や賞球払出処理の実行の契機となる第1,2始動口スイッチ14a,15a及びカウントスイッチ23は、異常入賞の判定に用いられる第1〜3入賞確認スイッチ14b、15b、23aよりも上流側に設けられていたが、異常入賞の判定に用いられるスイッチの下流側に設けてもよい。
図4は、遊技球を検出可能な検出手段の方式を説明するための回路図である。なお、図4においては第1始動口スイッチ14a及び第1入賞確認スイッチ14bを一例として説明するが、第2始動口スイッチ15a及び第2入賞確認スイッチ15b、カウントスイッチ23及び第3入賞確認スイッチ23aについても第1始動口スイッチ14a及び第1入賞確認スイッチ14bと同様であるため、ここでの詳細な説明は省略する。
図4(A)には、近接スイッチである第1始動口スイッチ14a(第2始動口スイッチ15a)が示されている。第1始動口スイッチ14a(第2始動口スイッチ15a、カウントスイッチ23)の一方の端子には、電源基板910から+12V電源電圧が供給されている。第1始動口スイッチ14aの他方の端子の電圧レベルである検出信号は、主基板31に入力される。主基板31において、検出信号は、入力ドライバ回路から遊技制御用マイクロコンピュータの入力ポートに入力される。また、第1始動口スイッチ14aの出力側には、一端が接地されている抵抗RとコンデンサCが接続されている。
近接スイッチである第1始動口スイッチ14aに設けられている穴を金属の遊技球が通過するとコイルLに逆起電力が生じ、コイルLの等価的な抵抗値が極めて大きくなる。従って、第1始動口スイッチ14aの出力は、0Vに近いローレベルになる。すなわち、検出信号は、ローレベルである。第1始動口スイッチ14aに設けられている穴を金属の遊技球が通過していない場合には、第1始動口スイッチ14aの出力は、+12VがコイルLと抵抗Rの抵抗値で分圧された値であり、ハイレベルであるとみなされるしきい値レベルを越える。すなわち、検出信号は、ハイレベルである。従って、この実施の形態では、遊技制御用マイクロコンピュータは、第1始動口スイッチ14aからの出力がハイレベルであれば第1始動口スイッチ14aがオフ状態であると判断することができ、第1始動口スイッチ14aからの出力がローレベルであれば第1始動口スイッチ14aがオン状態であると判断することができる(すなわち、第1始動口スイッチ14aの出力は負論理となっている)。なお、検出信号のレベルを入力ドライバ回路で論理反転してから遊技制御用マイクロコンピュータ560に入力するように構成してもよい。
図4(B)には、フォトセンサである第1入賞確認スイッチ14b(第2入賞確認スイッチ15b、第3入賞確認スイッチ23a)が示されている。図4(B)に示すフォトセンサは、発光する発光ダイオード(LED)341と、受光して電流を出力するフォトトランジスタ342とで構成されている。発光ダイオード341およびフォトトランジスタ342の近傍を遊技球が通過すると、遊技球が反射した発光ダイオード341からの光をフォトトランジスタ342が受光して出力側に電流を流す。なお、この場合、フォトトランジスタ342のコレクタ端子からエミッタ端子の向きに電流が流れることにより、フォトセンサの検出信号は、近接スイッチと同様に負論理である。フォトセンサの出力側は主基板31に接続され、主基板31において、フォトセンサの検出信号は、入力ドライバ回路から遊技制御用マイクロコンピュータの入力ポートに入力される。フォトセンサの出力側(具体的には、フォトトランジスタ342の出力側)に電流が流れると、入力ドライバ回路は、ハイレベルの検出信号を遊技制御用マイクロコンピュータに出力する。なお、近接スイッチと同様に、検出信号のレベルを入力ドライバ回路で論理反転してから遊技制御用マイクロコンピュータ560に入力するように構成してもよい。
遊技制御用マイクロコンピュータは、入力ドライバ回路からの検出信号がローレベルである場合に、遊技球がフォトセンサを通過したと判定することができる。
なお、この実施の形態では、フォトセンサとして反射型のフォトセンサが用いられるが、図4(C)における上段に示すように、発光素子(LED341)と受光素子(フォトトランジスタ342)とを入賞球経路を挟むように対向させて設置し、遊技球が発光素子からの光を遮ることによって受光素子が光を検出しなくなることによって、発光素子と受光素子との間を通過した遊技球を検出する透過型のフォトセンサを用いてもよい。透過型のフォトセンサを用いる場合に、図4(C)における下段に示すように、発光素子の光軸(図4(C)において黒丸で例示されている。)が、遊技球経路(入賞球経路)を通過する遊技球の中央部からずれるように、発光素子および受光素子を設置することが好ましい。光軸が遊技球の中央部に相当するように設置する場合に比べて、連続して通過する2つの遊技球の間隔が相対的に広い部分(図4(C)における「空隙」の部分)において遊技球を検知することができ、2つの遊技球を別個に検出しやすいからである。同様の理由で、図4(B)に例示する反射型のフォトセンサを用いる場合にも、発光素子からの光の反射点が遊技球の中央部からずれるように、発光素子および受光素子を設置することが好ましい。
図5は、主基板(遊技制御基板)31における回路構成の一例を示すブロック図である。なお、図5には、払出制御基板37および演出制御基板80等も示されている。主基板31には、プログラムに従ってパチンコ遊技機1を制御する遊技制御用マイクロコンピュータ(遊技制御手段に相当)560が搭載されている。遊技制御用マイクロコンピュータ560は、ゲーム制御(遊技進行制御)用のプログラム等を記憶するROM54、ワークメモリとして使用される記憶手段としてのRAM55、プログラムに従って制御動作を行うCPU56およびI/Oポート57を含む。この実施の形態では、ROM54およびRAM55は遊技制御用マイクロコンピュータ560に内蔵されている。すなわち、遊技制御用マイクロコンピュータ560は、1チップマイクロコンピュータである。1チップマイクロコンピュータには、少なくともRAM55が内蔵されていればよく、ROM54は外付けであっても内蔵されていてもよい。また、I/Oポート57は、外付けであってもよい。
なお、遊技制御用マイクロコンピュータ560においてCPU56がROM54に格納されているプログラムに従って制御を実行するので、以下、遊技制御用マイクロコンピュータ560(またはCPU56)が実行する(または、処理を行う)ということは、具体的には、CPU56がプログラムに従って制御を実行することである。このことは、主基板31以外の他の基板に搭載されているマイクロコンピュータについても同様である。
また、遊技制御用マイクロコンピュータ560には、乱数回路503が内蔵されている。乱数回路503は、特別図柄の可変表示の表示結果により大当りとするか否か判定するための判定用の乱数を発生するために用いられるハードウェア回路である。乱数回路503は、初期値(例えば、0)と上限値(例えば、65535)とが設定された数値範囲内で、数値データを、設定された更新規則に従って更新し、ランダムなタイミングで発生する始動入賞時が数値データの読出(抽出)時であることにもとづいて、読出される数値データが乱数値となる乱数発生機能を有する。
乱数回路503は、数値データの更新範囲の選択設定機能(初期値の選択設定機能、および、上限値の選択設定機能)、数値データの更新規則の選択設定機能、および数値データの更新規則の選択切換え機能等の各種の機能を有する。このような機能によって、生成する乱数のランダム性を向上させることができる。
また、遊技制御用マイクロコンピュータ560は、乱数回路503が更新する数値データの初期値を設定する機能を有している。例えば、ROM54等の所定の記憶領域に記憶された遊技制御用マイクロコンピュータ560のIDナンバ(遊技制御用マイクロコンピュータ560の各製品ごとに異なる数値で付与されたIDナンバ)を用いて所定の演算を行なって得られた数値データを、乱数回路503が更新する数値データの初期値として設定する。そのような処理を行うことによって、乱数回路503が発生する乱数のランダム性をより向上させることができる。
遊技制御用マイクロコンピュータ560は、第1始動口スイッチ14aまたは第2始動口スイッチ15aへの始動入賞が生じたときに乱数回路503から数値データをランダムRとして読み出し、特別図柄および演出図柄の変動開始時にランダムRにもとづいて特定の表示結果としての大当り表示結果にするか否か、すなわち、大当りとするか否かを決定する。そして、大当りとすると決定したときに、遊技状態を遊技者にとって有利な特定遊技状態としての大当り遊技状態に移行させる。
また、遊技制御用マイクロコンピュータ560には、払出制御基板37(の払出制御用マイクロコンピュータ370)や演出制御基板80(の演出制御用マイクロコンピュータ)とシリアル通信で信号を入出力(送受信)するためのシリアル通信回路505が内蔵されている。なお、払出制御用マイクロコンピュータ370や演出制御用マイクロコンピュータにも、遊技制御用マイクロコンピュータ560とシリアル通信で信号を入出力するためのシリアル通信回路が内蔵されている(払出制御用マイクロコンピュータ370に内蔵されたシリアル通信回路については、図6参照)。遊技制御用マイクロコンピュータ560は、2チャネルのシリアル通信回路505を内蔵しており、払出制御用マイクロコンピュータ370とシリアル通信を行うことが可能であるとともに、演出制御用マイクロコンピュータ100ともシリアル通信を行うことが可能である。ただし、この実施の形態では、演出制御用マイクロコンピュータ100との間のシリアル通信に関しては、遊技制御用マイクロコンピュータ560から演出制御用マイクロコンピュータに対してのみ信号が出力され、演出制御用マイクロコンピュータから遊技制御用マイクロコンピュータ560に対しては信号が出力されない。なお、遊技制御用マイクロコンピュータ560と演出制御用マイクロコンピュータとの間の通信については、シリアル通信で行う構成に限られるわけではなく、パラレル通信で行うように構成してもよい。
また、RAM55は、その一部または全部が電源基板において作成されるバックアップ電源によってバックアップされている不揮発性記憶手段としてのバックアップRAMである。すなわち、遊技機に対する電力供給が停止しても、所定期間(バックアップ電源としてのコンデンサが放電してバックアップ電源が電力供給不能になるまで)は、RAM55の一部または全部の内容は保存される。特に、少なくとも、遊技状態すなわち遊技制御手段の制御状態に応じたデータ(特別図柄プロセスフラグや保留記憶数カウンタの値など)と未払出賞球数を示すデータ(具体的には、後述する賞球コマンド出力カウンタの値)は、バックアップRAMに保存される。遊技制御手段の制御状態に応じたデータとは、停電等が生じた後に復旧した場合に、そのデータにもとづいて、制御状態を停電等の発生前に復旧させるために必要なデータである。また、制御状態に応じたデータと未払出賞球数を示すデータとを遊技の進行状態を示すデータと定義する。なお、この実施の形態では、RAM55の全部が、電源バックアップされているとする。
遊技制御用マイクロコンピュータ560のリセット端子には、電源基板からのリセット信号が入力される。電源基板には、遊技制御用マイクロコンピュータ560等に供給されるリセット信号を生成するリセット回路が搭載されている。なお、リセット信号がハイレベルになると遊技制御用マイクロコンピュータ560等は動作可能状態になり、リセット信号がローレベルになると遊技制御用マイクロコンピュータ560等は動作停止状態になる。従って、リセット信号がハイレベルである期間は、遊技制御用マイクロコンピュータ560等の動作を許容する許容信号が出力されていることになり、リセット信号がローレベルである期間は、遊技制御用マイクロコンピュータ560等の動作を停止させる動作停止信号が出力されていることになる。なお、リセット回路をそれぞれの電気部品制御基板(電気部品を制御するためのマイクロコンピュータが搭載されている基板)に搭載してもよい。
さらに、遊技制御用マイクロコンピュータ560の入力ポートには、電源基板からの電源電圧が所定値以下に低下したことを示す電源断信号が入力される。すなわち、電源基板には、遊技機において使用される所定電圧(例えば、DC30VやDC5Vなど)の電圧値を監視して、電圧値があらかじめ定められた所定値にまで低下すると(電源電圧の低下を検出すると)、その旨を示す電源断信号を出力する電源監視回路が搭載されている。なお、電源監視回路を電源基板に搭載するのではなく、バックアップ電源によって電源バックアップされる基板(例えば、主基板31)に搭載するようにしてもよい。また、遊技制御用マイクロコンピュータ560の入力ポートには、RAMの内容をクリアすることを指示するためのクリアスイッチが操作されたことを示すクリア信号(図5参照)が入力される。
また、ゲートスイッチ32a、第1始動口スイッチ14a、第1入賞確認スイッチ14b、第2始動口スイッチ15a、第2入賞確認スイッチ15b、カウントスイッチ23、第3入賞確認スイッチ23aおよび各入賞口スイッチ30a,30bからの検出信号を基本回路53に与える入力ドライバ回路58も主基板31に搭載され、可変入賞球装置15を開閉するソレノイド16、および特別可変入賞球装置を開閉するソレノイド21を基本回路53からの指令に従って駆動する出力回路59も主基板31に搭載され、電源投入時に遊技制御用マイクロコンピュータ560をリセットするためのシステムリセット回路(図示せず)や、大当り遊技状態の発生を示す大当り情報等の情報出力信号を、ターミナル基板160を介して、ホールコンピュータ等の外部装置に対して出力する情報出力回路64も主基板31に搭載されている。
この実施の形態では、演出制御基板80に搭載されている演出制御手段(演出制御用マイクロコンピュータで構成される。)が、中継基板77を介して遊技制御用マイクロコンピュータ560からの演出制御コマンドを受信し、演出図柄を可変表示する演出表示装置9の表示制御を行う。
図6は、払出制御基板37および球払出装置97などの払出に関連する構成要素を示すブロック図である。図6に示すように、払出制御基板37には、払出制御用CPU371を含む払出制御用マイクロコンピュータ370が搭載されている。この実施の形態では、払出制御用マイクロコンピュータ370は、1チップマイクロコンピュータであり、少なくともRAMが内蔵されている。払出制御用マイクロコンピュータ370、RAM(図示せず)、払出制御用プログラムを格納したROM(図示せず)およびI/Oポート等は、払出制御手段を構成する。すなわち、払出制御手段は、払出制御用CPU371、RAMおよびROMを有する払出制御用マイクロコンピュータ370と、I/Oポートとで実現される。また、I/Oポートは、払出制御用マイクロコンピュータ370に内蔵されていてもよい。なお、遊技制御用マイクロコンピュータ560と異なり、払出制御用マイクロコンピュータ370が内蔵するRAMは、バックアップ電源による電源バックアップを受けていない。そのため、遊技機に対する電力供給が停止してしまうと、払出制御用マイクロコンピュータ370が内蔵するRAMの記憶内容は失われることになる。
なお、払出制御用マイクロコンピュータ370は、所定の払出条件が成立したことにもとづいて遊技球を払い出す制御を行う。なお、所定の払出条件は、遊技領域に設けられた入賞領域(普通入賞口29a〜29d、大入賞口23b、第1始動入賞口13a、第2始動入賞口13b)に遊技球が入賞したことや、貸し球要求がなされたことによって成立する。また、例えば、パロット機やスロットマシンなどの遊技機に適用する場合には、所定の払出条件は、遊技球やメダルの返却要求がなされたことによっても成立する。さらに、例えば、パロット機やスロットマシンなどの遊技機に適用する場合には、所定の払出条件は、図柄の停止図柄が所定の入賞図柄となったことによっても成立する。
球切れスイッチ187、満タンスイッチ48および払出個数カウントスイッチ301からの検出信号は、中継基板72を介して払出制御基板37のI/Oポート372fに入力される。なお、この実施の形態では、払出個数カウントスイッチ301からの検出信号は、払出制御用マイクロコンピュータ370に入力されたあと、I/Oポート372aおよび出力回路373Bを介して主基板31に出力される。
また、払出モータ位置センサ295からの検出信号は、中継基板72を介して払出制御基板37のI/Oポート372eに入力される。払出モータ位置センサ295は、払出モータ289の回転位置を検出するための発光素子(LED)と受光素子とによるセンサであり、遊技球が詰まったこと、すなわちいわゆる球噛みを検出するために用いられる。払出制御基板37に搭載されている払出制御用マイクロコンピュータ370は、球切れスイッチ187からの検出信号が球切れ状態を示していたり、満タンスイッチ48からの検出信号が満タン状態を示していると、球払出処理を停止する。
さらに、満タンスイッチ48からの検出信号が満タン状態を示していると、払出制御用マイクロコンピュータ370は、打球発射装置からの球発射を停止させるために、発射基板90に対してローレベルの満タン信号を出力する。発射基板90のAND回路91が出力する発射モータ94への発射モータ信号は、発射基板90から発射モータ94に伝えられる。払出制御用マイクロコンピュータ370からの満タン信号は、発射基板90に搭載されたAND回路91の入力側の一方に入力され、駆動信号生成回路92からの駆動信号(発射モータ94を駆動するための信号であって、電源基板からの電源を供給する役割を果たす信号である。)は、AND回路91の入力側の他方に入力される。そして、AND回路91の発射モータ信号が発射モータ94に入力される。すなわち、払出制御用マイクロコンピュータ370が満タン信号を出力している間は、発射モータ94への発射モータ信号の出力が停止される。払出制御用マイクロコンピュータ370が満タン信号を出力している間であっても、発射モータ94への発射モータ信号の出力を停止せず、打球発射装置からの球発射を停止させないように構成してもよい。
払出制御用マイクロコンピュータ370には、遊技制御用マイクロコンピュータ560とシリアル通信で信号を入出力(送受信)するためのシリアル通信回路380が内蔵されている。この実施の形態では、遊技制御用マイクロコンピュータ560と払出制御用マイクロコンピュータ370とは、シリアル通信回路505,380を介して、遊技制御用マイクロコンピュータ560と払出制御用マイクロコンピュータ370との間の接続確認を行うために、一定の間隔(例えば1秒)で払出制御コマンド(接続確認コマンド、接続OKコマンド)をやり取り(送受信)している。例えば、遊技制御用マイクロコンピュータ560は、シリアル通信回路505を介して、一定の間隔で接続確認を行うための接続確認コマンドを送信し、払出制御用マイクロコンピュータ370は、遊技制御用マイクロコンピュータ560からの接続確認コマンドを受信した場合、その旨を通知する接続OKコマンドを遊技制御用マイクロコンピュータ560に送信する。また、例えば、入賞が発生した場合には、遊技制御用マイクロコンピュータ560は、払い出すべき賞球個数を示すデータを賞球個数コマンドの下位4ビットに設定し、当該設定がなされた賞球個数コマンドを払出制御用マイクロコンピュータ370に送信する。そして、払出制御用マイクロコンピュータ370は、賞球個数を受け付けたことを示す賞球個数受付コマンドを遊技制御用マイクロコンピュータ560に送信する。さらに、払出制御用マイクロコンピュータ370は、賞球払出動作が終了すると、賞球終了を示す賞球終了コマンドを遊技制御用マイクロコンピュータ560に送信する。なお、払出制御用マイクロコンピュータ370は、賞球払出動作を終了するまでの間、一定の間隔で賞球準備中コマンドを遊技制御用マイクロコンピュータ560に送信する。また、所定のエラー(球貸し、満タン、球切れなどのエラー)が発生した場合には、エラーの内容を示すデータを、接続OKコマンドや賞球準備中コマンドの下位4ビットを異ならせることにより設定し、当該設定がなされた接続OKコマンドや賞球準備中コマンドを遊技制御用マイクロコンピュータ560に送信する。なお、遊技制御用マイクロコンピュータ560と払出制御用マイクロコンピュータ370におけるシリアル通信による具体的な信号のやり取りについては、図46〜図63において詳述する。
また、払出制御用マイクロコンピュータ370は、I/Oポート372cを介して、7セグメントLEDによるエラー表示用LED374にエラー信号を出力する。なお、払出制御基板37のI/Oポート372fには、エラー状態を解除するためのエラー解除スイッチ375からの検出信号が入力される。エラー解除スイッチ375は、ソフトウェアリセットによってエラー状態を解除するために用いられる。
さらに、払出制御用マイクロコンピュータ370からの払出モータ289への駆動信号は、I/Oポート372aおよび中継基板72を介して球払出装置97の払出機構部分における払出モータ289に伝えられる。なお、I/Oポート372aの外側に、ドライバ回路(モータ駆動回路)が設置されているが、図6では記載省略されている。
遊技機に隣接して設置されているカードユニット50には、カードユニット制御用マイクロコンピュータが搭載されている。また、カードユニット50には、使用可表示ランプ、連結台方向表示器、カード投入表示ランプおよびカード挿入口が設けられている。インタフェース基板(中継基板)66には、打球供給皿3の近傍に設けられている度数表示LED60、球貸し可LED61、球貸しスイッチ62および返却スイッチ63が接続される。
インタフェース基板66からカードユニット50には、遊技者の操作に応じて、球貸しスイッチ62が操作されたことを示す球貸しスイッチ信号および返却スイッチ63が操作されたことを示す返却スイッチ信号が与えられる。また、カードユニット50からインタフェース基板66には、プリペイドカードの残高を示すカード残高表示信号および球貸し可表示信号が与えられる。カードユニット50と払出制御基板37の間では、接続信号(VL信号)、ユニット操作信号(BRDY信号)、球貸し要求信号(BRQ信号)、球貸し完了信号(EXS信号)およびパチンコ機動作信号(PRDY信号)がI/Oポート372fおよびI/Oポート372dを介して送受信される。カードユニット50と払出制御基板37の間には、インタフェース基板66が介在している。よって、接続信号(VL信号)等の信号は、図6に示すように、インタフェース基板66を介してカードユニット50と払出制御基板37の間で送受信されることになる。
パチンコ遊技機1の電源が投入されると、払出制御基板37に搭載されている払出制御用マイクロコンピュータ370は、カードユニット50にPRDY信号を出力する。また、カードユニット制御用マイクロコンピュータは、電源が投入されると、VL信号を出力する。払出制御用マイクロコンピュータ370は、VL信号の入力状態によってカードユニット50の接続状態/未接続状態を判定する。カードユニット50においてカードが受け付けられ、球貸しスイッチが操作され球貸しスイッチ信号が入力されると、カードユニット制御用マイクロコンピュータは、払出制御基板37にBRDY信号を出力する。この時点から所定の遅延時間が経過すると、カードユニット制御用マイクロコンピュータは、払出制御基板37にBRQ信号を出力する。
そして、払出制御用マイクロコンピュータ370は、カードユニット50に対するEXS信号を立ち上げ、カードユニット50からのBRQ信号の立ち下がりを検出すると、払出モータ289を駆動し、所定個の貸し球を遊技者に払い出す。そして、払出が完了したら、払出制御用マイクロコンピュータ370は、カードユニット50に対するEXS信号を立ち下げる。その後、カードユニット50からのBRDY信号がオン状態でないことを条件に、遊技制御手段から払出指令信号を受けると賞球払出制御を実行する。
カードユニット50で用いられる電源電圧AC24Vは払出制御基板37から供給される。すなわち、カードユニット50に対する電源基板910からの電力供給は、払出制御基板37およびインタフェース基板66を介して行われる。この例では、インタフェース基板66内に配されているカードユニット50に対するAC24Vの電源供給ラインに、カードユニット50を保護するためのヒューズが設けられ、カードユニット50に所定電圧以上の電圧が供給されることが防止される。
また、この実施の形態では、カードユニット50が遊技機とは別体として遊技機に隣接して設置されている場合を例にするが、カードユニット50は遊技機と一体化されていてもよい。また、コイン投入に応じてその金額に応じた遊技球が貸し出されるような場合でも本発明を適用できる。
図7は、中継基板77、演出制御基板80、ランプドライバ基板35および音声出力基板70の回路構成例を示すブロック図である。なお、図7に示す例では、ランプドライバ基板35および音声出力基板70には、マイクロコンピュータは搭載されていないが、マイクロコンピュータを搭載してもよい。また、ランプドライバ基板35および音声出力基板70を設けずに、演出制御に関して演出制御基板80のみを設けてもよい。
演出制御基板80は、演出制御用CPU101a、および演出図柄プロセスフラグ等の演出に関する情報を記憶するRAMを含む演出制御用マイクロコンピュータ100を搭載している。なお、RAMは外付けであってもよい。この実施の形態では、演出制御用マイクロコンピュータ100におけるRAMは電源バックアップされていない。演出制御基板80において、演出制御用CPU101aは、内蔵または外付けのROM(図示せず)に格納されたプログラムに従って動作する。また、演出制御用マイクロコンピュータ100は、遊技制御用マイクロコンピュータ560とシリアル通信で信号を入出力(送受信)するシリアル通信回路101bを内蔵している。また、演出制御用CPU101aは、演出制御コマンドにもとづいて、VDP(ビデオディスプレイプロセッサ)109に演出表示装置9の表示制御を行わせる。
この実施の形態では、演出制御用マイクロコンピュータ100と共動して演出表示装置9の表示制御を行うVDP109が演出制御基板80に搭載されている。VDP109は、演出制御用マイクロコンピュータ100とは独立したアドレス空間を有し、そこにVRAMをマッピングする。VRAMは、画像データを展開するためのバッファメモリである。そして、VDP109は、VRAM内の画像データをフレームメモリを介して演出表示装置9に出力する。
演出制御用CPU101aは、受信した演出制御コマンドに従ってCGROM(図示せず)から必要なデータを読み出すための指令をVDP109に出力する。CGROMは、演出表示装置9に表示されるキャラクタ画像データや動画像データ、具体的には、人物、文字、図形や記号等(演出図柄を含む)、および背景画像のデータをあらかじめ格納しておくためのROMである。VDP109は、演出制御用CPU101aの指令に応じて、CGROMから画像データを読み出す。そして、VDP109は、読み出した画像データにもとづいて表示制御を実行する。
さらに、演出制御用CPU101aは、出力ポート105を介してランプドライバ基板35に対してLEDを駆動する信号を出力する。また、演出制御用CPU101aは、出力ポート104を介して音声出力基板70に対して音番号データを出力する。
ランプドライバ基板35において、LEDを駆動する信号は、入力ドライバ351を介してLEDドライバ352に入力される。LEDドライバ352は、LEDを駆動する信号にもとづいて枠LED28などの枠側に設けられている発光体に電流を供給する。また、遊技盤側に設けられている装飾ランプ25aに電流を供給する。
音声出力基板70において、音番号データは、入力ドライバ702を介して音声合成用IC703に入力される。音声合成用IC703は、音番号データに応じた音声や効果音を発生し増幅回路705に出力する。増幅回路705は、音声合成用IC703の出力レベルを、ボリューム706で設定されている音量に応じたレベルに増幅した音声信号をスピーカ27に出力する。音声データROM704には、音番号データに応じた制御データが格納されている。音番号データに応じた制御データは、所定期間(例えば演出図柄の変動期間)における効果音または音声の出力態様を時系列的に示すデータの集まりである。
図8は、主基板31における回路構成および主基板31から演出制御基板80に送信される演出制御コマンドの信号線を示すブロック図である。図8に示すように、この実施の形態では、主基板31が搭載する遊技制御用マイクロコンピュータ560は、演出制御信号送信用の1本の信号線を用いて、演出制御コマンド(演出制御信号)を演出制御基板80に送信する。
主基板31には、図8に示すように、第1始動口スイッチ14a、第1入賞確認スイッチ14bや第2始動口スイッチ15a、第2入賞確認スイッチ15bからの配線が接続されている。また、主基板31には、大入賞口23bである特別可変入賞球装置20のカウントスイッチ23、第3入賞確認スイッチ23aや、その他の入賞口への遊技球の入賞等を検出するための各種スイッチ32a、30a、30bからの配線も接続されている。さらに、主基板31には、可変入賞球装置15を開閉するソレノイド16、および特別可変入賞球装置20を開閉するソレノイド21への配線が接続されている。
主基板31は、遊技制御用マイクロコンピュータ560、入力ドライバ回路58および出力回路59を搭載する。遊技制御用マイクロコンピュータ560は、クロック回路501、システムリセット手段として機能するリセットコントローラ502、乱数回路503a,503b、ゲーム制御用のプログラム等を記憶するROM54、ワークメモリとして使用されるRAM55、プログラムに従って動作するCPU56、CPU56に割込要求信号(タイマ割込による割込要求信号)を送出するCTC504、払出制御基板37や演出制御基板80が備えるマイクロコンピュータと非同期シリアル通信を行うシリアル通信回路505およびI/Oポート57を内蔵する。
なお、この実施の形態では、シリアル通信回路505を内蔵するマイクロコンピュータを搭載した基板(例えば、主基板31)とは異なる基板(例えば、払出制御基板37や演出制御基板80)のマイクロコンピュータとの通信にシリアル通信回路505を用いる場合を説明するが、シリアル通信回路505は、シリアル通信回路505を内蔵するマイクロコンピュータを搭載した基板が備える別のマイクロコンピュータとシリアル通信を行ってもよい。例えば、同じ構成の2つのマイクロコンピュータが同じ基板に搭載されている場合に、各マイクロコンピュータが内蔵するシリアル通信回路が相互にシリアル通信を行ってもよい。
クロック回路501は、システムクロック信号を2(=128)分周して生成した所定の周期の基準クロック信号CLKを、各乱数回路503a,503bに出力する。リセットコントローラ502は、ローレベルの信号が一定期間入力されたとき、CPU56および各乱数回路503a,503bに所定の初期化信号を出力して、遊技制御用マイクロコンピュータ560をシステムリセットする。
また、この実施の形態では、図8に示すように、遊技制御用マイクロコンピュータ560は、発生可能な乱数の値の範囲が異なる2つの乱数回路503a,503bを搭載する。乱数回路503aは、12ビットの疑似乱数を発生する乱数回路(以下、12ビット乱数回路ともいう)である。12ビット乱数回路503aは、12ビットで発生できる範囲(すなわち、0から4095までの範囲)の値の乱数を発生する機能を備える。また、乱数回路503bは、16ビットの疑似乱数を発生する乱数回路(以下、16ビット乱数回路ともいう)である。16ビット乱数回路503bは、16ビットで発生できる範囲(すなわち、0から65535までの範囲)の値の乱数を発生する機能を備える。なお、この実施の形態では、遊技制御用マイクロコンピュータ560が2つの乱数回路を内蔵する場合を説明するが、遊技制御用マイクロコンピュータ560は、3以上の乱数回路を内蔵してもよい。また、この実施の形態では、12ビット乱数回路503aおよび16ビット乱数回路503bを包括的に表現する場合、または、12ビット乱数回路503aと16ビット乱数回路503bとのうちいずれかを指す場合に、乱数回路503という。
次に、シリアル通信回路505の構成について説明する。シリアル通信回路505は、全二重方式、非同期方式および標準NRZ(ノンリターンゼロ)符号化を用いたデータフォーマットで、各制御基板(例えば、払出制御基板37や演出制御基板80)のマイクロコンピュータとシリアル通信を行う。シリアル通信回路505は、各制御基板のマイクロコンピュータに各種データ(例えば、賞球個数コマンドや演出制御コマンド)を送信する送信部と、各制御基板のマイクロコンピュータからの各種データ(例えば、賞球ACKコマンド)を受信する受信部とを含む。
図9は、シリアル通信回路505の送信部の構成例を示すブロック図である。また、図10は、シリアル通信回路505の受信部の構成例を示すブロック図である。シリアル通信回路505は、ボーレートレジスタ702、ボーレート生成回路703、2つのステータスレジスタ705,706、3つの制御レジスタ707,708,709、送信データレジスタ710、受信データレジスタ711、送信用シフトレジスタ712、受信用シフトレジスタ713、割り込み制御回路714、送信フォーマット/パリティ生成回路715および受信フォーマット/パリティチェック回路716を含む。また、図9に示すように、シリアル通信回路505の送信部は、これらの構成要素のうち、ボーレートレジスタ702、ボーレート生成回路703、ステータスレジスタA705、制御レジスタ707,708,709、送信データレジスタ710、送信用シフトレジスタ712、割り込み制御回路714および送信フォーマット/パリティ生成回路715によって構成される。また、図10に示すように、シリアル通信回路505の受信部は、これらの構成要素のうち、ボーレートレジスタ702、ボーレート生成回路703、ステータスレジスタ705,706、制御レジスタ707,708,709、受信データレジスタ711、受信用シフトレジスタ713、割り込み制御回路714および受信フォーマット/パリティチェック回路716によって構成される。
なお、シリアル通信回路505において、送信部と受信部とは、実際には、共通の回路を用いて構成される。そして、シリアル通信回路505は、上記に示したように、シリアル通信回路505の各構成要素を使い分けて用いることによって、送信回路又は受信回路として機能する。
まず、シリアル通信回路505が各制御基板が搭載するマイクロコンピュータと送受信するデータのデータフォーマットを説明する。図11は、シリアル通信回路505が各制御基板に搭載されるマイクロコンピュータと送受信するデータのデータフォーマットの例を示す説明図である。図11に示すように、シリアル通信回路505が送受信するデータのデータフォーマットは、スタートビット、データおよびストップビットを1フレームとして構成される。また、シリアル通信回路505が送受信するデータのデータ長は、後述するシリアル通信回路設定処理において初期設定を行えば、8ビットまたは9ビットのいずれかに設定できる。図11(a)は、データ長を8ビットに設定した場合のデータフォーマットの例である。また、図11(b)は、データ長を9ビットに設定した場合のデータフォーマットの例である。
図11に示すように、シリアル通信回路505が送受信するデータのデータフォーマットは、ハイレベル(論理「1」)のアイドルラインのあとに、1フレームの始まりであることを示すスタートビット(論理「0」)を含む。また、データフォーマットは、スタートビットのあとに、8ビットまたは9ビットの送受信データを含む。そして、データフォーマットは、送受信データのあとに、1フレームの終わりであることを示すストップビット(論理「1」)を含む。
シリアル通信回路505は、図11に示すデータフォーマットに従って、送受信データの最下位ビット(ビット0)から先にデータを送受信する。また、後述するシリアル通信回路設定処理において初期設定を行えば、送受信データにパリティビットを付加するように設定することもできる。パリティビットを付加するように設定した場合、送受信データの最上位ビットがパリティビット(奇数パリティまたは偶数パリティ)として用いられる。例えば、データ長を8ビットに設定した場合、送受信データのビット7がパリティビットとして用いられる。また、例えば、データ長を9ビットに設定した場合、送受信データのビット8がパリティビットとして用いられる。
ボーレート生成回路703は、クロック回路501が出力するクロック信号およびボーレートレジスタ702に設定されている設定値(ボーレート設定値ともいう)にもとづいて、シリアル通信回路505が用いるボーレートを生成する。この場合、ボーレート生成回路703は、クロック信号およびボーレート設定値にもとづいて、所定の計算式を用いてボーレートを求める。例えば、ボーレート生成回路703は、式(1)を用いて、シリアル通信回路505が用いるボーレートを求める。
ボーレート=クロック周波数/(ボーレート設定値×16) 式(1)
図12は、ボーレートレジスタ702の例を示す説明図である。ボーレートレジスタ702は、ボーレート生成回路703が生成するボーレートの値を指定するための所定の設定値を設定するレジスタである。例えば、ボーレートレジスタ702が式(1)を用いてボーレートを求めるものとし、クロック周波数が3MHzであるとする。この場合、所望の目標ボーレートが1200bpsであるとすると、ボーレートレジスタ702に設定値「156」を設定する。すると、ボーレート生成回路703は、クロック周波数「3MHz」およびボーレート設定値「156」にもとづいて、式(1)を用いて、ボーレート「1201.92bps」を生成する。ボーレートレジスタ702は、16ビットレジスタであり、初期値が「0(=00h)」に設定されている。また、ボーレートレジスタ702は、ビット0〜ビット12が書込および読出ともに可能な状態に構成されている。また、ボーレートレジスタ702は、ビット13〜ビット15が書込および読出ともに不可能な状態に構成されている。したがって、ボーレートレジスタ702のビット13〜ビット15に値を書き込む制御を行っても無効とされ、ビット13〜ビット15から読み出す値は全て「0(=000b)」である。
図13(A)は、制御レジスタA707の例を示す説明図である。制御レジスタA707は、シリアル通信回路505の通信フォーマットを設定するレジスタである。この実施の形態では、制御レジスタA707の各ビットの値が設定されることによって、シリアル通信回路505の通信フォーマットが設定される。制御レジスタA707には、送受信データのデータ形式や各種通信方式等の通信フォーマットを設定するための通信フォーマット設定データが設定される。図13(A)に示すように、制御レジスタA707は、8ビットレジスタであり、初期値が「0(=00h)」に設定されている。また、制御レジスタA707は、ビット0〜ビット4が書込および読出ともに可能な状態に構成されている。また、制御レジスタA707は、ビット5〜ビット7が書込および読出ともに不可能な状態に構成されている。したがって、制御レジスタA707のビット5〜ビット7に値を書き込む制御を行っても無効とされ、ビット5〜ビット7から読み出す値は全て「0(=000b)」である。
図13(B)は、制御レジスタA707に設定される通信フォーマット設定データの一例の説明図である。図13(B)に示すように、制御レジスタA707のビット4(ビット名「M」)には、送受信するデータのデータ長を設定するための設定データが設定される。図13(B)に示すように、ビット4を「0」に設定することによって、送受信データのデータ長が8ビットに設定される。また、ビット4を「1」に設定することによって、送受信データのデータ長が9ビットに設定される。
制御レジスタA707のビット3(ビット名「WAKE」)には、スタンバイ状態の受信回路(シリアル通信回路505の受信部)をウエイクアップする(オンライン状態にさせる)ウエイクアップ方式を設定するための設定データが設定される。図13(B)に示すように、ビット3を「0」に設定することによって、アイドルラインを認識したときにウエイクアップするアイドルラインウエイクアップ方式が設定される。また、ビット3を「1」に設定することによって、所定のアドレスマークを認識することによってウエイクアップするアドレスマークウエイクアップ方式が設定される。
制御レジスタA707のビット2(ビット名「ILT」)には、受信データのアイドルラインの検出方式を選択するための設定データが設定される。図13(B)に示すように、ビット2を「0」に設定することによって、受信データに含まれるスタートビットの後からアイドルラインを検出する検出方式が設定される。また、ビット2を「1」に設定することによって、受信データに含まれるストップビットの後からアイドルラインを検出する検出方式が設定される。
制御レジスタA707のビット1(ビット名「PE」)には、パリティ機能を使用するか否かを設定するための設定データが設定される。図13(B)に示すように、ビット1を「0」に設定することによって、パリティ機能を使用しないように設定される。また、ビット1を「1」に設定することによって、パリティ機能を使用するように設定される。
制御レジスタA707のビット0(ビット名「PT」)には、パリティ機能を使用すると設定した場合のパリティの種類を設定するための設定データが設定される。図13(B)に示すように、ビット0を「0」に設定することによって、パリティの種類として偶数パリティが設定される。また、ビット0を「1」に設定することによって、パリティの種類として奇数パリティが設定される。
図14(A)は、制御レジスタB708の例を示す説明図である。制御レジスタB708は、シリアル通信回路505の割り込み要求を許可するか否かを設定するレジスタである。この実施の形態では、制御レジスタB708の各ビットの値が設定されることによって、シリアル通信回路505からの割り込み要求を許可するか禁止するかが設定される。制御レジスタB708には、各種割り込み要求を許可するか否かを示す割り込み要求設定データが主として設定される。なお、制御レジスタB708には、割り込み要求設定データ以外に、シリアル通信回路505の各種設定を行うための設定データも設定される。図14(A)に示すように、制御レジスタB708は、8ビットレジスタであり、初期値が「0(=00h)」に設定されている。また、制御レジスタB708は、ビット0〜ビット7が書込および読出ともに可能な状態に構成されている。
図14(B)は、制御レジスタB708に設定される割り込み要求設定データの一例を示す説明図である。図14(B)に示すように、制御レジスタB708のビット7(ビット名「TIE」)には、データの送信時に行う割り込み要求である送信割り込み要求を許可するか否かを示す設定データが設定される。図14(B)に示すように、ビット7を「0」に設定することによって、送信割り込み要求を禁止するように設定される。また、ビット7を「1」に設定することによって、送信割り込み要求を許可するように設定される。
制御レジスタB708のビット6(ビット名「TCIE」)には、データの送信完了時に行う割り込み要求である送信完了割り込み要求を許可するか否かを示す設定データが設定される。図14(B)に示すように、ビット6を「0」に設定することによって、送信完了割り込み要求を禁止するように設定される。また、ビット6を「1」に設定することによって、送信完了割り込み要求を許可するように設定される。
制御レジスタB708のビット5(ビット名「RIE」)には、データの受信時に行う割り込み要求である受信割り込み要求を許可するか否かを示す設定データが設定される。図14(B)に示すように、ビット5を「0」に設定することによって、受信割り込み要求を禁止するように設定される。また、ビット5を「1」に設定することによって、受信割り込み要求を許可するように設定される。
制御レジスタB708のビット4(ビット名「ILIE」)には、受信データのアイドルラインを検出したときに行う割り込み要求であるアイドルライン割り込み要求を許可するか否かを示す設定データが設定される。図14(B)に示すように、ビット4を「0」に設定することによって、アイドルライン割り込み要求を禁止するように設定される。また、ビット4を「1」に設定することによって、アイドルライン割り込み要求を許可するように設定される。
制御レジスタB708のビット3(ビット名「TE」)には、送信回路(シリアル通信回路505の送信部)を使用するか否かを示す設定データが設定される。図14(B)に示すように、ビット3を「0」に設定することによって、送信回路を使用しないように設定される。また、ビット3を「1」に設定することによって、送信回路を使用するように設定される。なお、この実施の形態では、ビット3を「1」に設定することによって、送信回路を使用する設定が行われる。このような設定は、メイン処理の初期設定(例えばステップS15a)において行われる。
制御レジスタB708のビット2(ビット名「RE」)には、受信回路を使用するか否かを示す設定データが設定される。図14(B)に示すように、ビット2を「0」に設定することによって、受信回路を使用しないように設定される。また、ビット2を「1」に設定することによって、受信回路を使用するように設定される。なお、この実施の形態では、ビット2を「1」に設定することによって、受信回路を使用する設定が行われる。このような設定は、メイン処理の初期設定(例えばステップS15a)において行われる。
制御レジスタB708のビット1(ビット名「RWU」)には、受信回路のウエイクアップ機能を使用するか否かを示す設定データが設定される。図14(B)に示すように、ビット1を「0」に設定することによって、ウエイクアップ機能を使用しないように設定される。また、ビット1を「1」に設定することによって、ウエイクアップ機能を使用するように設定される。
制御レジスタB708のビット0(ビット名「SBK」)には、所定のブレークコード送信機能を使用するか否かを示す設定データが設定される。図14(B)に示すように、ビット1を「0」に設定することによって、ブレークコード送信機能を使用しないように設定される。また、ビット1を「1」に設定することによって、ブレークコード送信機能を使用するように設定される。ビット1を「1」に設定すると、シリアル通信回路505は、ブレークコード(例えば、「0」を連続して含む信号)を制御基板(払出制御基板37や演出制御基板80)が搭載するマイクロコンピュータに送信する。
図15(A)は、ステータスレジスタA705の例を示す説明図である。ステータスレジスタA705は、シリアル通信回路505の各種ステータスを確認するためのレジスタである。この実施の形態では、ステータスレジスタA705の各ビットの値を確認することによって、CPU56は、シリアル通信回路505の各種ステータスを確認することができる。図15(A)に示すように、ステータスレジスタA705は、8ビットレジスタであり、初期値が「0(=00h)」に設定されている。また、ステータスレジスタA705は、ビット0〜ビット7が読出のみ可能な状態に構成されている。したがって、ステータスレジスタA705のビット0〜ビット7に値を書き込む制御を行っても無効とされる。
本実施の形態では、後述するように、送信データレジスタ710に送信データが入っていない状態(送信データエンプティ)となったり、送信用シフトレジスタ712が格納する送信データの送信を完了すると、割り込み制御回路714によって、ステータスレジスタA705の対応するビットがセットされる。そして、CPU56は、ステータスレジスタA705にセットされた各ビットの値を読み出す。
図15(B)は、ステータスレジスタA705に格納されるステータス確認データの一例を示す図である。図15(B)に示すように、ステータスレジスタA705のビット7(ビット名「TDRE」)には、送信データレジスタ710に送信データが入っていない状態であること(送信データエンプティ)を示す送信データエンプティフラグが格納される。図15(B)に示すように、ビット7に「0」が格納されている場合、送信データレジスタ710から送信用シフトレジスタ712に送信データが未だに転送されておらず、送信データレジスタ710に送信データが格納されたままの状態であることを示す。また、ビット7に「0」が格納されている状態では、送信データレジスタにデータが書き込まれない。例えば、ステップS5211,S52305ではビット7に「0」が格納されていないことを条件に送信データを設定する。また、ビット7に「1」が格納されている場合、送信データレジスタ710から送信用シフトレジスタ712に送信データが転送されており、送信データレジスタ710に送信データが入っていない状態(送信データエンプティ)であることを示す。
ステータスレジスタA705のビット6(ビット名「TC」)には、シリアル通信回路505からの送信データの送信を完了した旨を示す送信完了フラグが格納される。図15(B)に示すように、ビット6に「0」が格納されている場合、送信用シフトレジスタ712が格納する送信データの送信中の状態であり、シリアル通信回路505からの送信データの送信が完了していない状態であることを示す。また、ビット6に「1」が格納されている場合、送信用シフトレジスタ712が格納する送信データの転送を完了した状態であり、シリアル通信回路505からの送信データの送信が完了した状態であることを示す。コマンド格納領域がリングバッファ形式の場合には、ビット6に「1」が格納された状態となれば、コマンドの読出ポインタを更新する。
なお、送信データの送信を完了した状態となり、遊技制御用マイクロコンピュータ560は、送信先のマイクロコンピュータからの受信確認信号の待ち状態となる。この実施の形態では、後述する送信時割込の設定が行われると、シリアル通信回路505は、送信データの送信完了を検出すると、ステータスレジスタA705のビット6を「1」にするとともに、受信確認信号の待ち状態になったものとしてCPU56に割り込み要求(送信時割り込み要求という)を行う。
ステータスレジスタA705のビット5(ビット名「RDRF」)には、受信データレジスタ711に受信データが格納された状態であること(受信データフル)を示す受信データフルフラグが格納される。図15(B)に示すように、ビット5に「0」が格納されている場合、受信データレジスタ711に受信データが入っていない状態であることを示す。また、ビット5に「1」が格納されている場合、受信用シフトレジスタ713の値が受信データレジスタ711に転送され、受信データレジスタ711に受信データが格納されている状態であること(受信データフル)を示す。払出制御用マイクロコンピュータ370からのコマンドを受信したかどうかは、ビット5に「1」が格納された状態となっているかどうかによって確認される。例えば、ステップS5221,S52401,S52501ではビット5に「0」が格納されていないことを条件にコマンドを受信していると判定する。なお、この実施の形態では、ステータスレジスタA705のビット5(RDRF)は、遊技制御用マイクロコンピュータ560によって受信データレジスタ711から受信データが読み出されるとクリアされる。なお、受信データが読み出されたときにステータスレジスタA705のビット5(RDRF)が自動的にクリアされるように構成されていない場合には、遊技制御用マイクロコンピュータ560は、受信データレジスタ711から受信データを読み出すごとに、ステータスレジスタA705のビット5(RDRF)をクリアする処理を行う必要がある。
なお、受信データレジスタ711に受信データが格納された状態となると、CPU56は、受信データを受信データレジスタ711から読み込んで受信処理を行える状態となる。この実施の形態では、受信時割込の設定が行われると、シリアル通信回路505は、受信データフルを検出すると、ステータスレジスタA705のビット5を「1」にするとともに、受信処理が可能になったものとしてCPU56に割り込み要求(受信時割り込み要求という)を行う。
ステータスレジスタA705のビット4(ビット名「IDLE」)には、受信回路がアイドルラインを検出したことを示すアイドルライン検出フラグが格納される。図15(B)に示すように、ビット4に「0」が格納されている場合、シリアル通信回路505の受信部がアイドルラインを検出していない状態であることを示す。また、ビット4に「1」が格納されている場合、シリアル通信回路505の受信部がアイドルラインを検出した状態であることを示す。
ステータスレジスタA705のビット3(ビット名「OR」)には、CPU56が受信データレジスタ711が格納する受信データを読み込む前に、受信用シフトレジスタ713が次のデータを受信してしまったこと(オーバーラン)を示すオーバーランフラグが格納される。図15(B)に示すように、ビット3に「0」が格納されている場合、受信回路がオーバーランを検出していない状態であることを示す。また、ビット3に「1」が格納されている場合、受信回路がオーバーランを検出した状態であることを示す。
なお、オーバーランが発生すると、受信データレジスタ711内の受信データが読み込まれる前に受信用シフトレジスタ713に次の受信データが格納されてしまうので、受信データが上書きされてしまいCPU56が受信データを正しく読み込めなくなってしまう。そのため、各制御基板が搭載するマイクロコンピュータと正しく通信を行えなくなり、CPU56が誤動作をする原因となる。この実施の形態では、シリアル通信回路505は、オーバーランを検出すると、ステータスレジスタA705のビット3を「1」にするとともに、通信時にエラーが発生したものとしてCPU56に割り込み要求を行う。
ステータスレジスタA705のビット2(ビット名「NF」)には、受信データにノイズを検出したことを示すノイズエラーフラグが格納される。図15(B)に示すように、ビット2に「0」が格納されている場合、受信回路が受信データにノイズを検出していない状態であることを示す。また、ビット2に「1」が格納されている場合、受信回路が受信データにノイズを検出した状態であることを示す。
例えば、シリアル通信回路505は、受信データの各ビットを検出する際に、ボーレート生成回路703が生成したボーレートを用いて、所定ビット長の「1」または「0」を検出する。この場合、検出した「1」または「0」の長さが所定ビット長に満たない場合、シリアル通信回路505は、受信データにノイズが発生したものとしてノイズエラーを検出する。ノイズエラーが発生すると、ノイズによって正しい受信データを受信できない可能性が高く、CPU56が誤動作をする原因となる。この実施の形態では、シリアル通信回路505は、ノイズエラーを検出すると、ステータスレジスタA705のビット2を「1」にするとともに、通信時にエラーが発生したものとしてCPU56に割り込み要求を行う。
ステータスレジスタA705のビット1(ビット名「FE」)には、受信データのストップビットの位置が「0」(本来、ストップビットは「1」)であることを検出したこと(フレーミングエラー)を示すフレーミングエラーフラグが格納される。図15(B)に示すように、ビット1に「0」が格納されている場合、受信回路が受信データにフレーミングエラーを検出していない状態であることを示す。また、ビット1に「1」が格納されている場合、受信回路がフレーミングエラーを検出した状態であることを示す。
フレーミングエラーが発生すると、受信データのストップビットを正しく受信できなかった状態であるので、正しい受信データを受信できない可能性が高く、CPU56が誤動作をする原因となる。この実施の形態では、シリアル通信回路505は、フレーミングエラーを検出すると、ステータスレジスタA705のビット1を「1」にするとともに、通信時にエラーが発生したものとしてCPU56に割り込み要求を行う。
ステータスレジスタA705のビット0(ビット名「PF」)には、受信データから求めたパリティの値と、受信データに含まれるパリティの値とが一致しなかったこと(パリティエラー)を示すパリティエラーフラグが格納される。図15(B)に示すように、ビット0に「0」が格納されている場合、受信回路が受信データにパリティエラーを検出していない状態であることを示す。また、ビット0に「1」が格納されている場合、受信回路がパリティエラーを検出した状態であることを示す。
パリティエラーが発生すると、受信データの各データビットまたはパリティビットを正しく受信できなかった状態であるので、正しい受信データを受信できない可能性が高く、CPU56が誤動作をする原因となる。この実施の形態では、シリアル通信回路505は、パリティエラーを検出すると、ステータスレジスタA705のビット0を「1」にするとともに、通信時にエラーが発生したものとしてCPU56に割り込み要求を行う。
図16(A)は、ステータスレジスタB706の例を示す説明図である。ステータスレジスタB706は、シリアル通信回路505の受信状態(受信ステータス)を確認するためのレジスタである。この実施の形態では、ステータスレジスタB706のビットの値を確認することによって、CPU56は、シリアル通信回路505の受信ステータスを確認することができる。図16(B)に示すように、ステータスレジスタB706は、8ビットレジスタであり、初期値が「0(=00h)」に設定されている。また、ステータスレジスタB706は、ビット0が読出のみ可能な状態に構成されている。したがって、ステータスレジスタA705のビット0に値を書き込む制御を行っても無効とされる。また、ステータスレジスタB706は、ビット1〜ビット7が書込および読出ともに不可能な状態に構成されている。したがって、ステータスレジスタA705のビット1〜ビット7に値を書き込む制御を行っても無効とされ、ビット1〜ビット7から読み出す値は全て「0(=0000b)」である。
図16(B)は、ステータスレジスタB706に格納されるステータス確認データの一例を示す図である。図16(B)に示すように、ステータスレジスタB706のビット0(ビット名「RAF」)には、受信回路が受信データを受信中であること(受信アクティブ)を示す受信アクティブフラグが格納される。図16(B)に示すように、ビット0に「0」が格納されている場合、受信回路が受信データを受信中でないことを示す。また、ビット0に「1」が格納されている場合、受信回路が受信データを受信中であることを示す。また、ビット0に「1」が格納されている場合にも、コマンドデータの書き込みを行わない、もしくはコマンドデータを書き込めなくなっている。なお、シリアル通信回路505は、スタートビットを検出すると、受信データの受信が開始されたものとして、ステータスレジスタB706のビット0を「1」にする。
図17(A)は、制御レジスタC709の例を示す説明図である。制御レジスタC709は、シリアル通信回路505の通信エラー時の割り込み要求を許可するか否かを設定するレジスタである。この実施の形態では、制御レジスタC709の各ビットの値が設定されることによって、シリアル通信回路505からの通信時の割り込み要求を許可するか禁止するかが設定される。制御レジスタC709には、通信エラー時の各種割り込み要求を許可するか否かを示すエラー割り込み要求設定データが主として設定される。なお、制御レジスタC709には、エラー割り込み要求設定データ以外に、データ長を9ビットに設定した場合の9ビット目のデータが格納される。シリアル通信回路505の各種設も設定される。図17(A)に示すように、制御レジスタC709は、8ビットレジスタであり、初期値が「0(=00h)」に設定されている。また、制御レジスタC709は、ビット0〜ビット3およびビット6,7が書込および読出ともに可能な状態に構成されている。また、制御レジスタC709は、ビット4,5が書込および読出ともに不可能な状態に構成されている。したがって、制御レジスタC709のビット4,5に値を書き込む制御を行っても無効とされ、ビット4,5から読み出す値は全て「0(=0000b)」である。
図17(B)は、制御レジスタC709に設定されるエラー割り込み要求設定データの一例を示す説明図である。図17(B)に示すように、制御レジスタC709のビット7(ビット名「R8」)には、データ長を9ビットに設定した場合の受信データの9ビット目のデータが格納される。また、制御レジスタC709のビット6(ビット名「T8」)には、データ長を9ビットに設定した場合の送信データの9ビット目のデータが格納される。
制御レジスタC709のビット3(ビット名「ORIE」)には、オーバーランを検出した場合に行う割り込み要求であるオーバーランフラグ割り込み要求を許可するか否かを示す設定データが設定される。図17(B)に示すように、ビット3を「0」に設定することによって、オーバーランフラグ割り込み要求を禁止するように設定される。また、ビット3を「1」に設定することによって、オーバーランフラグ割り込み要求を許可するように設定される。
制御レジスタC709のビット2(ビット名「NEIE」)には、ノイズエラーを検出した場合に行う割り込み要求であるノイズエラーフラグ割り込み要求を許可するか否かを示す設定データが設定される。図17(B)に示すように、ビット2を「0」に設定することによって、ノイズエラーフラグ割り込み要求を禁止するように設定される。また、ビット2を「1」に設定することによって、ノイズエラーフラグ割り込み要求を許可するように設定される。
制御レジスタC709のビット1(ビット名「FEIE」)には、フレーミングエラーを検出した場合に行う割り込み要求であるフレーミングエラーフラグ割り込み要求を許可するか否かを示す設定データが設定される。図17(B)に示すように、ビット1を「0」に設定することによって、フレーミングエラーフラグ割り込み要求を禁止するように設定される。また、ビット1を「1」に設定することによって、フレーミングエラーフラグ割り込み要求を許可するように設定される。
制御レジスタC709のビット0(ビット名「PEIE」)には、パリティエラーを検出した場合に行う割り込み要求であるパリティエラーフラグ割り込み要求を許可するか否かを示す設定データが設定される。図17(B)に示すように、ビット0を「0」に設定することによって、パリティエラーフラグ割り込み要求を禁止するように設定される。また、ビット0を「1」に設定することによって、パリティエラーフラグ割り込み要求を許可するように設定される。
図18は、シリアル通信回路505が備えるデータレジスタの例を示す説明図である。データレジスタ701は、シリアル通信回路505が送受信するデータを格納するレジスタである。図18に示すように、データレジスタは、8ビットレジスタであり、初期値が「0(=00h)」に設定されている。また、データレジスタ701は、ビット0〜ビット7が書込および読出ともに可能な状態に構成されている。
この実施の形態では、シリアル通信回路505が送信データを送信する場合、データレジスタは、送信データレジスタ710として用いられる。なお、データ長を9ビットに設定した場合、データレジスタおよび制御レジスタC709のビット6が送信データレジスタ710として用いられる。この場合、データレジスタのビット0〜ビット7が送信データレジスタ710のビット0〜ビット7として用いられ、制御レジスタC709のビット6が送信データレジスタ710のビット8として用いられる。
また、シリアル通信回路505が受信データを受信する場合、データレジスタは、受信データレジスタ711として用いられる。なお、データ長を9ビットに設定した場合、データレジスタおよび制御レジスタC709のビット7が受信データレジスタ711として用いられる。この場合、データレジスタのビット0〜ビット7が受信データレジスタ711のビット0〜ビット7として用いられ、制御レジスタC709のビット7が受信データレジスタ711のビット8として用いられる。
割り込み制御回路714は、CPU56に各種割り込み要求を行う。この実施の形態では、割り込み制御回路714は、制御レジスタB708のビット6(TCIE)が「1」に設定されている場合、送信データレジスタ710に送信データの送信を完了した状態となると、CPU56に割り込み信号を出力するとともに、ステータスレジスタA705のビット6(TC)に「1」を設定することによって割り込み要求を行う。なお、ステータスレジスタA705のビットの設定値により割込要因を識別可能とするのでなく、割り込み制御回路714は、割込要因毎に異なる割り込み信号をCPU56に出力するようにしてもよい。
また、割り込み制御回路714は、制御レジスタB708のビット5(RIE)が「1」に設定されている場合、受信データレジスタ711に受信データが格納されている状態になると(受信データフルを検出すると)、CPU56に割り込み信号を出力するとともに、ステータスレジスタA705のビット5(RDRF)に「1」を設定することによって割り込み要求を行う。
また、割り込み制御回路714は、制御レジスタC709のビット0〜3のいずれかが「1」に設定されている場合、各種通信エラーが発生すると、CPU56に割り込み信号を出力するとともに、通信エラーの種類に応じて、ステータスレジスタA705のビット0〜ビット3に「1」を設定することによって割り込み要求を行う。例えば、制御レジスタC709のビット3(ORIE)が「1」に設定されている場合、オーバーランを検出して割り込み要求を行うときに、ステータスレジスタA705のビット3(OR)に「1」を設定する。また、例えば、制御レジスタC709のビット2(NEIE)が「1」に設定されている場合、ノイズエラーを検出して割り込み要求を行うときに、ステータスレジスタA705のビット2(NF)に「1」を設定する。また、例えば、制御レジスタC709のビット1(FEIE)が「1」に設定されている場合、フレーミングエラーを検出して割り込み要求を行うときに、ステータスレジスタA705のビット1(FE)に「1」を設定する。また、例えば、制御レジスタC709のビット0(PEIE)が「1」に設定されている場合、パリティエラーを検出して割り込み要求を行うときに、ステータスレジスタA705のビット0(PF)に「1」を設定する。なお、複数の通信エラーを検出した場合、割り込み制御回路714は、複数の通信エラーにもとづいて割り込み要求を行うとともに、ステータスレジスタA705の該当するビットをそれぞれ「1」に設定する。
送信フォーマット/パリティ生成回路715は、送信データのデータフォーマットを生成する。この実施の形態では、送信フォーマット/パリティ生成回路715は、送信データレジスタ710に格納される送信データにスタートビットおよびストップビットを付加してデータフォーマットを生成し、送信用シフトレジスタ712に転送する。また、制御レジスタA707のビット1(PE)に「1」が設定され、パリティ機能を使用する旨が設定されている場合、送信フォーマット/パリティ生成回路715は、送信データにパリティビットを付加してデータフォーマットを生成する。
受信フォーマット/パリティチェック回路716は、受信データのデータフォーマットを検出する。この実施の形態では、受信フォーマット/パリティチェック回路716は、受信用シフトレジスタ713に格納される受信データからスタートビットおよびストップビットを検出し、受信データに含まれるデータ部分を検出して受信データレジスタ711に転送する。また、制御レジスタA707のビット1(PE)に「1」が設定され、パリティ機能を使用する旨が設定されている場合、受信フォーマット/パリティチェック回路716は、受信データのパリティを求め、受信データに含まれるパリティと一致するか否かを検出する。また、求めた値が受信データに含まれるパリティと一致しない場合、受信フォーマット/パリティチェック回路716は、パリティエラーを検出する。なお、後述するシリアル通信回路設定処理において通信エラー時割り込み要求を許可する旨が設定されている場合、割り込み制御回路714は、パリティエラーを検出すると、通信エラーの発生を割込原因としてCPU56に割り込み要求を行う。
大当り判定テーブルメモリ571は、CPU56が第1特別図柄表示器8a、第2特別図柄表示器8bの表示結果を大当り図柄とするか否かを判定するために用いる複数の大当り判定テーブルを記憶する。具体的には、大当り判定テーブルメモリ571は、図19(A)に示すように、確変状態以外の遊技状態(通常状態という)において用いられる通常時大当り判定テーブル571aを記憶する。また、大当り判定テーブルメモリ571は、図19(B)に示すように、確変状態において用いられる確変時大当り判定テーブル571bを格納する。なお、図19に示す判定テーブルを用いて大当り判定を行う場合、乱数最大値設定レジスタ535に設定された乱数最大値によって大当りと判定する確率が大きく変化することになる。この場合、例えば、設定される乱数最大値が小さすぎると、通常時大当り判定テーブル571aを用いた場合と、確変時大当り判定テーブル571bを用いた場合とで、大当りと判定する確率の差が小さくなってしまい、遊技者の遊技に対する興味を減退させてしまうことになる。そのため、乱数回路503および乱数最大値に対応づけて、複数の判定テーブル(複数の通常時大当り判定テーブル571aおよび複数の確変時大当り判定テーブル571b)を大当り判定テーブルメモリ571に記憶してもよい。そして、CPU56は、大当り判定テーブルメモリ571が記憶する判定テーブルのうち、使用する乱数回路503および乱数最大値に対応する判定テーブル571a,571bを用いて、表示結果決定プログラム552に従って、第1特別図柄表示器8a、第2特別図柄表示器8bの表示結果を大当り図柄とするか否かを判定するようにしてもよい。そのようにすることによって、使用する乱数回路503の種類や乱数最大値が異なっても、大当りと判定する確率がある程度同じになるように制御することができる。
