JP5985711B2 - Ue起床処理を並列化するための装置、システム及び方法 - Google Patents

Ue起床処理を並列化するための装置、システム及び方法 Download PDF

Info

Publication number
JP5985711B2
JP5985711B2 JP2015133111A JP2015133111A JP5985711B2 JP 5985711 B2 JP5985711 B2 JP 5985711B2 JP 2015133111 A JP2015133111 A JP 2015133111A JP 2015133111 A JP2015133111 A JP 2015133111A JP 5985711 B2 JP5985711 B2 JP 5985711B2
Authority
JP
Japan
Prior art keywords
circuit
state
baseband
data
microprocessor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015133111A
Other languages
English (en)
Other versions
JP2016032293A (ja
Inventor
モウスタファ エム. エルサイェド,
モウスタファ エム. エルサイェド,
タリク タベット,
タリク タベット,
スイェド エーオン ムジタバ,
スイェド エーオン ムジタバ,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Apple Inc
Original Assignee
Apple Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apple Inc filed Critical Apple Inc
Publication of JP2016032293A publication Critical patent/JP2016032293A/ja
Application granted granted Critical
Publication of JP5985711B2 publication Critical patent/JP5985711B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0274Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof
    • H04W52/028Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof switching on or off only a part of the equipment circuit blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Description

