JP5987792B2 - Air battery and manufacturing method thereof - Google Patents

Air battery and manufacturing method thereof Download PDF

Info

Publication number
JP5987792B2
JP5987792B2 JP2013137839A JP2013137839A JP5987792B2 JP 5987792 B2 JP5987792 B2 JP 5987792B2 JP 2013137839 A JP2013137839 A JP 2013137839A JP 2013137839 A JP2013137839 A JP 2013137839A JP 5987792 B2 JP5987792 B2 JP 5987792B2
Authority
JP
Japan
Prior art keywords
separator
positive electrode
negative electrode
air battery
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013137839A
Other languages
Japanese (ja)
Other versions
JP2015011915A (en
Inventor
裕士 鈴木
裕士 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013137839A priority Critical patent/JP5987792B2/en
Publication of JP2015011915A publication Critical patent/JP2015011915A/en
Application granted granted Critical
Publication of JP5987792B2 publication Critical patent/JP5987792B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Hybrid Cells (AREA)
  • Cell Separators (AREA)

Description

本発明は、従来よりも電流密度の高い空気電池及びその製造方法に関する。   The present invention relates to an air battery having a higher current density than the conventional one and a manufacturing method thereof.

空気電池のセパレータには、親水性及び強度に優れた材料が用いられることが知られている。特許文献1には、ガラス転移温度が5℃以上低下した変性スチレン系重合体成分を含む易スルホン化繊維をスルホン化し、当該スルホン化した繊維を主体として形成した繊維シート状物からなることを特徴とする電池用セパレータが開示されている。   It is known that a material excellent in hydrophilicity and strength is used for a separator of an air battery. Patent Document 1 is characterized by comprising a fiber sheet-like material formed mainly by sulfonated easily sulfonated fibers containing a modified styrenic polymer component having a glass transition temperature lowered by 5 ° C. or more, and mainly comprising the sulfonated fibers. A battery separator is disclosed.

特開平7−278963号公報JP 7-278963 A

特許文献1には、易スルホン化繊維を含む不織布を80℃かつ97%の硫酸溶液中に、20分間浸漬させることにより、当該不織布をスルホン化した実施例が開示されている。しかし、上記反応条件からも明らかなように、易スルホン化繊維にスルホン酸を付与するためには、高温下で濃硫酸と反応させることが必要となる。したがって、特許文献1に係る電池用セパレータの製造には、高温条件及び濃硫酸に耐え得る製造設備が必要であり、その分製造コストがかさむ。
本発明は、上記実状を鑑みて成し遂げられたものであり、従来よりも電流密度の高い空気電池及びその製造方法を提供することを目的とする。
Patent Document 1 discloses an example in which a nonwoven fabric containing easily sulfonated fibers is immersed in a sulfuric acid solution at 80 ° C. and 97% for 20 minutes to sulfonate the nonwoven fabric. However, as is apparent from the above reaction conditions, it is necessary to react with concentrated sulfuric acid at a high temperature in order to impart sulfonic acid to the easily sulfonated fiber. Therefore, in order to manufacture the battery separator according to Patent Document 1, a manufacturing facility that can withstand high temperature conditions and concentrated sulfuric acid is required, and the manufacturing cost increases accordingly.
The present invention has been accomplished in view of the above circumstances, and an object thereof is to provide an air battery having a higher current density than the conventional one and a method for manufacturing the same.

本発明の空気電池は、少なくとも正極、負極、並びに、当該正極及び当該負極の間に介在する電解質層を備える空気電池であって、前記電解質層は、イオン性液体を含む電解液、及びセパレータを含み、前記セパレータは、セパレータ基材、及び当該セパレータ基材に含浸されたポリ(3,4−エチレンジオキシチオフェン)−ポリスチレンスルホン酸を含むことを特徴とする。   The air battery of the present invention is an air battery including at least a positive electrode, a negative electrode, and an electrolyte layer interposed between the positive electrode and the negative electrode, wherein the electrolyte layer includes an electrolytic solution containing an ionic liquid, and a separator. The separator includes a separator base material and poly (3,4-ethylenedioxythiophene) -polystyrene sulfonic acid impregnated in the separator base material.

本発明の空気電池の製造方法は、少なくとも正極、負極、並びに、当該正極及び当該負極の間に介在する電解質層を備える空気電池の製造方法であって、前記正極、前記負極、イオン性液体を含む電解液、セパレータ基材、及びポリ(3,4−エチレンジオキシチオフェン)−ポリスチレンスルホン酸を準備し、前記セパレータ基材をポリ(3,4−エチレンジオキシチオフェン)−ポリスチレンスルホン酸に接触させることにより、セパレータを作製し、且つ、前記正極及び負極の間に、前記セパレータ及び前記電解液を介在させることにより、空気電池を製造することを特徴とする。   An air battery manufacturing method of the present invention is an air battery manufacturing method including at least a positive electrode, a negative electrode, and an electrolyte layer interposed between the positive electrode and the negative electrode, wherein the positive electrode, the negative electrode, and the ionic liquid are provided. Prepare electrolyte solution, separator substrate, and poly (3,4-ethylenedioxythiophene) -polystyrene sulfonic acid, and contact the separator substrate with poly (3,4-ethylenedioxythiophene) -polystyrene sulfonic acid In this way, a separator is manufactured, and an air battery is manufactured by interposing the separator and the electrolyte between the positive electrode and the negative electrode.

本発明によれば、ポリ(3,4−エチレンジオキシチオフェン)−ポリスチレンスルホン酸を含むセパレータを用いることにより、電解液のセパレータに対する濡れ性を向上させることができ、その結果、従来の空気電池よりも電流密度を高くすることができる。   According to the present invention, by using a separator containing poly (3,4-ethylenedioxythiophene) -polystyrene sulfonic acid, the wettability of the electrolyte with respect to the separator can be improved. Current density can be increased.

本発明の空気電池の層構成の一例を示す図であって、積層方向に切断した断面を模式的に示した図である。It is a figure which shows an example of the laminated constitution of the air battery of this invention, Comprising: It is the figure which showed typically the cross section cut | disconnected in the lamination direction. 製造例1のセパレータ、及びポリプロピレン製不織布に対する、電解液の接触角を比較した棒グラフである。It is the bar graph which compared the contact angle of the electrolyte solution with respect to the separator of manufacture example 1, and the nonwoven fabric made from a polypropylene. 実施例1及び比較例1のI−V曲線を重ねて示したグラフである。It is the graph which piled up and showed the IV curve of Example 1 and Comparative Example 1. FIG.

1.空気電池
本発明の空気電池は、少なくとも正極、負極、並びに、当該正極及び当該負極の間に介在する電解質層を備える空気電池であって、前記電解質層は、イオン性液体を含む電解液、及びセパレータを含み、前記セパレータは、セパレータ基材、及び当該セパレータ基材に含浸されたポリ(3,4−エチレンジオキシチオフェン)−ポリスチレンスルホン酸を含むことを特徴とする。
1. Air battery The air battery of the present invention is an air battery including at least a positive electrode, a negative electrode, and an electrolyte layer interposed between the positive electrode and the negative electrode, wherein the electrolyte layer includes an electrolyte solution containing an ionic liquid, and The separator includes a separator base material and poly (3,4-ethylenedioxythiophene) -polystyrene sulfonic acid impregnated in the separator base material.