なお、図19に示す例では、例えば、図19(A)に示す通常時大当り判定テーブルの場合、1020〜1059、13360〜13399、34400〜34439および57700〜57739の4つの範囲に判定値が割り当てられ、図19(B)に示す確変時大当り判定テーブルの場合、1020〜1219、13360〜13559、34400〜34599および57700〜57899の4つの範囲に判定値が割り当てられている場合を示しているが、各大当り判定テーブルにおいて、一連の1つの範囲にまとめて判定値が割り当てられているように構成してもよい。
図20は、遊技制御手段における出力ポートの割り当ての例を示す説明図である。図20に示すように、出力ポート0からは、払出制御基板37に送信される払出制御信号(本例では、接続信号)が出力される。また、大入賞口23bを開閉する特別可変入賞球装置20を開閉するためのソレノイド(大入賞口扉ソレノイド)21、および可変入賞球装置15を開閉するためのソレノイド(普通電動役物ソレノイド)16に対する駆動信号も、出力ポート0から出力される。
なお、図20に示された「論理」(例えば1がオン状態)と逆の論理(例えば0がオン状態)を用いてもよいが、特に、接続信号については、主基板31と払出制御基板37との間の信号線において断線が生じた場合やケーブル外れの場合(ケーブル未接続を含む)等に、払出制御用マイクロコンピュータ370では必ずオフ状態と検知されるように「論理」が定められる。具体的には、一般に、断線やケーブル外れが生ずると信号の受信側ではハイレベルが検知されるので、主基板31と払出制御基板37との間の信号線でのハイレベルが、遊技制御手段における出力ポートにおいてオフ状態になるように「論理」が定められる。従って、必要であれば、主基板31において出力ポートの外側に、信号を論理反転させる出力バッファ回路が設置される。
そして、出力ポート1から、ターミナル基板160を介して、外部装置(例えば、ホールコンピュータ)に対して、種情報出力用信号すなわち制御に関わる情報(例えば、始動口信号、図柄確定回数1信号、大当り1信号、大当り2信号、大当り3信号、時短信号、セキュリティ信号)の出力データが出力される。なお、この実施の形態では、後述する賞球信号1(賞球払出を1個検出するごとに出力される信号)や、遊技機エラー状態信号(遊技機がエラー状態(本例では、球切れエラー状態または満タンエラー状態)であることを示す信号)も、ターミナル基板160を介して外部装置に出力される。この場合、払出制御基板37側において、賞球払出や遊技機のエラー状態が検出され、賞球信号1や遊技機エラー状態信号が主基板31に入力される。そして、主基板31に入力された賞球信号1や遊技機エラー状態信号は、遊技制御用マイクロコンピュータ560を経由することなく、主基板31上をそのまま経由してターミナル基板160を介して外部出力される。なお、主基板31に入力された賞球信号1や遊技機エラー状態信号は、遊技制御用マイクロコンピュータ560を一旦経由してから、ターミナル基板160を介して外部出力されるようにしてもよい。
また、この実施の形態におけるパチンコ遊技機1は、第1始動入賞口13aと第2始動入賞口13bとの2つの始動入賞口を備えているため、第1始動入賞口13aに遊技球が入賞したことを通知するための始動口1信号と、第2始動入賞口13bに遊技球が入賞したことを通知するための始動口2信号と、をそれぞれ個別にターミナル基板160を介して外部出力するようにしてもよい。
なお、ターミナル基板160を介して外部出力される信号は、この実施の形態で示したものに限られない。例えば、遊技枠が開放状態であることを示すドア開放信号や、賞球の払出を10個検出するごとに出力される賞球情報も、ターミナル基板160を介して外部装置に出力されるようにしてもよい。この場合、払出制御基板37側において、遊技枠が開放状態であることや賞球の払出も検出され、ドア開放信号や賞球情報が主基板31に入力される。そして、主基板31に入力されたドア開放信号や賞球情報は、遊技制御用マイクロコンピュータ560を経由することなく、主基板31上をそのまま経由してターミナル基板160を介して外部出力される。だたし、ドア開放信号および賞球情報は、主基板31上で分岐され、遊技制御用マイクロコンピュータ560にも入力されるものとする。なお、この場合も、主基板31に入力されたドア開放信号や賞球情報は、遊技制御用マイクロコンピュータ560を一旦経由してから、ターミナル基板160を介して外部出力されるようにしてもよい。
また、例えば、遊技機が第1始動入賞口13aと第2始動入賞口13bとの2つの始動入賞口を備え、第1特別図柄と第2特別図柄との2つの特別図柄を変動表示可能に構成されている場合には、第1始動入賞口13aに遊技球が入賞したことを通知するための始動口1信号と、第2始動入賞口13bに遊技球が入賞したことを通知するための始動口2信号と、をそれぞれ個別にターミナル基板160を介して外部出力するとともに、特別図柄の変動回数を通知するための図柄確定回数信号として図柄確定回数1信号に加えて図柄確定回数2信号も、ターミナル基板160を介して外部出力するようにしてもよい。この場合、例えば、第1特別図柄の変動回数のみを通知するための信号として図柄確定回数2信号を外部出力するようにし、第1特別図柄および第2特別図柄の両方の変動回数を通知するための信号として図柄確定回数1信号を外部出力するように構成すればよい。そのように構成すれば、ホールコンピュータなどの外部装置側において、第1特別図柄のみの変動回数に加えて、第1特別図柄および第2特別図柄合計の変動回数や、第2特別図柄のみの変動回数も把握することができる。
図21は、遊技制御手段における入力ポートのビット割り当ての例を示す説明図である。図21に示すように、入力ポート0のビット0〜7には、それぞれ、ゲートスイッチ32a、入賞口スイッチ30a,30b、磁石センサ信号1、磁石センサ信号2、ドア開放信号、賞球情報が入力される。なお、この実施の形態では、磁石を用いた不正行為を検出するための磁石センサ(図示せず)が2個設けられており、それぞれの磁石センサからの検出信号も入力ポート0から入力される。また、入力ポート1のビット0には、第1始動口スイッチ14aの検出信号が入力され、入力ポート1のビット1には、第1入賞確認スイッチ14bの検出信号が入力され、入力ポート1のビット2には、第2始動口スイッチ15aの検出信号が入力され、入力ポート1のビット3には、第2入賞確認スイッチ15bの検出信号が入力され、入力ポート1のビット4には、カウントスイッチ23の検出信号が入力され、入力ポート1のビット5には、第3入賞確認スイッチ23aの検出信号が入力され、入力ポート1のビット6,7には、電源基板910からの電源断信号およびクリアスイッチの検出信号が入力される。
図22は、ターミナル基板160の内部構成を示す回路図である。図22に示すターミナル基板160において、左側上段のコネクタCN−1は、主基板31からの信号を伝達するケーブルを接続するためのコネクタであり、左側下段のコネクタCN1−2は、払出制御基板37からの信号を、主基板31を経由して伝達するケーブルを接続するためのコネクタである。また、右側のコネクタCN1〜CN9は、ホールコンピュータなど外部装置に対して信号を伝達するケーブルを接続するためのコネクタである。また、ターミナル基板160には、ドライバ回路としての半導体リレー(PhotoMOSリレー)PC1〜PC9が搭載されている。
主基板31からのケーブルがコネクタCN−1に接続されることにより、主基板31(遊技制御用マイクロコンピュータ560)から各種信号がターミナル基板160に入力される。具体的には、コネクタCN−1の端子「2」に始動口信号が入力され、コネクタCN−1の端子「3」に図柄確定回数1信号が入力され、コネクタCN−1の端子「5」に大当り1信号が入力され、コネクタCN−1の端子「6」に大当り2信号が入力され、コネクタCN−1の端子「7」に大当り3信号が入力され、コネクタCN−1の端子「8」に時短信号が入力され、コネクタCN−1の端子「9」にセキュリティ信号が入力される。
また、払出制御基板37からのケーブルが主基板31を経由してコネクタCN−2に接続されることにより、払出制御基板37(払出制御用マイクロコンピュータ370)からの各種信号がターミナル基板160に入力される。具体的には、コネクタCN−2の端子「2」に賞球信号1が入力され、コネクタCN−2の端子「3」に遊技機エラー状態信号が入力される。
図22に示すように、ターミナル基板160では、コネクタCN−1およびコネクタCN−2の端子「1」に基準電位の信号線が接続され、その信号線が分岐して、各々の半導体リレーPC1〜PC9の入力端子「1」に接続されている。また、コネクタCN−1の端子「2」、「3」、「5」〜「9」およびコネクタCN−2のコネクタ「2」、「3」に接続された信号線は、それぞれ、1KΩの抵抗R1〜R9を介して半導体リレーPC1〜PC9の入力端子「2」に接続されている。また、半導体リレーPC1〜PC9の出力端子「4」に接続された信号線は、それぞれ、コネクタCN1〜CN9の端子「1」に接続されている。また、半導体リレーPC1〜PC9の出力端子「3」に接続された信号線は、それぞれ、コネクタCN1〜CN9の端子「2」に接続されている。
半導体リレーPC1〜PC9では、入力端子に信号電流が流れると、入力側の発光素子(LED)が発光する。発光された光は、LEDと対向に設けられた光電素子(太陽電池)に透明シリコンを通って照射される。光を受けた光電素子は、光の量に応じて電圧に交換し、この電圧は制御回路を通って出力部のMOSFETゲートを充電する。光電素子より供給されるMOSFETゲート電圧が設定電圧値に達すると、MOSFETが導通状態になり、負荷をオンさせる。入力端子の信号電流が切れると、発光素子(LED)の発光が止まる。LEDの発光が止まると、光電素子の電圧が下がり、光電素子から供給される電圧が下がると制御回路により、MOSFETのゲート負荷を急速に放電させる。この制御回路によりMOSFETが非導通状態になり、負荷をオフさせる。
以上のような半導体リレーPC1〜PC9の動作により、入力側のコネクタCN−1およびコネクタCN−2から入力された信号が出力側のコネクタCN1〜CN9に伝達され、ホールコンピュータなど外部装置に対して出力される。具体的には、コネクタCN1から始動口信号が出力され、コネクタCN2から図柄確定回数1信号が出力され、コネクタCN3から大当り1信号が出力され、コネクタCN4から大当り2信号が出力され、コネクタCN5から大当り3信号が出力され、コネクタCN6から時短信号が出力され、コネクタCN7からセキュリティ信号が出力され、コネクタCN8から賞球信号1が出力され、コネクタCN9から遊技機エラー状態信号が出力される。なお、ターミナル基板160における各外部出力信号に対するコネクタの割り当ては、この実施の形態で示したものにかぎられない。例えば、セキュリティ信号については、ターミナル基板160に設けられた一番端のコネクタ(例えば、コネクタCN9)から出力されるようにしてもよい。また、遊技機エラー状態信号に関しては必ずしもパチンコ遊技機1の外部に出力しなくてもよく、例えばコネクタCN9から、この遊技機エラー状態信号の替わりに遊技枠が開放状態であることを示すドア開放信号等を出力するようにしてもよい。
なお、コネクタCN7から出力されるセキュリティ信号は、遊技機のセキュリティ状態を示す信号である。具体的には、後述するように、第1始動口スイッチ14aの検出結果と第1入賞確認スイッチ14bの検出結果、第2始動口スイッチ15aの検出結果と第2入賞確認スイッチ15bの検出結果、カウントスイッチ23の検出結果と第3入賞確認スイッチ23aの検出結果にそれぞれもとづいて、第1始動入賞口13a、第2始動入賞口13b、大入賞口23bへの異常入賞が発生したと判定された場合に、セキュリティ信号が所定期間(例えば、4分間)ホールコンピュータなどの外部装置に出力される。そのように構成することによって、電波などを用いて第1始動入賞口13a、第2始動入賞口13b、大入賞口23bへの入賞数が実際の入賞数よりも多くなるように認識させるような不正行為が行われたことを、ホールコンピュータなどの外部装置側で認識できるようにすることができる。
また、この実施の形態では、遊技機への電源投入が行われて初期化処理が実行された場合にも、セキュリティ信号が所定期間(例えば、30秒間)ホールコンピュータなどの外部装置に出力される。そのように構成することによって、不自然なタイミングで(例えば、遊技店の開店時に全ての遊技機の電源リセット作業を終えた後であるにもかかわらず)初期化処理が実行されたことを認識可能とすることによって、不正に遊技機を電源リセットさせて電源リセットのタイミングで大当りを狙うような不正行為が行われた可能性を、ホールコンピュータなどの外部装置側で認識できるようにすることができる。
なお、この実施の形態では、上記のように、異常入賞が検出された場合と、初期化処理(例えば、遊技機への電源投入時に、クリアスイッチによる操作が行われたことにもとづいてRAM55の記憶内容をクリアするなどの処理)が実行された場合とで、共通のセキュリティ信号をターミナル基板160の共通のコネクタCN7から外部出力している。これは、初期化処理が実行されるのは、通常、遊技店の開店時に遊技機の電源リセット作業を行う場合のみであることから、1日のうち1回程度しか出力されない信号のためにターミナル基板160上に専用のコネクタや半導体リレーを設けることは効率的ではなく無駄が多い。そこで、この実施の形態では、異常入賞が検出された場合と、初期化処理が実行された場合とで、共通のコネクタCN7からセキュリティ信号を出力するように構成することによって、外部出力用の信号線や回路素子の無駄を低減している。すなわち、ホールコンピュータなどの外部装置に情報を出力するための機構の部品数の増加や配線作業の複雑化を防ぐことができる。
なお、セキュリティ信号として共通のコネクタから外部出力される信号は、この実施の形態で示したものにかぎられない。例えば、第1始動入賞口13a、第2始動入賞口13b、大入賞口23bへの異常入賞にかぎらず、普通入賞口29a〜29dへの異常入賞を検出して、ターミナル基板160の共通のコネクタCN7からセキュリティ信号として外部出力可能なように構成してもよい。この場合、例えば、普通入賞口29a〜29dについても、第1始動入賞口13a、第2始動入賞口13b、大入賞口23bと同様に、遊技球の入賞を検出するためのスイッチとして検出方式の異なる2種類のスイッチ(近接スイッチとフォトセンサ)を設けるようにし、第1始動入賞口13a、第2始動入賞口13b、大入賞口23bと同様の判定方法に従って、異常入賞の有無を判定するようにすればよい。
また、例えば、遊技機に設けられた磁石センサで異常磁気を検出した場合や、遊技機に設けられた電波センサで異常電波を検出した場合に、ターミナル基板160の共通のコネクタCN7からセキュリティ信号として外部出力可能なように構成してもよい。また、例えば、遊技機に設けられた各種スイッチの異常を検出した場合(例えば、入力値が閾値を超えたと判定したことにより、短絡などの発生を検出した場合)に、ターミナル基板160の共通のコネクタCN7からセキュリティ信号として外部出力可能なように構成してもよい。
上記のように、大入賞口23bへの異常入賞や異常磁気エラー、異常電波エラーについてもターミナル基板160の共通のコネクタCN7からセキュリティ信号として外部出力可能なように構成すれば、1本の信号線さえ接続すればホールコンピュータなど外部装置でエラー検出を行えるようにすることができ、エラー検出に関する作業負担を軽減することができる。
なお、大入賞口23bへの異常入賞を検出する場合には、カウントスイッチ23による検出数と第3入賞確認スイッチ23aによる検出数とが所定値(例えば、15)以上となったことにもとづいて判定する場合に加えて、特別図柄プロセスフラグの値が大当り遊技中であることを示す値となっていない場合(例えば、特別図柄プロセスフラグの値が4以上となっていない場合。図65参照)にカウントスイッチ23により遊技球を検出した場合にも、大入賞口23bへの異常入賞が発生したと判定するようにしてもよい。また、このように特別図柄プロセスフラグの値にもとづいて大入賞口23bへの異常入賞が発生したと判定した場合にも、スイッチ正常/異常チェック処理におけるステップS127と同様に、セキュリティ信号情報タイマに所定時間(例えば、4分)をセットすることにより、セキュリティ信号を外部出力するようにすればよい。
また、例えば、遊技制御用マイクロコンピュータ560と払出制御用マイクロコンピュータ370との間の通信エラーを検出した場合にも、ターミナル基板160の共通のコネクタCN7からセキュリティ信号として外部出力可能なように構成してもよい。この場合、例えば、遊技制御用マイクロコンピュータ560は、払出制御用マイクロコンピュータ370から後述する接続OKコマンドや賞球個数受付コマンドを受信できなかったことにもとづいて通信エラーが発生したと判定し、ターミナル基板160の共通のコネクタCN7からセキュリティ信号として外部出力してもよい。また、例えば、遊技制御用マイクロコンピュータ560は、シリアル通信回路505のステータスレジスタAのビット0〜4のいずれかのエラービットの値がセットされていることにもとづいて通信エラーが発生したと判定し、ターミナル基板160の共通のコネクタCN7からセキュリティ信号として外部出力してもよい。
なお、セキュリティ信号用の信号線およびコネクタCN7とは別に、遊技制御用マイクロコンピュータ560と払出制御用マイクロコンピュータ370との間の通信エラー専用の信号線およびコネクタをターミナル基板160に設けてもよい。そして、遊技制御用マイクロコンピュータ560と払出制御用マイクロコンピュータ370との間の通信エラーを検出した場合には、セキュリティ信号とは別の信号として、ターミナル基板160を経由してホールコンピュータなどの外部装置に出力するようにしてもよい。
また、セキュリティ信号出力用の信号線とは別に、初期化処理実行の検出や、第1始動入賞口13a、第2始動入賞口13bや大入賞口23bへの異常入賞の検出、異常磁気エラーの検出、異常電波エラーの検出、通信エラーの検出について、それぞれ別々の信号線を設けるようにし、ターミナル基板160から、セキュリティ信号とともに、それぞれのエラーに対応した外部出力信号も、ホールコンピュータなどの外部装置に出力するようにしてもよい。そのように構成すれば、セキュリティ信号を確認することによって何らかのエラーが発生していることを認識できるとともに、さらにエラーの種類ごとに出力される信号を確認することによって遊技店側でエラーの種類を確認することができる。従って、遊技店側からエラーの種類の確認まで要求されているような場合には、セキュリティ信号とは別にエラー種類ごとの外部出力信号を設けることによって、より遊技店のニーズに応えた外部出力を行えるようにすることができる。一方で、何らかのエラーが発生していることの確認のみを要求しているような遊技店の場合には、外部出力される信号のうち、セキュリティ信号のみをホールコンピュータなどの外部装置に接続して確認するようにすればよい。
上記のように、半導体リレーPC1〜PC9をターミナル基板160に設けたことにより、外部から遊技機内部への信号入力を防止することができ、その結果、不正行為を確実に防止することができる。なお、上記の例では、ターミナル基板160に半導体リレーPC1〜PC9を設けていたが、半導体リレーPC1〜PC9ではなく、機械式のリレー等の他のリレー素子であってもよい。
次に、パチンコ遊技機1の構造について説明する。図23は、パチンコ遊技機を開放した状態を示す斜視図である。
図23に示すように、パチンコ遊技機1は、縦長の方形枠状に形成された外枠400と、外枠400に開閉可能に取り付けられた前面枠401と、で主に構成されている。前面枠401の前面には、ガラス扉枠402及び下扉枠403がそれぞれ左側辺を中心に開閉可能に設けられている。外枠400は、木製の板材からなる上板及び下板と、鉄製の板材からなる左右の側板と、から方形枠状に構成されている。尚、左右の側板は鉄材にて構成されていたが、アルミ材等他の金属材にて構成してもよい。
前面枠401は、中央に縦長長方形状の開口部415が形成されており、開口部415の左側上下部には係止凹部416a,416bが設けられ、右側上下部には盤押え金具417a,417bが設けられており、遊技盤6の左端部を図中太矢印に示すように係止凹部416a,416bに差し込んだ状態で右端部を盤押え金具417a,417bで係止することにより遊技盤6が前面に取り付けられるようになっている。係止凹部416a,416bには盤押えバネ416c,416dが設けられており、係止凹部416a,416bに係止された遊技盤6の前後のガタツキが防止される。
遊技盤6は、木製のベニヤ板にて構成されており、遊技盤6の背面側には、演出表示装置9及び演出制御基板80等を含む変動表示制御ユニット等の遊技に関連する遊技用部品が組み付けられるユニット部材460が一体的に取り付けられている。そして、遊技盤6とユニット部材460とが一体的に組み付けられた遊技盤ユニットを前面枠401の前面に取り付ける際には、遊技盤6の背面に設けられたユニット部材460を開口部415を介して前面枠401の背面側に臨ませることができるようになっている。
次に、第1始動入賞口13a、第2始動入賞口13b、大入賞口23b、入賞口29a〜29dを構成する各入賞装置及び各入賞口に入賞(進入)した遊技球が流下する遊技球通路の構造について、図24〜図37にもとづいて説明する。図24は、遊技盤を示す背面図である。図25は、(a)は始動入賞ユニットを示す正面図であり、(b)は(a)の背面図である。図26は、(a)は始動入賞ユニットを示す平面図であり、(b)は(a)の側面図である。図27は、可変入賞球装置の構造を示す分解斜視図である。図28は、(a)は可変入賞球装置の開放状態を示す縦断面図であり、(b)は(a)のA−A断面図である。図29は、(a)は可変入賞球装置の閉鎖状態を示す縦断面図であり、(b)は(a)のA’−A’断面図である。図30は、(a)は特別可変入賞球装置を示す正面図であり、(b)は(a)の背面図である。図31は、(a)は特別可変入賞球装置を示す平面図であり、(b)は(a)の側面図である。図32は、(a)は図30(a)のB−B断面図であり、(b)は図30(a)のC−C断面図であり、(c)は図30(a)のD−D断面図である。図33は、(a)は特別可変入賞球装置の構造を示す分解斜視図である。図34は、遊技盤の背面を示す要部拡大図である。図35は、図34のE−E断面図である。図36は、図34のF−F断面図である。図37は、図34のG−G断面図である。
図24に示すように、遊技盤6には、演出表示装置9及び遊技盤6を正面から見て該演出表示装置9の右側に配設される装飾部材や役物(図示略)が取り付けられる第1開口451と、入賞装置及び可変入賞球装置15からなる始動入賞ユニット12が取り付けられる第2開口452と、特別可変入賞球装置20が取り付けられる第3開口453と、装飾ランプ25aが設けられる装飾部材(図示略)が取り付けられる第4開口454と、アウト口26を構成する第5開口455と、がそれぞれ形成され、第2開口452及び第3開口453は、第1開口451の下方位置に上下に形成されている。
まず、始動入賞ユニット12について、図25〜図29にもとづいて説明する。
図25〜図27に示されるように、始動入賞ユニット12は、遊技盤6の前面(遊技領域7)側から第2開口452に取り付けられる本体部1300と、遊技盤6の背面側から取り付けられる始動入賞通路部材1301と、から主に構成され、始動入賞通路部材1301は、遊技盤6を挟んで本体部1300の背面に取り付けられて一体化されるようになっている。
本体部1300は、遊技盤6の前面にネジ(図示略)により取り付けられる正面視略扇形の取付板1302と、取付板1302の前面上部に突設され、第1始動入賞口13aを構成する上面が開口する箱状に形成された第1球受部1303と、取付板1302の前面における第1球受部1303の下方に形成され、第2始動入賞口13bを構成する第2球受部1304と、を備える。第1球受部1303からは、第1始動入賞口13aに進入した遊技球を遊技盤6の背面側に誘導する誘導路1305が背面側に向けて延設されている。また、第2球受部1304は、左右一対の開閉羽根1306a,1306b(開閉片)が内部に回動可能に設けられており、後述するソレノイド16の駆動により開閉されるようになっているとともに、取付板1302に形成された開口、つまり第2始動入賞口13bに進入した遊技球を背面側に誘導可能に形成されている。
本体部1300における取付板1302の背面には、駆動手段としてのソレノイド16の駆動により開閉羽根1306a,1306bを開閉させる後述するリンク機構1307と、第2始動入賞口13bに進入した遊技球を誘導する誘導路1308(図28(a)参照)と、が内部に設けられた筒状の支持部材1309が取り付けられており、本体部1300を遊技盤6に取り付けたときに第2開口452内に収容されるようになっている。
左右の開閉羽根1306a,1306bは、図27及び図28に示されるように、チューリップの花弁を模してなる略三角柱状に形成されている。それぞれの下部背面所定箇所からは、前後方向を向く回動軸1310(図28(a)参照)が後向きに突設され、該回動軸1310が取付板1302に枢支されている。そして、該回動軸1310を中心として、垂直方向を向いて第2始動入賞口13bを閉塞する、つまり遊技球が進入しない閉止位置(閉止状態、図29(b)参照)と、該閉止位置から外向きに傾動して第2始動入賞口13bを開放する、つまり球が進入しやすい開放位置(開放状態、図28(b)参照)と、の間で回動自在に設けられている。
これら開閉羽根1306a,1306bの内側には、開放位置において外側から中央に向けて若干下方に傾斜する平坦状の球受面1311,1311が形成されており、開放位置において該球受面1311,1311上に落下した球を中央に向けて誘導するようになっているとともに、閉止位置において互いの球受面1311,1311が遊技球の直径よりも若干大寸な幅寸法分離間した状態で対向するように配置されている。
よって、開放位置において球受面1311,1311により中央に向けて誘導された球は、両開閉羽根1306a,1306b間に形成された隙間に落下して背面側に向けて誘導され、取付板1302に形成された開口、つまり第2始動入賞口13bを通過して背面側の支持部材1309内に流入する。
また、開閉羽根1306a,1306bそれぞれの背面における回動軸1310から偏心した偏心位置には連係ピン1312a,1312bが後向きに突設されている。該連係ピン1312a,1312bの先端は取付板1302を貫通して支持部材1309内まで延出されて後述する伝達部材1320に連係されており、伝達部材1320の回動に連動して開閉羽根1306a,1306bが開閉するようになっている。
次に、リンク機構1307について図27及び図28にもとづいて説明する。まず、支持部材1309は、内部を透視可能な透明な合成樹脂材により筒状に形成され、取付板1302の背面に取り付けられている。また、伝達部材1320を内部に収容した状態で回動自在に支持するとともに、ソレノイド16のプランジャ16aを収容し、底面には第2始動入賞口13bを通過して内部に進入してきた遊技球を背面側に向けて誘導する誘導路1308が形成されている。
支持部材1309の左右の側壁には、後述する伝達部材1320の回動軸1324を回動自在、かつ、前後方向(プランジャ16aの進退方向)に移動自在に支持する軸受長孔1313(図26(b)参照)が前後方向に形成されているとともに、その上方には、伝達部材1320の案内ピン1326を移動案内する案内溝1314(図26(b)参照)が形成されている。案内溝1314は、軸受長孔1313を中心とした円弧状に形成される円弧溝部と、該円弧溝部の前端から前方に向けて連設される直線状の直線溝部と、から構成されている。
伝達部材1320は、回動軸1324が軸受長孔1313の後端(回動位置)に位置しているときに、開閉羽根1306a,1306bを閉止位置(閉止状態)とする閉止姿勢(図29(a)参照)と、開閉羽根1306a,1306bを開放位置(開放状態)とする開放姿勢(図28(a)参照)と、の間で回動自在に軸支されている。つまり、回動軸1324が軸受長孔1313の後端(回動位置)に位置しているときに、開閉羽根1306a,1306bを開放位置から閉止位置に向けて回転させる第1の方向と、開閉羽根1306a,1306bを閉止位置から開放位置に向けて回転させる第2の方向と、に回動自在に軸支され、回動軸1324が軸受長孔1313の前端に位置しているときに、前記第1の方向及び第2の方向への回転が案内ピン1326と直線溝部との当接により規制され、前後方向(プランジャ16aの進退方向)へのみ移動可能に支持される。
伝達部材1320は、合成樹脂材にて形成され、開閉羽根1306aに連係する左側の連係アーム1321aと、該連係アーム1321aから離間して配置され、開閉羽根1306bに連係する右側の連係アーム1321bと、これら左右一対の両連係アーム1321a,1321bの上部間を連結する連結部材としての連結アーム1322と、から構成される。
左右の連係アーム1321a,1321bの外面には左右方向を向く回動軸1324がそれぞれ外向きに突設されるとともに、先端には連係ピン1312a,1312bの先端に係止する側面視略C字形の連係ピン係止部1325が形成されている。また、連結アーム1322の左右両端には、前述した案内溝1314内に摺動自在に嵌合される左右方向を向く案内ピン1326が外向きに突設されている。この案内ピン1326は、伝達部材1320の回動中心となる回動軸1324から偏心した偏心位置に配置されており、連係ピン係止部1325を上下方向に移動案内する。
連結アーム1322には、その上方に配設されるソレノイド16のプランジャ16aの先端に取り付けられる下向き二股状に形成される連結アーム係止部材1330が係止されている。このように連結アーム係止部材1330が連結アーム1322に係止されることにより、プランジャ16aの前後移動に応じて、回動軸1324を中心として回動する連結アーム1322が前後及び上下に移動される。
ソレノイド16は、本体部と、該本体部に対して出退自在に嵌合されたプランジャ16aと、ソレノイド16の非励磁状態(off状態)において、プランジャ16aを突出位置に付勢するコイルバネ16bと、から構成され、ソレノイド16の励磁状態(on状態)において、プランジャ16aがコイルバネ16bの付勢力に抗して後退位置に移動されるようになっている。
次に、図28及び図29に基づいて、ソレノイド16と開閉羽根1306a,1306bと伝達部材1320との連動状態及びその作用について説明する。
まず、図29に示されるように、ソレノイド16が非励磁状態(off状態)であるときは、プランジャ16aがコイルバネ16bの付勢力によって突出位置に位置している。このとき、伝達部材1320は、開閉羽根1306a,1306bを閉止位置(閉止状態)とする閉止姿勢をなしており、連結アーム1322が連結アーム係止部材1330により前方に向けて付勢されて回動規制位置に配置されるため、回動軸1324は軸受長孔1313の前端(規制位置)に位置するとともに、案内ピン1326は案内溝1314の直線溝部の前端に当接する前方位置に位置する(図26(a)参照)。また、連係ピン1312a,1312bは下限位置に位置しているため、開閉羽根1306a,1306bは閉止位置に位置している。
このようにソレノイド16が非励磁状態(off状態)である状態において、例えば開閉羽根1306a,1306bを強制的に開放させようとする応力が少なくとも一方の開閉羽根1306a,1306bに加えられた場合、連係ピン1312a,1312bが下限位置から上昇して連係ピン係止部1325に係止されるが、案内ピン1326が直線溝部に位置していることで、該案内ピン1326の上方移動が案内溝1314の直線状部により当接規制される。従って、開閉羽根1306a,1306bを強制的に開放位置に向けて回転させようとする応力が加えられても、回転規制されている伝達部材1320により連係ピン1312a,1312bの上昇が規制されることで閉止位置に維持され、強制的に開放されることが防止される。
次に、ソレノイド16が非励磁状態(off状態)から励磁状態(on状態)となると、プランジャ16aがコイルバネ16bの付勢力に抗して後方に向けて移動する。このプランジャ16aの後方移動、つまり励磁動作(第2の動作)が開始されると、連結アーム係止部材1330が連結アーム1322を後方に向けて付勢する。このとき、伝達部材1320は、案内ピン1326が後方に向けて案内されるとともに、回動軸1324が軸受長孔1313の後端(回動位置)に向けて案内されることで、プランジャ16aとともに後方に向けて水平にスライド移動する。つまり、伝達部材1320は閉止姿勢のまま回転しないで後方に移動するので、開閉羽根1306a,1306bは閉止位置にて維持されている。
そして、プランジャ16aの後方移動が開始されてから所定距離だけ後方移動した段階、つまり励磁初期動作が完了した段階で、図28に示すように、回動軸1324は軸受長孔1313の後端に位置するとともに、案内ピン1326は円弧溝部に位置して上方に向けて回転可能な状態となる。さらにプランジャ16aが後方に向けて移動すると、案内ピン1326は案内溝1314に沿って上後方に向けて移動する。そして連結アーム1322が連結アーム係止部材1330により後方に向けて付勢されることで、伝達部材1320が上方に向けて回転する。
図28(a)に示されるように、この伝達部材1320の回転により、連係ピン係止部1325が連係ピン1312a,1312bに係止して上昇させるため、これにより開閉羽根1306a,1306bが回動軸1310を中心に回転して開放位置に位置する。そしてプランジャ16aが後退位置まで移動し、ソレノイド16が励磁状態(on状態)に維持されると、伝達部材1320は、連係アーム1321a,1321bは連係ピン係止部1325が上向きとなる傾倒姿勢となって連係ピン1312a,1312bが上限位置となる開放姿勢にて維持されるため、開閉羽根1306a,1306bは開放位置に維持される。
このように可変入賞球装置15は、ソレノイド16のプランジャ16aが開閉羽根1306a,1306bに対して進退移動(前後移動)することで、プランジャ16aの直線的な進退移動力がプランジャ連係部としての連結アーム1322を介して伝達部材1320の回動力に変換されるとともに、該伝達部材1320の回動力が開閉羽根連係部としての連係ピン係止部1325を介して開閉羽根1306a,1306bの上下回動力に変換され、該開閉羽根1306a,1306bが開放位置と閉止位置との間で回動することになる。
また、伝達部材1320は、プランジャ16aの進退移動、つまりソレノイド16の励磁に基づく励磁動作(第2の動作)である後退移動及びソレノイド16の励磁解除に基づく励磁解除動作(第1の動作)である前進移動に連動して回動する。具体的には、プランジャ16aの励磁動作に応じて、回動軸1324が軸受長孔1313の前端(規制位置)から後端(回動位置)に移動することで(図28参照)、案内ピン1326の第2の方向への回転規制が解除され、上後方に回転して閉止姿勢から開放姿勢となることで、開閉羽根1306a,1306bが開放状態となる。
また、プランジャの励磁解除動作に応じて、軸受長孔1313の後端(回動位置)に位置する回動軸1324を中心として下前方向に回転し、開放姿勢から閉止姿勢となった後、閉止姿勢のまま回動軸1324が軸受長孔1313の後端(回動位置)から前端(規制位置)に移動することにより(図29参照)、案内ピン1326が直線溝部に位置して回転が規制されることで、開閉羽根1306a,1306bを閉止位置から開放位置に強制的に回動させることができないため、針金等の不正部材により開閉羽根1306a,1306bを不正に回動させて遊技球を入賞させるといった不正行為等を極力防止することができる。
次に、始動入賞通路部材1301の構造について、図25及び図26にもとづいて説明する。始動入賞通路部材1301は、透明な合成樹脂材により形成され、遊技盤6の背面に取り付けられる取付板1350と、第1始動入賞口13aに進入した遊技球が流下(通過)する第1入賞通路1360aを形成する第1入賞通路壁部1361と、第2始動入賞口13bに進入した遊技球が流下(通過)する第2入賞通路1370aを形成する第2入賞通路壁部1371と、から構成されている。
取付板1350における誘導路1305の後端に対向する位置には、該誘導路1305を流下してきた遊技球の受入口1362が形成されているとともに、取付板1350における誘導路1308の後端に対向する位置には、該誘導路1308を流下してきた遊技球の受入口1372が形成されている。
第1入賞通路壁部1361は、受入口1362の直下にソレノイド16が突設されていることから、これを避けるために、背面から見て受入口1362から取付板1350の背面に沿って左側に迂回するように延設された後に下方に向けて垂設され、さらに左側に屈曲して延設された後に下方に垂設されている。また、このように2箇所において左側に向けて屈曲形成することで、第1入賞通路1360aを後側に突出させずに流下距離を極力長寸としている。また、第1入賞通路壁部1361の垂直部には、第1始動口スイッチ14aを内部の第1入賞通路1360aに臨ませるように取り付けるための取付部1363が形成されており、第1入賞通路1360aを流下してきた遊技球は垂直部にて第1始動口スイッチ14aにて検出されるようになっている。
第2入賞通路壁部1371は、受入口1372から取付板1350の背面に沿ってそのまま下方に向けて垂設され、第1入賞通路壁部1361よりも短寸に形成されている。また、第2入賞通路壁部1371には、第2始動口スイッチ15aを内部の第2入賞通路1370aに臨ませるように取り付けるための取付部1373が形成されており、第1入賞通路1360aを流下してきた遊技球は垂直部にて第2始動口スイッチ15aにて検出されるようになっている。
尚、これら第1始動口スイッチ14a及び第2始動口スイッチ15aの本体は、平面視長方形状をなす板状に形成されているとともに、一端側に遊技球が通過可能な通過孔が形成され、該通過孔が通路内に臨むように取り付けられる。また、本体の短辺の幅寸法は、第1入賞通路壁部1361及び第2入賞通路壁部1371の前後幅寸法とほぼ同寸に形成されている。よって、第1始動口スイッチ14a及び第2始動口スイッチ15aを左右方向に向けて水平に取り付けることで、本体の一部が第1入賞通路壁部1361及び第2入賞通路壁部1371よりも後側に突出することがないので、可変入賞球装置15の前後幅寸法が極力短寸化されて装置全体が小型化されるため、装置の配置自由度が向上する。
また、始動入賞通路部材1301は透明な合成樹脂材により形成されているとともに、第1入賞通路1360aを構成する第1入賞通路壁部1361及び第2入賞通路1370aを構成する第2入賞通路壁部1371は取付板1350に沿って左右方向に並設されていることで、第1入賞通路1360a及び第2入賞通路1370aの内部にて発生する球詰まり状況や第1始動口スイッチ14a及び第2始動口スイッチ15aの取付状況を外部から透視することができるため、メンテナンス性が向上するとともに、第1始動口スイッチ14a及び第2始動口スイッチ15aに対して不正がなされているか否かを容易に確認することができる。
また、第1始動口スイッチ14aと第2始動口スイッチ15aとは、左右方向だけでなく、上下方向にも異なる位置に配置されていることで、電磁波による不正行為が行われたときに、第1始動口スイッチ14a及び第2始動口スイッチ15a双方が同時に不正されることを極力回避することができる。
次に、特別可変入賞球装置20について、図30〜図33にもとづいて説明する。
図30〜図33示されるように、特別可変入賞球装置20は、遊技盤6の前面にネジ(図示略)により取り付けられる横長の取付板1401と、該取付板1401の背面における左右方向の中央位置に形成され、遊技盤6の前面(遊技領域7)側から第3開口453に嵌合される大入賞通路壁部1402と、大入賞通路壁部1402の背面に配設される後述する第2入賞通路1370bを構成する第2入賞通路壁部1410と、大入賞通路壁部1402の左右に設けられるスペーサ部1404,1405と、から主に構成されている。
取付板1401の左右方向の中央位置には、横長長方形状をなす大入賞口23bが形成されており、該大入賞口23bは、後述する開閉板1406により開閉可能とされている。大入賞通路壁部1402は、透明な合成樹脂材にて前面が開口する箱状に構成されており、その内部には大入賞口23bから進入した遊技球を誘導する大入賞通路1403が大入賞口23bに臨むように形成されている。大入賞通路1403は、大入賞口23bに沿うように横長に形成され、その底面は、大入賞口23bに進入した遊技球を正面から見て左側に誘導するように傾斜状に形成されている。
大入賞通路1403における左端側には、大入賞口23bに進入した遊技球を検出するカウントスイッチ23が取り付けられているとともに、大入賞通路壁部1402の左側には、カウントスイッチ23を通過した遊技球が流出する流出口1407が形成されている。尚、大入賞通路1403により左側に誘導されてカウントスイッチ23を通過した遊技球は、遊技盤6の背面側に向けて方向変換された後に流出口1407から流出されるようになっている。
大入賞通路壁部1402の内部における右端部、つまり大入賞通路1403の右側には、開閉板1406を駆動するソレノイド21及び該ソレノイド21の駆動力を開閉板1406に伝達するリンク機構1408が収容される収容部が設けられている。
開閉板1406は、図33に示されるように、大入賞口23bとほぼ同形の横長長方形状に形成されている。左右側面下部からは、左右方向を向く回動軸1420が外向きに突設され、該回動軸1420は大入賞通路壁部1402における大入賞口23bの下部近傍位置にそれぞれ回動可能に枢支されており、該回動軸1420を中心として、垂直方向を向いて大入賞口23bを閉塞する、つまり遊技球が進入しない閉止位置(閉止状態、図33(c)中実線位置)と、該閉止位置から外向きに傾動して大入賞口23bを開放する、つまり球が進入しやすい開放位置(開放状態、図33(c)中2点鎖線位置)と、の間で回動自在に設けられている。尚、開放位置において、開閉板1406は先端部から回動軸1420に向けて下方に傾斜する傾斜姿勢に保持され、開閉板1406の内面にて誘導された球は大入賞口23bを通過して大入賞通路1403内に流入する。
また、開閉板1406の右側面における回動軸1420から偏心した偏心位置には左右方向を向く連係ピン1421が外向きに突設されている。該連係ピン1421は後述する伝達部材1422に連係されており、該伝達部材1422の回動に連動して開閉板1406が開閉するようになっている。
ソレノイド21は、本体部と、該本体部に対して出退自在に嵌合されたプランジャ21aと、ソレノイド21の非励磁状態(off状態)において、プランジャ21aを突出位置に付勢するコイルバネ21bと、から構成され、ソレノイド21の励磁状態(on状態)において、プランジャ21aがコイルバネ21bの付勢力に抗して後退位置に移動されるようになっている。
リンク機構1408は、伝達部材1422及び係止部材1423から構成される。伝達部材1422は、先端に連係ピン1421に係止可能な側面視C字形の連係ピン係止部1424が形成されるとともに、後部内側に係止部材1423に形成される上下方向を向く長穴1425に摺動可能に嵌合される連結ピン1426が形成されてなり、連結ピン1426に対して偏心した位置に外側に向けて突設された回動軸1427を中心として回動可能に設けられている。尚、回動軸1427は大入賞通路壁部1402に設けられた側壁(図示略)に回動可能に枢支されている。
係止部材1423は、ソレノイド21のプランジャ21aの先端に取り付けられ、先端部に連結ピン1426が上下方向に摺動自在に嵌合される長穴1425が形成されている。このように係止部材1423が連結ピン1426と長穴1425とを介して伝達部材1422に係止されることにより、プランジャ21aの前後移動に応じて回動軸1427を中心として伝達部材1422が回動することで、連係ピン係止部1424が上下に移動するようになっている。
次に、図33にもとづいて、ソレノイド21と開閉板1406と伝達部材1422との作動状態について説明すると、図33(a)に示されるように、ソレノイド21が非励磁状態(off状態)であるときは、プランジャ21aがコイルバネ21bの付勢力によって突出位置に位置している。このとき、伝達部材1422は、連係ピン係止部1424が下方を向いて連係ピン1421を下限位置に向けて押し下げる閉止姿勢をなし、これにより開閉板1406は閉止位置に位置することで、大入賞口23bが閉鎖される。
次に、ソレノイド21が非励磁状態(off状態)から励磁状態(on状態)となると、プランジャ21aがコイルバネ21bの付勢力に抗して後方に向けて移動することで、長穴1425に嵌合された連結ピン1426が回動軸1427を中心として回転し、後方に移動する。これにより伝達部材1422が回動軸1427を中心として回転することで、先端の連係ピン係止部1424が下限位置から上昇し、前方を向いて連係ピン1421を上限位置まで押し上げる開放姿勢になり、これにより開閉板1406は開放位置まで回動して大入賞口23bを開放させる。
また、本実施形態においては、開閉板1406を開閉駆動する駆動手段としてのソレノイド21と開閉板1406とを連結するリンク機構1408は、図33(c)に示すように、遊技盤6の厚み幅寸法とほぼ同寸法に形成されていることで、リンク機構1408の後部が遊技盤6の背面側に大きく突出することがない。
また、プランジャ21aの前後移動に応じて回動軸1427周りに回動することで上下に往復動する連係ピン係止部1424は、下限位置に位置したときに、大入賞通路壁部1402の底壁1402aに形成された開口部1428内にその一部が収容されるようになっていることで、リンク機構1408の上下幅寸法を極力短寸化して装置を小型化することができる。
また、この開口部1428は、大入賞通路壁部1402を第3開口453内に嵌合することでその外側が第3開口453の周壁面により閉鎖されるので、例えば針金等の不正部材を遊技盤6の前面側から第3開口453と底壁1402aとの間に挿通して開口部1428から大入賞通路壁部1402内に進入させ、伝達部材1422を強制的に開放させるといった不正行為を防止することができる。
また、大入賞口23bに入賞した遊技球を検出する近接スイッチからなるカウントスイッチ23と、開閉板1406を開閉駆動させるソレノイド21とを、開閉板1406の長手方向の両端側に互いに離間して配置したことにより、電磁式駆動手段であるソレノイド21の電磁波による電磁式の近接スイッチからなるカウントスイッチ23の誤検出を防止することができるとともに、ソレノイド21とカウントスイッチ23とを効率よく配置することができる。
図31及び図32に示すように、大入賞通路壁部1402の背面には、前述した第2入賞通路1370aを流下してきた遊技球が流下する第2入賞通路1370bを構成する第2入賞通路壁部1410が設けられている。第2入賞通路1370bは上下方向に向けて形成され、その上端開口が上方に配置される第2入賞通路1370aの下端開口と対向する範囲で、第2入賞通路1370bは第2入賞通路1370aに対して若干後方にずれた位置に配設されている。
また、第2入賞通路1370bには、第2入賞確認スイッチ15bを取り付けるための取付部1411が形成されている。第2入賞確認スイッチ15bの本体は、平面視長方形状をなす板状に形成されているとともに、一端側に遊技球が通過可能な通過孔が形成され、該通過孔が通路内に臨むように取り付けられる。また、本体の短辺の幅寸法は、第2入賞通路壁部1410の前後幅寸法とほぼ同寸に形成されている。よって、第2入賞確認スイッチ15bを左右方向に向けて水平に取り付けることで、本体の一部が第2入賞通路壁部1410よりも後側に突出することがないので、可変入賞球装置15の前後幅寸法が極力短寸化されて装置全体が小型化されるため、装置の配置自由度が向上する。
また、第2入賞通路壁部1410は透明な合成樹脂材により形成されているとともに、大入賞通路壁部1402の背面に設けられていることで、第2入賞通路1370bの内部にて発生する球詰まり状況や第2入賞確認スイッチ15bの取付状況を外部から透視することができるため、メンテナンス性が向上するとともに、第2入賞確認スイッチ15bに対して不正がなされているか否かを容易に確認することができる。
また、図32(a)に示すように、大入賞通路1403と第2入賞通路1370bとは仕切壁1429により仕切られており、遊技球が他方の通路に進入しないようになっている。この仕切壁1429の前面1429aにはローレット加工が施されていることで、大入賞口23bが開放状態となった場合において、透明な仕切壁1429を通して第2入賞確認スイッチ15bが透視されにくいようになっている。これにより大入賞口23bから第2入賞確認スイッチ15bの配置位置を容易に特定できないため、第2入賞確認スイッチ15bに対する不正行為が困難とされる。なお、本実施の形態では透明な仕切壁1429の前面にローレット加工を施すことにより背面側の第2入賞確認スイッチ15bの視認を困難としていたが、仕切壁1429を非透光性を有する合成樹脂材にて構成してもよいし、あるいは非透光性シート等を貼着してもよい。
一方、取付板1401の前面における大入賞口23bの左右側には凸状のガイド部1430,1430が突設されており、大入賞口23bの上方から該大入賞口23bの左右端部付近に落下してくる遊技球の落下方向が大入賞口23b側または大入賞口23bの反対側のいずれかに変更されるようになっていることで、大入賞口23bへの遊技球の入賞に対する興趣を向上させることができる。
また、左右のガイド部1430,1430それぞれの外側には、入賞口29a,29bを構成する上面が開口する箱状に形成された球受部1431a,1431bが突設されている。球受部1431a,1431bの背面側には、入賞口29a,29bに進入した遊技球を遊技盤6の背面側に誘導する誘導路1432a,1432bが、スペーサ部1404,1405の上部に形成されている。
スペーサ部1404,1405は、大入賞通路壁部1402とともに第3開口453内に嵌合可能に形成されており、その前後幅寸法は、第3開口453の前後幅寸法、つまり遊技盤6の厚み幅寸法とほぼ同寸に形成されているため、スペーサ部1404,1405の背面1404a,1405aは、遊技盤6の背面と前後方向の同位置に位置している。そして、スペーサ部1404の背面1404aは、入賞通路1440aの前壁面の一部を構成するとともに、スペーサ部1405の背面1405aは、後述する第1入賞通路1360b及び入賞通路1440bの前壁面の一部を構成する(図32(b)(c)参照)。
図34に示すように、入賞口29a,29c,29dに進入した遊技球が通過する入賞通路1440aは、第3開口453の一部及び第4開口454の一部を背面側から覆うように遊技盤6の背面に取り付けられる第1入賞通路部材1450にて形成される。また、入賞口29bに進入した遊技球が通過する入賞通路1440bは、第3開口453の一部を背面側から覆うように遊技盤6の背面に取り付けられる第2入賞通路部材1451にて形成される。
第1入賞通路部材1450は、透明な合成樹脂材にて前面が開口する箱状をなし、各入賞口29a,29c,29dそれぞれを背面側から被覆可能な大きさに形成されており、ネジ(図示略)により遊技盤6の背面に取り付けられる。各入賞口29a,29c,29dに進入して遊技盤6の背面側に誘導された遊技球は、底壁1450a上に落下して合流され、中央に向けて誘導された後、入賞通路1440aに流入し、入賞通路1440aに取り付けられる入賞口スイッチ30aにより検出された後、下部に設けられた放出口1452から放出される。
また、入賞通路1440aは、入賞口スイッチ30aの下方位置において背面視右側に屈曲されており、右斜め下に向けて放出されるようになっている。つまり入賞通路1440aにおける入賞口スイッチ30aの下方位置には、遊技球の放出方向を右側に変更する放出方向変更面1452aが設けられている。
また、背面から見て第1入賞通路部材1450における入賞通路1440aの左側には、大入賞通路1403を通過して流出口1407から放出された遊技球が通過する大入賞通路1403aが形成されている。大入賞通路1403aに進入した遊技球は、大入賞通路1403aに取り付けられる第3入賞確認スイッチ23aにより検出された後、下部に設けられた放出口1453から放出される。尚、入賞通路1440aと大入賞通路1403aとは区画壁により区画されている。
また、大入賞通路1403aは、第3入賞確認スイッチ23aの下方位置において背面視左側に屈曲されており、左斜め下に向けて放出されるようになっている。つまり大入賞通路1403aにおける第3入賞確認スイッチ23aの下方位置には、遊技球の放出方向を左側に変更する放出方向変更面1453aが設けられている。
第2入賞通路部材1451は、透明な合成樹脂材にて前面が開口する箱状をなし、入賞口29bを背面側から被覆可能な大きさに形成されており、ネジ(図示略)により遊技盤6の背面に取り付けられる。入賞口29bに進入して遊技盤6の背面側に誘導された遊技球は、そのまま下方の入賞通路1440bに流入し、入賞通路1440bに取り付けられる入賞口スイッチ30bにより検出された後、下部に設けられた放出口1454から放出される。
また、入賞通路1440bは、入賞口スイッチ30bの下方位置において背面視左側に屈曲されており、左斜め下に向けて放出されるようになっている。つまり入賞通路1440bにおける入賞口スイッチ30bの下方位置には、遊技球の放出方向を左側に変更する放出方向変更面1454aが設けられている。
また、背面から見て第2入賞通路部材1451における入賞通路1440bの右側には、第1入賞通路1360aを通過した遊技球が通過する第1入賞通路1360bが形成されている。第1入賞通路1360bに進入した遊技球は、第1入賞通路1360bに取り付けられる第2入賞確認スイッチ15bにより検出された後、下部に設けられた放出口1455から放出される。尚、入賞通路1440bと第1入賞通路1360bとは区画壁により区画されている。
また、第1入賞通路1360bは、第2入賞確認スイッチ15bの下方位置において背面視右側に屈曲されており、右斜め下に向けて放出されるようになっている。つまり第1入賞通路1360bにおける第2入賞確認スイッチ15bの下方位置には、遊技球の放出方向を左側に変更する放出方向変更面1455aが設けられている。
尚、第2入賞通路1370bにおいて第2入賞確認スイッチ15bを通過した遊技球は、そのまま方向変換されずに放出口1456から鉛直下方に放出される。
各放出口1452〜1456から放出される遊技球は、前面枠401に設けられる回収樋1500(図23参照)内に落下し、最終的には遊技機から排出されて図示しない遊技機設置島の回収路等にて回収される。回収樋1500は漏斗状に形成されており、回収路面としての底面1501は、中央の排出路1502に向けて下方に傾斜する傾斜面状に形成されており、各放出口1452〜1456から放出される遊技球を排出路1502に向けて誘導して排出する。
遊技盤6を前面枠401に取り付けた状態において、各放出口1452〜1456の直下に底面1501が配置されることで、各放出口1452〜1456から放出され底面1501上に落下した遊技球が飛び跳ねることが予想されるが、他の放出口よりも高位置に配置されている放出口1456を除く各放出口1452〜1455には放出方向変更面1452a〜1455aが設けられていることで、第2入賞確認スイッチ15b、第3入賞確認スイッチ23a、入賞口スイッチ30a,30bを通過した遊技球は鉛直方向に放出されることはない。つまり、底面1501上に落下した遊技球が飛び跳ねて第2入賞確認スイッチ15b、第3入賞確認スイッチ23a、入賞口スイッチ30a,30bにより再度検出されてしまうことが防止される。
なお、この実施の形態では、第2入賞確認スイッチ15bにより検出された遊技球が放出される放出口1456には放出方向変更面は設けられていないが、放出口1456にも放出方向変更面1452a〜1455aと同様の放出方向変更面を設けてもよく、このようにすることで、底面1501上に落下した遊技球が飛び跳ねて第2入賞確認スイッチ15bにより再度検出されてしまうことが防止される。
また、この実施の形態では、放出方向変更面は各放出口1452〜1455と底面1501との間に設けられていたが、各入賞確認スイッチと底面1501との間に設けられていれば、例えば各入賞確認スイッチと各放出口1452〜1455との間に形成されていても、上記と同様の作用・効果が得られる。
次に、図34〜図37にもとづいて、各入賞口13a、13b、23b、29a〜29dに進入した遊技球の流下状況及び検出状況について説明する。
まず、第1始動入賞口13aに進入した遊技球は、誘導路1305上を流下して遊技盤6の背面側の第1入賞通路1360aに流入した後、正面から見て右側に方向変換して遊技盤6の背面に沿って流下する。そしてさらに下方に方向変換したところで第1始動口スイッチ14aにより検出された後、再度正面から見て右側に方向変換して遊技盤6の背面に沿って流下し、下方に方向変換して第1入賞通路1360bに流入する。そして第1入賞確認スイッチ14bにより検出された後、放出口1455から放出される。
第2始動入賞口13bに進入した遊技球は、誘導路1308上を流下して遊技盤6の背面側の第2入賞通路1370aに流入した後、遊技盤6の背面に沿って下方に流下し、第2始動口スイッチ15aにより検出された後、若干背面側に方向変換して第2入賞通路1370bに流入する。そして第2入賞確認スイッチ15bにより検出された後、放出口1456から放出される。
大入賞口23bに進入した遊技球は、開閉板1406により遊技盤6の背面側に誘導され、大入賞通路1403上を流下して正面から見て左側に誘導される。そして、カウントスイッチ23により検出された後、背面側に方向変換して大入賞通路1403aに流入する。そして大入賞通路1403aにおいて第3入賞確認スイッチ23aにより検出された後、放出口1453から放出される。
入賞口29a,29c,29dに進入した遊技球は、遊技盤6の背面側に誘導されて底壁1450a上に落下した後、中央に向けて誘導された後、入賞通路1440aに流入し、入賞通路1440aにおいて入賞口スイッチ30aにのみ検出された後、放出口1452から放出される。また、入賞口29bに進入した遊技球は、遊技盤6の背面側に誘導された後、下方に落下してそのまま入賞通路1440aに流入し、入賞通路1440bにおいて入賞口スイッチ30bにのみ検出された後、放出口1454から放出される。
以上説明したように、本実施の形態においては、遊技領域7の下部に、第1入賞装置としての可変入賞球装置15と第2入賞装置としての特別可変入賞球装置20とを上下に近接して配置することで、遊技領域7に設けられる演出表示装置9の表示部や、その右側に配設される役物や装飾部材等の配置スペースを広範囲にわたり確保することができ、これにより限られた遊技領域7において演出表示装置9の表示部や役物、装飾部材等を極力大型化することが可能となる。
そして特別可変入賞球装置20の上方に配設される始動入賞ユニット12には、第1始動入賞口13aと第2始動入賞口13bとが上下に配置されており、特に第1始動入賞口13aよりも下方、つまり第1始動入賞口13aよりも特別可変入賞球装置20に近接して配置される第2始動入賞口13bから入賞した遊技球が通過する第2入賞通路1370a,1370bにも、第1検出手段としての第2始動口スイッチ15a及び第2検出手段としての第2入賞確認スイッチ15bが取り付けられるが、第2入賞通路1370a,1370bを短寸化すると第2始動口スイッチ15aと第2入賞確認スイッチ15bとを配設することが困難となる。そこで、下流側の第2入賞通路1370bを特別可変入賞球装置20の背面に設け、第2入賞確認スイッチ15bを第2入賞通路1370bに取り付けることで、第2入賞通路1370bに制限されることなく始動入賞ユニット12の可変入賞球装置15と特別可変入賞球装置20とを極力間隔を狭めて配置することができるため、遊技領域7に設けられる演出表示装置9の表示部や、その右側に配設される役物や装飾部材等の配置スペースを広範囲にわたり確保することができる。
次に、遊技盤6の背面に取り付けられるユニット部材460について、図38及び図39にもとづいて簡単に説明する。図38は、変動表示制御ユニットを示す正面図である。図39は、(a)は変動表示制御ユニットに設けられた役物が上昇動作した状態を示す図であり、(b)は役物が解放動作した状態を示す図である。
ユニット部材460は、合成樹脂材により前面が開口する箱状に形成され、遊技盤6の背面に取り付けられる(図23参照)。ユニット部材460には、演出表示装置9及び演出制御基板80等を含む変動表示制御ユニットが設けられるとともに、本実施の形態においては役物ユニット1600が配設されている。
役物ユニット1600は、短刀を模した装飾可動物の一例である役物1601を備えている。役物1601の右端部は回動可能に軸支されているとともに、左端部は上下方向に設けられた螺旋ボルト1602が昇降モータ1606の駆動により回動することにより上下動可能に設けられている。また、役物1601は、装飾部としての柄部1603と鞘部1604とからなり、左端部が上昇することにより、柄部1603に対して鞘部1604が離間して、柄部1603から延設された刀部1605が露呈するように構成されており、刀部1605が露呈されたときに、刀部1605に内蔵されたLED(図示略)が発光して装飾されるようになっている(図39(a)参照)。また、柄部1603及び鞘部1604は刀部1605の長手方向に対して直交する方向に分割可能に構成されており、開閉モータ1607が駆動することにより、刀部1605及び柄部1603の内部が開放されるようになっている。
このように構成される役物1601は、例えば図柄の変動表示にあわせて可動させたり、あるいは演出表示装置9による画像演出に同期して可動させることにより、大当りとなる可能性を示唆する予告演出を実行する演出装置として用いられる。
また、ユニット部材460には、磁石センサ1610が設けられるとともに、前述した第1入賞通路部材1450や第2入賞通路部材1451を背面側から覆うように遊技盤6の背面に取り付けられる。
なお、この実施の形態では、第1始動入賞口13aに遊技球が入賞したことにもとづいて第1特別図柄表示器8aにて第1特別図柄の変動表示が開始され、第2始動入賞口13bに遊技球が入賞したことにもとづいて第2特別図柄表示器8bにて第2特別図柄の変動表示が開始されるようになっていたが、例えば第1始動入賞口13aまたは第2始動入賞口13bに遊技球が入賞したことにもとづいて1つの特別図柄表示器にて特別図柄の変動表示が開始されるものであってもよい。つまり、単一の特別図柄表示器に対応して2以上の始動入賞口を設けてもよい。
次に遊技機の動作について説明する。図40は、遊技機に対して電力供給が開始され遊技制御用マイクロコンピュータ560へのリセット信号がハイレベルになったことに応じて遊技制御用マイクロコンピュータ560のCPU56が実行するメイン処理を示すフローチャートである。リセット信号が入力されるリセット端子の入力レベルがハイレベルになると、遊技制御用マイクロコンピュータ560のCPU56は、プログラムの内容が正当か否かを確認するための処理であるセキュリティチェック処理を実行した後、ステップS1以降のメイン処理を開始する。メイン処理において、CPU56は、まず、必要な初期設定を行う。
初期設定処理において、CPU56は、まず、割込禁止に設定する(ステップS1)。次に、マスク可能割込の割込モードを設定し(ステップS2)、スタックポインタにスタックポインタ指定アドレスを設定する(ステップS3)。なお、ステップS2では、遊技制御用マイクロコンピュータ560の特定レジスタ(Iレジスタ)の値(1バイト)と内蔵デバイスが出力する割込ベクタ(1バイト:最下位ビット0)から合成されるアドレスが、割込番地を示すモードに設定する。また、マスク可能な割込が発生すると、CPU56は、自動的に割込禁止状態に設定するとともに、プログラムカウンタの内容をスタックにセーブする。
次いで、CPU56は、払出制御用マイクロコンピュータ370に対して、接続信号の出力を開始する(ステップS4)。なお、CPU56は、ステップS4で接続信号の出力を開始すると、遊技機の電源供給が停止したり、何らかの通信エラーが生じて出力不能とならないかぎり、払出制御用マイクロコンピュータ370に対して接続信号を継続して出力する。
次いで、内蔵デバイスレジスタの設定(初期化)を行う(ステップS5)。ステップS5の処理によって、内蔵デバイス(内蔵周辺回路)であるCTC(カウンタ/タイマ)およびPIO(パラレル入出力ポート)の設定(初期化)がなされる。
この実施の形態で用いられる遊技制御用マイクロコンピュータ560は、I/Oポート(PIO)およびタイマ/カウンタ回路(CTC)504も内蔵している。
次いで、CPU56は、RAM55をアクセス可能状態に設定し(ステップS6)、クリア信号のチェック処理に移行する。
なお、遊技の進行を制御する遊技装置制御処理(遊技制御処理)の開始タイミングをソフトウェアで遅らせるためのソフトウェア遅延処理を実行するようにしてもよい。そのようなソフトウェア遅延処理によって、ソフトウェア遅延処理を実行しない場合に比べて、遊技制御処理の開始タイミングを遅延させることができる。遅延処理を実行したときには、他の制御基板(例えば、払出制御基板37)に対して、遊技制御基板(主基板31)が送信するコマンドを他の制御基板のマイクロコンピュータが受信できないという状況が発生することを防止できる。
次いで、CPU56は、クリアスイッチがオンされているか否か確認する(ステップS7)。なお、CPU56は、入力ポート0を介して1回だけクリア信号の状態を確認するようにしてもよいが、複数回クリア信号の状態を確認するようにしてもよい。例えば、クリア信号の状態がオフ状態であることを確認したら、所定時間(例えば、0.1秒)の遅延時間をおいた後、クリア信号の状態を再確認する。そのときにクリア信号の状態がオン状態であることを確認したら、クリア信号がオン状態になっていると判定する。また、このときにクリア信号の状態がオフ状態であることを確認したら、所定時間の遅延時間をおいた後、再度、クリア信号の状態を再確認するようにしてもよい。ここで、再確認の回数は、1回または2回に限られず、3回以上であってもよい。また、2回チェックして、チェック結果が一致していなかったときにもう一度確認するようにしてもよい。
ステップS7でクリアスイッチがオンでない場合には、遊技機への電力供給が停止したときにバックアップRAM領域のデータ保護処理(例えばパリティデータの付加等の電力供給停止時処理)が行われたか否か確認する(ステップS8)。この実施の形態では、電力供給の停止が生じた場合には、バックアップRAM領域のデータを保護するための処理が行われている。そのような電力供給停止時処理が行われていたことを確認した場合には、CPU56は、電力供給停止時処理が行われた、すなわち電力供給停止時の制御状態が保存されていると判定する。電力供給停止時処理が行われていないことを確認した場合には、CPU56は初期化処理を実行する。
電力供給停止時処理が行われていたか否かは、電力供給停止時処理においてバックアップRAM領域に保存されるバックアップ監視タイマの値が、電力供給停止時処理を実行したことに応じた値(例えば2)になっているか否かによって確認される。なお、そのような確認の仕方は一例であって、例えば、電力供給停止時処理においてバックアップフラグ領域に電力供給停止時処理を実行したことを示すフラグをセットし、ステップS8において、そのフラグがセットされていることを確認したら電力供給停止時処理が行われたと判定してもよい。
電力供給停止時の制御状態が保存されていると判定したら、CPU56は、バックアップRAM領域のデータチェック(この例ではパリティチェック)を行う(ステップS9)。この実施の形態では、クリアデータ(00)をチェックサムデータエリアにセットし、チェックサム算出開始アドレスをポインタにセットする。また、チェックサムの対象になるデータ数に対応するチェックサム算出回数をセットする。そして、チェックサムデータエリアの内容とポインタが指すRAM領域の内容との排他的論理和を演算する。演算結果をチェックサムデータエリアにストアするとともに、ポインタの値を1増やし、チェックサム算出回数の値を1減算する。以上の処理が、チェックサム算出回数の値が0になるまで繰り返される。チェックサム算出回数の値が0になったら、CPU56は、チェックサムデータエリアの内容の各ビットの値を反転し、反転後のデータをチェックサムにする。
