JP5987420B2 - Electric heating method and hot press molding method - Google Patents

Electric heating method and hot press molding method Download PDF

Info

Publication number
JP5987420B2
JP5987420B2 JP2012083787A JP2012083787A JP5987420B2 JP 5987420 B2 JP5987420 B2 JP 5987420B2 JP 2012083787 A JP2012083787 A JP 2012083787A JP 2012083787 A JP2012083787 A JP 2012083787A JP 5987420 B2 JP5987420 B2 JP 5987420B2
Authority
JP
Japan
Prior art keywords
heated
preheating
cross
energization
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012083787A
Other languages
Japanese (ja)
Other versions
JP2013212520A (en
Inventor
上岡 敏嗣
敏嗣 上岡
達志 溝上
達志 溝上
貢 深堀
貢 深堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2012083787A priority Critical patent/JP5987420B2/en
Publication of JP2013212520A publication Critical patent/JP2013212520A/en
Application granted granted Critical
Publication of JP5987420B2 publication Critical patent/JP5987420B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

本発明は、通電加熱によって被加熱部材を加熱する通電加熱方法及び前記通電加熱方法によって加熱された被加熱部材をプレス成形する熱間プレス成形方法に関する。   The present invention relates to an electric heating method for heating a member to be heated by electric heating and a hot press molding method for press-molding a heated member heated by the electric heating method.

例えば自動車等の車体に使用される鋼板等の板状素材(被加熱部材)は、プレス成形によって所定形状に成形して使用することが一般的に行われている。また、車体の軽量化や高強度化等を図るために高張力鋼板等の被加熱部材を用いる場合、該部材を加熱し、成形性を高めた上でプレス成形する熱間プレス成形が行われている。   For example, a plate-like material (heated member) such as a steel plate used for a vehicle body such as an automobile is generally used after being formed into a predetermined shape by press molding. In addition, when a heated member such as a high-strength steel plate is used to reduce the weight or strength of the vehicle body, hot press forming is performed in which the member is heated and press forming is performed after improving the formability. ing.

このように被加熱部材を加熱してプレス成形する場合、成形サイクルタイムを短縮するために被加熱部材を迅速に加熱することが求められている。かかる要求に対し、被加熱部材の両端部に電極を取り付けて両電極間を通電することにより、被加熱部材に生じるジュール熱によって迅速に該部材を加熱する通電加熱方法が知られている。   Thus, when press-molding by heating a member to be heated, it is required to heat the member to be heated quickly in order to shorten the molding cycle time. In response to such demands, there is known an energization heating method in which electrodes are attached to both ends of a member to be heated and the members are energized to quickly heat the member by Joule heat generated in the member to be heated.

しかしながら、通電加熱において、非矩形状に形成された被加熱部材や、厚さが電極間の通電方向において異なる被加熱部材を用いる場合、通電方向において断面積が異なる。それゆえ、被加熱部材の加熱温度にバラツキが生じ、プレス成形時に部材の伸びや成形品の強度等にバラツキが生じる場合がある。   However, when a heated member formed in a non-rectangular shape or a heated member having a different thickness in the energization direction between the electrodes is used in the energization heating, the cross-sectional area differs in the energization direction. Therefore, there is a variation in the heating temperature of the member to be heated, and there may be a variation in the elongation of the member, the strength of the molded product, etc. during press molding.

また、最終製品に要求される機械特性や後加工の効率性等の観点から、被加熱部材に所望の温度分布を作成したい場合もある。   In some cases, it is desired to create a desired temperature distribution on the member to be heated from the viewpoint of mechanical properties required for the final product, efficiency of post-processing, and the like.

これに対し、非矩形状に形成された被加熱部材に所望の温度分布を設けるために、例えば特許文献1には、被加熱部材の相対向する長手方向の辺部に、該方向と直交する方向に相対する一対の電極を複数対取り付けて、電極対ごとに通電量を調節する方法が開示されている。   On the other hand, in order to provide a desired temperature distribution in the heated member formed in a non-rectangular shape, for example, Patent Document 1 discloses that the sides of the heated member opposite to each other are orthogonal to the direction. A method is disclosed in which a plurality of pairs of electrodes facing each other in a direction are attached and the energization amount is adjusted for each electrode pair.

また、例えば特許文献2には、幅方向端部が15度以上90度以下の角度で傾斜した電流密度変化部を被加熱部材の両端と中央部との間に設定して温度分布を制御する方法が開示されている。   Further, for example, in Patent Document 2, a temperature distribution is controlled by setting a current density changing portion whose width direction end portion is inclined at an angle of 15 degrees or more and 90 degrees or less between the both ends and the center portion of the heated member. A method is disclosed.

特開2002−248525号公報JP 2002-248525 A 特開2009−274122号公報JP 2009-274122 A

しかしながら、特許文献1に記載された方法では、部材の形状に応じて非常に多くの電極を準備する必要があり、非常にコスト高となる。また、特許文献2に記載された方法では、被加熱部材の形状に温度分布が依存しているため、被加熱部材の形状によっては、被加熱部材に所望の温度分布を設けることができない。   However, in the method described in Patent Document 1, it is necessary to prepare an extremely large number of electrodes according to the shape of the member, which is very expensive. Further, in the method described in Patent Document 2, since the temperature distribution depends on the shape of the heated member, a desired temperature distribution cannot be provided on the heated member depending on the shape of the heated member.

そこで、本発明は、通電加熱によって被加熱部材を加熱する際に、非矩形状に形成された被加熱部材や、厚さが電極間の通電方向において異なる被加熱部材に所望の温度分布を作成することを課題とする。   Therefore, the present invention creates a desired temperature distribution on a heated member formed in a non-rectangular shape or a heated member whose thickness differs in the energizing direction between the electrodes when the heated member is heated by energization heating. The task is to do.

前記課題を解決するため、本発明は次のように構成したことを特徴とする。   In order to solve the above problems, the present invention is configured as follows.

まず、本願の請求項1に係る発明は、被加熱部材に互いに離間する一対の電極を取り付けて通電することにより、前記被加熱部材を加熱する通電加熱方法であって、所定形状に形成された板状の被加熱部材を用意するステップと、前記被加熱部材の予加熱条件を決定するステップと、決定した予加熱条件に従って前記被加熱部材を予加熱し、該被加熱部材に一対の電極を取り付けるステップと、予加熱された前記被加熱部材の温度状態が維持された状態で前記電極間を通電するステップとを含み、前記予加熱条件を決定するステップでは、通電によって前記被加熱部材に目標の温度分布が作成されるように予加熱条件を決定する共に、被加熱部材を、通電方向に直交する断面でそれぞれ所定の目標温度を有する複数の領域に分割し、各領域ごとに予加熱条件を決定し、被加熱部材の通電方向に直交する断面の断面積が通電方向に変化する場合は、前記領域の通電方向の寸法を、前記断面積が小さい側で大きい側に比べて小さくすることを特徴とする。 First, the invention according to claim 1 of the present application is an energization heating method for heating the member to be heated by attaching a pair of spaced electrodes to the member to be heated and energizing the member to be heated, which is formed in a predetermined shape. Preparing a plate-like member to be heated, determining a preheating condition for the member to be heated, preheating the member to be heated according to the determined preheating condition, and attaching a pair of electrodes to the member to be heated And a step of energizing between the electrodes while maintaining a temperature state of the preheated member to be heated. In the step of determining the preheating condition, a target is applied to the member to be heated by energization. both the temperature distribution determines the preheat conditions to be created, the member to be heated, respectively in cross-section perpendicular to the current direction is divided into a plurality of areas having a predetermined target temperature, available each region When the preheating condition is determined and the cross-sectional area of the cross section orthogonal to the energizing direction of the member to be heated changes to the energizing direction, the size in the energizing direction of the region is smaller than the larger side on the smaller cross-sectional area side. It is characterized by making it smaller .

また、請求項に係る発明は、請求項記載の発明において、前記被加熱部材の予加熱条件を決定するステップでは、前記各領域の通電方向に直交する断面の断面積、及び温度に応じて変化する被加熱部材の電気抵抗率に基づいて予加熱条件を決定することを特徴とする。 According to a second aspect of the present invention, in the first aspect of the invention, in the step of determining the preheating condition of the heated member, the cross sectional area of the cross section perpendicular to the energizing direction of each region and the temperature are determined. The preheating condition is determined based on the electrical resistivity of the member to be heated, which varies depending on the condition.