一般的に、電解液にイオン性液体を用いたリチウム空気電池は、放電時の電流密度が低い。これは、イオン性液体を用いた電解液は、粘性が高いため、セパレータとの濡れ性が悪く、電解液−セパレータ間の電荷移動が不均一となる結果、放電の電流密度が低くなるためと考えられる。
本発明者は、セパレータの改良により、イオン性液体に対する濡れ性を改善することができると考え、鋭意研究を重ねた。その結果、セパレータを、ポリ(3,4−エチレンジオキシチオフェン)−ポリスチレンスルホン酸(PEDOT−PSS)に浸漬することにより、イオン性液体との濡れ性が向上することを見出し、本発明を完成させた。
In general, a lithium air battery using an ionic liquid as an electrolyte has a low current density during discharge. This is because the electrolyte solution using an ionic liquid has high viscosity, so that the wettability with the separator is poor, and the charge transfer between the electrolyte solution and the separator becomes non-uniform, resulting in low current density of discharge. Conceivable.
The present inventor considered that the wettability with respect to the ionic liquid can be improved by improving the separator, and conducted extensive research. As a result, it was found that wettability with an ionic liquid was improved by immersing the separator in poly (3,4-ethylenedioxythiophene) -polystyrene sulfonic acid (PEDOT-PSS), and the present invention was completed. I let you.

図1は、本発明の空気電池の層構成の一例を示す図であって、積層方向に切断した断面を模式的に示した図である。図1中、二重波線は図の省略を示す。なお、本発明の空気電池は、必ずしもこの例のみに限定されるものではない。
空気電池100は、正極層2及び正極集電体4を備える正極6、負極活物質層3及び負極集電体5を備える負極7、当該正極6及び当該負極7に挟持される電解質層1、並びに、当該正極6、当該負極7、及び当該電解質層1を収納する電池ケース8を備える。なお、図1においては、正極集電体4が点在している部分があるが、これは正極集電体4がメッシュ状であることを示すものである。また、電池ケース8は、正極集電体4のメッシュ状の部分にほぼ重なるように空気孔を有する。
以下、本発明の空気電池を構成する正極、負極、及び電解質層、並びに、本発明の空気電池に好適に用いられる電池ケースについて、詳細に説明する。
FIG. 1 is a diagram showing an example of a layer configuration of an air battery according to the present invention, and is a diagram schematically showing a cross section cut in a stacking direction. In FIG. 1, double wavy lines indicate omission of the figure. The air battery of the present invention is not necessarily limited to this example.
The air battery 100 includes a positive electrode 6 including a positive electrode layer 2 and a positive electrode current collector 4, a negative electrode 7 including a negative electrode active material layer 3 and a negative electrode current collector 5, the positive electrode 6 and an electrolyte layer 1 sandwiched between the negative electrode 7; A battery case 8 that houses the positive electrode 6, the negative electrode 7, and the electrolyte layer 1 is also provided. In FIG. 1, there are portions where the positive electrode current collectors 4 are scattered, which indicates that the positive electrode current collectors 4 are in a mesh shape. Further, the battery case 8 has air holes so as to substantially overlap the mesh portion of the positive electrode current collector 4.
Hereinafter, the positive electrode, the negative electrode, and the electrolyte layer constituting the air battery of the present invention, and the battery case suitably used for the air battery of the present invention will be described in detail.

本発明に使用される正極は、好ましくは正極層を備え、通常、正極集電体、及び当該正極集電体に接続された正極リードをさらに備える。
本発明に使用される正極層は、少なくとも導電性材料を含有する。さらに、必要に応じて、触媒及び結着剤の少なくとも一方を含有していても良い。
The positive electrode used in the present invention preferably includes a positive electrode layer, and generally further includes a positive electrode current collector and a positive electrode lead connected to the positive electrode current collector.
The positive electrode layer used in the present invention contains at least a conductive material. Furthermore, you may contain at least one of a catalyst and a binder as needed.

本発明に使用される導電性材料としては、導電性を有するものであれば特に限定されるものではないが、例えば炭素材料、ペロブスカイト型導電性材料、多孔質導電性ポリマー及び金属多孔体等を挙げることができる。特に、炭素材料は、多孔質構造を有するものであっても良く、多孔質構造を有しないものであっても良いが、本発明においては、多孔質構造を有するものであることが好ましい。比表面積が大きく、多くの反応場を提供することができるからである。多孔質構造を有する炭素材料としては、具体的にはメソポーラスカーボン等を挙げることができる。一方、多孔質構造を有しない炭素材料としては、具体的にはグラファイト、アセチレンブラック、カーボンブラック、カーボンナノチューブ及びカーボンファイバー等を挙げることができる。正極層における導電性材料の含有量としては、例えば、正極層全体の質量を100質量%としたとき、10〜99質量%、中でも50〜95質量%であることが好ましい。導電性材料の含有量が少なすぎると、反応場が減少し、電池容量の低下が生じる可能性があり、導電性材料の含有量が多すぎると、相対的に触媒の含有量が減り、充分な触媒機能を発揮できない可能性があるからである。   The conductive material used in the present invention is not particularly limited as long as it has conductivity. For example, a carbon material, a perovskite-type conductive material, a porous conductive polymer, a metal porous body, etc. Can be mentioned. In particular, the carbon material may have a porous structure or may not have a porous structure, but in the present invention, the carbon material preferably has a porous structure. This is because the specific surface area is large and many reaction fields can be provided. Specific examples of the carbon material having a porous structure include mesoporous carbon. On the other hand, specific examples of the carbon material having no porous structure include graphite, acetylene black, carbon black, carbon nanotube, and carbon fiber. As content of the electroconductive material in a positive electrode layer, when the mass of the whole positive electrode layer is 100 mass%, for example, it is preferable that it is 10-99 mass%, especially 50-95 mass%. If the content of the conductive material is too small, the reaction field may decrease and the battery capacity may be reduced. If the content of the conductive material is too large, the content of the catalyst is relatively reduced and sufficient. This is because it may not be possible to exert a proper catalytic function.

本発明に使用される正極用の触媒としては、例えば、酸素活性触媒が挙げられる。酸素活性触媒の例としては、例えば、ニッケル、パラジウム及び白金等の白金族;コバルト、マンガン又は鉄等の遷移金属を含むペロブスカイト型酸化物;ルテニウム、イリジウム又はパラジウム等の貴金属酸化物を含む無機化合物;ポルフィリン骨格又はフタロシアニン骨格を有する金属配位有機化合物;酸化マンガン等が挙げられる。正極層における触媒の含有割合としては、特に限定されるものではないが、例えば、正極層全体の質量を100質量%としたとき、0〜90質量%、中でも1〜90質量%であることが好ましい。
電極反応がよりスムーズに行われるという観点から、上述した導電性材料に触媒が担持されていてもよい。
Examples of the positive electrode catalyst used in the present invention include an oxygen active catalyst. Examples of oxygen active catalysts include, for example, platinum groups such as nickel, palladium and platinum; perovskite oxides containing transition metals such as cobalt, manganese or iron; inorganic compounds containing noble metal oxides such as ruthenium, iridium or palladium A metal coordination organic compound having a porphyrin skeleton or a phthalocyanine skeleton; manganese oxide and the like. The content ratio of the catalyst in the positive electrode layer is not particularly limited. For example, when the mass of the entire positive electrode layer is 100% by mass, it is 0 to 90% by mass, and particularly 1 to 90% by mass. preferable.
From the viewpoint that the electrode reaction is performed more smoothly, a catalyst may be supported on the conductive material described above.