電力供給停止時処理において、上記の処理と同様の処理によってチェックサムが算出され、チェックサムはバックアップRAM領域に保存されている。ステップS9では、算出したチェックサムと保存されているチェックサムとを比較する。不測の停電等の電力供給停止が生じた後に復旧した場合には、バックアップRAM領域のデータは保存されているはずであるから、チェック結果(比較結果)は正常(一致)になる。チェック結果が正常でないということは、バックアップRAM領域のデータが、電力供給停止時のデータとは異なっている可能性があることを意味する。そのような場合には、内部状態を電力供給停止時の状態に戻すことができないので、電力供給の停止からの復旧時でない電源投入時に実行される初期化処理(ステップS10〜S14の処理)を実行する。
チェック結果が正常であれば、CPU56は、遊技制御手段の内部状態と演出制御手段等の電気部品制御手段の制御状態を電力供給停止時の状態に戻すための遊技状態復旧処理を行う。具体的には、ROM54に格納されているバックアップ時設定テーブルの先頭アドレスをポインタに設定し(ステップS91)、バックアップ時設定テーブルの内容を順次作業領域(RAM55内の領域)に設定する(ステップS92)。作業領域はバックアップ電源によって電源バックアップされている。バックアップ時設定テーブルには、作業領域のうち初期化してもよい領域についての初期化データが設定されている。ステップS91およびS92の処理によって、作業領域のうち初期化してはならない部分については、保存されていた内容がそのまま残る。初期化してはならない部分とは、例えば、電力供給停止前の遊技状態を示すデータ(特別図柄プロセスフラグなど)、出力ポートの出力状態が保存されている領域(出力ポートバッファ)、未払出賞球数を示すデータが設定されている部分などである。
また、CPU56は、ROM54に格納されているバックアップ時コマンド送信テーブルの先頭アドレスをポインタに設定し(ステップS93)、ステップS15に移行する。なお、ステップS93で設定された後、後述するステップS15aのシリアル通信回路設定処理が行われてからバックアップコマンドが送信されることになる。
初期化処理では、CPU56は、まず、RAMクリア処理を行う(ステップS10)。なお、RAM55の全領域を初期化せず、所定のデータをそのままにしてもよい。また、ROM54に格納されている初期化時設定テーブルの先頭アドレスをポインタに設定し(ステップS11)、初期化時設定テーブルの内容を順次業領域に設定する(ステップS12)。
ステップS11およびS12の処理によって、例えば、普通図柄判定用乱数カウンタ、普通図柄判定用バッファ、特別図柄バッファ、特別図柄プロセスフラグ、賞球中フラグ、球切れフラグなど制御状態に応じて選択的に処理を行うためのフラグに初期値が設定される。
また、CPU56は、ROM54に格納されている初期化時コマンド送信テーブルの先頭アドレスをポインタに設定し(ステップS13)、その内容に従ってサブ基板を初期化するための初期化コマンドをサブ基板に送信する処理を実行する(ステップS14)。初期化コマンドとして、演出表示装置9に表示される初期図柄を示すコマンドや払出制御基板37への初期化コマンド等を使用することができる。なお、ステップS13で設定された後、後述するステップS15aのシリアル通信回路設定処理が行われてから初期化コマンドが送信されることになる。
また、CPU56は、セキュリティ信号情報タイマに所定時間(本例では、30秒)をセットする(ステップS14a)。セキュリティ信号情報タイマは、ターミナル基板160から出力するセキュリティ信号のオン時間を計測するためのタイマである。この実施の形態では、ステップS14aでセキュリティ信号情報タイマに所定時間がセットされたことにもとづいて、後述する情報出力処理(S31参照)が実行されることによって、遊技機の電源投入時に初期化処理が実行されたときに、セキュリティ信号が所定時間(本例では、30秒)外部出力される。
また、CPU56は、各乱数回路503a,503bを初期設定する乱数回路設定処理を実行する(ステップS15)。この場合、CPU56は、乱数回路設定プログラム551に従って処理を実行することによって、各乱数回路503a,503bにランダムRの値を更新させるための設定を行う。
また、CPU56は、シリアル通信回路505を初期設定するシリアル通信回路設定処理を実行する(ステップS15a)。この場合、CPU56は、シリアル通信回路設定プログラムに従ってROM54の所定領域に格納されているデータをシリアル通信回路505に設定することによって、シリアル通信回路505に払出制御用マイクロコンピュータとシリアル通信させるための設定を行う。
シリアル通信回路505を初期設定すると、CPU56は、シリアル通信回路505の割り込み要求に応じて実行する割込処理の優先順位を初期設定する(ステップS15b)。この場合、CPU56は、割込優先順位設定プログラム557に従って処理を実行することによって、割込処理の優先順位を初期設定する。
例えば、CPU56は、各割込処理のデフォルトの優先順位を含む所定の割込処理優先順位テーブルに従って、各割込処理の優先順位を初期設定する。この実施の形態では、CPU56は、割込処理優先順位テーブルに従って、シリアル通信回路505において通信エラーが発生したことを割込原因とする割込処理を優先して実行するように初期設定する。この場合、例えば、CPU56は、通信エラーが発生したことを割込原因とする割込処理を優先して実行する旨を示す通信エラー時割込優先実行フラグをセットする。
なお、この実施の形態では、タイマ割込とシリアル通信回路505からの割り込み要求とが同時に発生した場合、CPU56は、タイマ割込による割込処理を優先して行う。
また、ユーザによって各割込処理のデフォルトの優先順位を変更することもできる。例えば、遊技制御用マイクロコンピュータ560は、ユーザ(例えば、遊技機の製作者)によって設定された割込処理を指定する指定情報を、あらかじめROM54の所定の記憶領域に記憶している。そして、CPU56は、ROM54の所定の記憶領域に記憶された指定情報に従って、割込処理の優先順位を設定する。
なお、ステップS15〜S15bだけでなく、乱数回路503やシリアル通信回路505の設定処理の一部は、ステップS5の処理においても実行される。例えば、ステップS5において、内蔵デバイスレジスタとして、シリアル通信回路505のボーレートレジスタや通信設定レジスタ、割込制御レジスタ、ステータスレジスタに、初期値を設定する処理が実行される。
例えば、内蔵デバイスレジスタの設定において、CPU56は、シリアル通信回路505のボーレートを設定する。この場合、CPU56は、シリアル通信回路505のボーレートレジスタ702に、設定するボーレートに対応する設定値を書き込む。例えば、遊技制御用マイクロコンピュータ560は、ユーザ(例えば、遊技機の製作者)によって設定された設定値を指定する指定情報を、あらかじめROM54の所定の記憶領域に記憶している。そして、CPU56は、ROM54の所定の記憶領域に記憶された指定情報に従って、設定値をボーレートレジスタ702に書き込む。例えば、CPU56によってボーレート設定値「156」が設定された場合、ボーレート生成回路703によって、式(1)およびクロック周波数「3MHz」を用いてボーレート「1201.92bps」が生成される。
また、例えば、CPU56は、シリアル通信回路505が送受信するデータのデータフォーマットを設定する。この場合、CPU56は、制御レジスタA707の各ビットの値を設定することによって、送受信データのデータ長(8ビットまたは9ビット)、パリティ機能の使用の有無を設定する。例えば、遊技制御用マイクロコンピュータ560は、ユーザ(例えば、遊技機の製作者)によって設定された制御レジスタA707の各ビットの値を指定する指定情報を、あらかじめROM54の所定の記憶領域に記憶している。そして、CPU56は、ROM54の所定の記憶領域に記憶された指定情報に従って、制御レジスタA707の各ビットの値を設定する。
また、例えば、CPU56は、シリアル通信回路505が発生する各割込要求を許可するか否かを設定する。この場合、CPU56は、制御レジスタB708のビット5,6,7の値を設定することによって、送信時割り込み要求(データの送信時に行う割り込み要求である送信割り込み要求や、送信完了時に行う送信完了割り込み要求)および受信時割り込み要求を許可するか否かを設定する。なお、CPU56は、送信時割り込み要求と受信時割り込み要求との両方を許可するように設定することも可能であり、送信時割り込み要求と受信時割り込み要求とのいずれか一方のみを許可するように設定することも可能である。また、CPU56は、制御レジスタC709のビット0〜3の値を設定することによって、各通信エラー時割り込み要求を許可するか否かを設定する。例えば、遊技制御用マイクロコンピュータ560は、ユーザ(例えば、遊技機の製作者)によって設定された制御レジスタB708および制御レジスタC709の各ビットの値を指定する指定情報を、あらかじめROM54の所定の記憶領域に記憶している。そして、CPU56は、ROM54の所定の記憶領域に記憶された指定情報に従って、制御レジスタB708および制御レジスタC709の各ビットの値を設定する。
また、メイン処理の初期化処理において、後述する賞球不足エラーや賞球過剰エラーを検出するために用いられる賞球個数カウンタに初期値として「250」が設定される処理も実行される。なお、賞球個数カウンタに初期値を設定する処理を、例えば、ステップS92,S12の作業領域に各初期値を順次設定する処理において実行してもよく、ステップS15〜S17の処理に移行するまでの間に実行していればよい。
そして、CPU56は、所定時間(例えば4ms)ごとに定期的にタイマ割込がかかるように遊技制御用マイクロコンピュータ560に内蔵されているCTCのレジスタの設定を行なうタイマ割込設定処理を実行する(ステップS16)。すなわち、初期値として例えば4msに相当する値が所定のレジスタ(時間定数レジスタ)に設定される。この実施の形態では、4msごとに定期的にタイマ割込がかかるとする。
タイマ割込の設定が完了すると、CPU56は、まず、割込禁止状態にして(ステップS17)、初期値用乱数更新処理(ステップS18a)と表示用乱数更新処理(ステップS18b)を実行して、再び割込許可状態にする(ステップS19)。すなわち、CPU56は、初期値用乱数更新処理および表示用乱数更新処理が実行されるときには割込禁止状態にして、初期値用乱数更新処理および表示用乱数更新処理の実行が終了すると割込許可状態にする。
なお、初期値用乱数更新処理とは、初期値用乱数を発生するためのカウンタのカウント値を更新する処理である。初期値用乱数とは、大当りの種類を決定するための判定用乱数(例えば、大当りを発生させる特別図柄を決定するための大当り図柄決定用乱数や、遊技状態を確変状態に移行させるかを決定するための確変決定用乱数、普通図柄にもとづく当りを発生させるか否かを決定するための普通図柄当たり判定用乱数)を発生するためのカウンタ(判定用乱数発生カウンタ)等のカウント値の初期値を決定するための乱数である。後述する遊技制御処理(遊技制御用マイクロコンピュータが、遊技機に設けられている演出表示装置9、可変入賞球装置15、球払出装置97等の遊技用の装置を、自身で制御する処理、または他のマイクロコンピュータに制御させるために指令信号を送信する処理、遊技装置制御処理ともいう)において、判定用乱数発生カウンタのカウント値が1周すると、そのカウンタに初期値が設定される。
また、表示用乱数とは、第1特別図柄表示器8a、第2特別図柄表示器8bの表示を決定するための乱数である。この実施の形態では、表示用乱数として、特別図柄の変動パターンを決定するための変動パターン決定用乱数や、大当りを発生させない場合にリーチとするか否かを決定するためのリーチ判定用乱数が用いられる。また、表示用乱数更新処理とは、表示用乱数を発生するためのカウンタのカウント値を更新する処理である。
また、表示用乱数更新処理が実行されるときに割込禁止状態にされるのは、表示用乱数更新処理および初期値用乱数更新処理が後述するタイマ割込処理でも実行される(すなわち、タイマ割込処理のステップS26,S27でも同じ処理が実行される)ことから、タイマ割込処理における処理と競合してしまうのを避けるためである。すなわち、ステップS18a,S18bの処理中にタイマ割込が発生してタイマ割込処理中で初期値用乱数や表示用乱数を発生するためのカウンタのカウント値を更新してしまったのでは、カウント値の連続性が損なわれる場合がある。しかし、ステップS18a,S18bの処理中では割込禁止状態にしておけば、そのような不都合が生ずることはない。
ステップS19で割込許可状態に設定されると、次にステップS17の処理が実行されて割込禁止状態とされるまで、タイマ割込またはシリアル通信回路505からの割り込み要求を許可する状態となる。そして、割込許可状態に設定されている間に、タイマ割込が発生すると、遊技制御用マイクロコンピュータ560のCPU56は、後述するタイマ割込処理を実行する。また、割込許可状態に設定されている間に、シリアル通信回路505から割り込み要求が発生すると、遊技制御用マイクロコンピュータ560のCPU56は、後述する各割込処理(通信エラー割込処理や、受信時割込処理、送信完了割込処理)を実行する。また、本実施の形態では、ステップS17からステップS19までのループ処理の前にステップS15bを実行することによって、タイマ割込または割り込み要求を許可する状態に設定される前に、割込処理の優先順位を設定または変更する処理が行われる。
次に、タイマ割込処理について説明する。図41は、タイマ割込処理を示すフローチャートである。メイン処理の実行中に、具体的には、ステップS17〜S19のループ処理の実行中における割込許可になっている期間において、タイマ割込が発生すると、遊技制御用マイクロコンピュータ560のCPU56は、タイマ割込の発生に応じて起動されるタイマ割込処理を実行する。タイマ割込処理において、CPU56は、まず、電源断信号が出力されたか否か(オン状態になったか否か)を検出する電源断処理(電源断検出処理)を実行する(ステップS20)。そして、CPU56は、入力ドライバ回路58を介して、ゲートスイッチ32a、第1始動口スイッチ14a、第1入賞確認スイッチ14b、第2始動口スイッチ15a、第2入賞確認スイッチ15b、カウントスイッチ23、第3入賞確認スイッチ23aおよび入賞口スイッチ30a,30b等のスイッチの検出信号を入力し、各スイッチの入力を検出する(スイッチ処理:ステップS21)。具体的には、各スイッチの検出信号を入力する入力ポートの状態がオン状態であれば、各スイッチに対応して設けられているスイッチタイマの値を+1する。
次に、CPU56は、第1特別図柄表示器8a、第2特別図柄表示器8b、普通図柄表示器10、特別図柄保留記憶表示器18、普通図柄保留記憶表示器41の表示制御を行う表示制御処理を実行する(ステップS22)。第1特別図柄表示器8a、第2特別図柄表示器8bおよび普通図柄表示器10については、ステップS36,S37で設定される出力バッファの内容に応じて各表示器に対して駆動信号を出力する制御を実行する。
次いで、CPU56は、磁石センサから検出信号を入力したことにもとづいて磁石センサエラー報知を行う磁石センサエラー報知処理を実行する(ステップS24)。
次いで、CPU56は、遊技制御に用いられる普通図柄当り判定用乱数等の各判定用乱数を生成するための各カウンタのカウント値を更新する処理を行う(判定用乱数更新処理:ステップS25)。また、CPU56は、初期値用乱数を発生するためのカウンタのカウント値を更新する処理を行う(初期値用乱数更新処理:ステップS26)。さらに、CPU56は、表示用乱数を生成するためのカウンタのカウント値を更新する処理を行う(表示用乱数更新処理:ステップS27)。
次いで、CPU56は、特別図柄プロセス処理を行う(ステップS28)。特別図柄プロセス処理では、遊技状態に応じてパチンコ遊技機1を所定の順序で制御するための特別図柄プロセスフラグに従って該当する処理が選び出されて実行される。そして、特別図柄プロセスフラグの値は、遊技状態に応じて各処理中に更新される。また、普通図柄プロセス処理を行う(ステップS29)。普通図柄プロセス処理では、普通図柄表示器10の表示状態を所定の順序で制御するための普通図柄プロセスフラグに従って該当する処理が選び出されて実行される。そして、普通図柄プロセスフラグの値は、遊技状態に応じて各処理中に更新される。
次いで、CPU56は、特別図柄の変動に同期する演出図柄に関する演出制御コマンドをシリアル通信回路505の送信データレジスタに設定して演出制御コマンドを送出する処理を行う(演出図柄コマンド制御処理:ステップS30)。なお、演出図柄の変動が特別図柄の変動に同期するとは、変動時間(可変表示期間)が同じであることを意味する。
次いで、CPU56は、例えばホール管理用コンピュータに供給される始動口信号、図柄確定回数1信号、大当り1〜3信号、時短信号、セキュリティ信号などのデータを出力する情報出力処理を行う(ステップS31)。
次いで、CPU56は、シリアル通信回路505を介して、払出制御用マイクロコンピュータ370と信号を送受信(入出力)する処理を実行するとともに、入賞が発生した場合には入賞口スイッチ30a,30b等の検出信号にもとづく賞球個数の設定などを行う賞球処理を実行する(ステップS32)。なお、この実施の形態では、入賞口スイッチ30a,30b等がオンしたことにもとづく入賞検出に応じて、賞球個数コマンドの下位4ビットを異ならせることにより賞球個数を示すデータを賞球個数コマンドに設定し、当該設定した賞球個数コマンドをシリアル通信回路505を介して払出制御用マイクロコンピュータ370に出力する。払出制御基板37に搭載されている払出制御用マイクロコンピュータ370は、賞球個数を示すデータが設定された賞球個数コマンドの受信に応じて球払出装置97を駆動する。
また、遊技機の制御状態を遊技機外部で確認できるようにするための試験信号を出力する処理である試験端子処理を実行する(ステップS33)。また、この実施の形態では、出力ポートの出力状態に対応したRAM領域(出力ポートバッファ)が設けられているのであるが、CPU56は、出力ポート0のRAM領域における接続信号に関する内容およびソレノイドに関する内容を出力ポートに出力する(ステップS34:出力処理)。そして、CPU56は、保留記憶数の増減をチェックする記憶処理を実行する(ステップS35)。
また、CPU56は、特別図柄プロセスフラグの値に応じて特別図柄の演出表示を行うための特別図柄表示制御データを特別図柄表示制御データ設定用の出力バッファに設定する特別図柄表示制御処理を行う(ステップS36)。さらに、CPU56は、普通図柄プロセスフラグの値に応じて普通図柄の演出表示を行うための普通図柄表示制御データを普通図柄表示制御データ設定用の出力バッファに設定する普通図柄表示制御処理を行う(ステップS37)。
次いで、CPU56は、各状態表示灯の表示を行うための状態表示制御データを状態表示制御データ設定用の出力バッファに設定する状態表示灯表示処理を行う(ステップS38)。この場合、遊技状態が時短状態である場合には、時短状態であることを示す状態表示灯の表示を行うための状態表示制御データを出力バッファに設定する。なお、遊技状態が高確率状態(例えば、確変状態)にも制御される場合には、高確率状態であることを示す状態表示灯の表示を行うための状態表示制御データを出力バッファに設定するようにしてもよい。
次いで、CPU56は、遊技機のエラー状態などを表示させるために遊技機のエラー状態などを示す情報が設定された枠状態表示コマンドを演出制御用マイクロコンピュータ100に対して送信する枠状態出力処理を実行する(ステップS39)。
その後、割込許可状態に設定し(ステップS40)、処理を終了する。
次に、メイン処理における賞球処理(ステップS32)を説明する。まず、主基板31と払出制御基板37との間で送受信される払出制御信号(接続信号、賞球情報)および払出制御コマンドについて説明する。
図42は、遊技制御手段から払出制御手段に対して出力される制御信号の内容の一例を示す説明図である。この実施の形態では、払出制御等に関する各種の制御を行うために、主基板31と払出制御基板37との間で制御信号として接続信号および賞球情報が送受信される。図42に示すように、接続信号は、主基板31の立ち上がり時(遊技制御手段が遊技制御処理を開始したとき)に出力され、払出制御基板37に対して主基板31が立ち上がったことを通知するための信号(主基板31の接続信号)である。また、接続信号は、賞球払出が可能な状態であることを示す。なお、接続信号は、遊技制御用マイクロコンピュータ560のI/Oポート57および出力回路67Aを介して出力され、払出制御用マイクロコンピュータ370の入力回路373AおよびI/Oポート372eを介して払出制御用マイクロコンピュータ370に入力される。接続信号は、1ビットのデータであり、1本の信号線によって送信される。なお、接続信号は、電源投入時に実行されるステップS4の処理によって出力ポート0の接続信号に対応するビットに初期値が設定されることによって出力可能な状態となる(具体的にはステップS34の処理によって出力されるが、ステップS4のタイミングで出力されるようにしてもよい)。また、賞球情報は、払出制御基板37側において賞球の払出を1個検出するごとに、主基板31に対して、10個の賞球払出を検出したことを通知するための情報である。なお、賞球情報は、払出制御用マイクロコンピュータ370のI/Oポート372aおよび出力回路373Bを介して出力され、遊技制御用マイクロコンピュータ560の入力回路67BおよびI/Oポート57を介して遊技制御用マイクロコンピュータ560に入力される。賞球情報は、1ビットのデータであり、1本の信号線によって送信される。
払出制御用マイクロコンピュータ370は、遊技制御用マイクロコンピュータ560と同様に、シリアル通信回路380を内蔵する。また、遊技制御用マイクロコンピュータ560が内蔵するシリアル通信回路505と、払出制御用マイクロコンピュータ370が内蔵するシリアル通信回路380との間で、各種払出制御コマンドが送受信される。なお、払出制御用マイクロコンピュータ370が内蔵するシリアル通信回路380の構成及び機能は、遊技制御用マイクロコンピュータ560が内蔵するシリアル通信回路505の構成及び機能と同様である。
図43は、遊技制御手段と払出制御手段との間で送受信される制御コマンドの内容の一例を示す説明図である。この実施の形態では、払出制御等に関する各種の制御を行うために、主基板31と払出制御基板37とのマイクロコンピュータの間で各種払出制御コマンドが送受信される。
上述したように、払出制御コマンドは、8ビットのデータ(2進8桁のデータ)によって構成され、設定された8ビットのデータの内容によって所定の内容を示す制御コマンドとして出力される。
接続確認コマンドは、遊技制御用マイクロコンピュータ560と払出制御用マイクロコンピュータ370との間の接続状態が正常であるか否かを確認するために一定間隔(1s)毎に遊技制御用マイクロコンピュータ560から送信される制御コマンドである。接続確認コマンドのデータの内容は「A0(H)」すなわち「10100000」とされている。
接続OKコマンドは、遊技制御用マイクロコンピュータ560と払出制御用マイクロコンピュータ370との間の接続状態が正常であることを通知するための制御コマンドであって、払出制御用マイクロコンピュータ370が接続確認コマンドの受信に応じて応答信号として送信する制御コマンドである。接続OKコマンドのデータの内容は「8x(H)」すなわち「1000xxxx」とされている。ここで、接続OKコマンドの2バイト目の「xxxx」については、図44に示すように、賞球エラー(入賞にもとづく賞球払出動作や球貸し要求にもとづく球貸払出動作が正常に行えない状態になった異常状態:具体的には、図99に示す主制御未接続エラーや、払出スイッチ異常検知エラー1、払出スイッチ異常検知エラー2、払出ケースエラー、主制御通信エラー)が発生した場合には、1ビット目(ビット0)の「x」に「1」が設定される。また、満タンエラーが発生した場合には、2ビット目(ビット1)の「x」に「1」が設定される。また、球切れエラーが発生した場合には、3ビット目(ビット2)の「x」に「1」が設定される。また、後述する賞球や貸し球の払出数の個数異常の累積値が所定値(例えば、2000個)に達した場合の払出個数異常エラーが発生した場合には、4ビット目(ビット3)の「x」に「1」が設定される。このようにして、遊技制御用マイクロコンピュータ560と払出制御用マイクロコンピュータ370との間の接続確認を行っている最中に、払出制御用マイクロコンピュータ370における所定のエラーの発生を遊技制御用マイクロコンピュータ560に通知することができる。なお、図44に示す例では、接続OKコマンドに、制御状態として払い出しに関するエラー(賞球エラーや、満タンエラー、球切れエラー、払出個数異常エラー)を示す値を設定する場合を示したが、エラー以外の制御状態を接続OKコマンドに設定するようにしてもよい。例えば、払出制御用マイクロコンピュータ370は、賞球払出動作中である旨や貸し球払出動作中である旨を示す値を制御状態として接続OKコマンドにセットして、遊技制御用マイクロコンピュータ560に送信するようにしてもよい。
賞球個数コマンドは、払出要求を行う遊技球の個数(0〜15個)を通知するための制御コマンドであって、遊技制御用マイクロコンピュータ560が入賞の発生にもとづいて送信する制御コマンドである。賞球個数コマンドのデータの内容は「5x(H)」すなわち「0101xxxx」とされている。この実施の形態では、第1始動口スイッチ14a、第2始動口スイッチ15aで遊技球が検出されると3個の賞球払出を行い、入賞口スイッチ30a,30bのいずれかで遊技球が検出されると10個の賞球払出を行い、カウントスイッチ23で遊技球が検出されると15個の賞球払出を行う。よって、第1始動口スイッチ14a、第2始動口スイッチ15aで遊技球が検出された場合、賞球数3個を通知するための賞球個数コマンド「01010011」が送信され、入賞口スイッチ30a,30bのいずれかで遊技球が検出された場合、賞球数10個を通知するための賞球個数コマンド「01011010」が送信され、カウントスイッチ23で遊技球が検出された場合、賞球数15個を通知するための賞球個数コマンド「01011111」が送信される。
賞球個数受付コマンドは、賞球個数コマンドで指定された賞球個数を受け付けたことを通知するための制御コマンドであって、払出制御用マイクロコンピュータ370が賞球個数コマンドの受信に応じて応答信号として送信する制御コマンドである。賞球個数受付コマンドのデータの内容は「70(H)」すなわち、「01110000」とされている。
賞球終了コマンドは、賞球動作(賞球払出動作)が終了したことを示す制御コマンドであって、払出制御用マイクロコンピュータ370が賞球動作の終了にもとづいて送信する制御コマンドである。賞球終了コマンドのデータの内容は「50(H)」すなわち「01010000」とされている。
賞球準備中コマンドは、賞球動作に時間がかかっている場合や、貸し球動作中であったり所定のエラーが発生したりして賞球動作が終了していないことを通知する制御コマンドである。賞球準備中コマンドのデータの内容は「4x(H)」すなわち「0100xxxx」とされている。ここで、賞球準備中コマンドの2バイト目の「xxxx」については、図44に示すように、賞球エラーが発生した場合には、1ビット目(ビット0)の「x」に「1」が設定される。また、満タンエラーが発生した場合には、2ビット目(ビット1)の「x」に「1」が設定される。また、球切れエラーが発生した場合には、3ビット目(ビット2)の「x」に「1」が設定される。また、後述する賞球や貸し球の払出数の個数異常の累積値が所定値(例えば、2000個)に達した場合の払出個数異常エラーが発生した場合には、4ビット目(ビット3)の「x」に「1」が設定される。このようにして、払出制御用マイクロコンピュータ370から、賞球動作に時間がかかっている場合や、貸し球動作中であったり賞球動作の実行中に所定のエラーが発生したりして賞球動作が終了していないことを遊技制御用マイクロコンピュータ560に通知することができるとともに、エラーの内容も遊技制御用マイクロコンピュータ560に通知することができる。賞球準備中コマンドは、接続OKコマンドと同様に、下位4ビットの内容をエラー状態に応じて異ならせる(所定ビットを異ならせる)ことによって所定のエラーが発生したことを通知している。なお、賞球準備中コマンドは、エラーが発生して賞球動作が実行できない状態のみならず、貸し球払出動作中であるために賞球の払出動作を直ちに開始できない状態や、賞球動作の実行中の状態(賞球個数コマンドで指定された賞球個数の払出動作を完了していない状態)においても出力されるコマンド(信号)である。なお、図44に示す例では、賞球準備中コマンドに、制御状態として払い出しに関するエラー(賞球エラーや、満タンエラー、球切れエラー、払出個数異常エラー)を示す値を設定する場合を示したが、エラー以外の制御状態を接続OKコマンドに設定するようにしてもよい。例えば、払出制御用マイクロコンピュータ370は、賞球払出動作中である旨や貸し球払出動作中である旨を示す値を制御状態として賞球準備中コマンドにセットして、遊技制御用マイクロコンピュータ560に送信するようにしてもよい。
なお、この実施の形態では、接続確認信号は払出制御コマンドのうちの接続確認コマンドによって実現され、応答信号は接続OKコマンドによって実現され、払出数信号は賞球個数コマンドによって実現され、受付信号は賞球個数受付コマンドによって実現され、払出終了信号は賞球終了コマンドによって実現され、払出中信号は賞球準備中コマンドによって実現される。
図45は、図42に示す制御信号および図43に示す制御コマンドの送受信に用いられる信号線等を示すブロック図である。図45に示すように、接続信号は、遊技制御用マイクロコンピュータ560によって出力回路67Aを介して出力され、入力回路373Aを介して払出制御用マイクロコンピュータ370に入力される。また、賞球情報は、払出制御用マイクロコンピュータ370によって出力回路373Bを介して出力され、入力回路67Bを介して遊技制御用マイクロコンピュータ560に入力される。なお、後述する賞球信号1や遊技機エラー状態信号も、払出制御用マイクロコンピュータ370によって出力回路373Bを介して出力され、入力回路67Bを介して遊技制御用マイクロコンピュータ560に入力されるようにしてもよい。また、ドア開放信号も、払出制御用マイクロコンピュータ370によって出力回路373Bを介して出力され、入力回路67Bを介して遊技制御用マイクロコンピュータ560に入力されるようにしてもよい。
また、制御コマンドのうちの接続確認コマンドおよび賞球個数コマンドは、遊技制御用マイクロコンピュータ560が内蔵するシリアル通信回路505から出力され、払出制御用マイクロコンピュータ370が内蔵するシリアル通信回路380に入力される。制御コマンドのうちの接続OKコマンド、賞球個数受付コマンド、賞球終了コマンドおよび賞球準備中コマンドは、払出制御用マイクロコンピュータ370が内蔵するシリアル通信回路380から出力され、遊技制御用マイクロコンピュータ560が内蔵するシリアル通信回路505に入力される。なお、図45では、シリアル通信を行うための信号線として2本の信号線(遊技制御用マイクロコンピュータ560から払出制御用マイクロコンピュータ370側にコマンドを送信するための信号線と払出制御用マイクロコンピュータ370から遊技制御用マイクロコンピュータ560側にコマンドを送信するための信号線)を示しているが、実際は1本の信号線で払出制御コマンドを送受信する。なお、遊技制御用マイクロコンピュータ560から払出制御用マイクロコンピュータ370側にコマンドを送信するための信号線と、払出制御用マイクロコンピュータ370から遊技制御用マイクロコンピュータ560側にコマンドを送信するための信号線とを、別々の信号線として構成するようにしてもよい。
次に、通常動作時における遊技制御用マイクロコンピュータと払出制御用マイクロコンピュータとの払出制御コマンドの送受信について説明する。この実施の形態では、遊技制御用マイクロコンピュータ560から払出制御用マイクロコンピュータ370には接続確認コマンドと賞球個数コマンドとが送信され、払出制御用マイクロコンピュータ370から遊技制御用マイクロコンピュータ560には接続OKコマンドと賞球個数受付コマンドと賞球終了コマンドと賞球準備中コマンドとが送信される。
図46は、通常動作時における遊技制御用マイクロコンピュータと払出制御用マイクロコンピュータとの信号の送受信を示すシーケンス図である。図46に示すように、遊技制御用マイクロコンピュータ560は、シリアル通信回路505を介して、払出制御用マイクロコンピュータ370との間の信号線の接続が切れていないかどうかを確認するために、接続確認コマンドを払出制御用マイクロコンピュータ370に送信する。払出制御用マイクロコンピュータ370は、接続確認コマンドをシリアル通信回路380を介して受信すると、接続OKコマンドを遊技制御用マイクロコンピュータ560に送信する。遊技制御用マイクロコンピュータ560は、接続OKコマンドを受信すると、受信した時点から1s(1秒)経過後に接続確認コマンドを送信する。遊技制御用マイクロコンピュータ560および払出制御用マイクロコンピュータ370は、接続状態が正常である限り、上記のような接続確認の通信処理を繰り返し実行する。
図47および図48は、賞球動作時における遊技制御用マイクロコンピュータと払出制御用マイクロコンピュータとの信号の送受信を示すシーケンス図である。図47および図48に示すように、入賞が発生して賞球払出動作を実行するときに、遊技制御用マイクロコンピュータ560は、シリアル通信回路505を介して、賞球個数を示すデータが設定された賞球個数コマンドを払出制御用マイクロコンピュータ370に送信する。なお、この場合、遊技制御用マイクロコンピュータ560は、前回送信した接続確認コマンドに対して受信した接続OKコマンドの下位4ビットにエラーを示す値が設定されておらず(図44参照)、かつ当該接続OK信号を受信してから1秒が経過するまでの間に始動入賞していることを条件として、賞球個数コマンドを払出制御用マイクロコンピュータ370に送信する。
次いで、払出制御用マイクロコンピュータ370は、賞球個数コマンドを受信すると、直ちに賞球動作の実行が可能であれば(すなわち、貸し球の払出動作中でなくエラーも発生していなければ)、賞球個数を受け付けたことを示す賞球個数受付コマンドをシリアル通信回路380を介して遊技制御用マイクロコンピュータ560に送信する。なお、賞球個数受付コマンドを送信した時点から1s(1秒)以内に賞球払出が完了しない場合には、賞球個数受付コマンドを送信した時点から1s(1秒)経過後に賞球準備中コマンドを送信する。そして、以後、賞球払出が完了するまでの間、賞球準備中コマンドを送信した時点から1s(1秒)経過するごとに繰り返し賞球準備中コマンドを送信する。また、賞球個数コマンドで指定された個数の賞球の払出動作を実行し、賞球払出動作が終了すると、賞球払出動作の終了を示す賞球終了コマンドをシリアル通信回路380を介して遊技制御用マイクロコンピュータ560に送信する。
次いで、遊技制御用マイクロコンピュータ560は、賞球終了コマンドを受信したときに、図47に示すように、次に払い出すべき賞球個数がまだ記憶されていない場合には、賞球終了コマンドを受信した時点から1s(1秒)経過後に新たな接続確認コマンドの送信を再開する。一方、図48に示すように、次に払い出すべき賞球個数が既に記憶されている場合には、1s(1秒)待つことなく、直ちに次の賞球個数を指定する賞球個数コマンドを払出制御用マイクロコンピュータ370に送信する。なお、この場合にも、遊技制御用マイクロコンピュータ560は、前回受信した接続OKコマンドまたは賞球準備中コマンドの下位4ビットにエラーを示す値が設定されておらず(図44参照)、かつ賞球終了コマンドを受信してから1秒が経過するまでの間に始動入賞していることを条件として、賞球個数コマンドを払出制御用マイクロコンピュータ370に送信する。以降、同様のシーケンスに従って制御コマンドの送受信が繰り返される。
図49は、直ちに賞球動作を実行できない場合における遊技制御用マイクロコンピュータと払出制御用マイクロコンピュータとの信号の送受信を示すシーケンス図である。払出制御用マイクロコンピュータ370は、賞球個数コマンドを受信しても、貸し球の払出動作中である場合や、エラー状態である場合には、受信した賞球個数コマンドで指定された賞球個数の賞球払出の動作を開始できない。このような場合には、図49に示すように、払出制御用マイクロコンピュータ370は、賞球個数コマンドを受信しても、直ちに賞球個数受付コマンドを送信せず、賞球払出動作が終了していないことを通知する賞球準備中コマンドを遊技制御用マイクロコンピュータ560に送信する。この場合、払出制御用マイクロコンピュータ370は、貸し球の払出動作を終了して賞球動作を開始可能な状態となるか、エラーが解除されない限り、一定間隔で(1s毎に)賞球準備中コマンドを遊技制御用マイクロコンピュータ560に送信する。
次いで、払出制御用マイクロコンピュータ370は、貸し球の払出動作を終了して次の賞球動作を開始可能な状態となるか、エラーが解除されると、賞球個数を受け付けたことを示す賞球個数受付コマンドをシリアル通信回路380を介して遊技制御用マイクロコンピュータ560に送信する。なお、賞球個数受付コマンドを送信した時点から1s(1秒)以内に賞球払出が完了しない場合には、賞球個数受付コマンドを送信した時点から1s(1秒)経過後に賞球準備中コマンドを送信する。そして、以後、賞球払出が完了するまでの間、賞球準備中コマンドを送信した時点から1s(1秒)経過するごとに繰り返し賞球準備中コマンドを送信する。また、賞球個数コマンドで指定された個数の賞球の払出動作を実行し、賞球払出動作が終了すると、賞球払出動作の終了を示す賞球終了コマンドをシリアル通信回路380を介して遊技制御用マイクロコンピュータ560に送信する。
図50は、通常動作時における遊技制御用マイクロコンピュータと払出制御用マイクロコンピュータとの信号の送受信を示すタイミング図である。図50に示すように、遊技制御用マイクロコンピュータ560は、接続確認コマンドを払出制御用マイクロコンピュータ370に送信すると、払出制御用マイクロコンピュータ370から送信される接続OKコマンドを受信する。遊技制御用マイクロコンピュータ560は、接続OKコマンドを受信すると、受信した時点から1s(1秒)経過後に接続確認コマンドを再び送信する。遊技制御用マイクロコンピュータ560および払出制御用マイクロコンピュータ370は、接続状態が正常である限り、上記のような接続確認の通信処理を繰り返し実行する。
接続確認の通信処理を実行していないとき(接続OKコマンドを受信してから次の接続確認コマンドを送信するまでの間)に入賞があった場合には、遊技制御用マイクロコンピュータ560は、接続確認コマンドを繰り返し送信する制御を中断し、賞球個数を示すデータを賞球個数コマンドの下位4ビットに設定し、当該設定した賞球個数コマンドを払出制御用マイクロコンピュータ370に送信する。払出制御用マイクロコンピュータ370は、賞球個数コマンドを受信すると、賞球個数受付コマンドを遊技制御用マイクロコンピュータ560に送信する。この場合、遊技制御用マイクロコンピュータ560は、賞球個数受付コマンドを受信したことにもとづいて、賞球個数記憶を減算する処理を行う(具体的には、後述する賞球コマンド出力カウンタを1減算する処理を行う。ステップS52404参照)。そして、払出制御用マイクロコンピュータ370は、賞球個数コマンドで指定された個数の賞球の払い出しを行い、賞球の払い出し(賞球払出動作)が終了すると、賞球終了コマンドを遊技制御用マイクロコンピュータ560に送信する。なお、前述したように、賞球払出動作に時間がかかる場合には、賞球払出動作が完了するまで、払出制御用マイクロコンピュータ370は、1s(1秒)経過するごとに賞球準備中コマンドを繰り返し送信する。遊技制御用マイクロコンピュータ560は、賞球終了コマンドを受信すると、次に払い出すべき賞球個数がまだ記憶されていない場合には、受信した時点から1s(1秒)経過後に接続確認コマンドを送信する。
接続確認の通信処理の実行中(接続確認コマンドを送信してから接続OKコマンドを受信するまでの間)に入賞があった場合は、遊技制御用マイクロコンピュータ560は、払出制御用マイクロコンピュータ370との接続状態が確認できていない段階であるので、賞球個数コマンドを直ちに送信せずに、接続OKコマンドの受信を確認できるまで待つ。そして、払出制御用マイクロコンピュータ370からの接続OKコマンドを受信すると、遊技制御用マイクロコンピュータ560は、賞球個数を示すデータを賞球個数コマンドの下位4ビットに設定し、当該設定した賞球個数コマンドを払出制御用マイクロコンピュータ370に送信する。払出制御用マイクロコンピュータ370は、賞球個数コマンドを受信すると、賞球個数受付コマンドを遊技制御用マイクロコンピュータ560に送信する。そして、払出制御用マイクロコンピュータ370は、以下同様の処理を実行し、賞球個数コマンドで指定された個数の賞球の払い出しを行い、賞球の払い出し(賞球払出動作)が終了すると、賞球終了コマンドを遊技制御用マイクロコンピュータ560に送信する。
なお、賞球終了コマンドを受信した後、遊技制御用マイクロコンピュータ560は、前回受信した接続OKコマンドまたは賞球準備中コマンドの下位4ビットにエラーを示す値が設定されておらず(図44参照)、かつ賞球終了コマンドを受信してから1秒が経過するまでの間に始動入賞している場合にも、賞球個数コマンドを払出制御用マイクロコンピュータ370に送信する。すなわち、この実施の形態では、遊技制御用マイクロコンピュータ560は、エラーを示す値が設定されていない接続OK信号を受信してから1秒が経過するまでの間と、賞球終了コマンドを受信してから1秒を経過するまでの間とに、賞球個数コマンドを送信可能な状態になっている。
図51は、賞球中にエラーが発生した場合における遊技制御用マイクロコンピュータと払出制御用マイクロコンピュータとの信号の送受信を示すタイミング図である。図51に示すように、遊技制御用マイクロコンピュータ560は、接続確認コマンドを払出制御用マイクロコンピュータ370に送信すると、払出制御用マイクロコンピュータ370から送信される接続OKコマンドを受信する。接続確認の通信処理を実行していないときに入賞があった場合は、遊技制御用マイクロコンピュータ560は、賞球個数を示すデータを賞球個数コマンドの下位4ビットに設定し、当該設定した賞球個数コマンドを払出制御用マイクロコンピュータ370に送信する。払出制御用マイクロコンピュータ370は、賞球個数コマンドを受信すると、賞球個数受付コマンドを遊技制御用マイクロコンピュータ560に送信する。そして、払出制御用マイクロコンピュータ370は、賞球個数コマンドで指定された個数の賞球の払い出しを行う。賞球個数コマンドで指定された個数の賞球の払出動作を実行しているときに、所定のエラー(例えば、払出個数異常エラー、球貸し、満タン、球切れのエラー)が発生し、賞球払出動作ができない状態(異常状態、エラー状態)になった場合は、払出制御用マイクロコンピュータ370は、エラーが発生し賞球払出動作が終了していないことを通知する賞球準備中コマンドを遊技制御用マイクロコンピュータ560に送信する。この場合、払出制御用マイクロコンピュータ370は、発生したエラーが解除されない限り、一定間隔で(1s毎に)賞球準備中コマンドを遊技制御用マイクロコンピュータ560に送信する。所定のエラー状態が解除(解消)されて賞球払出動作が終了すると、払出制御用マイクロコンピュータ370は、賞球終了コマンドを遊技制御用マイクロコンピュータ560に送信する。なお、賞球準備中コマンドは、賞球個数受付コマンドを送信した後、払出制御用マイクロコンピュータ370から遊技制御用マイクロコンピュータ560に1s毎に送信されることになる。また、遊技制御用マイクロコンピュータ560が賞球準備中コマンドを受信している間には、接続確認コマンドを送信しないように制御される。具体的には、払出制御用マイクロコンピュータ370は賞球払出動作が終了したことにもとづいて賞球終了コマンドを出力するようにし、遊技制御用マイクロコンピュータ560は当該賞球終了コマンドを受信したことにもとづいて、所定周期(1S)毎に接続確認コマンドを出力する状態に復帰するように制御する。
図52は、接続確認中の通信エラー時における遊技制御用マイクロコンピュータと払出制御用マイクロコンピュータとの信号の送受信を示すタイミング図である。図52に示すように、遊技制御用マイクロコンピュータ560は、接続確認コマンドを払出制御用マイクロコンピュータ370に送信したが、払出制御用マイクロコンピュータ370からの接続OKコマンドを受信していない場合、つまり、接続状態の異常(通信エラー)が発生した場合には、接続確認コマンドを送信した時点から10s(10秒)経過後に再度、接続確認コマンドを送信する。すなわち、接続OKコマンドを受信できない場合に接続確認コマンドを1s(1秒)ごとに送信する処理を継続したのでは、通信状態が不安定な状態であるにもかかわらず接続確認コマンドの送信回数が無駄に多くなってしまうので、接続確認コマンドの送信間隔を10s(10秒)に広げて、通信状態が回復するまで必要最低限の送信回数の接続確認コマンドを送信する制御に切り替える。通信エラーが発生しているときに入賞が発生した場合には、遊技制御用マイクロコンピュータ560は、払出制御用マイクロコンピュータ370から接続OKコマンドを受信するまでは、新たな入賞が発生しても、賞球個数コマンドを送信せずに、一定間隔(10s)毎に接続確認コマンドを送信し続ける。通信エラーが解除(解消)され、払出制御用マイクロコンピュータ370から接続OKコマンドが送信されると、遊技制御用マイクロコンピュータ560は、賞球個数コマンドを送信する。
図53は、賞球個数通知中の通信エラー時における遊技制御用マイクロコンピュータと払出制御用マイクロコンピュータとの信号の送受信を示すタイミング図である。図53に示すように、遊技制御用マイクロコンピュータ560は、入賞が発生したことにもとづいて賞球個数コマンドを送信したが、払出制御用マイクロコンピュータ370からの賞球個数受付コマンドを受信していない場合、つまり、接続状態の異常(通信エラー)が発生した場合には、賞球個数コマンドを送信した時点から10s(10秒)経過後に、接続確認コマンドを払出制御用マイクロコンピュータ370に送信する。そして、通信状態が回復するまで10s(10秒)経過ごとに接続確認コマンドを繰り返し送信する。その後、通信エラーが解除(解消)され、払出制御用マイクロコンピュータ370から接続OKコマンドを受信した場合には、遊技制御用マイクロコンピュータ560は、通常(正常時)の動作に戻り、賞球個数コマンドを払出制御用マイクロコンピュータ370に再送信(リトライ)する。なお、具体的には、遊技制御用マイクロコンピュータ560は、賞球個数コマンドを送信しても賞球個数受付コマンドを受信できなかった場合には、賞球個数記憶を減算しないようにし(後述するステップS52403でNであればステップS52404の賞球コマンド出力カウンタの値を1減算しないようにし)、次に賞球個数コマンドの送信を行うときに賞球コマンド出力カウンタの値がそのまま維持されていることにもとづいて賞球個数コマンドを再送信する(後述するステップS52301〜S52035参照)。
次に、賞球処理(ステップS32)について説明する。図54は、ステップS32の賞球処理の一例を示すフローチャートである。賞球処理において、遊技制御用マイクロコンピュータ560(具体的には、CPU56)は、賞球コマンド出力カウンタ加算処理(ステップS501)、賞球制御処理(ステップS502)および賞球カウンタ減算処理(ステップS503)を実行する。
賞球コマンド出力カウンタ加算処理では、図55に示す賞球個数テーブルが使用される。賞球個数テーブルは、ROM54に設定されている。賞球個数テーブルの先頭アドレスには処理数(この例では「4」)が設定され、その後に、スイッチオンバッファの下位アドレスと、賞球コマンド出力カウンタと、賞球数を指定する賞球指定データとが、順次設定されている。賞球コマンド出力カウンタとは、入賞口への入賞数をカウントするカウンタであり、例えば、ROM54に設定される。また、遊技制御用マイクロコンピュータ560は、賞球数(0〜15個)毎に、対応する賞球コマンド出力カウンタを備える。この実施の形態では、遊技制御用マイクロコンピュータ560は、賞球数「15」に対応する賞球コマンド出力カウンタ1と、賞球数「10」に対応する賞球コマンド出力カウンタ2,3(2つの普通入賞口29,30に対応)と、賞球数「3」に対応する賞球コマンド出力カウンタ4とを備える。なお、各賞球コマンド出力カウンタは、後述するように、賞球コマンド出力カウンタ加算処理でカウントアップされる。CPU56は、賞球個数テーブルに設定されている賞球コマンド出力カウンタ1が0でなければ、賞球数(15個)を指定する賞球指定データにもとづいて賞球個数(15個)を示すデータを賞球個数コマンドの下位4ビットに設定し、当該設定された賞球個数コマンドを払出制御用マイクロコンピュータ370に送信する。また、CPU56は、賞球個数テーブルに設定されている賞球コマンド出力カウンタ1の値が0であり、賞球コマンド出力カウンタ2,3の値が0でなければ、賞球数(10個)を指定する賞球指定データにもとづいて賞球個数(10個)を示すデータを賞球個数コマンドの下位4ビットに設定し、当該設定された賞球個数コマンドを払出制御用マイクロコンピュータ370に送信する。また、CPU56は、賞球個数テーブルに設定されている賞球コマンド出力カウンタ1および賞球コマンド出力カウンタ2,3の値が0であり、賞球コマンド出力カウンタ4の値が0でなければ、賞球数(3個)を指定する賞球指定データにもとづいて賞球個数(3個)を示すデータを賞球個数コマンドの下位4ビットに設定し、当該設定された賞球個数コマンドを払出制御用マイクロコンピュータ370に送信する。また、図55において、スイッチオンバッファ1は入力ポート0に対応しており、スイッチオンバッファ2は入力ポート2に対応している。
図56は、ステップS501の賞球コマンド出力カウンタ加算処理を示すフローチャートである。賞球コマンド出力カウンタ加算処理において、遊技制御用マイクロコンピュータ560(具体的には、CPU56)は、賞球個数テーブルの先頭アドレスをポインタにセットする(ステップS5101)。そして、ポインタが指すアドレスのデータ(この場合には処理数)をロードする(ステップS5102)。
次いで、CPU56は、ポインタの値を1増やし(ステップS5103)、ポインタが指すスイッチオンバッファの下位アドレスをポインタバッファの下位バイトにロードし(ステップS5104)、ポインタバッファの指すスイッチオンバッファをレジスタにロードする(ステップS5105)。次いで、CPU56は、ポインタの値を1増やし(ステップS5106)、ポインタが指す賞球コマンド出力カウンタの下位アドレスをポインタバッファの下位バイトにロードする(ステップS5107)。次いで、CPU56は、ポインタの値を1増やし(ステップS5108)、レジスタにロードしたスイッチオンバッファの内容と、ポインタが指す賞球指定データとの論理積をとる(ステップS5109)。
ステップS5109における演算結果が0であれば(ステップS5110のY)、すなわち、検査対象のスイッチの検出信号がオン状態でなければ、処理数を1減らし(ステップS5114)、処理数が0であれば処理を終了し、処理数が0でなければステップS5103に戻る(ステップS5115)。
ステップS5109における演算結果が0でなければ(ステップS5110のN)、すなわち、検査対象のスイッチの検出信号がオン状態であれば、CPU56は、ポインタが指す賞球コマンド出力カウンタの値を1加算する(ステップS111)。ただし、CPU56は、加算の結果、賞球コマンド出力カウンタの値に桁上げが発生した場合には、賞球コマンド出力カウンタの値を1減算し元に戻す(ステップS5112,S5113)。そしてステップS5113の処理に移行する。
図57は、ステップS502の賞球制御処理を示すフローチャートである。賞球制御処理では、遊技制御用マイクロコンピュータ560(具体的には、CPU56)は、賞球プロセスコードの値に応じて、ステップS521〜S525のいずれかの処理を実行する。
図58は、賞球プロセスコードの値が0の場合に実行される賞球送信処理1(ステップS521)を示すフローチャートである。CPU56は、賞球送信処理1において、接続確認コマンドを払出制御用マイクロコンピュータに送信する制御を行う(ステップS5211)。具体的には、CPU56は、シリアル通信回路505の送信データレジスタに接続確認コマンドを出力する処理を行う。そして、CPU56は、賞球プロセスコードに賞球接続確認処理を示す値「1」をセットし(ステップS5212)、賞球プロセスタイマに接続確認時間2(例えば10秒)をセットする(ステップS5213)。なお、ステップS5213でセットされた接続確認時間2にもとづいて、接続確認コマンドを送信した後、10秒を経過しても接続OKコマンドを受信できなかった場合には、以後、接続確認コマンドを送信する間隔を10秒に広げるように制御される。具体的には、ステップS5213でセットされた賞球プロセスタイマは、後述するステップS5227,S5229の処理で計測され、接続OKコマンドを受信することなく10秒が経過してタイムアウトしステップS5227でYと判定されると、賞球送信処理1に戻り次の接続確認コマンドが送信される(ステップS5228,S5211参照)。
なお、賞球プロセスタイマには、遊技制御用マイクロコンピュータ560で実行されるタイマ割込処理における割込周期も考慮した値(例えば、割込周期の整数倍)がセットされる。このことは、遊技制御用マイクロコンピュータ560や、払出制御用マイクロコンピュータ370、演出制御用マイクロコンピュータ100で用いられる他のタイマ(例えば、主制御通信制御タイマや、払出制御タイマ、再払出待ちタイマ、賞球情報出力タイマ、賞球信号1出力タイマ)についても同様である。
図59は、賞球プロセスコードの値が1の場合に実行される賞球接続確認処理(ステップS522)を示すフローチャートである。CPU56は、賞球接続確認処理において、まず、シリアル通信回路505の受信データレジスタにデータがあるか否かを確認する(ステップS5221)。具体的には、CPU56は、シリアル通信回路505のステータスレジスタAのビット5の値を確認するようにすればよい(図15参照)。受信データレジスタにデータがなければ(すなわち、コマンドを受信していなければ)、ステップS5227に移行する。
受信データレジスタにデータがあれば(すなわち、コマンドを受信していれば)、CPU56は、シリアル通信回路505のエラーが発生しているか否かを確認する(ステップS5222)。具体的には、CPU56は、シリアル通信回路505のステータスレジスタAのビット0〜4のいずれかのエラービットの値がセットされているか否かを確認するようにすればよい(図15参照)。エラーが発生していれば、ステップS5227に移行する。
シリアル通信回路505のエラーも発生していなければ、CPU56は、シリアル通信回路505の受信データレジスタからコマンドを読み出し、受信したコマンドが接続OKコマンドであるか否かを確認する(ステップS5223)。接続OKコマンドでなければ、ステップS5227に移行する。
接続OKコマンドを受信していれば、CPU56は、接続OKコマンドの下位4ビットに設定されているエラー情報(図44参照)を枠状態表示バッファに格納する(ステップS5224)。
次いで、CPU56は、賞球プロセスコードに賞球送信処理2を示す値「2」をセットし(ステップS5225)、賞球プロセスタイマに接続確認時間1(例えば1秒)をセットする(ステップS5226)。なお、ステップS5226でセットされた接続確認時間1にもとづいて、接続OKコマンドの受信後に1秒経過するごとに次の接続確認コマンドを繰り返し送信する制御が行われる。具体的には、ステップS5226でセットされた賞球プロセスタイマは、後述するステップS52313,S52315の処理で計測され、賞球個数コマンドを送信することなく1秒が経過してタイムアウトしステップS52313でYと判定されると、賞球送信処理1に戻り次の接続確認コマンドが送信される(ステップS52314,S5211参照)。
ステップS5227では、CPU56は、賞球プロセスタイマがタイムアウトしたか否かを確認する。賞球プロセスタイマがタイムアウトしていれば(すなわち、接続確認コマンドを送信した後、10秒を経過しても接続OKコマンドを受信できなかった場合)、CPU56は、賞球プロセスコードに賞球送信処理1を示す値「0」をセットし(ステップS5228)、処理を終了する。賞球プロセスタイマがタイムアウトしていなければ、CPU56は、賞球プロセスタイマの値を1減算する(ステップS5229)。
図60は、賞球プロセスコードの値が2の場合に実行される賞球送信処理2(ステップS523)を示すフローチャートである。CPU56は、賞球送信処理2において、賞球コマンド出力カウンタ1〜4の中にカウント値が0でないものがあるか否かを確認する(ステップS52301)。カウント値が0でないものがなければ、ステップS52313に移行する。
賞球コマンド出力カウンタ1〜4の中にカウント値が0でないものがある場合には(すなわち、カウント値が1以上のものがある場合には)、CPU56は、枠状態表示バッファの内容をロードし、枠状態表示バッファの内容が0であるか否かを確認する(ステップS52302)。枠状態表示バッファの内容が0でなければ、そのまま処理を終了する。そのように制御することによって、エラー情報が設定された接続OKコマンドを受信し、払出制御用マイクロコンピュータ370側で払出停止状態に制御されている場合には、ステップS52303以降の処理に移行しないようにし、賞球個数コマンドの送信を保留するように制御する。
枠状態表示バッファの内容が0であれば(すなわち、払出に関するエラーが発生していなければ)、払出制御用CPU371は、そのカウント値が0でない賞球コマンド出力カウンタに対応する賞球個数を個数バッファにセットする(ステップS52303)。具体的には、ステップS52301において、CPU56は、まず、賞球コマンド出力カウンタ1のカウント値が0であるか否かを確認する。そして、賞球コマンド出力カウンタ1のカウント値が1以上であった場合には、ステップS52303において、CPU56は、個数バッファに賞球個数15個をセットする。また、ステップS52301において、CPU56は、賞球コマンド出力カウンタ1のカウント値が0であった場合には、賞球コマンド出力カウンタ2,3のカウント値が0であるか否かを確認する。そして、賞球コマンド出力カウンタ2,3のカウント値が1以上であった場合には、ステップS52303において、CPU56は、個数バッファに賞球個数10個をセットする。さらに、ステップS52301において、CPU56は、賞球コマンド出力カウンタ2,3のカウント値も0であった場合には、賞球コマンド出力カウンタ4のカウント値が0であるか否かを確認する。そして、賞球コマンド出力カウンタ4のカウント値が1以上であった場合には、ステップS52303において、CPU56は、個数バッファに賞球個数3個をセットする。
また、CPU56は、そのカウント値が0でない賞球コマンド出力カウンタに対応する賞球個数を賞球個数コマンドにセットする(ステップS52304)とともに、賞球個数をセットした賞球個数コマンドを払出制御用マイクロコンピュータ370に送信する制御を行う(ステップS52305)。具体的には、CPU56は、シリアル通信回路505の送信データレジスタに、賞球個数をセットした賞球個数コマンドを出力する処理を行う。
なお、ステップS52301,S52305の処理が実行されることによって、この実施の形態では、接続確認コマンドの送信タイミングにかかわりなく、賞球コマンド出力カウンタの中にカウント値が0でないものがあれば(すなわち、賞球個数記憶があり、所定の払出条件が成立していれば)、賞球個数コマンドが払出制御用マイクロコンピュータ370に送信される。
そして、CPU56は、賞球プロセスコードに賞球受領確認処理を示す値「3」をセットし(ステップS52306)、賞球プロセスタイマに接続確認時間2(例えば10秒)をセットする(ステップS52307)。なお、ステップS52307でセットされた接続確認時間2にもとづいて、賞球個数コマンドを送信した後、10秒以内に賞球個数受付コマンドや賞球準備中コマンドを受信したか否かが確認される。具体的には、ステップS52307でセットされた賞球プロセスタイマは、後述するステップS52409,S52411の処理で計測され、賞球個数受付コマンドや賞球準備中コマンドを受信することなく10秒が経過してタイムアウトしステップS52409でYと判定されると、賞球送信処理1に戻り次の接続確認コマンドが送信される(ステップS52410,S5211参照)。
なお、ステップS52306の処理が実行されることによってステップS52305で賞球個数コマンドが送信されると、接続確認コマンドの送信処理を含む賞球送信処理1に戻ることなく、賞球受領確認処理に移行される。従って、この実施の形態では、賞球個数コマンドを送信するまでは所定時間(例えば1秒)ごとに繰り返し接続確認コマンドを送信する処理が実行されているのであるが、賞球個数コマンドを送信したことにもとづいて接続確認コマンドを送信する制御が停止される(より具体的には、賞球個数コマンドを送信した後、後述する賞球個数受付コマンドを受信したことにより賞球終了確認処理に移行する(ステップS52403〜S52405参照)ことによって、または賞球準備中コマンドを受信したことにより賞球受領確認処理を繰り返す(ステップS52406〜S52408参照)ことによって、賞球送信処理1に戻ることなく、接続確認コマンドを送信する制御が停止される。この場合、払出制御用マイクロコンピュータ370側から何も払出制御コマンドが返信されないという異常状態が発生しない限り、賞球個数コマンドを送信した後、賞球払出動作を終了して賞球終了コマンドを受信するまで、遊技制御用マイクロコンピュータ560から接続確認コマンドが送信されることはない。
次いで、CPU56は、ステップS52303でセットした個数バッファの値を賞球個数カウンタに加算し(ステップS52308)、加算後のカウント値が所定の賞球不足判定値(例えば501)以上であるか否かを確認する(ステップS52309)。この実施の形態において、賞球個数カウンタは、遊技制御用マイクロコンピュータ560側で未払い出しの賞球数を把握するために用いられるカウンタであり、賞球個数コマンドを送信する際に賞球個数コマンドで指定される賞球個数が加算され、賞球払出を10球検出するごとに払出制御用マイクロコンピュータ370から出力される賞球情報にもとづいて10ずつ減算される。また、前述したように、賞球個数カウンタには、メイン処理の初期設定処理において初期値として「250」がセットされている。そして、賞球個数カウンタのカウント値が所定の賞球不足判定値(例えば501)以上に達する場合には、未払い出しの賞球数が異常に多すぎるのであるから、賞球不足の事態が生じていると判定することができる。また、賞球個数カウンタのカウント値が所定の賞球過剰判定値(例えば0)未満となった場合には、本来払い出されるべき数を超えて異常に多くの遊技球が払い出されているのであるから、賞球過剰の事態が生じていると判定することができる。
なお、この実施の形態では、賞球個数コマンドを送信(ステップS52305参照)した直後に、賞球個数カウンタの加算処理(ステップS52308参照)する場合を示しているが、賞球個数コマンドが送信されるタイミングで加算するものであれば、例えば、まず賞球個数カウンタの加算処理を実行してから、その直後に賞球個数コマンドを送信するようにしてもよい。
また、賞球不足と判定される場合には、払出制御用マイクロコンピュータ370側に何らかの障害が生じて払出動作を正常に行えない場合の他、賞球情報を出力する信号線が断線している場合も考えられる。また、逆に、賞球過剰と判定される場合には、払出制御用マイクロコンピュータ370側に何らかの障害が生じて払出動作が必要以上に行われている場合の他、賞球個数コマンドを送信するコマンド線に何らかの不正が施されて不正に賞球個数コマンドが払出制御用マイクロコンピュータ370に入力されている場合も考えられる。
賞球個数カウンタのカウント値が所定の賞球不足判定値(例えば501)以上であった場合には、CPU56は、賞球不足や賞球過剰が発生していることを示す賞球エラーフラグが既にセットされているか否かを確認する(ステップS52310)。既に賞球エラーフラグがセットされていれば、そのまま処理を終了する。賞球エラーフラグがセットされていなければ、CPU56は、賞球エラーフラグをセットする(ステップS52311)とともに、賞球不足エラーコマンドを演出制御用マイクロコンピュータ100に送信する制御を行う(ステップS52312)。具体的には、CPU56は、賞球不足エラーコマンド送信テーブルのアドレスをポインタにセットする処理を行う。そして、ステップS52312で賞球不足エラーコマンド送信テーブルのアドレスがポインタにセットされたことにもとづいて、その後、ステップS30の演出図柄コマンド制御処理において、演出制御基板80との送受信用チャネルのシリアル通信回路505の送信データレジスタに賞球不足エラーコマンドが出力され、賞球不足エラーコマンドが演出制御用マイクロコンピュータ100に送信される。なお、賞球エラーフラグは、一度セットされると、遊技機への電力供給が停止された後、遊技機へ電源が再投入されるまで、クリアされずに維持される。また、この実施の形態では、遊技制御用マイクロコンピュータ560と演出制御用マイクロコンピュータ100との間の通信に関しては、遊技制御用マイクロコンピュータ560から演出制御用マイクロコンピュータ100に対してコマンドが送信されるのみで、その逆はない。そのため、遊技制御用マイクロコンピュータ560には、演出制御用マイクロコンピュータ100との通信に関しては、送信専用のシリアル通信回路が搭載されていてもよい。
なお、この実施の形態では、賞球不足エラーコマンドや、後述する賞球過剰エラーコマンドを受信したことにもとづいて、演出制御用マイクロコンピュータ100によって賞球不足や賞球過剰のエラー報知が行われるのであるが(ステップS623〜S626参照)、賞球不足や賞球過剰のエラー報知は、報知開始から所定期間を経過したときに復旧するようにしてもよい。また、例えば、賞球個数カウンタの値が所定の賞球不足判定値(例えば501)や所定の賞球過剰判定値(例えば0)の範囲内に復帰したときに、賞球不足や賞球過剰のエラー報知から復旧するようにしてもよい。
なお、この実施の形態では、ステップS52308において、賞球個数コマンドを送信したタイミングで賞球個数カウンタに賞球個数を加算する場合を示したが、賞球個数カウンタのカウントアップの仕方は、この実施の形態で示したものにかぎらず、例えば、逆に賞球個数を減算するようにしてもよい。この場合、例えば、後述するステップS5311の処理において、賞球情報を入力したことにもとづいて賞球個数カウンタの値に逆に10加算するようにすればよい。そして、ステップS52309の処理では賞球個数カウンタの値が0未満であれば賞球不足エラーと判定するようにし、後述するステップS5312の処理では賞球個数カウンタの値が501以上であれば賞球過剰エラーと判定するようにすればよい。
ステップS52313では、CPU56は、賞球プロセスタイマがタイムアウトしたか否かを確認する。賞球プロセスタイマがタイムアウトしていれば(すなわち、接続OKコマンドを受信した後、1秒を経過するまでに、賞球個数の記憶もなく、新たな入賞も発生しなかった場合)、CPU56は、賞球プロセスコードに賞球送信処理1を示す値「0」をセットし(ステップS52314)、処理を終了する。賞球プロセスタイマがタイムアウトしていなければ、CPU56は、賞球プロセスタイマの値を1減算する(ステップS52315)。
図61は、賞球プロセスコードの値が3の場合に実行される賞球受領確認処理(ステップS524)を示すフローチャートである。CPU56は、賞球受領確認処理において、まず、シリアル通信回路505の受信データレジスタにデータがあるか否かを確認する(ステップS52401)。具体的には、CPU56は、シリアル通信回路505のステータスレジスタAのビット5の値を確認するようにすればよい(図15参照)。受信データレジスタにデータがなければ(すなわち、コマンドを受信していなければ)、ステップS52409に移行する。
受信データレジスタにデータがあれば(すなわち、コマンドを受信していれば)、CPU56は、シリアル通信回路505のエラーが発生しているか否かを確認する(ステップS52402)。具体的には、CPU56は、シリアル通信回路505のステータスレジスタAのビット0〜4のいずれかのエラービットの値がセットされているか否かを確認するようにすればよい(図15参照)。エラーが発生していれば、ステップS52409に移行する。
シリアル通信回路505のエラーも発生していなければ、CPU56は、シリアル通信回路505の受信データレジスタからコマンドを読み出し、受信したコマンドが賞球個数受付コマンドであるか否かを確認する(ステップS52403)。賞球個数受付コマンドを受信していれば、CPU56は、送信した賞球個数コマンドで設定した賞球個数に対応する賞球コマンド出力カウンタの値を1減算する(ステップS52404)。また、CPU56は、賞球プロセスコードに賞球終了確認処理を示す値「4」をセットし(ステップS52405)、ステップS52408に移行する。