また、請求項に係る発明は、請求項1または2に記載の発明において、前記決定した予加熱条件に従って前記被加熱部材を予加熱し、該被加熱部材に一対の電極を取り付けるステップでは、予加熱装置を被加熱部材に接触させることにより被加熱部材を予加熱し、該被加熱部材に一対の電極を取り付け、前記予加熱装置として、通電方向に並べて配置され、それぞれ加熱温度を制御可能な棒状ヒータを備えた予加熱装置を用いることを特徴とする。 According to a third aspect of the present invention, in the invention of the first or second aspect , in the step of preheating the member to be heated according to the determined preheating condition and attaching a pair of electrodes to the member to be heated, Preheating device is preheated by bringing the preheating device into contact with the member to be heated, a pair of electrodes is attached to the member to be heated, and the preheating device is arranged side by side in the energizing direction, and the heating temperature can be controlled respectively. It is characterized by using a preheating device provided with a simple rod-shaped heater.

また、請求項に係る発明は、請求項1〜3のいずれか1項に記載の発明において、前記被加熱部材を予加熱するステップでは、通電した中空の高周波コイルの内側を通過させて前記被加熱部材を誘導加熱し、前記被加熱部材が高周波コイルの中央を通過する際には、被加熱部材の通過方向に直交する前記被加熱部材の断面の断面中心と、高周波コイルの中空部分の中心とを略一致させることを特徴とする。 According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, in the step of preheating the member to be heated, the inside of the energized hollow high-frequency coil is passed through the step. When the heated member is induction-heated and the heated member passes through the center of the high-frequency coil, the cross-sectional center of the cross-section of the heated member orthogonal to the passing direction of the heated member and the hollow portion of the high-frequency coil It is characterized by substantially matching the center.

また、請求項に係る発明は、請求項1〜4のいずれか1項に記載の通電加熱方法によって前記被加熱部材を加熱する熱間プレス成形方法であって、成形型を用いて前記加熱された被加熱部材をプレス成形することを特徴とする。 The invention according to claim 5 is a hot press molding method for heating the member to be heated by the electric heating method according to any one of claims 1 to 4 , wherein the heating is performed using a molding die. The heated member to be heated is press-molded.

以上の構成により、本願各請求項の発明によれば、次の効果が得られる。   With the above configuration, according to the invention of each claim of the present application, the following effects can be obtained.

まず、本願の請求項1に係る発明によれば、通電加熱によって被加熱部材に目標の温度分布が作成されるように予加熱し、予加熱された被加熱部材の温度状態が維持された状態で電極間を通電することにより、通電加熱後の被加熱部材に所望の温度分布を作成することができる。特に、分割した領域の通電方向の寸法を、前記断面積が小さい側で大きい側に比べて小さくすることにより、より温度変化が大きい領域で細かい制御をすることができるため、さらに精度の高い温度分布を作成することができる。 First, according to the invention according to claim 1 of the present application, preheating is performed so that a target temperature distribution is created in the heated member by energization heating, and the temperature state of the preheated heated member is maintained. By energizing between the electrodes, a desired temperature distribution can be created in the heated member after energization heating. In particular, by reducing the size in the energization direction of the divided area on the side where the cross-sectional area is small compared to the large side, fine control can be performed in an area where the temperature change is larger, so that a more accurate temperature Distribution can be created.

また、請求項2に係る発明によれば、分割した各領域ごとに被加熱部材の予加熱条件を決定することができるため、さらに精度の高い温度分布を作成することができる。 Moreover, according to the invention which concerns on Claim 2 , since the preheating conditions of a to-be-heated member can be determined for every divided | segmented area | region, a temperature distribution with still higher precision can be created.

また、請求項に係る発明によれば、予加熱装置として、それぞれ加熱温度を制御可能な棒状ヒータを備えた予加熱装置を用いることにより、容易に被加熱条件に従った加熱を行うことができる。 Moreover, according to the invention which concerns on Claim 3, it can heat easily according to to-be-heated conditions by using the preheating apparatus provided with the rod-shaped heater which can respectively control heating temperature as a preheating apparatus. it can.

また、請求項に係る発明によれば、高周波コイルの内側を、被加熱部材の通過方向に直交する断面の断面中心と、高周波コイルの中空部分の中心とが略一致するように通過させて誘導加熱することにより、容易に被加熱条件に従った加熱を行うことができる。 According to the invention of claim 4 , the inside of the high frequency coil is passed so that the cross-sectional center of the cross section perpendicular to the passing direction of the member to be heated is substantially coincident with the center of the hollow portion of the high frequency coil. By induction heating, heating according to the heating condition can be easily performed.

また、請求項に係る発明によれば、目標の温度分布が作成されるように前記被加熱部材を予加熱及び通電加熱し、成形型を用いて前記加熱された被加熱部材をプレス成形することにより、所望の温度分布が作成された状態で被加熱部材を迅速に加熱することができる。それゆえ、最終製品に応じて要求される温度分布状態で被加熱部材のプレス成形を行うことができ、また、プレス成形のサイクルタイムを短縮することも可能となる。 According to the fifth aspect of the present invention, the heated member is preheated and energized so as to create a target temperature distribution, and the heated heated member is press-molded using a mold. Thus, the member to be heated can be quickly heated in a state where a desired temperature distribution is created. Therefore, the member to be heated can be press-molded in a temperature distribution state required according to the final product, and the cycle time of press molding can be shortened.

本発明の実施の形態1による通電加熱方法を含むプレス成形方法のフローを説明する図である。It is a figure explaining the flow of the press molding method including the electric heating method by Embodiment 1 of this invention. 本発明の実施の形態1による通電加熱方法で用いる予加熱装置の側面図(図2(a))、上面図(図2(b))である。It is the side view (FIG.2 (a)) and top view (FIG.2 (b)) of the preheating apparatus used with the electric heating method by Embodiment 1 of this invention. 本発明の実施の形態による通電加熱方法で用いる通電加熱装置の正面図である。It is a front view of the electric heating apparatus used with the electric heating method by embodiment of this invention. 予加熱条件の決定方法を示すフローチャートである。It is a flowchart which shows the determination method of preheating conditions. 被加熱部材として用いることができる材料の電気抵抗率の温度依存性を示すグラフである。It is a graph which shows the temperature dependence of the electrical resistivity of the material which can be used as a to-be-heated member. 被加熱部材の各エリアへの分割を説明する図である。It is a figure explaining the division | segmentation into each area of a to-be-heated member. 予加熱温度分布と通電時間との関係を説明する図である。It is a figure explaining the relationship between preheating temperature distribution and electricity supply time. 予加熱中の予加熱装置を示す、図2に対応する図である。It is a figure corresponding to FIG. 2 which shows the pre-heating apparatus in pre-heating. 本発明の実施の形態2による通電加熱方法で用いる予加熱装置の斜視図である。It is a perspective view of the preheating apparatus used with the electric heating method by Embodiment 2 of this invention. 本発明の実施の形態2による通電加熱方法で用いる予加熱装置のブロック図である。It is a block diagram of the preheating apparatus used with the electric heating method by Embodiment 2 of this invention. 本発明の実施の形態2による通電加熱方法の効果を説明するための図である。It is a figure for demonstrating the effect of the electric heating method by Embodiment 2 of this invention. 本発明の実施の形態2による通電加熱方法で用いる予加熱装置の別の実施例を示す斜視図である。It is a perspective view which shows another Example of the preheating apparatus used with the electricity heating method by Embodiment 2 of this invention.