上記正極層は、少なくとも導電性材料を含有してれば良いが、さらに、導電性材料を固定化する結着剤を含有することが好ましい。結着剤としては、例えばポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)や、スチレン・ブタジエンゴム(SBRゴム)等のゴム系樹脂等を挙げることができる。正極層における結着剤の含有割合としては、特に限定されるものではないが、例えば、正極層全体の質量を100質量%としたとき、1〜40質量%、中でも1〜10質量%であることが好ましい。   The positive electrode layer only needs to contain at least a conductive material, but further preferably contains a binder for fixing the conductive material. Examples of the binder include rubber resins such as polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), and styrene / butadiene rubber (SBR rubber). The content ratio of the binder in the positive electrode layer is not particularly limited. For example, when the mass of the entire positive electrode layer is 100% by mass, it is 1 to 40% by mass, especially 1 to 10% by mass. It is preferable.

正極層の作製方法としては、例えば、上記導電性材料を含む正極層の原料等を、混合して圧延する方法や、当該原料に溶媒を加えてスラリーを調製し、後述する正極集電体に塗布する方法等が挙げられるが、必ずしもこれらの方法に限定されない。スラリーの正極集電体への塗布方法としては、例えば、スプレー法、スクリーン印刷法、ドクターブレード法、グラビア印刷法、ダイコート法等の公知の方法が挙げられる。
上記正極層の厚さは、空気電池の用途等により異なるものであるが、例えば2〜500μm、中でも30〜300μmであることが好ましい。
As a method for producing the positive electrode layer, for example, a method of mixing and rolling the raw material of the positive electrode layer containing the conductive material, or preparing a slurry by adding a solvent to the raw material, Although the method of apply | coating etc. is mentioned, it is not necessarily limited to these methods. Examples of the method for applying the slurry to the positive electrode current collector include known methods such as a spray method, a screen printing method, a doctor blade method, a gravure printing method, and a die coating method.
The thickness of the positive electrode layer varies depending on the use of the air battery and the like, but is preferably 2 to 500 μm, and particularly preferably 30 to 300 μm.

本発明に使用される正極集電体は、正極層の集電を行うものである。正極集電体の材料としては、導電性を有するものであれば特に限定されるものではないが、例えばステンレス、ニッケル、アルミニウム、鉄、チタン、カーボン等を挙げることができる。正極集電体の形状としては、例えば箔状、板状、及びメッシュ(グリッド)状等を挙げることができる。中でも、本発明においては、集電効率に優れるという観点から、正極集電体の形状がメッシュ状であることが好ましい。この場合、通常、正極層の内部にメッシュ状の正極集電体が配置される。さらに、本発明に係る空気電池は、メッシュ状の正極集電体により集電された電荷を集電する別の正極集電体(例えば箔状の集電体)を備えていても良い。また、本発明においては、後述する電池ケースが正極集電体の機能を兼ね備えていても良い。
正極集電体の厚さは、例えば10〜1,000μm、中でも20〜400μmであることが好ましい。
The positive electrode current collector used in the present invention collects current from the positive electrode layer. The material of the positive electrode current collector is not particularly limited as long as it has conductivity, and examples thereof include stainless steel, nickel, aluminum, iron, titanium, and carbon. Examples of the shape of the positive electrode current collector include a foil shape, a plate shape, and a mesh (grid) shape. Among these, in the present invention, it is preferable that the shape of the positive electrode current collector is a mesh shape from the viewpoint of excellent current collection efficiency. In this case, usually, a mesh-like positive electrode current collector is disposed inside the positive electrode layer. Furthermore, the air battery according to the present invention may include another positive electrode current collector (for example, a foil-shaped current collector) that collects electric charges collected by the mesh-shaped positive electrode current collector. In the present invention, a battery case to be described later may have the function of a positive electrode current collector.
The thickness of the positive electrode current collector is, for example, preferably 10 to 1,000 μm, and more preferably 20 to 400 μm.

本発明に使用される負極は、好ましくは負極活物質を含有する負極活物質層を備え、通常、負極集電体、及び当該負極集電体に接続された負極リードをさらに備える。   The negative electrode used in the present invention preferably includes a negative electrode active material layer containing a negative electrode active material, and generally further includes a negative electrode current collector and a negative electrode lead connected to the negative electrode current collector.

本発明に用いられる負極活物質層は、金属材料、合金材料、及び炭素材料からなる群より選ばれる少なくとも1つを含む負極活物質を含有する。負極活物質に用いることができる金属及び合金材料としては、具体的には、リチウム、ナトリウム、カリウム等のアルカリ金属;マグネシウム、カルシウム等の第2族元素;アルミニウム等の第13族元素;亜鉛、鉄等の遷移金属;これらの金属を含有する合金;又は、これらの金属を含有する金属酸化物、金属窒化物、金属硫化物等の化合物;を例示することができる。
リチウム元素を含有する合金としては、例えばリチウムアルミニウム合金、リチウムスズ合金、リチウム鉛合金、リチウムケイ素合金等を挙げることができる。また、リチウム元素を含有する金属酸化物としては、例えばリチウムチタン酸化物等を挙げることができる。また、リチウム元素を含有する金属窒化物としては、例えばリチウムコバルト窒化物、リチウム鉄窒化物、リチウムマンガン窒化物等を挙げることができる。また、負極活物質層には、固体電解質をコートしたリチウムを用いることもできる。
The negative electrode active material layer used in the present invention contains a negative electrode active material containing at least one selected from the group consisting of metal materials, alloy materials, and carbon materials. Specific examples of metals and alloy materials that can be used for the negative electrode active material include alkali metals such as lithium, sodium, and potassium; group 2 elements such as magnesium and calcium; group 13 elements such as aluminum; zinc, Examples include transition metals such as iron; alloys containing these metals; or compounds containing these metals such as metal oxides, metal nitrides, and metal sulfides.
Examples of the alloy containing lithium element include a lithium aluminum alloy, a lithium tin alloy, a lithium lead alloy, and a lithium silicon alloy. Moreover, as a metal oxide containing a lithium element, lithium titanium oxide etc. can be mentioned, for example. Examples of the metal nitride containing a lithium element include lithium cobalt nitride, lithium iron nitride, and lithium manganese nitride. In addition, lithium coated with a solid electrolyte can also be used for the negative electrode active material layer.