本出願は、無線デバイスに関し、特に、UE起床処理を並列化するための装置、システム、及び方法に関する。
無線通信システムが急速に使用されるようになっている。さらに、無線通信技術は、音声のみの通信から、インターネット及びマルチメディアコンテンツなどのデータの伝送をも含むように進化している。また、ユーザ端末(UE)は、一般に、ユーザが希望する、アプリケーションなどの他の機能を提供する。したがって、UE、例えば携帯電話などの無線デバイスに存在する大量の機能が、そのUEのバッテリ残量に多大な負担をかけうる。したがって、無線通信における改善が望まれる。
ここで説明される実施形態は、UEの起床処理を並列化するための装置、システム、及び方法に関する。
1つの実施形態において、UEの起床処理を並列化するための方法は、第1のスリープ状態を抜けるように、水晶発振器に電力を供給することを含みうる。1つ以上のクロック信号が、水晶発振器からの出力に基づいて、RF回路へ供給されうる。RF回路のキャリブレーション及び状態の復元が、ベースバンド回路と独立して行われうる。ベースバンド回路の状態の復元が実行されうる。データが、RF回路を用いて無線通信ネットワークから受信されうる。データは、ベースバンド回路を用いて処理されうる。RF回路及びベースバンド回路の状態の保持が実行されうる。水晶発振器は、第2のスリープ状態に移るために、電源が切られうる。
1つの実施形態では、UEは、水晶発振器、その水晶発振器に接続されている無線周波数(RF)回路、及びRF回路及び水晶発振器に接続されているベースバンド回路を含みうる。RF回路は、マイクロプロセッサ、不揮発性メモリ、及び揮発性メモリを含みうる。ベースバンド回路は、マイクロプロセッサを含みうる。UEは、第1のスリープ状態から抜けるように、水晶発振器へ電源を供給するように構成されうる。UEは、水晶発振器へ電源を供給したことに応じて、RF回路のキャリブレーション及び状態の復元を実行するように構成されうる。RF回路のキャリブレーション及び状態の復元の実行は、RF回路のマイクロプロセッサによって制御されうる。UEは、ベースバンド回路の状態の復元を実行するように構成されうる。その状態の復元は、ベースバンド回路のマイクロプロセッサによって制御されうる。UEは、RF回路を用いて、無線通信ネットワークからデータを受信するように構成されうる。UEは、ベースバンド回路を用いてそのデータを処理するように構成されうる。UEは、無線通信ネットワークからのデータの後に、RF回路の状態の保持を実行するように構成されうる。RF回路の状態の保持の実行は、RF回路のマイクロプロセッサによって制御されうる。UEは、データの処理の後に、ベースバンド回路の状態の保持を実行するように構成されてもよく、これはベースバンド回路のマイクロプロセッサによって制御されうる。UEは、ベースバンド回路の状態の保持の実行後に、第2のスリープ状態に入るように、水晶発振器の電源を切るように構成されうる。
1つの実施形態では、RF回路は、マイクロプロセッサ、そのマイクロプロセッサに接続されている不揮発性メモリ、及びそのマイクロプロセッサに接続されている揮発性メモリを含みうる。不揮発性メモリは、スリープ状態の間に状態の情報を記憶するように構成されてもよく、揮発性メモリは、アクティブ状態の間に、状態の情報を記憶するように構成されうる。RF回路は、第1のスリープ状態から抜けた後にUEの水晶発振器から参照信号を受信するように構成されうる。RF回路は、水晶発振器からの参照信号を受信したことに応じて、RF回路のキャリブレーション及び状態の復元を実行するように構成されうる。RF回路のキャリブレーション及び状態の復元の実行は、RF回路のマイクロプロセッサによって制御されてもよく、状態の復元は、不揮発性メモリから揮発性メモリへ状態の情報を転送することを含みうる。RF回路は、無線通信ネットワークからデータを受信するように構成されうる。RF回路は、無線通信ネットワークからデータを受信した後に、RF回路の状態の保持を実行するように構成されうる。RF回路の状態の保持の実行は、RF回路のマイクロプロセッサによって制御されうる。
ここで説明される技術は、携帯電話、ポータブルメディアプレイヤ、ポータブルゲームデバイス、タブレットコンピュータ、ウェアラブルコンピューティングデバイス、遠隔制御、無線スピーカ、セットトップボックスデバイス、テレビシステム及びコンピュータを含むがそれに限定されない、数多くの異なる種類のデバイスに実装され、それらのデバイスと共に使用され、又はそれらのデバイスに実装されると共にそれらのデバイスと併せて使用されうる。
本要約は、本書面で説明する主題の一部の概要を提供することを意図したものである。したがって、上述の特徴は単なる例であり、ここで説明される主題の範囲又は精神をいかなる方法によっても狭めるように解釈されるべきでないことが理解されるだろう。ここで説明される主題の他の特徴、態様及び利点は、以下の詳細な説明、図面及び特許請求の範囲から明らかとなるだろう。
以下の図面と併せて、以下の実施形態の詳細な説明が検討されるときに、本発明のより良い理解が得られうる。
1つの実施形態による、例示のユーザ端末(UE)を示す図。 UEが2つの異なるRATを用いる2つの基地局と通信する例示の無線通信システムを示す図。 1つの実施形態による、基地局の例示のブロック図。 1つの実施形態による、UEの例示のブロック図。 1つの実施形態による、UEの無線通信回路の例示のブロック図。 起床処理の実施形態のタイミング図。 起床処理の実施形態のタイミング図。 1つの実施形態による、UEの起床処理を並列化するための例示の方法を示すフローチャート。
本発明は、様々な変形及び代替的な形式の影響を容易に受けるが、その特定の実施形態が図面における例を通じて示され、ここで詳細に説明される。しかしながら、図面及びそれに対する詳細な説明は、本発明を開示された特定の形式に限定することを意図しておらず、むしろ、本発明は、添付の特許請求の範囲によって定められる精神及び範囲内にある、全ての変形、均等物、及び代替物をカバーするものであることが理解されるべきである。
頭字語
以下の頭字語が本開示において用いられる。
3GPP: 第3世代パートナーシッププロジェクト
3GPP2: 第3世代パートナーシッププロジェクト2
GSM: 移動通信用グローバルシステム
UMTS: ユニバーサル移動通信システム
TDS: 時分割同期符号分割多元接続
LTE: ロングタームエボリューション
RAT: 無線アクセス技術
TX: 送信
RX: 受信
用語
以下は、本願で用いられる用語集である。
メモリ媒体−任意の様々な種類のメモリ機器又はストレージ機器。用語「メモリ媒体」には、例えば、CD−ROM、フロッピー(登録商標)ディスク、又はテープデバイスである設定媒体、DRAM、DDR RAM、SRAM、EDO RAM、Rambus RAMなどのコンピュータシステムメモリ又はランダムアクセスメモリ、例えばハードドライブ又は光学記憶装置であるフラッシュ、磁気メディアなどの不揮発性メモリ、レジスタ、又は他の同様の種類のメモリ要素などを含むことが意図されている。メモリ媒体は、同様に他の種類のメモリ、又はその組み合わせを含みうる。さらに、メモリ媒体は、プログラムが実行される第1のコンピュータシステムに配置されてもよいし、第1のコンピュータシステムにインターネットなどのネットワークを介して接続する第2の異なるコンピュータシステムに配置されてもよい。後の例では、第2のコンピュータシステムは、実行のために、第1のコンピュータにプログラム命令を提供してもよい。用語「メモリ媒体」は、異なる位置に、例えばネットワークを介して接続される異なるコンピュータシステムに、存在し得る、2つ以上のメモリ媒体を含みうる。メモリ媒体は、1つ以上のプロセッサによって実行されうる、(例えば、コンピュータプログラムとして具現化される)プログラム命令を記憶し得る。
搬送媒体−上述のようなメモリ媒体、及び、電気、電磁又はデジタル信号などの信号を運ぶ、バス、ネットワーク、又は他の物理伝送媒体の少なくともいずれかなどの物理伝送媒体。
プログラム可能なハードウェア要素−プログラム可能なインターコネクトを介して接続された複数のプログラム可能な機能ブロックを有する様々なハードウェア機器を含む。例として、FPGA(フィールドプログラマブルゲートアレイ)、PLD(プログラマブル論理機器)、FPOA(フィールドプログラマブルオブジェクトアレイ)、およびCPLD(コンプレックスPLD)を含む。プログラム可能な機能ブロックは、きめの細かいもの(連結ロジック又はルックアップテーブル)から、きめの粗いもの(算術ロジックユニット又はプロセッサコア)までに及びうる。プログラム可能なハードウェア要素は、「リコンフィギュアラブルロジック」とも呼ばれうる。
コンピュータシステム−パーソナルコンピュータシステム(PC)、メインフレームコンピュータシステム、ワークステーション、ネットワーク装置、インターネット装置、パーソナルデジタルアシスタント(PDA)、パーソナル通信機器、スマートフォン、テレビジョンシステム、グリッドコンピューティングシステム、又は他の機器又は複数の機器の組み合わせを含む、任意の様々な種類の演算又は処理システム。一般に、用語「コンピュータシステム」は、メモリ媒体から命令を実行する少なくとも1つのプロセッサを有する任意の機器(又は複数の機器の組み合わせ)を包含するように、広く定義することができる。
ユーザ端末(UE)(又は「UEデバイス」)−モバイル又はポータブルであり、無線通信を実行する任意の様々な種類のコンピュータシステム又は機器。UEデバイスの例は、携帯電話又はスマートフォン(例えばiPhone(登録商標)、Android(登録商標)ベースの電話)、ポータブルゲーム機器(例えば、Nintendo DS(登録商標)、PlayStation Portable(登録商標)、ゲームボーイアドバンス(登録商標)、iPhone(登録商標))、ラップトップ、PDA、ポータブルインターネット機器、音楽プレイヤ、データ記憶デバイス、他のハンドヘルドの機器、及び、腕時計、ヘッドフォン、ペンダント、イヤホンなどのウェアラブル機器などを含む。一般に、用語「UE」又は「UEデバイス」は、ユーザによって容易に運ばれ、無線通信することができる、電気、コンピューティング又は電気通信の少なくともいずれかの任意の機器(又は機器の組み合わせ)を包含するように広く定義することができる。
基地局−用語「基地局」は、その通常の意味の全てを有し、少なくとも、固定位置に設置され、無線電話システム又は無線システムの一部として通信するのに使用される無線通信局を含む。
処理エレメント−様々なエレメント又は複数のエレメントの組み合わせのことを呼ぶ。処理エレメントは、例えば、ASIC(特定用途向け集積回路)などの回路、個別のプロセッサコアの一部又は回路、プロセッサコアの全体、個別のプロセッサ、フィールドプログラマブルゲートアレイ(FPGA)などのプログラム可能なハードウェア機器、又は複数のプロセッサを含むシステムの大きな部分の少なくともいずれかを含む。
自動的−コンピュータシステム(例えば、コンピュータシステムによって実行されるソフトウェア)又はデバイス(例えば、回路、プログラム可能なハードウェア要素、ASICなど)によって、動作又は操作を直接特定し又は実行するユーザ入力なしに実行される、当該動作又は操作を指す。したがって、用語「自動的」は、ユーザが操作を直接実行するように入力を供給する、ユーザによって手動で実行され又は特定される操作と対照的である。自動手順はユーザによって供給される入力によって開始されてもよいが、「自動的」に実行されるその後の動作は、そのユーザによって特定されない、すなわち、ユーザが実行すべき各動作を特定する「手動」では実行されない。例えば、コンピュータシステムはユーザ動作に応じてフォームを更新しなければならないが、(例えば情報をタイピングすることにより、チェックボックスを選択することにより、無線器選択などにより)各フィールドを選択し情報を特定する入力を供給することにより電子フォームに書き入れるユーザは、手動でそのフォームに書き入れる。そのフォームは、コンピュータシステムによって自動的に書き入れられてもよく、そこでは、そのコンピュータシステム(例えば、コンピュータシステム上で実行するソフトウェア)は、フォームのフィールドを解析し、そのフィールドに対する回答を特定するいかなるユーザ入力もなく、そのフォームを埋める。上記のように、ユーザは、そのフォームの自動記入を起動し得るが、そのフォームの実際の記入には関与しない(例えば、ユーザはフィールドに対する回答を手動で特定せず、むしろ、それらは自動的に完遂される)。本明細書は、ユーザが取った動作に応じて自動的に実行される様々な動作の例を提供する。
図1−ユーザ端末
図1は、1つの実施形態による、例示のユーザ端末(UE)106を示している。用語UE106は、上で定められた様々な機器のいずれかでありうる。UEデバイス106は、様々な材料のいずれかで構成されうる、ハウジング12を含みうる。UE106は、容量性タッチ電極を組み込んだタッチスクリーンでありうる、ディスプレイ14を有しうる。ディスプレイ14は、様々な表示技術の何れかに基づきうる。UE106のハウジング12は、ホームボタン16、スピーカポート18、及びマイク、データポート、及び場合によっては様々な他の種類のボタン、例えばボリュームボタン、リンガーボタンなどである他のエレメント(不図示)などの、様々なエレメントのいずれかのための開口部を含み、又は有しうる。