以下、図1を用いて、本発明の実施形態による通電加熱方法を含む熱間プレス成形方法について説明する。
図1は、本発明の実施の形態1による通電加熱方法を含むプレス成形方法のフローを説明する図である。供給手段1から供給された高強度材Pは、ブランキング装置2によってブランキングされる。ブランキングされた板状の高強度材P(以下、板状の被加熱部材W)は、第1搬送手段3を通じて予加熱装置20に搬送される。予加熱装置20では、予加熱制御装置40によって制御された予加熱条件に従って予加熱される。予加熱された被加熱部材Wは、第2搬送手段4のアーム4aによって、図1に矢印(ア)で示すように通電加熱装置30に搬送される。通電加熱装置30では、通電制御装置50によって制御された通電時間に従って通電加熱される。通電加熱された被加熱部材Wは、第3搬送手段5によってプレス成形装置6に搬送され、プレス成形装置6によって所望の形状にプレス成形される。予加熱条件及び通電時間については後述する。
Hereinafter, a hot press forming method including an electric heating method according to an embodiment of the present invention will be described with reference to FIG.
FIG. 1 is a diagram illustrating a flow of a press molding method including an electric heating method according to Embodiment 1 of the present invention. The high-strength material P supplied from the supply means 1 is blanked by the blanking device 2. The blanked plate-like high-strength material P (hereinafter referred to as a plate-like heated member W) is conveyed to the preheating device 20 through the first conveying means 3. In the preheating device 20, preheating is performed according to preheating conditions controlled by the preheating control device 40. The preheated member W to be heated is transported to the energization heating device 30 by the arm 4a of the second transport means 4 as indicated by an arrow (A) in FIG. The energization heating device 30 is energized and heated according to the energization time controlled by the energization control device 50. The heated member W that is heated by conduction is transported to the press molding device 6 by the third transport means 5 and is press-molded into a desired shape by the press molding device 6. Preheating conditions and energization time will be described later.

予加熱装置20から通電加熱装置30への搬送は、予加熱条件に従って予加熱された被加熱部材Wの温度分布状態が維持された状態で通電加熱されるように、可能な限り迅速に行われる。或いは、予加熱された温度分布状態が維持された状態で通電加熱されるように、予加熱装置20を通電加熱装置30と一体化することも可能である。また、通電加熱装置30からプレス成形装置6への搬送は、通電加熱によって作成された温度分布状態が維持された状態でプレス成形されるように、可能な限り迅速に行われる。   The conveyance from the preheating device 20 to the energization heating device 30 is performed as quickly as possible so as to be energized and heated while the temperature distribution state of the heated member W preheated according to the preheating conditions is maintained. . Alternatively, the preheating device 20 can be integrated with the electric heating device 30 so that the electric heating is performed while the preheated temperature distribution state is maintained. Further, the conveyance from the electric heating device 30 to the press molding device 6 is performed as quickly as possible so that the press molding is performed in a state where the temperature distribution state created by the electric heating is maintained.

次に、本発明の実施の形態1による通電加熱方法で用いる予加熱装置の側面図、上面図を示す図2(a),(b)を用いて、予加熱装置20について説明する。本実施形態による予加熱部材20は、板状の被加熱部材Wが設置される本体部21と、被加熱部材Wを所定の位置に位置決めする位置決め部材22a〜22cと、被加熱部材Wを加熱する複数の棒状ヒータ23とを備える。   Next, the preheating device 20 will be described with reference to FIGS. 2A and 2B showing a side view and a top view of the preheating device used in the electric heating method according to Embodiment 1 of the present invention. The preheating member 20 according to the present embodiment heats the heated member W, a main body 21 on which the plate-shaped heated member W is installed, positioning members 22a to 22c for positioning the heated member W at predetermined positions. And a plurality of rod-shaped heaters 23.

棒状ヒータ23は、本体部21に設けられた取付け穴に挿し込まれている。また、各棒状ヒータ23は、それぞれ各リード線24を介して独立に予加熱制御装置40に接続されるため、各棒状ヒータ23に流れる電流値はそれぞれ制御可能である。それゆえ、各棒状ヒータ23の加熱温度もそれぞれ制御可能である。   The rod heater 23 is inserted into a mounting hole provided in the main body 21. Further, since each bar heater 23 is independently connected to the preheating control device 40 via each lead wire 24, the current value flowing through each bar heater 23 can be controlled. Therefore, the heating temperature of each bar heater 23 can also be controlled.

また、本体部21は、棒状ヒータ23が発生する熱を被加熱部材Wに効率良く伝導するために、熱伝導率の高い材料、例えば金属で構成する。位置決め部材22a〜22cは、棒状ヒータ23の熱を外部に逃さず、また、予加熱温度に耐えうる材料、例えばセラミック等の多孔質無機材料で構成することができる。   The main body 21 is made of a material having a high thermal conductivity, for example, a metal, in order to efficiently conduct the heat generated by the rod-shaped heater 23 to the heated member W. The positioning members 22a to 22c can be made of a porous inorganic material such as ceramic that does not let the heat of the rod-shaped heater 23 escape to the outside and can withstand the preheating temperature.

次に、図3を用いて、本発明の実施の形態による通電加熱方法で用いる通電加熱装置30について説明する。
通電加熱装置30は、板状の被加熱部材Wを通電するためのバー電極31a,31bと、通電制御装置50に接続され、電極31a,31b間に直流電圧又は交流電圧を印加する電源32と、電源32と電極31a,31bとをつなぐケーブル33とを備える。また、電極31a,31bの外側には、位置決め部材34a,34bが、電極31a,31bの間には、位置決め部材34cが設けられており、被加熱部材Wを所定の位置に位置決めする。尚、図3では、断面積Sが小さい側から大きい側への方向を通電方向に規定しているが、逆方向を通電方向としてもよい。
Next, with reference to FIG. 3, the energization heating apparatus 30 used in the energization heating method according to the embodiment of the present invention will be described.
The energization heating device 30 includes bar electrodes 31a and 31b for energizing the plate-shaped heated member W, and a power supply 32 that is connected to the energization control device 50 and applies a DC voltage or an AC voltage between the electrodes 31a and 31b. And a cable 33 connecting the power source 32 and the electrodes 31a and 31b. Further, positioning members 34a and 34b are provided outside the electrodes 31a and 31b, and a positioning member 34c is provided between the electrodes 31a and 31b, and the heated member W is positioned at a predetermined position. In FIG. 3, the direction from the small cross-sectional area S to the large side is defined as the energization direction, but the reverse direction may be the energization direction.

ここで、断面とは、図3に矢印で示す、被加熱部材Wの長手方向に一致する通電方向に垂直な断面をいい、断面積Sとは、その断面の面積とする。これは、以下の説明でも同様である。   Here, the cross section refers to a cross section perpendicular to the energizing direction corresponding to the longitudinal direction of the member to be heated W indicated by an arrow in FIG. 3, and the cross sectional area S is the area of the cross section. The same applies to the following description.

次に、図4〜図7を用いて、本発明の実施の形態による通電加熱方法で実施される予加熱の条件(以下、予加熱条件)について説明する。
図4は、予加熱条件の決定方法を示すフローチャートである。本発明において、「予加熱条件」とは、予加熱によって板状の被加熱部材Wに作成される予加熱温度分布を含む、予加熱制御装置40に付与される予加熱についての情報を指す。図4に示すように、予加熱条件の決定方法は、被加熱部材の電気抵抗率の温度依存性を回帰分析により関数化するステップS1、被加熱部材の形状を決定するステップS2、最終の目標加熱温度分布を決定するステップS3、予加熱温度分布を仮設定するステップS4、エリアごとに一定時間経過後の温度分布を計算するステップS5、予加熱温度分布を判定するステップS6、及び目標温度分布とのずれから各エリアの予加熱温度分布の設定を修正するステップS7を含む。
Next, preheating conditions (hereinafter referred to as preheating conditions) performed by the energization heating method according to the embodiment of the present invention will be described with reference to FIGS.
FIG. 4 is a flowchart showing a method for determining preheating conditions. In the present invention, the “preheating condition” refers to information on preheating applied to the preheating control device 40, including a preheating temperature distribution created on the plate-shaped heated member W by preheating. As shown in FIG. 4, the preheating condition determining method includes step S1 for functionalizing the temperature dependence of the electrical resistivity of the member to be heated by regression analysis, step S2 for determining the shape of the member to be heated, and the final target. Step S3 for determining the heating temperature distribution, Step S4 for temporarily setting the preheating temperature distribution, Step S5 for calculating the temperature distribution after a predetermined time for each area, Step S6 for determining the preheating temperature distribution, and Target temperature distribution Step S7 for correcting the setting of the preheating temperature distribution of each area from the deviation from the above is included.

