JP5985386B2 - FLAVANONE COMPOUND, ANTIOXIDANT CONTAINING THE SAME, AND METHOD FOR PRODUCING THE SAME - Google Patents

FLAVANONE COMPOUND, ANTIOXIDANT CONTAINING THE SAME, AND METHOD FOR PRODUCING THE SAME Download PDF

Info

Publication number
JP5985386B2
JP5985386B2 JP2012286277A JP2012286277A JP5985386B2 JP 5985386 B2 JP5985386 B2 JP 5985386B2 JP 2012286277 A JP2012286277 A JP 2012286277A JP 2012286277 A JP2012286277 A JP 2012286277A JP 5985386 B2 JP5985386 B2 JP 5985386B2
Authority
JP
Japan
Prior art keywords
flavanone compound
antioxidant
flavanone
ldl
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012286277A
Other languages
Japanese (ja)
Other versions
JP2014125485A (en
Inventor
福本 修一
修一 福本
義浩 宇都
義浩 宇都
均 堀
均 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokushima
Pokka Sapporo Food and Beverage Ltd
Original Assignee
University of Tokushima
Pokka Sapporo Food and Beverage Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokushima , Pokka Sapporo Food and Beverage Ltd filed Critical University of Tokushima
Priority to JP2012286277A priority Critical patent/JP5985386B2/en
Publication of JP2014125485A publication Critical patent/JP2014125485A/en
Application granted granted Critical
Publication of JP5985386B2 publication Critical patent/JP5985386B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、新規フラバノン化合物、該フラバノン化合物を含有する抗酸化剤、及び該フラバノン化合物の製造方法に関するものである。   The present invention relates to a novel flavanone compound, an antioxidant containing the flavanone compound, and a method for producing the flavanone compound.

従来より、この種のフラバノン化合物としては、ニムフェオール(nymphaeol)−A,B,Cが知られている(非特許文献1参照)。これらの化合物は、ハスノハギリの他、特許文献1に記載されるように、オオバギから抽出することができる。また、これらの化合物は、抗酸化作用、抗菌作用等の有用な作用効果を発揮することが知られている(特許文献2参照)。   Conventionally, as this type of flavanone compound, nymphaeol-A, B, C is known (see Non-Patent Document 1). These compounds can be extracted from grasshopper as described in Patent Document 1 in addition to Hasunohagiri. Further, these compounds are known to exhibit useful effects such as an antioxidant effect and an antibacterial effect (see Patent Document 2).

特開2005−272374号公報JP 2005-272374 A 特開2005−29778号公報Japanese Patent Laying-Open No. 2005-29778

K.Yakushijin, K.Shibayama, H.Murata and H.Furukawa、ハスノハギリ由来の新規プレニルフラバノン(New prenylflavanones from Hernandia nymphaefolia(presl) Kubitzki)、Heterocycles, 14, 397-402, 1980.K. Yakushijin, K. Shibayama, H. Murata and H. Furukawa, New prenylflavanones from Hernandia nymphaefolia (presl) Kubitzki, Heterocycles, 14, 397-402, 1980.

この発明は、本発明者らの鋭意研究の結果、新規なフラバノン化合物を合成し、かつ有用な生理活性を見出したことによりなされたものである。その目的とするところは、医薬品等の様々な用途に利用することが可能な新規フラバノン化合物及びその製造方法を提供することにある。別の目的とするところは、高い抗酸化作用を発揮する抗酸化剤を提供することにある。   The present invention has been made by synthesizing a novel flavanone compound and finding useful physiological activity as a result of intensive studies by the present inventors. The object is to provide a novel flavanone compound that can be used for various uses such as pharmaceuticals and a method for producing the same. Another object is to provide an antioxidant that exhibits a high antioxidant effect.

上記の目的を達成するために本発明のフラバノン化合物は、下記一般式(1)に示される構造を有する。   In order to achieve the above object, the flavanone compound of the present invention has a structure represented by the following general formula (1).

また、上記の目的を達成するために本発明のフラバノン化合物は、下記一般式(2)に示される構造を有する。 In order to achieve the above object, the flavanone compound of the present invention has a structure represented by the following general formula (2).

本発明の抗酸化剤は、上記一般式(1)又は(2)に記載のフラバノン化合物を含有することを特徴とする。 The antioxidant of this invention contains the flavanone compound as described in the said General formula (1) or (2), It is characterized by the above-mentioned.

好ましくは、抗酸化剤は、脂質の酸化防止剤として用いられる。
本発明のフラバノン化合物の製造方法は、上記一般式(1)に示される構造を有するフラバノン化合物の製造方法であって、原料としてエリオディクティオール及びプレニル基供与体としてプレニル臭素を触媒存在下で反応させる工程を備えることを特徴とする。
Preferably, the antioxidant is used as a lipid antioxidant.
The method for producing a flavanone compound of the present invention is a method for producing a flavanone compound having a structure represented by the above general formula (1), wherein eriodictiool as a raw material and prenyl bromine as a prenyl group donor in the presence of a catalyst. It is characterized by comprising the step of reacting.

本発明のフラバノン化合物の製造方法は、上記一般式(2)に示される構造を有するフラバノン化合物の製造方法であって、原料としてエリオディクティオール及びプレニル基供与体としてリナロールを触媒存在下で反応させる工程を備えることを特徴とする。   The method for producing a flavanone compound of the present invention is a method for producing a flavanone compound having a structure represented by the above general formula (2), in which eriodictiool as a raw material and linalool as a prenyl group donor are reacted in the presence of a catalyst. It is characterized by providing the process to make.

本発明の新規フラバノン化合物によれば、医薬品等の様々な用途に利用することができる。別の目的とするところは、本発明の新規フラバノン化合物によれば、高い抗酸化作用を発揮することができる。   The novel flavanone compound of the present invention can be used for various uses such as pharmaceuticals. Another object is that the novel flavanone compound of the present invention can exhibit a high antioxidant effect.

以下、この発明を具体化した実施形態を詳細に説明する。
本実施形態の第1のフラバノン化合物は、下記一般式(1)に示される構造を有する。
Hereinafter, embodiments embodying the present invention will be described in detail.
The first flavanone compound of this embodiment has a structure represented by the following general formula (1).

前記一般式(1)に示されるフラバノン化合物は、6'−プレニルエリオディクティオールであり、分子式C20206、分子量356である。このフラバノン化合物は、エリオディクティオール(Eriodictyol)と類似した構造的特徴を有しているが、6’位にC−プレニル基を備えていることからエリオディクティオールよりも疎水性が高いものと思われる。 The flavanone compound represented by the general formula (1) is 6′-prenyleriodictiool, has a molecular formula of C 20 H 20 O 6 and a molecular weight of 356. This flavanone compound has structural characteristics similar to those of Eriodictyol, but is more hydrophobic than Eriodictiol because it has a C-prenyl group at the 6 ′ position. I think that the.

このフラバノン化合物は、エリオディクティオールやα−トコフェロール(α-Tocopherol)よりも高い抗酸化作用を有している。
本実施形態の第2のフラバノン化合物は、下記一般式(2)に示される構造を有する。
This flavanone compound has a higher antioxidant effect than eriodictiool and α-tocopherol.
The second flavanone compound of the present embodiment has a structure represented by the following general formula (2).

前記一般式(2)に示されるフラバノン化合物は、6'−ゲラニルエリオディクティオールであり、分子式C25286、分子量424である。このフラバノン化合物は、エリオディクティオール(Eriodictyol)と類似した構造的特徴を有しているが、6’位にC−ゲラニル基を備えていることからエリオディクティオールよりも疎水性が高いものと思われる。 The flavanone compound represented by the general formula (2) is 6′-geranyl eriodictiool, has a molecular formula of C 25 H 28 O 6 and a molecular weight of 424. This flavanone compound has structural characteristics similar to those of Eriodictyol, but is more hydrophobic than Eriodictiool because it has a C-geranyl group at the 6 ′ position. I think that the.