上記負極活物質層は、負極活物質のみを含有するものであっても良く、負極活物質の他に、導電性材料及び結着剤の少なくとも一方を含有するものであっても良い。例えば、負極活物質が箔状である場合は、負極活物質のみを含有する負極活物質層とすることができる。一方、負極活物質が粉末状である場合は、負極活物質及び結着剤を含有する負極活物質層とすることができる。なお、結着剤の種類及び含有比については上述した通りである。   The negative electrode active material layer may contain only the negative electrode active material, or may contain at least one of a conductive material and a binder in addition to the negative electrode active material. For example, when the negative electrode active material has a foil shape, a negative electrode active material layer containing only the negative electrode active material can be obtained. On the other hand, when the negative electrode active material is in a powder form, a negative electrode active material layer containing a negative electrode active material and a binder can be obtained. The type and content ratio of the binder are as described above.

負極活物質層が含有する導電性材料としては、導電性を有するものであれば特に限定されるものではないが、例えば炭素材料、ペロブスカイト型導電性材料、多孔質導電性ポリマー及び金属多孔体等を挙げることができる。炭素材料は、多孔質構造を有するものであっても良く、多孔質構造を有しないものであっても良い。多孔質構造を有する炭素材料としては、具体的にはメソポーラスカーボン等を挙げることができる。一方、多孔質構造を有しない炭素材料としては、具体的にはグラファイト、アセチレンブラック、カーボンナノチューブ及びカーボンファイバー等を挙げることができる。   The conductive material contained in the negative electrode active material layer is not particularly limited as long as it has conductivity. For example, a carbon material, a perovskite-type conductive material, a porous conductive polymer, a metal porous body, etc. Can be mentioned. The carbon material may have a porous structure or may not have a porous structure. Specific examples of the carbon material having a porous structure include mesoporous carbon. On the other hand, specific examples of the carbon material having no porous structure include graphite, acetylene black, carbon nanotube, and carbon fiber.

本発明に用いられる負極集電体の材料としては、導電性を有するものであれば特に限定されるものではないが、例えば銅、ステンレス、ニッケル、カーボン等を挙げることができる。負極集電体は、これらの内、SUS及びNiを用いることが好ましい。上記負極集電体の形状としては、例えば箔状、板状及びメッシュ(グリッド)状等を挙げることができる。本発明においては、後述する電池ケースが負極集電体の機能を兼ね備えていても良い。   The material for the negative electrode current collector used in the present invention is not particularly limited as long as it has conductivity, and examples thereof include copper, stainless steel, nickel, and carbon. Of these, SUS and Ni are preferably used for the negative electrode current collector. Examples of the shape of the negative electrode current collector include a foil shape, a plate shape, and a mesh (grid) shape. In the present invention, a battery case, which will be described later, may have the function of a negative electrode current collector.

本発明に使用される電解質層は、正極層及び負極活物質層の間に保持され、正極層及び負極活物質層との間で金属イオンを交換する働きを有する。
上記電解質層は、イオン性液体を含む電解液、及びセパレータを含む。
The electrolyte layer used in the present invention is held between the positive electrode layer and the negative electrode active material layer and has a function of exchanging metal ions between the positive electrode layer and the negative electrode active material layer.
The electrolyte layer includes an electrolytic solution containing an ionic liquid and a separator.

電解液としては、イオン性液体そのものを用いてもよいし、イオン性液体を含む水系電解液や、イオン性液体を含む非水系電解液等を用いてもよい。
本発明に使用されるイオン性液体は、空気電池に通常用いられるイオン性液体であれば特に限定されず、例えば、N−メチル−N−プロピルピペリジニウム ビス(トリフルオロメタンスルホニル)アミド(PP13TFSA)、N−メチル−N−プロピルピロリジニウム ビス(トリフルオロメタンスルホニル)アミド(P13TFSA)、N−ブチル−N−メチルピロリジニウム ビス(トリフルオロメタンスルホニル)アミド(P14TFSA)、N,N−ジエチル−N−メチル−N−(2−メトキシエチル)アンモニウム ビス(トリフルオロメタンスルホニル)アミド(DEMETFSA)、N,N,N−トリメチル−N−プロピルアンモニウム ビス(トリフルオロメタンスルホニル)アミド(TMPATFSA)等が挙げられる。
上記イオン性液体のうち、酸素ラジカルに安定なイオン性液体を用いることがより好ましい。このようなイオン性液体の例としては、N−メチル−N−プロピルピペリジニウム ビス(トリフルオロメタンスルホニル)アミド(PP13TFSA)、N−メチル−N−プロピルピロリジニウム ビス(トリフルオロメタンスルホニル)アミド(P13TFSA)、N−ブチル−N−メチルピロリジニウム ビス(トリフルオロメタンスルホニル)アミド(P14TFSA)、N,N−ジエチル−N−メチル−N−(2−メトキシエチル)アンモニウム ビス(トリフルオロメタンスルホニル)アミド(DEMETFSA)等が挙げられる。
As the electrolytic solution, an ionic liquid itself may be used, or an aqueous electrolytic solution containing an ionic liquid, a non-aqueous electrolytic solution containing an ionic liquid, or the like may be used.
The ionic liquid used in the present invention is not particularly limited as long as it is an ionic liquid usually used in air batteries. For example, N-methyl-N-propylpiperidinium bis (trifluoromethanesulfonyl) amide (PP13TFSA) N-methyl-N-propylpyrrolidinium bis (trifluoromethanesulfonyl) amide (P13TFSA), N-butyl-N-methylpyrrolidinium bis (trifluoromethanesulfonyl) amide (P14TFSA), N, N-diethyl-N -Methyl-N- (2-methoxyethyl) ammonium bis (trifluoromethanesulfonyl) amide (DEMETFSA), N, N, N-trimethyl-N-propylammonium bis (trifluoromethanesulfonyl) amide (TMPATFSA) and the like.
Of the ionic liquids, it is more preferable to use an ionic liquid that is stable to oxygen radicals. Examples of such ionic liquids include N-methyl-N-propylpiperidinium bis (trifluoromethanesulfonyl) amide (PP13TFSA), N-methyl-N-propylpyrrolidinium bis (trifluoromethanesulfonyl) amide ( P13TFSA), N-butyl-N-methylpyrrolidinium bis (trifluoromethanesulfonyl) amide (P14TFSA), N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium bis (trifluoromethanesulfonyl) amide (DEMETFSA) and the like.

本発明の空気電池がリチウム空気電池である場合には、電解液は、通常、リチウム塩を含む。リチウム塩としては、例えばLiPF、LiBF、LiClO及びLiAsF等の無機リチウム塩;LiCFSO、LiN(SOCF(Li−TFSA)、LiN(SO及びLiC(SOCF等の有機リチウム塩等を挙げることができる。電解液におけるリチウム塩の濃度は、例えば0.05〜1mol/kgである。 When the air battery of the present invention is a lithium air battery, the electrolytic solution usually contains a lithium salt. Examples of the lithium salt include inorganic lithium salts such as LiPF 6 , LiBF 4 , LiClO 4, and LiAsF 6 ; LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 (Li-TFSA), LiN (SO 2 C 2 F 5 ) 2 and organic lithium salts such as LiC (SO 2 CF 3 ) 3 . The concentration of the lithium salt in the electrolytic solution is, for example, 0.05 to 1 mol / kg.