図5は、被加熱部材として用いることができる材料の電気抵抗率の温度依存性を示すグラフである。図5では、炭素含有率0.06%、マンガン含有率0.38%の軟鋼(SPCC)についての電気抵抗率を示している。被加熱部材の材料は、軟鋼に限定されることはなく、例えばアルミニウム、ステンレス、マグネシウム、鋳鉄、チタン、CFRP(炭素繊維強化プラスチック)を用いることも可能である。   FIG. 5 is a graph showing the temperature dependence of the electrical resistivity of a material that can be used as a member to be heated. FIG. 5 shows the electrical resistivity of mild steel (SPCC) having a carbon content of 0.06% and a manganese content of 0.38%. The material of the member to be heated is not limited to mild steel, and for example, aluminum, stainless steel, magnesium, cast iron, titanium, or CFRP (carbon fiber reinforced plastic) can be used.

ステップS1では、予め測定された、さまざまな温度での材料の電気抵抗率ρの値をコンピュータに入力し、電気抵抗率ρの温度依存性を示す回帰曲線を決定する。一般に、電気抵抗率ρの温度依存性は、用いる材料に依存する。図5では、3次関数で回帰分析を行っているが、他の多項式又は他の関数で関数化してもよい。   In step S1, the values of the electrical resistivity ρ of the material measured at various temperatures in advance are input to a computer, and a regression curve indicating the temperature dependence of the electrical resistivity ρ is determined. In general, the temperature dependence of the electrical resistivity ρ depends on the material used. In FIG. 5, the regression analysis is performed with a cubic function, but it may be functionalized with other polynomials or other functions.

次に、ステップS2で、最終製品の形状に基づいて板状の被加熱部材Wの形状を決定する。続けてステップS3で、プレス成形後の最終製品に要求される機械特性や後加工の効率性等を考慮して、通電加熱後の被加熱部材Wに作成する所望の温度分布を決定する。所望の温度分布は、通電加熱装置30からプレス成形装置6への搬送時間における温度低下を考慮して、全体的にΔTだけ高く設定してもよい。さらに、後述するように、被加熱部材Wの断面積Sが小さい側で温度変化がより大きいことを考慮して、ΔTは、断面積Sが小さい側で、断面積Sが大きい側に比べて大きくしてもよい。 Next, in step S2, the shape of the plate-shaped heated member W is determined based on the shape of the final product. Subsequently, in step S3, a desired temperature distribution to be created in the heated member W after the heating by heating is determined in consideration of mechanical characteristics required for the final product after press molding, efficiency of post-processing, and the like. Desired temperature distribution, the resistance heating apparatus 30 in consideration of the temperature drop in the transport time to the press-forming device 6, may be set higher by overall [Delta] T A. Further, as described below, to account for the temperature change in the cross-sectional area S is smaller side of the heating member W is greater, [Delta] T A is the side cross-sectional area S is small, compared to the side cross-sectional area S is larger You can make it bigger.

図6は、被加熱部材の各エリアへの分割を説明する図である。ステップS4では、まず、図6に示すように、被加熱部材Wを、通電加熱時の通電方向である長手方向(x方向)に直交する断面で、複数のエリアに分割する。次に、各エリアごとに、予加熱温度を仮設定する。   FIG. 6 is a diagram illustrating the division of the member to be heated into each area. In step S4, as shown in FIG. 6, first, the member to be heated W is divided into a plurality of areas in a cross section orthogonal to the longitudinal direction (x direction) that is the energization direction during energization heating. Next, a preheating temperature is temporarily set for each area.

一般に、電気抵抗の大きさRは、抵抗の電気抵抗率ρに比例し、抵抗の断面積Sに反比例する。非矩形の被加熱部材等の場合、通電方向において断面積が異なる。また、被加熱部材を通電加熱することにより発生するジュール熱は、抵抗Rが大きい側、即ち断面積Sが小さい側で大きくなる。それゆえ、被加熱部材を通電すると、断面積Sが小さい側で温度が高くなる。   In general, the magnitude R of the electrical resistance is proportional to the electrical resistivity ρ of the resistance and inversely proportional to the cross-sectional area S of the resistance. In the case of a non-rectangular member to be heated, the cross-sectional area differs in the energization direction. Further, Joule heat generated by energizing and heating the member to be heated increases on the side where the resistance R is large, that is, on the side where the cross-sectional area S is small. Therefore, when the member to be heated is energized, the temperature increases on the side where the cross-sectional area S is small.

図6に示すような+x側の断面積が大きい非矩形の被加熱部材を用いる場合、予加熱せずに通電加熱した場合、−x側で温度が高くなる。それゆえ、例えば被加熱部材W全体を均一な温度にしたい場合は、図6に示すように、+x側の予加熱温度を高く設定することができる。   When a non-rectangular heated member having a large cross-sectional area on the + x side as shown in FIG. 6 is used, when energization heating is performed without preheating, the temperature increases on the −x side. Therefore, for example, when it is desired to make the entire heated member W uniform temperature, the preheating temperature on the + x side can be set high as shown in FIG.

図6(a)では、分割するエリアのx方向の幅を等しくしている。一方、図6(b)に示すように、被加熱部材の断面積が小さい−x側の幅をより小さく設定してもよい。以下で説明する図7(a)からわかるように、被加熱部材Wの断面積Sが小さい側で、より通電加熱による温度変化が大きくなる。これは、断面積Sが小さい側では断面積Sが大きい側に比べて熱容量が小さいからである。そこで、断面積Sが小さい側のエリアの幅をより小さく設定することにより、より細かい温度設定が可能になる。   In FIG. 6A, the widths of the divided areas in the x direction are made equal. On the other hand, as shown in FIG. 6 (b), the cross-sectional area of the heated member is small, and the width on the -x side may be set smaller. As can be seen from FIG. 7A described below, the temperature change due to the current heating becomes larger on the side where the cross-sectional area S of the heated member W is smaller. This is because the heat capacity is smaller on the side where the cross-sectional area S is smaller than on the side where the cross-sectional area S is large. Therefore, by setting the width of the area on the side where the cross-sectional area S is small, a finer temperature setting is possible.

図7は、予加熱温度分布と通電時間との関係を説明する図である。図7(a)は、通電加熱前、及び所定の時間通電加熱した後の被加熱部材のx方向の温度分布を示している。T〜Tは、それぞれ図7(a)に示す被加熱部材の位置x〜xの通電加熱前の初期温度である。また、図7(b)は、被加熱部材を通電加熱した場合の温度の時間変化を、位置x〜xについてそれぞれ示している。 FIG. 7 is a diagram illustrating the relationship between the preheating temperature distribution and the energization time. FIG. 7A shows the temperature distribution in the x direction of the heated member before energization heating and after energization heating for a predetermined time. T 1 to T 3 are initial temperatures of the heated members at positions x 1 to x 3 shown in FIG. Further, FIG. 7 (b), the time variation of temperature when energized heating the heating member, respectively show the position x 1 ~x 3.

ここで、予加熱装置20から通電加熱装置30への搬送時間における温度低下を考慮して、所望の温度分布を全体的にΔTだけ高く設定してもよい。さらに、断面積Sが小さい側の熱容量が小さいことを考慮して、ΔTは、断面積Sが小さい側で、断面積Sが大きい側に比べて大きくしてもよい。 Here, in consideration of the temperature drop in the conveyance time from preheat unit 20 to the conduction heating apparatus 30 may be set higher by overall [Delta] T P a desired temperature distribution. Moreover, taking into account the thermal capacity of the cross-sectional area S is smaller side is small, [Delta] T P is the side cross-sectional area S is small, it may be larger than the cross-sectional area S is larger side.