このフラバノン化合物は、エリオディクティオールやα−トコフェロール(α-Tocopherol)よりも高い抗酸化作用を有している。
本実施形態の第1又は第2の各フラバノン化合物を抗酸化剤として使用する場合、それらのフラバノン化合物を抗酸化剤の有効成分(抗酸化素材)として使用する。抗酸化剤は、油脂の酸化劣化、香料の劣化、色素の分解、色素の退色等の様々な製品の劣化(主に酸化劣化)を効果的に抑えるための劣化防止剤として飲食品(飲料品又は食品)中に添加して利用され得る。また、抗酸化剤は、健康食品等の飲食品中に含有させて利用することにより、経口摂取した生体内で活性酸素を消去して、肝機能の増強作用、アセトアルデヒドの毒性の低減、並びに脂質の酸化抑制、例えば不飽和脂肪酸の酸化抑制及び低密度コレステロール(LDL)の抗酸化作用等により、健康増進作用を発揮する。さらに、抗酸化剤は、化粧品、医薬品又は医薬部外品中に含有させて利用することも可能であり、皮膚や口腔等の美白効果や老化の防止等に役立つ。
This flavanone compound has a higher antioxidant effect than eriodictiool and α-tocopherol.
When using each 1st or 2nd flavanone compound of this embodiment as an antioxidant, those flavanone compounds are used as an active ingredient (antioxidant material) of an antioxidant. Antioxidants are food / beverage products (beverages) that effectively prevent deterioration of various products (mainly oxidative deterioration) such as oxidative degradation of fats and oils, perfume degradation, pigment degradation, and pigment fading. Alternatively, it can be used by being added in food). Antioxidants can also be used in health foods and other foods and drinks to eliminate active oxygen in vivo when taken orally, enhance liver function, reduce acetaldehyde toxicity, and lipids. It exerts a health promoting action by inhibiting the oxidation of the fatty acid, for example, by inhibiting the oxidation of unsaturated fatty acids and the antioxidant action of low density cholesterol (LDL). Furthermore, the antioxidant can be used by being incorporated in cosmetics, pharmaceuticals or quasi-drugs, and is useful for the whitening effect of skin, oral cavity, etc., prevention of aging, and the like.

飲食品において、前記各フラバノン化合物の1日当たりの摂取量は、成人1日当たり好ましくは0.001〜10g、より好ましくは0.01〜1gである。前記各フラバノン化合物の1日当たりの摂取量が0.001g以上の場合、抗酸化作用をより効果的に発揮させることができる。逆に10g以下場合、経済的に摂取することができる。また、小人の場合は、前記成人の場合の半量が目安となる。前記飲食品としては、その他の成分として、例えばゲル化剤含有食品、糖類、香料、甘味料、油脂、基材、賦形剤、食品添加剤、副素材、増量剤等を適宜配合してもよい。   In the food and drink, the daily intake of each flavanone compound is preferably 0.001 to 10 g, more preferably 0.01 to 1 g per adult day. When the daily intake of each flavanone compound is 0.001 g or more, the antioxidant effect can be exhibited more effectively. Conversely, if it is 10 g or less, it can be taken economically. In the case of a dwarf, half the amount for an adult is a guide. As said food-drinks, as other components, for example, gelling agent-containing foods, sugars, fragrances, sweeteners, fats and oils, base materials, excipients, food additives, auxiliary materials, bulking agents and the like may be appropriately blended. Good.

抗酸化剤を化粧料に適用する場合、化粧料基材に配合することにより適用することができる。化粧料の形態は、乳液状、クリーム状、粉末状等のいずれであってもよい。化粧料基剤は、一般に化粧料に共通して配合されるものであって、例えば、油分、精製水及びアルコールを主要成分として、界面活性剤、保湿剤、その他酸化防止剤、増粘剤、抗脂漏剤、血行促進剤、美白剤、pH調整剤、色素顔料、防腐剤及び香料から選択される少なくとも一種が適宜配合される。   When applying an antioxidant to cosmetics, it can apply by mix | blending with a cosmetics base material. The form of the cosmetic may be any of emulsion, cream, powder and the like. Cosmetic bases are generally blended in common with cosmetics, and include, for example, oil, purified water and alcohol as main components, surfactants, moisturizers, other antioxidants, thickeners, At least one selected from an antiseborrheic agent, a blood circulation promoter, a whitening agent, a pH adjuster, a pigment, a preservative and a fragrance is appropriately blended.

抗酸化剤を医薬品又は医薬部外品として使用する場合は、剤形としては、特に限定されないが、例えば、軟膏、液剤、スプレー剤、シート剤、散剤、粉剤が挙げられる。また、添加剤として、例えば賦形剤、基剤、乳化剤、溶剤、安定剤等を配合してもよい。また、服用(経口摂取)により投与する場合の他、皮下注射、血管内投与、経皮投与等のあらゆる投与方法を採用することが可能である。剤形としては、特に限定されないが、例えば、散剤、粉剤、顆粒剤、錠剤、カプセル剤、丸剤、坐剤、液剤、注射剤等が挙げられる。また、添加剤として、例えば賦形剤、基剤、乳化剤、溶剤、安定剤等を配合してもよい。   When the antioxidant is used as a pharmaceutical or quasi drug, the dosage form is not particularly limited, and examples thereof include ointments, liquids, sprays, sheets, powders, and powders. Moreover, as an additive, you may mix | blend an excipient | filler, a base, an emulsifier, a solvent, a stabilizer etc., for example. In addition to administration by administration (oral intake), any administration method such as subcutaneous injection, intravascular administration, and transdermal administration can be employed. Although it does not specifically limit as a dosage form, For example, a powder, a powder agent, a granule, a tablet, a capsule, a pill, a suppository, a liquid agent, an injection, etc. are mentioned. Moreover, as an additive, you may mix | blend an excipient | filler, a base, an emulsifier, a solvent, a stabilizer etc., for example.

次に、上記のように構成された新規フラバノン化合物の作用を説明する。
本実施形態の新規フラバノン化合物は、上記一般式(1)の6’−プレニルエリオディクティオール及び上記一般式(2)の6’−ゲラニルエリオディクティオールである。これらのフラバノン化合物は、優れた抗酸化作用を有していることから、医薬品を始めとする様々な種類の用途に利用することができる。
Next, the action of the novel flavanone compound configured as described above will be described.
The novel flavanone compounds of this embodiment are 6′-prenyl eriodictiool of the above general formula (1) and 6′-geranyl eriodictiool of the above general formula (2). Since these flavanone compounds have an excellent antioxidant action, they can be used for various types of applications including pharmaceuticals.

次に、上記のように構成された新規フラバノン化合物の製造方法を説明する。
本実施形態の第1のフラバノン化合物は、例えば、原料としてエリオディクティオール、プレニル基供与体としてプレニル臭素を溶媒中に混合し、触媒存在下において反応させることにより合成することができる。
Next, the manufacturing method of the novel flavanone compound comprised as mentioned above is demonstrated.
The first flavanone compound of the present embodiment can be synthesized, for example, by mixing eriodictiool as a raw material and prenyl bromine as a prenyl group donor in a solvent and reacting in the presence of a catalyst.

原料であるエリオディクティオールとしては、生合成品、化学合成品、天然素材から水・親水性有機溶媒を用いて抽出された粗抽出品又は精製品のいずれも使用することができる。触媒としては、例えばボロントリフルオリド−エチルエーテルコンプレックス(BF3-etherate)が挙げられる。溶媒としては、特に限定されないが、例えば、ジオキサンが挙げられる。反応温度・時間は、特に限定されないが、例えば室温(25℃)で数時間行うことにより目的物を生成させることができる。尚、反応は窒素充填下で行われることが好ましい。プレニル基供与体として用いられるプレニル臭素は、例えば3,3−ジメチルアリルブロミドが挙げられる。 As the raw material Eriodictiool, any of biosynthetic products, chemically synthesized products, crude extracts extracted from natural materials using water / hydrophilic organic solvents, or purified products can be used. Examples of the catalyst include boron trifluoride-ethyl ether complex (BF 3 -etherate). Although it does not specifically limit as a solvent, For example, a dioxane is mentioned. The reaction temperature and time are not particularly limited. For example, the target product can be produced by performing the reaction at room temperature (25 ° C.) for several hours. In addition, it is preferable that reaction is performed under nitrogen filling. Examples of the prenyl bromine used as the prenyl group donor include 3,3-dimethylallyl bromide.

上記反応により得られた第1のフラバノン化合物は、公知の方法を用いてさらに精製処理を行ってもよい。精製方法としては、反応生成物を1又は2以上のクロマトグラフィを用いて精製することにより単離される。クロマトグラフィとしては、公知のクロマトグラフィ、例えば液体クロマトグラフィ、超臨界流体クロマトグラフィ、及び薄層クロマトグラフィを用いることができる。液体クロマトグラフィとしては、例えばカラムクロマトグラフィを用いることができ、より具体的には高速液体クロマトグラフィ(HPLC)及びオープンカラムクロマトグラフィを挙げることができる。クロマトグラフィ担体としては、例えばイオン交換クロマトグラフィ、分配クロマトグラフィ(順相・逆相クロマトグラフィ)、吸着クロマトグラフィ、及び分子排斥クロマトグラフィが挙げられる。例えば、シリカゲルカラムクロマトグラフィを用いた方法では、移動相として水/アセトニトリルグラジエント系を使用することにより分離することができる。この精製工程は、既精製成分を指標として又は上述した抗酸化作用を指標として行うことができる。   The first flavanone compound obtained by the above reaction may be further purified using a known method. As a purification method, the reaction product is isolated by purifying it using one or more chromatography. As the chromatography, known chromatography such as liquid chromatography, supercritical fluid chromatography, and thin layer chromatography can be used. As liquid chromatography, column chromatography can be used, for example, and more specifically, high performance liquid chromatography (HPLC) and open column chromatography can be mentioned. Examples of the chromatography carrier include ion exchange chromatography, partition chromatography (normal phase / reverse phase chromatography), adsorption chromatography, and molecular exclusion chromatography. For example, in a method using silica gel column chromatography, separation can be performed by using a water / acetonitrile gradient system as a mobile phase. This purification step can be performed using the already purified components as an index or the antioxidant action described above as an index.