UE106は、複数の無線アクセス技術(RAT)をサポートしうる。例えば、UE106は、移動体通信用グローバルシステム(GSM(登録商標))、ユニバーサル移動体通信システム(UMTS)、符号分割多元接続(CDMA)(例えば、CDMA2000 1XRTT又は他のCDMA無線アクセス技術)、時分割同期符号分割多元接続(TD−SCDMA又はTDS)、ロングタームエボリューション(LTE)、アドバンスドLTE、他のRAT、の少なくともいずれかのうち、2つ以上など、様々なRATのいずれかを用いて通信を行うように構成されうる。例えば、UE106は、GSM、TDS及びLTEなどの3つのRATをサポートしうる。必要に応じて、様々な、異なる又は他のRATがサポートされうる。
UE106は、1つ以上のアンテナを有しうる。また、UE106は、1つ以上の送信器チェーン(TXチェーン)及び1つ以上の受信器チェーン(RXチェーン)の様々な組み合わせなどの、様々な無線器構成のいずれかを有しうる。例えば、UE106は、2つ以上のRATをサポートする無線器を有しうる。無線器は、単一のTX(送信)チェーン及び単一のRX(受信)チェーンを含みうる。代替的に、無線器は、例えば同一の周波数で動作する、単一のTXチェーン及び2つのRXチェーンを有しうる。別の実施形態では、UE106は、2つ以上の無線器、すなわち、2つ以上のTX/RXチェーン(2つ以上のTXチェーン及び2つ以上のRXチェーン)を有する。
UE106は、2つ以上のRATを用いて通信するのに用いられる2つのアンテナを有しうる。例えば、UE106は、単一の無線器又は共有無線器に接続される、一対の携帯電話のアンテナを有しうる。アンテナは、スイッチング回路及び他の無線周波数フロントエンド回路を用いて、共有無線器(共有無線通信回路)に接続されうる。例えば、UE106は、送受信器又は無線器と接続される第1のアンテナ、すなわち、送信のための送信器チェーン(TXチェーン)に接続されると共に受信のための第1の受信器チェーン(RXチェーン)に接続される第1のアンテナを有しうる。また、UE106は、第2のRXチェーンに接続される第2のアンテナを有しうる。第1の受信器チェーン及び第2の受信器チェーンは、共通の局部発振器を共有してもよく、これは、第1の受信器チェーン及び第2の受信器チェーンが同一の周波数に調整することを意味する。第1の受信器チェーン及び第2の受信器チェーンは、プライマリ受信器チェーン(PRX)及びダイバーシティ受信器チェーン(DRX)と呼ばれうる。
1つの実施形態において、PRX受信器チェーン及びDRX受信器チェーンは、LTE及びGSM又はCDMA1xなどの1つ以上の他のRATなど、2つ以上のRAT間で、ペアとしてかつ時間多重として動作する。ここで説明される主たる実施形態では、UE106は、1つの送信器チェーン及び2つの受信器チェーン(PRX及びDRX)を有し、送信器チェーンと(ペアとして動作する)2つの受信器チェーンとが、LTE及びGSMなどの2つ(以上)のRAT間で時間多重化を行う。
各アンテナは、600MHzから3GHzまでなどの広範囲の周波数を受信しうる。したがって、例えば、PRX受信器チェーン及びDRX受信器チェーンの局部発振器は、LTE周波数帯域などの特定の周波数に合わせてもよく、PRX受信器チェーン及びDRX受信器チェーンは、(共に同一の局部発振器を用いるため)共に同じ周波数で、それぞれアンテナ1からのサンプルとアンテナ2からのサンプルとを受信する。UE106における無線回路は、UE106のための動作の所望のモードに応じて、リアルタイムで設定されうる。ここで説明される例示の実施形態では、UE106は、LTEとCDMAなどの他の組み合わせも想定されるが、LTE及びGSM無線アクセス技術をサポートするように構成される。
図2−通信システム
図2は、例示の(そして単純化した)無線通信システムを示す。なお、図2のシステムは、とりうるシステムの単なる1つの例であり、要求に応じて、実施態様は、様々なシステムのいずれかにおいて実装されうる。
図のように、例示の無線通信システムは、UE106として表されている1つ以上のユーザ端末(UE)デバイスと、伝送媒体を介して通信する、基地局102A及び102Bを含む。基地局102は、基地局送受信器(BTS)又はセルサイトであってもよく、UE106との無線通信を可能とするハードウェアを含みうる。各基地局102は、コアネットワーク100と通信するための設備を有しうる。例えば、基地局102Aは、コアネットワーク100Aに接続されてもよく、一方で基地局102Bは、コアネットワーク100Bに接続されうる。各コアネットワークは、別個のセルラサービスプロバイダによって運用されてもよく、また、複数のコアネットワーク100Aは同一のセルラサービスプロバイダによって運用されてもよい。各コアネットワーク100は、インターネットと、公衆交換電話網(PSTN)と、任意の他のネットワークと、の少なくともいずれかを含みうる(外部ネットワーク108などの)1つ以上の外部ネットワークに接続されうる。このように、基地局102は、UEデバイス106間と、UEデバイス106とネットワーク100A、100B及び108との間と、の少なくともいずれかにおける通信を促進しうる。
基地局102及びUE106は、GSM、UMTS(WCDMA(登録商標))、TDS、LTE、LTEアドバンスド(LTE−A)、3GPP2 CDMA2000(例えば1xRTT、1xEV−DO、HRPD、eHRPD)、IEEE802.11(WLAN又はWi−Fi)、IEEE802.16(WiMAX)などのような様々な無線アクセス技術(無線通信技術又は電気通信標準とも呼ばれる「RAT」)のいずれかを用いた伝送媒体を介して通信するように構成されうる。
基地局102A及びコアネットワーク100Aは、第1のRAT(例えばLTE)に従って動作し、一方で、基地局102B及びコアネットワーク100Bは、第2の(例えば異なる)RAT(例えばGSM、TDS、CDMA又は他の既存の又は回線交換技術)に従って動作しうる。2つのネットワークは、同一のネットワークオペレータ(例えばセルラサービスプロバイダ又は「キャリア」)によって、又は、必要に応じて異なるネットワークオペレータによって、制御されうる。さらに、2つのネットワークは、(異なるRATに従って動作する場合、)互いに独立して運用されてもよく、又は、若干結合された若しくは強く結合された方法で運用されてもよい。
また、2つの異なるネットワークが図2に示す例示のネットワーク構成で図解されるように、2つの異なるRATをサポートするのに用いられうる一方で、複数のRATを実装する他のネットワーク構成もまた可能である。1つの例として、基地局102A及び10Bは、異なるRATに従って動作するが、同一のコアネットワークに接続しうる。別の例として、異なるRAT(例えば、LTE及びGSM、LTE及びTDS、LTE及びGSM及びTDS、他の任意のRATの組み合わせの少なくともいずれか)を同時にサポートすることができるマルチモード基地局は、異なるセルラ通信技術をサポートするネットワーク又はサービスプロバイダに接続されうる。1つの実施形態において、UE106は、パケット交換技術(例えばLTE)である第1のRAT及び回線交換技術(例えばGSM又はTDS)である第2のRATを用いるように構成されうる。
上述のように、UE106は、3GPP、3GPP2又は任意の所望のセルラ標準内のものなど、複数のRATを用いて通信することが可能でありうる。UE106は、また、WLAN、Bluetooth(登録商標)、1つ以上のグローバルナビゲーション衛星システム(GNSS、例えばGPS又はGLONASS)、1つ又は複数の少なくともいずれかの移動体テレビ放送標準(例えばATSC−M/H又はDVB−H)などを用いて通信するように構成されうる。ネットワーク通信標準の他の組み合わせも可能である。
このように、同一の若しくは異なるRAT又はセルラ通信標準に従って動作する基地局102A並びに102B、及び他の基地局は、UE106及び同様のデバイスに、1つ以上の無線アクセス技術(RAT)を介して、広い地理的領域にわたって、連続した又はほぼ連続して重畳したサービスを提供しうる、セルのネットワークとして提供されうる。
図3−基地局
図3は、基地局102の例示のブロック図を示す。なお、図3の基地局は、とり得る基地局の単なる1つの例である。図のように、基地局102は、基地局102のためのプログラム命令を実行しうるプロセッサ504を含みうる。また、プロセッサ504は、プロセッサ504からアドレスを受信してそれらのアドレスをメモリ(例えばメモリ560及び読み出し専用メモリ(ROM)550)の位置に変換するように構成されうる、メモリ管理部(MMU)に、又は他の回路若しくは機器に、接続されうる。
基地局102は、少なくとも1つのネットワークポート570を含みうる。ネットワークポート570は、電話網に接続するように構成され、上述のように、UEデバイス106などの複数の機器に、その電話網への接続を提供しうる。
ネットワークポート570(又は追加のネットワークポート)は、さらに、又は代替的に、セルラネットワークに、例えばセルラサービスプロバイダのコアネットワークに、接続するように構成されうる。コアネットワークは、UEデバイス106などの複数の機器に、移動性に関するサービスと他のサービスとの少なくともいずれかを提供しうる。いくつかの場合、(例えばセルラサービスプロバイダによってサービスが供される他のUEデバイス106の間で)ネットワークポート570がコアネットワークを介して電話網に接続しうるか、コアネットワークが電話網を提供しうるか、の少なくともいずれかでありうる。
基地局102は、少なくとも1つのアンテナ534を含みうる。少なくとも1つのアンテナ534は、無線送受信器として動作するように構成されてもよく、無線器530を介してUEデバイス106と通信するようにさらに構成されうる。アンテナ534は、通信チェーン532を介して無線器530と通信する。通信チェーン532は、受信チェーン、送信チェーン、又はその両方でありうる。無線器530は、LTE、GSM、TDS、WCDMA、CDMA2000などを含むがこれらに限定されない様々なRATを介して、通信するように構成されうる。
基地局102のプロセッサ504は、例えば、メモリ媒体(例えば非一時的コンピュータ可読メモリ媒体)に記憶されたプログラム命令を実行することにより、ここで説明される方法の一部又は全部を実行するように構成されうる。代替的に、プロセッサ504は、FPGA(フィールドプログラマブルゲートアレイ)若しくはASIC(特定用途向け集積回路)、又はそれらの組み合わせなどのプログラム可能なハードウェアエレメントとして、構成されうる。
図4−ユーザ端末(UE)
図4は、UE106の例示の単純化したブロック図を示す。図のように、UE106は、様々な用途のための部分を含みうるシステム・オン・チップ(SoC)400を含みうる。SoC400は、UE106の様々な他の回路に接続されうる。例えば、UE106は、(NANDフラッシュを含む)様々な種類のメモリ、(例えばコンピュータシステム、ドック、充電ステーションなどに接続するための)コネクタインタフェース420、ディスプレイ460、LTE、GSM、TDS、CDMAなどのセルラ通信回路430、及び短距離無線通信回路429(例えばBluetooth及びWLAN回路)を含みうる。UE106は、さらに、1つ以上のUICC(ユニバーサル集積回路カード)カード310などのSIM(加入者識別モジュール)機能を含む、1つ以上のスマートカード310を有しうる。セルラ通信回路430は、1つ以上のアンテナに、好ましくは図のように2つのアンテナ435及び436に、接続しうる。短距離無線通信回路429も、2つのアンテナ435及び436の1つ又は両方に接続しうる(この接続は、図解の簡単のために示されていない)。
図のように、SoC400は、UE106のためのプログラム命令を実行しうるプロセッサ402と、画像処理を実行し、ディスプレイ460へ表示信号を供給しうる表示回路404と、を含みうる。また、プロセッサ402は、プロセッサ402からアドレスを受信し、それらのアドレスを(例えば、メモリ406、読み出し専用メモリ(ROM)450、NANDフラッシュメモリ410)における位置に変換するように構成されうるメモリ管理部(MMU)440と、表示回路404、セルラ通信回路430、短距離無線通信回路429、コネクタI/F420、ディスプレイ460の少なくともいずれかなどの他の回路若しくは機器との少なくともいずれかに接続されうる。MMU440は、メモリ保護及びページテーブル変換又は設定を実行するように構成されうる。一部の実施形態では、MMU440は、プロセッサ402の一部として含まれうる。