ステップS5では、まず、各エリアごとに代表断面を決定する。例えば、エリアのx方向の幅の中央の断面を代表断面とすることができる。次に、各エリアごとに、1)各エリアの代表断面の断面積、2)各エリアのx方向の幅、3)ステップS1で関数化した電気抵抗値の温度依存性、4)比熱、5)通電加熱時に電極間に流す電流値を用いて、一定時間経過後の温度分布を計算し、図7(a),(b)に示すグラフを作成する。通電加熱前の被加熱部材Wのx方向の温度分布は、例えば回帰分析して2次関数によって関数化しておく。尚、図7(a)の位置x〜xは、それぞれエリア1〜エリア3の代表断面のx方向の位置とする。 In step S5, first, a representative cross section is determined for each area. For example, the central cross section of the width in the x direction of the area can be used as the representative cross section. Next, for each area, 1) the cross-sectional area of the representative cross section of each area, 2) the width in the x direction of each area, 3) the temperature dependence of the electrical resistance value functioned in step S1, 4) the specific heat, 5 ) Using the current value flowing between the electrodes during energization heating, the temperature distribution after a lapse of a certain time is calculated, and the graphs shown in FIGS. 7A and 7B are created. The temperature distribution in the x direction of the heated member W before the electric heating is converted into a function by a quadratic function by regression analysis, for example. Note that the positions x 1 to x 3 in FIG. 7A are the positions in the x direction of the representative cross sections of the areas 1 to 3, respectively.

次に、ステップS6では、ステップS3で決定した被加熱部材Wに作成する所望の温度分布と、図7(a),(b)に示すグラフとを比較して、予加熱温度分布を判定する。設定した予加熱温度分布により、その後の通電加熱によって所望の温度分布が作成できる場合は○と判定し、予加熱温度分布を基に予加熱条件を決定する。ここで同時に、目標温度分布となるようにその後の通電加熱における通電時間を決定する。目標温度分布となる通電時間が複数ある場合は、最短の時間を通電時間とする。   Next, in step S6, the desired temperature distribution created in the heated member W determined in step S3 is compared with the graphs shown in FIGS. 7A and 7B to determine the preheating temperature distribution. . If a desired temperature distribution can be created by subsequent energization heating based on the set preheating temperature distribution, it is determined as “good”, and the preheating condition is determined based on the preheating temperature distribution. At the same time, the energization time in the subsequent energization heating is determined so that the target temperature distribution is obtained. When there are a plurality of energization times with the target temperature distribution, the shortest time is set as the energization time.

例えば、被加熱部材W全体を完全に均一な温度にしたい場合、図7(b)に示したグラフでは、エリア1〜3の温度が等しくなる通電時間は存在せず、被加熱部材W全体を完全に均一な温度にすることはできない。しかし、プレス成形においては、例えば±100℃は許容できる温度差である。それゆえ、例えば各エリアの温度が±100℃にすることができる状態で予加熱条件を決定してもよい。   For example, when the entire heated member W is desired to have a completely uniform temperature, there is no energization time in which the temperatures of the areas 1 to 3 are equal in the graph shown in FIG. A completely uniform temperature cannot be achieved. However, in press molding, for example, ± 100 ° C. is an acceptable temperature difference. Therefore, for example, the preheating condition may be determined in a state where the temperature of each area can be ± 100 ° C.

ここで、一般に、比熱も電気抵抗率と同様に、被加熱部材Wの材料及び温度に依存する。それゆえ、予加熱条件の決定方法は、電気抵抗率の温度依存性を回帰分析して関数化するステップS1と同様に、比熱の温度依存性を回帰分析して関数化するステップを含んでもよい。関数化した比熱の温度依存性は、ステップS5において用いることができる。   Here, in general, the specific heat also depends on the material and temperature of the heated member W, similarly to the electrical resistivity. Therefore, the method for determining the preheating condition may include the step of performing regression analysis and functionalizing the temperature dependence of specific heat in the same manner as step S1 of performing regression analysis and functionalizing the temperature dependence of electrical resistivity. . The temperature dependence of the functionalized specific heat can be used in step S5.

ステップS6で、設定した予加熱温度分布によっては通電加熱後に被加熱部材Wに所望の温度分布が作成できない場合、×と判定し、ステップS7に進む。ステップS7では、予加熱温度分布が修正される。ステップS5では、通電加熱時に電極間に流す電流値を固定して一定時間経過後の温度分布を計算したが、ステップS7において、予加熱温度分布と同時に電流値を変更してもよい。ステップS7で修正した予加熱温度分布を基に、ステップS5で図7(a),(b)のグラフを再度作成し、再度ステップS6で予加熱温度分布を判定する。ステップS5〜S7を繰り返すことにより、最適な予加熱条件を決定することができる。   If it is determined in step S6 that a desired temperature distribution cannot be created on the heated member W after energization heating depending on the set preheating temperature distribution, it is determined as x and the process proceeds to step S7. In step S7, the preheating temperature distribution is corrected. In step S5, the current value flowing between the electrodes during energization heating is fixed and the temperature distribution after a lapse of a fixed time is calculated. However, in step S7, the current value may be changed simultaneously with the preheating temperature distribution. Based on the preheating temperature distribution corrected in step S7, the graphs of FIGS. 7A and 7B are created again in step S5, and the preheating temperature distribution is determined again in step S6. By repeating steps S5 to S7, the optimum preheating conditions can be determined.

以下、本発明の実施の形態1による通電加熱方法による効果を説明する。
図8は、予加熱中の予加熱装置を示す、図2に対応する図である。図8では、被加熱部材Wを設置した状態で示している。予加熱装置20では、図4のステップS6で決定した予加熱条件に従って予加熱制御装置40が作動し、予加熱制御装置40の制御によって、各棒状ヒータ23には所定の大きさの電流が流れる。これにより、予加熱装置20に搬送された被加熱部材Wの各エリアは、予加熱条件に従って、所望の予加熱温度分布状に加熱される。また、通電加熱装置30では、通電制御装置50が電源32を制御し、図4のステップS6によって決定した通電時間の間、被加熱部材Wに電流が流れる。
Hereinafter, effects of the energization heating method according to Embodiment 1 of the present invention will be described.
FIG. 8 is a view corresponding to FIG. 2, showing the preheating device during preheating. In FIG. 8, it shows in the state which the to-be-heated member W installed. In the preheating device 20, the preheating control device 40 operates according to the preheating conditions determined in step S <b> 6 of FIG. 4, and a current of a predetermined magnitude flows through each rod heater 23 by the control of the preheating control device 40. . Thereby, each area of the to-be-heated member W conveyed to the preheating apparatus 20 is heated by desired preheating temperature distribution according to preheating conditions. In the energization heating device 30, the energization control device 50 controls the power supply 32, and a current flows through the heated member W during the energization time determined in step S <b> 6 in FIG. 4.

図4のステップS6で決定した予加熱条件及び通電時間に従って、板状の被加熱部材Wを予加熱することにより、被加熱部材W全体の温度を均一にすることができ、更には所望の温度分布を作成することができる。また、それぞれ電流制御可能な棒状ヒータ23を備えた予加熱装置20を用いることにより、容易に予加熱条件に従った予加熱を実施することができる。   According to the preheating conditions and the energization time determined in step S6 of FIG. 4, the temperature of the entire heated member W can be made uniform by preheating the plate-like heated member W, and further the desired temperature. Distribution can be created. Further, by using the preheating device 20 provided with the rod heaters 23 each capable of controlling current, preheating according to preheating conditions can be easily performed.

また、予加熱条件は各エリアごとに決定し、さらに、温度によって変化する被加熱部材Wの電気抵抗率を考慮して予加熱条件を決定することにより、被加熱部材Wに精度の高い温度分布を作成することができる。   In addition, the preheating conditions are determined for each area, and further, the preheating conditions are determined in consideration of the electrical resistivity of the heated member W that varies depending on the temperature. Can be created.

また、このように予加熱及び通電加熱された被加熱部材Wは、所望の温度分布が作成された状態でプレス成形される。それゆえ、最終製品に応じて要求される温度分布状態で被加熱部材のプレス成形を行うことができる。さらに、予加熱及び通電加熱によって被加熱部材を迅速に加熱することができ、プレス成形のサイクルタイムを短縮することができる。   Further, the heated member W preheated and heated in this way is press-molded in a state where a desired temperature distribution is created. Therefore, the member to be heated can be press-molded in a temperature distribution state required according to the final product. Furthermore, the member to be heated can be quickly heated by preheating and current heating, and the cycle time of press molding can be shortened.