本実施形態の第2のフラバノン化合物は、例えば、原料としてエリオディクティオール及びゲラニル基供与体としてリナロールを溶媒に溶解し、触媒存在下で反応させることにより合成することができる。原料、触媒、溶媒、及び反応条件は、第1のフラバノン化合物の製造方法と同様のものを採用することができる。   The second flavanone compound of this embodiment can be synthesized, for example, by dissolving eriodictiool as a raw material and linalool as a geranyl group donor in a solvent and reacting in the presence of a catalyst. The same raw material, catalyst, solvent, and reaction conditions as those for the first method for producing a flavanone compound can be employed.

上記実施形態の新規フラバノン化合物によれば、以下のような効果を得ることができる。
(1)本実施形態の第1のフラバノン化合物は、上記一般式(1)の6’−プレニルエリオディクティオールである。このフラバノン化合物は、優れた抗酸化作用を有していることから、医薬品を始めとする様々な種類の用途に利用することができる。また、このフラバノン化合物は、エリオディクティオールと同様な用途に利用できる他、エリオディクティオールよりも疎水性が高いことを利用した様々な用途に利用することができる。
According to the novel flavanone compound of the above embodiment, the following effects can be obtained.
(1) The 1st flavanone compound of this embodiment is 6'- prenyleriodictiool of the said General formula (1). Since this flavanone compound has an excellent antioxidant action, it can be used for various types of applications including pharmaceuticals. Moreover, this flavanone compound can be used for various uses utilizing the fact that it is more hydrophobic than Eriodictiool, in addition to being used for the same applications as Eriodictiool.

(2)本実施形態の第2のフラバノン化合物は、上記一般式(2)の6’−ゲラニルエリオディクティオールである。このフラバノン化合物は、特に優れた抗酸化作用を有していることから、医薬品を始めとする様々な種類の用途に利用することができる。また、このフラバノン化合物は、エリオディクティオールと同様な用途に利用できる他、エリオディクティオールよりも疎水性が高いことを利用した様々な用途に利用することができる。   (2) The 2nd flavanone compound of this embodiment is 6'-geranyl eriodictiool of the said General formula (2). Since this flavanone compound has a particularly excellent antioxidant action, it can be used for various kinds of uses including pharmaceuticals. Moreover, this flavanone compound can be used for various uses utilizing the fact that it is more hydrophobic than Eriodictiool, in addition to being used for the same applications as Eriodictiool.

(3)本実施形態のフラバノン化合物を含有する抗酸化剤は、高い抗酸化作用を有するフラバノン化合物を有効成分として含有していることから、飲食品、化粧品又は医薬部外品の劣化を防止して保存性を高めたり、経口摂取又は経皮投与することにより健康増進効果や老化防止効果を発揮することができる。   (3) Since the antioxidant containing the flavanone compound of the present embodiment contains a flavanone compound having a high antioxidant action as an active ingredient, it prevents deterioration of food, drink, cosmetics or quasi drugs. Thus, the effect of promoting health and the effect of preventing aging can be exhibited by improving the storage stability, or taking orally or dermally.

(4)本実施形態のフラバノン化合物を含有する抗酸化剤は、特に脂質の酸化を防止する効果に優れる。したがって、脂質を含有する飲食品、医薬品、化粧品等の素材の保存性を高めたり、脂質の酸化が原因とされる各種疾患等の治療又は予防に適用できることが期待される。   (4) The antioxidant containing the flavanone compound of this embodiment is particularly excellent in the effect of preventing lipid oxidation. Therefore, it is expected that it can be applied to the treatment or prevention of various diseases caused by the oxidation of lipids, and the preservability of raw materials such as foods and drinks, pharmaceuticals and cosmetics containing lipids.

(5)本実施形態のフラバノン化合物は、飽和脂肪酸やLDLの酸化を抑制する効果に優れる。したがって、過酸化脂質及び酸化LDLが原因とされる動脈硬化等の各種疾患の治療や予防に適用できることが期待される。   (5) The flavanone compound of this embodiment is excellent in the effect which suppresses the oxidation of saturated fatty acid and LDL. Therefore, it is expected to be applicable to treatment and prevention of various diseases such as arteriosclerosis caused by lipid peroxide and oxidized LDL.

なお、上記実施形態は以下のように変更してもよい。
・上記実施形態の新規フラバノン化合物は、ヒト以外の動物、例えば、ウマ、ウシ、ブタのような家畜(非ヒト哺乳動物)、ニワトリ等の家禽、或いは犬、猫、ラット及びマウス等のペット(各種飼養動物)に適用してもよい。
In addition, you may change the said embodiment as follows.
-The novel flavanone compound of the above embodiment is a non-human animal, for example, domestic animals such as horses, cows and pigs (non-human mammals), poultry such as chickens, or pets such as dogs, cats, rats and mice ( You may apply to various domestic animals.

・上記実施形態のフラバノン化合物は、優れた抗酸化作用を有する。上記実施形態のフラバノン化合物を含有する抗酸化剤を実験用・研究用試薬として適用してもよい。抗酸化作用が関係する生理作用のメカニズムの解明等を目的として用いることができる。   -The flavanone compound of the said embodiment has the outstanding antioxidant effect | action. You may apply the antioxidant containing the flavanone compound of the said embodiment as a reagent for experiment and research. It can be used for the purpose of elucidating the mechanism of physiological action related to antioxidant action.

次に、実施例及び比較例を挙げて前記実施形態を更に具体的に説明する。
<新規フラバノン化合物の製造>
(1)6'−プレニルエリオディクティオールの製造
まず、50mL枝付きナスフラスコにエリオディクティオール(crude)(1.00g、3.47mmol)を移し乾燥させ、ジオキサン(Dry Dioxane)(10mL)に溶かした。氷冷下、撹拌しながら蒸留したBFOEt(1.2mL、9.52mmol、2.1eq.)を滴下し、プレニル臭素(3,3−ジメチルアリルブロミド)(1.1mL、9.54mmol、2.6eq.)をゆっくり滴下した。その後、3時間室温で撹拌した。反応物をEtO(50mL)に溶かし、RO水(30mL)で3回洗浄した。その後NaSOで脱水し、溶媒を飛ばしてフラバノン化合物が含有される画分AK−36−1を得た後、シリカゲルカラムクロマトグラフィ(CHCl:MeOH=20:1)で精製し、画分AK−36−5(crude)(154.3mg)及び画分AK−36−6(242.9mg)(原料回収)を得た。画分AK−36−5について逆相高速液体クロマトグラフィ(RP−HPLC)を用い、下記条件1で分析した。
Next, the embodiment will be described more specifically with reference to examples and comparative examples.
<Production of new flavanone compounds>
(1) Manufacture of 6′-prenyl eriodictiol First, eriodictiool (crude) (1.00 g, 3.47 mmol) was transferred to a 50 mL branch eggplant flask and dried, and then dioxane (10 mL). Dissolved in. BF 3 OEt 2 (1.2 mL, 9.52 mmol, 2.1 eq.) Distilled with stirring under ice cooling was added dropwise and prenyl bromine (3,3-dimethylallyl bromide) (1.1 mL, 9.54 mmol). 2.6 eq.) Was slowly added dropwise. Then, it stirred at room temperature for 3 hours. The reaction was dissolved in Et 2 O (50 mL) and washed 3 times with RO water (30 mL). Then, after dehydrating with Na 2 SO 4 , the solvent was removed to obtain a fraction AK-36-1 containing a flavanone compound, and then purified by silica gel column chromatography (CH 2 Cl 2 : MeOH = 20: 1), Fraction AK-36-5 (crude) (154.3 mg) and fraction AK-36-6 (242.9 mg) (raw material recovery) were obtained. The fraction AK-36-5 was analyzed under the following condition 1 using reverse phase high performance liquid chromatography (RP-HPLC).

