JP5983213B2 - Supercritical steam combined cycle - Google Patents

Supercritical steam combined cycle Download PDF

Info

Publication number
JP5983213B2
JP5983213B2 JP2012198109A JP2012198109A JP5983213B2 JP 5983213 B2 JP5983213 B2 JP 5983213B2 JP 2012198109 A JP2012198109 A JP 2012198109A JP 2012198109 A JP2012198109 A JP 2012198109A JP 5983213 B2 JP5983213 B2 JP 5983213B2
Authority
JP
Japan
Prior art keywords
steam
stage
pressure turbine
combustor
supercritical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012198109A
Other languages
Japanese (ja)
Other versions
JP2014051944A (en
Inventor
梅沢 修一
修一 梅沢
芳樹 長崎
芳樹 長崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2012198109A priority Critical patent/JP5983213B2/en
Publication of JP2014051944A publication Critical patent/JP2014051944A/en
Application granted granted Critical
Publication of JP5983213B2 publication Critical patent/JP5983213B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

本発明は、コンバインドサイクル発電プラントの排熱回収ボイラとして超臨界排熱回収ボイラを用いた超臨界蒸気複合サイクルに関する。   The present invention relates to a supercritical steam combined cycle using a supercritical exhaust heat recovery boiler as an exhaust heat recovery boiler of a combined cycle power plant.

コンバインドサイクル発電プラントは、ガスタービンの排ガスを排熱回収ボイラに導き、排熱回収ボイラで得られた蒸気を蒸気タービンに導いて発電機を駆動し発電する発電プラントである。これにより、高効率の発電プラントを実現している。   A combined cycle power plant is a power plant that guides exhaust gas from a gas turbine to an exhaust heat recovery boiler, guides steam obtained by the exhaust heat recovery boiler to a steam turbine, and drives a generator to generate electric power. As a result, a highly efficient power plant is realized.

さらに、コンバインドサイクル発電プラントの排熱回収ボイラとして超臨界排熱回収ボイラを用いたものが提案されている(例えば、特許文献1参照)。超臨界排熱回収ボイラを用いると蒸気サイクルの効率が向上し、コンバインドサイクル発電プラント全体の熱効率も向上する。   Furthermore, what used the supercritical waste heat recovery boiler as the waste heat recovery boiler of a combined cycle power plant is proposed (for example, refer patent document 1). The use of a supercritical waste heat recovery boiler improves the efficiency of the steam cycle and the overall thermal efficiency of the combined cycle power plant.

特開2009−092372号公報JP 2009-092372 A

しかし、超臨界排熱回収ボイラを用いる場合には、ガスタービンの排ガス温度を高くする必要があり、特許文献1のものでは、高温部(過熱器、再熱器)での最適化が必ずしもなされていない。例えば、タービン入口が超臨界圧以上の場合、タービン出口でも湿らない良い蒸気条件にするには、ガスタービン排ガス温度は約700℃必要であり、蒸気を再熱しようとする場合には、ガスタービンの排ガス温度はさらに高くしなければならない。   However, when a supercritical exhaust heat recovery boiler is used, it is necessary to increase the exhaust gas temperature of the gas turbine. In the case of Patent Document 1, optimization in a high temperature part (superheater, reheater) is not necessarily performed. Not. For example, when the turbine inlet is above the supercritical pressure, the gas turbine exhaust gas temperature needs to be about 700 ° C. in order to achieve good steam conditions that do not get wet even at the turbine outlet. The exhaust gas temperature must be higher.

図22は、温度とエンタルピーとの関係図である。Tgは超臨界排熱回収ボイラに供給される排ガスの温度、Tcは臨界温度、Aは水の気相液相境界線、S1は例えば圧力が30MPaのときの過熱器の流体温度、P1はピンチポイントである。   FIG. 22 is a relationship diagram between temperature and enthalpy. Tg is the temperature of the exhaust gas supplied to the supercritical exhaust heat recovery boiler, Tc is the critical temperature, A is the gas phase liquid phase boundary of water, S1 is the fluid temperature of the superheater when the pressure is, for example, 30 MPa, and P1 is the pinch It is a point.

超臨界排熱回収ボイラに過熱器を設置する場合、ピンチポイントP1を上回る排ガス温度が必要である。また、高圧タービン入口において超臨界圧力以上かつ高圧タービン出口でも湿らない蒸気条件にするには、過熱器出口の蒸気のエンタルピーはHa以上とすることが必要である。そのためには排ガス温度Taは約700℃でなければならない(P2点)。   When a superheater is installed in a supercritical exhaust heat recovery boiler, an exhaust gas temperature exceeding the pinch point P1 is necessary. Further, in order to achieve a steam condition that is higher than the supercritical pressure at the high-pressure turbine inlet and does not get wet at the high-pressure turbine outlet, the enthalpy of the steam at the superheater outlet needs to be Ha or higher. For this purpose, the exhaust gas temperature Ta must be about 700 ° C. (point P2).

一方、過熱器に加え再熱器を設置する場合について説明する。S2は再熱器の蒸気温度である。この再熱器の蒸気圧力は、タービンを通過しているため減圧されているので、例えば、7MPa程度である。すなわち、S2は圧力が7MPaのときの再熱器の蒸気温度を示している。Tzは再熱器の蒸気温度の初期値である。また、再熱器の蒸気のエンタルピの初期値Hzは、過熱器出口のエンタルピーHaよりも低い値になるが、その場合、排ガスとの熱交換線図が重なるので、それを避けるために、Hzは過熱器出口のエンタルピーHaと同じ値とした。   On the other hand, the case where a reheater is installed in addition to a superheater will be described. S2 is the steam temperature of the reheater. Since the steam pressure of the reheater is reduced because it passes through the turbine, it is about 7 MPa, for example. That is, S2 indicates the steam temperature of the reheater when the pressure is 7 MPa. Tz is the initial value of the steam temperature of the reheater. In addition, the initial value Hz of the enthalpy of steam of the reheater is lower than the enthalpy Ha of the outlet of the superheater. In this case, the heat exchange diagrams with the exhaust gas overlap, so to avoid it, Was the same value as the enthalpy Ha at the outlet of the superheater.

再熱器を出て中圧タービンに導かれた蒸気が中圧タービン出口でも湿らない蒸気条件を満たすようにするためには、再熱器出口の蒸気のエンタルピーはHb以上とすることが必要である。そのためには排ガス温度Tbは800℃以上でなければならない(P3点)。   In order to satisfy the steam condition that the steam led out from the reheater and led to the medium pressure turbine does not get wet at the medium pressure turbine outlet, the enthalpy of the steam at the reheater outlet needs to be Hb or more. is there. For this purpose, the exhaust gas temperature Tb must be 800 ° C. or higher (point P3).

このように、超臨界排熱回収ボイラにおいては、ガスタービンの排ガス温度を高くしないと再熱ができない。現状ではガスタービンの排ガス温度は700℃程度であるので、超臨界排熱回収ボイラで再熱することは難しい。一方、蒸気サイクルの効率を向上させるためには再熱をすることが望ましい。   Thus, in the supercritical exhaust heat recovery boiler, reheating cannot be performed unless the exhaust gas temperature of the gas turbine is increased. At present, since the exhaust gas temperature of the gas turbine is about 700 ° C., it is difficult to reheat with the supercritical exhaust heat recovery boiler. On the other hand, reheating is desirable to improve the efficiency of the steam cycle.

本発明は、超臨界排熱回収ボイラに供給されるガスタービンの排ガスの温度を上昇させることなく蒸気サイクルへの再熱を可能にした超臨界蒸気複合サイクルを提供することである。   An object of the present invention is to provide a supercritical steam combined cycle that enables reheating to the steam cycle without increasing the temperature of the exhaust gas of the gas turbine supplied to the supercritical exhaust heat recovery boiler.