次に、図9〜図12を用いて、本発明の実施の形態2による通電加熱方法に用いる予加熱装置70について説明する。本実施形態では、予加熱装置の構成が実施形態1と異なる。それ以外は、実施の形態1と同様であり、説明を省略する。   Next, the preheating device 70 used for the energization heating method according to the second embodiment of the present invention will be described with reference to FIGS. In the present embodiment, the configuration of the preheating device is different from that of the first embodiment. Other than that, it is the same as the first embodiment, and the description is omitted.

図9は、本発明の実施の形態2による通電加熱方法で用いる予加熱装置の斜視図である。図9に示すように、本実施形態による予加熱装置70は、中空直方体形状を有する高周波コイル71と、板状の被加熱部材Wを搬送してコイル71の内部を通過させるコンベア72とを備える。高周波コイル71は、予加熱制御装置90に接続されている。   FIG. 9 is a perspective view of a preheating device used in the energization heating method according to Embodiment 2 of the present invention. As shown in FIG. 9, the preheating device 70 according to the present embodiment includes a high-frequency coil 71 having a hollow rectangular parallelepiped shape, and a conveyor 72 that conveys a plate-shaped heated member W and passes the inside of the coil 71. . The high frequency coil 71 is connected to the preheating control device 90.

図10は、本発明の実施の形態2による通電加熱方法で用いる予加熱装置のブロック図である。図10に示すように、予加熱制御装置90は、コイル71に交流電圧を印加する交流電源73と、交流電源73を制御する電源制御装置75とを含む。図2のステップS6で決定した予加熱条件に従って、電源制御装置75は交流電源73を制御する。交流電源73により、コイル71に所定の高周波の交流電流が流れ、交流磁界を発生する。これにより、コイル71の内部を通過する被加熱部材Wには誘導電流が流れ、発生したジュール熱によって被加熱部材Wは加熱される。   FIG. 10 is a block diagram of a preheating device used in the energization heating method according to Embodiment 2 of the present invention. As shown in FIG. 10, the preheating control device 90 includes an AC power supply 73 that applies an AC voltage to the coil 71 and a power supply control device 75 that controls the AC power supply 73. In accordance with the preheating condition determined in step S6 of FIG. A predetermined high frequency alternating current flows through the coil 71 by the alternating current power source 73 to generate an alternating magnetic field. As a result, an induced current flows through the heated member W passing through the inside of the coil 71, and the heated member W is heated by the generated Joule heat.

以下、被加熱部材Wがコイル71を通過する方向に直交する断面の断面積Sが大きい側を先に通過させる場合について説明する。該通過する方向は、前述の通電方向と一致させてもよい。   Hereinafter, the case where the heated member W first passes the side where the cross-sectional area S of the cross section orthogonal to the direction passing through the coil 71 is large will be described. The passing direction may coincide with the energizing direction described above.

図9において、x方向は、矢印(ア)で示す、被加熱部材Wがコンベア72上を通過する方向に一致する。また、y方向,z方向は、それぞれx方向に垂直な方向である。高周波コイル71は、該コイル71の中空部分の中心のz方向の位置が、被加熱部材Wの通過方向(x方向)に直交する断面中心のz方向の位置と一致するように配置される。   In FIG. 9, the x direction coincides with the direction indicated by the arrow (A) in which the heated member W passes on the conveyor 72. Further, the y direction and the z direction are directions perpendicular to the x direction, respectively. The high frequency coil 71 is disposed so that the z-direction position of the center of the hollow portion of the coil 71 coincides with the z-direction position of the cross-sectional center orthogonal to the passing direction (x direction) of the heated member W.

また、高周波コイル71は、コイル駆動装置74に接続されており、図9に矢印(イ)で示す方向(y方向)に移動可能に構成されている。高周波コイル71は、コイル駆動装置74により、コイル71の中空部分の中心のy方向の位置が、被加熱部材Wの通過方向に直交する断面中心のy方向の位置と一致するように移動する構成を有する。   The high frequency coil 71 is connected to a coil driving device 74 and is configured to be movable in a direction (y direction) indicated by an arrow (A) in FIG. The high frequency coil 71 is moved by the coil driving device 74 so that the position in the y direction at the center of the hollow portion of the coil 71 coincides with the position in the y direction at the center of the cross section perpendicular to the passing direction of the heated member W. Have

図11は、本発明の実施の形態2による通電加熱方法の効果を説明するための図である。図11(a)は、コイル71のx方向に直交する断面の断面図を示しており、+x方向から見て、図11(a)の様にコイル71の第1面〜第4面を規定する。図11(b),(c)は、それぞれ断面積Sが大きいエリア、小さいエリアが高周波コイル71を通過する際のコイル71及び被加熱部材Wの断面図を示す。また、図11(d)は、コイル71がy方向に移動しない構成を有する場合について、図11(c)に対応する断面図を示す。尚、図11(b)〜図11(d)において、yは、被加熱部材Wの−y端からコイル71の第1面までの距離を表す。同様に、y,z,zはそれぞれ、被加熱部材Wの+y端からコイル71の第2面までの距離、被加熱部材Wの+z端からコイル71の第3面までの距離、被加熱部材Wの−z端からコイル71の第4面までの距離を表す。 FIG. 11 is a diagram for explaining the effect of the energization heating method according to the second embodiment of the present invention. FIG. 11A shows a cross-sectional view of the cross section orthogonal to the x direction of the coil 71. When viewed from the + x direction, the first surface to the fourth surface of the coil 71 are defined as shown in FIG. 11A. To do. FIGS. 11B and 11C are cross-sectional views of the coil 71 and the heated member W when an area having a large cross-sectional area S and a small area pass through the high-frequency coil 71, respectively. Moreover, FIG.11 (d) shows sectional drawing corresponding to FIG.11 (c) about the case where the coil 71 has a structure which does not move to ay direction. 11B to 11D, y 1 represents the distance from the −y end of the heated member W to the first surface of the coil 71. Similarly, y 2 , z 1 and z 2 are respectively the distance from the + y end of the heated member W to the second surface of the coil 71, the distance from the + z end of the heated member W to the third surface of the coil 71, This represents the distance from the −z end of the heated member W to the fourth surface of the coil 71.

がzに比べて小さい場合、被加熱部材Wの+z側の主面がコイルから受ける磁界の大きさは、−z側の主面が受ける磁界の大きさよりも大きくなる。それゆれ、発生するジュール熱も+z側の主面で−z側の主面よりも大きくなるため、被加熱部材Wをz方向に均一に予加熱することができない。 When z 1 is smaller than z 2 , the magnitude of the magnetic field received by the + z side principal surface of the heated member W from the coil is greater than the magnitude of the magnetic field received by the −z side principal surface. As a result, the generated Joule heat is larger on the + z side main surface than on the −z side main surface, and thus the member to be heated W cannot be preheated uniformly in the z direction.

一方、本実施形態では、高周波コイル71の中空部分の中心のz方向の位置を、x方向に直交する断面中心のz方向の位置と一致させる構成を有する。それゆえ、図11(b)〜図11(d)に示すように、zとzとが等しくなり、被加熱部材Wをz方向に均一に予加熱することができる。 On the other hand, in this embodiment, the z-direction position of the center of the hollow portion of the high-frequency coil 71 is configured to coincide with the z-direction position of the center of the cross section orthogonal to the x direction. Therefore, as shown in FIGS. 11B to 11D, z 1 and z 2 are equal, and the member to be heated W can be preheated uniformly in the z direction.

通電方向(x方向)に厚さが異なる被加熱部材Wを用いる場合、被加熱部材Wをコイル駆動装置74によってz方向にも移動可能に構成することにより、zとzとが等しくなり、被加熱部材Wをz方向に均一に予加熱することができる。 When using a thickness in the current direction (x-direction) are different from heated member W, by movable in also in the z direction by a member to be heated W coil driving unit 74, it becomes equal to the z 1 and z 2 The member to be heated W can be preheated uniformly in the z direction.