イオン性液体を含む非水系電解液の種類は、伝導する金属イオンの種類に応じて、適宜選択することが好ましい。例えば、本発明の空気電池がリチウム空気電池である場合には、電解液は、通常、イオン性液体、リチウム塩及び非水溶媒を含む。上記リチウム塩としては、上記無機リチウム塩及び有機リチウム塩等を挙げることができる。上記非水溶媒としては、例えばエチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、エチルカーボネート、ブチレンカーボネート、γ−ブチロラクトン、スルホラン、アセトニトリル(AcN)、ジメトキシメタン、1,2−ジメトキシエタン(DME)、1,3−ジメトキシプロパン、ジエチルエーテル、テトラエチレングリコールジメチルエーテル(TEGDME)、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジメチルスルホキシド(DMSO)及びこれらの混合物等を挙げることができる。   It is preferable that the type of the non-aqueous electrolyte containing the ionic liquid is appropriately selected according to the type of the metal ion to be conducted. For example, when the air battery of the present invention is a lithium air battery, the electrolytic solution usually contains an ionic liquid, a lithium salt, and a nonaqueous solvent. As said lithium salt, the said inorganic lithium salt, organic lithium salt, etc. can be mentioned. Examples of the non-aqueous solvent include ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), ethyl carbonate, butylene carbonate, γ-butyrolactone, and sulfolane. , Acetonitrile (AcN), dimethoxymethane, 1,2-dimethoxyethane (DME), 1,3-dimethoxypropane, diethyl ether, tetraethylene glycol dimethyl ether (TEGDME), tetrahydrofuran, 2-methyltetrahydrofuran, dimethyl sulfoxide (DMSO) and A mixture thereof can be exemplified.

イオン性液体を含む水系電解液の種類は、伝導する金属イオンの種類に応じて、適宜選択することが好ましい。例えば、本発明の空気電池がリチウム空気電池である場合には、電解液は、通常、イオン性液体、リチウム塩及び水を含む。水と共に使用できるリチウム塩としては、例えばLiOH、LiCl、LiNO、CHCOLi等のリチウム塩等を挙げることができる。 It is preferable that the type of the aqueous electrolyte solution containing the ionic liquid is appropriately selected according to the type of metal ion to be conducted. For example, when the air battery of the present invention is a lithium air battery, the electrolytic solution usually contains an ionic liquid, a lithium salt, and water. Examples of lithium salts that can be used with water include lithium salts such as LiOH, LiCl, LiNO 3 , and CH 3 CO 2 Li.

本発明に使用されるセパレータは、セパレータ基材に、ポリ(3,4−エチレンジオキシチオフェン)−ポリスチレンスルホン酸(CAS No.155090−83−8;以下、PEDOT−PSSと称する場合がある。)を含浸させたものである。
本発明に使用されるセパレータ基材は、PEDOT−PSSを含浸させることができる程度の空孔を有する材料であれば、特に限定されない。セパレータ基材は、当該セパレータ基材そのものがセパレータとしての性能を有するものであってもよいし、PEDOT−PSSを含浸させて初めてセパレータとして機能するものであってもよい。
セパレータ基材としては、例えばポリエチレン、ポリプロピレン等のポリオレフィン製の多孔膜;及びポリプロピレン等の樹脂製の不織布、ガラス繊維不織布等の不織布等を挙げることができる。セパレータ基材の厚さは、通常20〜150μmである。
The separator used in the present invention may be referred to as poly (3,4-ethylenedioxythiophene) -polystyrene sulfonic acid (CAS No. 155090-83-8; hereinafter referred to as PEDOT-PSS) as the separator substrate. ).
The separator base material used for this invention will not be specifically limited if it is a material which has a hole of the grade which can be made to impregnate PEDOT-PSS. The separator base material itself may have a performance as a separator, or may function as a separator only after impregnation with PEDOT-PSS.
Examples of the separator substrate include porous membranes made of polyolefin such as polyethylene and polypropylene; and nonwoven fabrics made of resin such as polypropylene and nonwoven fabrics such as glass fiber nonwoven fabric. The thickness of the separator substrate is usually 20 to 150 μm.

セパレータ基材にPEDOT−PSSを含浸させることにより、イオン性液体を含む電解液に対する濡れ性が向上する理由は、セパレータ基材にPEDOT−PSSが付与されると当該電解液との界面張力が低下し、その結果、接触角が小さくなり、濡れ性が向上するためと考えられる。
上記のように濡れ性が向上することにより、PEDOT−PSSを含むセパレータがイオン性液体を含む電解液と良くなじむようになる結果、当該セパレータを含む本発明の空気電池は、従来の空気電池よりもI−V特性に優れ、特に電流密度が高くなる。
本発明におけるセパレータは、上述した電解液と共に、電解質層として使用する。電解質層の厚さは、上述したセパレータ基材の厚さ以上であれば特に限定されないが、例えば、20〜200μmであってもよい。
The reason why the wettability with respect to the electrolytic solution containing the ionic liquid is improved by impregnating the separator base material with PEDOT-PSS is that when the PEDOT-PSS is applied to the separator base material, the interfacial tension with the electrolytic solution decreases. As a result, it is considered that the contact angle is reduced and wettability is improved.
As a result of the improvement of wettability as described above, the separator containing PEDOT-PSS becomes well compatible with the electrolyte containing the ionic liquid. As a result, the air battery of the present invention including the separator is more than the conventional air battery. Is excellent in IV characteristics, and the current density is particularly high.
The separator in the present invention is used as an electrolyte layer together with the above-described electrolytic solution. Although the thickness of an electrolyte layer will not be specifically limited if it is more than the thickness of the separator base material mentioned above, For example, 20-200 micrometers may be sufficient.

本発明の空気電池は、通常、正極、負極、及び電解質層等を収納する電池ケースを備えることが好ましい。電池ケースの形状としては、具体的にはコイン型、平板型、円筒型、ラミネート型等を挙げることができる。電池ケースは、大気開放型の電池ケースであっても良く、密閉型の電池ケースであっても良い。大気開放型の電池ケースは、少なくとも正極層が十分に大気と接触可能な構造を有する電池ケースである。一方、電池ケースが密閉型電池ケースである場合は、密閉型電池ケースに、気体(空気)の導入管及び排気管が設けられることが好ましい。この場合、導入・排気する気体は、酸素濃度が高いことが好ましく、乾燥空気や純酸素であることがより好ましい。また、放電時には酸素濃度を高くし、充電時には酸素濃度を低くすることが好ましい。
電池ケース内には、電池ケースの構造に応じて、酸素透過膜や、撥水膜を設けてもよい。
In general, the air battery of the present invention preferably includes a battery case that houses a positive electrode, a negative electrode, an electrolyte layer, and the like. Specific examples of the shape of the battery case include a coin type, a flat plate type, a cylindrical type, and a laminate type. The battery case may be an open-air battery case or a sealed battery case. An open-air battery case is a battery case having a structure in which at least the positive electrode layer can sufficiently come into contact with the atmosphere. On the other hand, when the battery case is a sealed battery case, it is preferable that a gas (air) introduction pipe and an exhaust pipe are provided in the sealed battery case. In this case, the gas to be introduced / exhausted preferably has a high oxygen concentration, more preferably dry air or pure oxygen. In addition, it is preferable to increase the oxygen concentration during discharging and decrease the oxygen concentration during charging.
An oxygen permeable film or a water repellent film may be provided in the battery case according to the structure of the battery case.