請求項1の発明に係る超臨界蒸気複合サイクルは、空気圧縮機からの圧縮空気と燃料とを入力し燃料を燃焼させる燃焼器と、前記燃焼器の燃焼ガスで駆動されるガスタービンと、前記ガスタービンの排ガスで超臨界流体である蒸気を発生させる超臨界排熱回収ボイラと、前記超臨界排熱回収ボイラで発生した超臨界流体である蒸気で駆動される高圧タービンと、前記高圧タービンで仕事を終え前記ガスタービン及び前記燃焼器の少なくともいずれか一つで再熱された再熱蒸気で駆動される中圧タービンと、前記中圧タービンで仕事を終えた蒸気で駆動される低圧タービンとを備え、前記再熱蒸気は、前記中圧タービン出口でも湿らない蒸気条件を満たす蒸気であることを特徴とする。 A supercritical steam combined cycle according to the invention of claim 1 includes a combustor that inputs compressed air and fuel from an air compressor and burns the fuel, a gas turbine that is driven by the combustion gas of the combustor, and A supercritical exhaust heat recovery boiler that generates steam that is supercritical fluid in the exhaust gas of the gas turbine, a high pressure turbine that is driven by steam that is supercritical fluid generated in the supercritical exhaust heat recovery boiler, and the high pressure turbine An intermediate pressure turbine driven by reheated steam that has finished work and is reheated in at least one of the gas turbine and the combustor, and a low pressure turbine driven by steam that has finished work in the intermediate pressure turbine, Bei example, said reheat steam, characterized in that said in a steam satisfies vapor not wetted even pressure turbine outlet.

請求項2の発明に係る超臨界蒸気複合サイクルは、請求項1の発明において、前記中圧タービンで仕事を終えた蒸気を、前記空気圧縮機、前記ガスタービン、前記燃焼器の少なくともいずれか一つで再熱し、その再熱蒸気で前記低圧タービンを駆動することを特徴とする。   A supercritical steam combined cycle according to a second aspect of the present invention is the supercritical steam combined cycle according to the first aspect of the present invention, wherein the steam that has finished work in the intermediate pressure turbine is converted into at least one of the air compressor, the gas turbine, and the combustor. Then, the low-pressure turbine is driven by the reheated steam.

請求項3の発明に係る超臨界蒸気複合サイクルは、空気圧縮機からの圧縮空気と燃料とを入力し燃料を燃焼させる第1段燃焼器と、前記第1段燃焼器の燃焼ガスで駆動される第1段ガスタービンと、前記第1段ガスタービンの排ガスと燃料とを入力し燃料を燃焼させる第2段燃焼器と、前記第2段燃焼器の燃焼ガスで駆動される第2段ガスタービンと、前記第2段ガスタービンの排ガスで超臨界流体である蒸気を発生させる超臨界排熱回収ボイラと、前記超臨界排熱回収ボイラで発生した超臨界流体である蒸気で駆動される高圧タービンと、前記高圧タービンで仕事を終え、前記第1段ガスタービン、前記第2段ガスタービン、前記第1段燃焼器、前記第2段燃焼器の少なくともいずれか一つにより再熱された再熱蒸気で駆動される中圧タービンと、前記中圧タービンで仕事を終えた蒸気で駆動される低圧タービンとを備え、前記再熱蒸気は、前記中圧タービン出口でも湿らない蒸気条件を満たす蒸気であることを特徴とする。 The supercritical steam combined cycle according to the invention of claim 3 is driven by a first stage combustor that inputs compressed air and fuel from an air compressor and burns the fuel, and combustion gas of the first stage combustor. A first stage gas turbine, a second stage combustor that inputs exhaust gas and fuel of the first stage gas turbine and burns the fuel, and a second stage gas driven by the combustion gas of the second stage combustor A turbine, a supercritical exhaust heat recovery boiler that generates steam as supercritical fluid from the exhaust gas of the second stage gas turbine, and a high pressure driven by the steam that is supercritical fluid generated in the supercritical exhaust heat recovery boiler The turbine and the high-pressure turbine finish work, and the reheat is reheated by at least one of the first stage gas turbine, the second stage gas turbine, the first stage combustor, and the second stage combustor. Medium pressure turbine driven by thermal steam Emissions and, e Bei a low pressure turbine driven by the steam after finishing of work in the intermediate-pressure turbine, the reheat steam is characterized in that said in a steam satisfies vapor not wetted even pressure turbine outlet .

請求項4の発明に係る超臨界蒸気複合サイクルは、請求項3の発明において、前記中圧タービンで仕事を終えた蒸気を、前記空気圧縮機、前記第1段ガスタービン、前記第2段ガスタービン、前記第1段燃焼器、前記第2段燃焼器の少なくともいずれか一つで再熱し、その再熱された再熱蒸気で前記低圧タービンを駆動することを特徴とする。   A supercritical steam combined cycle according to a fourth aspect of the present invention is the supercritical steam combined cycle according to the third aspect of the present invention, wherein the steam that has finished work in the intermediate pressure turbine is converted into the air compressor, the first stage gas turbine, and the second stage gas. Reheating is performed by at least one of a turbine, the first stage combustor, and the second stage combustor, and the low pressure turbine is driven by the reheated reheated steam.

請求項1の発明によれば、超臨界排熱回収ボイラで発生した超臨界流体である蒸気で高圧タービンを駆動し、高圧タービンで仕事を終えた蒸気をガスタービンや燃焼器で再熱して中圧タービンを駆動するので、再熱管は、高圧タービンとガスタービンや燃焼器との間、ガスタービンや燃焼器と中圧タービンとの間の短い距離でよいため、配管圧力損失の低減、配管熱損失の低減を実現できる。しかも、再熱蒸気は、中圧タービン出口でも湿らない蒸気条件を満たす蒸気とするので、超臨界排熱回収ボイラに供給される排ガスの温度を上昇させることなく蒸気タービンへの再熱を実現できる。 According to the first aspect of the present invention, the high-pressure turbine is driven by the steam that is the supercritical fluid generated in the supercritical exhaust heat recovery boiler, and the steam that has finished work in the high-pressure turbine is reheated by the gas turbine or the combustor. Since the pressure turbine is driven, the reheat pipe can be a short distance between the high-pressure turbine and the gas turbine or combustor, or between the gas turbine or combustor and the intermediate-pressure turbine. Loss can be reduced. In addition, since the reheat steam satisfies the steam condition that does not get wet even at the outlet of the intermediate pressure turbine, reheat to the steam turbine can be realized without increasing the temperature of the exhaust gas supplied to the supercritical exhaust heat recovery boiler. .

また、請求項2の発明によれば、請求項1の発明の効果に加え、中圧タービンで仕事を終えた蒸気を、空気圧縮機、ガスタービン、燃焼器の少なくともいずれか一つで再熱して、低圧タービンを駆動するので、効率の高いコンバインドサイクル発電プラントとすることができ、省エネルギーが可能となる。   According to the invention of claim 2, in addition to the effect of the invention of claim 1, the steam that has finished work in the intermediate pressure turbine is reheated by at least one of an air compressor, a gas turbine, and a combustor. In addition, since the low-pressure turbine is driven, a highly efficient combined cycle power plant can be obtained, and energy saving can be achieved.