受信したコマンドが賞球個数受付コマンドでなければ、CPU56は、受信したコマンドが賞球準備中コマンドであるか否かを確認する(ステップS52406)。賞球準備中コマンドでもなければ、ステップS52409に移行する。
賞球準備中コマンドを受信していれば、CPU56は、賞球準備中コマンドの下位4ビットに設定されているエラー情報(図44参照)を枠状態表示バッファに格納する(ステップS52407)。そして、CPU56は、賞球プロセスタイマに接続確認時間2(例えば10秒)をセットする(ステップS52408)。なお、ステップS52408でセットされた接続確認時間2にもとづいて、賞球準備中コマンドを受信した後、10秒を経過しても賞球個数受付コマンドも次の賞球準備中コマンドも受信できなかった場合には、接続確認コマンドを送信する制御に戻る。具体的には、ステップS52408でセットされた賞球プロセスタイマは、後述するステップS52409,S52411の処理で計測され、賞球個数受付コマンドや次の賞球準備中コマンドを受信することなく10秒が経過してタイムアウトしステップS52409でYと判定されると、賞球送信処理1に戻り次の接続確認コマンドが送信される(ステップS52410,S5211参照)。
ステップS52409では、CPU56は、賞球プロセスタイマがタイムアウトしたか否かを確認する。賞球プロセスタイマがタイムアウトしていれば(すなわち、賞球個数コマンドを送信した後、10秒を経過しても賞球個数受付コマンドや賞球準備中コマンドを受信できなかった場合)、CPU56は、賞球プロセスコードに賞球送信処理1を示す値「0」をセットし(ステップS52410)、処理を終了する。賞球プロセスタイマがタイムアウトしていなければ、CPU56は、賞球プロセスタイマの値を1減算する(ステップS52411)。
図62は、賞球プロセスコードの値が4の場合に実行される賞球終了確認処理(ステップS525)を示すフローチャートである。CPU56は、賞球終了確認処理において、まず、シリアル通信回路505の受信データレジスタにデータがあるか否かを確認する(ステップS52501)。具体的には、CPU56は、シリアル通信回路505のステータスレジスタAのビット5の値を確認するようにすればよい(図15参照)。受信データレジスタにデータがなければ(すなわち、コマンドを受信していなければ)、ステップS52509に移行する。
受信データレジスタにデータがあれば(すなわち、コマンドを受信していれば)、CPU56は、シリアル通信回路505のエラーが発生しているか否かを確認する(ステップS52502)。具体的には、CPU56は、シリアル通信回路505のステータスレジスタAのビット0〜4のいずれかのエラービットの値がセットされているか否かを確認するようにすればよい(図15参照)。エラーが発生していれば、ステップS52509に移行する。
シリアル通信回路505のエラーも発生していなければ、CPU56は、シリアル通信回路505の受信データレジスタからコマンドを読み出し、受信したコマンドが賞球終了コマンドであるか否かを確認する(ステップS52503)。賞球終了コマンドを受信していれば、CPU56は、賞球プロセスコードに賞球送信処理2を示す値「2」をセットし(ステップS52504)、賞球プロセスタイマに接続確認時間1(例えば1秒)をセットする(ステップS52505)。なお、ステップS52505でセットされた接続確認時間1にもとづいて、賞球終了コマンドを受信した後、1秒を経過しても始動入賞が発生しなかった場合には、接続確認コマンドを送信する制御に戻る。具体的には、ステップS52505でセットされた賞球プロセスタイマは、ステップS52313,S52315の処理で計測され、新たな始動入賞が発生せず賞球個数コマンドを送信することなく1秒が経過してタイムアウトしステップS52313でYと判定されると、賞球送信処理1に戻り次の接続確認コマンドが送信される(ステップS52314,S5211参照)。
なお、ステップS52504の処理が実行されることによって、賞球終了コマンドを受信した場合にはまず賞球送信処理2に移行されるので、賞球個数の記憶が溜まっている場合には直ちに次の賞球個数コマンドが送信されるように制御される。一方で、賞球送信処理2に移行された後、賞球個数の記憶もなく、ステップS52505でセットされた接続確認時間1(例えば1秒)が経過するまでの間に新たな入賞も発生しなかった場合には、さらに賞球送信処理1に移行され、接続確認コマンドを繰り返し送信する処理が再開される。
受信したコマンドが賞球終了コマンドでなければ、CPU56は、受信したコマンドが賞球準備中コマンドであるか否かを確認する(ステップS52506)。賞球準備中コマンドでもなければ、ステップS52509に移行する。
賞球準備中コマンドを受信していれば、CPU56は、賞球準備中コマンドの下位4ビットに設定されているエラー情報(図44参照)を枠状態表示バッファに格納する(ステップS52507)。そして、CPU56は、賞球プロセスタイマに接続確認時間2(例えば10秒)をセットする(ステップS52508)。なお、ステップS52508でセットされた接続確認時間2にもとづいて、賞球準備中コマンドを受信した後、10秒を経過しても賞球終了コマンドも次の賞球準備中コマンドも受信できなかった場合には、接続確認コマンドを送信する制御に戻る。具体的には、ステップS52508でセットされた賞球プロセスタイマは、後述するステップS52509,S52511の処理で計測され、賞球終了コマンドや次の賞球準備中コマンドを受信することなく10秒が経過してタイムアウトしステップS52509でYと判定されると、賞球送信処理1に戻り次の接続確認コマンドが送信される(ステップS52510,S5211参照)。
ステップS52509では、CPU56は、賞球プロセスタイマがタイムアウトしたか否かを確認する。賞球プロセスタイマがタイムアウトしていれば(すなわち、賞球個数受付コマンドや賞球準備中コマンドを受信した後、10秒を経過しても賞球終了コマンドや賞球準備中コマンドを受信できなかった場合)、CPU56は、賞球プロセスコードに賞球送信処理1を示す値「0」をセットし(ステップS52510)、処理を終了する。賞球プロセスタイマがタイムアウトしていなければ、CPU56は、賞球プロセスタイマの値を1減算する(ステップS52511)。
図63は、ステップS503の賞球カウンタ減算処理を示すフローチャートである。CPU56は、賞球カウンタ減算処理において、まず、賞球情報入力無効タイマがタイムアウトしたか否かを確認する(ステップS5301)。なお、賞球情報入力無効タイマは、賞球情報の入力を確認した後、次の賞球情報の入力を確認するまでの間にインターバル期間を設けるために計測されるタイマである。タイムアウトしていなければ、CPU56は、賞球情報入力無効タイマの値を1減算して(ステップS5302)、処理を終了する。
賞球情報入力無効タイマがタイムアウトしていれば、CPU56は、入力ポート0の内容を入力し(ステップS5303)、賞球情報のビットがオン状態であるか否かを確認する(ステップS5304)。賞球情報のビットがオン状態であれば、ステップS5305に移行する。
ステップS5305では、CPU56は、処理数として所定の賞球情報確認回数(例えば8)をセットする(ステップS5305)。そして、CPU56は、賞球情報を入力しているか否かを確認し、賞球情報の入力を確認できれば賞球情報オンカウンタの値を1加算する処理を、処理数(本例では8)を終了するまで繰り返し実行する(ステップS5306〜S5308)。
次いで、CPU56は、賞球情報オンカウンタの値が6以上であるか否かを確認する(ステップS5309)。賞球情報オンカウンタの値が6以上であれば、CPU56は、賞球情報入力無効タイマに所定時間(例えば0.8秒)をセットする(ステップS5310)とともに、賞球個数カウンタの値を10減算する(ステップS5311)。
以上の処理が実行されることによって、この実施の形態では、賞球情報の入力を8回の確認処理中6回以上確認したことを条件として賞球情報を入力したと判定し、10個の賞球払出が行われたものとして賞球個数カウンタの値を10減算している。そのような処理によって、この実施の形態では、誤って賞球情報を入力したと判定する事態を低減し、遊技制御用マイクロコンピュータ560側で未払い出しの賞球数を適切に把握できなくなる事態を防止している。
次いで、CPU56は、減算後のカウント値が所定の賞球過剰判定値(例えば0)未満であるか否かを確認する(ステップS5312)。賞球個数カウンタのカウント値が所定の賞球過剰判定値(例えば0)未満であった場合には、CPU56は、賞球エラーフラグが既にセットされているか否かを確認する(ステップS5313)。既に賞球エラーフラグがセットされていれば、そのまま処理を終了する。賞球エラーフラグがセットされていなければ、CPU56は、賞球エラーフラグをセットする(ステップS5314)とともに、賞球過剰エラーコマンドを演出制御用マイクロコンピュータ100に送信する制御を行う(ステップS5315)。具体的には、CPU56は、賞球過剰エラーコマンド送信テーブルのアドレスをポインタにセットする処理を行う。そして、ステップS5315で賞球過剰エラーコマンド送信テーブルのアドレスがポインタにセットされたことにもとづいて、その後、ステップS30の演出図柄コマンド制御処理において、演出制御基板80との送受信用チャネルのシリアル通信回路505の送信データレジスタに賞球過剰エラーコマンドが出力され、賞球過剰エラーコマンドが演出制御用マイクロコンピュータ100に送信される。
次に、枠状態出力処理(ステップS39)について説明する。図64は、ステップS39の枠状態出力処理の一例を示すフローチャートである。CPU56は、枠状態出力処理において、まず、枠状態表示バッファの内容をロードする(ステップS391)。次いで、CPU56は、入力ポート0の内容を入力する(ステップS392)とともに、入力した入力ポート0の内容を所定のドア開放信号確認用のマスク値(具体的には、01000000)と論理積をとる(ステップS393)。さらに、CPU56は、論理積をとった演算結果と、ステップS391でロードした枠状態表示バッファの内容との論理積をとる(ステップS394)。以上の処理が実行されることによって、枠状態表示バッファの内容にさらにドア開放信号の入力状態が付加された演算結果が得られる。
次いで、CPU56は、演算結果と前回枠状態表示バッファの内容とを比較する(ステップS395)。なお、前回枠状態表示バッファには、前回のタイマ割込によって枠状態出力処理が実行されたときに算出されたステップS394の演算結果が格納されている。演算結果が前回枠状態表示バッファの内容と異なる場合には(ステップS396のY)、CPU56は、前回枠状態表示バッファにステップS394で算出した演算結果を格納して前回枠状態表示バッファを更新する(ステップS397)とともに、ステップS394で算出した演算結果をそのまま枠状態表示コマンドに設定して、枠状態表示コマンドを演出制御用マイクロコンピュータ100に送信する制御を行う(ステップS398)。具体的には、CPU56は、枠状態表示コマンド送信テーブルのアドレスをポインタにセットする処理を行う。そして、ステップS398で枠状態表示コマンド送信テーブルのアドレスがポインタにセットされたことにもとづいて、その後、ステップS30の演出図柄コマンド制御処理において、演出制御基板80との送受信用チャネルのシリアル通信回路505の送信データレジスタに枠状態表示コマンドが出力され、枠状態表示コマンドが演出制御用マイクロコンピュータ100に送信される。
以上の処理が実行されることによって、払出制御用マイクロコンピュータ370から接続OKコマンドや賞球準備中コマンドで設定されたエラー情報(払出個数異常エラーや、球切れエラー、満タンエラー、賞球エラー)の内容やドア開放信号の入力状態が枠状態表示コマンドに設定されて、演出制御用マイクロコンピュータ100に送信される。
次に、メイン処理における特別図柄プロセス処理(ステップS28)を説明する。図65は、遊技制御用マイクロコンピュータ560のCPU56が実行する特別図柄プロセス処理のプログラムの一例を示すフローチャートである。遊技制御用マイクロコンピュータ560のCPU56は、第1始動入賞口13aに遊技球が入賞したことを検出するための第1始動口スイッチ14aがオンしていたら、すなわち、第1始動入賞口13aへの始動入賞が発生していたら、第1始動口スイッチ通過処理を実行する(ステップS311,S312)。また、CPU56は、第2始動入賞口13bに遊技球が入賞したことを検出するための第2始動口スイッチ15aがオンしていたら、すなわち第2始動入賞口13bへの始動入賞が発生していたら、第2始動口スイッチ通過処理を実行する(ステップS313,S314)。そして、ステップS300〜S310のうちのいずれかの処理を行う。第1始動口スイッチ14aまたは第2始動口スイッチ15aがオンしていなければ、内部状態に応じて、ステップS300〜S306のうちのいずれかの処理を行う。なお、ステップS311及びステップS313の判定は、第1始動口スイッチ14aに対応するスイッチオンバッファまたは第2始動口スイッチ15aに対応するスイッチオンバッファが「0」であるか否かにより判定してもよい。
特別図柄通常処理(ステップS300):特別図柄の可変表示を開始できる状態(例えば、第1特別図柄表示器8aまたは第2特別図柄表示器8bにおいて図柄の変動がなされておらず、第1特別図柄表示器8aまたは第2特別図柄表示器8bにおける前回の図柄変動が終了してから所定期間が経過しており、かつ、大当り遊技中でもない状態)になるのを待つ。特別図柄の可変表示が開始できる状態になると、特別図柄についての始動入賞記憶数を確認する。始動入賞記憶数が0でなければ、特図保留メモリに記憶されている乱数回路503が発生したランダムRにもとづいて、特別図柄の可変表示の結果を大当りとするか否か決定する。また、大当りとすると決定した場合には、さらに、確変大当りとするか否かなど大当り種別を決定し、決定した表示結果を特定可能な表示結果指定コマンドを演出制御用マイクロコンピュータ100に送信する制御を行う。そして、内部状態(特別図柄プロセスフラグ)をステップS301に移行するように更新する。
変動時間設定処理(ステップS301):変動パターンを決定し、その変動パターンにおける変動時間(可変表示時間:可変表示を開始してから表示結果が導出表示(停止表示)するまでの時間)を特別図柄の可変表示の変動時間とすることに決定する。また、決定した変動パターンを指定する変動パターンコマンドを演出制御用マイクロコンピュータ100に送信する制御を行うとともに、決定した特別図柄の変動時間を計測する変動時間タイマをスタートさせる。そして、内部状態(特別図柄プロセスフラグ)をステップS302に移行するように更新する。
特別図柄変動処理(ステップS302):所定時間(ステップS301の変動時間タイマで示された時間)が経過すると、内部状態(特別図柄プロセスフラグ)をステップS303に移行するように更新する。
特別図柄停止処理(ステップS303):演出制御基板80に対して、演出図柄の停止を指示するための演出図柄停止コマンドを送信する。また、第1特別図柄表示器8aまたは第2特別図柄表示器8bにおける特別図柄を停止させる。そして、特別図柄の停止図柄が大当り図柄である場合には、内部状態(特別図柄プロセスフラグ)をステップS304に移行するように更新する。そうでない場合には、内部状態をステップS300に移行するように更新する。なお、演出図柄停止コマンドを送信しない構成としてもよい。この場合、演出制御基板80は、主基板31から受信した変動パターンコマンドにもとづいて変動時間タイマに変動時間を設定するとともに、その変動時間タイマを更新していくことで演出図柄の変動時間を独自に監視し、その変動時間が経過したと判定したときに演出図柄を停止する処理を行うようにすればよい。
大入賞口開放前処理(ステップS304):大入賞口を開放する制御を開始する。具体的には、カウンタ(例えば大入賞口に入った遊技球数をカウントするカウンタ)やフラグ(入賞口への入賞を検出する際に用いられるフラグ)を初期化するとともに、ソレノイド21を駆動して大入賞口を開放する。また、プロセスタイマによって大入賞口開放中処理の実行時間を設定し、大当り中フラグをセットする。そして、内部状態(特別図柄プロセスフラグ)をステップS305に移行するように更新する。
大入賞口開放中処理(ステップS305):大入賞口ラウンド表示の演出制御コマンドを演出制御基板80に送出する制御や大入賞口の閉成条件(例えば、大入賞口に所定個数(例えば10個)の遊技球が入賞したこと)の成立を確認する処理等を行う。大入賞口の閉成条件が成立したら、まだ残りラウンドがある場合には、内部状態をステップS304に移行するように更新する。また、全てのラウンドを終えた場合には、内部状態をステップS306に移行するように更新する。
大当り終了処理(ステップS306):大当り遊技状態が終了したことを遊技者に報知する表示制御を演出制御手段に行わせるための制御を行う。そして、内部状態をステップS300に移行するように更新する。
図66は、ステップS312,S314の始動口スイッチ通過処理を示すフローチャートである。このうち、図66(A)は、ステップS312の第1始動口スイッチ通過処理を示すフローチャートである。また、図66(B)は、ステップS314の第2始動口スイッチ通過処理を示すフローチャートである。
まず、図66(A)を参照して第1始動口スイッチ通過処理について説明する。第1始動口スイッチ14aがオン状態の場合に実行される第1始動口スイッチ通過処理において、遊技制御用マイクロコンピュータ560のCPU56は、第1始動入賞記憶カウンタが示す第1始動入賞記憶数(または第1特図保留メモリが記憶している第1始動入賞記憶数)が最大値である4に達しているかどうか確認する(ステップS321A)。第1始動入賞記憶数が4に達していなければ、CPU56は、乱数回路503の乱数値記憶回路から、乱数値として記憶されているランダムRの値を読み出す(ステップS322A)。また、CPU56は、読み出したランダムRの値を、始動入賞記憶数の値に対応した保存領域(第1特別図柄判定用バッファ(第1特図保留メモリ))に格納する(ステップS323A)。なお、この実施の形態では、乱数回路503は、第1始動口スイッチ14aからの入力信号をラッチ信号として入力する。この場合、乱数回路503は、第1始動口スイッチ14aから入力信号を入力したタイミングで、乱数回路503が内蔵するカウンタのカウンタ値を乱数値記憶回路(ラッチ回路)にラッチする。そして、CPU56は、ステップS322Aにおいて、乱数回路503の乱数値記憶回路にラッチされている値をランダムRとして読み出す。
なお、乱数値記憶回路(ラッチ回路)にラッチされたカウント値を読み出さないかぎり、ラッチ信号を出力しても新たなカウント値をラッチ回路にラッチできないように乱数回路503が構成されている場合には、ステップS321Aで始動入賞記憶数が最大値4に達していると判定されている間は、ラッチ回路からカウント値が読み出されず、新たなカウント値がラッチ回路にラッチされない状態となる。そのため、その後、始動入賞記憶数が4未満となってステップS322Aが実行されてラッチ回路からカウント値が読み出されても、本来のラッチタイミング以外でラッチされた古いカウント値が読み出され、誤って古いカウント値にもとづく乱数値を用いて大当り判定などの処理が行われてしまうおそれがある。そのため、ラッチ回路にラッチされたカウント値を読み出さないかぎり新しいカウント値をラッチできないように乱数回路503が構成されている場合には、ステップS321AでNと判定した場合であっても(始動入賞記憶数が4未満であった場合でも)、ステップS322Aの処理を実行して、ラッチ回路にラッチされたカウント値を読み出すようにしてもよい(ただし、ステップS323A〜S325Aは実行しない)。そのようにすれば、本来のラッチタイミング以外でラッチされた古いカウント値にもとづく乱数値を用いて大当り判定などの処理を行ってしまう事態を防止することができる。
次いで、CPU56は、所定のバッファ領域に格納したランダムRの値を第1特図保留メモリの空エントリの先頭にセットし(ステップS324A)、第1始動入賞カウンタのカウント数を1加算することで第1始動入賞記憶数を1増やす(ステップS325A)。また、ステップS321Aにおいて第1始動入賞記憶数が4に達していない場合、特別図柄の変動順序(1〜8)を特定可能なバッファ領域に番号順に第1特別図柄である「第1」を示すデータを設定する。
なお、ステップS321Aにおいて第1始動入賞記憶が最大値である4に達している場合には、そのまま第1始動口スイッチ通過処理を終了する。
次に、図66(B)を参照して第2始動口スイッチ通過処理について説明する。第2始動口スイッチ15aがオン状態の場合に実行される第2始動口スイッチ通過処理において、遊技制御用マイクロコンピュータ560のCPU56は、第2始動入賞記憶カウンタが示す第2始動入賞記憶数(または第2特図保留メモリが記憶している第2始動入賞記憶数)が最大値である4に達しているかどうか確認する(ステップS321B)。第2始動入賞記憶数が4に達していなければ、CPU56は、乱数回路503の乱数値記憶回路から、乱数値として記憶されているランダムRの値を読み出す(ステップS322B)。また、CPU56は、読み出したランダムRの値を、始動入賞記憶数の値に対応した保存領域(第2特別図柄判定用バッファ(第2特図保留メモリ))に格納する(ステップS323B)。なお、この実施の形態では、乱数回路503は、第2始動口スイッチ15aからの入力信号をラッチ信号として入力する。この場合、乱数回路503は、第2始動口スイッチ15aから入力信号を入力したタイミングで、乱数回路503が内蔵するカウンタのカウンタ値を乱数値記憶回路(ラッチ回路)にラッチする。そして、CPU56は、ステップS322Bにおいて、乱数回路503の乱数値記憶回路にラッチされている値をランダムRとして読み出す。
次いで、CPU56は、所定のバッファ領域に格納したランダムRの値を第2特図保留メモリの空エントリの先頭にセットし(ステップS324B)、第2始動入賞カウンタのカウント数を1加算することで第2始動入賞記憶数を1増やす(ステップS325B)。また、ステップS321Bにおいて第2始動入賞記憶数が4に達していない場合、特別図柄の変動順序(1〜8)を特定可能なバッファ領域に番号順に第2特別図柄である「第2」を示すデータを設定する。
なお、ステップS321Bにおいて第2始動入賞記憶が最大値である4に達している場合には、そのまま第2始動口スイッチ通過処理を終了する。
次に、特別図柄プロセス処理における特別図柄通常処理(ステップS300)について説明する。図67は、特別図柄通常処理を示すフローチャートである。特別図柄通常処理において、遊技制御用マイクロコンピュータ560のCPU56は、特別図柄の変動を開始することができる状態のとき(例えば特別図柄プロセスフラグの値がステップS300を示す値となっている場合)には(ステップS380)、特別図柄の変動順序を特定可能なバッファ領域の1番目に設定されているデータが「第1」または「第2」であるかを判定し、「第1」の場合は第1特図保留メモリから保留番号「1」に対応して格納されているランダムRの値を読み出し、「第2」の場合は第2特図保留メモリから保留番号「2」に対応して格納されているランダムRの値を読み出す(ステップS381)。この場合、CPU56は、特別図柄の変動順序を特定可能なバッファ領域に順番に格納されているデータを1ずつ上位にシフトするとともに、対応する始動入賞カウンタのカウント数を1減算することで保留記憶数を1減らし、且つ、第1特図保留メモリまたは第2特図メモリの第2〜第4エントリ(保留番号「2」〜「4」)に格納されたランダムRの値を1エントリずつ上位にシフトする(ステップS382)。
なお、この実施の形態では、特別図柄の変動順序を特定可能なバッファ領域の1番目に設定されているデータに対応する特別図柄の変動を開始するようになっていたが、バッファ領域に「第1」及び「第2」が設定されている場合には第1特別図柄の変動よりも第2特別図柄の変動を優先して開始させるようにしてもよい。
また、CPU56は、確変フラグがセットされているか否かを確認する(ステップS383)。すなわち、CPU56は、遊技状態が確変状態に制御されているか否かを確認する。確変フラグがセットされていない場合、CPU56は、遊技状態が確変状態以外の通常状態であると判断し、第1特別図柄表示器8aまたは第2特別図柄表示器8bの表示結果を大当り図柄とするか否かを判定するために用いるテーブルとして、通常時大当り判定テーブル571a(図19(A)参照)を設定する(ステップS384)。また、確変フラグがセットされている場合、CPU56は、遊技状態が確変状態であると判断し、第1特別図柄表示器8aまたは第2特別図柄表示器8bの表示結果を大当り図柄とするか否かを判定するために用いるテーブルとして、確変時大当り判定テーブル571b(図19(B)参照)を設定する(ステップS385)。
CPU56は、始動口スイッチ通過処理において所定のバッファ領域に格納したランダムRの値にもとづいて、第1特別図柄表示器8aまたは第2特別図柄表示器8bの表示結果を大当り図柄とするか否かを判定する(ステップS386)。この場合、CPU56は、ステップS384で設定した通常時大当り判定テーブル571aまたはステップS385で設定した確変時大当り判定テーブル571bを用いて、大当りとするか否かを判定する。
第1特別図柄表示器8aまたは第2特別図柄表示器8bの表示結果を大当り図柄とすると決定すると、CPU56は、大当り状態であることを示す大当りフラグをオン状態にする(ステップS387)。また、第1特別図柄表示器8aまたは第2特別図柄表示器8bの表示結果を大当り図柄としないと決定すると、CPU56は、大当りフラグをオフ状態にする(ステップS388)。そして、CPU56は、特別図柄プロセスフラグの値を変動時間設定処理に対応した値に更新する(ステップS389)。
なお、図67では記載を省略しているが、特別図柄通常処理において、第1特別図柄表示器8aまたは第2特別図柄表示器8bの表示結果を大当り図柄とすること(大当りとすること)に決定した場合には、CPU56は、大当り種別決定用乱数にもとづいて、大当り種別(例えば、確変大当りや通常大当り、突然確変大当り)も決定する。そして、CPU56は、大当り判定の結果や大当り種別の決定結果に応じた値を、RAM55に形成された大当り図柄判定バッファにセットする。例えば、通常大当りである場合には「1」をセットし、確変大当りである場合には「2」をセットし、突然確変大当りである場合には「3」をセットするものとする。また、CPU56は、決定した表示結果を特定可能な表示結果指定コマンドを演出制御用マイクロコンピュータ100に送信する制御を行う。
次に、タイマ割込処理におけるスイッチ処理(ステップS21)を説明する。この実施の形態では、入賞検出またはゲート通過に関わる各スイッチの検出信号のオン状態が所定時間継続すると、確かにスイッチがオンしたと判定されスイッチオンに対応した処理が開始される。図68は、スイッチ処理で使用されるRAM55に形成される各2バイトのバッファを示す説明図である。前回ポートバッファは、前回(例えば4ms前)のスイッチオン/オフの判定結果が格納されるバッファである。ポートバッファは、今回入力したポート0,1の内容が格納されるバッファである。スイッチオンバッファは、スイッチのオンが検出された場合に対応ビットが1に設定され、スイッチのオフが検出された場合に対応ビットが0に設定されるバッファである。なお、図68に示す前回ポートバッファ、ポートバッファ、およびスイッチオンバッファは、入力ポート0,1ごとに用意される。例えば、この実施の形態では、2つのスイッチオンバッファ1,2が用意されており、入力ポート0のスイッチの状態がスイッチオンバッファ1に設定され、入力ポート1のスイッチの状態がスイッチオンバッファ2に設定される。
図69は、遊技制御処理におけるステップS21のスイッチ処理の処理例を示すフローチャートである。スイッチ処理において、遊技制御用マイクロコンピュータ560は、まず、入力ポート0,1(図21参照)に入力されているデータを入力し(ステップS101)、入力したデータをポートバッファにセットする(ステップS102)。
次いで、RAM55に形成されるウェイトカウンタの初期値をセットし(ステップS103)、ウェイトカウンタの値が0になるまで、ウェイトカウンタの値を1ずつ減算する(ステップS104,S105)。
ウェイトカウンタの値が0になると、再度、入力ポート0,1のデータを入力し(ステップS106)、入力したデータとポートバッファにセットされているデータとの間で、ビット毎に論理積をとる(ステップS107)。そして、論理積の演算結果を、ポートバッファにセットする(ステップS108)。ステップS103〜S108の処理によって、ほぼ[ウェイトカウンタの初期値×(ステップS104,S105の処理時間)]の時間間隔を置いて入力ポート0から入力した2回の入力データのうち、2回とも「1」になっているビットのみが、ポートバッファにおいて「1」になる。つまり、所定期間としての[ウェイトカウンタの初期値×(ステップS104,S105の処理時間)]だけスイッチの検出信号のオン状態が継続すると、ポートバッファにおける対応するビットが「1」になる。
さらに、遊技制御用マイクロコンピュータ560は、前回ポートバッファにセットされているデータとポートバッファにセットされているデータとの間で、ビット毎に排他的論理和をとる(ステップS109)。排他的論理和の演算結果において、前回(例えば4ms前)のスイッチオン/オフの判定結果と、今回オンと判定されたスイッチオン/オフの判定結果とが異なっているスイッチに対応したビットが「1」になる。遊技制御用マイクロコンピュータ560は、さらに、排他的論理和の演算結果と、ポートバッファにセットされているデータとの間で、ビット毎に論理積をとる(ステップS110)。この結果、前回のスイッチオン/オフの判定結果と今回オンと判定されたスイッチオン/オフの判定結果とが異なっているスイッチに対応したビット(排他的論理和演算結果による)のうち、今回オンと判定されたスイッチに対応したビット(論理積演算による)のみが「1」として残る。
そして、遊技制御用マイクロコンピュータ560は、ステップS110における論理積の演算結果をスイッチオンバッファにセットし(ステップS111)、ステップS108における演算結果がセットされているポートバッファの内容を前回ポートバッファにセットする(ステップS112)。
以上の処理によって、所定期間継続してオン状態であったスイッチのうち、前回(例えば4ms前)のスイッチオン/オフの判定結果がオフであったスイッチ、すなわち、オフ状態からオン状態に変化したスイッチに対応したビットが、スイッチオンバッファにおいて「1」になっている。
さらに、遊技制御用マイクロコンピュータ560(具体的には、CPU56)は、スイッチ正常/異常チェック処理を行う(ステップS113)。
図70は、スイッチ正常/異常チェック処理を示すフローチャートである。図70に示すスイッチ正常/異常チェック処理において、CPU56は、入力ポート1に対応するスイッチオンバッファの内容を読み出す(ステップS121)。そして、入力ポート1に対応するスイッチオンバッファにおける第1始動口スイッチ14aに対応するビット0の値が0であるか否か確認する(ステップS122)。すなわち、第1始動入賞口13aの第1入賞通路1360aに設けられた第1始動口スイッチ14a(近接スイッチ)がオン(遊技球を検出)したか否か確認する。
入力ポート1に対応するスイッチオンバッファにおける第1始動口スイッチ14aに対応するビット0の値が0である場合(すなわち、第1始動口スイッチ14aがオン状態である場合)には、RAM55に形成されているスイッチ用カウンタの値を1増やす(ステップS123)。
また、CPU56は、入力ポート1に対応するスイッチオンバッファにおける第1入賞確認スイッチ14bに対応するビット1の値が0であるか否か確認する(ステップS124)。すなわち、第1始動入賞口13aの第1入賞通路1360bに設けられた第1入賞確認スイッチ14b(フォトセンサ)がオン(遊技球を検出)したか否か確認する。
入力ポート1に対応するスイッチオンバッファにおける第1入賞確認スイッチ14bに対応するビット1の値が0である場合(すなわち、第1入賞確認スイッチ14bがオン状態である場合)には、RAM55に形成されているスイッチ用カウンタの値を1減らす(ステップS125)。
また、CPU56は、入力ポート1に対応するスイッチオンバッファにおける第2始動口スイッチ15aに対応するビット2の値が0であるか否か確認する(ステップS126)。すなわち、第2始動入賞口13bの第2入賞通路1370aに設けられた第2始動口スイッチ15a(近接スイッチ)がオン(遊技球を検出)したか否か確認する。
入力ポート1に対応するスイッチオンバッファにおける第2始動口スイッチ15aに対応するビット2の値が0である場合(すなわち、第2始動口スイッチ15aがオン状態である場合)には、RAM55に形成されているスイッチ用カウンタの値を1増やす(ステップS127)。
また、CPU56は、入力ポート1に対応するスイッチオンバッファにおける第2入賞確認スイッチ15bに対応するビット3の値が0であるか否か確認する(ステップS128)。すなわち、第2始動入賞口13bの第2入賞通路1370bに設けられた第2入賞確認スイッチ15b(フォトセンサ)がオン(遊技球を検出)したか否か確認する。
入力ポート1に対応するスイッチオンバッファにおける第2入賞確認スイッチ15bに対応するビット3の値が0である場合(すなわち、第2入賞確認スイッチ15bがオン状態である場合)には、RAM55に形成されているスイッチ用カウンタの値を1減らす(ステップS129)。
また、CPU56は、入力ポート1に対応するスイッチオンバッファにおけるカウントスイッチ23に対応するビット4の値が0であるか否か確認する(ステップS130)。すなわち、大入賞口23bの大入賞通路1403に設けられたカウントスイッチ23(近接スイッチ)がオン(遊技球を検出)したか否か確認する。
入力ポート1に対応するスイッチオンバッファにおけるカウントスイッチ23に対応するビット4の値が0である場合(すなわち、カウントスイッチ23がオン状態である場合)には、RAM55に形成されているスイッチ用カウンタの値を1増やす(ステップS131)。
また、CPU56は、入力ポート1に対応するスイッチオンバッファにおける第3入賞確認スイッチ23aに対応するビット5の値が0であるか否か確認する(ステップS132)。すなわち、大入賞口23bの大入賞通路1403aに設けられた第3入賞確認スイッチ23a(フォトセンサ)がオン(遊技球を検出)したか否か確認する。
入力ポート1に対応するスイッチオンバッファにおける第3入賞確認スイッチ23aに対応するビット5の値が0である場合(すなわち、第3入賞確認スイッチ23aがオン状態である場合)には、RAM55に形成されているスイッチ用カウンタの値を1減らす(ステップS133)。
そして、CPU56は、スイッチ用カウンタの値が所定値以上になっているか否か確認する(ステップS134)。スイッチ用カウンタの値が所定値以上になっている場合には、CPU56は、第1始動入賞口13a、第2始動入賞口13b、大入賞口23bのうちいずれかへの異常入賞が発生したと判定し、セキュリティ信号情報タイマに所定時間(本例では、4分)をセットする(ステップS135)。なお、この実施の形態では、CPU56は、スイッチ用カウンタの値が所定値として15以上となったことにもとづいて、セキュリティ信号情報タイマに所定時間(本例では、4分)をセットするものとする。この実施の形態では、ステップS135でセキュリティ信号情報タイマに所定時間がセットされたことにもとづいて、情報出力処理(S31参照)が実行されることによって、第1始動入賞口13a、第2始動入賞口13b、大入賞口23bの異常入賞が検出されたときに、セキュリティ信号が所定時間(本例では、4分)外部出力される。
なお、ステップS134の処理において、CPU56は、例えば、スイッチ用カウンタの値が10以上となったことにもとづいて、第1始動入賞口13a、第2始動入賞口13b、大入賞口23bへの異常入賞が発生したと判定することに加えて、逆にスイッチ用カウンタの値が−10以下となったことにもとづいても、第1始動入賞口13a、第2始動入賞口13b、大入賞口23bへの異常入賞が発生したと判定するようにしてもよい。この場合、スイッチ用カウンタの値がマイナス値となっていることを認識できないように構成されている場合には、例えば、スイッチ用カウンタの値のデフォルト値として10をセットするようにしておき、スイッチ用カウンタの値が0または20以上となったことにもとづいて、第1始動入賞口13a、第2始動入賞口13b、大入賞口23bへの異常入賞が発生したと判定するようにしてもよい。
なお、この実施の形態では、既にセキュリティ信号情報タイマに値が設定されセキュリティ信号を外部出力中であっても、新たに異常入賞を検出した場合には、再度ステップS135の処理が実行されて、セキュリティ信号情報タイマに所定時間(本例では、4分)が上書きされる。従って、セキュリティ信号の外部出力中に新たな異常入賞を検出した場合には、実質的にセキュリティ信号の外部出力期間が延長され、その新たに異常入賞を検出した時点から更に所定時間(本例では、4分)セキュリティ信号の出力が継続されることになる。
なお、この実施の形態では、1つのスイッチ用カウンタのみを用いて第1始動入賞口13a、第2始動入賞口13b、大入賞口23bへの異常入賞を検出する場合を示したが、第1始動口スイッチ14aの検出回数と第1入賞確認スイッチ14bの検出回数または第2始動口スイッチ15aの検出回数と第2入賞確認スイッチ15bの検出回数またはカウントスイッチ23の検出回数と第3入賞確認スイッチ23aの検出回数とで異なるスイッチ用カウンタを用いてもよい。この場合、例えば、第1始動口スイッチ14aのオン状態を検出するごとに第1スイッチ用カウンタの値を1加算するようにするとともに、第1入賞確認スイッチ14bのオン状態を検出するごとに第2スイッチ用カウンタの値を1加算するようにすればよい。そして、ステップS134では、第1スイッチ用カウンタの値と第2スイッチ用カウンタの値との差が所定値(例えば、15)以上であると判定したことにもとづいて、第1始動入賞口13aへの異常入賞が発生したと判定し、ステップS135の処理を実行してセキュリティ信号を外部出力するようにすればよい。
また、第1始動入賞口13aへの異常入賞が発生したことを検出した場合には、ステップS135の処理を実行してセキュリティ信号を外部出力するとともに、所定のエラー報知コマンドを演出制御用マイクロコンピュータ100に送信するようにして、演出制御用マイクロコンピュータ100側において演出表示装置9に所定のエラー画面を表示させるなどによりエラー報知を行えるようにすることが望ましい。
また、例えば、第1始動入賞口13aへの異常入賞に加えて、他の入賞口29a、29bへの異常入賞や、異常磁気エラー、異常電波エラー、通信エラーを検出した場合にもセキュリティ信号を出力するように構成する場合には、それぞれエラーの種類ごとに異なるエラー報知コマンドを演出制御用マイクロコンピュータ100に送信するようにしてもよい。そして、演出制御用マイクロコンピュータ100側において、演出表示装置9に、エラーの種類ごとにそれぞれ異なるエラー画面を表示させるなどによりエラー報知を行えるようにしてもよい。
なお、上記のように構成する場合、遊技機への電力供給が停止した後に電力供給が再開したときには、電力供給の停止前にエラー報知中であった場合には、電源供給の再開時に所定のエラー報知コマンドを演出制御用マイクロコンピュータ100に対して再度送信するようにするようにしてもよい。すなわち、演出制御用マイクロコンピュータ100側ではRAMなどの記憶内容がバックアップ電源によってバックアップされていないので、停電が発生してしまうと、そのままでは、それまで実行していたエラー報知などの演出を実行できないのであるが、停電復旧時に所定のエラー報知コマンドを再度送信するように構成することによって、停電復旧時にエラー報知を再開できるようにすることができる。また、遊技制御用マイクロコンピュータ560は、セキュリティ信号情報タイマの値もバックアップRAMにバックアップしておくようにし、電力供給の停止前にセキュリティ信号の出力中であった場合には、停電復旧時にバックアップされていたセキュリティ信号情報タイマの値にもとづいてセキュリティ信号の出力を再開できるようにしてもよい。それらの構成を備えることによって、故意に遊技機への電源断を発生させることによって、エラー報知を消したりセキュリティ信号の出力を停止させたりするような不正行為を防止することができる。
図71および図72は、スイッチ正常/異常チェック処理を説明するための説明図である。このうち、図71は、正常な状態におけるスイッチ正常/異常チェック処理の例を示しており、図72は、異常入賞につながる不正行為が行われているときのスイッチ正常/異常チェック処理の例を示している。
図71および図72に示すように、例えば入力ポート1に対応するスイッチオンバッファのビット0は、そのビット0に対応する第1始動口スイッチ14a(近接スイッチ)によって遊技球が検出されると「0」になる。また、入力ポート1に対応するスイッチオンバッファのビット1は、そのビット1に対応する第1入賞確認スイッチ14b(フォトセンサ)によって遊技球が検出されると「0」になる。スイッチが正常に動作し、かつ、不正行為(スイッチからの検出信号を不正にオン状態にしたり、オン状態の検出信号を不正にオフ状態にしたりする行為)を受けていない場合には、第1始動口スイッチ14aが第1入賞確認スイッチ14bよりも上流側に配置されていることから、まず、第1始動口スイッチ14a(近接スイッチ)がオンし、次いで、第1入賞確認スイッチ14b(フォトセンサ)がオンするはずである。従って、まず第1始動口スイッチ14aがオンしたことにもとづいてスイッチ用カウンタの値が1加算されて1となり(ステップS123参照)、次いで第1入賞確認スイッチ14bがオンしたことにもとづいてスイッチ用カウンタの値が1減算されて0に戻る(ステップS125参照)。よって、遊技球がスイッチを通過するときに、入力ポート1に対応するスイッチオンバッファのビット0とビット1とがともに「0」となり、正常な動作状態であれば、カウントアップのタイミングにずれ(遊技球の通過タイミングのずれに相当)があるものの、図71に示すように、スイッチ用カウンタの値は0に保たれる筈である。
しかし、電波による不正行為が行われた場合には、図72に示すように、第1始動口スイッチ14aが1回オンする筈の期間に、電波により不正にオフ状態を割り込ませ、恰も第1始動口スイッチ14aが2回オンしたかのように認識させる不正行為が行われるおそれがある。従って、第1始動口スイッチ14aが1回だけオンとなったにもかかわらず、第1始動口スイッチ14aが2回に亘ってオンしたと誤認識させられてスイッチ用カウンタの値が合計で2加算されて2となる(ステップS123が2回実行されることになる)。一方、下流側に配置されている第1入賞確認スイッチ14bは、電磁式である第1始動口スイッチ14aとは検出方式が異なり、光学式のフォトセンサが用いられていることから、電波による不正行為の影響を受けない。そのため、図72に示すように、第1始動口スイッチ14aで遊技球を1球検出した後に、少し遅れて第1入賞確認スイッチ14b側で遊技球を検出されたときに、正常に第1入賞確認スイッチ14bのオンを1回だけ検出して、スイッチ用カウンタの値を1減算して1とする(ステップS125参照)。従って、電波による不正行為が行われた場合には、検出方式の異なる第1始動口スイッチ14aと第1入賞確認スイッチ14bとの間で検出数に差が生じるのであるから、図72に示すように、スイッチ用カウンタの値が0に保たれず、スイッチ用カウンタの値が所定値(本例では15)以上となったことにもとづいて(第1始動口スイッチ14aと第1入賞確認スイッチ14bとの間の検出誤差の累積値が所定値(本例では15)以上となったことにもとづいて)、第1始動入賞口13aへの異常入賞が発生したことを検出することができる。
なお、ここでは第1始動口スイッチ14aの検出結果と第1入賞確認スイッチ14bの検出結果とにもとづいて第1始動入賞口13aへの異常入賞を検出する例を示したが、第2始動口スイッチ15aの検出結果と第2入賞確認スイッチ15bの検出結果とにもとづいて第2始動入賞口13bへの異常入賞を検出することができる。また、カウントスイッチ23の検出結果と第3入賞確認スイッチ23aの検出結果とにもとづいて大入賞口23bへの異常入賞を検出することができる。
なお、不正に光を照射するなどの行為によって同様な不正行為が行われることも考えられる。この場合、第1入賞確認スイッチ14bが1回オンする筈の期間に、光により不正にオフ状態を割り込ませ、恰も第1入賞確認スイッチ14bが2回オンしたかのように認識させる不正行為が行われるおそれがある。しかし、この場合、逆に電磁式の第1始動口スイッチ14a側では光による不正行為の影響をうけず正常に遊技球を検出できるのであるから、同様にスイッチ用カウンタの値が0に保たれず、スイッチ用カウンタの値が所定値(本例では15)以上となったことにもとづいて(第1始動口スイッチ14aと第1入賞確認スイッチ14bとの間の検出誤差の累積値が所定値(本例では15)以上となったことにもとづいて)、第1始動入賞口13aへの異常入賞が発生したことを検出することができる。
なお、この実施の形態では、第1始動口スイッチ14aおよび第1入賞確認スイッチ14bの出力が負論理である場合を示しているが、第1始動口スイッチ14aおよび第1入賞確認スイッチ14bの出力が正論理となるように構成してもよい。この場合、例えば、第1始動口スイッチ14aおよび第1入賞確認スイッチ14bの出力レベルをそれぞれ入力ドライバ回路で論理反転してから遊技制御用マイクロコンピュータ560に入力するように構成すればよい。
また、この実施の形態では、スイッチ用カウンタの値が0に保たれていないこと(第1始動口スイッチ14aと第1入賞確認スイッチ14bとの間に検出誤差が発生したこと)にもとづいて直ちに異常入賞と判定するのではなく、スイッチ用カウンタの値が所定値(本例では15)以上となったことにもとづいて異常入賞が発生したと判定している。そのように構成することによって、例えば、第1始動入賞口13a内で遊技球が球詰まり状態を起こした場合などを不正行為による異常入賞と判定することを防止している。
図73(a)は、第1始動入賞口13aに入賞した遊技球が通過する第1入賞通路1360a,1360b内で遊技球が球詰まり状態を起こした場合を示す説明図である。図73(a)に示すように、第1入賞通路1360a,1360b内において、第1始動口スイッチ14aと第1入賞確認スイッチ14bとは、上下に一定の距離をおいて配置されている。そのため、第1始動入賞口13aに入賞した遊技球は、まず第1始動口スイッチ14aで検出された後、少し時間をおいて下流側の第1入賞確認スイッチ14bで検出されることになる。よって、第1入賞通路1360a,1360b内において遊技球が球詰まり状態を起こした場合には、第1始動口スイッチ14aと第1入賞確認スイッチ14bとの物理的な距離差によって、その検出数に差が生じた状態となる。そして、第1入賞通路1360a,1360b内では、第1始動口スイッチ14aと第1入賞確認スイッチ14bとの間で最大9個の検出誤差が生じるものとする。
図73(b)は、第2始動入賞口13bに入賞した遊技球が通過する第2入賞通路1370a,1370b内で遊技球が球詰まり状態を起こした場合を示す説明図である。図73(b)に示すように、第2入賞通路1370a,1370b内において、第2始動口スイッチ15aと第2入賞確認スイッチ15bとは、上下に一定の距離をおいて配置されている。そのため、第2始動入賞口13bに入賞した遊技球は、まず第2始動口スイッチ15aで検出された後、少し時間をおいて下流側の第2入賞確認スイッチ15bで検出されることになる。よって、第2入賞通路1370a,1370b内において遊技球が球詰まり状態を起こした場合には、第2始動口スイッチ15aと第2入賞確認スイッチ15bとの物理的な距離差によって、その検出数に差が生じた状態となる。そして、第2入賞通路1370a,1370b内では、第2始動口スイッチ15aと第2入賞確認スイッチ15bとの間で最大2個の検出誤差が生じるものとする。
図73(c)は、大入賞口23bに入賞した遊技球が通過する大入賞通路1403,1403a内で遊技球が球詰まり状態を起こした場合を示す説明図である。図73(c)に示すように、大入賞通路1403,1403a内において、カウントスイッチ23と第3入賞確認スイッチ23aとは、左右及び前後に一定の距離をおいて配置されている。そのため、大入賞口23bに入賞した遊技球は、まずカウントスイッチ23で検出された後、少し時間をおいて下流側の第3入賞確認スイッチ23aで検出されることになる。よって、大入賞通路1403,1403a内において遊技球が球詰まり状態を起こした場合には、カウントスイッチ23と第3入賞確認スイッチ23aとの物理的な距離差によって、その検出数に差が生じた状態となる。そして、大入賞通路1403,1403a内では、カウントスイッチ23と第3入賞確認スイッチ23aとの間で最大4個の検出誤差が生じるものとする。
本実施の形態では、スイッチ用カウンタの値が、複数の入賞通路(第1入賞通路1360a,1360b、第2入賞通路1370a,1370b及び大入賞通路1403,1403a)のうち、上流側の近接スイッチ(14a,15a,23)と下流側のフォトセンサ(14b,15b,23a)との物理的な距離差が最も大きい入賞通路である第1入賞通路1360a,1360b内での球詰まり状態における第1始動口スイッチ14aと第1入賞確認スイッチ14bとの検出誤差9個に対して、十分余裕をもたせた所定値(本例では15)以上となったことにもとづいて異常入賞が発生したと判定することによって、第1入賞通路1360a,1360b、第2入賞通路1370a,1370b及び大入賞通路1403,1403aのうちいずれかで遊技球が球詰まり状態を起こした場合などを不正行為による異常入賞と判定することを防止している。
なお、この実施の形態では、球詰まり状態における第1始動口スイッチ14aと第1入賞確認スイッチ14bとの検出誤差9個に対して十分余裕をもたせた所定値(本例では15)以上となったことにもとづいて異常入賞が発生したと判定する場合を示しているが、異常入賞の判定に用いる所定値は、この実施の形態で示したものにかぎられない。例えば、少なくとも、球詰まり状態における第1始動口スイッチ14aと第1入賞確認スイッチ14bとの検出誤差9個より多い数であれば、誤って異常入賞と判定してしまうことを防止できるのであるから、スイッチ用カウンタの値が10以上となったことにもとづいて異常入賞が発生したと判定するようにしてもよい。
また、複数の入賞通路における球詰まり状態での検出誤差がそれぞれ同数(例えば3個)である場合は、検出誤差3個に対して十分余裕をもたせた所定値(例えば10)以上となったことにもとづいて異常入賞が発生したと判定するようにしてもよい。
また、複数の入賞通路内における異常入賞を検出可能に構成した場合には、これら全ての入賞通路での球詰まり状態における検出誤差を合計した数(9個+2個+4個=15個)より多い数(例えば20個)を所定値として用いて、異常入賞の判定を行うようにすれば、誤って異常入賞を判定することを防止することができる。
また、本実施の形態では、複数の入賞通路での球詰まり状態における検出誤差を1つのスイッチ用カウンタにて検出できるようにしていることで、各入賞通路に対応するスイッチ用カウンタをそれぞれ設けなくても各入賞通路内における異常入賞を検出できるようになっていたが、各入賞通路に対応するスイッチ用カウンタをそれぞれ設けるとともに、各入賞通路毎の検出誤差に対応する所定値を設定し、各スイッチ用カウンタにおける検出誤差を監視して異常入賞の判定を行うようにしてもよい。このようにすることで、いずれの入賞通路にて入賞異常が発生したかを特定することが可能となる。
図74は、ターミナル基板160に出力される各種信号を示すブロック図である。図74に示すように、この実施の形態では、主基板31に搭載されている遊技制御用マイクロコンピュータ560からターミナル基板160に対して、始動口信号、図柄確定回数1信号、大当り1信号、大当り2信号、大当り3信号、時短信号、およびセキュリティ信号が、遊技制御用マイクロコンピュータ560側の情報出力処理(ステップS31参照)によって出力される。また、この実施の形態では、払出制御基板37に搭載されている払出制御用マイクロコンピュータ370から、主基板31を経由して、ターミナル基板160に対して、賞球信号1および遊技機エラー状態信号が、払出制御用マイクロコンピュータ370側の情報出力処理(ステップS759参照)によって出力される。
始動口信号は、第1始動入賞口13a、第2始動入賞口13bへの入賞個数を通知するための信号である。図柄確定回数1信号は、特別図柄の変動回数を通知するための信号である。大当り1信号は、大当り遊技中(特別可変入賞球装置の動作中)であることを通知するための信号である。大当り2信号は、大当り遊技中(特別可変入賞球装置の動作中)で、または特別図柄の変動時間短縮機能が作動中(時短状態中)であることを通知するための信号である。大当り3信号は、15ラウンドの大当り遊技中であることを通知するための信号である。時短信号は、特別図柄の変動時間短縮機能が作動中(時短状態中)であることを通知するための信号である。
また、セキュリティ信号は、遊技機のセキュリティ状態を示す信号である。具体的には、第1始動口スイッチ14aの検出結果と第1入賞確認スイッチ14bの検出結果とにもとづいて、第1始動入賞口13aへの異常入賞が発生したと判定された場合、または第2始動口スイッチ15aの検出結果と第2入賞確認スイッチ15bの検出結果とにもとづいて、第2始動入賞口13bへの異常入賞が発生したと判定された場合、またはカウントスイッチ23の検出結果と第3入賞確認スイッチ23aの検出結果とにもとづいて、大入賞口23bへの異常入賞が発生したと判定された場合に、セキュリティ信号が所定期間(例えば、4分間)ホールコンピュータなどの外部装置に出力される。また、遊技機への電源投入が行われて初期化処理が実行された場合にも、セキュリティ信号が所定期間(例えば、30秒間)ホールコンピュータなどの外部装置に出力される。
なお、セキュリティ信号として外部出力される信号は、この実施の形態で示したものにかぎられない。例えば、第1始動入賞口13a、第2始動入賞口13b、大入賞口23bへの異常入賞にかぎらず、普通入賞口29,30への異常入賞を検出して、セキュリティ信号として外部出力可能なように構成してもよい。また、例えば、遊技機に設けられた磁石センサで異常磁気を検出した場合や、遊技機に設けられた電波センサで異常電波を検出した場合に、セキュリティ信号として外部出力可能なように構成してもよい。また、例えば、遊技機に設けられた各種スイッチの異常を検出した場合(例えば、入力値が閾値を超えたと判定したことにより、短絡などの発生を検出した場合)に、セキュリティ信号として外部出力可能なように構成してもよい。そのように、大入賞口への異常入賞や異常磁気エラー、異常電波エラーについてもターミナル基板160の共通のコネクタCN7からセキュリティ信号として外部出力可能なように構成すれば、1本の信号線さえ接続すればホールコンピュータなど外部装置でエラー検出を行えるようにすることができ、エラー検出に関する作業負担を軽減することができる。
また、例えば、遊技制御用マイクロコンピュータ560と払出制御用マイクロコンピュータ370との間の通信エラーを検出した場合にも、ターミナル基板160の共通のコネクタCN7からセキュリティ信号として外部出力可能なように構成してもよい。この場合、例えば、遊技制御用マイクロコンピュータ560は、払出制御用マイクロコンピュータ370から後述する接続OKコマンドや賞球個数受付コマンドを受信できなかったことにもとづいて通信エラーが発生したと判定し、ターミナル基板160の共通のコネクタCN7からセキュリティ信号として外部出力してもよい。また、例えば、遊技制御用マイクロコンピュータ560は、シリアル通信回路505のステータスレジスタAのビット0〜4のいずれかのエラービットの値がセットされていることにもとづいて通信エラーが発生したと判定し、ターミナル基板160の共通のコネクタCN7からセキュリティ信号として外部出力してもよい。
なお、セキュリティ信号用の信号線およびコネクタCN7とは別に、遊技制御用マイクロコンピュータ560と払出制御用マイクロコンピュータ370との間の通信エラー専用の信号線およびコネクタをターミナル基板160に設けてもよい。そして、遊技制御用マイクロコンピュータ560と払出制御用マイクロコンピュータ370との間の通信エラーを検出した場合には、セキュリティ信号とは別の信号として、ターミナル基板160を経由してホールコンピュータなどの外部装置に出力するようにしてもよい。
また、賞球信号1は、賞球払出を1個検出するごとに出力される信号である。また、遊技機エラー状態信号は、遊技機がエラー状態(本例では、球切れエラー状態または満タンエラー状態)であることを示す信号である。なお、賞球払出を1個検出するごとに賞球信号1を外部出力するのではなく、賞球払出を所定個(例えば、10個)検出するごとに何らかの賞球信号を出力するようにしてもよい。
図75〜図78は、ステップS31の情報出力処理を示すフローチャートである。なお、図75〜図78に示す処理のうち、ステップS1002〜S1030が始動口信号を出力するための処理であり、ステップS1031〜S1036が図柄確定回数1信号を出力するための処理であり、ステップS1050〜S1068が大当り1信号、大当り2信号、大当り3信号および時短信号を出力するための処理である。また、ステップS1069〜S1074がセキュリティ信号を出力するための処理である。
情報出力処理において、CPU56は、初期値(00(H))をRAM55に形成されている情報バッファにセットする(ステップS1001)。そして、始動口情報設定テーブルのアドレスをポインタにセットし(ステップS1002)、ポインタの指す処理数をロードする(ステップS1003)。始動口情報設定テーブルには、処理数(=1)と始動口スイッチ入力ビット(始動口スイッチ入力ビット判定値(01(H))が設定されている。ステップS1003では、ポインタが始動口情報設定テーブルの処理数のアドレスを指しているので、始動口情報設定テーブルにおける処理数(=1)のデータがロードされることになる。なお、遊技機が2つの始動入賞口を備えている場合には、始動口情報設定テーブルに、処理数として2が設定されるとともに、2つの始動入賞口に対する始動口スイッチ入力ビットがそれぞれ設定されるようにすればよい。
次いで、CPU56は、スイッチオンバッファの内容をレジスタにロードし(ステップS1004)、スイッチオンバッファをスイッチ入力データにセットする(ステップS1005)。そして、ポインタを1加算し(ステップS1006)、ポインタの指す始動口スイッチ入力ビットをレジスタにロードし(ステップS1007)、始動口スイッチ入力ビットとスイッチ入力データの論理積をとる(ステップS1008)。スイッチオンバッファの内容が01(H)であったとき、すなわち第1始動口スイッチ14aまたは第2始動口スイッチ15aがオンしているときは、論理積の演算結果は01(H)になる。第1始動口スイッチ14aまたは第2始動口スイッチ15aがオンしていないときは、論理積の演算結果は、00(H)になる。
論理積の演算結果が0の場合には(ステップS1009のY)、ステップS1015の処理に移行する。論理積の演算結果が0でない場合には(ステップS1009のN)、第1始動入賞口13aまたは第2始動入賞口13bへの入賞が生じたと判定し、始動口情報記憶カウンタをレジスタにロードする(ステップS1010)。始動口情報記憶カウンタは、始動口信号の残り出力回数(つまり、始動口信号の未出力の始動入賞の残り入賞個数)をカウントするカウンタである。次いで、CPU56は、始動口情報記憶カウンタを1加算する(ステップS1011)。そして、演算結果(加算した結果)が0でないかどうかを確認する(ステップS1012)。演算結果が0のときは(ステップS1012のN)、演算結果を1減算する(ステップS1013)。そして、演算結果を始動口情報記憶カウンタにストアする(ステップS1014)。
次に、CPU56は、処理数を1減算し(ステップS1015)、処理数が0でないかどうかを判定する(ステップS1016)。処理数が0でないときは(ステップS1016のY)、ステップS1004の処理に移行する。なお、この実施の形態では、遊技機は1つの第1始動入賞口13aのみを備えていることから、処理数の初期値として1が設定され、ステップS1016では必ず処理数が0であると判定されることになる。
ステップS1016で処理数が0であると判定されると(ステップS1016のN)、CPU56は、始動口情報記憶タイマをロードし(ステップS1017)、始動口情報記憶タイマの状態をフラグレジスタに反映させて(ステップS1018)、始動口信号が出力中であるか否かを判定する(ステップS1019)。始動口情報記憶タイマは、始動口信号のオン時間およびオフ時間(例えば、オン時間200msとオフ時間200ms)を計測するためのタイマである。始動口情報記憶タイマの値が0でなければ始動口信号が出力中であると判定され、始動口情報記憶タイマの値が0であれば始動口信号が出力中でないと判定される。
始動口信号が出力中であれば(ステップS1019のY)、ステップS1026の処理に移行する。始動口信号が出力中でなければ(ステップS1019のN)、CPU56は、始動口情報記憶カウンタをロードし(ステップS1020)、始動口情報記憶カウンタの状態をフラグレジスタに反映させて(ステップS1021)、始動口信号の出力回数の残数があるかどうかを判定する(ステップS1022)。なお、第1始動口スイッチ14aまたは第2始動口スイッチ15aがオンしたときは(ステップS1009のN)、始動口情報記憶カウンタが1加算されるので、始動口信号の出力回数の残数があると判定されることになる。
始動口信号の出力回数の残数がなければ(ステップS1022のY)、ステップS1031の処理に移行する。始動口信号の出力回数の残数があれば(ステップS1023のN)、CPU56は、始動口情報記憶カウンタを1減算し(ステップS1023)、演算結果(1減算した結果)を始動口情報記憶カウンタにストアする(ステップS1024)。そして、入賞情報動作時間(100)をレジスタにセットする(ステップS1025)。なお、入賞情報動作時間(100)は、4msのタイマ割込みが100回実行される時間、すなわち、0.400秒(400ms)の時間となっている。
次に、CPU56は、ステップS1025で入賞情報動作時間がセットされていなければ始動口情報記憶タイマを1減算し、ステップS1025で入賞情報動作時間がセットされていれば入賞情報動作時間を1減算する(ステップS1026)。そして、演算結果(1減算した結果)を始動口情報記憶タイマにストアする(ステップS1027)。
CPU56は、演算結果と入賞情報オン時間(50)を比較し(ステップS1029)、演算結果が入賞情報オン時間よりも短い時間であるかどうかを判定する(ステップS1030)。なお、入賞情報オン時間(50)は、4msのタイマ割込みが50回実行される時間、すなわち、0.200秒(200ms)の時間となっている。
演算結果が入賞情報オン時間よりも短い時間でない場合、つまり、演算結果(始動口1情報記憶タイマの残り時間)が入賞情報オン時間(200ms)よりも長い時間である場合は(ステップS1029のN)、CPU56は、情報バッファの始動口出力ビット位置(図20に示す例では出力ポート1のビット0)をセットする(ステップS1030)。情報バッファの始動口出力ビット位置がセットされると、その後のステップS1102で情報バッファを出力値にセットし、ステップS1103で出力値を出力ポート1に出力することによって、始動口信号が出力ポート1から出力されることになる。
以上に示したステップS1001〜S1030の処理によって、第1始動入賞口13aへの入賞(第1始動口スイッチ14aのオン)または第2始動入賞口13bへの入賞(第2始動口スイッチ15aのオン)が発生すると、始動口信号が出力される。すなわち、始動口信号が200ms間オン状態となった後、200ms間オフ状態になる。この始動口信号がホールコンピュータに入力されることによって、第1始動入賞口13aまたは第2始動入賞口13bへの入賞個数を認識させることができる。
始動口信号は、200ms間オン状態となった後、200ms間オフ状態になるので、短時間に連続して始動入賞が発生した場合であっても、200ms間のオフ状態の後に次の始動口信号が出力される。すなわち、始動口信号は少なくとも200msの間隔をあけて出力される。
このように、始動口信号は少なくとも200msの間隔をあけて出力されるので、ホールコンピュータは、全始動入賞数を確実に把握することができる。
次に、CPU56は、図柄確定回数1情報タイマをレジスタにロードし(ステップS1031)、図柄確定回数1情報タイマの状態をフラグレジスタに反映させて(ステップS1032)、図柄確定回数1情報タイマがタイムアウトしているかどうかを判定する(ステップS1033)。この実施の形態では、特別図柄変動処理(ステップS302参照)において、変動時間がタイムアウトすると、特別図柄の変動を停止するときに、図柄確定回数1情報タイマに図柄確定回数出力時間(本例では0.500秒)がセットされ、その図柄確定回数出力時間が経過していないときは、図柄確定回数1情報タイマがタイムアウトしていないと判定され、図柄確定回数出力時間が経過したとき(図柄確定回数1情報タイマの値が0のとき)に、図柄確定回数1情報タイマがタイムアウトしたと判定される。
図柄確定回数1情報タイマがタイムアウトしていなければ(ステップS1033のN)、図柄確定回数1情報タイマを1減算し(ステップS1034)、演算結果を図柄確定回数1情報タイマにストアする(ステップS1035)。そして、情報バッファの図柄確定回数1出力ビット位置(図20に示す例では出力ポート1のビット1)をセットする(ステップS1036)。情報バッファの図柄確定回数1出力ビット位置がセットされると、その後のステップS1102で情報バッファを出力値にセットし、ステップS1103で出力値を出力ポート1に出力することによって、図柄確定回数1信号が出力ポート1から出力される(オン状態となる)。なお、図柄確定回数1情報タイマがタイムアウトすれば(ステップS1033のY)、ステップS1036の処理が実行されない結果、図柄確定回数1信号はオフ状態となる。
以上に示したステップS1031〜S1036の処理によって、特別図柄の変動が停止(停止図柄が確定)する度に、図柄確定回数1信号が図柄確定回数出力時間(例えば500ms)オン状態となる。
次に、CPU56は、特別図柄プロセスフラグをロードし(ステップS1050)、特別図柄プロセスフラグの値と大入賞口開放前処理指定値(「4」)を比較し(ステップS1051)、特別図柄プロセスフラグの値が4未満であるかどうかを判定する(ステップS1052)。特別図柄プロセスフラグの値が4未満であるときは(ステップS1052のY)、ステップS1058の処理に移行する。特別図柄プロセスフラグの値が4以上であるときは(ステップS1052のN)、情報バッファの大当り1出力ビット位置をセットする(ステップS1053)。また、情報バッファの大当り2出力ビット位置をセットする(ステップS1054)。情報バッファの大当り1出力ビット位置および大当り2出力ビット位置がセットされると、その後のステップS1102で情報バッファを出力値にセットし、ステップS1103で出力値を出力ポート1に出力することによって、大当り1信号および大当り2信号が出力ポート1から出力される(オン状態となる)。
また、CPU56は、時短状態であるか否かを確認する時短チェック処理を実行し(ステップS1058)、時短状態であるか否かを判定する(ステップS1059)。具体的には、CPU56は、時短状態に移行するときにセットされる時短フラグがセットされているか否かを確認することによって、時短状態であるか否かを判定する。時短状態であるときは(ステップS1059のY)、情報バッファの時短出力ビット位置をセットする(ステップS1060)。時短出力ビット位置がセットされると、その後のステップS1102で情報バッファを出力値にセットし、ステップS1103で出力値を出力ポート1に出力することによって、時短信号が出力ポート1から出力される(オン状態となる)。また、情報バッファの大当り2出力ビット位置をセットする(ステップS1061)。大当り2出力ビット位置がセットされると、その後のステップS1102で情報バッファを出力値にセットし、ステップS1103で出力値を出力ポート1に出力することによって、大当り2信号が出力ポート1から出力される(オン状態となる)。