1つの実施形態では、上述のように、UE106は、1つ以上の加入者識別モジュール(SIM)アプリケーションを実行するか、そうでなければSIM機能を実装するか、の少なくともいずれかである、UICC310などの少なくとも1つのスマートカード310を有する。少なくとも1つのスマートカード310は単一のスマートカード310であってもよく、又は、UE106は、2つ以上のスマートカード310を有してもよい。各スマートカード310は、組み込まれてもよく、例えば、UE106内の回路基板上にはんだづけられてもよく、又は、各スマートカード310は、取り外し可能なスマートカードとして実装されてもよい。このように、スマートカード310は、(時に「SIMカード」と呼ばれるUICCカードなどの)1つ以上の取り外し可能なスマートカードであってもよいし、スマートカード310は、(時に「eSIM」又は「eSIMカード」と呼ばれる内蔵UICC(eUICC)などの)1つ以上の内蔵カードであってもよく、また、その両方であってもよい。(スマートカード310がeUICCを含む場合などの)一部の実施形態では、スマートカード310のうちの1つ以上は、内蔵SIM(eSIM)機能を実装してもよく、そのような実施形態では、スマートカード310のうちの単一の1つが複数のSIMアプリケーションを実行しうる。スマートカード310のそれぞれは、プロセッサ及びメモリなどの要素を含んでもよく、SIM/eSIM機能を実行するための命令は、メモリに格納され、プロセッサによって実行されうる。1つの実施形態では、UE106は、必要に応じて、(eSIM機能を実行する1つ以上のeUICCカードなどの)取り外し可能なスマートカード及び固定の/取り外し可能でないスマートカードの組み合わせを含んでもよい。例えば、UE106は、2つの内蔵スマートカード310、2つの取り外し可能なスマートカード310、又は1つの内蔵スマートカード310及び1つの取り外し可能なスマートカード310の組み合わせを含みうる。様々な他のSIM構成も予定されている。
上述のように、1つの実施形態において、UE106は、それぞれがSIM機能を実装する2つ以上のスマートカード310を有する。UE106において2つ以上のSIMスマートカード310を含むことは、UE106が2つの異なる電話番号をサポートすることを可能としうるし、UE106が2つ以上の対応する別個のネットワークで通信することを可能とし得る。例えば、第1のスマートカード310はLTEなどの第1のRATをサポートするSIM機能を有してもよく、第2のスマートカード310は、GSM又はCDMAなどの第2のRATをサポートするSIM機能を有してもよい。他の実装及びRATも、当然ながら可能である。UE106が2つのスマートカード310を有する場合、UE106は、デュアルSIMデュアルアクティブ(DSDA)機能をサポートしうる。DSDA機能は、UE106を同時かつ一度に2つのネットワークに接続する(そして、例えば2つの異なるRATを使用する)ことを可能とし得る。また、DSDA機能は、UE106が、いずれかの電話番号で音声呼又はデータトラフィックを同時に受信することを可能としうる。別の実施形態では、UE106は、デュアルSIMデュアルスタンバイ(DSDS)機能をサポートする。DSDS機能は、UE106における2つのスマートカード310のいずれかを、音声呼とデータ接続との少なくともいずれかを待ち受けるスタンバイとすることを可能とし得る。DSDSでは、1つのSIM310において呼/データが確立されるときに、他のSIM310はアクティブとはならない。1つの実施形態では、DSDx機能(DSDA機能とDSDS機能とのいずれか)が、異なるキャリアとRATとの少なくともいずれかのための複数のSIM機能を実行する単一のスマートカード(例えばeUICC)を用いて実装されうる。
上述のように、UE106は、複数の無線アクセス技術(RAT)を用いて無線で通信するように構成されうる。さらに上述したように、そのような例では、セルラ通信回路(無線器)430は、複数のRAT間で共有される無線器コンポーネントと、単一のRATに従って排他的に使用されるように構成される無線器コンポーネントと、の少なくともいずれかを含みうる。UE106が少なくとも2つのアンテナを有する場合、アンテナ435及び436は、MIMO(多入力多出力)通信を実行するように構成可能でありうる。
ここで説明するように、UE106は、ここで説明されたものなど、2つ以上のRATを用いて通信するための特徴を実装するためのハードウェア及びソフトウェアコンポーネントを含みうる。UEデバイス106のプロセッサ402は、例えばメモリ媒体(例えば非一時的コンピュータ可読メモリ媒体)に記憶されたプログラム命令を実行することによって、ここで説明される特徴の一部又は全てを実行するように構成されうる。代替的に(又は追加して)、プロセッサ402は、FPGA(フィールドプログラマブルゲートアレイ)又はASIC(特定用途向け集積回路)などのプログラム可能なハードウェアエレメントとして構成されうる。代替的に(又は追加して)、UEデバイス106のプロセッサ402は、他のコンポーネント400、404、406、410、420、430、435、440、450、460の1つ以上と連動して、ここで説明される特徴の一部又は全部を実行するように構成されうる。
図5−UEの例示の無線通信回路
図5は、例えばセルラ通信を実行するUEの例示の無線通信回路のブロック図を示す。1つの実施形態では、図5の無線通信回路は、図4のセルラ無線器430の少なくとも一部に対応しうる。図のように、UEは、無線周波数(RF)回路(例えばRF集積回路(IC))502と、(「ベースバンド回路」とも呼ばれる)ベースバンド及びスタックサブシステム532との両方を含む。また、UEは、水晶発振器でありうる発振器530を含む。
図のように、発振器530は、F−ref526を供給しうる。F−ref526は、発振器530が、その安定状態に達した際に供給する主たる基準周波数でありうる。発振器530は、RF−PLL(位相ロックループ)524及びBB−PLL528に接続されうる。RF−PLLは、RF−データパスのための参照クロックを供給するのに使用されうる、RF位相ロックループである。BB−PLL528は、ベースバンド回路532のための参照クロックをロックするのに使用されうる、ベースバンド位相ロックループである。
RF−PLLは、1つ以上のアンテナ(例えばアンテナ435及び436)及びADC(アナログ−デジタル変換器)510に接続されるRF−データパス506に、接続される。RF−データパス506は、アンテナによって送信/受信されるべき信号を用意するのに用いられるコンポーネントを含みうる。ADCは、アナログ信号からIQサンプルへ変換するのに用いられうる。
BB−PLL528は、ベースバンドRFインタフェースへ供給される様々なクロックレートを管理するのに使用されうるクロック管理部522に、接続されうる。クロック管理部522は、ADC510と、DAC(デジタル−アナログ変換器)508との両方に接続されうる。DAC508は、IQサンプルをアナログ信号に変換するのに使用されうる。ADC510及びDAC508は、共に、SoCインターコネクション504に接続されうる。
また、クロック管理部522は、(例えば、以下の「RFマイクロプロセッサ」とも呼ばれうる)RFプロセッサ516、RF制御及び設定レジスタ514、不揮発性メモリ518、及び揮発性メモリ520に接続されうるSoCインターコネクション512に、接続されうる。RF制御及び設定レジスタは、RFのワークフローを制御し、RFの様々なコンポーネントを設定するのに用いられるレジスタでありうる。SoC(システム・オン・チップ)インターコネクションは、NoC(ネットワーク・オン・チップ)とも呼ばれうる。これらのインターコネクションは、様々なコンポーネントがバスプロトコルに従って互いに通信することができるように用いられる、バスシステムでありうる。例えば、このバスは、プロセッサがメモリワードを要求し、メモリが要求ワードに反応する場合などに用いられうる。1つの実施形態では、SoCインターコネクション(例えば、504、512、548及び538)のそれぞれがその独自の参照番号を有するが、それらは、同一のシステム又は機能を指しうる。
以下で述べるように、RFプロセッサ516は、例えばベースバンドプロセッサ552が制御するのに代えて、スリープからの起床の後に、受信(Rx)の準備をするのに必要なタスクを制御しうる。フラッシュメモリとして実装されうる不揮発性メモリ(又は不揮発性RAM)518は、RF回路502がスリープ状態にある間に、様々な設定、コードなどを記憶しうる。例えば、不揮発性メモリは、RFプロセッサ516によって実行されるコードを記憶しうる。揮発性メモリ520(又はRAM)は、RFプロセッサ516によって用いられるメモリでありうる。例えば、スリープ状態から起床した後に、RFプロセッサ516は、不揮発性メモリ518から揮発性メモリ520へ、その動作に必要なコード及びデータを転送しうる。この時点で、コードが、RFプロセッサ516によって実行されうる。この処理は、例えばRF回路502の、ブートプロセスと呼ばれうる。
図のように、ベースバンド及びスタックサブシステム532は、様々なコンポーネントを含む。例えば、RF回路502のBB−PLL528は、ベースバンドコンポーネントに供給される様々なクロックレートを管理しうるクロック管理部550に、接続される。クロック管理部は、ADCバッファ544とPDCCHベースバンド546とベースバンドプロセッサ552とに順に接続されうるSoCインターコネクション548に、接続されうる。PDCCHベースバンド546は、PDCCHを受信するように構成されるベースバンドブロックでありうる。ADCバッファ544は、ADC510からのデータ(例えばIQサンプル)を記憶しうる。
(時にベースバンドマイクロプロセッサと呼ばれる)ベースバンドプロセッサ552は、一般に、信号処理データパス(送信(Tx)/受信(Rx))を制御するのに用いられうる。ベースバンドプロセッサ552は、アンテナで行われる活動のための全体的なスケジューラとして用いられうる。RFプロセッサがない場合、ベースバンドプロセッサ552は、RFの活動をスケジューリングするのにも用いられうる。
SoCインターコネクション548は、ホストインタフェース管理プロセッサ546、L1/スタックプロセッサ536、MAC/RLC/RRC/NASメモリ540、L1/FWメモリ542、及びLTEベースバンド554に接続されうる。ホストインタフェース管理プロセッサ546は、ユーザインタフェース、画像プロセッサ、及び他のものに用いられるアプリケーションプロセッサとして用いられうる。L1/スタックプロセッサ536は、LTEスタック及びL1制御のコードに宛てられるプロセッサでありうる。MAC/RLC/RRC/NASメモリ540は、MAC、RLC、RRC及びNASコンポーネントのレイヤによって用いられるメモリでありうる。L1/FWメモリ542は、L1ドライバ及びファームウェアによって用いられるメモリでありうる。最後に、LTEベースバンド554は、例えばPDCCHを除く、物理チャネルを供するのに必要なLTE信号処理ベースバンドを実行しうる。
例示の起床処理態様
処理の間、UE106は、周期的にスリープ状態に入り、そして抜けうる。例えば、UE106は、バッテリ電力を節約するために周期的にスリープ状態に入り、ネットワークからのメッセージを受信するために、例えばとりわけPDCCH受信を実行するために、スリープ状態から起床しうる。以下の実施形態は、必要に応じて、1つ以上の上述のシステム又は機器を用いて実行されうる。
第1の実施形態では、起床処理は、以下のステップの1つ以上を含みうる。
1)(他の発振器も予定されるが、「XO」とも呼ばれる)UEの水晶発振器をオンにして、XOが安定するのを待ち、
2)例えばRF回路の、様々な異なるPLLにXOの出力(又は基準周波数)を供給し、
3)無線回路のマイクロプロセッサ、メモリなどの無線回路の様々な部分、例えばRF回路とベースバンド回路との少なくともいずれかへ、例えばPLLの出力を用いて、クロックが供給されてもよく、
4)様々な起床コードシーケンスが実行されうる。
例示の起床コードシーケンスは、以下のステップの1つ以上を含みうる。
1)高速クロック(例えば、無線通信回路におけるセルラ通信に用いられるマスタクロック)の、UEの低速クロックを用いたキャリブレーション。低速クロックは、例えば概ね32kHzの範囲(例えば、ちょうど32kHz)で動作しうる、UEにおいて常時オンであるクロックであってもよく、高速クロックは、周期的に(例えばスリープ状態を除く時に)オンの、例えば(他の周波数の範囲も可能であるが)概ね20MHzから1.5GHzの範囲で動作しうる、クロックでありうる。高速クロックは、上述のXO/PLLから供給されうる。高速クロックのキャリブレーションは、高速クロックが、最後に作動していたときから、どれだけ多くのサイクルが経過したかを、低速クロックのサイクルの数に基づいて判定することを含みうる。具体的には、高速クロックが停止した時間からn低速クロックサイクルがあったとしうるが、これは、2つのクロックのサイクルの周波数の比に基づいて、m高速クロックサイクルに変換されうる。したがって、高速クロックは、自身が最後にオンとなったときから経過した高速クロックサイクルの数(m)を計算することにより、現在のサイクルに「キャッチアップ」されうる。