<HPLCの条件1>
Column: InertSustain C18 (4.6×150 mm)
Gradient: 0.1%TFA mQ:0.1% TFA CH3CN (0 min/99:1, 5 min/99:1, 35 min/0:100, 45 min/0:100, 55 min/99:1)
Detection: 214 nm
その後、分取してH−NMRを用いて構造決定を行った。構造解析の結果を以下に示す。
<Condition 1 of HPLC>
Column: InertSustain C18 (4.6 × 150 mm)
Gradient: 0.1% TFA mQ: 0.1% TFA CH 3 CN (0 min / 99: 1, 5 min / 99: 1, 35 min / 0: 100, 45 min / 0: 100, 55 min / 99: 1)
Detection: 214 nm
Thereafter, their structures were determined by 1 H-NMR was fractionated. The results of structural analysis are shown below.

1H NMR (400MHz, ACETN) δ7.06 (s, 1H), 6.73 (s, 1H), 5.95 (s, 2H), 5.62 (dd, 1H, J = 10.8, 2.7 Hz), 5.24-5.19(m, 1H), 3.41-3.27 (m, 2H), 3.13 (dd, 1H, J = 17.2, 13.2 Hz), 2.65 (dd, 1H, J = 14.4, 2.7 Hz), 1.70 (s, 3H), 1.65 (s, 3H)。 1 H NMR (400MHz, ACETN) δ7.06 (s, 1H), 6.73 (s, 1H), 5.95 (s, 2H), 5.62 (dd, 1H, J = 10.8, 2.7 Hz), 5.24-5.19 (m , 1H), 3.41-3.27 (m, 2H), 3.13 (dd, 1H, J = 17.2, 13.2 Hz), 2.65 (dd, 1H, J = 14.4, 2.7 Hz), 1.70 (s, 3H), 1.65 ( s, 3H).

上記H−NMRのデータより、一般式(1)の構造を有する6'−プレニルエリオディクティオールであることが確認された。
得られた構造解析のデータを元に、画分AK−36−5より下記HPLC条件2にて6'−プレニルエリオディクティオールを精製した。
From the 1 H-NMR data, it was confirmed to be 6′-prenyleriodictiool having the structure of the general formula (1).
Based on the obtained structural analysis data, 6′-prenyleriodictyol was purified from fraction AK-36-5 under the following HPLC condition 2.

<HPLCの条件2>
Column: Inertsil ODS-3 20×250 mm
Gradient: 0.1%TFA mQ:0.1% TFA CH3CN (0 min/40:60, 30 min/25:75)
Detection: 214 nm
リテンションタイム10.483分のピークを分取し、画分AK−38−2(14.7mg、y(収率)1.2%)(6'−プレニルエリオディクティオール)を得た。
<Condition 2 of HPLC>
Column: Inertsil ODS-3 20 × 250 mm
Gradient: 0.1% TFA mQ: 0.1% TFA CH 3 CN (0 min / 40: 60, 30 min / 25: 75)
Detection: 214 nm
The peak with a retention time of 10.383 minutes was collected to obtain fraction AK-38-2 (14.7 mg, y (yield) 1.2%) (6′-prenyleriodictiool).

(2)6'−ゲラニルエリオディクティオールの製造
まず、50mL枝付きナスフラスコにエリオディクティオール(crude)(2.2g、7.63mmol)を移し乾燥させ、ジオキサン(Dry Dioxane)(10mL)に溶かした。氷冷下、撹拌しながら蒸留したBFOEt(2.6mL、20.6mmol、2.1eq.)を滴下し、リナロール(Linalool)(4.4mL、24.8mmol、2.6eq.)をゆっくり滴下した。その後、3時間室温で撹拌した。反応物をEtO(50mL)に溶かし、RO水(30mL)で3回洗浄した。その後NaSOで脱水し、溶媒を飛ばして画分RT−2−27−1を得た後、シリカゲルカラムクロマトグラフィ(CHCl:MeOH=20:1)で精製し、RT−2−27−4(crude)(1.62g)、画分RT−2−27−5(440mg)(原料回収)を得た。画分RT−2−27−4を下記HPLC条件3にてRP−HPLCで分析した。
(2) Production of 6′-geranyl eriodictiool First, eriodictiool (crude) (2.2 g, 7.63 mmol) was transferred to a 50 mL branch eggplant flask and dried, followed by dioxane (10 mL). Dissolved in. BF 3 OEt 2 (2.6 mL, 20.6 mmol, 2.1 eq.) Distilled with stirring under ice cooling was added dropwise, and linalool (4.4 mL, 24.8 mmol, 2.6 eq.) Was added. Slowly dripped. Then, it stirred at room temperature for 3 hours. The reaction was dissolved in Et 2 O (50 mL) and washed 3 times with RO water (30 mL). Thereafter, it was dehydrated with Na 2 SO 4 , and the solvent was removed to obtain a fraction RT-2-27-1, which was then purified by silica gel column chromatography (CH 2 Cl 2 : MeOH = 20: 1), and RT-2- 27-4 (crude) (1.62 g), fraction RT-2-27-5 (440 mg) (raw material recovery) was obtained. Fraction RT-2-27-4 was analyzed by RP-HPLC under the following HPLC condition 3.

<HPLCの条件3>
Column: InertSustain C18 (4.6×150 mm)
Gradient: 0.1%TFA mQ:0.1% TFA CH3CN (0 min/99:1, 5 min/99:1, 35 min/0:100, 45 min/0:100, 55 min/99:1)
Detection: 214 nm
その後、同条件にて画分RT−2−27−4とオオバギの99.5%エタノール抽出物をRP−HPLCにて分析し、一致した3つのピーク(リテンションタイム:33.892分、34.893分、35.417分)を確認後、それらを分取し、H−NMRを用いて構造決定を行った。尚、オオバギの99.5%エタノール抽出物は、まずオオバギの乾燥葉を細かく刻んだ後に乳鉢ですり潰し、すり潰された乾燥葉100gに対して1000mLの99.5%エタノールを加えた後、約1週間室温(25℃)暗所で抽出を行った。続いて、活性炭等のろ過剤を用いて固液分離による精製を行った後、抽出液を乾固することにより、オオバギのエタノール抽出物を得た。
<HPLC conditions 3>
Column: InertSustain C18 (4.6 × 150 mm)
Gradient: 0.1% TFA mQ: 0.1% TFA CH 3 CN (0 min / 99: 1, 5 min / 99: 1, 35 min / 0: 100, 45 min / 0: 100, 55 min / 99: 1)
Detection: 214 nm
Thereafter, the fraction RT-2-27-4 and the 99.5% ethanol extract of the grasshopper were analyzed by RP-HPLC under the same conditions, and three matched peaks (retention time: 33.892 minutes, 34. (893 minutes, 35.417 minutes), and they were collected and subjected to structure determination using 1 H-NMR. In addition, the 99.5% ethanol extract of the grasshopper was first chopped dry leaves of the grass, then crushed in a mortar, and after adding 1000 mL of 99.5% ethanol to 100 g of the dried leaves, Extraction was performed in the dark at room temperature (25 ° C.) for 1 week. Subsequently, after purification by solid-liquid separation using a filtering agent such as activated carbon, the extract was dried to obtain an ethanol extract of a wolffish.

リテンションタイム34.893分の成分: 1H NMR (400MHz, ACETN) δ6.91 (d, 1H, J = 1.8 Hz), 6.81 (d, 1H, J = 1.8 Hz), 5.95 (s, 2H), 5.40-5.33 (m, 1H), 5.12 (t, 1H, J = 5.4 Hz), 3.37 (d, 2H, J = 7.7 Hz), 3.15-3.08 (m, 1H), 2.73-2.68 (m, 1H), 1.72 (s, 3H), 1.63 (s, 3H), 1.57 (s, 3H)。 Components with a retention time of 34.893 minutes: 1 H NMR (400 MHz, ACETN) δ6.91 (d, 1H, J = 1.8 Hz), 6.81 (d, 1H, J = 1.8 Hz), 5.95 (s, 2H), 5.40-5.33 (m, 1H), 5.12 (t, 1H, J = 5.4 Hz), 3.37 (d, 2H, J = 7.7 Hz), 3.15-3.08 (m, 1H), 2.73-2.68 (m, 1H) , 1.72 (s, 3H), 1.63 (s, 3H), 1.57 (s, 3H).

上記H−NMRのデータは、ニムフェオール−B(Nymphaeol-B)と一致した。
リテンションタイム35.417分の成分: 1H NMR (400MHz, ACETN) δ7.02 (s, 1H), 6.87 (d, 2H, J = 1.0), 6.04 (s, 1H), 5.37 (dd, 1H, J = 3.2, J = 12.7), 5.26 (t, 1H, J = 7.1), 5.08 (t, 1H, J = 7.1), 3.26 (d, 2H, J = 7.1), 3.12 (dd, 1H, J = 13.0, J = 17.1), 2.66 (dd, 1H, J = 3.2, J = 17.1), 1.77 (s, 3H), 1.61 (s, 3H), 1.56 (s, 3H)。
The 1 H-NMR data was consistent with Nymphaeol-B.
Components with a retention time of 35.417 minutes: 1 H NMR (400 MHz, ACETN) δ7.02 (s, 1H), 6.87 (d, 2H, J = 1.0), 6.04 (s, 1H), 5.37 (dd, 1H, J = 3.2, J = 12.7), 5.26 (t, 1H, J = 7.1), 5.08 (t, 1H, J = 7.1), 3.26 (d, 2H, J = 7.1), 3.12 (dd, 1H, J = 13.0, J = 17.1), 2.66 (dd, 1H, J = 3.2, J = 17.1), 1.77 (s, 3H), 1.61 (s, 3H), 1.56 (s, 3H).