図11(b)に示すように、断面積Sが大きいエリアがコイル71を通過する際、即ち被加熱部材Wがコイル71を通過し始める際に、yとyとが等しくなるように被加熱部材Wを配置したとする。ここで、コイル71がy方向に移動する構成を有しない場合、図11(d)に示すように、被加熱部材Wの通過に伴って、yはyに比べて小さくなるため、被加熱部材Wをy方向に均一に予加熱することができない。 As shown in FIG. 11B, when an area having a large cross-sectional area S passes through the coil 71, that is, when the heated member W starts to pass through the coil 71, y 1 and y 2 are made equal. It is assumed that the heated member W is arranged. Here, when the coil 71 does not have a configuration to move in the y direction, as shown in FIG. 11D, as the heated member W passes, y 1 becomes smaller than y 2 , so The heating member W cannot be preheated uniformly in the y direction.

一方、本実施形態では、高周波コイル71がy方向に移動し、該コイル71の中空部分の中心のy方向の位置をx方向に直交する断面中心のy方向の位置と一致させる構成を有するので、被加熱部材Wをy方向にも均一に予加熱することができる。   On the other hand, in the present embodiment, the high-frequency coil 71 moves in the y direction, and the y-direction position of the center of the hollow portion of the coil 71 coincides with the y-direction position of the cross-sectional center orthogonal to the x direction. The heated member W can be preheated evenly in the y direction.

また、図9に示すような非矩形の被加熱部材Wを用いた場合、y+yは、被加熱部材Wの通過に伴って大きくなる。それゆえ、一定の速度で被加熱部材Wを通過させた場合、断面積Sが小さい−x側よりも大きい+x側で、より予加熱される。 Further, when a non-rectangular heated member W as shown in FIG. 9 is used, y 1 + y 2 increases as the heated member W passes. Therefore, when the member to be heated W is passed at a constant speed, preheating is further performed on the + x side, which is larger than the −x side where the cross-sectional area S is small.

これは、通電加熱後に被加熱部材W全体を均一な温度にしたい場合、非常に好都合である。なぜなら、予加熱装置70では、断面積Sが小さい−x側よりも大きい+x側でより昇温するのに対して、通電加熱装置30では、逆に+x側よりも−x側でより昇温する。それゆえ、予加熱により生じた通電方向(x方向)の温度勾配が通電加熱により相殺され、被加熱部材W全体を均一な温度にすることができるからである。   This is very convenient when it is desired to make the entire heated member W uniform temperature after the electric heating. This is because, in the preheating device 70, the temperature rises more on the + x side where the cross-sectional area S is smaller than on the -x side, whereas in the current heating device 30, the temperature rises more on the -x side than on the + x side. To do. Therefore, the temperature gradient in the energization direction (x direction) caused by the preheating is offset by the energization heating, and the entire heated member W can be made to have a uniform temperature.

この場合、断面積Sが小さい−x側を常温状態に保持しても、その後の通電加熱によって被加熱部材W全体を均一な温度にできる場合は、通過の途中でコイル71の通電を中止してもよい。   In this case, even if the -x side having a small cross-sectional area S is kept at a normal temperature, the energization of the coil 71 is stopped in the middle of passage when the entire heated member W can be brought to a uniform temperature by subsequent energization heating. May be.

また、コイル71は、電源制御装置75に接続されている。コイル71の通過に伴い、電源制御装置75によって交流電源73に流れる電流値を制御することにより、被加熱部材Wに所望の予加熱温度分布を作成することができる。   The coil 71 is connected to the power supply control device 75. A desired preheating temperature distribution can be created in the member to be heated W by controlling the value of the current flowing through the AC power supply 73 by the power supply control device 75 as the coil 71 passes.

さらに、コンベア72は、コンベア72の速度制御を行う速度制御装置(不図示)に接続してもよい。その場合、速度制御装置によってコンベア72、及び該コンベア72上を移動する被加熱部材Wの通過速度を制御することによっても、被加熱部材Wに所望の予加熱温度分布を作成することができる。   Further, the conveyor 72 may be connected to a speed control device (not shown) that controls the speed of the conveyor 72. In that case, a desired preheating temperature distribution can be created in the heated member W also by controlling the passing speed of the conveyor 72 and the heated member W moving on the conveyor 72 by the speed control device.

本実施形態では、コイル駆動装置74をコイル71をy方向及びz方向に移動させることによって、被加熱部材Wをy方向及びz方向に均一に予加熱した。これと同様に、y方向及びz方向に移動させることによって、y方向及びz方向に所望の温度分布を作成することも可能である。   In this embodiment, the member to be heated W is preheated uniformly in the y direction and the z direction by moving the coil 71 in the y direction and the z direction by the coil driving device 74. Similarly, it is also possible to create a desired temperature distribution in the y direction and the z direction by moving in the y direction and the z direction.

図12は、本発明の実施の形態2による予加熱装置の別の実施例を示す斜視図である。図9では、コイル71を被加熱部材Wの通過方向(x方向)と垂直な向きに配置した。一方、図12に示すように、コイル71をx方向と交差する向きに配置することによっても、被加熱部材Wをy方向に均一に予加熱することができる。   FIG. 12 is a perspective view showing another example of the preheating device according to the second embodiment of the present invention. In FIG. 9, the coil 71 is arranged in a direction perpendicular to the passing direction (x direction) of the heated member W. On the other hand, as shown in FIG. 12, the member to be heated W can be preheated uniformly in the y direction also by arranging the coil 71 in a direction crossing the x direction.

尚、本実施形態では、被加熱部材Wの断面積Sの大きい側をコイル71に先に通過する場合について説明した。逆に、断面積Sが小さい側をコイル71を先に通過させてもよい。   In the present embodiment, the case where the coil 71 is first passed through the side having the larger cross-sectional area S of the member to be heated W has been described. Conversely, the coil 71 may be passed through the side having the smaller cross-sectional area S first.

以上、本発明の実施形態について添付図面を参照しながら説明したが、本発明は、例示された実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、種々の改良及び設計上の変更が可能であることは言うまでもない。   While the embodiments of the present invention have been described with reference to the accompanying drawings, the present invention is not limited to the illustrated embodiments, and various improvements and modifications can be made without departing from the spirit of the present invention. Needless to say, design changes are possible.

以上のように、本発明によれば、通電加熱によって板状の被加熱部材を加熱する際に、非矩形状に形成された被加熱部材を加熱する場合においても、比較的簡単に被加熱部材に所望の温度分布を作成可能となるから、ピラーやインパクトバーなどの車体構成部材に使用される高張力鋼板などのプレス成形時の加熱に好適に利用される可能性がある。   As described above, according to the present invention, when heating a member to be heated formed in a non-rectangular shape when heating the member to be heated by energization heating, the member to be heated is relatively easy. In addition, since a desired temperature distribution can be created, it may be suitably used for heating during press forming of high-strength steel plates used for vehicle body components such as pillars and impact bars.

6 プレス成形装置、 20,70 予加熱装置、 23 棒状ヒータ、 30 通電加熱装置、 32 電源、 31a,31b 電極、 40,90 予加熱制御装置 50 通電制御装置、 71 高周波コイル、 W 被加熱部材   6 Press forming device, 20, 70 Preheating device, 23 Bar heater, 30 Current heating device, 32 Power source, 31a, 31b Electrode, 40, 90 Preheating control device 50 Current control device, 71 High frequency coil, W Heated member

Claims (5)