請求項3の発明によれば、超臨界排熱回収ボイラで発生した超臨界流体である蒸気で高圧タービンを駆動し、高圧タービンで仕事を終えた蒸気を、第1段ガスタービン、第2段ガスタービン、第1段燃焼器、第2段燃焼器の少なくともいずれか一つにより再熱して、中圧タービンを駆動するので、再熱管は、高圧タービンと、第1段ガスタービン、第2段ガスタービン、第1段燃焼器、第2段燃焼器との間、第1段ガスタービン、第2段ガスタービン、第1段燃焼器、第2段燃焼器と中圧タービンとの間の短い距離でよく、しかも、再熱蒸気は、中圧タービン出口でも湿らない蒸気条件を満たす蒸気とするので、超臨界排熱回収ボイラに供給される排ガスの温度を上昇させることなく蒸気タービンへの再熱を実現できる。 According to the invention of claim 3, the high-pressure turbine is driven by the steam that is the supercritical fluid generated in the supercritical exhaust heat recovery boiler, and the steam that has finished work in the high-pressure turbine is converted into the first stage gas turbine, the second stage Since the intermediate pressure turbine is driven by reheating at least one of the gas turbine, the first stage combustor, and the second stage combustor, the reheat pipe includes the high pressure turbine, the first stage gas turbine, and the second stage Short between gas turbine, first stage combustor, second stage combustor, first stage gas turbine, second stage gas turbine, first stage combustor, second stage combustor and medium pressure turbine The reheat steam is a steam that satisfies the steam condition that does not get wet even at the outlet of the intermediate pressure turbine , and the reheat steam can be recirculated to the steam turbine without increasing the temperature of the exhaust gas supplied to the supercritical exhaust heat recovery boiler. Heat can be realized.

また、請求項4の発明によれば、請求項3の発明の効果に加え、中圧タービンで仕事を終えた蒸気を、空気圧縮機、前記第1段ガスタービン、前記第2段ガスタービン、第1段燃焼器、第2段燃焼器の少なくともいずれか一つでして、低圧タービンを駆動するので、効率の高いコンバインドサイクル発電プラントとすることができ、省エネルギーが可能となる。   According to the invention of claim 4, in addition to the effect of the invention of claim 3, the steam that has finished work in the intermediate pressure turbine is converted into an air compressor, the first stage gas turbine, the second stage gas turbine, Since at least one of the first-stage combustor and the second-stage combustor drives the low-pressure turbine, a highly efficient combined cycle power plant can be obtained, and energy saving can be achieved.

本発明の実施形態1の実施例1aに係る超臨界蒸気複合サイクルの構成図。The block diagram of the supercritical steam combined cycle which concerns on Example 1a of Embodiment 1 of this invention. 本発明の実施形態1の実施例2aに係る超臨界蒸気複合サイクルの構成図。The block diagram of the supercritical steam combined cycle which concerns on Example 2a of Embodiment 1 of this invention. 本発明の実施形態1の実施例3aに係る超臨界蒸気複合サイクルの構成図。The block diagram of the supercritical steam combined cycle which concerns on Example 3a of Embodiment 1 of this invention. 本発明の実施形態2の実施例1bに係る超臨界蒸気複合サイクルの構成図。The block diagram of the supercritical steam combined cycle which concerns on Example 1b of Embodiment 2 of this invention. 本発明の実施形態2の実施例2bに係る超臨界蒸気複合サイクルの構成図。The block diagram of the supercritical steam combined cycle which concerns on Example 2b of Embodiment 2 of this invention. 本発明の実施形態2の実施例3bに係る超臨界蒸気複合サイクルの構成図。The block diagram of the supercritical steam combined cycle which concerns on Example 3b of Embodiment 2 of this invention. 本発明の実施形態2の実施例4bに係る超臨界蒸気複合サイクルの構成図。The block diagram of the supercritical steam combined cycle which concerns on Example 4b of Embodiment 2 of this invention. 本発明の実施形態2の実施例5bに係る超臨界蒸気複合サイクルの構成図。The block diagram of the supercritical steam combined cycle which concerns on Example 5b of Embodiment 2 of this invention. 本発明の実施形態3の実施例1cに係る超臨界蒸気複合サイクルの構成図。The block diagram of the supercritical steam combined cycle which concerns on Example 1c of Embodiment 3 of this invention. 本発明の実施形態3の実施例2cに係る超臨界蒸気複合サイクルの構成図。The block diagram of the supercritical steam combined cycle which concerns on Example 2c of Embodiment 3 of this invention. 本発明の実施形態3の実施例3cに係る超臨界蒸気複合サイクルの構成図。The block diagram of the supercritical steam combined cycle which concerns on Example 3c of Embodiment 3 of this invention. 本発明の実施形態3の実施例4cに係る超臨界蒸気複合サイクルの構成図。The block diagram of the supercritical steam combined cycle which concerns on Example 4c of Embodiment 3 of this invention. 本発明の実施形態3の実施例5cに係る超臨界蒸気複合サイクルの構成図。The block diagram of the supercritical steam combined cycle which concerns on Example 5c of Embodiment 3 of this invention. 本発明の実施形態4の実施例1dに係る超臨界蒸気複合サイクルの構成図。The block diagram of the supercritical steam combined cycle which concerns on Example 1d of Embodiment 4 of this invention. 本発明の実施形態4の実施例2dに係る超臨界蒸気複合サイクルの構成図。The block diagram of the supercritical steam combined cycle which concerns on Example 2d of Embodiment 4 of this invention. 本発明の実施形態4の実施例3dに係る超臨界蒸気複合サイクルの構成図。The block diagram of the supercritical steam combined cycle which concerns on Example 3d of Embodiment 4 of this invention. 本発明の実施形態4の実施例4dに係る超臨界蒸気複合サイクルの構成図。The block diagram of the supercritical steam combined cycle which concerns on Example 4d of Embodiment 4 of this invention. 本発明の実施形態4の実施例5dに係る超臨界蒸気複合サイクルの構成図。The block diagram of the supercritical steam combined cycle which concerns on Example 5d of Embodiment 4 of this invention. 本発明の実施形態5の実施例1eに係る超臨界蒸気複合サイクルの構成図。The block diagram of the supercritical steam combined cycle which concerns on Example 1e of Embodiment 5 of this invention. 本発明の実施形態5の実施例2eに係る超臨界蒸気複合サイクルの構成図。The block diagram of the supercritical steam combined cycle which concerns on Example 2e of Embodiment 5 of this invention. 本発明の実施形態5の実施例3eに係る超臨界蒸気複合サイクルの構成図。The block diagram of the supercritical steam combined cycle which concerns on Example 3e of Embodiment 5 of this invention. 超臨界排熱回収ボイラにおける各種温度とエンタルピーとの関係図である。It is a relationship diagram between various temperatures and enthalpy in a supercritical exhaust heat recovery boiler.

以下、本発明の実施形態を説明する。図1乃至図3は本発明の実施形態1に係る超臨界蒸気複合サイクルの構成図であり、実施例1a乃至実施例3aの超臨界蒸気複合サイクルの一例をそれぞれ示している。   Embodiments of the present invention will be described below. FIGS. 1 to 3 are configuration diagrams of the supercritical steam combined cycle according to Embodiment 1 of the present invention, and show examples of the supercritical steam combined cycle of Examples 1a to 3a, respectively.

図1において、超臨界蒸気複合サイクルは、ガスタービン設備と蒸気タービン設備とを有し、ガスタービン設備のガスタービン11の排ガスを超臨界排熱回収ボイラ12に導き、超臨界排熱回収ボイラ12で得られた蒸気を蒸気タービン設備の高圧タービン13に導いて発電機14を駆動し発電する発電プラントである。   In FIG. 1, the supercritical steam combined cycle has a gas turbine facility and a steam turbine facility, and guides the exhaust gas of the gas turbine 11 of the gas turbine facility to a supercritical exhaust heat recovery boiler 12, thereby supercritical exhaust heat recovery boiler 12. In this power generation plant, the steam obtained in step 1 is guided to the high-pressure turbine 13 of the steam turbine facility to drive the generator 14 to generate power.