上記H−NMRのデータは、ニムフェオール−A(Nymphaeol-A)と一致した。
一方、H−NMRの結果より、33.892分(RT−2−33−3)は5’位又は6’位がゲラニル化された構造であり、おそらくイソニムフェオール−B(Isonymphaeol-B)であると推定された。しかし、完全に同定できなかったため、画分RT−2−27−4を別の条件(下記HPLC条件4)にて精製を行った。
The 1 H-NMR data was consistent with Nymphaeol-A.
On the other hand, from the result of 1 H-NMR, 33.892 minutes (RT-2-33-3) is a structure in which the 5′-position or 6′-position is geranylated, and isonympheol-B (Isonymphaeol- B). However, since it could not be completely identified, fraction RT-2-27-4 was purified under different conditions (HPLC condition 4 below).

<HPLCの条件4>
Column: Inertsil ODS-3 (20×250 mm)
Gradient: 0.1%TFA mQ:0.1% CH3CN (0 min/35:65, 30 min/20:80)
Detection: 214 nm
リテンションタイム21.567分のピークを分取し、画分RT−2−33−4(ニムフェオール−B)(10.9mg、y(収率)0.3%)を得た。次に、リテンションタイム23.758分のピークを分取し画分RT−2−33−5(ニムフェオール−A)(53.3mg、y(収率)1.6%)を得た。
<Condition 4 of HPLC>
Column: Inertsil ODS-3 (20 × 250 mm)
Gradient: 0.1% TFA mQ: 0.1% CH 3 CN (0 min / 35: 65, 30 min / 20: 80)
Detection: 214 nm
The peak with a retention time of 21.567 minutes was collected to obtain a fraction RT-2-33-4 (Nimpheol-B) (10.9 mg, y (yield) 0.3%). Next, a peak with a retention time of 23.758 minutes was collected to obtain a fraction RT-2-33-5 (Nimpheol-A) (53.3 mg, y (yield) 1.6%).

また、リテンションタイム17.242分のピークはH−NMR解析の結果、2種類の化合物の混合物(画分RT−2−33−3)であったため、さらに別条件(下記条件5)にて精製を試みた。 Moreover, since the peak of the retention time of 17.242 minutes was a mixture of two kinds of compounds (fraction RT-2-3-3-3) as a result of 1 H-NMR analysis, it was further subjected to another condition (Condition 5 below). Attempted purification.

<HPLCの条件5>
Column: Inertsil ODS-3 (20×250 mm)
Gradient: 0.1%TFA mQ:0.1% CH3CN (0 min/50:50, 60 min/40:60)
Detection: 214 nm
リテンションタイム50.467分のピーク(画分RT−2−43−1)及びリテンションタイム53.725分のピーク(画分RT−2−43−2)を分取し、H−NMRを用いて構造決定を行った。
<Condition 5 of HPLC>
Column: Inertsil ODS-3 (20 × 250 mm)
Gradient: 0.1% TFA mQ: 0.1% CH 3 CN (0 min / 50: 50, 60 min / 40: 60)
Detection: 214 nm
A peak with a retention time of 50.467 minutes (fraction RT-2-43-1) and a peak with a retention time of 53.725 minutes (fraction RT-2-43-2) were collected, and 1 H-NMR was used. The structure was determined.

画分RT−2−43−1の成分: 1H NMR (400MHz, ACETN) δ7.05(s, 1H), 6.73(s, 1H), 5.94(s, 2H), 5.62(dd, 1H, J =13.2, 2.8Hz), 5.23(t, 1H, J =7.8Hz), 5.09-5.05(m, 1H), 3.42-3.26(m, 2H), 3.12(dd, 1H, J =17.6, 13.6Hz), 2.64(dd, 1H, J =14.7,2.8 Hz), 1.65(s, 3H), 1.62(s, 3H), 1.56(s, 3H)。 Components of fraction RT-2-43-1: 1 H NMR (400 MHz, ACETN) δ7.05 (s, 1H), 6.73 (s, 1H), 5.94 (s, 2H), 5.62 (dd, 1H, J = 13.2, 2.8Hz), 5.23 (t, 1H, J = 7.8Hz), 5.09-5.05 (m, 1H), 3.42-3.26 (m, 2H), 3.12 (dd, 1H, J = 17.6, 13.6Hz) 2.64 (dd, 1H, J = 14.7, 2.8 Hz), 1.65 (s, 3H), 1.62 (s, 3H), 1.56 (s, 3H).

上記H−NMRのデータより、一般式(2)の構造を有する6'−ゲラニルエリオディクティオールであることが確認された。
画分RT−2−43−2の成分: 1H NMR (400MHz, ACETN) δ6.96 (d, 1H, J = 8.3 Hz), 6.82 (d, 1H, J = 8.3 Hz), 5.96 (s, 2H), 5.61 (dd, 1H, J = 2.7, 13.4 Hz), 5.18 (t, 1H, J = 7.1), 5.07 (t, 1H, J = 7.1 Hz), 3.54 (d, 2H, J = 6.6 Hz), 3.17 (dd, 1H, J = 13.4, 17.1 Hz), 2.66 (dd, 1H, J = 2.7, 17.1 Hz), 1.69 (s, 3H), 1.61 (s, 3H), 1.55 (s, 3H)。
From the 1 H-NMR data, it was confirmed to be 6′-geranyl eriodictiool having the structure of the general formula (2).
Components of fraction RT-2-43-2: 1 H NMR (400 MHz, ACETN) δ6.96 (d, 1H, J = 8.3 Hz), 6.82 (d, 1H, J = 8.3 Hz), 5.96 (s, 2H), 5.61 (dd, 1H, J = 2.7, 13.4 Hz), 5.18 (t, 1H, J = 7.1), 5.07 (t, 1H, J = 7.1 Hz), 3.54 (d, 2H, J = 6.6 Hz ), 3.17 (dd, 1H, J = 13.4, 17.1 Hz), 2.66 (dd, 1H, J = 2.7, 17.1 Hz), 1.69 (s, 3H), 1.61 (s, 3H), 1.55 (s, 3H) .

上記H−NMRのデータは、イソニムフェオール−B(Isonymphaeol-B)と一致した。
尚、画分RT−2−43−1(6'−ゲラニルエリオディクティオール)は、17.4mg、y(収率)0.5%であった。画分RT−2−43−2(イソニムフェール−B)は、4.5mg、y(収率)0.1%であった。
The 1 H-NMR data was consistent with Isonymphaeol-B.
The fraction RT-2-43-1 (6′-geranyl eriodictyol) was 17.4 mg, and y (yield) 0.5%. Fraction RT-2-43-2 (isonimphele-B) was 4.5 mg, y (yield) 0.1%.

<新規フラバノン化合物の抗酸化試験>
(1)ラジカル捕捉能試験
新規フラバノン化合物の生理活性作用の一つである抗酸化作用を水系におけるラジカル捕捉能を評価するため、DPPHラジカル消去活性の測定を行った。本試験では、ラジカル状態で517nmの極大吸収を持つDPPH(1,1-Diphenyl-2-picrylhydrazyl)が抗酸化物質により還元されて退色することを利用するものである。本試験で用いる試料として、実施例1の6'−プレニルエリオディクティオール、実施例2の6'−ゲラニルエリオディクティオール、並びに陽性対照として、エリオディクティオール、ニムフェオール−A、ニムフェオール−B、及びイソニムフェオール−Bを使用した。
<Antioxidation test of new flavanone compounds>
(1) Radical scavenging ability test DPPH radical scavenging activity was measured in order to evaluate the radical scavenging ability in an aqueous system of the antioxidant activity which is one of the physiologically active actions of the new flavanone compound. This test utilizes the fact that DPPH (1,1-Diphenyl-2-picrylhydrazyl) having a maximum absorption of 517 nm in a radical state is reduced by an antioxidant and fades. As samples used in this test, 6′-prenyleriodictiool of Example 1 and 6′-geranyleriodictiool of Example 2, and as controls, Eriodictiool, Nimpheol-A, Nimpheol-B , And isonimpheol-B were used.