2)ベースバンドサブシステム(例えば特定のレジスタ、メモリ、ソフトウェア、ファームウェアなど)の状態の復元。このステップは、例えばセルラ送信/受信の実行のための使用のために、不揮発性メモリに記憶されたデータを揮発性メモリに展開することを含みうる。
3)RF回路のキャリブレーション。
4)例えば周波数追従ループ(FTL)処理及び時間追従ループ(TTL)処理、自動利得制御(AGC)などを含む、PDCCH受信プロセスの準備。PDCCH準備処理は、約1msかかりうる。
起床処理が完了すると、PDCCH(又はネットワークからの他のメッセージ)を受信することができ、UE/無線回路は、通常モードで動作しうる。
図6は、この第1の実施形態に対応する、例示のタイミング図を示している。図のように、伝送時間間隔(TTI)9から始まる(例えばそれぞれ1msの)周期的な0〜9のTTIにおいて、図のタイミングが示されている。この特定の例では、PDCCHは、破線によって示されるように、TTI3で受信される。TTI9において、XOは、システムのための、例えば無線通信回路のための基準周波数を供給するために、初期的にオンとされうる。この処理は、安定化するのに1msかかりうる。このステップの間、図のように、RF回路のみが起動状態でありうる。
TTI0の間、XOの出力を用いて(例えばRF回路の)PLLが初期化されうる。特に、PLLは、RX及びベースバンドを、適切な周波数で駆動するようにプログラムされうる。このステップの間、図のように、RF回路のみが起動状態でありうる。
PLLの後に、TTI0の終わりに、状態保持アルゴリズムが、ベースバンドシステムによって起動されうる。状態保持アルゴリズムは、(例えばスリープ状態に入る前に記憶された)様々な状態を、不揮発性メモリから揮発性メモリへの転送を起動してもよく、また、メモリ、レジスタ、ソフトウェアモジュールなどを起動しうる。このステップの間、図のように、RF及びベースバンド回路の両方が起動状態でありうる。
TTI1において、RF回路のキャリブレーション及び初期化が実行されうる。このステップの間、図のように、RF及びベースバンド回路の両方が起動状態でありうる。
その後、TTI2において、RF回路のために(例えばPDCCHの受信のために)、状態の保持及びプログラミングが実行される。この実施形態では、ベースバンド及びRF回路の状態の保持はベースバンド回路によって制御されてもよく、例えば、RF回路とベースバンド回路との両方のための不揮発性メモリからのテーブル及びプログラムコードの転送は、ベースバンド回路によって、開始され、制御され、又はその両方が行われうる。状態保持ステップは、前の状態の情報を復元する際には「状態の復元」ステップと呼ばれうる。このステップの間、図のように、RF及びベースバンド回路の両方が起動状態でありうる。
この時点で、TTI3において、ベースバンド回路は、AGC、TTL、FTL及びPDCCH処理を実行しうる。AGC、TTL、及びFTLは、例えばPDCCHの、実際の受信の前に開始されうる、制御ループである。いくつかの実施形態では、それらは、収束するのに0.5msを要求しうる。収束の後に、(例えばRF回路による)PDCCH受信と、(例えばベースバンド回路による)処理と、が実行されうる。このステップの間、図のように、RF及びベースバンド回路の両方が起動状態でありうる。
PDCCH処理が完了すると、TTI4において、XOのシャットダウンに備えて、ベースバンド回路によって状態の保持が実行される。例えば、ベースバンド(例えばベースバンドプロセッサ)は、揮発性メモリから不揮発性メモリへの、現在の状態の情報(例えばテーブル及びコード)の転送を開始しうる。このステップの間、図のように、ベースバンド回路のみが起動状態でありうる。
最後に、TTI5において、XOのスイッチが切られてもよく、次のPDCCHのためなど、処理が再度実行されるまで、新たなスリープ状態に入りうる。このステップの間、図のように、ベースバンド回路のみが起動状態でありうる。
この第1の実施形態では、RF回路は、キャリブレーション処理を制御するのに、またはより一般的に、RF回路に対して機能を割り当て、そしてローカライズするのに用いられうる、(例えば図5に示すマイクロプロセッサなどの)マイクロプロセッサを含みうる。しかしながら、この実施形態では、XOのシャットダウン状態からPDCCHの受信までの遷移時間は、長期化する場合があり、望ましいものより多くの電力を消費しうる。
第2の実施形態では、XOのシャットダウン状態から受信ステージへの遷移時間が望まれるより長いため、XOを単純にオンのまま維持し、まれな状況でのみシャットダウンするようにしうる。しかしながら、第1の実施形態よりなおさら、本実施形態における電力消費は、望まざるものとなりうる。
例えば第1の実施形態のステップと、第1の実施形態と第2の実施形態との両方の電力消費とを改良しうる第3の実施形態では、起床シーケンスが、例えばRF回路のマイクロプロセッサを用いることによって、並列化されうる。
具体的には、小型で電力効率のよいマイクロプロセッサがRF回路に含まれうる。このマイクロプロセッサのタスクは、RF回路の起床シーケンスをスケジューリングすることを含みうる。さらに、例えばスリープモードとアクティブモードとの両方においてRF回路の状態を保持するために、NVRAM及びSRAMもRF回路に含まれうる。したがって、第3の実施形態では、RF状態保持ステップがベースバンドからRFマイクロプロセッサへ移りうる(例えば周波数パラメータ、AGC値など)。さらに、キャリブレーションのテーブル及びシーケンスの転送又は制御が、ベースバンドプロセッサからRFマイクロプロセッサへ切り替えられうる。
図7は、第3の実施形態の動作で調整されたもの以外は図6と同様のタイミング図を示している。具体的には、RF回路における待機周期(図6におけるTTI0と1との間)は、RF回路のキャリブレーション及び状態の復元処理を制御するようにRFマイクロプロセッサを構成することによって、取り除かれうる。1つの実施形態では、RF及びベースバンド回路の状態復元処理は、それにより、独立化されうる。図のように、RF回路は、キャリブレーションの開始前にベースバンド回路の状態復元処理を待機するのにもはや依存せず、したがって、ベースバンド回路とプロセッサとの少なくともいずれかと独立して動作しうる。代わりに、RF回路(例えばRF回路のマイクロプロセッサ)は、PLLステップの直後にキャリブレーションを開始しうる。さらに、ベースバンド回路の状態復元処理を、ベースバンド回路のAGC、TTL及びFTLステップの直前に移すことができ、これによりベースバンド回路がその実行時間を短縮することと、より後のタイミングで起動することとの両方を可能とする。RF回路の状態の復元「ギャップ」が取り除かれたため、XOは、第1の実施形態より遅く起動されてもよく、これは、また、省電力を提供する。さらに、RF回路に、ベースバンド回路から独立してその状態を保持することができるように、新しい状態の保持ステップが加えられている。それ自身の保持を行うことにより、RF回路は、PDCCH処理の完了より前にスリープに移行することができ、これは、RF回路の電力消費及びアクティブな状態の長さをさらに低減する。
第3の実施形態を実装することにより、例えば、第1の実施形態と比して、起床処理を約0.5〜1msだけ改善することができ、シャットダウン処理を約0.2〜0.5msだけ改善しうる。具体的には、第3の実施形態において、ベースバンド回路は、PDCCH受信の直前にのみスイッチをオンとされうる。したがって、電力消費は、(ベースバンドサブシステムが非アクティブの周期の間/スリープモードにおいて)約1.8msから2msだけ低減されうる。この省電力は、RFマイクロプロセッサによって有効とされうる。
より詳細には、第3の実施形態における変更箇所を用いないと、RF回路は、以下の方法で動作しうる。具体的には、開始は、0msの時間オフセットのTTI0でありえ、終了はTTI4かつ0.3msでありうる。作動時間は、4.3msでありうる。さらに、ベースバンドプロセッサからRF回路への全ての要求は、0.1から0.25msの間でありうる遅延を有してもよい。さらに、より大きいキャリブレーションテーブルの転送は、バスシステムに過負荷をかけ、電力を消費し、遅延を引き起こしうる。さらに、RF回路の状態は、RF回路の外部に記憶されうる。
一方で、第3の実施形態の変更箇所を用いると、RF回路は、以下の方法で動作しうる。具体的には、開始は、TTI0及び時間オフセット0.6msでありえ、終了は、TTI4及び時間オフセット0.2msでありうる。作動時間は、3.6msまで低減されうる。さらに、要求のほとんど又はすべてが、ほぼ又はまったく遅延がなく、RFマイクロプロセッサから到来しうる。さらに、キャリブレーションはRF回路によって内部で実行されてもよく、RF状態は、データを転送する時間を損なわずにRF回路内で記憶されうる。
第3の実施形態の変更箇所を用いないと、ベースバンド回路は、以下の方法で動作しうる。具体的には、開始は、TTI0及び時間オフセット0.7msでありえ、終了は、TTI4及び時間オフセット0.9msでありうる。作動時間は4.2msでありうる。さらに、ベースバンド回路がRFの動作及びリソース管理をスケジューリングすることを要求されうるため、ソフトウェア/ハートウェアが複雑になりうる。
一方で、第3の実施形態の変更箇所を用いると、ベースバンド回路は、以下の方法で動作しうる。具体的には、開始はTTI2及び時間オフセット0msでありえ、終了はTTI4及び時間オフセット0.85msでありうる。作動時間は2.85msでありうる。さらに、ソフトウェア/ハードウェアの複雑性が低減されうる。
図8−起床処理の並列化
図8は、起床処理を並列化するための方法を図解するフローチャートの図である。本方法は、(UE106などの)UEデバイスにより、例えば(第3の実施形態などの)上述のシステム及び方法を用いて実行されうる。より一般的には、図8に示した方法は、機器のうち、とりわけ、上の図に示したシステム又は機器のいずれかと併せて用いられうる。様々な実施形態において、示される方法の要素は、同時に、示したのと異なる順序で、実行されてもよいし、省略されてもよい。なお、必要に応じて、追加の方法の要素も実行されてもよい。本方法は、以下のように実行されうる。
802において、発振器(例えば、水晶発振器)は、スリープ状態から作動状態へ入りうる。1つの実施形態において、発振器は、スリープ状態において電源が切られていてもよく、802はその発振器の電源をオンにすることを含みうる。
804において、RF回路が、ベースバンド回路と独立して、起床処理を実行しうる。例えば、発振器の参照信号が、RF回路の1つ以上の位相ロックループ(PLL)へ供給されうる。これらのPLLは、順に、RF回路とベースバンド回路との少なくともいずれかの1つ以上のクロックを駆動するのに用いられうる出力を供給しうる。RF回路は、様々なRFコンポーネントを較正し、起動しうる。さらに、RF回路は、状態復元処理を実行することができ、状態復元処理は、例えば(例えばレジスタ、メモリ、ソフトウェア、ハードウェアなどの)状態の情報を、RF回路の不揮発性メモリから揮発性メモリへ転送することを含みうる。RF回路は、様々なテーブル又は他のデータ(例えばキャリブレーションテーブル及びシーケンス、周波数パラメータ、AGC値など)、RF回路のマイクロプロセッサによる実行のためのコードなどを、状態情報の一部として、起床処理における別の処理として、またはその両方として、転送しうる。
上述のように、1つ以上の起床処理が、RF回路のマイクロプロセッサによって制御されうる。すなわち、ベースバンド回路が状態復元処理を起動し、制御し、又は起動すると共に制御するのに変えて、それらは、代わりに、RF回路(例えば、RF回路のマイクロプロセッサ)によって開始され、制御され、又は開始されると共に制御されうる。具体的には、1つの実施形態において、状態復元処理は、ベースバンド回路と独立して実行されうる。
806において、ベースバンド回路は、起床処理を実行しうる。RF回路と同様に、ベースバンド回路は、(例えば、レジスタ、メモリ、ソフトウェア、ファームウェアなどの)状態情報の、不揮発性メモリから揮発性メモリへの転送を含む状態復元処理を実行しうる。また、ベースバンド回路は、FTL、TTL、AGCの少なくともいずれかなどの、データの受信の準備のための1つ以上の処理を開始し、実行し、又は開始すると共に実行しうる。例えば、これらの処理は、UEが通信している無線通信ネットワークのタイミングに、無線回路/UEのタイミングを同期させるのに用いられうる。