また、CPU56は、特別図柄プロセスフラグをロードし(ステップS1062)、特別図柄プロセスフラグの値と大入賞口開放前処理指定値(「4」)を比較し(ステップS1063)、特別図柄プロセスフラグの値が4未満であるかどうかを判定する(ステップS1064)。特別図柄プロセスフラグの値が4未満であるときは(ステップS1064のY)、ステップS1069の処理に移行する。特別図柄プロセスフラグの値が4以上であるときは(ステップS1064のN)、大当り図柄判定バッファの内容をロードし(ステップS1065)、15ラウンドの大当りであるか否かを確認する(ステップS1067)。なお、15ラウンドの大当りであるか否かは、例えば、特別図柄通常処理において設定された大当り図柄判定バッファの内容を確認することによって判定できる。例えば、大当り図柄判定バッファには、特別図柄通常処理で決定された大当り種別の内容や大当り判定結果を示す内容が格納されており、例えば、「1」が通常大当り、「2」が確変大当り、「3」が突然確変大当りとされている。そして、大当り図柄判定バッファの内容が「1」または「2」であれば、大当り時のラウンド数が15ラウンドであると判断される。この場合、情報バッファの大当り3出力ビット位置をセットする(ステップS1068)。大当り3出力ビット位置がセットされると、その後のステップS1102で情報バッファを出力値にセットし、ステップS1103で出力値を出力ポート1に出力することによって、大当り3信号が出力ポート1から出力される(オン状態となる)。
以上に示したステップS1050〜S1068の処理によって、大当りの種別や遊技状態に応じた大当り1信号、大当り2信号、大当り3信号および時短信号が出力される(オン状態になる)。
次いで、CPU56は、セキュリティ信号情報タイマをロードし(ステップS1069)、セキュリティ信号情報タイマの状態をフラグレジスタに反映させて(ステップS1070)、セキュリティ信号情報タイマがタイムアウトしているかどうかを判定する(ステップS1071)。この実施の形態では、始動口スイッチ14a,14b及びカウントスイッチ23と第1〜第3入賞確認スイッチ14b,15b,23aとの検出差が所定値(本例では15)以上に達したと判定され、始動入賞口または大入賞口への異常入賞が発生したと判定された場合には、セキュリティ信号情報タイマに所定時間(本例では4分)がセットされ(スイッチ正常/異常チェック処理におけるステップS126,S127参照)、その所定時間が経過していないときは、セキュリティ信号情報タイマがタイムアウトしていないと判定され、その所定時間が経過したとき(セキュリティ信号情報タイマの値が0のとき)に、セキュリティ信号情報タイマがタイムアウトしたと判定される。
また、この実施の形態では、遊技機への電力供給が開始されて初期化処理が実行されたときにも、セキュリティ信号情報タイマに所定時間(本例では30秒)がセットされ(メイン処理におけるステップS14a参照)、その所定時間が経過していないときは、セキュリティ信号情報タイマがタイムアウトしていないと判定され、その所定時間が経過したとき(セキュリティ信号情報タイマの値が0のとき)に、セキュリティ信号情報タイマがタイムアウトしたと判定される。
セキュリティ信号情報タイマがタイムアウトしていなければ(ステップS1071のN)、セキュリティ信号情報タイマを1減算し(ステップS1072)、演算結果をセキュリティ信号情報タイマにストアする(ステップS1073)。そして、情報バッファのセキュリティ信号出力ビット位置(図20に示す例では出力ポート1のビット7)をセットする(ステップS1074)。情報バッファのセキュリティ信号出力ビット位置がセットされると、その後のステップS1102で情報バッファを出力値にセットし、ステップS1103で出力値を出力ポート1に出力することによって、セキュリティ信号が出力ポート1から出力される(オン状態となる)。なお、セキュリティ信号情報タイマがタイムアウトすれば(ステップS1071のY)、ステップS1074の処理が実行されない結果、セキュリティ信号はオフ状態となる。
以上に示したステップS1069〜S1074の処理によって、第1始動入賞口13a、第2始動入賞口13b、大入賞口23bへの異常入賞が検出されてから4分が経過するまで、または遊技機への電力供給開始時に初期化処理が実行されてから30秒が経過するまで、ターミナル基板160の共通のコネクタCN7を用いてセキュリティ信号が出力される。なお、セキュリティ信号の出力中更に新たな異常入賞を検出した場合には、最後に異常入賞を検出してから4分間が経過するまでセキュリティ信号の出力が継続される。
次に、セキュリティ信号の出力タイミングについて説明する。図79は、セキュリティ信号の出力タイミングを示す説明図である。この実施の形態では、遊技機への電力供給開始時に初期化処理が実行されると(ステップS10〜S14参照)、セキュリティ信号情報タイマに所定時間(本例では、30秒)がセットされたことにもとづいて(ステップS14a参照)、情報出力処理(ステップS31参照)でステップS1069〜S1103の処理が実行されて、図79(A)に示すように、ターミナル基板160のコネクタCN7から、ホールコンピュータなどの外部装置に対してセキュリティ信号が出力される。また、遊技機への電源供給が開始された後に、始動口スイッチ14a,14b及びカウントスイッチ23の検出数と第1〜第3入賞確認スイッチ14b,15b,23aの検出数との検出誤差が所定値(本例では15)以上となったことにもとづいて、第1始動入賞口13a、第2始動入賞口13b、大入賞口23bへの異常入賞が発生したと判定されたときにも(ステップS121〜S126参照)、セキュリティ信号情報タイマに所定時間(本例では、4分)がセットされたことにもとづいて(ステップS127参照)、情報出力処理(ステップS31参照)でステップS1069〜S1103の処理が実行されて、図79(A)に示すように、ターミナル基板160のコネクタCN7から、ホールコンピュータなどの外部装置に対してセキュリティ信号が出力される。このように、この実施の形態では、遊技機への電源供給開始時に初期化処理が実行されたときと、第1始動入賞口13a、第2始動入賞口13b、大入賞口23bへの異常入賞を検出したときとで、ターミナル基板160の共通のコネクタCN7からセキュリティ信号が外部出力される。
また、この実施の形態では、セキュリティ信号の外部出力中である場合に、新たに第1始動入賞口13a、第2始動入賞口13b、大入賞口23bへの異常入賞を検出した場合には、実質的にセキュリティ信号の出力期間が延長され、最後に第1始動入賞口13a、第2始動入賞口13b、大入賞口23bへの異常入賞を検出した時点から所定時間(本例では、4分)が経過するまで、セキュリティ信号の出力が継続される。例えば、遊技機への電源供給開始時に初期化処理が実行されたことにもとづいてセキュリティ信号の出力を開始した場合には、図79(A)に示すように、原則として30秒を経過するまでセキュリティ信号の出力が継続される筈である。しかし、図79(B)に示すように、その30秒を経過する前であっても、始動口スイッチ14a,14b及びカウントスイッチ23の検出数と第1〜第3入賞確認スイッチ14b,15b,23aの検出数との検出誤差が所定値(本例では15)以上となって第1始動入賞口13a、第2始動入賞口13b、大入賞口23bへの異常入賞が発生したと判定される可能性がある。この場合、異常入賞の発生が検出されたことにもとづいてセキュリティ信号情報タイマに所定時間(本例では、4分)が上書きで書き込まれることになり(ステップS127参照)、情報出力処理(ステップS31参照)でステップS1069〜S1103の処理が実行されて、図79(B)に示すように、そのままセキュリティ信号の出力が継続される。ただし、セキュリティ信号情報タイマの値が4分に上書きされたのであるから、この場合、図79(B)に示すように、その第1始動入賞口13a、第2始動入賞口13b、大入賞口23bへの異常入賞を検出した時点から4分が経過するまでセキュリティ信号の出力が継続されることになり、実質的にセキュリティ信号の出力が延長されることになる。
また、例えば、第1始動入賞口13a、第2始動入賞口13b、大入賞口23bへの異常入賞を検出したことにもとづいてセキュリティ信号の出力を開始した場合には、図79(A)に示すように、原則として4分を経過するまでセキュリティ信号の出力が継続される筈である。しかし、図79(C)に示すように、その4分を経過する前であっても、始動口スイッチ14a,14b及びカウントスイッチ23の検出数と第1〜第3入賞確認スイッチ14b,15b,23aの検出数との検出誤差が所定値(本例では15)以上となって、新たに第1始動入賞口13a、第2始動入賞口13b、大入賞口23bへの異常入賞が発生したと判定される可能性がある。この場合、新たに異常入賞の発生が検出されたことにもとづいてセキュリティ信号情報タイマに所定時間(本例では、4分)が上書きで書き込まれることになり(ステップS127参照)、情報出力処理(ステップS31参照)でステップS1069〜S1103の処理が実行されて、図79(C)に示すように、そのままセキュリティ信号の出力が継続される。ただし、セキュリティ信号情報タイマの値が4分に上書きされたのであるから、この場合、図79(C)に示すように、その新たに第1始動入賞口13a、第2始動入賞口13b、大入賞口23bへの異常入賞を検出した時点から4分が経過するまでセキュリティ信号の出力が継続されることになり、実質的にセキュリティ信号の出力が延長されることになる。
なお、既にセキュリティ信号の出力中であるときに第1始動入賞口13a、第2始動入賞口13b、大入賞口23bへの異常入賞を検出した場合に、出力中のセキュリティ信号の出力を終了してから、改めて次のセキュリティ信号の出力を開始するように構成することも考えられるが、この実施の形態では、図79(B)および図79(C)に示すように、出力中のセキュリティ信号の出力時間をそのまま延長することによって、セキュリティ信号の出力処理にかかる処理負担を軽減するとともに、セキュリティ信号の出力処理用のプログラム容量を低減している。すなわち、出力中のセキュリティ信号の出力を終了してから、改めて次のセキュリティ信号の出力を開始するように構成する場合には、セキュリティ信号の出力を終了した後、次のセキュリティ信号の出力を開始するまでのインターバル時間を計測する処理などが必要となり、処理負担が増加するとともにプログラム容量も増加してしまう。これに対して、この実施の形態では、セキュリティ信号情報タイマの値をそのまま上書きするので、セキュリティ信号情報タイマの値をセットする処理のみを行えば(ステップS14a,S127参照)、セキュリティ信号の出力を行うことができ、処理負担の増加やプログラム容量の増加を防止することができる。
なお、この実施の形態では、遊技機への電力供給開始時に初期化処理が実行された場合には30秒間に亘ってセキュリティ信号を出力し、第1始動入賞口13a、第2始動入賞口13b、大入賞口23bへの異常入賞を検出した場合には4分間に亘ってセキュリティ信号を出力する場合を示したが、セキュリティ信号の出力時間は、この実施の形態で示したものにかぎられない。すなわち、初期化処理が実行された場合であるか第1始動入賞口13a、第2始動入賞口13b、大入賞口23bへの異常入賞を検出した場合であるかを認識可能に、初期化処理が実行された場合と第1始動入賞口13a、第2始動入賞口13b、大入賞口23bへの異常入賞が検出された場合とで異なる出力時間に亘ってセキュリティ信号を出力するものであればよい。
なお、この実施の形態において、第1始動入賞口13a、第2始動入賞口13b、大入賞口23bへの異常入賞を検出した場合のセキュリティ信号の出力期間を4分間としたのは、第1始動入賞口13a、第2始動入賞口13b、大入賞口23bへの異常入賞の場合には、できるかぎり長い時間に亘ってセキュリティ信号を出力すべく、設定可能な略最大時間としたものである。すなわち、この実施の形態では、遊技制御用マイクロコンピュータ560は、セキュリティ信号情報タイマの値として2バイトの値を設定可能であるので、セキュリティ信号情報タイマには最大値として「FFFF(H)=65535」を設定可能である。そこで、この実施の形態では、セキュリティ信号情報タイマに、ほぼ最大値に近い「60000」をセットするようにし、タイマ割込の周期が4msであることから、4ms×60000=4分間に亘ってセキュリティ信号を出力するようにしたものである。
次に、払出制御手段(払出制御用マイクロコンピュータ370)の動作を説明する。図80は、払出制御手段における出力ポートの割り当ての例を示す説明図である。図80に示すように、出力ポート0からは、ステッピングモータによる払出モータ289に供給される各相の信号が出力される。また、出力ポート0からは、カードユニット50に対してPRDY信号やEXS信号が出力されるとともに、遊技機がエラー状態(本例では、球切れエラー状態または満タンエラー状態)であることを示す遊技機エラー状態信号や、賞球払出を検出したことを示す賞球信号1も出力される。また、出力ポート1からは、7セグメントLEDによるエラー表示用LED374の各セグメント出力信号が出力される。また、出力ポート1からは、賞球払出を10球検出したことを示す賞球情報も出力される。
図81は、払出制御手段における入力ポートのビット割り当ての例を示す説明図である。図81に示すように、入力ポート0のビット0〜2には、それぞれ、カードユニット50からのVL信号、BRDY信号、およびBRQ信号が入力される。また、入力ポート0のビット4には、主基板31からの接続信号が入力される。また、入力ポート0のビット5〜7には、それぞれ、満タンスイッチ48の検出信号、球切れスイッチ187の検出信号、および払出モータ位置センサ295の検出信号が入力される。また、入力ポート1のビット0,1には、それぞれ、エラー解除スイッチ375からの操作信号、および払出個数カウントスイッチ301の検出信号が入力される。
次に、払出制御手段の動作について説明する。図82は、払出制御手段が実行するメイン処理を示すフローチャートである。メイン処理では、払出制御用マイクロコンピュータ370の払出制御用CPU371は、まず、必要な初期設定を行う。すなわち、払出制御用CPU371は、まず、割込禁止に設定する(ステップS701)。次に、割込モードを割込モード2に設定し(ステップS702)、スタックポインタにスタックポインタ指定アドレスを設定する(ステップS703)。
次いで、払出制御用CPU371は、内蔵デバイスレジスタの設定を行う(ステップS704)。ステップS704の内蔵デバイスレジスタの設定の処理では、払出制御用CPU371は、CTCの設定を行う。また、この実施の形態では、内蔵CTCのうちの一つのチャネルがタイマモードで使用される。そのため、払出制御用CPU371は、使用するチャネルをタイマモードに設定するためのレジスタ設定、割込発生を許可するためのレジスタ設定および割込ベクタを設定するためのレジスタ設定を行う。そして、そのチャネルによる割込がタイマ割込として用いられる。タイマ割込を例えば1ms毎に発生させたい場合は、初期値として1msに相当する値が所定のレジスタ(時間定数レジスタ)に設定される。
また、ステップS704において、払出制御用CPU371は、シリアル通信回路380の割り込み要求に応じて実行する割込処理の優先順位を初期設定する。この場合、この場合、払出制御用CPU371は、遊技制御用マイクロコンピュータ560のCPU56が行う優先順位の初期設定処理(ステップS15b参照)と同様の処理に従って、割込処理の優先順位を初期設定する。
また、ステップS704において、払出制御用CPU371は、シリアル通信回路380の設定を行う。この場合、払出制御用CPU371は、受信回路のボーレートの設定、受信モード(8ビットまたは9ビットのデータフォーマットのいずれにするか)の設定、パリティ設定(パリティの有無や、偶数パリティまたは奇数パリティの設定)を行う。また、受信回路の各制御レジスタを初期化するとともに、各ステータスレジスタを初期化する。また、払出制御用CPU371は、送信回路のボーレートの設定、送信モード(8ビットまたは9ビットのデータフォーマットのいずれにするか)の設定、パリティ設定(パリティの有無や、偶数パリティまたは奇数パリティの設定)を行う。また、送信回路の各制御レジスタを初期化する。
なお、タイマモードに設定されたチャネル(この実施の形態ではチャネル3)に設定される割込ベクタは、タイマ割込処理の先頭アドレスに相当するものである。具体的は、Iレジスタに設定された値と割込ベクタとでタイマ割込処理の先頭アドレスが特定される。タイマ割込処理では、払出手段を制御する払出制御処理(少なくとも主基板からの賞球払出に関する指令信号に応じて球払出装置97を駆動する処理を含み、球貸し要求に応じて球払出装置97を駆動する処理が含まれていてもよい。)が実行される。
また、この実施の形態では、払出制御用マイクロコンピュータ370でも割込モード2が設定される。従って、内蔵CTCのカウントアップにもとづく割込処理を使用することができる。また、CTCが送出した割込ベクタに応じた割込処理開始アドレスを設定することができる。CTCのチャネル3(CH3)のカウントアップにもとづく割込は、CPUの内部クロック(システムクロック)をカウントダウンしてレジスタ値が「0」になったら発生する割込であり、タイマ割込として用いられる。
次いで、払出制御用CPU371は、RAMをアクセス可能状態に設定し(ステップS705)、RAMクリア処理を行う(ステップS706)。また、RAM領域のフラグやカウンタなどに初期値を設定する(ステップS707)。なお、ステップS707の処理には、未払出個数カウンタ初期値を未払出個数カウンタにセットする処理が含まれる。また、ステップS707の処理では、払出制御用CPU371は、払出個数異常エラーや満タンエラー、球切れエラーの検出状態を示すエラーフラグをクリアする処理も行う。なお、この実施の形態では、払出個数異常エラーと判定されてエラーフラグの払出個数異常エラー指定ビットがセットされた場合には、電源リセットがされるまで払出個数異常エラー指定ビットがクリアされず払出個数異常エラーから復旧しないのであるが、具体的には、電源投入時にステップS707の処理が実行されることによって、エラーフラグの払出個数異常エラー指定ビットがクリアされ、払出個数異常エラーから復旧する。
また、払出制御用CPU371は、シリアル通信回路380を初期設定するシリアル通信回路設定処理を実行する(ステップS708)。この場合、払出制御用CPU371は、遊技制御用マイクロコンピュータ560のCPU56が行うシリアル通信回路設定処理(ステップS15a参照)と同様の処理に従って、シリアル通信回路380に遊技制御用マイクロコンピュータ560とシリアル通信させるための設定を行う。また、前述したように、シリアル通信回路380の初期設定の一部は、ステップS704の内蔵デバイスレジスタの設定処理において実行される。なお、シリアル通信回路380の全ての設定処理をステップS708のシリアル通信回路設定処理で行うようにしてもよい。
そして、初期設定処理のステップS701において割込禁止とされているので、初期化処理を終える前に割込が許可される(ステップS709)。その後、タイマ割込の発生を監視するループ処理に入る。
上記のように、この実施の形態では、払出制御用マイクロコンピュータ370の内蔵CTCが繰り返しタイマ割込を発生するように設定される。そして、タイマ割込が発生すると、払出制御用マイクロコンピュータ370の払出制御用CPU371は、タイマ割込処理を実行する。
図83は、払出制御手段が実行するタイマ割込処理の例を示すフローチャートである。タイマ割込処理にて、払出制御用マイクロコンピュータ370の払出制御用CPU371は、以下の処理を実行する。まず、払出制御用CPU371は、スイッチチェック処理を行う(ステップS751)。スイッチチェック処理では、払出制御用CPU371は、入力ポート1の入力にもとづいて、払出個数カウントスイッチ301およびエラー解除スイッチ375のオン/オフ状態を確認する処理を行う。次いで、払出制御用CPU371は、入力判定処理を行う(ステップS752)。入力判定処理は、入力ポート0のビット0〜7(図81参照)の状態を検出して検出結果をRAMの所定の1バイト(センサ入力状態フラグと呼ぶ。)に反映する処理である。なお、払出制御用CPU371は、入力ポート0のビット0〜7の状態にもとづいて制御を行う場合には、直接入力ポートの状態をチェックするのではなく、センサ入力状態フラグの状態をチェックする。
次いで、払出制御用CPU371は、カードユニット50と通信を行うプリペイドカードユニット制御処理を実行する(ステップS753)。次いで、払出制御用CPU371は、主基板31の遊技制御手段と通信を行う主制御通信処理を実行する(ステップS754)。次いで、払出制御用CPU371は、カードユニット50からの球貸し要求に応じて貸し球を払い出す制御を行い、また、主基板31からの賞球個数コマンドが示す個数の賞球を払い出す制御を行う払出制御処理を実行する(ステップS755)。
次に、払出制御用CPU371は、払出モータ制御処理を実行する(ステップS756)。払出モータ制御処理では、払出モータ289を駆動すべきときには、払出モータφ1〜φ4のパターンを出力ポート0に出力するための処理を行う。
次いで、払出制御用CPU371は、各種のエラーを検出するエラー処理を実行する(ステップS757)。次いで、払出制御用CPU371は、カードユニット50のエラー制御を行うプリペイドカードユニットエラー制御処理を実行する(ステップS758)。次いで、払出制御用CPU371は、主基板31に対して賞球情報を出力したり、賞球信号1や遊技機エラー状態信号を外部出力するための情報出力処理を実行する(ステップS759)。また、エラー処理の結果に応じてエラー表示用LED374に所定の表示を行う表示制御処理を実行する(ステップS760)。
本実施の形態では、後述するエラー処理において各種エラー(例えば、払出個数異常エラーや、満タンエラー、球切れエラー、プリペイドカードユニット未接続エラー)が検出されると、検出されたエラーに対応するエラービットがセットされる。そして、ステップS760の表示制御処理において、エラービットがセットされていることについて、払出制御用CPU371は、エラー表示用LED374に所定の表示を行う。
また、この実施の形態では、出力ポートの出力状態に対応したRAM領域(出力ポート0バッファ、出力ポート1バッファ)が設けられているのであるが、払出制御用CPU371は、出力ポート0バッファおよび出力ポート1バッファの内容を出力ポートに出力する(ステップS761:出力処理)。出力ポート0バッファおよび出力ポート1バッファは、払出モータ制御処理(ステップS756)、プリペイドカード制御処理(ステップS753)、主制御通信処理(ステップS754)、情報出力処理(ステップS759)および表示制御処理(ステップS760)で更新される。
図84は、ステップS754の主制御通信処理を示すフローチャートである。主制御通信処理では、払出制御用マイクロコンピュータ370(具体的には、払出制御用CPU371)は、主制御コマンド受信処理(ステップS740)を実行する。そして、払出制御用CPU371は、主制御通信制御コードの値に応じて、ステップS741〜S744のいずれかの処理を実行する。
図85は、主制御通信処理におけるステップS740の主制御コマンド受信処理を示すフローチャートである。払出制御用CPU371は、主制御コマンド受信処理において、まず、接続信号を入力しているか否かを確認する(ステップS7401)。接続信号を入力していなければ、払出制御用CPU101は、シリアル通信回路380の送信回路および受信回路の初期化を行う(ステップS7402)。このように、接続信号を受信できない場合にシリアル通信回路380の送信回路および受信回路を初期化することによって、主基板31との接続状態が異常な状態下であるにもかかわらずコマンドを送信データレジスタや受信データレジスタに格納してしまう事態を防止することができる。次いで、払出制御用CPU371は、主制御通信制御コードの値をロードし(ステップS7403)、主制御通信制御コードの値が主制御接続確認処理を示す値「0」となっているか否かを確認する(ステップS7404)。
この実施の形態では、主制御通信処理において、遊技機への電源供給が開始されてから遊技制御用マイクロコンピュータ560からの接続信号の入力が開始され、最初の接続確認コマンドの受信を確認できるまでステップS741の主制御接続確認処理が実行される。そして、接続確認コマンドの受信を確認できると、ステップS742以降の処理に移行し、各種払出制御コマンドの送受信の処理が実行される。また、以降、遊技制御用マイクロコンピュータ560との間の通信状態が正常に維持されていれば、ステップS742〜S744のいずれかの処理が実行され、ステップS741の主制御接続確認処理は原則として遊技機への電源投入時にのみ実行されることになる。ステップS7404において、主制御通信制御コードの値が主制御接続確認処理以外の値を示しているということは、ステップS742以降の処理に移行した後に、何らかの通信エラーが生じて接続信号を入力不能となった場合である。そのため、払出制御用CPU371は、ステップS7404で主制御通信制御コードの値が主制御接続確認処理以外の値を示している場合には、エラーフラグの主制御通信エラー指定ビット(遊技制御用マイクロコンピュータ560との間の通信状態に異常が生じたことを示すビット)をセットする(ステップS7405)。なお、エラーフラグは、各種賞球エラーがセットされるフラグであり、払出制御用マイクロコンピュータ370が備えるRAMに形成されている。そして、払出制御用CPU371は、主制御通信制御コードに主制御接続確認処理を示す値「0」をセットする(ステップS7406)。なお、ステップS7404で主制御通信制御コードの値が主制御接続確認処理を示す値「0」となっていれば、そのままステップS7406)に移行する。
なお、ステップS741の主制御確認処理は、遊技機への電源投入時以降であっても例外的に実行される場合がある。具体的には、上記したように、ステップS7401で接続信号を入力していないと判定した後、ステップS7404で主制御接続確認処理の実行中でなければ、遊技機への電源投入後に接続信号が切断されてしまった可能性があると判断して主制御接続確認処理に戻り(ステップS7406参照)、再び遊技制御用マイクロコンピュータ560との接続状態を確認する(具体的には、接続確認コマンドを受信できることを確認。ステップS7412参照。)。また、後述する主制御通信通常処理において、接続OKコマンドを送信してから所定期間(本例では1050ms)を経過しても、遊技制御用マイクロコンピュータ560から接続確認コマンドも賞球個数コマンドも受信していない場合には、何らかの通信異常が生じたものとして主制御接続確認処理に戻り(ステップS74202,S74203参照)、再び遊技制御用マイクロコンピュータ560との接続状態を確認する(具体的には、接続確認コマンドを受信できることを確認。ステップS7412参照。)。
接続信号を入力していれば、払出制御用CPU371は、シリアル通信回路380のステータスレジスタに受信エラーフラグがセットされているか否かを確認する(ステップS7407)。例えば、払出制御用CPU371は、シリアル通信回路380のステータスレジスタにパリティエラーや、フレーイングエラー、ノイズエラー、オーバーランエラー、アイドルラインエラーを示すフラグがセットされていれば、シリアル通信回路380の受信エラー状態であると判定する。
受信エラーフラグがセットされていれば、払出制御用CPU371は、シリアル通信回路380の受信回路を初期化する(ステップS7408)。このように、受信エラー状態である場合にシリアル通信回路380の受信回路を初期化することによって、何らかの受信異常が生じているにもかかわらず受信コマンドを受信データレジスタに格納してしまう事態を防止することができる。そして、払出制御用CPU371は、エラーフラグの主制御通信エラー指定ビットをセットする(ステップS7409)。
受信エラーフラグもセットされていなければ、払出制御用CPU371は、受信バッファの内容をロードし(ステップS7410)、接続確認コマンドを受信しているか否かを確認する(ステップS7411)。具体的には、払出制御用CPU371は、ロードした受信バッファの内容が「A0(H)」であるか否か(図43参照)を確認する。接続確認コマンドを受信していれば、払出制御用CPU371は、ステップS7414に移行する。
接続確認コマンドを受信していなければ、払出制御用CPU371は、賞球個数コマンドを受信しているか否かを確認する。この実施の形態では、図43に示すように、接続個数コマンドの内容は、少なくとも「51(H)」以上、「60(H)」未満の値となる筈である。従って、払出制御用CPU371は、まず、ロードした受信バッファの内容が賞球個数コマンド最小値「51(H)」以上であるか否かを確認する(ステップS7412)。次いで、賞球個数コマンド最小判定値「51(H)」以上であれば、払出制御用CPU371は、ロードした受信バッファの内容が賞球個数コマンド最大判定値「60(H)」未満であるか否かを確認する(ステップS7413)。賞球個数コマンド最大判定値「60(H)」未満であれば、払出制御用CPU371は、賞球個数コマンドを受信していると判定し、ステップS7414に移行する。
そして、ステップS7414では、払出制御用CPU371は、受信バッファの内容(接続確認コマンド、賞球個数コマンド)を主制御通信受信バッファに格納する。なお、主制御通信受信バッファは、1バイトで構成され、1度に1つの受信コマンドのみを格納することができる。このように構成しても、この実施の形態では、払出制御用マイクロコンピュータ370におけるタイマ割込の周期(本例では1ms)は、遊技制御用マイクロコンピュータ560におけるタイマ割込の周期(本例では4ms)より短いので、1回のタイマ割込内で複数の払出制御コマンドが受信される事態が生じることはなく、不都合は生じない。また、万一、遊技機への電源投入後、誤処理などにより、最初の接続確認コマンドを受信する前に賞球個数コマンドを受信してしまった場合であっても、その後、接続確認コマンドを受信すれば主制御通信受信バッファに上書きで格納されるので、後述する主制御接続確認処理(ステップS741)で接続確認コマンドを全く確認できず主制御通信通常処理に移行できなくなる事態が生じることを防止することができる。
図86は、主制御通信制御コードの値が0の場合に実行される主制御接続確認処理(ステップS741)を示すフローチャートである。主制御接続確認処理において、払出制御用CPU371は、主制御通信受信バッファの内容をロードし(ステップS7411)、接続確認コマンドを受信しているか否かを確認する(ステップS7412)。接続確認コマンドを受信していれば、払出制御用CPU371は、接続OKコマンドをセットし(ステップS7413)、主制御送信コマンド変換処理を実行する(ステップS7414)。なお、ステップS7414の主制御送信コマンド変換処理では、接続OKコマンドの下位4ビットに制御状態(払出個数異常エラーや、球切れエラー、満タンエラー、賞球エラーなどのエラー状態)をセットする処理が行われる。そして、払出制御用CPU371は、変換後の接続OKコマンドを遊技制御用マイクロコンピュータ560に送信する制御を行う(ステップS7415)。具体的には、払出制御用CPU371は、シリアル通信回路380の送信レジスタに接続OKコマンドを出力する処理を行う。
なお、払出制御用CPU371は、ステップS7415で接続OKコマンドを送信すると、主制御通信受信バッファをクリアする。そのようにすることによって、その後の処理で受信コマンドを誤って認識して誤った処理を実行してしまう事態を防止することができる。
次いで、払出制御用CPU371は、主制御通信制御コードに主制御通信通常処理を示す値「1」をセットする(ステップS7416)。そして、払出制御用CPU371は、主制御通信制御タイマに所定値(本例では1050ms)をセットする(ステップS7417)。
図87および図88は、主制御通信制御コードの値が1の場合に実行される主制御通信通常処理(ステップS742)を示すフローチャートである。主制御通信通常処理において、払出制御用CPU371は、主制御通信制御タイマの値を1減算し(ステップS74201)、主制御通信制御タイマがタイムアウトしたか否かを確認する(ステップS74202)。
この実施の形態では、前述したように、払出制御用マイクロコンピュータ370から接続OKコマンドを受信して1秒経過するごとに、遊技制御用マイクロコンピュータ560から次の接続確認コマンドが送信される。従って、ステップS7402において主制御通信制御タイマがタイムアウトしたということは、接続OKコマンドの送信後1秒を遙かに超えて1050ms(ステップS7417,S7409参照)を経過しても次の接続確認コマンドを受信できなかった場合である。そのため、払出制御用CPU371は、主制御通信制御コードに主制御接続確認処理を示す値「0」をセットして(ステップS7403)、主制御接続確認処理に戻り通信状態の回復を待つように制御する。
なお、払出制御用CPU371は、ステップS74202で主制御通信制御タイマがタイムアウトしていれば、主制御通信受信バッファをクリアする。そのようにすることによって、その後の処理で受信コマンドを誤って認識して誤った処理を実行してしまう事態を防止することができる。
主制御通信制御タイマがタイムアウトしていなければ、払出制御用CPU371は、主制御通信受信バッファに受信コマンドが格納されているか否かを確認する(ステップS74204)。主制御通信受信バッファに受信コマンドが格納されていれば、払出制御用CPU371は、受信したコマンドが接続確認コマンドであるか否かを確認する(ステップS74205)。接続確認コマンドを受信していれば、払出制御用CPU371は、接続OKコマンドをセットし(ステップS74206)、主制御送信コマンド変換処理を実行する(ステップS74207)。なお、ステップS74207の主制御送信コマンド変換処理では、接続OKコマンドの下位4ビットに制御状態(払出個数異常エラーや、球切れエラー、満タンエラー、賞球エラーなどのエラー状態)をセットする処理が行われる。そして、払出制御用CPU371は、変換後の接続OKコマンドを遊技制御用マイクロコンピュータ560に送信する制御を行う(ステップS74208)。具体的には、払出制御用CPU371は、シリアル通信回路380の送信レジスタに接続OKコマンドを出力する処理を行う。
なお、払出制御用CPU371は、ステップS74208で接続OKコマンドを送信すると、主制御通信受信バッファをクリアする。そのようにすることによって、その後の処理で受信コマンドを誤って認識して誤った処理を実行してしまう事態を防止することができる。
そして、払出制御用CPU371は、主制御通信制御タイマに所定値(本例では1050ms)をセットする(ステップS74209)。
ステップS74205で受信したコマンドが接続確認コマンドでなければ、賞球個数コマンドを受信していることになる。この場合、払出制御用CPU371は、エラーフラグの値が0であるか否かを確認する(ステップS74210)。エラーフラグの値が0でなければ(すなわち、エラー状態であり、いずれかのエラービットがセットされていれば)、ステップS74219に移行する。エラーフラグの値が0であれば(すなわち、エラー状態となっておらず、いずれのエラービットもセットされていなければ)、払出制御用CPU371は、BRDY信号を入力しているか否かを確認する(ステップS74211)。BRDY信号を入力していれば、ステップS74219に移行する。
BRDY信号も入力していなければ、払出制御用CPU371は、払出制御状態を示す払出制御状態フラグをロードし(ステップS74212)、賞球払出動作中または球貸し払出動作中であるか否かを確認する(ステップS74213)。具体的には、払出制御用CPU371は、払出制御状態フラグに賞球払出動作中指定ビット(賞球払出動作中であることを示すビット)または球貸し払出動作中指定ビット(球貸し払出動作中であることを示すビット)がセットされているか否かを確認する。賞球払出動作中または球貸し払出動作中であれば、ステップS74219に移行する。なお、この実施の形態では、賞球払出動作を終了して賞球終了コマンドを受信してから次の賞球個数コマンドが送信されるので、通信エラーなどの異常が発生していないかぎり、ステップS74213において賞球払出動作中であると判定されることはない。
賞球払出動作中でも球貸し払出動作中でもなければ、受信した賞球個数コマンドにもとづく賞球払出動作を直ちに開始できる場合である。この場合、払出制御用CPU371は、主制御通信受信バッファの下位4ビット(すなわち、賞球個数コマンドにセットされた賞球個数)を未払出個数カウンタにセットする(ステップS74214)。なお、未払出個数カウンタは、賞球や貸し球の未払出数をカウントするためのカウンタである。
次いで、払出制御用CPU371は、賞球個数受付コマンドを遊技制御用マイクロコンピュータ560に送信する制御を行う(ステップS74215)。具体的には、払出制御用CPU371は、シリアル通信回路380の送信レジスタに賞球個数受付コマンドを出力する処理を行う。
なお、払出制御用CPU371は、ステップS74215で賞球個数受付コマンドを送信すると、主制御通信受信バッファをクリアする。そのようにすることによって、その後の処理で受信コマンドを誤って認識して誤った処理を実行してしまう事態を防止することができる。
次いで、払出制御用CPU371は、主制御通信制御コードに主制御通信終了処理を示す値「3」をセットする(ステップS74216)。そして、払出制御用CPU371は、主制御通信制御タイマに所定値(本例では1秒)をセットする(ステップS74218)。なお、ステップS74218でセットされた値にもとづいて、賞球個数受付コマンドを送信した後、1秒経過後に賞球払出動作を完了していなければ賞球準備中コマンドが送信されることになる。
ステップS74219では、払出制御用CPU371は、主制御通信受信バッファの下位4ビット(すなわち、賞球個数コマンドのセットされた賞球個数)を主制御通信賞球個数バッファに格納する。すなわち、この場合、何らかのエラー状態が発生していたり、賞球払出動作中や球貸し払出動作中、球貸し準備中の場合であるので、受信した賞球個数コマンドにもとづく賞球払出動作を直ちに開始することはできない。そのため、払出制御用CPU371は、賞球個数受付コマンドの返信を保留するとともに、賞球個数コマンドにセットされた賞球個数を主制御通信賞球個数バッファに一旦退避する。
次いで、払出制御用CPU371は、賞球準備中コマンドをセットし(ステップS74220)、主制御送信コマンド変換処理を実行する(ステップS74221)。なお、ステップS74221の主制御送信コマンド変換処理では、賞球準備中コマンドの下位4ビットに制御状態(払出個数異常エラーや、球切れエラー、満タンエラー、賞球エラーなどのエラー状態)をセットする処理が行われる。そして、払出制御用CPU371は、変換後の賞球準備中コマンドを遊技制御用マイクロコンピュータ560に送信する制御を行う(ステップS74222)。具体的には、払出制御用CPU371は、シリアル通信回路380の送信レジスタに賞球準備中コマンドを出力する処理を行う。
なお、払出制御用CPU371は、ステップS74222で賞球準備中コマンドを送信すると、主制御通信受信バッファをクリアする。そのようにすることによって、その後の処理で受信コマンドを誤って認識して誤った処理を実行してしまう事態を防止することができる。
次いで、払出制御用CPU371は、主制御通信制御コードに主制御通信中処理を示す値「2」をセットする(ステップS74223)。そして、払出制御用CPU371は、主制御通信制御タイマに所定値(本例では1秒)をセットする(ステップS74224)。なお、ステップS74224でセットされた値にもとづいて、賞球準備中コマンドを送信した後、1秒経過後にまだ賞球払出動作を開始できる状態になっていなければ次の賞球準備中コマンドが送信されることになる。
図89および図90は、主制御通信制御コードの値が2の場合に実行される主制御通信中処理(ステップS743)を示すフローチャートである。主制御通信中処理において、払出制御用CPU371は、まず、主制御通信受信バッファに受信コマンドが格納されているか否かを確認する(ステップS74301)。主制御通信受信バッファに受信コマンドが格納されていれば、払出制御用CPU371は、受信したコマンドが接続確認コマンドであるか否かを確認する(ステップS74302)。接続確認コマンドでなければ、ステップS74306に移行する。接続確認コマンドを受信していれば、払出制御用CPU371は、接続OKコマンドをセットし(ステップS74303)、主制御送信コマンド変換処理を実行する(ステップS74304)。なお、ステップS74304の主制御送信コマンド変換処理では、接続OKコマンドの下位4ビットに制御状態(払出個数異常エラーや、球切れエラー、満タンエラー、賞球エラーなどのエラー状態)をセットする処理が行われる。そして、払出制御用CPU371は、変換後の接続OKコマンドを遊技制御用マイクロコンピュータ560に送信する制御を行う(ステップS74305)。具体的には、払出制御用CPU371は、シリアル通信回路380の送信レジスタに接続OKコマンドを出力する処理を行う。そして、ステップS74306に移行する。
ステップS74306では、払出制御用CPU371は、エラーフラグに主制御通信エラー指定ビットをセットする。すなわち、主制御通信中処理は、賞球個数コマンドを受信した後、受信した賞球個数コマンドにもとづく賞球払出動作を開始可能な状態となるまでに実行される処理であり、賞球個数受付コマンドの返信が保留されて、遊技制御用マイクロコンピュータ560は賞球個数受付コマンドの受信待ち状態となっているのであるから、この間に遊技制御用マイクロコンピュータ560から新たに払出制御コマンドを受信することはない筈である。それにもかかわらず、新たなコマンドを受信したということは通信状態に何らかの異常が生じたと判断することができるのであるから、払出制御用CPU371は、主制御通信エラー指定ビットをセットする処理を行う。
なお、払出制御用CPU371は、ステップS74306で主制御通信エラー指定ビットをセットすると、主制御通信受信バッファをクリアする。そのようにすることによって、その後の処理で受信コマンドを誤って認識して誤った処理を実行してしまう事態を防止することができる。
次いで、払出制御用CPU371は、主制御通信制御コードに主制御通信通常処理を示す値「1」をセットする(ステップS74307)。そして、払出制御用CPU371は、主制御通信制御タイマに所定値(本例では1050ms)をセットする(ステップS74308)。
主制御通信受信バッファに受信コマンドがなければ、払出制御用CPU371は、主制御通信制御タイマの値を1減算し(ステップS74309)、主制御通信制御タイマがタイムアウトしたか否かを確認する(ステップS74310)。
主制御通信制御タイマがタイムアウトしていれば(ステップS74310のY)、賞球準備中コマンドを前回送信してから1秒以上経過したことを意味する。この場合、払出制御用CPU371は、次の賞球準備中コマンドを送信するために、賞球準備中コマンドをセットし(ステップS74311)、主制御送信コマンド変換処理を実行する(ステップS74312)。なお、ステップS74312の主制御送信コマンド変換処理では、賞球準備中コマンドの下位4ビットに制御状態(払出個数異常エラーや、球切れエラー、満タンエラー、賞球エラーなどのエラー状態)をセットする処理が行われる。そして、払出制御用CPU371は、変換後の賞球準備中コマンドを遊技制御用マイクロコンピュータ560に送信する制御を行う(ステップS74313)。具体的には、払出制御用CPU371は、シリアル通信回路380の送信レジスタに賞球準備中コマンドを出力する処理を行う。
そして、払出制御用CPU371は、主制御通信制御タイマに所定値(本例では1秒)をセットする(ステップS74314)。なお、ステップS74314でセットされた値にもとづいて、賞球準備中コマンドを送信した後、さらに1秒経過後にまだ賞球払出動作を開始できる状態になっていなければ次の賞球準備中コマンドが送信されることになる。
主制御通信制御タイマがタイムアウトしていなければ、払出制御用CPU371は、エラーフラグの値が0であるか否かを確認する(ステップS74315)。エラーフラグの値が0でなければ(すなわち、エラー状態であり、いずれかのエラービットがセットされていれば)、まだ賞球払出動作を開始できないので、そのまま処理を終了する。エラーフラグの値が0であれば(すなわち、エラー状態となっておらず、いずれのエラービットもセットされていなければ)、払出制御用CPU371は、BRDY信号を入力しているか否かを確認する(ステップS74316)。BRDY信号を入力していれば、まだ賞球払出動作を開始できないので、そのまま処理を終了する。
BRDY信号も入力していなければ、払出制御用CPU371は、払出制御状態を示す払出制御状態フラグをロードし(ステップS74317)、賞球払出動作中または球貸し払出動作中であるか否かを確認する(ステップS74318)。具体的には、払出制御用CPU371は、払出制御状態フラグに賞球払出動作中指定ビット(賞球払出動作中であることを示すビット)または球貸し払出動作中指定ビット(球貸し払出動作中であることを示すビット)がセットされているか否かを確認する。賞球払出動作中または球貸し払出動作中であれば、まだ賞球払出動作を開始できないので、そのまま処理を終了する。なお、この実施の形態では、賞球払出動作を終了して賞球終了コマンドを受信してから次の賞球個数コマンドが送信されるので、通信エラーなどの異常が発生していないかぎり、ステップS74318において賞球払出動作中であると判定されることはない。
賞球払出動作中でも球貸し払出動作中でもなければ、受信した賞球個数コマンドにもとづく賞球払出動作を開始可能な状態となったことを意味する。この場合、払出制御用CPU371は、主制御通信賞球個数バッファの下位4ビット(すなわち、一時退避した賞球個数)を未払出個数カウンタにセットする(ステップS74319)。
なお、この実施の形態では、既に述べたように、賞球個数コマンドを受信したときに直ちに賞球払出動作を開始できない場合に、賞球個数コマンドで特定される賞球個数を直ちに未払出個数カウンタにセットするのではなく、主制御通信賞球個数バッファに一旦退避するのであるが、このように制御するのは、例えば、貸し球払出動作中に未払出個数カウンタに賞球個数が上乗せされて賞球個数を正確に管理できなくなる事態を防止するなど、払出制御に関する処理に不都合が生じないようにするためである。
次いで、払出制御用CPU371は、賞球個数受付コマンドを遊技制御用マイクロコンピュータ560に送信する制御を行う(ステップS74320)。具体的には、払出制御用CPU371は、シリアル通信回路380の送信レジスタに賞球個数受付コマンドを出力する処理を行う。
次いで、払出制御用CPU371は、主制御通信制御コードに主制御通信終了処理を示す値「3」をセットする(ステップS74321)。そして、払出制御用CPU371は、主制御通信制御タイマに所定値(本例では1秒)をセットする(ステップS74322)。なお、ステップS74322でセットされた値にもとづいて、賞球個数受付コマンドを送信した後、1秒経過後に賞球払出動作を完了していなければ賞球準備中コマンドが送信されることになる。
図91は、主制御通信制御コードの値が3の場合に実行される主制御通信終了処理(ステップS744)を示すフローチャートである。主制御通信終了処理において、払出制御用CPU371は、まず、主制御通信受信バッファに受信コマンドが格納されているか否かを確認する(ステップS74401)。主制御通信受信バッファに受信コマンドが格納されていれば、払出制御用CPU371は、受信したコマンドが接続確認コマンドであるか否かを確認する(ステップS74402)。接続確認コマンドでなければ、ステップS74406に移行する。接続確認コマンドを受信していれば、払出制御用CPU371は、接続OKコマンドをセットし(ステップS74403)、主制御送信コマンド変換処理を実行する(ステップS74404)。なお、ステップS74404の主制御送信コマンド変換処理では、接続OKコマンドの下位4ビットに制御状態(払出個数異常エラーや、球切れエラー、満タンエラー、賞球エラーなどのエラー状態)をセットする処理が行われる。そして、払出制御用CPU371は、変換後の接続OKコマンドを遊技制御用マイクロコンピュータ560に送信する制御を行う(ステップS74405)。具体的には、払出制御用CPU371は、シリアル通信回路380の送信レジスタに接続OKコマンドを出力する処理を行う。そして、ステップS74406に移行する。
ステップS74406では、払出制御用CPU371は、エラーフラグに主制御通信エラー指定ビットをセットする。すなわち、主制御通信終了処理は、賞球個数コマンドを受信して賞球払出動作を開始した後、受信した賞球個数コマンドにもとづく賞球払出動作を終了するまで実行する処理であり、遊技制御用マイクロコンピュータ560は賞球終了コマンドの受信待ち状態となっているのであるから、この間に遊技制御用マイクロコンピュータ560から新たに払出制御コマンドを受信することはない筈である。それにもかかわらず、新たなコマンドを受信したということは通信状態に何らかの異常が生じたと判断することができるのであるから、払出制御用CPU371は、主制御通信エラー指定ビットをセットする処理を行う。
なお、払出制御用CPU371は、ステップS74406で主制御通信エラー指定ビットをセットすると、主制御通信受信バッファをクリアする。そのようにすることによって、その後の処理で受信コマンドを誤って認識して誤った処理を実行してしまう事態を防止することができる。
次いで、払出制御用CPU371は、主制御通信制御コードに主制御通信通常処理を示す値「1」をセットする(ステップS74407)。そして、払出制御用CPU371は、主制御通信制御タイマに所定値(本例では1050ms)をセットする(ステップS74408)。
主制御通信受信バッファに受信コマンドがなければ、払出制御用CPU371は、主制御通信制御タイマの値を1減算し(ステップS74409)、主制御通信制御タイマがタイムアウトしたか否かを確認する(ステップS74410)。
主制御通信制御タイマがタイムアウトしていれば(ステップS74410のY)、賞球個数受付コマンドや賞球準備中コマンドを前回送信してから1秒以上経過したことを意味する。この場合、払出制御用CPU371は、次の賞球準備中コマンドを送信するために、賞球準備中コマンドをセットし(ステップS74411)、主制御送信コマンド変換処理を実行する(ステップS74412)。なお、ステップS74412の主制御送信コマンド変換処理では、賞球準備中コマンドの下位4ビットに制御状態(払出個数異常エラーや、球切れエラー、満タンエラー、賞球エラーなどのエラー状態)をセットする処理が行われる。そして、払出制御用CPU371は、変換後の賞球準備中コマンドを遊技制御用マイクロコンピュータ560に送信する制御を行う(ステップS74413)。具体的には、払出制御用CPU371は、シリアル通信回路380の送信レジスタに賞球準備中コマンドを出力する処理を行う。
そして、払出制御用CPU371は、主制御通信制御タイマに所定値(本例では1秒)をセットする(ステップS74414)。なお、ステップS74414でセットされた値にもとづいて、賞球準備中コマンドを送信した後、さらに1秒経過後にまだ賞球払出動作が終了していなければ次の賞球準備中コマンドが送信されることになる。
主制御通信制御タイマがタイムアウトしていなければ、払出制御用CPU371は、払出制御状態フラグをロードし(ステップS74415)、賞球払出動作中であるか否かを確認する(ステップS74416)。具体的には、払出制御用CPU371は、払出制御状態フラグに賞球払出動作中指定ビットがセットされているか否かを確認する。賞球払出動作中であれば、受信した賞球個数コマンドにもとづく賞球払出動作をまだ終了していないことを意味するので、払出制御用CPU371は、そのまま処理を終了する。賞球払出動作中でなければ、受信した賞球個数コマンドにもとづく賞球払出動作を終了したことを意味する。そのため、払出制御用CPU371は、賞球終了コマンドを遊技制御用マイクロコンピュータ560に送信する制御を行う(ステップS74417)。具体的には、払出制御用CPU371は、シリアル通信回路380の送信レジスタに賞球終了コマンドを出力する処理を行う。
なお、払出制御用CPU371は、ステップS74417で賞球終了コマンドを送信すると、主制御通信受信バッファをクリアする。そのようにすることによって、その後の処理で受信コマンドを誤って認識して誤った処理を実行してしまう事態を防止することができる。
次いで、払出制御用CPU371は、主制御通信制御コードに主制御通信通常処理を示す値「1」をセットする(ステップS74418)。そして、払出制御用CPU371は、主制御通信制御タイマに所定値(本例では1050ms)をセットする(ステップS74419)。
図92は、ステップS7414,S74207,S74221,S74304,S74312,S74404,S74412で実行される主制御送信コマンド変換処理を示すフローチャートである。主制御送信コマンド変換処理において、払出制御用CPU371は、まず、エラーフラグをロードし、払出個数異常エラー指定ビットがセットされているか否かを確認する(ステップS731)。払出個数異常エラー指定ビットがセットされていれば、払出制御用CPU371は、変換バッファの主制御通信用払出個数異常エラー出力ビット(具体的にはビット3)をセットする(ステップS732)。
次いで、払出制御用CPU371は、球切れエラー指定ビットがセットされているか否かを確認する(ステップS733)。球切れエラー指定ビットがセットされていれば、払出制御用CPU371は、変換バッファの主制御通信用球切れ出力ビット(具体的にはビット2)をセットする(ステップS734)。
次いで、払出制御用CPU371は、満タンエラー指定ビットがセットされているか否かを確認する(ステップS735)。満タンエラー指定ビットがセットされていれば、払出制御用CPU371は、変換バッファの主制御通信用満タン出力ビット(具体的にはビット1)をセットする(ステップS736)。
次いで、払出制御用CPU371は、その他の賞球エラー指定ビットがセットされているか否かを確認する(ステップS737)。具体的には、払出制御用CPU371は、エラーフラグに、主制御通信エラー指定ビットや、主制御未接続エラー指定ビット、払出スイッチ異常検知エラー1指定ビット、払出スイッチ異常検知エラー2指定ビット、払出ケースエラー指定ビットがセットされているか否かを確認する。その他の賞球エラー指定ビットがセットされていれば、払出制御用CPU371は、変換バッファの主制御通信用球切れ出力ビット(具体的にはビット0)をセットする(ステップS738)。
そして、払出制御用CPU371は、送信するためにセットされている払出制御コマンド(接続OKコマンドまたは賞球準備中コマンド)に変換バッファの内容をセットする(ステップS739)。
図93は、ステップS755の払出制御処理を示すフローチャートである。払出制御処理において、払出制御用CPU371は、払出個数カウントスイッチ301の検出信号がオン状態となったことを確認したら(ステップS7501)、未払出個数カウンタの値が0となっているか否かを確認する(ステップS7502)。未払出個数カウンタの値が0となっていた場合には、払出制御用CPU371は、異常な払出の累積数をカウントするための払出個数異常カウンタの値を1加算する(ステップS7503)。すなわち、ステップS7502でYであるということは、未払出個数カウンタに払い出すべき未払い出し数がセットされていないのであるから、遊技球の払い出しが行われない筈であるにもかかわらず、払出動作が行われ払出個数カウントスイッチ301で遊技球の払い出しが検出された場合である。そのため、何らかの不正行為により払出動作が行われた可能性があるので、払出制御用CPU101は、払出個数異常カウンタの値を累積的に1加算する。
なお、払出個数異常カウンタは、賞球や貸し球の払い出すべき数の未払出の遊技球を超えた払出過多数と払い出すべき数の未払出の遊技球に満たなかった払出不足数とを累積的にカウントするためのカウンタである。後述するように、この実施の形態では、払出個数異常カウンタの値が所定の払出個数異常エラー判定値(本例では2000)以上となると、払出個数異常エラーが発生したと判定して、払出停止状態に制御する処理が行われる。なお、ステップS7503の処理は、払出個数異常カウンタに払出過多数を累積的にカウントする処理に相当する。
なお、この実施の形態では、賞球であるか貸し球であるかを区別することなく、払出過多数と払出不足数とを払出個数異常カウンタに累積的にカウントするのであるが、賞球と貸し球のうちのいずれか一方のみを対象として、払出過多数と払出不足数とを払出個数異常カウンタに累積的にカウントするようにしてもよい。また、例えば、賞球と貸し球について、それぞれ別々のカウンタを用いて払出過多数と払出不足数とを累積的にカウントするようにしてもよい。この場合、いずれか一方のカウンタの値が所定の閾値に達したときに払出個数異常エラーと判定するようにしてもよく、両カウンタの合計値が所定の閾値に達したときに払出個数異常エラーと判定するようにしてもよい。
また、この実施の形態では、ステップS7503において払出過多を検出したときに払出個数異常カウンタの値を1加算する場合を示したが、払出個数異常カウンタの値のカウントアップの仕方は、この実施の形態で示したものにかぎられない。例えば、逆に、払出個数異常カウンタの値から払出過多数を減算するとともに、払出不足数を払出個数異常カウンタの値に加算するようにしてもよい。この場合、払出制御用CPU371は、例えば、電源投入時の初期設定処理において払出個数異常カウンタに初期値として「2000」をセットするとともに、ステップS7503において、払出個数異常カウンタの値を1減算するようにし、後述するステップS75320,S75325,S75335において払出個数異常カウンタの値に払出不足数に相当する値を加算するようにすればよい。そして、例えば、後述するステップS7504,S75321,S7725の処理では、払出個数異常カウンタの値が2000以下となっていることにおとづいて、払出個数異常エラーが発生したと判定するようにしてもよい。
次いで、払出制御用CPU371は、加算後の払出個数異常カウンタの値が所定の払出個数異常エラー判定値(例えば2000)以上となったか否かを確認する(ステップS7504)。所定の払出個数異常エラー判定値(例えば2000)以上となっていれば、払出制御用CPU371は、払出個数異常エラーが発生したと判断し、払出個数異常エラーが発生したことを示す払出個数異常エラーフラグをセットする(ステップS7505)。すなわち、この実施の形態では、払出制御用マイクロコンピュータ370側で異常な払出の検出数を累積的に管理し、その累積値が所定の払出個数異常エラー判定値(例えば2000)以上となれば、何らかの不正行為により払出動作が行われている可能性が極めて高いと判断して、払出個数異常エラー(払い出された遊技球数が異常である旨のエラー)が発生したと判定される。なお、誤動作などにより遊技球が過剰に払い出されたり払出不足が生じたりすることも少なからずあるので、払出数の異常を検出したときに直ちに払出個数異常エラーと判定してしまったのでは、払出個数異常エラーと判定される頻度が必要以上に高くなり却って遊技に支障を生じてしまう。そこで、この実施の形態では、異常な払出の検出数を累積的に管理し、その累積値が所定の払出個数異常エラー判定値(例えば2000)以上となったことを条件として払出個数異常エラーと判定するようにすることによって、必要以上に払出個数異常エラーと判定されることを防止している。
なお、この実施の形態では、払出個数異常エラーと判定されて払出個数異常エラーフラグが一度セットされると、電源リセットされるまで払出個数異常エラーフラグはクリアされず払出個数異常エラーから復旧しないので、払出個数異常エラーフラグがセットされると、以降、ステップS7504,S7505の処理や後述するS75321,S75322、S7725,S7726の処理は実行しないようにしてもよい。そのようにすれば、払出個数異常エラーと一度判定してしまった後の無駄な処理を防止し処理負担を軽減することができる。
また、この実施の形態では、所定の払出個数異常エラー判定値として、一般に、遊技店で用いられる遊技球の収納箱(いわゆるドル箱)に収納可能な遊技球の数に相当する「2000」を用いる場合を示しているが、所定の払出個数異常エラー判定値として他の値(例えば、1000や3000)を用いてもよい。
なお、この実施の形態では、図93に示す払出制御処理は、賞球払出動作を実行するときと貸し球払出動作を実行するときとで共通に実行される処理であり、未払出個数カウンタは、賞球による未払出の遊技球数をカウントするときと貸し球による未払出の遊技球数をカウントするときとで共通に用いられるカウンタである。そして、払出個数の異常を検出した場合には、賞球による払出と貸し球による払出とを区別することなく払出個数異常カウンタの値がカウントアップされ、払出個数異常エラーが発生したか否かの判定が行われる。
未払出個数カウンタの値が0でなければ、払出制御用CPU371は、未払出個数カウンタの値を1減算し(ステップS7506)、払出制御状態のフラグに払出球検知指定ビット(遊技球の払い出しを検出したことを示すビット)をセットする(ステップS7507)。なお、払出球検知指定ビットは、払出個数カウントスイッチ301がオンしたときにセットされるビットであり、払出動作中に払出個数カウントスイッチ301が少なくとも1個の遊技球を検出したことを示すビットである。
その後、払出制御用CPU371は、払出制御コードの値に応じてステップS7511〜S7513のいずれかの処理を実行する。
図94は、払出制御コードが0の場合に実行される払出開始待ち処理(ステップS7511)を示すフローチャートである。払出開始待ち処理において、払出制御用CPU371は、まず、エラーフラグの値が0であるか否かを確認する(ステップS75101)。そして、エラービット(エラーフラグにおける全てのエラービットのうちの1つ以上)がセットされていたら、払出制御用CPU371は、以降の処理を実行しないように制御する。なお、この実施の形態では、ステップS75101の処理が実行されることによって、払出個数異常エラーと判定されてエラービットの払出個数異常エラー指定ビットがセットされていることにもとづいて、ステップS75102以降の処理に移行しないように制御され、払出停止状態に制御される。
エラーフラグの値が0であれば、払出制御用CPU371は、BRDY信号を入力しているか否かを確認する(ステップS75102)。BRDY信号を入力していれば、払出制御用CPU371は、払出制御状態フラグをロードし(ステップS75103)、球貸し要求中であるか否かを確認する(ステップS75104)。具体的には、払出制御用CPU371は、払出制御状態フラグに球貸し要求中指定ビット(球貸し要求中であることを示すビット)がセットされているか否かを確認する。なお、払出制御用CPU371は、BRQ信号を入力しているか否かを確認することによって、球貸し要求中であるか否かを判定するようにしてもよい。球貸し要求中であれば(すなわち、球貸し払出動作を開始する場合)、払出制御用CPU371は、払出制御状態フラグの球貸し要求中指定ビットをリセットする(ステップS75105)とともに、払出制御状態フラグの球貸し払出動作中指定ビットをセットする(ステップS75016)。次いで、払出制御用CPU371は、未払出個数カウンタに所定の球貸し個数(本例では25)をセットする(ステップS75107)とともに、払出モータ回転回数バッファに所定の球貸し個数(本例では25)をセットする(ステップS75108)。そして、ステップS75113に移行する。
なお、払出モータ回転回数バッファは、払出モータ制御処理(ステップS756)において参照される。すなわち、払出モータ制御処理では、払出モータ回転回数バッファにセットされた値に対応した回転数分だけ払出モータ289を回転させる制御が実行される。
BRDY信号を入力していなければ、払出制御用CPU371は、未払出個数カウンタの値が0であるか否かを確認する(ステップS75109)。未払出個数カウンタの値が0でなければ(すなわち、賞球払出動作を開始する場合)、払出制御用CPU371は、払出モータ回転回数バッファに未払出個数カウンタの値をセットする(ステップS75110)。すなわち、この場合、未払出個数カウンタには、受信した賞球個数コマンドで指定された賞球個数がセットされている筈であるから(ステップS74214,S74319参照)、賞球払出動作を開始するために、賞球個数を払出モータ回転回数バッファにセットする処理を行う。次いで、払出制御用CPU371は、払出制御状態フラグをロードし(ステップS75111)、払出制御状態フラグに賞球払出動作中指定ビットをセットする(ステップS75112)。そして、ステップS75113に移行する。
ステップS75113では、払出制御用CPU371は、払出モータ制御処理で実行される処理を選択するための払出モータ制御コードに、払出モータ起動処理に応じて値をセットする。これにより、ステップS756の払出モータ制御処理において、払出モータ289を起動する払出モータ起動処理が実行され、貸し球払出動作または賞球払出動作が開始される。そして、払出制御用CPU371は、払出制御コードに払出モータ停止待ち処理を示す値「1」をセットし(ステップS75114)、処理を終了する。
図95は、払出制御コードが1の場合に実行される払出モータ停止待ち処理(ステップS7512)を示すフローチャートである。払出モータ停止待ち処理において、払出制御用CPU371は、まず、払出制御状態フラグをロードし(ステップS7521)、払出動作が終了したか否かを確認する(ステップS7522)。具体的には、払出制御用CPU371は、払出制御状態フラグに払出動作終了指定ビット(払出動作を終了したことを示すビット)がセットされているか否かを確認する。なお、払出動作終了指定ビットは、図83に示すステップS756の払出モータ制御処理における払出モータブレーキ処理や払出モータ球噛み解除処理においてセットされる。
なお、払出モータ制御処理では、払出制御用CPU371は、払出モータ制御コードの値に応じて、払出モータ通常処理(ポインタをROMに格納されているテーブルの先頭アドレスにセットする等の処理)、払出モータ起動処理(出力ポート0の出力状態に対応したポート0バッファのビット4〜7に励磁パターンの初期値を設定する等の処理)、払出モータスローアップ処理(払出モータ289を滑らかに回転開始させるために、定速処理の場合よりも長い間隔で、かつ、徐々に定速処理の場合の時間間隔に近づくような時間間隔で、払出モータ励磁パターンテーブルの内容を読み出して出力ポート0の出力状態に対応したポート0バッファのビット4〜7に設定する等の処理)、払出モータ定速処理(定期的に払出モータ励磁パターンテーブルの内容を読み出して出力ポート0の出力状態に対応したポート0バッファのビット4〜7に設定する等の処理)、払出モータブレーキ処理(払出モータ289を滑らかに停止させるために、定速処理の場合よりも長い間隔で、かつ、徐々に定速処理の場合の時間間隔から遠ざかるような時間間隔で、払出モータ励磁パターンテーブルの内容を読み出して出力ポート0の出力状態に対応したポート0バッファのビット4〜7に設定する等の処理)、払出モータ球噛み処理(球噛み状態を検出した場合に、球噛みを解除するために、払出モータ励磁パターンテーブルの内容を読み出して出力ポート0の出力状態に対応したポート0バッファのビット4〜7に設定する処理)、および払出モータ球噛み解除処理(球噛み状態が解除されたときに払出モータ通常処理に移行して通常のモータ制御状態に復帰する処理)のいずれかの処理を実行する。
払出動作を終了していれば、払出制御用CPU371は、払出制御状態フラグの払出動作終了指定ビットをリセットする(ステップS7523)とともに、後述する払出通過監視時間などをセットするために用いる払出モータ停止待ち処理設定テーブル2をセットする(ステップS7524)。
次いで、払出制御用CPU371は、払出制御状態フラグに払出球数検査済み指定ビットがセットされているか否かを確認する(ステップS7525)。払出球数検査済み指定ビットは、払出モータ289による払出動作終了時(正常動作の終了時)に払出個数カウントスイッチ301による検出の判定を行ったことを示すビットである。払出球数検査済み指定ビットがセットされていれば、ステップS7527に移行する。払出球数検査済み指定ビットがセットされていなければ、払出制御用CPU371は、払出モータ停止待ち処理設定テーブルをセットする(ステップS7526)。すなわち、払出制御用CPU371は、ステップS7524でセットしたテーブルを払出モータ停止待ち処理設定テーブルに差し替える。そして、ステップS7527に移行する。