石英セル中にエタノール1.8mL、40mMのMES(2-[N-Morpholino] ethanonesulfonic acid)buffer1.2mL(最終濃度1.6mM)を加えゼロ合わせを行う。コントロールとして石英セル中にエタノール1170μL、40mMのMES buffer1200μL(最終濃度1.6mM)、500μMのDPPH600μL(最終濃度100mM)を加えゼロ合わせを行った。その後、エタノール30μLを加えて5分毎に吸光度を測定し30分間のDPPHの吸光度変化を調べた。次に各試料を30μL入れて同様の測定を行い30分後の吸光度(517nm)が、50%に減少した時の濃度EC50を求めた。尚、測定は、25℃にて3回行い、吸光度は、プレートリーダとしてHITACHI U-2000 Spectrophotometerを用いて行った。結果を表1に示す。データは平均±標準誤差で表した。 In a quartz cell, 1.8 mL of ethanol and 1.2 mL of 40 mM MES (2- [N-Morpholino] ethanonesulfonic acid) buffer (final concentration 1.6 mM) are added and zeroed. As a control, 1170 μL of ethanol, 1200 μL of 40 mM MES buffer (final concentration of 1.6 mM), and 600 μL of 500 μM DPPH (final concentration of 100 mM) were added to the quartz cell to perform zero adjustment. Thereafter, 30 μL of ethanol was added and the absorbance was measured every 5 minutes to examine the change in DPPH absorbance for 30 minutes. Next, 30 μL of each sample was added and the same measurement was performed to determine the concentration EC 50 when the absorbance (517 nm) after 30 minutes was reduced to 50%. The measurement was performed three times at 25 ° C., and the absorbance was measured using a HITACHI U-2000 Spectrophotometer as a plate reader. The results are shown in Table 1. Data were expressed as mean ± standard error.

表1に示されるように、実施例1の6'−プレニルエリオディクティオール、及び実施例2の6'−ゲラニルエリオディクティオールは、優れた抗酸化活性を有することが確認された。 As shown in Table 1, it was confirmed that the 6′-prenyl eriodictyol of Example 1 and the 6′-geranyl eriodictyol of Example 2 have excellent antioxidant activity.

(2)リノール酸共役の生成阻害活性の試験
リノール酸の酸化変性の過程で生じる共役ジエンを測定することにより、抗酸化活性を比較した。あらかじめ40℃にしておいた50mMのリン酸buffer(pH7.4)2.81mLを石英セルに入れた。その後調製した各試料を10μL、次に16mMのリノール酸を含む溶液を30μL(終濃度0.16mM)、最後に40mMのAAPH(2,2 ’-Azobis(2-methylpropionamidine)Dihydrochloride)150μL(終濃度2mM)を加えて全量を3mLとした。AAPHを加えた時間を0分として吸光度の測定を始めた。リノール酸酸化の過程で生じる共役ジエンの吸光度をピーク234nmにおける吸光度の経時変化を37℃で180分測定した。試料1μM当たりのリノール酸が酸化されるまでの時間(分)を求めた。尚、測定は、3回行い、吸光度は、プレートリーダとしてHITACHI U-3300 Spectrophotometerを用いて行った。結果を表2に示す。データは平均±標準誤差で表した。
(2) Test of linoleic acid conjugation formation inhibitory activity Antioxidant activity was compared by measuring conjugated dienes generated during the oxidative modification of linoleic acid. 2.81 mL of 50 mM phosphate buffer (pH 7.4) that had been set to 40 ° C. in advance was placed in a quartz cell. Then, 10 μL of each sample prepared, 30 μL of a solution containing 16 mM linoleic acid (final concentration 0.16 mM), and finally 150 μL of 40 mM AAPH (2,2′-Azobis (2-methylpropionamidine) dihydrochloride) (final concentration) 2 mM) was added to make the total volume 3 mL. Absorbance measurement was started with the time when AAPH was added as 0 minutes. The absorbance of the conjugated diene produced in the process of linoleic acid oxidation was measured for 180 minutes at 37 ° C. for 180 minutes at a peak 234 nm. The time (min) until linoleic acid per 1 μM sample was oxidized was determined. The measurement was performed three times, and the absorbance was measured using a HITACHI U-3300 Spectrophotometer as a plate reader. The results are shown in Table 2. Data were expressed as mean ± standard error.

表2に示されるように、実施例1の6'−プレニルエリオディクティオール、及び実施例2の6'−ゲラニルエリオディクティオールは、優れた抗酸化活性を有することが確認された。特に実施例2の6'−ゲラニルエリオディクティオールは、リノール酸の酸化変性を抑制する作用が著しく高いことが確認された。 As shown in Table 2, it was confirmed that the 6′-prenyl eriodictyol of Example 1 and the 6′-geranyl eriodictyol of Example 2 have excellent antioxidant activity. In particular, it was confirmed that the 6′-geranyl eriodictyol of Example 2 has an extremely high effect of suppressing oxidative modification of linoleic acid.

(3)LDL抗酸化活性の試験
血液中の主要なコレステロール輸送タンパク質であり、動脈硬化との相関があるとされているLDL(low density lipoprotein)に対する抗酸化作用を試験した。
(3) Test of LDL antioxidant activity The antioxidant action against LDL (low density lipoprotein), which is a major cholesterol transport protein in blood and has been correlated with arteriosclerosis, was tested.

(a)LDLの単離・精製
まず、ヒトの血液を採取後室温で約30分間静置してから、3000rpm、4℃の条件で10分間遠心分離を行った。遠心後、上清(血清)をピペットマンで採取し、15mL遠心管に移した。これ以後の実験操作は全て低温下で行う。次に、0.325g/mLになるようにKBrを血清に溶解させる。完全にKBrが溶解したことを確認してから、ピペットマンを用いて血清を超遠心用遠心管に入れた。次に、濃度8.5g/LのNaCl水溶液(d=1.006)を体積比で、(NaCl層):(血清層)=2:3になるように静かに注ぎ、2層にした。
(A) Isolation / Purification of LDL First, human blood was collected, allowed to stand at room temperature for about 30 minutes, and then centrifuged at 3000 rpm and 4 ° C. for 10 minutes. After centrifugation, the supernatant (serum) was collected with Pipetteman and transferred to a 15 mL centrifuge tube. All subsequent experimental operations are performed at low temperatures. Next, KBr is dissolved in serum so as to be 0.325 g / mL. After confirming that KBr was completely dissolved, the serum was put into an ultracentrifuge tube using a pipetteman. Next, an aqueous NaCl solution (d = 1.006) having a concentration of 8.5 g / L was gently poured into a volume ratio of (NaCl layer) :( serum layer) = 2: 3 to form two layers.

次に、超遠心器で80000rpm、4℃の条件で60分間遠心分離を行った。遠心後は慎重かつ速やかに遠心管を取り出し、濃度勾配によって分画されたLDL層をピペットマンで採取、チューブ(エッペンドルフ社製)に移した。   Next, centrifugation was performed for 60 minutes under the conditions of 80000 rpm and 4 ° C. in an ultracentrifuge. After centrifugation, the centrifuge tube was carefully and promptly taken out, and the LDL layer fractionated by the concentration gradient was collected with a Pipetman and transferred to a tube (Eppendorf).

針を装着していない1mLシリンジを用いて試料を採取した後、22μmのマイクロフィルタを装着し、別の新しいチューブ(エッペンドルフ社製)に濾出させた。次に、針を装着した10mLシリンジで試料を吸い取った後、針を透析膜に挿入し試料を注入する。透析膜に浮きを装着させ、スターラで攪拌させながら1×PBS buffer中で遮光下、4℃で30分間透析後、Buffer交換し、さらに30分間透析した。最後にBuffer交換し、一晩透析した。3回の透析はすべて低温室で行った。なお、透析用の1×PBS bufferは十分に窒素を通気し、冷却してから用いた。透析後の精製LDLは10mLシリンジで採取し、遮光下、4℃、窒素充填下でチューブ(エッペンドルフ社製)に保存した。   A sample was collected using a 1 mL syringe not equipped with a needle, and then a 22 μm microfilter was attached, followed by filtration into another new tube (Eppendorf). Next, after sucking the sample with a 10 mL syringe equipped with a needle, the needle is inserted into the dialysis membrane and the sample is injected. The dialysis membrane was floated, dialyzed for 30 minutes at 4 ° C. in 1 × PBS buffer while stirring with a stirrer, exchanged Buffer, and dialyzed for another 30 minutes. Finally, the buffer was changed and dialyzed overnight. All three dialysis were performed in a cold room. In addition, 1 × PBS buffer for dialysis was used after sufficiently aerated with nitrogen and cooled. The purified LDL after dialysis was collected with a 10 mL syringe and stored in a tube (Eppendorf) under light shielding at 4 ° C. under nitrogen filling.