ベースバンド回路とRF回路との少なくともいずれかの起床処理は、UEの高速クロックをUEの低速クロックを用いてキャリブレーションすることを含みうる。上述のように、UEは、常時オンの、又は第1のスリープ状態の間に少なくともオンであった低速クロックであって、無線通信回路のクロックとして用いられうる(例えば、無線通信ネットワークとの通信の実行時に用いられる)高速クロックより低いレートで動作しうる低速クロックを、有しうる。低速クロックは、32kHz付近の範囲で動作しうる一方で、高速クロックは20MHzから1.5GHzの範囲で動作しうる。低速クロックには、UEの主たるコンポーネントと独立して電力が供給されうる。高速クロックは、上述のPLLの出力に基づきうる。高速クロックのキャリブレーションは、第1のスリープ状態の間に(例えば、最後の起動状態又は状態情報に格納されたクロックから)どれだけ多くの高速クロックサイクルが過ぎたかの判定を含みうる。1つの実施形態では、この判定は、その時間に過ぎた低速クロックサイクルの数を判定し、低速クロックサイクルを高速クロックサイクルへ返還することにより行われうる。したがって、現在の高速クロックサイクルは、経過した低速クロックサイクルの数を判定することによって、判定されうる。このように、無線通信ネットワークからのデータを受信成功するのに必要でありうる(例えば、現在のTTIを特定し、適切なTTIにおける受信をスケジューリングする)現在の高速クロック時間又はサイクルが判定されうる。
808において、データが、RF回路を用いて、無線通信ネットワークから受信されうる。1つの実施形態において、データは、物理下りリンク制御チャネル(PDCCH)内に供給されるデータでありえ、すなわち、PDCCH情報でありうる。データは、ベースバンド回路の処理(例えばFTL/TTL処理)の実行後に受信されうる。
810において、データが、ベースバンド回路によって処理されうる。例えば、ベースバンド回路は、RF回路によって受信されたPDCCH情報を処理しうる。
812において、RF回路は、ベースバンド回路と独立して、シャットダウン処理を実行しうる。例えば、RF回路は、受信データの処理の完了の前に、これらのシャットダウン処理を開始しうる。シャットダウン処理は、状態保持処理、例えば次のスリープ状態に備えた揮発性メモリから不揮発性メモリへの情報の転送、を含みうる。状態保持処理は、一般に、804で上述した状態復元処理の、逆方向であるが、同一の処理である。
814において、ベースバンド回路は、シャットダウン処理を実行しうる。例えば、ベースバンド回路は、状態保持処理、例えば次のスリープ状態に備えた揮発性メモリから不揮発性メモリへの情報の転送、を実行しうる。状態保持処理は、一般に、806で上述した状態復元処理の、逆方向であるが、同一の処理である。
816では、814のシャットダウン処理の後に、発振器がスリープ状態に入りうる。
様々な実施形態
以下のパラグラフは、本開示の例示の実施形態について説明する。
実施形態のある集合は、方法であって、無線周波数(RF)回路及びベースバンド回路を有する無線通信回路を含んだユーザ端末デバイス(UE)において、第1のスリープ状態から抜けるように水晶発振器に電力を供給し、水晶発振器からの出力に基づいて、RF回路に1つ以上のクロック信号を供給し、ベースバンド回路と独立して、RF回路のキャリブレーション及び状態の復元を実行し、ベースバンド回路の状態の復元を実行し、RF回路を用いて無線通信ネットワークからデータを受信し、ベースバンド回路を用いてデータを処理し、RF回路およびベースバンド回路のための状態の保持を実行し、第2のスリープ状態に入るように、水晶発振器の電源を切ることを含む方法を、含みうる。
いくつかの実施形態によれば、RF回路およびベースバンド回路のための状態の保持の実行は、ベースバンド回路と独立してのRF回路の状態の保持を実行することを含み、ベースバンド回路と独立してのRF回路の状態の保持の実行は、ベースバンド回路を用いたデータの処理の完了の前に実行され、RF回路およびベースバンド回路のための状態の保持の実行は、データの処理の後に、ベースバンド回路の状態の保持を実行することを含む。
いくつかの実施形態によれば、RF回路はマイクロプロセッサを含み、RF回路のキャリブレーション及び状態の復元の実行は、RF回路のマイクロプロセッサによって制御される。
いくつかの実施形態によれば、RF回路は不揮発性メモリ及び揮発性メモリを有し、RF回路のキャリブレーション及び状態の復元の実行は、RF回路の不揮発性メモリから揮発性メモリへのデータの転送を含む。
いくつかの実施形態によれば、ベースバンド回路を用いて、データの処理の前に、1つ以上の同期処理を実行することがさらに含まれる。
いくつかの実施形態によれば、1つ以上の同期処理は、周波数追従ループ(FTL)処理及び時間追従ループ(TTL)処理を含む。
いくつかの実施形態によれば、データは、物理下りリンク制御チャネル(PDCCH)情報を含む。
いくつかの実施形態によれば、水晶発振器からの出力を1つ以上の位相ロックループ(PLL)へ供給することをさらに含み、1つ以上のクロック信号は、PLLの出力に基づく。
いくつかの実施形態によれば、ベースバンド回路はマイクロプロセッサを有し、ベースバンド回路の状態の復元の実行は、ベースバンド回路のマイクロプロセッサによって制御される。
いくつかの実施形態によれば、UEは、第1のスリープ状態の間に作動する低速クロック及び無線通信回路の動作に用いられる高速クロックを有し、方法は、第1のスリープ状態の間に低速クロックサイクルの数を判定し、低速クロックサイクルのその数を用いて、第1のスリープ状態の間、高速クロックサイクルの数を判定し、高速クロックサイクルのその数を用いて現在の高速クロック時間を判定する、ことをさらに含み、無線通信ネットワークからのデータの受信は、現在の高速クロック時間の判定に基づいて実行される。
実施形態のある集合は、ユーザ端末デバイス(UE)であって、水晶発振器と、マイクロプロセッサ、不揮発性メモリ及び揮発性メモリを有し、水晶発振器に接続されている無線周波数(RF)回路と、マイクロプロセッサを有し、RF回路及び水晶発振器に接続されているベースバンド回路と、を有し、第1のスリープ状態から抜けるように水晶発振器に電力を供給し、RF回路のマイクロプロセッサによる制御によって、水晶発振器へ電力を供給したことに応じて、RF回路のキャリブレーション及び状態の復元を実行し、ベースバンド回路のマイクロプロセッサによる制御によって、RF回路のキャリブレーションの実行後に、ベースバンド回路の状態の復元を実行し、RF回路を用いて、無線通信ネットワークからデータを受信し、ベースバンド回路を用いてデータを処理し、RF回路のマイクロプロセッサによる制御によって、無線通信ネットワークからのデータの受信の後に、RF回路の状態の保持を実行し、ベースバンド回路のマイクロプロセッサによる制御によって、データの処理の後に、ベースバンド回路の状態の保持を実行し、ベースバンド回路の状態の保持の実行の後に、第2のスリープ状態に入るように、水晶発振器の電源を切る、ように構成されるユーザ端末デバイス(UE)を含みうる。
いくつかの実施形態によれば、RF回路は、さらに、1つ以上の位相ロックループ(PLL)を有し、UEは、さらに、1つ以上のPLLへ水晶発振器からの出力を供給し、1つ以上のPLLからの出力に基づいて、1つ以上のクロック信号を供給する、ように構成される。
いくつかの実施形態によれば、RF回路の状態の保持の実行は、ベースバンド回路を用いたデータの処理の完了の前に行われる。
いくつかの実施形態によれば、RF回路のキャリブレーション及び状態の復元の実行は、RF回路の不揮発性メモリから揮発性メモリへデータを転送することを含む。
いくつかの実施形態によれば、UEは、ベースバンド回路を用いて、データの処理の前に1つ以上の同期処理を実行するようにさらに構成され、1つ以上の同期処理は、周波数追従ループ(FTL)処理及び時間追従ループ(TTL)処理を含む。
いくつかの実施形態によれば、データは、物理下りリンク制御チャネル(PDCCH)情報を含む。
いくつかの実施形態によれば、UEは、第1のスリープ状態の間に作動する低速クロックと、無線通信回路の動作に用いられる高速クロックとを有し、UEは、さらに、第1のスリープ状態の間に低速クロックサイクルの数を判定し、低速クロックサイクルのその数を用いて、第1のスリープ状態の間に、高速クロックサイクルの数を判定し、高速クロックサイクルのその数を用いて現在の高速クロック時間を判定する、ように構成され、無線通信ネットワークからのデータの受信は、現在の高速クロック時間の判定に基づいて実行される。
実施形態のある集合は、ユーザ端末デバイス(UE)内に配置されるように構成された無線周波数(RF)回路であって、マイクロプロセッサと、マイクロプロセッサに接続されており、スリープ状態の間に、状態の情報を記憶するように構成される不揮発性メモリと、マイクロプロセッサに接続されており、アクティブな状態の間に、状態の情報を記憶するように構成される揮発性メモリと、を有し、RF回路は、第1のスリープ状態を抜けた後に、UEの水晶発振器から参照信号を受信し、水晶発振器から参照信号を受信したことに応じて、RF回路のマイクロプロセッサによる制御によって、RF回路のキャリブレーション及び状態の復元を実行し、その状態の復元は、不揮発性メモリから揮発性メモリへの状態の情報の転送を含むものであり、無線通信ネットワークからデータを受信し、RF回路のマイクロプロセッサによる制御によって、無線通信ネットワークからのデータの受信の後に、RF回路の状態の保持を実行する、ように構成される、RF回路を含みうる。
いくつかの実施形態によれば、RF回路の状態の保持の実行は、UEのベースバンド回路によるデータの処理の完了の前に行われる。
いくつかの実施形態によれば、RF回路は、さらに、1つ以上の位相ロックループ(PLL)を含み、RF回路は、1つ以上のPLLに参照信号を供給し、1つ以上のPLLの出力に基づいて1つ以上のクロック信号を供給するように構成され、RF回路のキャリブレーション及び状態の復元の実行は、1つ以上のクロック信号に基づいて行われる。
実施形態のある集合は、ここで説明される実施形態を実行するための実行可能なプログラム命令を記憶する、非一時的、コンピュータアクセス可能メモリ媒体を含みうる。
実施形態のある集合は、上述の実施形態に対応する命令を有するコンピュータプログラムを含みうる。
実施形態のある集合は、上述の実施形態に対応する方法を実行するための手段を有する装置を含みうる。
実施形態のある集合は、発明の詳細な説明において、ここで実質的に説明された任意の動作又は動作の組み合わせを含む方法を含みうる。
実施形態のある集合は、図面のそれぞれ若しくは任意の組み合わせを参照して、又は、発明の詳細な説明におけるパラグラフのそれぞれ若しくは任意の組み合わせを参照してここで実質的に説明された方法を含みうる。
実施形態のある集合は、発明の詳細な説明においてここで実質的に説明された任意の動作、又は動作の組み合わせを実行するように構成された無線デバイスを含みうる。
実施形態のある集合は、無線デバイスに含まれるような、発明の詳細な説明においてここで説明された任意の要素または要素の組み合わせを含む無線デバイスを含みうる。
実施形態のある集合は、実行されるときに、発明の詳細な説明においてここで実質的に説明された任意の動作又は動作の組み合わせの実行を引き起こす命令を記憶する、不揮発性コンピュータ可読媒体を含みうる。
実施形態のある集合は、発明の詳細な説明においてここで実質的に説明された任意の動作又は動作の組み合わせを実行するように構成される集積回路を含みうる。
本発明の実施形態は、様々な形式のいずれかで実現されうる。例えば、いくつかの実施形態では、本発明は、コンピュータ実装された方法、コンピュータ可読メモリ媒体、又はコンピュータシステムとして実現されうる。他の実施形態では、本発明は、ASICなどの1つ以上のカスタムデザインされたハードウェアデバイスを用いて実現されうる。他の実施形態では、本発明は、FPGAなどの1つ以上のプログラム可能なハードウェア要素を用いて実現されうる。例えば、UEに含まれるユニットの一部又は全部が、ASIC、FPGA、又は任意の他の適切なハードウェアコンポーネント又はモジュールとして実装されうる。
いくつかの実施形態では、非一時的コンピュータ可読メモリ媒体は、プログラム命令とデータとの少なくともいずれかを記憶するように構成されてもよく、プログラム命令は、コンピュータシステムによって実行される場合に、方法を、例えばここで説明された方法の実施形態のいずれかを、又は、ここで説明された方法の実施形態の任意の組み合わせを、又は、ここで説明された方法の実施形態のいずれかの任意のサブセットを、又は、そのようなサブセットの任意の組み合わせを、そのコンピュータシステムに実行させる。
いくつかの実施形態では、機器(例えばUE)は、プロセッサ(又はプロセッサのセット)とメモリ媒体とを含むように構成されてもよく、メモリ媒体は、プログラム命令を記憶し、プロセッサは、そのプログラム命令をメモリ媒体から読み出して実行し、プログラム命令は、ここで説明される様々な方法の実施形態(又は、ここで説明される方法の実施形態の任意の組み合わせ、若しくは、個々で説明される方法の実施形態のいずれかのサブセット、若しくは、そのようなサブセットの任意の組み合わせ)のいずれかを実装するように実行可能である。機器は、様々な形式のいずれかにおいて実現されうる。
上述の実施形態について、相当に詳細に説明したが、一度上述の開示が完全に理解されれば、当業者には、数多くの変形物及び修正が明らかとなるだろう。以下の特許請求の範囲が、そのような変形物及び修正の全てを包含するように解釈されることが意図されている。