ガスタービン設備は、ガスタービン11、燃焼器15、空気圧縮機16とからなり、燃焼器15は、空気圧縮機16からの圧縮空気と燃料とを入力し燃料を燃焼させる。燃焼器15の燃焼ガスはガスタービン11に供給されガスタービン11を駆動する。   The gas turbine equipment includes a gas turbine 11, a combustor 15, and an air compressor 16. The combustor 15 inputs the compressed air and fuel from the air compressor 16 and burns the fuel. The combustion gas in the combustor 15 is supplied to the gas turbine 11 to drive the gas turbine 11.

ガスタービン11で仕事を終えた排ガスは、超臨界排熱回収ボイラ12に供給され、ガスタービン11の排ガスで超臨界流体である蒸気を発生させる。超臨界排熱回収ボイラ12で発生した超臨界流体である蒸気は、高圧タービン13に蒸気として導かれ、高圧タービン13を駆動する。高圧タービン13で仕事を終えた蒸気はガスタービン11に導かれ、ガスタービン11で再熱される。例えば、高圧タービン13で仕事を終えた蒸気はガスタービン翼の冷却用蒸気としてガスタービン11に導かれる。   The exhaust gas that has finished its work in the gas turbine 11 is supplied to the supercritical exhaust heat recovery boiler 12, and the exhaust gas of the gas turbine 11 generates steam that is a supercritical fluid. Steam, which is a supercritical fluid generated in the supercritical exhaust heat recovery boiler 12, is guided as steam to the high-pressure turbine 13 to drive the high-pressure turbine 13. The steam that has finished work in the high-pressure turbine 13 is guided to the gas turbine 11 and reheated in the gas turbine 11. For example, steam that has finished work in the high-pressure turbine 13 is guided to the gas turbine 11 as steam for cooling the gas turbine blades.

ガスタービン11で再熱された再熱蒸気は中圧タービン17に導かれ、中圧タービン17で仕事を終えた蒸気は低圧タービン18に導かれて低圧タービン18を駆動する。低圧タービン18で仕事を終えた蒸気は復水器19で水に戻され、給水ポンプ20により超臨界排熱回収ボイラ12に供給される。超臨界排熱回収ボイラ12では、ガスタービン11で仕事を終えた排ガスにより水を超臨界流体である蒸気にする。   The reheated steam reheated in the gas turbine 11 is guided to the intermediate pressure turbine 17, and the steam that has finished work in the intermediate pressure turbine 17 is guided to the low pressure turbine 18 to drive the low pressure turbine 18. The steam that has finished its work in the low-pressure turbine 18 is returned to water by the condenser 19 and supplied to the supercritical exhaust heat recovery boiler 12 by the feed water pump 20. In the supercritical exhaust heat recovery boiler 12, water is converted into steam that is a supercritical fluid by the exhaust gas that has finished work in the gas turbine 11.

このように、超臨界排熱回収ボイラ12で発生した超臨界流体である蒸気で高圧タービン13を駆動するので、高圧タービン13の効率が向上する。また、高圧タービン13で仕事を終えた蒸気をガスタービン11で再熱して、その再熱蒸気で中圧タービン13を駆動するので、蒸気タービン全体としての効率も向上する。   Thus, since the high pressure turbine 13 is driven by the steam that is the supercritical fluid generated in the supercritical exhaust heat recovery boiler 12, the efficiency of the high pressure turbine 13 is improved. Moreover, since the steam which finished the work in the high-pressure turbine 13 is reheated by the gas turbine 11 and the intermediate-pressure turbine 13 is driven by the reheated steam, the efficiency of the entire steam turbine is improved.

高圧タービン13で仕事を終えた蒸気は超臨界排熱回収ボイラ12ではなく、ガスタービン11で再熱するので再熱管は短くて済む。すなわち、高圧タービン13とガスタービン11との間の距離、ガスタービン11と中圧タービン17との間の距離は、高圧タービン13と超臨界排熱回収ボイラ12との間の距離、超臨界排熱回収ボイラ12と中圧タービン17との間の距離より短いので、超臨界排熱回収ボイラ12に導いて再熱するより、再熱管は短くて済む。   The steam that has finished its work in the high-pressure turbine 13 is reheated not in the supercritical exhaust heat recovery boiler 12 but in the gas turbine 11, so that the reheat pipe can be short. That is, the distance between the high-pressure turbine 13 and the gas turbine 11 and the distance between the gas turbine 11 and the intermediate-pressure turbine 17 are the distance between the high-pressure turbine 13 and the supercritical exhaust heat recovery boiler 12, the supercritical exhaust gas. Since the distance is shorter than the distance between the heat recovery boiler 12 and the intermediate pressure turbine 17, the reheat pipe can be shorter than the supercritical exhaust heat recovery boiler 12 for reheating.

しかも、超臨界排熱回収ボイラ12で再熱せずにガスタービン11で再熱するので、再熱のために、超臨界排熱回収ボイラ12に供給される排ガスの温度を上昇させる必要がなく、蒸気タービンへの再熱を実現できる。また、超臨界排熱回収ボイラ12とすることにより、超臨界排熱回収ボイラ12の高温部における排ガス温度と、高圧タービン13に供給する蒸気温度との温度差を抑えられるので効率運用が可能である。図2に示すように、図1のガスタービン11の代わりに燃焼器15によって蒸気の再熱を行っても同様の効果を奏す。   And since it reheats with the gas turbine 11 without reheating with the supercritical exhaust heat recovery boiler 12, it is not necessary to raise the temperature of the exhaust gas supplied to the supercritical exhaust heat recovery boiler 12 for reheating, Reheating to the steam turbine can be realized. Further, by using the supercritical exhaust heat recovery boiler 12, the temperature difference between the exhaust gas temperature in the high temperature portion of the supercritical exhaust heat recovery boiler 12 and the steam temperature supplied to the high pressure turbine 13 can be suppressed, so that efficient operation is possible. is there. As shown in FIG. 2, the same effect can be obtained even when the steam is reheated by the combustor 15 instead of the gas turbine 11 of FIG. 1.

以上の説明では、高圧タービン13で仕事を終えた蒸気をガスタービン11または燃焼器15に導き、ガスタービン11または燃焼器15で再熱する場合について説明したが、図3に示すように、ガスタービン11及び燃焼器15の双方に導き再熱するようにしてもよい。高圧タービン13で仕事を終えた蒸気は、ガスタービン11及び燃焼器15に導かれ、ガスタービン11及び燃焼器15の双方で再熱される。燃焼器15でも再熱されるので、ガスタービン11の蒸気冷却による熱量が不足する場合に有効となる。   In the above description, the case where the steam that has finished work in the high-pressure turbine 13 is guided to the gas turbine 11 or the combustor 15 and reheated in the gas turbine 11 or the combustor 15 has been described. However, as shown in FIG. It may be guided to both the turbine 11 and the combustor 15 and reheated. The steam that has finished work in the high-pressure turbine 13 is guided to the gas turbine 11 and the combustor 15, and is reheated in both the gas turbine 11 and the combustor 15. Since the combustor 15 is also reheated, it is effective when the amount of heat due to steam cooling of the gas turbine 11 is insufficient.

図4乃至図8は、本発明の実施形態2に係る超臨界蒸気複合サイクルの構成図であり、実施例1b乃至実施例5bの超臨界蒸気複合サイクルの一例をそれぞれ示している。   4 to 8 are configuration diagrams of the supercritical steam combined cycle according to Embodiment 2 of the present invention, and show examples of the supercritical steam combined cycle of Examples 1b to 5b, respectively.