(b)LDLの定量(BCA法)
BSA検量線を作成するため、終濃度がそれぞれ0、0.125、0.25、0.5、1mg/mLになるように標準BSAを調整した。LDL試料は4倍、6倍、8倍の希釈で3点とった。試料の希釈は1×PBS bufferで行った。マイクロプレートリーダ用96穴プレートに希釈試料及び標準BSAを25μLずつアプライし、さらに(BCA/A液3000μL)+(BCA/B液60μL)の混合液を200μLずつアプライした。これを37℃、30分間インキュベーションした後マイクロプレートリーダを用いてOD570測定を行い、検量線からLDL濃度及び単離したLDL量を算出した。
(B) Quantification of LDL (BCA method)
In order to prepare a BSA calibration curve, standard BSA was adjusted so that the final concentrations were 0, 0.125, 0.25, 0.5, and 1 mg / mL, respectively. The LDL sample scored 3 points by dilution of 4 times, 6 times and 8 times. The sample was diluted with 1 × PBS buffer. 25 μL each of the diluted sample and standard BSA was applied to a 96-well plate for a microplate reader, and 200 μL of (BCA / A solution 3000 μL) + (BCA / B solution 60 μL) was applied. After incubation at 37 ° C. for 30 minutes, OD 570 measurement was performed using a microplate reader, and the LDL concentration and the isolated LDL amount were calculated from a calibration curve.

(c)TBARSアッセイ
チオバルビツール酸反応生成物(TBARS)アッセイは、脂質が酸化され生成する最終反応物(TBARS)の測定を行い、脂質酸化抑制効果を測定する方法で実験を行った。
(C) TBARS assay In the thiobarbituric acid reaction product (TBARS) assay, a final reaction product (TBARS) produced by oxidation of lipid was measured, and an experiment was conducted by a method for measuring a lipid oxidation inhibitory effect.

まずLDL(50μg/100μm)となるように1×PBS buffer、各例の試料10μL、LDL、500μM硫酸銅(酸化剤)10μL(終濃度5μM)の順に混合させ全量を100μLとした。37℃、4時間インキュベーション後、1%リン酸水溶液1mLずつ加えた15mL遠心管に試料全量を15mL遠心管に移した。さらに10mMのBHTを50μL加えて酸化を停止させ、最後に0.67%のTBAを1mL加えた後、約5秒ボルテックスし30分間(100℃)処理した。反応終了後、試料を氷中で冷やし常温に戻してからブタノールを2mL加え、約30秒間ボルテックスした。十分に攪拌させることで、TBARSはブタノールに溶け込む。遠心分離器(KUBOTA 5910)を用いて3000rpm、4℃の条件で10分間遠心分離を行い、2層に分ける。遠心後、ブタノール層(上層)を採取し、532nmにおける吸光度をHITACHI U-2000 Spectrophotometerを用いて測定した。LDLの酸化を50%抑制した時の濃度IC50を求めた。結果を表3に示す。測定は、3回行い、データは平均±標準誤差で表した。 First, 1 × PBS buffer, 10 μL of each sample sample, LDL, and 10 μL of 500 μM copper sulfate (oxidant) (final concentration 5 μM) were mixed in this order so as to be LDL (50 μg / 100 μm) to a total volume of 100 μL. After incubation at 37 ° C. for 4 hours, the entire sample was transferred to a 15 mL centrifuge tube to which 1 mL of 1% phosphoric acid aqueous solution was added. Further, 50 μL of 10 mM BHT was added to stop the oxidation. Finally, 1 mL of 0.67% TBA was added, and then vortexed for about 5 seconds and treated for 30 minutes (100 ° C.). After completion of the reaction, the sample was cooled in ice and returned to room temperature, 2 mL of butanol was added, and vortexed for about 30 seconds. With sufficient agitation, TBARS dissolves in butanol. Using a centrifuge (KUBOTA 5910), the mixture is centrifuged for 10 minutes at 3000 rpm and 4 ° C., and separated into two layers. After centrifugation, the butanol layer (upper layer) was collected, and the absorbance at 532 nm was measured using a HITACHI U-2000 Spectrophotometer. The concentration IC 50 when the oxidation of LDL was suppressed by 50% was determined. The results are shown in Table 3. The measurement was performed three times, and the data was expressed as mean ± standard error.

表3に示されるように、実施例1の6'−プレニルエリオディクティオール、及び実施例2の6'−ゲラニルエリオディクティオールは、優れたLDLの酸化抑制作用を有することが確認された。 As shown in Table 3, it was confirmed that the 6′-prenyl eriodictyol of Example 1 and the 6′-geranyl eriodictyol of Example 2 have an excellent LDL oxidation inhibitory action. .

(d)LDL共役ジエン生成阻害活性
脂質が酸化された最終産物を測定する(c)TBARSアッセイに対して、LDL共役ジエン生成阻害活性は、脂質の初期の酸化の程度を測定する方法として知られている。
(D) LDL-conjugated diene production inhibitory activity Measures the end product of lipid oxidation (c) In contrast to the TBARS assay, LDL-conjugated diene production inhibitory activity is known as a method for measuring the initial degree of oxidation of lipids. ing.

測定は、石英セルに、表4に記載の各例の化合物30μL(終濃度1μM)、LDL(終濃度50μg/mL)、500μMのCuSO4を30μL(終濃度5μM)を順に加え、PBSで全量を3mLに調整した。その後、CuSO4を加えた時間を0分として、LDLの過酸化反応によって生じる共役ジエン構造に由来する234nmの吸光度の経時変化を測定した。吸光度は、HITACHI U-2000 Spectrophotometerを用いて測定した。CuSO4を加えた時から酸化が開始されるまでの時間(タイムラグ(分))を求めた。結果を表4に示す。測定は、3回行い、データは平均±標準誤差で表した。 For measurement, 30 μL (final concentration: 1 μM) of each compound described in Table 4 in a quartz cell, LDL (final concentration: 50 μg / mL), 30 μL of 500 μM CuSO 4 (final concentration: 5 μM) were added in this order, and the whole volume was obtained with PBS. Was adjusted to 3 mL. Then, the time change of the absorbance at 234 nm derived from the conjugated diene structure generated by the LDL peroxidation reaction was measured with the time of adding CuSO 4 as 0 minute. Absorbance was measured using a HITACHI U-2000 Spectrophotometer. The time (time lag (minutes)) from when CuSO 4 was added to when oxidation was started was determined. The results are shown in Table 4. The measurement was performed three times, and the data was expressed as mean ± standard error.

ラグタイムの値が大きい化合物ほど、初期酸化反応物である共役ジエンの生成を遅延させる効果が高く、強いLDL酸化抑制活性を有することを示す。表4に示されるように、実施例1の6'−プレニルエリオディクティオール、及び実施例2の6'−ゲラニルエリオディクティオールは、優れたLDLの酸化抑制作用を有することが確認された。 A compound having a larger lag time has a higher effect of delaying the formation of the conjugated diene, which is an initial oxidation reaction product, and has a strong LDL oxidation inhibitory activity. As shown in Table 4, it was confirmed that the 6′-prenyl eriodictyol of Example 1 and the 6′-geranyl eriodictyol of Example 2 have an excellent LDL oxidation inhibitory action. .

LDLは上述したように血液中においてコレステロール輸送を担っている。生体内においてフリーラジカル等によりLDL中の脂質が酸化されると、酸化LDLが形成されることが知られている。通常、LDLはLDL受容体を通じて肝臓に取り込まれるが、酸化LDLは、LDL受容体ではなく、スカベンジャ受容体を通してマクロファージに取り込まれる。この酸化LDLを多量に取り込んだマクロファージは泡沫化し、血管内皮細胞障害及びアテローム性動脈硬化症を引き起こす。したがって、LDLの酸化を抑制する効果に優れる本発明の新規フラバノン化合物は、酸化LDLが原因とされる動脈硬化を抑制することが期待される。   As described above, LDL is responsible for cholesterol transport in the blood. It is known that oxidized LDL is formed when lipids in LDL are oxidized in vivo by free radicals or the like. Normally, LDL is taken into the liver through the LDL receptor, but oxidized LDL is taken into macrophages through the scavenger receptor, not the LDL receptor. Macrophages that have taken up a large amount of this oxidized LDL are foamed, causing vascular endothelial cell damage and atherosclerosis. Therefore, the novel flavanone compound of the present invention, which is excellent in the effect of suppressing LDL oxidation, is expected to suppress arteriosclerosis caused by oxidized LDL.