ステップS7527では、払出制御用CPU371は、払出制御コードに払出通過待ち処理を示す値「2」をセットする。そして、払出制御用CPU371は、ステップS7524,S7526でセットしたテーブルにもとづいて、払出制御タイマに払出通過監視時間をセットする(ステップS7527)。払出通過監視時間は、最後の払出球が払出モータ289によって払い出されてから払出個数カウントスイッチ301を通過するまでの時間に、余裕を持たせた時間である。この実施の形態では、ステップS7525で払出球数検査済みビットがセットされていた場合には、ステップS7524でセットした払出モータ停止待ち処理設定テーブル2にもとづいて、払出通過監視時間として1秒をセットする。また、ステップS7525で払出球数検査済みビットがセットされていなかった場合には、ステップS7526で差し替えた払出モータ停止待ち処理設定テーブルにもとづいて、払出通過監視時間として0.6秒をセットする。
図96〜図98は、払出制御コードの値が2の場合に実行される払出通過待ち処理(ステップS7513)を示すフローチャートである。払出通過待ち処理において、払出制御用CPU371は、まず、払出制御タイマの値を確認し(ステップS75301)、その値が0になっていれば、ステップS75304に移行する。払出制御タイマの値が0でなければ、払出制御タイマの値を−1する(ステップS75302)。そして、払出制御タイマの値が0になっていなければ(ステップS75303)、すなわち払出制御タイマがタイムアウトしていなければ処理を終了する。
払出制御タイマがタイムアウトしていれば、払出制御用CPU371は、エラーフラグをロードし、払出個数異常エラー指定ビット、払出スイッチ異常検知エラー1指定ビット、または払出スイッチ異常検知エラー2指定ビットがセットされているか否かを確認する(ステップS75304)。払出個数異常エラー指定ビット、払出スイッチ異常検知エラー1指定ビット、または払出スイッチ異常検知エラー2指定ビットのいずれかがセットされていれば、払出動作をこれ以上継続できないと判断して、ステップS75306に移行する。払出個数異常エラー指定ビット、払出スイッチ異常検知エラー1指定ビット、および払出スイッチ異常検知エラー2指定ビットのいずれもセットされていなければ、払出制御用CPU371は、未払出個数カウンタの値が0となっているか否かを確認する(ステップS75305)。未払出個数カウンタの値が0となっていれば、払出制御用CPU371は、正常に払出動作が終了したとして、払出制御状態フラグをロードし(ステップS75306)、払出制御状態フラグの球貸し要求中指定ビットおよび払出動作終了指定ビット以外のビットをリセットする(ステップS75307)。そして、払出制御用CPU371は、払出制御コードに払出開始待ち処理を示す値「0」をセットし(ステップS75308)、処理を終了する。
未払出個数カウンタの値が0となっていなければ、払出制御用CPU371は、エラーフラグをロードし、球切れエラー指定ビットまたは満タンエラー指定ビットがセットされているか否かを確認する(ステップS75309)。球切れエラー指定ビットまたは満タンエラー指定ビットがセットされていれば、そのまま処理を終了する。球切れエラー指定ビットおよび満タンエラー指定ビットのいずれもセットされていなければ、払出制御用CPU371は、エラーフラグに払出ケースエラー指定ビットがセットされているか否かを確認する(ステップS75310)。払出ケースエラー指定ビットがセットされていれば、払出制御用CPU371は、払出制御状態フラグをロードして(ステップS75311)、払出制御状態フラグに払出球数検査済み指定ビットをセットする(ステップS75312)。また、払出制御用CPU371は、払出制御状態フラグの再払出動作中1指定ビット(1回目の再払出動作の実行を示すビット)と再払出動作中2指定ビット(2回目の再払出動作の実行を示すビット)をリセットし(ステップS75313)、処理を終了する。
なお、払出球数検査済み指定ビットは、払出モータ289による払出動作終了時(正常動作の終了時)に払出個数カウントスイッチ301による検出の判定を行ったことを示すビットである。なお、払出動作を終了したにもかかわらず、未払出個数カウンタの値が2以上残っている場合には、払出個数異常カウンタにその残数が加算される。また、払出動作終了時の払出個数カウントスイッチ301による検出の判定は、払出動作を1回実行するごとに1回のみ実行され、払出モータ球噛み処理や払出モータ球噛み解除処理を実行して球噛み動作を終了するときには実行しない(具体的には、球噛み状態では払出ケースエラー指定ビットがセットされるので、ステップS75312であらかじめ払出球数検査済み指定ビットがセットされることによって、球噛み動作を終了しても払出個数カウントスイッチ301による検出の判定を行わない)ように制御される。なお、払出球数検査済み指定ビットは、払出モータ制御処理内における払出モータ定速処理で満タン状態となったときにもセットされる。
ステップS75310で払出ケースエラー指定ビットもセットされていなければ、払出制御用CPU371は、払出制御状態フラグをロードし(ステップS75314)、ステップS75315以降の再払出処理を実行するための処理を行う。
再払出処理を実行するために、払出制御用CPU371は、まず、払出制御状態フラグの再払出動作中2指定ビットがセットされているか否かを確認する(ステップS75315)。セットされていなければ、払出制御用CPU371は、払出制御状態フラグの再払出動作中1指定ビットがセットされているか否かを確認する(ステップS75316)。再払出動作中1指定ビットもセットされていなければ、払出制御用CPU371は、初回の再払出動作を実行するために、払出制御状態フラグに再払出動作中1指定ビットをセットする(ステップS75317)。
次いで、払出制御用CPU371は、払出制御状態フラグに払出球数検査済み指定ビットがセットされているか否かを確認する(ステップS75318)。払出球数検査済み指定ビットがセットされていれば、ステップS75326に移行する。払出球数検査済み指定ビットがセットされていなければ、払出制御用CPU371は、未払出個数カウンタの値が2以上であるか否かを確認する(ステップS75319)。未払出個数カウンタの値が2以上でなければ、ステップS75326に移行する。未払出個数カウンタの値が2以上であれば、払出制御用CPU371は、払出個数異常カウンタに未払個数カウンタの値を加算する(ステップS75320)。なお、ステップS75320の処理は、払出個数異常カウンタに払出不足数を累積的にカウントする処理に相当する。次いで、払出制御用CPU371は、加算後の払出個数異常カウンタの値が所定の払出個数異常エラー判定値(例えば2000)以上となったか否かを確認する(ステップS75321)。所定の払出個数異常エラー判定値(例えば2000)以上となっていれば、払出制御用CPU371は、払出個数異常エラーが発生したと判断し、払出個数異常エラーが発生したことを示す払出個数異常エラーフラグをセットする(ステップS75322)。
なお、この実施の形態では、ステップS75319の処理により、払出動作を終了したにもかかわらず、未払出個数カウンタの値が所定基準数(本例では2)以上残っていることを条件として、払出個数異常カウンタに未払出個数カウンタの値を加算する。すなわち、誤動作などにより、払出動作を終了したにもかかわらず、未払出個数カウンタの値がごく少数(本例では1)残った状態となることも少なからずあるので、払出動作を終了したときに未払出個数カウンタの値が1つでも残っているときに直ちに払出個数異常カウンタに累積カウントとしてしまったのでは、払出個数異常エラーと判定される頻度が必要以上に高くなり却って遊技に支障を生じてしまう。そこで、この実施の形態では、少し余裕をもたせて未払出個数カウンタの値が2以上残っていることを条件として、払出個数異常カウンタに累積カウントすることとし、必要以上に払出個数異常エラーと判定されることを防止している。なお、ステップS75319の処理では、払出不足数が所定基準数(本例では2)以上であることを条件に払出個数異常カウンタを累積的にカウントアップする場合を示しているが、払出過多数についても所定基準数(本例では2)以上であることを条件に払出個数異常カウンタを累積的にカウントアップするようにしてもよい。この場合、例えば、図93に示すステップS7502でYと判定した回数が累積して2回以上に達したことを条件にステップS7503で払出過多数分のカウント値を払出個数異常カウンタを累積的にカウントアップするようにすればよい。また、ステップS75319,S75320の処理において、未払出個数カウンタの値が所定基準数(本例では2)以上残っているか否かにかかわらず、必ず払出個数異常カウンタに未払出個数カウンタの値をそのまま加算するようにしてもよい。
ステップS75316で再払出動作中1指定ビットがセットされていれば、払出制御用CPU371は、払出制御状態フラグに払出球検知指定ビットがセットされているか否かを確認する(ステップS75323)。払出球検知指定ビットがセットされていれば、払出制御用CPU371は、ステップS75326に移行する。払出球検知指定ビットがセットされていなければ、払出制御用CPU371は、2回目の再払出動作を実行するために、払出制御状態フラグに再払出動作中2指定ビットをセットする(ステップS75324)とともに、払出個数異常カウンタの値を1加算する(ステップS75325)。なお、ステップS75325の処理は、払出個数異常カウンタに払出不足数を累積的にカウントする処理に相当する。そして、ステップS75326に移行する。なお、ステップS75325の処理を実行することによって、1回目の再払出動作を実行したにもかかわらず、再払出動作が正常に行われなかった場合に、払出個数異常カウンタの値が1カウントアップされる。また、正常に払出が完了した場合でも、誤カウントなどにより未払出個数カウンタの値が0になっていいないこともある。そこで、ステップS75323の処理が実行されることによって、払出球検知指定ビットがセットされていれば、すなわち払出個数カウントスイッチ301が払出動作中に少なくとも1個の遊技球の払出を検出していれば、正常に払出が完了している可能性があるので、払出個数異常カウンタの累積カウントを行うことなく、そのままステップS75326に移行する。
ステップS75326では、払出制御用CPU371は、初回の再払出動作を実行するために、再払出動作個数として1をセットする。次いで、払出制御用CPU371は、払出モータ回転回数バッファに再払出動作個数(本例では1)をセットする(ステップS75327)。次いで、払出制御用CPU371は、払出制御状態フラグをロードし(ステップS75328)、払出制御状態フラグの払出球検知指定ビットをリセットする(ステップ75329)。
次いで、払出制御用CPU371は、払出モータ制御処理で実行される処理を選択するための払出モータ制御コードに、払出モータ起動処理に応じて値をセットする(ステップS75330)。これにより、ステップS756の払出モータ制御処理において、払出モータ289を起動する払出モータ起動処理が実行され、再払出動作が開始される。そして、払出制御用CPU371は、払出制御コードに払出モータ停止待ち処理を示す値「1」をセットし(ステップS75331)、処理を終了する。
ステップS75315で再払出動作中2指定ビットがセットされていれば、払出制御用CPU371は、払出制御状態フラグの再払出動作中2指定ビットをリセットする(ステップS75332)。次いで、払出制御用CPU371は、払出制御状態フラグの払出球検知指定ビットがセットされているか否かを確認する(ステップS75333)。払出球検知指定ビットがセットされていれば、ステップS75326に移行する。払出球検知指定ビットがセットされていなければ、払出制御用CPU371は、払出制御状態フラグの再払出動作中2指定ビットをリセットする(ステップS75334)とともに、払出個数異常カウンタの値を1加算する(ステップS75335)。なお、ステップS75335の処理は、払出個数異常カウンタに払出不足数を累積的にカウントする処理に相当する。また、ステップS75335の処理を実行することによって、2回目の再払出動作を実行しても、再払出動作が正常に行われなかった場合に、払出個数異常カウンタの値が1カウントアップされる。また、正常に払出が完了した場合でも、誤カウントなどにより未払出個数カウンタの値が0になっていいないこともある。そこで、ステップS75333の処理が実行されることによって、払出球検知指定ビットがセットされていれば、すなわち払出個数カウントスイッチ301が払出動作中に少なくとも1個の遊技球の払出を検出していれば、正常に払出が完了している可能性があるので、払出個数異常カウンタの累積カウントを行うことなく、そのままステップS75326に移行する。
次いで、払出制御用CPU371は、エラーフラグをロードして、エラーフラグに払出ケースエラー指定ビットをセットする(ステップS75336)。そして、払出制御用CPU371は、再払出待ちタイマに所定時間(例えば2分)をセットし(ステップS75337)、処理を終了する。なお、ステップS57337でセットされた再払出待ちタイマは、後述するエラー処理で計測され(ステップS7710参照)、再払出タイマがタイムアウトしたことにもとづいて、エラーフラグの払出ケースエラー指定ビットがリセットされる(ステップS7711,S7712参照)。そのような処理が実行されることによって、この実施の形態では、払出ケースエラーが検出された後、2分経過したことにもとづいてエラー状態が自動復旧される。
次に、エラー処理について説明する。図99は、エラーの種類とエラー表示用LED374の表示との関係等を示す説明図である。図99に示すように、エラーが発生していない状態である場合には、エラー表示用LED374には「−」が表示される。また、払出個数異常カウンタの累積カウント値が2000個以上となり、払出個数異常エラーを検出した場合には、払出制御用マイクロコンピュータ370の払出制御用CPU371は、払出個数異常エラーとして、エラー表示用LED374に「A」を表示する制御を行う。なお、払出個数異常エラーとなった場合には、遊技機の電源がリセットされるまで、エラー状態が継続される。
主基板31からの接続信号がオフ状態になった場合には、払出制御用マイクロコンピュータ370の払出制御用CPU371は、主基板未接続エラーとして、エラー表示用LED374に「1」を表示する制御を行う。
払出個数カウントスイッチ301の断線または払出個数カウントスイッチ301の部分において球詰まりが発生した場合には、払出スイッチ異常検知エラー1として、エラー表示用LED374に「2」を表示する制御を行う。なお、払出個数カウントスイッチ301の断線または払出個数カウントスイッチ301の部分において球詰まりが発生したことは、払出個数カウントスイッチ301の検出信号がオフ状態にならなかったことによって判定される。
遊技球の払出動作中でないにも関わらず払出個数カウントスイッチ301の検出信号がオン状態になった場合には、払出スイッチ異常検知エラー2として、エラー表示用LED374に「3」を表示する制御を行う。払出モータ289の回転異常または遊技球が払い出されたにも関わらず払出個数カウントスイッチ301の検出信号がオン状態にならない場合には、払出ケースエラーとして、エラー表示用LED374に「4」を表示する制御を行う。払出個数カウントスイッチ301の検出信号がオン状態にならないことの具体的な検出方法は既に説明したとおりである。
また、遊技制御用マイクロコンピュータ560と払出制御用マイクロコンピュータ370との間のシリアル通信エラーが検出された場合には、主制御通信エラーとして、エラー表示用LED374に「5」を表示する制御を行う。
また、下皿満タン状態すなわち満タンスイッチ48がオン状態になった場合には、満タンエラーとして、エラー表示用LED374に「6」を表示する制御を行う。補給球の不足状態すなわち球切れスイッチ187がオン状態になった場合には、球切れエラーとして、エラー表示用LED374に「7」を表示する制御を行う。
また、カードユニット50からのVL信号がオフ状態になった場合には、プリペイドカードユニット未接続エラーとして、エラー表示用LED374に「8」を表示する制御を行う。不正なタイミングでカードユニット50と通信がなされた場合には、プリペイドカードユニット通信エラーとして、エラー表示用LED374に「9」を表示する制御を行う。なお、プリペイドカードユニット通信エラーは、プリペイドカードユニット制御処理(ステップS758)において検出される。
以上のエラーのうち、払出スイッチ異常検知エラー2、払出ケースエラー、または主制御通信エラーが発生した後、エラー解除スイッチ375が操作されエラー解除スイッチ375から操作信号が出力されたら(オン状態になったら)、払出制御手段は、エラーが発生する前の状態に復帰する。
なお、払出制御用CPU371は、既に述べたように、具体的には、タイマ割込処理の表示制御処理(ステップS760参照)において、図99に示す関係に従ってエラー表示用LED374にエラー表示を行う。例えば、払出制御用CPU371は、後述するエラー処理においてプリペイドカードユニット未接続状態指定ビットをセットしたことにもとづいて(ステップS7729参照)、表示制御処理において、プリペイドカードユニット未接続エラーが発生している旨を示すエラー表示「8」をエラー表示用LED374に表示する制御を行う。また、例えば、エラー処理において満タンエラー指定ビットをセットしたことにもとづいて(ステップS7714参照)、表示制御処理において、満タンエラーが発生している旨を示すエラー表示「6」をエラー表示用LED374に表示する制御を行う。
図100および図101は、ステップS757のエラー処理を示すフローチャートである。エラー処理において、払出制御用CPU371は、まず、エラーフラグをロードし、エラーフラグの払出スイッチ異常検知エラー2指定ビット、払出ケースエラー指定ビット、主制御通信エラー指定ビット、および払出個数異常エラー指定ビット以外のエラービットをリセットする(ステップS7701)。次いで、払出制御用CPU371は、エラーフラグの値が0となっているか否かを確認する(ステップS7702)。エラーフラグの値が0となっていれば、ステップS7710に移行する。エラーフラグの値が0でなければ(すなわち、払出スイッチ異常検知エラー2指定ビット、払出ケースエラー指定ビット、主制御通信エラー指定ビット、または払出個数異常エラー指定ビットがセットされていれば)、払出制御用CPU371は、エラー解除スイッチ375から操作信号がオン状態になったか否か確認する(ステップS7703)。操作信号がオン状態になったら、エラー復帰時間をエラー復帰前タイマにセットする(ステップS7709)。エラー復帰時間は、エラー解除スイッチ375が操作されてから、実際にエラー状態から通常状態に復帰するまでの時間である。
エラー解除スイッチ375から操作信号がオン状態でない場合には、エラー復帰前タイマの値を確認する(ステップS7704)。エラー復帰前タイマの値が0であれば、すなわち、エラー復帰前タイマがセットされていなければ、ステップS7710に移行する。エラー復帰前タイマがセットされていれば、エラー復帰前タイマの値を−1し(ステップS7705)、エラー復帰前タイマの値が0になったら(ステップS7706)、エラーフラグのうちの、払出スイッチ異常検知エラー2指定ビット、払出ケースエラー指定ビット、および主制御通信エラー指定ビットをリセットする(ステップS7707)とともに、セットされていれば再払出待ちタイマをリセットする(ステップS7708)。そして、ステップS7710に移行する。また、エラー復帰前タイマがタイムアウトしていなければ、ステップS7713に移行する。
なお、ステップS7707の処理が実行されるときに、払出スイッチ異常検知エラー2指定ビット、払出ケースエラー指定ビット、および主制御通信エラー指定ビットのうちには、セット状態ではないエラービットがある場合もあるが、セット状態にないエラービットをリセットしても何ら問題はない。以上のように、この実施の形態では、払出スイッチ異常検知エラー2、払出ケースエラー、および主制御通信エラーのビットをセットする原因になったエラー(図99参照)が発生した場合には、エラー解除スイッチ375が押下されることによってエラー解除される。
ステップS7710では、払出制御用CPU371は、セットされていれば、再払出待ちタイマの値を1減算し、減算後の再払出待ちタイマがタイムアウトしているか否かを確認する(ステップS7711)。再払出待ちタイマがタイムアウトしていれば、払出制御用CPU371は、エラーフラグの払出ケースエラー指定ビットをリセットする(ステップS7712)。そして、ステップS7713に移行する。
以上のように、この実施の形態では、ステップS7707,S7712の処理が実行されることによって、払出ケースエラーが検出されて払出検出エラー指定ビットがセットされた場合には、エラー解除スイッチ375が押下されたこと(正確には、さらにエラー復帰前時間を経過したこと)を条件にエラー解除される場合と、払出ケースエラーの検出後に所定時間(本例では2分)を経過したことを条件にエラーが自動解除される場合とがある。なお、この実施の形態では、払出個数異常エラーに関しては、一度検出されると、遊技機への電源供給をリセットしないかぎり解除されない。
ステップS7707,S7712の処理が実行されて払出ケースエラー指定ビットがリセットされた場合には、払出制御コードが「2」(図96〜図98に示す払出通過待ち処理の実行に対応)であるときには、遊技球払出のリトライ動作が開始される。つまり、次にステップS755の払出制御処理が実行されるときにステップS7513の払出通過待ち処理が実行されると、再び、再払出処理が行われる。例えば、賞球払出処理が行われていた場合には、未払出個数カウンタの値が0でないときには、ステップS75305からステップS75309,S75310に移行し、ステップS75310において払出ケースエラー指定ビットがリセット状態であることが確認されるので、ステップS75314以降の再払出処理を開始するための処理が再度実行され、再払出処理が実行される。
以上のように、払出制御手段は、球払出装置97が遊技球の払い出しを行ったにもかかわらず払出個数カウントスイッチ301が1個も遊技球を検出しなかったときには遊技球を払い出すためのリトライ動作をあらかじめ決められた所定回(例えば2回)を限度として球払出装置97に実行させる補正払出制御を行った後、払出個数カウントスイッチ301が1個も遊技球を検出しなかったことが検出されたときには(図96〜図98のステップS75314以降を参照)、払い出しに関わる制御状態をエラー状態に移行させ、エラー状態においてエラー解除スイッチ375からエラー解除信号が出力されたこと、または払出ケースエラーを検出してから所定時間(本例では2分)を経過したことを条件に再度補正払出制御を行わせる補正払出制御再起動処理を実行する。
さらに、エラー状態における再払出処理の実行中(具体的には払出ケースエラーをセットする前の再払出処理中およびエラー解除スイッチ375押下後の再払出処理中)でも、図93に示すステップS7501,S7502,S7506処理は実行されている。すなわち、払い出しに関わるエラーが生じているときでも、遊技球が払出個数カウントスイッチ301を通過すれば、未払出個数カウンタの値が減算される。従って、エラー状態から復帰したときの未払出個数カウンタの値は、実際に払い出された遊技球数を反映した値になっている。すなわち、払い出しに関わるエラーが発生しても、実際に払い出した遊技球数を正確に管理することができる。
また、図96〜図98に示された払出通過待ち処理において、再払出処理が実行された結果、遊技球が払い出されたことが確認されたときでも、払出ケースエラーのビットはリセットされない。払出ケースエラーのビットがリセットされるのは、あくまでも、エラー解除スイッチ375が操作されたとき(具体的は、操作後エラー復帰時間が経過したとき)、または払出ケースエラーを検出してから所定時間(本例では2分)を経過したときである(ステップS7707,S7712)。すなわち、払出ケースエラーを検出してから所定時間(本例では2分)を経過するまでは、遊技球が払出個数カウントスイッチ301を通過したこと等にもとづいて自動的に払出ケースエラー(払出不足エラー)の状態が解除されるということはなく、人為的な操作を経ないと払出ケースエラーは解除されない。従って、遊技店員等は、確実に払出不足が発生したことを認識することができる。ただし、この実施の形態では、少なくとも、払出ケースエラーが発生してからある程度長い時間(本例では2分)が経過すれば払出ケースエラーを自動解除するように構成することによって、払出ケースエラーが必要以上に長時間継続することを防止している。
なお、エラー解除スイッチ375が操作されたことによってハードウェア的にリセット(払出制御用CPU371に対するリセット)がかかるように遊技機を構成する場合もあるが、そのように遊技機を構成した場合には、エラー解除スイッチ375が操作されたことによって例えば未払出個数カウンタの値もクリアされてしまう。しかし、この実施の形態では、払出制御手段が、エラー解除スイッチ375が操作されたことによって再払出動作を再び行うように構成されているので、確実に払出処理が実行され、遊技者に不利益を与えないようにすることができる。
ステップS7713では、払出制御用CPU371は、満タンスイッチ48の検出信号を確認する。満タンスイッチ48の検出信号が出力されていれば(オン状態であれば)、エラーフラグのうちの満タンエラー指定ビットをセットする(ステップS7714)。
また、払出制御用CPU371は、球切れスイッチ187の検出信号を確認する(ステップS7715)。球切れスイッチ187の検出信号が出力されていれば(オン状態であれば)、エラーフラグのうちの球切れエラー指定ビットをセットする(ステップS7716)。
さらに、払出制御用CPU371は、主基板31からの接続信号の状態を確認し(ステップS7717)、接続信号が出力されていなければ(オフ状態であれば)、主基板未接続エラー指定ビットをセットする(ステップS7718)。
また、払出制御用CPU371は、各スイッチの検出信号の状態が設定される各スイッチタイマのうち払出個数カウントスイッチ301に対応したスイッチタイマの値を確認し、その値がスイッチオン最大時間(例えば「250」)を越えていたら(ステップS7719)、エラーフラグのうち払出スイッチ異常検知エラー1のビットをセットする(ステップS7720)。なお、各スイッチタイマの値は、ステップS752の入力判定処理において、各スイッチの検出信号を入力する入力ポートの状態がスイッチオン状態であれば+1され、オフ状態であれば0クリアされる。従って、払出個数カウントスイッチ301に対応したスイッチタイマの値がスイッチオン最大時間を越えていたということは、スイッチオン最大時間を越えて払出個数カウントスイッチ301がオン状態になっていることを意味し、払出個数カウントスイッチ301の断線または払出個数カウントスイッチ301の部分で遊技球が詰まっていると判断される。
また、払出制御用CPU371は、払出個数カウントスイッチ301に対応したスイッチタイマの値がスイッチオン判定値(例えば「4」)になった場合には(ステップS7721)、払出制御状態フラグをロードし(ステップS7722)、賞球払出動作中または球貸し払出動作中であるか否かを確認する(ステップS7723)。具体的には、払出制御用CPU371は、払出制御状態フラグに賞球払出動作中指定ビットまたは球貸し払出動作中指定ビットがセットされているか否かを確認する。賞球払出動作中指定ビットおよび球貸し払出動作中指定ビットがともにリセット状態であれば、払出制御用CPU371は、払出動作中でないのに払出個数カウントスイッチ301を遊技球が通過したとして、エラーフラグのうち払出スイッチ異常検知エラー2のビットをセットする(ステップS7724)。
また、払出制御用CPU371は、払出個数異常カウンタの値が所定の払出個数異常エラー判定値(例えば2000)以上となっているか否かを確認する(ステップS7725)。所定の払出個数異常エラー判定値(例えば2000)以上となっていれば、払出制御用CPU371は、払出個数異常エラーが発生したと判断し、払出個数異常エラーフラグをセットする(ステップS7726)。
次いで、払出制御用CPU371は、カードユニット50のエラー状態を設定するためのプリペイドカードユニット用エラーフラグをリセットする(ステップS7727)。また、払出制御用CPU371は、カードユニット50からのVL信号の入力状態を確認し(ステップS7728)、VL信号が入力されていなければ(オフ状態であれば)、プリペイドカードユニット用エラーフラグのうちプリペイドカードユニット未接続エラー指定ビットをセットする(ステップS7729)。
なお、ステップS760の表示制御処理では、エラーフラグおよびプリペイドカードユニット用エラーフラグ中のエラービットに応じた表示(数値表示)による報知をエラー表示用LED374によって行う。従って、通信エラーをエラー表示用LED374によって報知することができる。また、通信エラーは、払出制御手段の側で検出されるので、遊技制御手段の負担を増すことなく通信エラーを検出できる。
また、この実施の形態では、主基板未接続エラーは接続信号がオン状態になると自動的に解消されるが(ステップS7701,S7717,S7718参照)、さらにエラー解除スイッチ375が操作されたという条件を加えて、エラー状態が解消されるようにしてもよい。
また、この実施の形態では、通信エラーが、カードユニット50との間の通信エラー(プリペイドカードユニット未接続エラーおよびプリペイドカードユニット通信エラー)やその他のエラーと区別可能に報知される(図99参照)。従って、遊技制御用マイクロコンピュータ560と払出制御用マイクロコンピュータ370との間の通信エラーが容易に特定される。
また、この実施の形態では、エラー処理において、まず、エラーフラグのうち、払出スイッチ異常検知エラー2指定ビット、払出ケースエラー指定ビット、主制御通信エラー指定ビット、および払出個数異常エラー指定ビット以外のビットを一旦リセット(ステップS7701参照)してから、エラー処理を実行するごとに満タンエラーや球切れエラー、主制御未接続エラーとなっているか否かを確認している。そして、払出スイッチ異常検知エラー2指定ビット、払出ケースエラー指定ビット、および主制御通信エラー指定ビットについては、エラー解除スイッチ375が操作されたことを条件にリセットしている。しかし、払出個数異常エラーについては、一度セットされれば解除されることはない。従って、この実施の形態では、払出個数異常エラーとなった場合には、電源リセットが行われたこと条件として払出個数異常エラーが解除されることになる。
図102および図103は、ステップS759の情報出力処理を示すフローチャートである。情報出力処理において、払出制御用CPU371は、まず、払出制御状態フラグをロードし(ステップS7901)、球貸し払出動作中であるか否かを確認する(ステップS7902)。具体的には、払出制御用CPU371は、払出制御状態フラグの球貸し払出動作中指定ビットがセットされているか否かを確認する。球貸し払出動作中であれば、ステップS7909に移行する。球貸し払出動作中でなければ、払出制御用CPU371は、払出個数カウントスイッチ301がオン状態であるか否かを確認する(ステップS7903)。払出個数カウントスイッチ301がオン状態であれば(この場合、賞球による払い出しを検出したことになる)、払出制御用CPU371は、賞球信号1出力回数カウンタの値を1加算する(ステップS7904)とともに、賞球払出個数カウンタの値を1加算する(ステップS7905)。なお、賞球信号1出力回数カウンタは、賞球信号1を出力する条件が成立した回数をカウントするためのカウンタである。また、賞球払出個数カウンタは、賞球払出により払い出された遊技球の数をカウントするためのカウンタである。
次いで、払出制御用CPU371は、加算後の賞球払出個数カウンタの値が所定の賞球情報出力判定値(本例では15)以上となっているか否かを確認する(ステップS7906)。所定の賞球情報出力判定値(本例では15)以上となっていれば、払出制御用CPU371は、賞球払出個数カウンタをリセットする(ステップS7907)とともに、賞球情報出力回数カウンタの値を1加算する(ステップS7908)。なお、賞球情報出力回数カウンタは、賞球情報を出力する条件が成立した回数をカウントするためのカウンタである。
次いで、払出制御用CPU371は、セットされていれば賞球情報出力タイマを1減算し(ステップS7909)、減算後の賞球情報出力タイマがタイムアウトしているか否かを確認する(ステップS7910)。なお、賞球情報出力タイマは、賞球情報の出力継続時間を計測するためのタイマである。タイムアウトしていなければ、ステップS7914に移行する。タイムアウトしていれば、払出制御用CPU371は、賞球情報出力回数カウンタの値が0となっているか否かを確認する(ステップS7911)。賞球情報出力回数カウンタの値が0であれば、ステップS7915に移行する。賞球情報出力回数カウンタの値が0でなければ(すなわち、賞球情報の出力条件の成立数がまだ残っていれば)、払出制御用CPU371は、賞球情報出力回数カウンタの値を1減算する(ステップS7912)。次いで、払出制御用CPU371は、次の賞球情報の出力を開始するために、賞球情報出力タイマをセットする(ステップS7913)。そして、払出制御用CPU371は、賞球情報を遊技制御用マイクロコンピュータ560に出力する制御を行う(ステップS7914)。具体的には、払出制御用CPU371は、出力ポート1の賞球情報出力ビット(ビット7。図80参照。)に出力データをセットする処理を行う。
次いで、払出制御用CPU371は、セットされていれば賞球信号1出力タイマを1減算し(ステップS7915)、減算後の賞球信号1出力タイマがタイムアウトしているか否かを確認する(ステップS7916)。なお、賞球信号1出力タイマは、賞球信号1の出力継続時間を計測するためのタイマである。タイムアウトしていなければ、ステップS7920に移行する。タイムアウトしていれば、払出制御用CPU371は、賞球信号1出力回数カウンタの値が0となっているか否かを確認する(ステップS7917)。賞球信号1出力回数カウンタの値が0であれば、ステップS7921に移行する。賞球信号1出力回数カウンタの値が0でなければ(すなわち、賞球信号1の出力条件の成立数がまだ残っていれば)、払出制御用CPU371は、賞球信号1出力回数カウンタの値を1減算する(ステップS7918)。次いで、払出制御用CPU371は、次の賞球信号1の出力を開始するために、賞球信号1出力タイマをセットする(ステップS7919)。そして、払出制御用CPU371は、賞球信号1を外部出力する制御を行う(ステップS7920)。具体的には、払出制御用CPU371は、出力ポート0の賞球信号1出力ビット(ビット0。図80参照。)に出力データをセットする処理を行う。なお、この実施の形態では、賞球信号1は、払出制御基板37から直接ターミナル基板160に入力されて外部出力されるのではなく、主基板31を一旦経由してからターミナル基板160に入力されて外部出力される。
次いで、払出制御用CPU371は、出力ポート0の遊技機エラー状態信号出力ビット(ビット1。図80参照。)に出力データをセットする処理を行い(ステップS7921)、エラーフラグをロードする(ステップS7922)。エラーフラグに球切れエラー指定ビットまたは満タンエラー指定ビットのいずれかがセットされていれば(ステップS7923,S7924のY)、出力ポート0の遊技機エラー状態信号出力ビットがセットされたままの状態で処理を終了する。この場合、ステップS7921で出力ポート0の遊技機エラー状態信号出力ビットがセットされたことにもとづいて、遊技機エラー状態信号が外部出力されることになる。なお、この実施の形態では、遊技機エラー状態信号は、払出制御基板37から直接ターミナル基板160に入力されて外部出力されるのではなく、主基板31を一旦経由してからターミナル基板160に入力されて外部出力される。一方、エラーフラグに球切れエラー指定ビットおよび満タンエラー指定ビットのいずれもセットされていなければ、払出制御用CPU371は、出力ポート0の遊技機エラー状態信号出力ビットをクリアし(ステップS7925)、処理を終了する。
以上の処理が実行されることによって、この実施の形態では、払出制御手段側で賞球払出を1球検出するごとに賞球信号1が外部出力される。また、払出制御手段側で賞球払出を10球検出するごとに遊技制御手段側に対して賞球情報が出力される。さらに、払出制御手段側で球切れエラーまたは満タンエラーを検出すると遊技機エラー状態信号が外部出力される。
次に、演出制御手段の動作を説明する。図104は、演出制御基板80に搭載されている演出制御手段としての演出制御用マイクロコンピュータ100(具体的には、演出制御用CPU101a)が実行するメイン処理を示すフローチャートである。演出制御用CPU101aは、電源が投入されると、メイン処理の実行を開始する。メイン処理では、まず、RAM領域のクリアや各種初期値の設定、また演出制御の起動間隔(例えば、4ms)を決めるためのタイマの初期設定等を行うための初期化処理を行う(ステップS781)。その後、演出制御用CPU101aは、タイマ割込フラグの監視(ステップS782)を行うループ処理に移行する。タイマ割込が発生すると、演出制御用CPU101aは、タイマ割込処理においてタイマ割込フラグをセットする。メイン処理において、タイマ割込フラグがセットされていたら、演出制御用CPU101aは、そのフラグをクリアし(ステップS783)、以下の演出制御処理を実行する。
演出制御処理において、演出制御用CPU101aは、まず、受信した演出制御コマンドを解析し、受信した演出制御コマンドに応じたフラグをセットする処理等を行う(コマンド解析処理:ステップS784)。
次いで、演出制御用CPU101aは、演出制御プロセス処理を行う(ステップS785)。演出制御プロセス処理では、制御状態に応じた各プロセスのうち、現在の制御状態(演出制御プロセスフラグ)に対応した処理を選択して演出表示装置9の表示制御を実行する。
次いで、大当り図柄決定用乱数などの乱数を生成するためのカウンタのカウント値を更新する乱数更新処理を実行する(ステップS786)。その後、ステップS782に移行する。
図105は、コマンド解析処理(ステップS784)の具体例を示すフローチャートである。主基板31から受信された演出制御コマンドは受信コマンドバッファに格納されるが、コマンド解析処理では、演出制御用CPU101aは、コマンド受信バッファに格納されているコマンドの内容を確認する。
なお、図105では、遊技制御用マイクロコンピュータ560から送信される演出制御コマンドのうち、特に、払出制御に関するエラーを示すコマンドを受信した場合の処理について示しているが、実際には、演出図柄の変動パターンを示す変動パターンコマンドや、大当りとするか否かの表示結果を示す表示結果指定コマンドなど、様々な演出制御コマンドが遊技制御用マイクロコンピュータ560から送信される。
コマンド解析処理において、演出制御用CPU101aは、まず、コマンド受信バッファに受信コマンドが格納されているか否か確認する(ステップS611)。格納されているか否かは、コマンド受信個数カウンタの値と読出ポインタとを比較することによって判定される。両者が一致している場合が、受信コマンドが格納されていない場合である。コマンド受信バッファに受信コマンドが格納されている場合には、演出制御用CPU101aは、コマンド受信バッファから受信コマンドを読み出す(ステップS612)。なお、読み出したら読出ポインタの値を+2しておく(ステップS613)。+2するのは2バイト(1コマンド)ずつ読み出すからである。
受信した演出制御コマンドが枠状態表示コマンドであれば(ステップS614)、演出制御用CPU101aは、枠状態表示コマンドの下位4ビットのうちの賞球エラービット(ビット0。図44参照。)がセットされているか否かを確認する(ステップS615)。セットされていれば、演出制御用CPU101aは、演出表示装置9の表示画面に所定の賞球エラー報知情報を重畳表示する制御を行う(ステップS616)。例えば、演出制御用CPU101aは、演出表示装置9の表示画面に「賞球エラーが発生しました」などの文字列を表示させる制御を行う。
また、演出制御用CPU101aは、枠状態表示コマンドの下位4ビットのうちの満タンエラービット(ビット1。図44参照。)がセットされているか否かを確認する(ステップS617)。セットされていれば、演出制御用CPU101aは、演出表示装置9の表示画面に所定の満タンエラー報知情報を重畳表示する制御を行う(ステップS618)。例えば、演出制御用CPU101aは、演出表示装置9の表示画面に「満タンエラーが発生しました」などの文字列を表示させる制御を行う。
また、演出制御用CPU101aは、枠状態表示コマンドの下位4ビットのうちの球切れエラービット(ビット2。図44参照。)がセットされているか否かを確認する(ステップS619)。セットされていれば、演出制御用CPU101aは、演出表示装置9の表示画面に所定の球切れエラー報知情報を重畳表示する制御を行う(ステップS620)。例えば、演出制御用CPU101aは、演出表示装置9の表示画面に「球切れエラーが発生しました」などの文字列を表示させる制御を行う。
また、演出制御用CPU101aは、枠状態表示コマンドの下位4ビットのうちの払出個数異常エラービット(ビット3。図44参照。)がセットされているか否かを確認する(ステップS621)。セットされていれば、演出制御用CPU101aは、演出表示装置9の表示画面に所定の払出個数異常エラー報知情報を重畳表示する制御を行う(ステップS622)。例えば、演出制御用CPU101aは、演出表示装置9の表示画面に「払出個数異常エラーが発生しました」などの文字列を表示させる制御を行う。
受信した演出制御コマンドが賞球不足エラーコマンドであれば(ステップS623)、演出制御用CPU101aは、演出表示装置9の表示画面に所定の賞球不足エラー報知情報を重畳表示する制御を行う(ステップS624)。例えば、演出制御用CPU101aは、演出表示装置9の表示画面に「賞球不足エラーが発生しました」などの文字列を表示させる制御を行う。
受信した演出制御コマンドが賞球過剰エラーコマンドであれば(ステップS625)、演出制御用CPU101aは、演出表示装置9の表示画面に所定の賞球過剰エラー報知情報を重畳表示する制御を行う(ステップS626)。例えば、演出制御用CPU101aは、演出表示装置9の表示画面に「賞球過剰エラーが発生しました」などの文字列を表示させる制御を行う。
なお、各エラー表示を単に重畳表示させるのではなく、不正の重要度の観点から順位付けを行って優先順位が高いエラーを優先して報知するようにしてもよい。例えば、払出個数異常エラーを最も高い優先順位で優先的に報知するようにしてもよく、エラー状態が変化した場合に新たに発生したエラーを優先して報知するようにしてもよい。
受信した演出制御コマンドがその他のコマンドであれば、演出制御用CPU101aは、受信した演出制御コマンドに応じたフラグをセットする(ステップS627)。そして、ステップS611に移行する。なお、例えば、変動パターンコマンドや表示結果指定コマンドを受信した場合には、演出制御用CPU101aは、受信した変動パターンコマンドや表示結果指定コマンドをRAMに形成された所定の格納領域に格納する処理も行う。
図106は、図104に示されたメイン処理における演出制御プロセス処理(ステップS785)を示すフローチャートである。演出制御プロセス処理では、演出制御用CPU101aは、演出制御プロセスフラグの値に応じてステップS800〜S806のうちのいずれかの処理を行う。各処理において、以下のような処理を実行する。なお、演出制御プロセス処理では、演出表示装置9の表示状態が制御され、演出図柄の可変表示が実現されるが、第1特別図柄の変動に同期した演出図柄の可変表示に関する制御も、第2特別図柄の変動に同期した演出図柄の可変表示に関する制御も、一つの演出制御プロセス処理において実行される。なお、第1特別図柄の変動に同期した演出図柄の可変表示と、第2特別図柄の変動に同期した演出図柄の可変表示とを、別の演出制御プロセス処理により実行するように構成してもよい。また、この場合、いずれの演出制御プロセス処理により演出図柄の変動表示が実行されているかによって、いずれの特別図柄の変動表示が実行されているかを判断するようにしてもよい。
変動パターンコマンド受信待ち処理(ステップS800):遊技制御用マイクロコンピュータ560から変動パターンコマンドを受信しているか否か確認する。具体的には、コマンド解析処理でセットされる変動パターンコマンド受信フラグがセットされているか否か確認する。変動パターンコマンドを受信していれば、演出制御プロセスフラグの値を演出図柄変動開始処理(ステップS801)に対応した値に変更する。
演出図柄変動開始処理(ステップS801):演出図柄の変動が開始されるように制御する。そして、演出制御プロセスフラグの値を演出図柄変動中処理(ステップS802)に対応した値に更新する。
演出図柄変動中処理(ステップS802):変動パターンを構成する各変動状態(変動速度)の切替タイミング等を制御するとともに、変動時間の終了を監視する。そして、変動時間が終了したら、演出制御プロセスフラグの値を演出図柄変動停止処理(ステップS803)に対応した値に更新する。
演出図柄変動停止処理(ステップS803):演出図柄の変動を停止し表示結果(停止図柄)を導出表示する制御を行う。そして、演出制御プロセスフラグの値を大当り表示処理(ステップS804)または変動パターンコマンド受信待ち処理(ステップS800)に対応した値に更新する。
大当り表示処理(ステップS804):大当りである場合には、変動時間の終了後、演出表示装置9に大当りの発生を報知するための画面を表示する制御を行う。そして、演出制御プロセスフラグの値を大当り遊技中処理(ステップS805)に対応した値に更新する。
大当り遊技中処理(ステップS805):大当り遊技中の制御を行う。例えば、大入賞口開放中指定コマンドや大入賞口開放後指定コマンドを受信したら、演出表示装置9におけるラウンド数の表示制御等を行う。そして、演出制御プロセスフラグの値を大当り終了演出処理(ステップS806)に対応した値に更新する。
大当り終了演出処理(ステップS806):演出表示装置9において、大当り遊技状態が終了したことを遊技者に報知する表示制御を行う。そして、演出制御プロセスフラグの値を変動パターンコマンド受信待ち処理(ステップS800)に対応した値に更新する。
以上に説明したように、この実施の形態によれば、遊技制御用マイクロコンピュータ560は、遊技機への電源投入時に初期化処理が実行されたこと、および所定のエラー(本例では、第1始動入賞口13a、第2始動入賞口13b、大入賞口23bへの異常入賞)が発生していると判定されたことを含む所定の信号出力条件が成立したことにもとづいて、遊技機の外部にセキュリティ信号を出力する。この場合、遊技制御用マイクロコンピュータ560は、初期化処理が実行されたときと所定のエラーが発生していると判定されたときとで、遊技機に設けられた共通の出力端子(ターミナル基板の共通のコネクタCN7)からセキュリティ信号を出力する。また、セキュリティ信号を出力しているときに新たに所定の信号出力条件が成立(本例では、新たに第1始動入賞口13a、第2始動入賞口13b、大入賞口23bへの異常入賞を検出)した場合には、セキュリティ信号を出力する出力時間を延長する。そのため、初期化処理が実行されたことにもとづいてセキュリティ信号を出力することによって、遊技機への電源投入時に行われる不正行為を防止することができる。また、初期化処理が実行されたときと所定のエラーが発生していると判定されたときとで共通の出力端子にセキュリティ信号を出力するので、外部出力用の信号線の無駄を低減することができる。従って、遊技機への電源投入時に行われる不正行為を防止しつつ、外部出力用の信号線の無駄を低減することができる。
また、特許文献1には、入賞スイッチに対して入力された不正信号(電波等)がセーフセンサを作動させないようにすることによって、不正行為を検知可能にすることが記載されている。具体的には、通過式のセーフセンサを用いることが記載されている。しかし、特許文献1には、強力な電波によって入賞スイッチとセーフセンサとが同時に作動することが示されているので、入賞スイッチの検出性能とセーフセンサの検出性能とは異なっているが、入賞スイッチとセーフセンサとして同タイプのものが用いられていることになる。特許文献1には、全ての入賞スイッチとセーフセンサとが同時動作した場合に、不正行為を受けたと判定することが示されているが、電波等による不正行為を受けた場合に、常に全ての入賞スイッチとセーフセンサとが同時動作するとは限らない。電波の強弱に応じて、全ての入賞スイッチとセーフセンサとが同時動作する場合があったり、そうでない場合があったりすることが想定される。すなわち、特許文献1に開示されている方式は、不正行為の検知として不十分である。
この実施の形態によれば、遊技制御用マイクロコンピュータ560は、第1始動口スイッチ14a(近接スイッチ)から入力した検出信号と第1入賞確認スイッチ14b(フォトセンサ)から入力した検出信号とにもとづいて、第1始動口スイッチ14aにて検出された遊技球数と第1入賞確認スイッチ14bにて検出された遊技球数との差が所定の閾値を超えた(本例では、15以上となった)と判定すると、所定のエラーとして、第1始動入賞口13aへの異常入賞が発生したと判定する。なお、この実施の形態では、第1始動口スイッチ14aと第1入賞確認スイッチ14bとを互いに異なる検出方式のセンサ(本例では、近接スイッチとフォトセンサ)により構成している。そのため、遊技球を検出するスイッチに対する不正行為をより確実に検知して、確実な不正行為対策を講ずることができる。
また、この実施の形態によれば、遊技制御用マイクロコンピュータ560は、第1始動口スイッチ14aから検出信号を入力したことのみにもとづいて、特別図柄の変動表示を実行するとともに賞球払出処理を実行する。また、第1入賞確認スイッチ14bから入力した検出信号は、第1始動入賞口13aへの異常入賞が発生したか否かの判定のみに用いられる。また、第2始動口スイッチ15aから検出信号を入力したことのみにもとづいて、特別図柄の変動表示を実行するとともに賞球払出処理を実行する。また、第2入賞確認スイッチ15bから入力した検出信号は、第2始動入賞口13bへの異常入賞が発生したか否かの判定のみに用いられる。そのため、特別図柄の変動表示および賞球払出処理については、一方のスイッチにおける検出結果にもとづいて処理を行うので、不正行為対策の強化に伴う処理負担の増加を防止することができる。
また、この実施の形態によれば、遊技制御用マイクロコンピュータ560は、第1始動口スイッチ14aにて検出された遊技球数と第1入賞確認スイッチ14bにて検出された遊技球数との差が、所定の閾値として、第1入賞通路1360a,1360b内が球詰まり状態となったときの第1始動口スイッチ14aにおける遊技球の検出数と第1入賞確認スイッチ14bにおける遊技球の検出数との差分(例えば、9個)よりも多い値(本例では15)を超えたか否かを判定する。そのため、第1始動入賞口13a内が球詰まり状態となってしまった場合に、誤って第1始動入賞口13aへの異常入賞が発生したと判定することを防止することができる。従って、不正行為対策の強化に伴う誤判定を防止することができる。
また、この実施の形態によれば、遊技制御用マイクロコンピュータ560は、遊技機への電源投入時に初期化処理が実行されたときと所定のエラー(本例では、第1始動入賞口13a、第2始動入賞口13b、大入賞口23bへの異常入賞)が発生していると判定されたときとで、異なる時間にわたってセキュリティ信号を出力する。具体的には、この実施の形態では、遊技機への電源投入時に初期化処理が実行された場合には30秒間に亘ってセキュリティ信号が外部出力され、第1始動入賞口13a、第2始動入賞口13b、大入賞口23bへの異常入賞が検出された場合には4分間にわたってセキュリティ信号が外部出力される。そのため、セキュリティ信号の出力時間を判定することによって、ホールコンピュータなどの外部装置において、初期化処理が行われた場合であるか所定のエラーが発生している場合であるかを判別することが可能となる。
また、この実施の形態によれば、遊技制御用マイクロコンピュータ560と払出制御用マイクロコンピュータ370とは、シリアル通信で制御コマンドを送受信する。また、遊技制御用マイクロコンピュータ560は、払出制御用マイクロコンピュータ370との通信接続状態を確認するための接続確認コマンドを、所定期間(本例では1秒)が経過する毎に払出制御用マイクロコンピュータ370に送信する。また、払出制御用マイクロコンピュータ370は、接続確認コマンドを受信したことにもとづいて接続OKコマンドを遊技制御用マイクロコンピュータ560に送信する。この場合、払出制御用マイクロコンピュータ370は、遊技制御用マイクロコンピュータ560が制御状態(本例では、賞球エラー、満タンエラー、球切れエラー、および払出個数異常エラー)を認識可能な態様で接続OKコマンドを遊技制御用マイクロコンピュータ560に送信する。そのような構成により、シリアル通信方式を用いることにより、遊技制御用マイクロコンピュータ560と払出制御用マイクロコンピュータ370との配線の取り回しの容易化を図ることができる。また、払出制御用マイクロコンピュータ370が接続確認コマンドの受信にもとづいて定期的に出力する接続OKコマンドに制御状態を乗せることにより、制御状態信号(制御状態が付加された応答信号)を送信することができる。そのため、制御状態信号の出力タイミングを考慮することなく制御状態信号の取りこぼし等の発生を防止することができ、遊技制御用マイクロコンピュータ560と払出制御用マイクロコンピュータ370との間の通信を確実に行うことができる。なお、この実施の形態では、接続確認コマンドを送信する周期(間隔)を1秒としていたが、0.5秒等としてもよい。
また、この実施の形態によれば、遊技制御用マイクロコンピュータ560は、払出制御の実行を終了したときに、賞球プロセスタイマに所定期間(本例では1秒)を再設定して賞球プロセスタイマによる計測制御を開始する(ステップS52505参照)。そして、遊技制御用マイクロコンピュータ560は、賞球個数が記憶されていなければ(具体的には、ステップS52301で賞球コマンド出力カウンタの中にカウント値が1以上のものがなければ)、再設定した賞球プロセスタイマがタイムアウトしたことにもとづいて、新たな接続確認コマンドを払出制御用マイクロコンピュータ370に送信する。そのため、払出制御の実行の終了後に新たな接続確認コマンドを送信するまでの間にインターバル期間を設けることができ、払出制御の実行の終了時における処理が集中して新たな接続確認コマンドの取りこぼし等が発生することを防止することができる。
また、この実施の形態によれば、遊技制御用マイクロコンピュータ560は、接続確認コマンドの送信タイミングにかかわらず、入賞を検出したことにもとづいて、賞球個数コマンドを払出制御用マイクロコンピュータ370に送信する。また、払出制御用マイクロコンピュータ370は、賞球個数コマンドを受信したことにもとづいて賞球個数受付コマンドを送信するとともに、払出制御の実行の実行中に賞球準備中コマンドを、所定の払出中信号出力期間(本例では1秒)毎に遊技制御用マイクロコンピュータ560に送信する。この場合、払出制御用マイクロコンピュータ370は、遊技制御用マイクロコンピュータ560が制御状態(本例では、賞球エラー、満タンエラー、球切れエラー、および払出個数異常エラー)を認識可能な態様で賞球準備中コマンドを遊技制御用マイクロコンピュータ560に送信する。また、遊技制御用マイクロコンピュータ560は、賞球個数受付コマンドを受信したことにもとづいて、接続確認コマンドの送信を停止する。そのため、払出制御の実行中は無駄に接続確認コマンドの送信制御を行わないようにすることによって、遊技制御用マイクロコンピュータ560の制御負担を軽減することができる。また、払出制御の実行中であっても、賞球準備中コマンドに制御状態を乗せることにより制御状態信号を出力することができるため、遊技制御用マイクロコンピュータ560側で制御状態を認識することができる。
また、この実施の形態によれば、遊技制御用マイクロコンピュータ560は、賞球終了コマンドを受信した後、賞球個数が記憶されていれば(具体的には、ステップS52301で賞球コマンド出力カウンタの中にカウント値が1以上のものがあれば)、接続確認コマンドの送信にかかわらず、直ちに新たな賞球個数コマンドを払出制御用マイクロコンピュータ370に送信する。そのため、払出制御の実行処理の迅速化を図ることができる。
また、この実施の形態によれば、遊技制御用マイクロコンピュータ560は、受信した接続OKコマンドで示される制御状態にもとづいて、所定のエラー(本例では、賞球エラー、満タンエラー、球切れエラー、および払出個数異常エラー)が発生しているか否かを判定する。そして、遊技制御用マイクロコンピュータ560は、所定のエラーが発生していないと判定したことを条件として、賞球個数コマンドを払出制御用マイクロコンピュータ370に送信する。そのため、エラー状態となっていて正常に払出制御を行えない場合に賞球個数コマンドを送信してしまう不都合を防止することができる。特に、この実施の形態では、払出制御用マイクロコンピュータ370が備えるRAMはバックアップ電源によりバックアップされていないので、払出制御に異常が生じているときに賞球個数コマンドを送信してしまうと、電源リセットなどにより賞球個数の記憶が消滅し、遊技者に大きな不利益を与えてしまう可能性がある。そこで、この実施の形態では、払出制御に異常が生じている場合には、バックアップ電源でバックアップされている遊技制御用マイクロコンピュータ560側で賞球個数の記憶を保持したまま賞球個数コマンドの送信を保留するように制御することによって、そのような不利益が生じることを防止することができる。
また、この実施の形態によれば、遊技制御用マイクロコンピュータ560は、接続確認コマンドを送信した後、接続OKコマンドを受信できなかった場合には、接続確認コマンドを送信する時間間隔を長くし、特定期間(本例では10秒)が経過する毎に接続確認コマンドを送信する制御に切り替える。そのため、遊技制御用マイクロコンピュータ560と払出制御用マイクロコンピュータ370との間の通信状態が不安定な状態では、接続確認コマンドを送信するまでのインターバル期間を長くすることによって、接続確認コマンドの送信処理を無駄に実行する頻度を低減し、無駄な処理負担を軽減することができる。
また、この実施の形態によれば、払出制御用マイクロコンピュータ370は、所定のエラー(本例では、賞球エラー、満タンエラー、球切れエラー、および払出個数異常エラー)が発生したときに、遊技制御用マイクロコンピュータ560が所定のエラーを認識可能な情報を、接続OKコマンドの特定ビットを異ならせることにより設定し、当該設定がなされた接続OKコマンドを遊技制御用マイクロコンピュータ560に送信する。また、遊技制御用マイクロコンピュータ560は、受信した接続OKコマンドに設定された所定のエラーを認識可能な情報をそのまま設定した枠状態表示コマンドを演出制御用マイクロコンピュータ100に送信する。そして、演出制御用マイクロコンピュータ100は、枠状態表示コマンドを受信したことにもとづいて、演出装置(本例では、演出表示装置9)を制御して所定のエラーが発生したことを報知する制御を行う。そのため、演出装置を用いて所定のエラーが発生したことを報知することができるとともに、遊技制御用マイクロコンピュータ560の処理負担を軽減することができる。
また、この実施の形態によれば、払出制御用マイクロコンピュータ370は、賞球や貸し球の払い出すべき数の未払出の遊技球を超えた払出過多数と払い出すべき数の未払出の遊技球に満たなかった払出不足数とを払出個数異常カウンタを用いて累積的にカウントする。そして、払出個数異常カウンタの値が所定の払出個数異常エラー判定値(本例では2000)以上となると、払出制御の実行を停止させて払出停止状態に制御する。そのため、各々の払出制御について判断するのではなく、累積的にカウントアップされた払出個数異常カウンタの値にもとづいて異常な状況下で実行された払出制御を総合的に判断して払出制御の実行を停止させることができる。従って、不正に遊技球を払い出させる行為をより的確に防止することを可能とすることができる。
また、この実施の形態によれば、払出制御用マイクロコンピュータ370は、所定基準数(本例では2)以上の払出不足数が発生したときに払出個数異常カウンタの値をカウントアップする。そのため、必要以上に払出制御の実行を停止させてしまう不都合を防止することができる。すなわち、遊技機の稼働状態ではごく少数(本例では1個)の払出不足数が生じることが少なからずあるのであるから、所定基準数(本例では2)以上の払出不足数が発生したことを条件としてカウントアップを行うことによって、必要以上に払出制御の実行を停止させてしまうことを防止している。
また、この実施の形態によれば、払出制御用マイクロコンピュータ370は、払出不足数が発生したときに球払出装置97を駆動制御して遊技球を1つだけ払い出させる再払出制御を実行する。そして、再払出制御を実行しても遊技球の払い出しを検出しなかった場合には払出個数異常カウンタの値をカウントアップする。そのため、払出不足数が少ない場合でも適切に払出個数異常カウンタのカウント値に反映させて払出制御の実行の停止を行うことができ、不正に遊技球を払い出させる行為を防止する不正対策をより強化することができる。
また、この実施の形態によれば、払出個数異常エラーが検出されて払出停止状態に制御されたときに、遊技機の電源リセットが行われたことを条件として払出停止状態を解除する。そのため、払出停止状態を解除するためには遊技店員が異常状態を確認した上で解除操作を行わなければならないので、不正に払出停止状態を解除されて異常な状態のまま遊技を継続されてしまうことを防止することができる。
また、この実施の形態によれば、遊技制御用マイクロコンピュータ560が備えるRAM55は、遊技機への電力供給が停止してもバックアップ電源により記憶内容を所定期間保持可能である。また、遊技制御用マイクロコンピュータ560は、払出停止状態に制御されているときには、入賞が生じても賞球個数コマンドの送信を禁止する。そのため、不正行為によらない遊技機側に起因する異常により払出停止状態となったにもかかわらずRAM55記憶された賞球個数(具体的には、賞球コマンド出力カウンタの値)がクリアされてしまう事態を防止することができ、遊技者に対して不利益が生じることを防止することができる。
また、この実施の形態によれば、遊技制御用マイクロコンピュータ560は、賞球個数コマンドを送信するタイミングで賞球個数カウンタに賞球個数を加算し、賞球情報を受信したことにもとづいて賞球個数カウンタの値を10減算する。そして、賞球個数カウンタの値が所定の賞球不足判定値(本例では501)以上となったことにもとづいて賞球不足エラーと判定し、賞球個数カウンタの値が所定の賞球過剰判定値(本例では0)未満となったことにもとづいて賞球過剰エラーと判定する。そのため、遊技制御用マイクロコンピュータ560と払出制御用マイクロコンピュータ370との双方で異常状態を検出することができる。従って、不正に遊技球を払い出させる行為を防止する不正対策をより強固なものとすることができる。
また、この実施の形態によれば、遊技制御用マイクロコンピュータ560は、払出制御用マイクロコンピュータ370との通信の接続状態を示す接続信号をI/Oポート57を介して払出制御用マイクロコンピュータ370に送信するように構成されているので、払出制御用マイクロコンピュータ370側でどのタイミングにおいても通信の接続状態を確認することができるため、通信の接続状態が異常状態であるときに賞球の払い出しが行われることを確実に防止することができる。
なお、上記の実施の形態では、遊技制御用マイクロコンピュータ560が、通常時は接続OKコマンドの受信後1秒経過後に接続確認コマンドを送信し、通信エラーが発生しているときは(例えば、接続OKコマンドを受信できないときには)、接続確認コマンドの送信後10秒経過後に接続確認コマンドを送信するように構成し、1秒や10秒の期間をタイマ(ソフトウェアで構成されたカウンタ)で計測するように構成していたが、内部クロックによってハードウェアとして更新されるカウンタが所定値になったとき(1秒や10秒)発生する内部割込で接続確認コマンドを送信するようにしてもよい。その場合、接続OKコマンドの受信によってカウンタをクリアするようにするか、所定値となって内部割込を発生させたらカウンタがクリアされるものであればよい。
次に、遊技機が搭載するターミナル基板160の物理構成の変形例について説明する。図107および図108は、ターミナル基板160の物理構成の変形例を示す説明図である。遊技機には、例えば、主基板31や演出制御基板80、払出制御基板37などの各基板を覆って保護するためのカバー部材800が設けられているのであるが、図107および図108に示すように、このようなカバー部材800にターミナル基板160を埋め込む形式で構成してもよい。また、カバー部材800のターミナル基板160が取り付けられている部分には、ターミナル基板160を覆って保護するためのターミナル基板用カバー801が取り付けられる。ここで、図107は、カバー部材800にターミナル基板用カバー801が取り付けられている状態を示しており、図108は、カバー部材800からターミナル基板用カバー801が取り外された状態を示している。図108に示すように、ターミナル基板用カバー801の上部には、取り付け用の爪部801aが2つ設けられており、爪部801aを嵌め込み、ビス801bを用いてビス止めすることによって、ターミナル基板用カバー801を取り付けることができる。
また、図107および図108に示すように、ターミナル基板160上には、ホールコンピュータなど外部装置との間のケーブルを接続するための複数の端子96a,96b,98a,98b・・・が設けられた端子盤900が設けられている。また、端子盤900は、端子96a,96b・・・を含む端子列と、端子98a,98b・・・を含む端子列との上下2段構成となっており、横方向に並ぶ2つの端子によって1セット(信号線とグランド線とのセット)となっている。例えば、図107および図108に示す例では、上段側の端子列において各端子のうち横方向に並ぶ端子96aと端子96bとで1セットであり、下段側の端子列において各端子のうち横方向に並ぶ端子98aと端子98bとで1セットである。また、端子盤900に設けられている各端子96a,96b,98a,98b・・・には、それぞれ摘み部95a,95b,99a,99b・・・が設けられており、摘み部95a,95b,99a,99b・・・を押すなどの操作を行うことにより端子96a,96b,98a,98b・・・が開放されてケーブルを接続可能となる。例えば、上段側の摘み部95aを押すと端子96aにケーブルを接続可能となり、下段側の摘み部99aを押すと端子98aにケーブルを接続可能となる。また、例えば、上段側の摘み部95bを押すと端子96bにケーブルを接続可能となり、下段側の摘み部99bを押すと端子98bにケーブルを接続可能となる。
また、図107および図108に示すように、端子96a,96b,98a,98b・・・ごとに設けられた摘み部95a,95b,99a,99b・・・は、相互に互い違いになるように配置されている。そのように構成することによって、誤って隣の端子用の摘み部を操作してしまうなどの不都合を防止することができ、端子盤900にケーブルを接続する作業を行う際における作業性を向上させることができる。
図109は、カバー部材800のターミナル基板160が取り付けられている部位の断面構造を示す説明図である。図109に示すように、ターミナル基板160は、そのターミナル基板160に設けられている端子盤900が、カバー部材800の表面(図109に示すX面)よりも内側に位置するように、十分にカバー部材800内の奥側に取り付けられる。そのように、ターミナル基板160に設けられている端子盤900が、カバー部材800の表面(図109に示すX面)よりも内側になるように構成されているので、遊技中に誤って遊技球が端子盤900に接触してしまうなどの不都合が生じる事態を防止することができる。
また、図109に示すように、ターミナル基板用カバー801は、その側壁部801cが徐々に狭まっていくように傾きがつけられている。そのように側壁部801cに傾きがつけられていることによって、ターミナル基板用カバー801が取り付けられている状態であっても指などが入りやすく、端子盤900にケーブルを接続する作業を行う際における作業性を向上させることができる。
本発明は、パチンコ遊技機やアレンジボール遊技機、雀球遊技機等などの遊技機に好適に適用できる。
1 パチンコ遊技機
9 演出表示装置
13a 第1始動入賞口
13b 第2始動入賞口
14a 第1始動口スイッチ
14b 第1入賞確認スイッチ
15a 第2始動口スイッチ
15b 第2入賞確認スイッチ
15 可変入賞球装置
20 特別可変入賞球装置
23 カウントスイッチ
23a 第3入賞確認スイッチ
23b 大入賞口
31 遊技制御基板(主基板)
37 払出制御基板
56 CPU
80 演出制御基板
100 演出制御用マイクロコンピュータ
370 払出制御用マイクロコンピュータ
560 遊技制御用マイクロコンピュータ