この実施形態2は、図1乃至図3に示した実施形態1に対し、中圧タービン17で仕事を終えた蒸気を、空気圧縮機16、ガスタービン11、燃焼器15の少なくともいずれか一つに導き、空気圧縮機16、ガスタービン11、燃焼器15の少なくともいずれか一つで再熱し、その再熱された再熱蒸気で低圧タービン18を駆動するようにしたものである。図1乃至図3と同一要素には、同一符号を付し重複する説明は省略する。   The second embodiment is different from the first embodiment shown in FIGS. 1 to 3 in that the steam that has finished work in the intermediate pressure turbine 17 is converted into at least one of the air compressor 16, the gas turbine 11, and the combustor 15. Then, the low-pressure turbine 18 is driven by the reheated steam that is reheated by at least one of the air compressor 16, the gas turbine 11, and the combustor 15. The same elements as those in FIGS. 1 to 3 are denoted by the same reference numerals, and redundant description is omitted.

図4は、図1に対し、中圧タービン17で仕事を終えた蒸気を空気圧縮機16に導き、空気圧縮機16で再熱するようにしたものである。また、図5は、図2に対し、中圧タービン17で仕事を終えた蒸気をガスタービン11に導き、ガスタービン11で再熱するようにしたものである。また、図6は、図1に対し、中圧タービン17で仕事を終えた蒸気を燃焼器15に導き、燃焼器15で再熱するようにしたものである。   FIG. 4 is different from FIG. 1 in that the steam that has finished work in the intermediate pressure turbine 17 is guided to the air compressor 16 and reheated by the air compressor 16. Further, FIG. 5 is a diagram in which the steam that has finished work in the intermediate pressure turbine 17 is guided to the gas turbine 11 and reheated in the gas turbine 11 with respect to FIG. 2. Further, FIG. 6 is a diagram in which the steam that has finished work in the intermediate pressure turbine 17 is guided to the combustor 15 and reheated in the combustor 15 with respect to FIG.

空気圧縮機16、ガスタービン11、燃焼器15の少なくともいずれか一つで再熱された再熱蒸気は低圧タービン18に導かれ、低圧タービン18を駆動する。これにより、さらに、蒸気タービンの効率を高めることができ省エネルギーが可能となる。   The reheated steam reheated by at least one of the air compressor 16, the gas turbine 11, and the combustor 15 is guided to the low pressure turbine 18 to drive the low pressure turbine 18. Thereby, the efficiency of the steam turbine can be further increased and energy saving can be achieved.

また、図7に示すように、空気圧縮機16で再熱された再熱蒸気を燃焼器15に導いてさらなる再熱を行なっても良いし、図8に示すように、空気圧縮機16で再熱された再熱蒸気をガスタービン11に導いてさらなる再熱を行なっても良い。空気圧縮機16はガスタービン11、燃焼器15に比較して温度が低いので、さらに、ガスタービン11、燃焼器15に導き高い蒸気温度とする。これにより、蒸気サイクルの効率が向上する。   Further, as shown in FIG. 7, the reheated steam reheated by the air compressor 16 may be guided to the combustor 15 to perform further reheating, or as shown in FIG. The reheated reheated steam may be guided to the gas turbine 11 for further reheating. Since the temperature of the air compressor 16 is lower than that of the gas turbine 11 and the combustor 15, the air compressor 16 is further led to the gas turbine 11 and the combustor 15 to have a high steam temperature. This improves the efficiency of the steam cycle.

図9乃至図13は、本発明の実施形態3に係る超臨界蒸気複合サイクルの構成図であり、実施例1c乃至実施例5cの超臨界蒸気複合サイクルの一例をそれぞれ示している。   FIG. 9 thru | or FIG. 13 is a block diagram of the supercritical steam combined cycle which concerns on Embodiment 3 of this invention, and has each shown an example of the supercritical steam combined cycle of Example 1c thru | or Example 5c.

この実施形態3は、図1乃至図3に示した実施形態1に対し、多段のガスタービン及び燃焼器を有した再熱サイクルのガスタービン設備に適用したものである。図1乃至図3と同一要素には、同一符号を付し重複する説明は省略する。   The third embodiment is applied to a reheat cycle gas turbine facility having a multi-stage gas turbine and a combustor as compared with the first embodiment shown in FIGS. The same elements as those in FIGS. 1 to 3 are denoted by the same reference numerals, and redundant description is omitted.

図9は、図1に対し、2段のガスタービン及び燃焼器を有した再熱サイクルのガスタービン設備に適用したものである。図9に示すように、第1段燃焼器15aは空気圧縮機16からの圧縮空気と燃料とを入力し燃料を燃焼する。そして、第1段燃焼器15aの燃焼ガスは第1段ガスタービン11aに供給され第1段ガスタービン11aを駆動する。第1段ガスタービン11aの排ガスは第2段燃焼器15bに入力され、第2段燃焼器15bには燃料も入力される。第1段ガスタービン11aの排ガスは、燃料量と比較して空気リッチ(例えば完全燃焼に必要な量の3倍程度)であるので、第2段燃焼器15bにおいて燃料を燃焼させることができる。第2段燃焼器15bの燃焼ガスは第2段ガスタービン11bに供給され第2段ガスタービン11bを駆動する。第2段ガスタービン11bで仕事を終えた排ガスは、超臨界排熱回収ボイラ12に供給され、第2段ガスタービン11bからの排ガスで超臨界流体である蒸気を発生させる。   FIG. 9 is applied to a gas turbine equipment of a reheat cycle having a two-stage gas turbine and a combustor as compared with FIG. As shown in FIG. 9, the first stage combustor 15a receives the compressed air and fuel from the air compressor 16 and burns the fuel. And the combustion gas of the 1st stage combustor 15a is supplied to the 1st stage gas turbine 11a, and drives the 1st stage gas turbine 11a. The exhaust gas from the first stage gas turbine 11a is input to the second stage combustor 15b, and the fuel is also input to the second stage combustor 15b. Since the exhaust gas from the first stage gas turbine 11a is rich in air compared to the amount of fuel (for example, about three times the amount necessary for complete combustion), the fuel can be burned in the second stage combustor 15b. The combustion gas of the second stage combustor 15b is supplied to the second stage gas turbine 11b and drives the second stage gas turbine 11b. The exhaust gas that has finished work in the second stage gas turbine 11b is supplied to the supercritical exhaust heat recovery boiler 12, and the exhaust gas from the second stage gas turbine 11b generates steam that is a supercritical fluid.

そして、超臨界排熱回収ボイラ12で発生した超臨界流体である蒸気は、高圧タービン13に導かれ、高圧タービン13で仕事を終えた蒸気は、第1段ガスタービン11aに導かれ、第1段ガスタービン11aで再熱されて、中圧タービン17に導かれる。   Then, the steam that is the supercritical fluid generated in the supercritical exhaust heat recovery boiler 12 is guided to the high-pressure turbine 13, and the steam that has finished work in the high-pressure turbine 13 is guided to the first stage gas turbine 11 a, and the first It is reheated by the stage gas turbine 11 a and guided to the intermediate pressure turbine 17.

このように、2段のガスタービン11a、11b及び2段の燃焼器15a、15bを有し、2段目の第2段燃焼器15bに1段目の第1段ガスタービン11aの排ガスを供給するようにしているので、NOXの制約が緩和されるため第2段燃焼器15bの燃焼温度をより高温にできる。従って、よりガスタービンの熱落差を大きくでき発電出力を大きくできる。   In this way, the two-stage gas turbines 11a and 11b and the two-stage combustors 15a and 15b are provided, and the exhaust gas from the first-stage first-stage gas turbine 11a is supplied to the second-stage second-stage combustor 15b. Therefore, since the restriction of NOX is eased, the combustion temperature of the second stage combustor 15b can be made higher. Therefore, the heat drop of the gas turbine can be increased and the power generation output can be increased.