被加熱部材に互いに離間する一対の電極を取り付けて通電することにより、前記被加熱部材を加熱する通電加熱方法であって、
所定形状に形成された板状の被加熱部材を用意するステップと、
前記被加熱部材の予加熱条件を決定するステップと、
決定した予加熱条件に従って前記被加熱部材を予加熱し、該被加熱部材に一対の電極を取り付けるステップと、
予加熱された前記被加熱部材の温度状態が維持された状態で前記電極間を通電するステップとを含み、
前記被加熱部材の予加熱条件を決定するステップでは、通電によって前記被加熱部材に目標の温度分布が作成されるように予加熱条件を決定すると共に、被加熱部材を、通電方向に直交する断面でそれぞれ所定の目標温度を有する複数の領域に分割し、各領域ごとに予加熱条件を決定し、
被加熱部材の通電方向に直交する断面の断面積が通電方向に変化する場合は、前記領域の通電方向の寸法を、前記断面積が小さい側で大きい側に比べて小さくすることを特徴とする通電加熱方法。
An energization heating method for heating the heated member by attaching and energizing a pair of electrodes that are spaced apart from the heated member,
Preparing a plate-like member to be heated formed in a predetermined shape;
Determining preheating conditions for the member to be heated;
Preheating the member to be heated in accordance with the determined preheating condition, and attaching a pair of electrodes to the member to be heated;
Energizing between the electrodes in a state where the temperature state of the preheated member to be heated is maintained,
Wherein in the step of determining the preheating conditions of the heated member together when determining preheating conditions such that the temperature distribution in the target is produced on the member to be heated by energization, a cross section perpendicular to the heated member, the current direction And divide into a plurality of regions each having a predetermined target temperature, determine preheating conditions for each region,
When the cross-sectional area of the cross section perpendicular to the energization direction of the member to be heated changes to the energization direction, the size of the energization direction of the region is made smaller on the smaller cross-sectional area side than on the larger side. Electric heating method.
前記被加熱部材の予加熱条件を決定するステップでは、前記各領域の通電方向に直交する断面の断面積、及び温度に応じて変化する被加熱部材の電気抵抗率に基づいて予加熱条件を決定することを特徴とする請求項記載の通電加熱方法。 In the step of determining the preheating condition of the member to be heated, the preheating condition is determined based on the cross-sectional area of the cross section orthogonal to the energizing direction of each region and the electrical resistivity of the member to be heated that changes according to the temperature. The energization heating method according to claim 1, wherein: 前記決定した予加熱条件に従って前記被加熱部材を予加熱し、該被加熱部材に一対の電極を取り付けるステップでは、予加熱装置を被加熱部材に接触させることにより被加熱部材を予加熱し、該被加熱部材に一対の電極を取り付け、
前記予加熱装置として、通電方向に並べて配置され、それぞれ加熱温度を制御可能な棒状ヒータを備えた予加熱装置を用いることを特徴とする請求項1または2に記載の通電加熱方法。
In the step of preheating the member to be heated according to the determined preheating condition and attaching the pair of electrodes to the member to be heated, the member to be heated is preheated by bringing the preheating device into contact with the member to be heated. Attach a pair of electrodes to the heated member,
The energization heating method according to claim 1 or 2 , wherein a preheating apparatus provided with a bar heater arranged in the energization direction and capable of controlling the heating temperature is used as the preheating apparatus.
前記決定した予加熱条件に従って前記被加熱部材を予加熱し、該被加熱部材に一対の電極を取り付けるステップでは、通電した中空の高周波コイルの内側を通過させて前記被加熱部材を誘導加熱し、
前記被加熱部材が高周波コイルの中央を通過する際には、被加熱部材の通過方向に直交する前記被加熱部材の断面の断面中心と、高周波コイルの中空部分の中心とを略一致させることを特徴とする請求項1〜3のいずれか1項に記載の通電加熱方法。
In the step of preheating the member to be heated according to the determined preheating condition and attaching a pair of electrodes to the member to be heated, the heated member is induction heated by passing through the inside of an energized hollow high-frequency coil,
When the heated member passes through the center of the high frequency coil, the center of the cross section of the heated member perpendicular to the passing direction of the heated member and the center of the hollow portion of the high frequency coil are substantially matched. The energization heating method according to any one of claims 1 to 3 .
請求項1〜4のいずれか1項に記載の通電加熱方法によって前記被加熱部材を加熱し、成形型を用いて前記加熱された被加熱部材をプレス成形する熱間プレス成形方法。 The hot press molding method which heats the said to-be-heated member by the electric heating method of any one of Claims 1-4 , and press-molds the said to-be-heated member using the shaping | molding die.
JP2012083787A 2012-04-02 2012-04-02 Electric heating method and hot press molding method Active JP5987420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012083787A JP5987420B2 (en) 2012-04-02 2012-04-02 Electric heating method and hot press molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012083787A JP5987420B2 (en) 2012-04-02 2012-04-02 Electric heating method and hot press molding method

Publications (2)

Publication Number Publication Date
JP2013212520A JP2013212520A (en) 2013-10-17
JP5987420B2 true JP5987420B2 (en) 2016-09-07

Family

ID=49586287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012083787A Active JP5987420B2 (en) 2012-04-02 2012-04-02 Electric heating method and hot press molding method

Country Status (1)

Country Link
JP (1) JP5987420B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020507472A (en) * 2016-12-22 2020-03-12 オートテック・エンジニアリング・ソシエダッド・リミターダAutotech Engineering, S.L. Method and heating system for heating a blank
JP7089482B2 (en) 2016-08-09 2022-06-22 オートテック・エンジニアリング・ソシエダッド・リミターダ Blank centering and selective heating

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6384417B2 (en) * 2015-07-17 2018-09-05 トヨタ自動車株式会社 Electric heating device and electric heating method
JP6548620B2 (en) * 2016-09-06 2019-07-24 日本製鉄株式会社 Hot press machine
JP6531265B2 (en) 2017-03-27 2019-06-19 石崎プレス工業株式会社 METHOD FOR MANUFACTURING METAL PARTS AND APPARATUS FOR MANUFACTURING METAL PARTS

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52103730A (en) * 1976-02-27 1977-08-31 Daiichi Koshuha Kogyo Kk Method of regulating clearance of inductor in induction heating
JPS5838483A (en) * 1981-08-31 1983-03-05 日本発条株式会社 Resistance heating method
JP4890416B2 (en) * 2007-10-18 2012-03-07 アイシン高丘株式会社 Press working apparatus and press working method in die quench method
JP2011255413A (en) * 2010-06-11 2011-12-22 Toyoda Iron Works Co Ltd Device for heating steel sheet, method for manufacturing press-formed article, and press-formed article

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7089482B2 (en) 2016-08-09 2022-06-22 オートテック・エンジニアリング・ソシエダッド・リミターダ Blank centering and selective heating
JP2020507472A (en) * 2016-12-22 2020-03-12 オートテック・エンジニアリング・ソシエダッド・リミターダAutotech Engineering, S.L. Method and heating system for heating a blank

Also Published As

Publication number Publication date
JP2013212520A (en) 2013-10-17

Similar Documents

Publication Publication Date Title
JP5987420B2 (en) Electric heating method and hot press molding method
JP4673656B2 (en) Hot press forming equipment
CN107432054B (en) Heating method, heating device, and method for producing press-molded article
JP6142409B2 (en) Electric heating method
US20140339210A1 (en) Direct resistance heating apparatus and direct resistance heating method
KR102529021B1 (en) Direct resistance heating device, direct resistance heating method, heating device, heating method, and hot press molding method
JP6463911B2 (en) Heating method, heating apparatus, and method for producing press-molded product
CN104968454A (en) Method of consolidating/molding near net-shaped components made from powder
JP5887885B2 (en) Electric heating method
KR102503714B1 (en) Heating method, heating apparatus, and fabrication method for press-molded article
KR20150036019A (en) Direct resistance heating method
KR101667505B1 (en) High-frequency induction heating device and processing device
CN104694714A (en) Method and device for post-treatment of a hardened metallic moulded part by means of electrical resistance heating
JP4964737B2 (en) Induction heating method and apparatus for metal material
JP6326317B2 (en) Electric heating method and press-molded product manufacturing method.
JP5887884B2 (en) Electric heating device
JP5880175B2 (en) Electric heating method and hot press molding method
JP2005015906A (en) Induction-heating method for thin sheet-made article and apparatus therefor
JP2014175082A (en) Induction heating apparatus and induction heating method
CN105745993B (en) Induction heating apparatus
JP2010111886A (en) Heat treatment method and apparatus
KR101382180B1 (en) Pre-heating device for hot stamping
KR101717912B1 (en) Heating apparatus and method for hot stamping
JP2013123752A (en) Uniform electrical heating device and method
KR20160027409A (en) Apparatus and method of fabricating multi-phase metal-metal composites

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160725

R150 Certificate of patent or registration of utility model

Ref document number: 5987420

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150