Claims (1)

  1. 遊技媒体を用いて遊技を行うことが可能な遊技機であって、
    遊技媒体が流下する流下経路と、
    前記流下経路を流下する遊技媒体が通過したことを検出する第1検出手段と、
    前記流下経路を流下する遊技媒体が通過したことを前記第1検出手段よりも下流側で検出する第2検出手段と、
    前記第1検出手段と前記第2検出手段との検出結果に基づいて異常を判定する異常判定手段と、
    前記異常判定手段により異常と判定されたことに基づいて遊技機外部に異常が発生した旨を報知するためのエラー状態に所定期間移行させる移行手段と、
    を備え、
    前記異常判定手段は、
    前記第1検出手段と前記第2検出手段との検出結果に基づいて、前記第1検出手段にて検出された遊技媒体数と前記第2検出手段にて検出された遊技媒体数との差が所定の閾値を超えたときに異常が生じたと判定し、
    前記所定の閾値を、前記流下経路において前記第1検出手段と前記第2検出手段との間に複数の遊技媒体が滞留した状態となったときの前記第1検出手段にて検出された遊技媒体数と前記第2検出手段にて検出された遊技媒体数との差よりも多い値とし、
    前記第1検出手段と前記第2検出手段とは遊技媒体の通過の検出方法が異なり、
    前記移行手段がエラー状態に移行させている期間においても前記流下経路を遊技媒体が流下し得るとともに、当該期間においても前記異常判定手段は、前記第1検出手段と前記第2検出手段との検出結果に基づいて異常を判定するものであり、
    前記移行手段は、前記移行手段がエラー状態に移行させている期間において前記異常判定手段により異常と判定されたことに基づいて、エラー状態に再度所定期間移行させるものである
    ことを特徴とする遊技機。
JP2014103229A 2014-05-19 2014-05-19 遊技機 Active JP5893076B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014103229A JP5893076B2 (ja) 2014-05-19 2014-05-19 遊技機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014103229A JP5893076B2 (ja) 2014-05-19 2014-05-19 遊技機