以上の説明では、高圧タービン13で仕事を終えた蒸気は、第1段ガスタービン11aに導くようにしたが、第2段ガスタービン11bに導くようにしてもよい。さらに、図10に示すように、第1段ガスタービン11a及び第2段ガスタービン11bの双方に導くようにしてもよい。   In the above description, the steam that has finished work in the high-pressure turbine 13 is guided to the first stage gas turbine 11a, but may be guided to the second stage gas turbine 11b. Furthermore, as shown in FIG. 10, it may be guided to both the first stage gas turbine 11a and the second stage gas turbine 11b.

また、図11に示すように、第1段ガスタービン11aの代わりに、第1段燃焼器15aによって蒸気の再熱を行ってもよいし、第2段燃焼器15bに導くようにしてもよい。さらに、図12に示すように、第1段燃焼器15a及び第2段燃焼器15bの双方に導くようにしてもよい。   Further, as shown in FIG. 11, instead of the first stage gas turbine 11a, the steam may be reheated by the first stage combustor 15a or may be led to the second stage combustor 15b. . Furthermore, as shown in FIG. 12, it may be guided to both the first stage combustor 15a and the second stage combustor 15b.

また、図13に示すように、第1段ガスタービン11a及び第2段ガスタービン11b、第1段燃焼器15a及び第2段燃焼器15bに、高圧タービン13で仕事を終えた蒸気を導き、第1段ガスタービン11a及び第2段ガスタービン11b、第1段燃焼器15a及び第2段燃焼器15bにおいて再熱するようにしてもよい。   Moreover, as shown in FIG. 13, the steam which finished the work in the high-pressure turbine 13 is led to the first stage gas turbine 11a and the second stage gas turbine 11b, the first stage combustor 15a and the second stage combustor 15b, You may make it reheat in the 1st stage gas turbine 11a and the 2nd stage gas turbine 11b, the 1st stage combustor 15a, and the 2nd stage combustor 15b.

図13に示すように、高圧タービン13で仕事を終えた蒸気は、第1段ガスタービン11a及び第2段ガスタービン11b、第1段燃焼器15a及び第2段燃焼器15bにも導かれ、2段のガスタービン11a、11b、2段の燃焼器15a、15bの双方で再熱される。2段のガスタービン11a、11b及び2段の燃焼器15a、15bの双方で再熱されるので、より再熱蒸気の熱量が大きくなり、蒸気サイクルの効率が向上する。このように、多段のガスタービン及び燃焼器を有した再熱サイクルのガスタービン設備に適用することによって、再熱蒸気の加熱熱量不足を解消できる。   As shown in FIG. 13, the steam that has finished work in the high-pressure turbine 13 is also led to the first stage gas turbine 11a and the second stage gas turbine 11b, the first stage combustor 15a, and the second stage combustor 15b, Reheating is performed in both the two-stage gas turbines 11a and 11b and the two-stage combustors 15a and 15b. Since reheating is performed in both the two-stage gas turbines 11a and 11b and the two-stage combustors 15a and 15b, the amount of heat of the reheated steam is further increased, and the efficiency of the steam cycle is improved. Thus, by applying to the gas turbine equipment of the reheat cycle which has a multistage gas turbine and a combustor, the shortage of heating heat amount of reheat steam can be solved.

図14乃至図18は本発明の実施形態4に係る超臨界蒸気複合サイクルの構成図であり、実施例1d乃至実施例5dの超臨界蒸気複合サイクルの一例をそれぞれ示している。この実施形態4は、図9乃至図13に示した実施形態3に対し、中圧タービン17で仕事を終えた蒸気を、空気圧縮機16、第1段ガスタービン11a及び第2段ガスタービン11b、第1段燃焼器15a及び第2段燃焼器15bの少なくともいずれか一つで再熱し、その再熱された再熱蒸気で低圧タービンを駆動するようにしたものである。図9乃至図13と同一要素には、同一符号を付し重複する説明は省略する。   14 to 18 are configuration diagrams of the supercritical steam combined cycle according to Embodiment 4 of the present invention, and show examples of the supercritical steam combined cycle of Examples 1d to 5d, respectively. The fourth embodiment is different from the third embodiment shown in FIGS. 9 to 13 in that the steam that has finished work in the intermediate pressure turbine 17 is converted into the air compressor 16, the first stage gas turbine 11a, and the second stage gas turbine 11b. The low-pressure turbine is driven by the reheated steam that is reheated by at least one of the first stage combustor 15a and the second stage combustor 15b. The same elements as those in FIGS. 9 to 13 are denoted by the same reference numerals and redundant description is omitted.

図14は、図10の実施例2cに対し、中圧タービン17で仕事を終えた蒸気を空気圧縮機16に導き、空気圧縮機16で再熱された再熱蒸気で低圧タービン18を駆動するようにしたものである。   FIG. 14 shows the embodiment 2c of FIG. 10 in which the steam that has finished work in the intermediate pressure turbine 17 is guided to the air compressor 16 and the low pressure turbine 18 is driven by the reheated steam reheated by the air compressor 16. It is what I did.

図15は、図12の実施例4cに対し、中圧タービン17で仕事を終えた蒸気を第1段ガスタービン11aに導き、第1段ガスタービン11aで再熱された再熱蒸気で低圧タービン18を駆動するようにしたものである。   FIG. 15 shows the low pressure turbine with the reheated steam re-heated by the first-stage gas turbine 11a, with the steam that has finished work in the intermediate-pressure turbine 17 guided to the first-stage gas turbine 11a with respect to the embodiment 4c of FIG. 18 is driven.

図16は、図10の実施例2cに対し、中圧タービン17で仕事を終えた蒸気を第1段燃焼器15aに導き、第1段燃焼器15aで再熱された再熱蒸気で低圧タービン18を駆動するようにしたものである。   FIG. 16 shows the low pressure turbine with the reheated steam re-heated by the first-stage combustor 15a, with the steam that has finished work in the intermediate-pressure turbine 17 being guided to the first-stage combustor 15a with respect to the embodiment 2c of FIG. 18 is driven.

図17は、図10の実施例2cに対し、中圧タービン17で仕事を終えた蒸気を、空気圧縮機16、第1段燃焼器15a、第2段燃焼器15bに導き、空気圧縮機16、第1段燃焼器15a、第2段燃焼器15bで再熱された再熱蒸気で低圧タービン18を駆動するようにしたものである。   FIG. 17 shows that the steam that has finished work in the intermediate pressure turbine 17 is led to the air compressor 16, the first stage combustor 15 a, and the second stage combustor 15 b with respect to the embodiment 2 c of FIG. The low-pressure turbine 18 is driven by reheated steam reheated by the first stage combustor 15a and the second stage combustor 15b.

図18は、図12の実施例4cに対し、中圧タービン17で仕事を終えた蒸気を、空気圧縮機16、第1段ガスタービン11a、第2段ガスタービン11bに導き、空気圧縮機16、第1段ガスタービン11a、第2段ガスタービン11bで再熱された再熱蒸気で低圧タービン18を駆動するようにしたものである。   FIG. 18 shows, with respect to the embodiment 4c of FIG. 12, the steam that has finished work in the intermediate pressure turbine 17 is guided to the air compressor 16, the first stage gas turbine 11a, and the second stage gas turbine 11b. The low-pressure turbine 18 is driven by reheated steam reheated by the first stage gas turbine 11a and the second stage gas turbine 11b.