Claims (20)

  1. 無線周波数(RF)回路及びベースバンド回路を有した無線通信回路を有するユーザ端末デバイス(UE)において、
    第1のスリープ状態から抜けるように水晶発振器に電力を供給し、
    前記水晶発振器からの出力に基づいて、前記RF回路に1つ以上のクロック信号を供給し、
    前記ベースバンド回路と独立して、前記RF回路のキャリブレーション及び状態の復元を実行し、
    前記ベースバンド回路の状態の復元を実行し、
    前記RF回路を用いて無線通信ネットワークからデータを受信し、
    前記ベースバンド回路を用いて前記データを処理し、
    前記RF回路および前記ベースバンド回路のための状態の保持を実行し、
    第2のスリープ状態に入るように、前記水晶発振器の電源を切る、
    ことを含むことを特徴とする方法。
  2. 前記RF回路および前記ベースバンド回路のための状態の保持の実行は、前記ベースバンド回路と独立しての前記RF回路の状態の保持を実行することを含み、前記ベースバンド回路と独立しての前記RF回路の状態の保持の当該実行は、前記ベースバンド回路を用いた前記データの処理の完了の前に実行され、
    前記RF回路および前記ベースバンド回路のための状態の保持の実行は、当該データの処理の後に、前記ベースバンド回路の状態の保持を実行することを含む、
    ことを特徴とする請求項1に記載の方法。
  3. 前記RF回路はマイクロプロセッサを含み、前記RF回路のキャリブレーション及び状態の復元の前記実行は、前記RF回路の前記マイクロプロセッサによって制御される、
    ことを特徴とする請求項1に記載の方法。
  4. 前記RF回路は不揮発性メモリ及び揮発性メモリを有し、前記RF回路のキャリブレーション及び状態の復元の前記実行は、前記RF回路の前記不揮発性メモリから前記揮発性メモリへのデータの転送を含む、
    ことを特徴とする請求項3に記載の方法。
  5. 前記ベースバンド回路を用いて、前記データの処理の前に、1つ以上の同期処理を実行することをさらに含む、
    ことを特徴とする請求項1に記載の方法。
  6. 前記1つ以上の同期処理は、周波数追従ループ(FTL)処理及び時間追従ループ(TTL)処理を含む、
    ことを特徴とする請求項5に記載の方法。
  7. 前記データは、物理下りリンク制御チャネル(PDCCH)情報を含む、
    ことを特徴とする請求項1に記載の方法。
  8. 前記水晶発振器からの前記出力を1つ以上の位相ロックループ(PLL)へ供給することをさらに含み、
    前記1つ以上のクロック信号は、前記PLLの出力に基づく、
    ことを特徴とする請求項1に記載の方法。
  9. 前記ベースバンド回路はマイクロプロセッサを有し、前記ベースバンド回路の状態の復元の前記実行は、前記ベースバンド回路の前記マイクロプロセッサによって制御される、
    ことを特徴とする請求項1に記載の方法。
  10. 前記UEは、前記第1のスリープ状態の間に作動する低速クロック及び無線通信回路の動作に用いられる高速クロックを有し、
    前記方法は、
    前記第1のスリープ状態の間に低速クロックサイクルの数を判定し、
    低速クロックサイクルの前記数を用いて、前記第1のスリープ状態の間、高速クロックサイクルの数を判定し、
    高速クロックサイクルの前記数を用いて現在の高速クロック時間を判定する、
    ことをさらに含み、
    無線通信ネットワークからの前記データの受信は、前記現在の高速クロック時間の判定に基づいて実行される、
    ことを特徴とする請求項1に記載の方法。
  11. ユーザ端末デバイス(UE)であって、
    水晶発振器と、
    マイクロプロセッサ、不揮発性メモリ及び揮発性メモリを有し、前記水晶発振器に接続されている無線周波数(RF)回路と、
    マイクロプロセッサを有し、前記RF回路及び前記水晶発振器に接続されているベースバンド回路と、
    を有し、
    前記UEは、
    第1のスリープ状態から抜けるように水晶発振器に電力を供給し、
    前記RF回路の前記マイクロプロセッサによる制御によって、前記水晶発振器へ電力を供給したことに応じて、前記RF回路のキャリブレーション及び状態の復元を実行し、
    前記ベースバンド回路の前記マイクロプロセッサによる制御によって、前記RF回路のキャリブレーションの実行後に、前記ベースバンド回路の状態の復元を実行し、
    前記RF回路を用いて、無線通信ネットワークからデータを受信し、
    前記ベースバンド回路を用いて前記データを処理し、
    前記RF回路の前記マイクロプロセッサによる制御によって、前記無線通信ネットワークからの前記データの受信の後に、前記RF回路の状態の保持を実行し、
    前記ベースバンド回路の前記マイクロプロセッサによる制御によって、前記データの処理の後に、前記ベースバンド回路の状態の保持を実行し、
    前記ベースバンド回路の状態の保持の実行の後に、第2のスリープ状態に入るように、前記水晶発振器の電源を切る、
    ように構成される、ことを特徴とするユーザ端末デバイス。
  12. 前記RF回路は、さらに、1つ以上の位相ロックループ(PLL)を有し、
    前記UEは、さらに、
    前記1つ以上のPLLへ前記水晶発振器からの出力を供給し、
    前記1つ以上のPLLからの出力に基づいて、1つ以上のクロック信号を供給する、
    ように構成される、ことを特徴とする請求項11に記載のユーザ端末デバイス。
  13. 前記RF回路の状態の保持の実行は、前記ベースバンド回路を用いた前記データの処理の完了の前に行われる、
    ことを特徴とする請求項11に記載のユーザ端末デバイス。
  14. 前記RF回路のキャリブレーション及び状態の復元の実行は、前記RF回路の前記不揮発性メモリから前記揮発性メモリへデータを転送することを含む、
    ことを特徴とする請求項11に記載のユーザ端末デバイス。
  15. 前記UEは、前記ベースバンド回路を用いて、前記データの処理の前に1つ以上の同期処理を実行するようにさらに構成され、
    前記1つ以上の同期処理は、周波数追従ループ(FTL)処理及び時間追従ループ(TTL)処理を含む、
    ことを特徴とする請求項11に記載のユーザ端末デバイス。
  16. 前記データは、物理下りリンク制御チャネル(PDCCH)情報を含む、
    ことを特徴とする請求項11に記載のユーザ端末デバイス。
  17. 前記UEは、前記第1のスリープ状態の間に作動する低速クロックと、無線通信回路の動作に用いられる高速クロックとを有し、
    前記UEは、さらに、
    前記第1のスリープ状態の間に低速クロックサイクルの数を判定し、
    低速クロックサイクルの前記数を用いて、前記第1のスリープ状態の間に、高速クロックサイクルの数を判定し、
    高速クロックサイクルの前記数を用いて現在の高速クロック時間を判定する、
    ように構成され、
    前記無線通信ネットワークからの前記データの受信は、前記現在の高速クロック時間の判定に基づいて実行される、
    ことを特徴とする請求項11に記載のユーザ端末デバイス。
  18. ユーザ端末デバイス(UE)内に配置されるように構成された無線周波数(RF)回路であって、
    マイクロプロセッサと、
    前記マイクロプロセッサに接続されており、スリープ状態の間に、状態の情報を記憶するように構成される不揮発性メモリと、
    前記マイクロプロセッサに接続されており、アクティブな状態の間に、状態の情報を記憶するように構成される揮発性メモリと、
    を有し、
    前記RF回路は、
    第1のスリープ状態を抜けた後に、前記UEの水晶発振器から参照信号を受信し、
    前記水晶発振器から前記参照信号を受信したことに応じて、前記RF回路のマイクロプロセッサによる制御によって、前記RF回路のキャリブレーション及び状態の復元を実行し、前記状態の復元は、前記不揮発性メモリから前記揮発性メモリへの状態の情報の転送を含むものであり、
    無線通信ネットワークからデータを受信し、
    前記RF回路の前記マイクロプロセッサによる制御によって、無線通信ネットワークからの前記データの受信の後に、前記RF回路の状態の保持を実行する、
    ように構成されることを特徴とする無線周波数回路。
  19. 前記RF回路の状態の保持の実行は、前記UEのベースバンド回路による前記データの処理の完了の前に行われる、
    ことを特徴とする請求項18に記載の無線周波数回路。
  20. 前記RF回路は、さらに、1つ以上の位相ロックループ(PLL)を有し、
    前記RF回路は、
    前記参照信号を前記1つ以上のPLLへ供給し、
    前記1つ以上のPLLの出力に基づいて、1つ以上のクロック信号を供給する、
    ように構成され、
    前記RF回路のキャリブレーション及び状態の復元の実行は、前記1つ以上のクロック信号に基づいて行われる、
    ことを特徴とする請求項18に記載の無線周波数回路。
JP2015133111A 2014-07-29 2015-07-01 Ue起床処理を並列化するための装置、システム及び方法 Active JP5985711B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/445,904 2014-07-29
US14/445,904 US9426750B2 (en) 2014-07-29 2014-07-29 Apparatus, system, and method for parallelizing UE wakeup process