以上のように、本発明の新規フラバノン化合物は、公知のフラバノン化合物に対し、優れた抗酸化作用を有することが明らかとなった。尚、本フラバノン化合物とは基本骨格が異なるフラバン−3−オールであるカテキンにおいて、B環の6’位に電子供与性のイソプロピル基が導入された平面型カテキンの構造により、ラジカル消去活性が高まることが知られている(K.Fukuhara et.al.; J. Am. Chem. Soc., 124, 5952-5953(2002))。一方、フラバノン化合物は、C環の3位の位置に水酸基を有しておらず、平面型カテキンのような構造をとることはできない。つまり、フラバノン化合物においては、従来化合物よりも機能性の効果が向上することを予測して、炭素数5のイソプレン単位から構成されるプレニル基のB環6’位への付加により新規化合物を得ようとする動議付けはない。よって、上記のような本発明の新規フラバノン化合物が、公知のフラバノン化合物に対し、優れた抗酸化作用を有することは、意外性を有すると思料する。   As described above, it has been clarified that the novel flavanone compound of the present invention has an excellent antioxidant action with respect to known flavanone compounds. In addition, in the catechin which is flavan-3-ol having a different basic skeleton from the present flavanone compound, the radical scavenging activity is enhanced by the structure of the planar catechin in which an electron-donating isopropyl group is introduced at the 6′-position of the B ring. (K. Fukuhara et.al .; J. Am. Chem. Soc., 124, 5952-5953 (2002)). On the other hand, the flavanone compound does not have a hydroxyl group at the 3-position of the C ring and cannot take a structure like a planar catechin. In other words, in the flavanone compound, it is predicted that the functional effect is improved as compared with the conventional compound, and a novel compound is obtained by adding a prenyl group composed of a carbon number 5 isoprene unit to the B ring 6′-position. There is no motion to try. Therefore, it is thought that it is surprising that the novel flavanone compound of the present invention as described above has an excellent antioxidant action with respect to known flavanone compounds.

次に、上記実施形態及び別例から把握できる技術的思想について、以下に追記する。
(a)前記一般式(1)又は一般式(2)の新規フラバノン化合物を含有することを特徴とする飲食品、化粧品又は医薬品。
Next, the technical idea that can be grasped from the above embodiment and other examples will be described below.
(A) A food, beverage, cosmetic or pharmaceutical comprising the novel flavanone compound represented by the general formula (1) or (2).

(b)前記一般式(1)又は一般式(2)の新規フラバノン化合物を有効成分として含有することを特徴とする抗動脈硬化剤。   (B) An anti-arteriosclerotic agent comprising the novel flavanone compound of the general formula (1) or the general formula (2) as an active ingredient.

Claims (6)

下記一般式(1)に示される構造を有するフラバノン化合物。
A flavanone compound having a structure represented by the following general formula (1).
下記一般式(2)に示される構造を有するフラバノン化合物。
A flavanone compound having a structure represented by the following general formula (2).
請求項1又は請求項2に記載されるフラバノン化合物を含有することを特徴とする抗酸化剤。   An antioxidant, comprising the flavanone compound according to claim 1 or 2. 脂質の酸化防止剤として用いられることを特徴とする請求項3に記載の抗酸化剤。   The antioxidant according to claim 3, which is used as an antioxidant for lipids. 原料としてエリオディクティオール及びプレニル基供与体としてプレニル臭素を触媒存在下で反応させる工程を備えることを特徴とする請求項1に記載のフラバノン化合物の製造方法。   The process for producing a flavanone compound according to claim 1, comprising a step of reacting eriodictiool as a raw material and prenyl bromine as a prenyl group donor in the presence of a catalyst. 原料としてエリオディクティオール及びゲラニル基供与体としてリナロールを触媒存在下で反応させる工程を備えることを特徴とする請求項2に記載のフラバノン化合物の製造方法。   The method for producing a flavanone compound according to claim 2, comprising a step of reacting eriodictiool as a raw material and linalool as a geranyl group donor in the presence of a catalyst.
JP2012286277A 2012-12-27 2012-12-27 FLAVANONE COMPOUND, ANTIOXIDANT CONTAINING THE SAME, AND METHOD FOR PRODUCING THE SAME Active JP5985386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012286277A JP5985386B2 (en) 2012-12-27 2012-12-27 FLAVANONE COMPOUND, ANTIOXIDANT CONTAINING THE SAME, AND METHOD FOR PRODUCING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012286277A JP5985386B2 (en) 2012-12-27 2012-12-27 FLAVANONE COMPOUND, ANTIOXIDANT CONTAINING THE SAME, AND METHOD FOR PRODUCING THE SAME

Publications (2)

Publication Number Publication Date
JP2014125485A JP2014125485A (en) 2014-07-07
JP5985386B2 true JP5985386B2 (en) 2016-09-06

Family

ID=51405260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012286277A Active JP5985386B2 (en) 2012-12-27 2012-12-27 FLAVANONE COMPOUND, ANTIOXIDANT CONTAINING THE SAME, AND METHOD FOR PRODUCING THE SAME

Country Status (1)

Country Link
JP (1) JP5985386B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105130938B (en) * 2015-07-23 2017-08-08 广西师范学院 Derivative with apiolin skeleton and its production and use
CN105001191A (en) * 2015-07-23 2015-10-28 广西师范学院 Derivative with 5,2'-dyhydroxy-4'-methoxy-3-geranyl flavonoid skeleton and preparation method and application thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1640371B1 (en) * 2003-06-20 2011-10-19 Pokka Corporation Flavanone compound and uses thereof
JP4268900B2 (en) * 2003-06-20 2009-05-27 株式会社ポッカコーポレーション Antioxidants, antibacterial agents, antitumor agents and food and drink
JP4268896B2 (en) * 2004-03-25 2009-05-27 株式会社ポッカコーポレーション Flavanone compound, method for producing the same, and antioxidant
JP4268905B2 (en) * 2004-06-23 2009-05-27 株式会社ポッカコーポレーション Method for producing flavanone compounds
JP5421524B2 (en) * 2007-09-14 2014-02-19 ナチュレワイズ バイオテック&メディカル コーポレーション Compounds for inhibiting histone deacetylase
US8008344B2 (en) * 2007-09-14 2011-08-30 NatureWise Biotech and Medicals Corporation Compounds for the inhibition of histone deacetylase
JP2010202586A (en) * 2009-03-04 2010-09-16 Pola Chem Ind Inc Proton pump inhibitor
JP2014125486A (en) * 2012-12-27 2014-07-07 Pokka Sappro Food & Beverage Ltd Radiation damage protection agent

Also Published As

Publication number Publication date
JP2014125485A (en) 2014-07-07

Similar Documents

Publication Publication Date Title
JP5521788B2 (en) Novel resveratrol polymer compound or pharmaceutically acceptable salt thereof
US20080275258A1 (en) Epigallocatechin Dimers or Trimers Having Lipase Inhibitory Activity and/or Antioxidant Activity
CZ20021077A3 (en) Preparations containing isoflavones and their derivatives as well as therapeutical methods
US7312344B2 (en) Dimeric isoflavones
AU2013272429B2 (en) Pharmaceutical composition containing verbenone derivative for treating or preventing neurodegenerative disease
WO2013061455A1 (en) Novel resveratrol polymerization compound or pharmaceutically acceptable salt thereof
JP5985386B2 (en) FLAVANONE COMPOUND, ANTIOXIDANT CONTAINING THE SAME, AND METHOD FOR PRODUCING THE SAME
EP3030319B1 (en) Compositions comprising vitamin k derivatives and salts
JP3977889B2 (en) Drugs containing buckwheat husk extract as an active ingredient
KR100543897B1 (en) Gardeniae Fructus Extract and Compounds Isolated Therefrom and their use
KR100736456B1 (en) New compounds isolated from leaves of Ternstroemia japonica and antioxidant using the same
JP2012062292A (en) Method for producing 4-vinyl catechol polymerization compound, or pharmaceutically acceptable salt thereof
KR101677904B1 (en) Cumarin novel derivative as tyrosinase inhibitor and method for preparing the same
KR101488583B1 (en) New compounds having skin whitening activity and medical use thereof
JP2014148472A (en) Flavonol-sinapic acid reaction product for cardiovascular disease preventive/therapeutic effects
WO2012116577A1 (en) Chlorogenic acid analogue, preparation process and use thereof
JP5673030B2 (en) Novel phenolic dimer compounds
AU2002238278B2 (en) Dimeric isoflavones
Yasuda et al. Preparation and antioxidant/pro-oxidant activities of 3-monosubstituted 5-hydroxyoxindole derivatives
KR101527100B1 (en) New compounds having skin whitening activity and medical use thereof
KR20140100363A (en) New compounds having skin whitening activity and medical use thereof
KR101765283B1 (en) New compounds having skin whitening activity and medical use thereof
JP5543719B2 (en) Antiallergic agent
CN117551068A (en) Isofluoside alcohol amine copolymer, preparation method and antibacterial application thereof
JP2014101341A (en) Use of new resveratrol dimer for prevention/therapy of circulatory system disease

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160803

R150 Certificate of patent or registration of utility model

Ref document number: 5985386

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250