このように、中圧タービン17で仕事を終えた蒸気を、空気圧縮機16、第1段ガスタービン11a及び第2段ガスタービン11b、第1段燃焼器15a及び第2段燃焼器15bの少なくともいずれか一つで再熱し、その再熱された再熱蒸気で低圧タービンを駆動するので、蒸気サイクルの効率を高めることができ省エネルギーが可能となる。   In this way, the steam that has finished work in the intermediate pressure turbine 17 is supplied to at least one of the air compressor 16, the first stage gas turbine 11a and the second stage gas turbine 11b, the first stage combustor 15a, and the second stage combustor 15b. Since either one is reheated and the low-pressure turbine is driven by the reheated reheated steam, the efficiency of the steam cycle can be increased and energy saving can be achieved.

また図10の実施例2cに対して、中圧タービン17で仕事を終えた蒸気を2段のガスタービン11a、11b、2段の燃焼器15a、15bの少なくともいずれか一つに導いて再熱を行ってもよい。蒸気サイクルにおいて二段再熱を行うことによって、さらに熱効率が向上する。   Further, with respect to the embodiment 2c of FIG. 10, the steam that has finished work in the intermediate pressure turbine 17 is led to at least one of the two-stage gas turbines 11a and 11b and the two-stage combustors 15a and 15b to be reheated. May be performed. Thermal efficiency is further improved by performing two-stage reheating in the steam cycle.

図19乃至図21は本発明の実施形態5に係る超臨界蒸気複合サイクルの構成図であり、実施例1e乃至実施例3eの超臨界蒸気複合サイクルの一例をそれぞれ示している。   FIGS. 19 to 21 are configuration diagrams of the supercritical steam combined cycle according to Embodiment 5 of the present invention, and show examples of supercritical steam combined cycles of Examples 1e to 3e, respectively.

この実施形態5は、図9乃至図13に示した実施形態3や、図14乃至図18に示した実施形態4に対し、高圧タービン13で仕事を終えた蒸気を、2段のガスタービン11a、11bや2段の燃焼器15a、15bに供給するにあたり、直列に供給するようにしたものである。図9乃至図13や図14乃至図18と同一要素には、同一符号を付し重複する説明は省略する。   The fifth embodiment is different from the third embodiment shown in FIGS. 9 to 13 and the fourth embodiment shown in FIGS. 14 to 18 in that the steam that has finished work in the high-pressure turbine 13 is converted into a two-stage gas turbine 11a. , 11b and the two-stage combustors 15a, 15b are supplied in series. The same elements as those in FIGS. 9 to 13 and FIGS. 14 to 18 are denoted by the same reference numerals, and redundant description is omitted.

図19は、図13に示した実施形態3の実施例5cに対し、高圧タービン13で仕事を終えた蒸気を2段のガスタービン11a、11b及び2段の燃焼器15a、15bに供給するにあたり、第1段ガスタービン11a及び第2段ガスタービン11bに対して、並列に供給されることに代えて直列に供給し、同様に、第1段燃焼器15a及び第2段燃焼器15bに対しても並列に代えて直列に供給するようにしたものである。   FIG. 19 shows an example of supplying steam that has finished work in the high-pressure turbine 13 to the two-stage gas turbines 11a and 11b and the two-stage combustors 15a and 15b, as compared with Example 5c of Embodiment 3 shown in FIG. The first stage gas turbine 11a and the second stage gas turbine 11b are supplied in series instead of being supplied in parallel, and similarly to the first stage combustor 15a and the second stage combustor 15b. However, instead of parallel, it is supplied in series.

図20は、図14に示した実施形態4の実施例1dに対し、高圧タービン13で仕事を終えた蒸気を2段のガスタービン11a、11bに供給するにあたり、第1段ガスタービン11a及び第2段ガスタービン11bに対して、並列に供給することに代えて直列に供給するようにしたものである。 Figure 20 is to Example 1d of the fourth embodiment shown in FIG. 14, Ri per the supplying steam after finishing of work in the high pressure turbine 13 the two-stage gas turbine 11a, the 11b, first stage gas turbine 11a and the second stage gas turbine 11b are supplied in series instead of being supplied in parallel.

図21は、図18に示した実施形態4の実施例5dに対し、高圧タービン13で仕事を終えた蒸気を2段の燃焼器15a、15bに供給するにあたり、第1段燃焼器15a及び第2段燃焼器15bに対して、並列に供給されることに代えて直列に供給するようにしたものである。この実施形態5の場合も、実施形態3、4と同様な効果が得られる。   FIG. 21 shows that the first stage combustor 15a and the second stage combustor 15a and 15b are supplied with the steam that has finished work in the high pressure turbine 13 to the example 5d of the fourth embodiment shown in FIG. Instead of being supplied in parallel, the two-stage combustor 15b is supplied in series. In the case of the fifth embodiment, the same effect as in the third and fourth embodiments can be obtained.

ここで、実施形態5では、実施形態3の実施例5c、実施形態4の実施例1d、実施形態4の実施例5dに対し、高圧タービン13で仕事を終えた蒸気を並列に代えて直列に供給し再熱する場合について説明したが、実施形態3、4のその他の実施例に対しても、同様に、高圧タービン13で仕事を終えた蒸気を並列に代えて直列に供給し再熱するようにしてもよい。   Here, in the fifth embodiment, in contrast to the fifth embodiment of the third embodiment, the first embodiment of the fourth embodiment, and the fifth embodiment of the fourth embodiment, the steam that has finished work in the high-pressure turbine 13 is replaced in parallel and serially. Although the case where it supplies and reheats was demonstrated, it replaces with the steam which finished work with the high pressure turbine 13, and supplies it in series similarly and reheats also about the other Examples of Embodiment 3, 4. You may do it.

また、実施形態5において、中圧タービン17で仕事を終えた蒸気を直列または並列に接続されたガスタービン11、燃焼器15、空気圧縮機16によって再熱し、低圧タービン18に供給してもよい。   In the fifth embodiment, the steam that has finished work in the intermediate pressure turbine 17 may be reheated by the gas turbine 11, the combustor 15, and the air compressor 16 connected in series or in parallel and supplied to the low pressure turbine 18. .

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   As mentioned above, although some embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

11…ガスタービン、12…超臨界排熱回収ボイラ、13…高圧タービン、14…発電機、15…燃焼器、16…空気圧縮機、17…中圧タービン、18…低圧タービン、19…復水器、20…給水ポンプ DESCRIPTION OF SYMBOLS 11 ... Gas turbine, 12 ... Supercritical waste heat recovery boiler, 13 ... High pressure turbine, 14 ... Generator, 15 ... Combustor, 16 ... Air compressor, 17 ... Medium pressure turbine, 18 ... Low pressure turbine, 19 ... Condensate 20, water supply pump

Claims (4)