2.空気電池の製造方法
本発明の空気電池の製造方法は、少なくとも正極、負極、並びに、当該正極及び当該負極の間に介在する電解質層を備える空気電池の製造方法であって、前記正極、前記負極、イオン性液体を含む電解液、セパレータ基材、及びポリ(3,4−エチレンジオキシチオフェン)−ポリスチレンスルホン酸を準備し、前記セパレータ基材をポリ(3,4−エチレンジオキシチオフェン)−ポリスチレンスルホン酸に接触させることにより、セパレータを作製し、且つ、前記正極及び負極の間に、前記セパレータ及び前記電解液を介在させることにより、空気電池を製造することを特徴とする。
2. Air battery manufacturing method The air battery manufacturing method of the present invention is an air battery manufacturing method including at least a positive electrode, a negative electrode, and an electrolyte layer interposed between the positive electrode and the negative electrode, the positive electrode and the negative electrode , An electrolytic solution containing an ionic liquid, a separator base material, and poly (3,4-ethylenedioxythiophene) -polystyrene sulfonic acid, and the separator base material is poly (3,4-ethylenedioxythiophene)- A separator is produced by contacting with polystyrene sulfonic acid, and an air battery is produced by interposing the separator and the electrolyte between the positive electrode and the negative electrode.

正極、負極、イオン性液体を含む電解液、セパレータ基材、及びPEDOT−PSSについては、上述した通りである。なお、PEDOT−PSSは、原液をそのまま用いてもよいし、水やアルコール等の溶媒により希釈したものを用いてもよい。
セパレータ基材をPEDOT−PSSに接触させる方法としては、セパレータ基材をPEDOT−PSSに浸漬させる方法、セパレータ基材にPEDOT−PSSを塗布する方法、セパレータ基材に対しPEDOT−PSSを噴霧する方法等が例示できる。このうち、セパレータ基材の隅々までPEDOT−PSSを含浸させることができるという観点から、セパレータ基材をPEDOT−PSSに浸漬させる方法を採用することが好ましい。
セパレータ基材をPEDOT−PSSに浸漬させる場合には、浸漬時間は5分間〜24時間、PEDOT−PSSの温度は10〜30℃が好ましい。
正極、負極、セパレータ、及び電解液を用いて空気電池を形成する方法は、従来と同様である。電解質層におけるセパレータ及び電解液の位置関係は、特に限定されない。例えば、電解質層において、(1)電解液の層が負極と主に接し、セパレータが正極と主に接していてもよいし、(2)電解液の層が正極と主に接し、セパレータが負極と主に接していてもよいし、(2)セパレータが正極及び負極のいずれにも接することなく、電解液の層の厚さ方向中央近傍に配置されていてもよい。
以上のように、本発明の製造方法においては、セパレータ基材をPEDOT−PSSに接触させることによりセパレータを作製するため、簡単な設備で製造することができ、製造コストを下げることができる。
The positive electrode, the negative electrode, the electrolytic solution containing the ionic liquid, the separator base material, and the PEDOT-PSS are as described above. In addition, PEDOT-PSS may use a stock solution as it is, or may use a solution diluted with a solvent such as water or alcohol.
As a method for bringing the separator substrate into contact with PEDOT-PSS, a method in which the separator substrate is immersed in PEDOT-PSS, a method in which PEDOT-PSS is applied to the separator substrate, and a method in which PEDOT-PSS is sprayed on the separator substrate. Etc. can be illustrated. Among these, from the viewpoint that PEDOT-PSS can be impregnated to every corner of the separator base material, it is preferable to employ a method in which the separator base material is immersed in PEDOT-PSS.
When the separator substrate is immersed in PEDOT-PSS, the immersion time is preferably 5 minutes to 24 hours, and the temperature of PEDOT-PSS is preferably 10 to 30 ° C.
A method of forming an air battery using a positive electrode, a negative electrode, a separator, and an electrolytic solution is the same as that in the past. The positional relationship between the separator and the electrolytic solution in the electrolyte layer is not particularly limited. For example, in the electrolyte layer, (1) the electrolyte layer may be mainly in contact with the negative electrode and the separator may be mainly in contact with the positive electrode, or (2) the electrolyte solution layer may be mainly in contact with the positive electrode and the separator may be in the negative electrode. Or (2) the separator may be disposed in the vicinity of the center of the electrolyte layer in the thickness direction without contacting either the positive electrode or the negative electrode.
As mentioned above, in the manufacturing method of this invention, since a separator is produced by making a separator base material contact PEDOT-PSS, it can manufacture with simple equipment and can reduce manufacturing cost.

以下に、実施例を挙げて、本発明を更に具体的に説明するが、本発明は、この実施例のみに限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.

1.セパレータの製造
[製造例1]
セパレータ基材としてポリプロピレン製不織布を用意した。ポリプロピレン製不織布をポリ(3,4−エチレンジオキシチオフェン)−ポリスチレンスルホン酸(PEDOT−PSS、アルドリッチ製)に30分間、室温(15〜30℃)条件下で浸漬させた。その後、ポリプロピレン製不織布をPEDOT−PSS中から取り出し、適宜乾燥させ、製造例1のセパレータを製造した。
1. Production of separator [Production Example 1]
A polypropylene nonwoven fabric was prepared as a separator substrate. The polypropylene nonwoven fabric was immersed in poly (3,4-ethylenedioxythiophene) -polystyrene sulfonic acid (PEDOT-PSS, manufactured by Aldrich) for 30 minutes at room temperature (15-30 ° C.). Thereafter, the nonwoven fabric made of polypropylene was taken out from PEDOT-PSS and dried appropriately to produce the separator of Production Example 1.

2.リチウム空気電池の製造
[実施例1]
まず、導電性材料としてケッチェンブラック(KetjenBlack International製、ECP600JD)を、結着剤としてPTFE(ダイキン工業株式会社製)を、それぞれ用意した。これらの材料を、ケッチェンブラック:PTFE=90質量%:10質量%の含有比となるように混合し、ロールプレスにより圧延し、乾燥させて、正極層を作製した。
正極集電体として、SUS304製100メッシュ(株式会社ニラコ製)を用意した。
負極集電体としてSUS304箔(株式会社ニラコ製)を用意し、当該SUS箔の片面側にリチウム金属(本城金属製)を貼り合わせて、負極を作製した。
2. Production of lithium-air battery [Example 1]
First, ketjen black (manufactured by KetjenBlack International, ECP600JD) was prepared as a conductive material, and PTFE (manufactured by Daikin Industries, Ltd.) was prepared as a binder. These materials were mixed so that the content ratio was ketjen black: PTFE = 90% by mass: 10% by mass, rolled by a roll press, and dried to produce a positive electrode layer.
As the positive electrode current collector, 100 mesh (manufactured by Nilaco Corporation) made of SUS304 was prepared.
SUS304 foil (manufactured by Nilaco Corporation) was prepared as a negative electrode current collector, and lithium metal (manufactured by Honjo Metal) was bonded to one side of the SUS foil to prepare a negative electrode.