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013271294A Division JP6045488B2 (ja) 2013-12-27 2013-12-27 遊技機

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015249334A Division JP6121515B2 (ja) 2015-12-22 2015-12-22 遊技機

Publications (2)

Publication Number Publication Date
JP2014223314A JP2014223314A (ja) 2014-12-04
JP5893076B2 true JP5893076B2 (ja) 2016-03-23

Family

ID=52122497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014103229A Active JP5893076B2 (ja) 2014-05-19 2014-05-19 遊技機

Country Status (1)

Country Link
JP (1) JP5893076B2 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3323229B2 (ja) * 1992-05-12 2002-09-09 株式会社ソフィア 遊技機
JP2002177562A (ja) * 2000-12-15 2002-06-25 Aruze Corp 遊技球の払出装置
JP2003275429A (ja) * 2002-03-22 2003-09-30 Daiman:Kk 弾球遊技機
JP4335734B2 (ja) * 2004-04-05 2009-09-30 株式会社大都技研 遊技台

Also Published As

Publication number Publication date
JP2014223314A (ja) 2014-12-04

Similar Documents

Publication Publication Date Title
JP5244065B2 (ja) 遊技機
JP6093294B2 (ja) 遊技機
JP5835871B2 (ja) 遊技機
JP6093295B2 (ja) 遊技機
JP5758081B2 (ja) 遊技機
JP6093293B2 (ja) 遊技機
JP6045488B2 (ja) 遊技機
JP5583423B2 (ja) 遊技機
JP5451442B2 (ja) 遊技機
JP5244066B2 (ja) 遊技機
JP6278939B2 (ja) 遊技機
JP6093296B2 (ja) 遊技機
JP5583424B2 (ja) 遊技機
JP6302516B2 (ja) 遊技機
JP5989210B2 (ja) 遊技機
JP5451441B2 (ja) 遊技機
JP6121515B2 (ja) 遊技機
JP5780563B2 (ja) 遊技機
JP6278936B2 (ja) 遊技機
JP6278935B2 (ja) 遊技機
JP5893076B2 (ja) 遊技機
JP2014155846A (ja) 遊技機
JP5996011B2 (ja) 遊技機
JP5822279B2 (ja) 遊技機
JP5362881B2 (ja) 遊技機

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150616

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151222

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160223

R150 Certificate of patent or registration of utility model

Ref document number: 5893076

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250