空気圧縮機からの圧縮空気と燃料とを入力し燃料を燃焼させる燃焼器と、
前記燃焼器の燃焼ガスで駆動されるガスタービンと、
前記ガスタービンの排ガスで超臨界流体である蒸気を発生させる超臨界排熱回収ボイラと、
前記超臨界排熱回収ボイラで発生した超臨界流体である蒸気で駆動される高圧タービンと、
前記高圧タービンで仕事を終え前記ガスタービン及び前記燃焼器の少なくともいずれか一つで再熱された再熱蒸気で駆動される中圧タービンと、
前記中圧タービンで仕事を終えた蒸気で駆動される低圧タービンとを備え、
前記再熱蒸気は、前記中圧タービン出口でも湿らない蒸気条件を満たす蒸気であることを特徴とする超臨界蒸気複合サイクル。
A combustor that inputs compressed air and fuel from an air compressor and burns the fuel;
A gas turbine driven by the combustion gas of the combustor;
A supercritical exhaust heat recovery boiler that generates steam that is a supercritical fluid in the exhaust gas of the gas turbine;
A high-pressure turbine driven by steam, which is a supercritical fluid generated in the supercritical exhaust heat recovery boiler;
An intermediate pressure turbine driven by reheated steam that has finished work in the high pressure turbine and is reheated in at least one of the gas turbine and the combustor;
E Bei a low pressure turbine driven by the steam after finishing of work in the intermediate-pressure turbine,
The superheated steam combined cycle , wherein the reheated steam is a steam that satisfies a steam condition that does not get wet even at the outlet of the intermediate pressure turbine .
前記中圧タービンで仕事を終えた蒸気を、前記空気圧縮機、前記ガスタービン、前記燃焼器の少なくともいずれか一つで再熱し、その再熱蒸気で前記低圧タービンを駆動することを特徴とする請求項1記載の超臨界蒸気複合サイクル。   The steam that has finished work in the intermediate pressure turbine is reheated by at least one of the air compressor, the gas turbine, and the combustor, and the low pressure turbine is driven by the reheated steam. The supercritical steam combined cycle according to claim 1. 空気圧縮機からの圧縮空気と燃料とを入力し燃料を燃焼させる第1段燃焼器と、
前記第1段燃焼器の燃焼ガスで駆動される第1段ガスタービンと、
前記第1段ガスタービンの排ガスと燃料とを入力し燃料を燃焼させる第2段燃焼器と、
前記第2段燃焼器の燃焼ガスで駆動される第2段ガスタービンと、
前記第2段ガスタービンの排ガスで超臨界流体である蒸気を発生させる超臨界排熱回収ボイラと、
前記超臨界排熱回収ボイラで発生した超臨界流体である蒸気で駆動される高圧タービンと、
前記高圧タービンで仕事を終え、前記第1段ガスタービン、前記第2段ガスタービン、前記第1段燃焼器、前記第2段燃焼器の少なくともいずれか一つにより再熱された再熱蒸気で駆動される中圧タービンと、
前記中圧タービンで仕事を終えた蒸気で駆動される低圧タービンとを備え、
前記再熱蒸気は、前記中圧タービン出口でも湿らない蒸気条件を満たす蒸気であることを特徴とする超臨界蒸気複合サイクル。
A first stage combustor for receiving compressed air and fuel from an air compressor and burning the fuel;
A first stage gas turbine driven by the combustion gas of the first stage combustor;
A second stage combustor for inputting the exhaust gas and fuel of the first stage gas turbine and burning the fuel;
A second stage gas turbine driven by the combustion gas of the second stage combustor;
A supercritical exhaust heat recovery boiler that generates steam that is a supercritical fluid in the exhaust gas of the second stage gas turbine;
A high-pressure turbine driven by steam, which is a supercritical fluid generated in the supercritical exhaust heat recovery boiler;
Reheated steam that has finished work in the high-pressure turbine and has been reheated by at least one of the first-stage gas turbine, the second-stage gas turbine, the first-stage combustor, and the second-stage combustor. A driven medium pressure turbine;
E Bei a low pressure turbine driven by the steam after finishing of work in the intermediate-pressure turbine,
The superheated steam combined cycle , wherein the reheated steam is a steam that satisfies a steam condition that does not get wet even at the outlet of the intermediate pressure turbine .
前記中圧タービンで仕事を終えた蒸気を、前記空気圧縮機、前記第1段ガスタービン、前記第2段ガスタービン、前記第1段燃焼器、前記第2段燃焼器の少なくともいずれか一つで再熱し、その再熱された再熱蒸気で前記低圧タービンを駆動することを特徴とする請求項3記載の超臨界蒸気複合サイクル。   Steam that has finished work in the intermediate pressure turbine is converted into at least one of the air compressor, the first stage gas turbine, the second stage gas turbine, the first stage combustor, and the second stage combustor. The supercritical steam combined cycle according to claim 3, wherein the low pressure turbine is driven by the reheated reheated steam.
JP2012198109A 2012-09-10 2012-09-10 Supercritical steam combined cycle Active JP5983213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012198109A JP5983213B2 (en) 2012-09-10 2012-09-10 Supercritical steam combined cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012198109A JP5983213B2 (en) 2012-09-10 2012-09-10 Supercritical steam combined cycle

Publications (2)

Publication Number Publication Date
JP2014051944A JP2014051944A (en) 2014-03-20
JP5983213B2 true JP5983213B2 (en) 2016-08-31

Family

ID=50610632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012198109A Active JP5983213B2 (en) 2012-09-10 2012-09-10 Supercritical steam combined cycle

Country Status (1)

Country Link
JP (1) JP5983213B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101529431B1 (en) * 2014-05-26 2015-06-17 현대중공업 주식회사 Multiplex power generating system with multi power boosting means
KR101571245B1 (en) 2014-05-30 2015-11-24 현대중공업 주식회사 Integrated gasification combined cycle system
WO2016125300A1 (en) * 2015-02-06 2016-08-11 三菱重工業株式会社 Steam turbine plant, combined cycle plant provided with same, and method of operating steam turbine plant
JP7014661B2 (en) * 2018-03-29 2022-02-01 三菱重工業株式会社 Boiler plant and its operation method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05179992A (en) * 1991-12-27 1993-07-20 Hitachi Ltd Compound power generation system
DE59709403D1 (en) * 1997-07-25 2003-04-03 Alstom Switzerland Ltd Process for operating a power plant
JPH11200883A (en) * 1998-01-12 1999-07-27 Mitsubishi Heavy Ind Ltd Power generating gas turbine, combined power generation plant and power generating method
JP3926048B2 (en) * 1998-11-17 2007-06-06 株式会社東芝 Combined cycle power plant
US6220013B1 (en) * 1999-09-13 2001-04-24 General Electric Co. Multi-pressure reheat combined cycle with multiple reheaters
JP4395254B2 (en) * 2000-11-13 2010-01-06 三菱重工業株式会社 Combined cycle gas turbine
US7874162B2 (en) * 2007-10-04 2011-01-25 General Electric Company Supercritical steam combined cycle and method

Also Published As

Publication number Publication date
JP2014051944A (en) 2014-03-20

Similar Documents

Publication Publication Date Title
JP4621597B2 (en) Steam turbine cycle
US8281565B2 (en) Reheat gas turbine
US9903276B2 (en) Preheating device for gas turbine fuel, gas turbine plant provided therewith, and preheating method for gas turbine fuel
RU2595192C2 (en) Power plant with built-in pre-heating of fuel gas
US20070017207A1 (en) Combined Cycle Power Plant
JP5555276B2 (en) Gas turbine engine device equipped with Rankine cycle engine
US20120317973A1 (en) Asymmetrical Combined Cycle Power Plant
US9188028B2 (en) Gas turbine system with reheat spray control
US20110099972A1 (en) Method of increasing power output of a combined cycle power plant during select operating periods
JP6793745B2 (en) Combined cycle power plant
US20130097993A1 (en) Heat recovery steam generator and methods of coupling same to a combined cycle power plant
JP5983213B2 (en) Supercritical steam combined cycle
JP2013241934A (en) High-temperature steam turbine power plant for performing double reheating
US20150052906A1 (en) Duct Fired Combined Cycle System
US9003764B2 (en) System and method for thermal control in a gas turbine engine
JP2019173711A (en) Boiler plant and its operational method
US10287922B2 (en) Steam turbine plant, combined cycle plant provided with same, and method of operating steam turbine plant
US20140060047A1 (en) Steam Cycle System with Thermoelectric Generator
JP2015068314A (en) Fuel gas heating facility and combined cycle power generation plant
JP6415122B2 (en) Combined cycle equipment
US20140069078A1 (en) Combined Cycle System with a Water Turbine
CN204960997U (en) Waste heat turbo generator set
CA2983533C (en) Combined cycle power generation
CN205243569U (en) Double reheat steam turbine of heating boiler overgrate air draws gas super -heated rate and utilizes system
RU2748362C1 (en) Method for operation of thermal power station

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160718

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5983213

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150