N,N−ジエチル−N−メチル−N−(2−メトキシエチル)アンモニウム ビス(トリフルオロメタンスルホニル)アミド(関東化学株式会社製、DEMETFSA)に、リチウムビス(トリフルオロメタンスルホニル)アミド(キシダ化学株式会社製、LiTFSA)を0.32mol/kgの濃度となるように溶解させ、電解液とした。
セパレータとして、上記製造例1のセパレータを用いた。当該製造例1のセパレータに上記電解液を浸漬させたものを、電解質層とした。
当該電解質層を、気泡が入らないように、上記正極と負極によって、重力方向略下側から、負極集電体、リチウム金属、電解質層、正極層、及び正極集電体の順となるように挟持し、実施例1のリチウム空気電池を製造した。以上の工程は、全て窒素雰囲気下のグローブボックス内で行った。
実施例1のリチウム空気電池は、電気化学セル内に配置した。実施例1のリチウム空気電池内に純酸素(大陽日酸株式会社製、純度:99.9%)を導入した。
N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium bis (trifluoromethanesulfonyl) amide (manufactured by Kanto Chemical Co., Ltd., DEMETFSA), lithium bis (trifluoromethanesulfonyl) amide (Kishida Chemical Co., Ltd.) Manufactured, LiTFSA) was dissolved to a concentration of 0.32 mol / kg to obtain an electrolytic solution.
The separator of Production Example 1 was used as the separator. The electrolyte layer was obtained by immersing the electrolyte in the separator of Production Example 1.
In order to prevent bubbles from entering the electrolyte layer, the negative electrode current collector, lithium metal, electrolyte layer, positive electrode layer, and positive electrode current collector are arranged in this order from the lower side in the gravity direction by the positive electrode and the negative electrode. The lithium-air battery of Example 1 was manufactured. All the above steps were performed in a glove box under a nitrogen atmosphere.
The lithium air battery of Example 1 was placed in an electrochemical cell. Pure oxygen (manufactured by Taiyo Nippon Sanso Corporation, purity: 99.9%) was introduced into the lithium-air battery of Example 1.

[比較例1]
実施例1において、上記製造例1のセパレータの替わりに、ポリプロピレン製不織布そのものをセパレータとして用いたこと以外は、実施例1と同様に、正極層、正極集電体、負極、電解質層を用いて、比較例1のリチウム空気電池を製造した。なお、比較例1のリチウム空気電池には、実施例1のリチウム空気電池と同様の態様により純酸素を導入した。
[Comparative Example 1]
In Example 1, a positive electrode layer, a positive electrode current collector, a negative electrode, and an electrolyte layer were used in the same manner as in Example 1 except that a polypropylene nonwoven fabric itself was used as a separator instead of the separator of Production Example 1. A lithium air battery of Comparative Example 1 was produced. Note that pure oxygen was introduced into the lithium-air battery of Comparative Example 1 in the same manner as the lithium-air battery of Example 1.

3.接触角測定
製造例1のセパレータ、及びその原料であるポリプロピレン製不織布について、液滴法を用いて接触角を測定し、各材料の濡れ性を評価した。測定の詳細は以下の通りである。
接触角測定装置:自動接触角計(商品名:DM−301、協和界面科学社製)
電解液:DEMETFSAにLiTFSAを0.32mol/kgの濃度となるように溶解させた溶液
3. Contact angle measurement About the separator of the manufacture example 1 and the polypropylene nonwoven fabric which is the raw material, the contact angle was measured using the droplet method, and the wettability of each material was evaluated. Details of the measurement are as follows.
Contact angle measuring device: Automatic contact angle meter (trade name: DM-301, manufactured by Kyowa Interface Science Co., Ltd.)
Electrolytic solution: a solution in which LiTFSA is dissolved in DEMETFSA to a concentration of 0.32 mol / kg

図2は、製造例1のセパレータ、及びポリプロピレン製不織布に対する、電解液の接触角を比較した棒グラフである。
図2から分かるように、ポリプロピレン製不織布に対する電解液の接触角が50°であるのに対し、製造例1のセパレータに対する電解液の接触角は46°である。この結果から、PEDOT−PSSにより処理されたポリプロピレン製不織布(製造例1)は、処理前のポリプロピレン製不織布よりも電解液の接触角が4°も小さく、PEDOT−PSS処理により濡れ性が向上していることが分かる。
FIG. 2 is a bar graph comparing the contact angle of the electrolytic solution with respect to the separator of Production Example 1 and the nonwoven fabric made of polypropylene.
As can be seen from FIG. 2, the contact angle of the electrolyte solution with respect to the nonwoven fabric made of polypropylene is 50 °, whereas the contact angle of the electrolyte solution with respect to the separator of Production Example 1 is 46 °. From this result, the polypropylene nonwoven fabric (Production Example 1) treated with PEDOT-PSS has a smaller contact angle of 4 ° than the polypropylene nonwoven fabric before treatment, and the wettability is improved by the PEDOT-PSS treatment. I understand that

4.I−V測定
実施例1及び比較例1のリチウム空気電池について、60℃の恒温槽にて3時間静置した後、以下の条件にてI−V測定を実施した。
充放電I−V測定装置:マルチチャンネルポテンショスタット/ガルバノスタット(商品名:VMP3、Bio−Logic社製)
電流印加時間/レスト時間 30分/0.1秒
電池内温度:60℃
電池内圧力:1気圧
雰囲気:純酸素
4). IV measurement About the lithium air battery of Example 1 and the comparative example 1, after leaving still for 3 hours in a 60 degreeC thermostat, IV measurement was implemented on condition of the following.
Charge / Discharge IV measurement device: Multi-channel potentiostat / galvanostat (trade name: VMP3, manufactured by Bio-Logic)
Current application time / rest time 30 minutes / 0.1 seconds Battery temperature: 60 ° C
Battery pressure: 1 atmosphere Atmosphere: pure oxygen

図3は、実施例1及び比較例1のI−V曲線を重ねて示したグラフである。図3は、縦軸に電圧(V)を、横軸に電流密度(mA/cm)を、それぞれとったグラフである。
図3から分かるように、実施例1のリチウム空気電池は、電流密度のほぼ全ての範囲にわたって、比較例1のリチウム空気電池よりも高い電圧を示す。特に、高電流密度条件下においてその差が顕著となり、例えば、電流密度が0.2mA/cmの条件下において、比較例1の電圧は2.4Vであるのに対し、実施例1の電圧は2.65Vと高い。また、電流密度が0.3mA/cmの条件下において、比較例1の電圧は2.3Vであるのに対し、実施例1の電圧は2.6Vと高い。
このように、実施例1の方が比較例1よりもI−V特性に優れる理由は、セパレータにおいて、PEDOT−PSS処理により電解液に対する濡れ性が改善されたためであると考えられる。
FIG. 3 is a graph in which the IV curves of Example 1 and Comparative Example 1 are superimposed. FIG. 3 is a graph in which the vertical axis represents voltage (V) and the horizontal axis represents current density (mA / cm 2 ).
As can be seen from FIG. 3, the lithium-air battery of Example 1 exhibits a higher voltage than the lithium-air battery of Comparative Example 1 over almost the entire range of current density. In particular, the difference becomes noticeable under high current density conditions. For example, the voltage of Comparative Example 1 is 2.4 V under the current density of 0.2 mA / cm 2 , whereas the voltage of Example 1 Is as high as 2.65V. Further, under the condition where the current density is 0.3 mA / cm 2 , the voltage of Comparative Example 1 is 2.3V, while the voltage of Example 1 is as high as 2.6V.
Thus, it is considered that the reason why Example 1 is superior to Comparative Example 1 in IV characteristics is that in the separator, the wettability with respect to the electrolytic solution was improved by the PEDOT-PSS treatment.