Publications (2)

Publication Number Publication Date
JP2016032293A JP2016032293A (ja) 2016-03-07
JP5985711B2 true JP5985711B2 (ja) 2016-09-06

Family

ID=55079787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015133111A Active JP5985711B2 (ja) 2014-07-29 2015-07-01 Ue起床処理を並列化するための装置、システム及び方法

Country Status (4)

Country Link
US (1) US9426750B2 (ja)
JP (1) JP5985711B2 (ja)
CN (1) CN105323387B (ja)
DE (1) DE102015211462B4 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170251422A1 (en) * 2016-02-29 2017-08-31 Qualcomm Innovation Center, Inc. Mobile device with multiple wifi interfaces
US10990159B2 (en) 2017-04-25 2021-04-27 Apple Inc. Architected state retention for a frequent operating state switching processor
CN107563166B (zh) * 2017-08-28 2020-10-13 西安富立叶微电子有限责任公司 一种指纹模块休眠唤醒方法及装置
CN110557812B (zh) 2018-06-04 2021-11-16 大唐移动通信设备有限公司 信号传输方法及装置
JP7326709B2 (ja) * 2018-07-20 2023-08-16 セイコーエプソン株式会社 回路装置、発振器、電子機器及び移動体
CN112640215B (zh) * 2018-08-24 2022-09-23 康普技术有限责任公司 用于方位波束宽度稳定的具有交错竖直阵列的带透镜基站天线

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL112939A (en) 1995-03-08 1998-06-15 Powerspectrum Technology Ltd An appointments unit that has sleep mode and off mode
US7221921B2 (en) * 1998-05-29 2007-05-22 Silicon Laboratories Partitioning of radio-frequency apparatus
US6473607B1 (en) 1998-06-01 2002-10-29 Broadcom Corporation Communication device with a self-calibrating sleep timer
JP2001103568A (ja) * 1999-09-30 2001-04-13 Toshiba Corp 通信システム、この通信システムに用いられる移動体通信装置、携帯型情報処理装置及びデータ通信方法
EP1313220A1 (en) * 2001-11-19 2003-05-21 Motorola, Inc. Apparatus for generating multiple clock signals of different frequency characteristics
JP4064150B2 (ja) * 2002-05-20 2008-03-19 シャープ株式会社 無線通信装置及び無線通信装置の制御方法
US7197341B2 (en) 2003-12-22 2007-03-27 Interdigital Technology Corporation Precise sleep timer using a low-cost and low-accuracy clock
JP2005218046A (ja) * 2004-02-02 2005-08-11 Mitsubishi Electric Corp 通信機器
US8509859B2 (en) * 2005-03-11 2013-08-13 Qualcomm Incorporated Apparatus and methods for control of sleep modes in a transceiver
US8385878B2 (en) 2005-06-28 2013-02-26 Qualcomm Incorporated Systems, methods, and apparatus for activity control in a wireless communications device
US7529531B2 (en) * 2005-11-09 2009-05-05 Qualcomm, Incorporated Apparatus and methods for estimating a sleep clock frequency
CN101411095B (zh) 2006-03-28 2013-06-19 三星电子株式会社 用于移动通信系统中的连接终端的非连续接收的方法和设备
US20090088194A1 (en) * 2007-09-27 2009-04-02 Telefonaktiebolaget Lm Ericsson (Publ) Single Multi-Mode Clock Source for Wireless Devices
JP2009177774A (ja) * 2007-12-27 2009-08-06 Kyocera Corp 信号処理装置、携帯通信端末装置及び無線通信システム
US8050313B2 (en) * 2007-12-31 2011-11-01 Silicon Laboratories Inc. Single chip low power fully integrated 802.15.4 radio platform
CN101539797B (zh) * 2008-03-18 2014-03-05 联芯科技有限公司 一种动态时钟与电源的控制方法、系统及装置
US8199725B2 (en) * 2008-03-28 2012-06-12 Research In Motion Limited Rank indicator transmission during discontinuous reception
US8554251B2 (en) 2009-06-29 2013-10-08 Qualcomm Incorporated Device, method, and apparatus for offline discontinuous reception (DRX) processing in cellular systems
US9603097B2 (en) 2009-06-29 2017-03-21 Qualcomm Incorporated Device, method, and apparatus for offline discontinuous reception (DRX) processing with online triggers in cellular systems
US9407314B2 (en) * 2009-10-14 2016-08-02 Lenovo Innovations Limited (Hong Kong) Radio communication device and method for controlling RF-BB state in the same
US8521237B2 (en) * 2010-08-31 2013-08-27 Qualcomm Incorporated Power saving by limiting use of advanced signal processing
EP2453710B1 (en) 2010-11-11 2013-10-30 BlackBerry Limited Reducing energy consumption of mobile devices using early paging indicator
US8488506B2 (en) 2011-06-28 2013-07-16 Qualcomm Incorporated Oscillator settling time allowance
US9037086B2 (en) * 2012-11-30 2015-05-19 Mediatek Inc. Method for controlling bluetooth device for power conservation
US9380622B2 (en) * 2012-12-18 2016-06-28 Qualcomm Incorporated Increased power savings through collaborative search
US20140301262A1 (en) * 2013-04-05 2014-10-09 Qualcomm Incorporated In-subframe adaptive adjusting
US9247578B2 (en) * 2014-03-06 2016-01-26 Apple Inc. While performing measurement for a first RAT performing tune away operations for a second RAT

Also Published As

Publication number Publication date
JP2016032293A (ja) 2016-03-07
US9426750B2 (en) 2016-08-23
DE102015211462B4 (de) 2019-08-22
CN105323387A (zh) 2016-02-10
DE102015211462A1 (de) 2016-02-04
US20160037448A1 (en) 2016-02-04
CN105323387B (zh) 2018-09-04

Similar Documents

Publication Publication Date Title
JP5985711B2 (ja) Ue起床処理を並列化するための装置、システム及び方法
KR101928662B1 (ko) 웨이크-업 라디오 보조 wlan 전력 절감 기술들
US9807648B2 (en) Using a frequency error estimate of a first radio access technology (RAT) for a second RAT
JP6301408B2 (ja) 測定中のチューンアウェイ性能を改善したユーザ装置
JP6066228B2 (ja) Drx性能を改善したユーザ装置
JP5980988B2 (ja) Lteデータおよびdsda音声の同時実施
US9544937B2 (en) Performing data communication using a first RAT while performing a voice call using a second RAT
US9521701B2 (en) Conflict handling in a device configured to operate according to multiple cellular communication protocols
US9992770B2 (en) Apparatus, system, and method for PDCCH preparation in radio frequency circuitry
CN111757552A (zh) 用于快速载波聚合和双连接配置的辅助信息
WO2015187318A1 (en) Enhanced core power reduction
US9942847B2 (en) Apparatus, system, and method for adaptive sleep schedule for control signal decoding

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160722

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160803

R150 Certificate of patent or registration of utility model

Ref document number: 5985711

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250