1 電解質層
2 正極層
3 負極活物質層
4 正極集電体
5 負極集電体
6 正極
7 負極
8 電池ケース
100 空気電池
DESCRIPTION OF SYMBOLS 1 Electrolyte layer 2 Positive electrode layer 3 Negative electrode active material layer 4 Positive electrode collector 5 Negative electrode collector 6 Positive electrode 7 Negative electrode 8 Battery case 100 Air battery

Claims (2)

少なくとも正極、負極、並びに、当該正極及び当該負極の間に介在する電解質層を備える空気電池であって、
前記電解質層は、イオン性液体を含む電解液、及びセパレータを含み、
前記セパレータは、セパレータ基材、及び当該セパレータ基材に含浸されたポリ(3,4−エチレンジオキシチオフェン)−ポリスチレンスルホン酸を含むことを特徴とする、空気電池。
An air battery comprising at least a positive electrode, a negative electrode, and an electrolyte layer interposed between the positive electrode and the negative electrode,
The electrolyte layer includes an electrolytic solution containing an ionic liquid, and a separator,
The separator includes a separator base material and poly (3,4-ethylenedioxythiophene) -polystyrene sulfonic acid impregnated in the separator base material.
少なくとも正極、負極、並びに、当該正極及び当該負極の間に介在する電解質層を備える空気電池の製造方法であって、
前記正極、前記負極、イオン性液体を含む電解液、セパレータ基材、及びポリ(3,4−エチレンジオキシチオフェン)−ポリスチレンスルホン酸を準備し、
前記セパレータ基材をポリ(3,4−エチレンジオキシチオフェン)−ポリスチレンスルホン酸に接触させることにより、セパレータを作製し、且つ、
前記正極及び負極の間に、前記セパレータ及び前記電解液を介在させることにより、空気電池を製造する
ことを特徴とする、空気電池の製造方法。
A method for producing an air battery comprising at least a positive electrode, a negative electrode, and an electrolyte layer interposed between the positive electrode and the negative electrode,
Preparing the positive electrode, the negative electrode, an electrolyte containing an ionic liquid, a separator substrate, and poly (3,4-ethylenedioxythiophene) -polystyrene sulfonic acid;
Producing a separator by contacting the separator substrate with poly (3,4-ethylenedioxythiophene) -polystyrene sulfonic acid; and
An air battery manufacturing method comprising manufacturing the air battery by interposing the separator and the electrolyte between the positive electrode and the negative electrode.
JP2013137839A 2013-07-01 2013-07-01 Air battery and manufacturing method thereof Active JP5987792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013137839A JP5987792B2 (en) 2013-07-01 2013-07-01 Air battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013137839A JP5987792B2 (en) 2013-07-01 2013-07-01 Air battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2015011915A JP2015011915A (en) 2015-01-19
JP5987792B2 true JP5987792B2 (en) 2016-09-07

Family

ID=52304901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013137839A Active JP5987792B2 (en) 2013-07-01 2013-07-01 Air battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5987792B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101790840B1 (en) * 2015-01-21 2017-10-26 주식회사 엘지화학 Lithium air battery
CN109100254B (en) * 2018-10-08 2020-11-20 超威电源集团有限公司 AGM acid absorption saturation testing method
CN111048722B (en) * 2019-12-13 2021-03-23 河南大学 Organic-inorganic composite lithium ion conduction diaphragm, preparation method thereof and lithium-oxygen battery obtained by using same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3974088B2 (en) * 2003-06-30 2007-09-12 株式会社東芝 Non-aqueous electrolyte air battery
JP4592271B2 (en) * 2003-10-07 2010-12-01 三洋電機株式会社 Air battery
JP2006237283A (en) * 2005-02-25 2006-09-07 Nippon Paint Co Ltd Organic solar cell and its manufacturing method
JP2010245150A (en) * 2009-04-02 2010-10-28 Panasonic Corp Solid electrolytic capacitor and method of manufacturing the same
JP5493475B2 (en) * 2009-05-29 2014-05-14 日産自動車株式会社 Nonaqueous electrolyte secondary battery
EP2557613A1 (en) * 2010-04-06 2013-02-13 Sumitomo Electric Industries, Ltd. Method for producing separator, method for manufacturing molten salt battery, separator, and molten salt battery
WO2012114453A1 (en) * 2011-02-22 2012-08-30 トヨタ自動車株式会社 Non-aqueous electrolyte air cell
JP2012195105A (en) * 2011-03-15 2012-10-11 Sumitomo Electric Ind Ltd Molten salt battery
JP5781386B2 (en) * 2011-07-12 2015-09-24 大塚化学株式会社 Non-aqueous electrolyte and non-aqueous electrolyte battery

Also Published As

Publication number Publication date
JP2015011915A (en) 2015-01-19

Similar Documents

Publication Publication Date Title
US8632920B2 (en) Air secondary battery
JP5449522B2 (en) Air battery
JP5104942B2 (en) Air secondary battery
JP5637317B2 (en) Metal air battery
US8808930B2 (en) Liquid air electrode for metal-air battery and metal-air battery provided with same
CN104241732B (en) metal-air battery
JP2010257839A (en) Positive electrode for air battery, and air battery
CN104078706A (en) Electrolyte solution for lithium metal battery, and lithium metal battery
KR20150133343A (en) Positive electrode for lithium sulfur battery and lithium sulfur battery including the same
JP2014072079A (en) Air electrode for metal-air battery
US20140080012A1 (en) Electrolyte for metal-air battery and metal-air battery
JP5987792B2 (en) Air battery and manufacturing method thereof
JP2013161608A (en) Electrolyte and metal-air battery using the same
JP5664622B2 (en) Metal air battery
KR20150109240A (en) Positive electrode for lithium sulfur battery and lithium sulfur battery comprising the same
JP2014075269A (en) Metal-air battery
JP5763161B2 (en) Air battery
JP2014093227A (en) Air electrode for air battery and air battery including the air electrode
US9608279B2 (en) Metal-air battery
US10629970B2 (en) Lithium air battery including negative electrode, positive electrode, nonaqueous lithium ion conductor, and copper ion
JP5783150B2 (en) Metal air battery
JP6315708B2 (en) Lithium-air secondary battery, method for producing lithium-air secondary battery, and apparatus equipped with lithium-air secondary battery
JP2014035857A (en) Air electrode for air battery, and air battery including air electrode
JP5755604B2 (en) Carbon material for air electrode for metal air battery, air electrode for metal air battery and metal air battery
KR101984715B1 (en) Method for forming a metallic compound catalyst layer through continuous ion impregnation and Lithium air battery manufactured by using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160725

R151 Written notification of patent or utility model registration

Ref document number: 5987792

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151